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Summary

Financial markets are a perfect example of a complex system due to the be-
haviour of millions of investors who try to gain money each second, evolving
as a chaotic environment very difficult to predict. In the last 20 years physi-
cists and economists have tried to explain the price dynamics using tools from
Statistical Mechanics, Theory of Turbulence and even Quantum Mechanics,
combining concepts from financial world and theoretical physics. In the first
part of the thesis we will expound these models both in a mathematical and
in a historical point of view, retracing the development of Econophysics. In
the second part of thesis we will compare these mathematical models with
the aim of describing real historical data very different from each other; from
financial indices to single stocks, from commodities to cryptocurrencies like
Bitcoin, also analyzing the trend of Forex. We will also employ ideas from
natural selection with Genetic Algorithms to evolve sets of parameters in
order to better describe the real world data, solving optimization problems
writing code on Python. For each time series we will also discuss the re-
sults in order to comprehend the accuracy of the algorithm, matching the
outcomes of each time series.
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Chapter 1

Introduction to Econophysics

In this chapter we will discuss about the development and the theoretical
concepts of the Econophysics, a new branch of the Theoretical Physics that
was born in the early 2000’s. We will also analyze in detail two of the most
meaningful physical models to describe financial time series, Geometric Brow-
nian Motion (GBM) and Quantum Harmonic Oscillator. We will explore in
depth why these two methods are very common in the scientific community,
explaining them both from a physical and financial point of view.

1.1 What is Econophysics?

Econophysics is a research field whose position is in the middle between
many branches of Theoretical Physics, like Statistical Mechanics, Turbulence,
Chaos Theory and Fractals, whose goal is to solve problems in economics.
Financial markets, in fact, follow non linear dynamics enabling physicists to
hypothesize their evolution like models already known, as the kinetic theory
of gas or fluid dynamics. Econophysics was introduced for the first time by
the American physicist Eugene Stanley, co-author of ’Introduction to Econo-
physics [24], giving rise to a new age of the finance description. This inter-
disciplinary field employs concepts from Probability Theory and Statistical
Physics [25] to describe the quantitative properties of complex economical
systems, made up of a huge amounts of humans who interact purchasing and
selling financial products like stocks, commodities, ETF’s and cryptocurren-
cies.
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The need of new tools from physics that could overcome classical models
from statistics and econometrics began in the middle 80’s when the amount
of financial data became very huge, and traditional methods were insufficient.
The birth of Econophysics, instead, was not the first time in the history of
science in which physics were involved in the economics or financial trou-
bleshooting. Daniel Bernoulli published in 1738 ’Specimen theoriae novae
de mensura sortis’, discussing about theories for the measurement of risk
explaining the St. Petersburg Paradox as a basis for Game Theory concepts
like risk adversion and utility function. Pierre - Simon Laplace, furthermore,
pointed out the simplification of many random and unpredictable phenom-
ena in his ’A Philosophical Essay on Probabilities’ written in 1812. The
first mathematician to apply physical concepts to financial markets was Luis
Bachelier, who worked out on the Brownian motion modeling it as a stochas-
tic process in 1900, 5 years before Albert Einstein. Bachelier anticipated by
70 years the famous publication of ’Black and Scholes’ in 1973 regarding the
pricing of derivatives in his economics PhD thesis. In 1969 Jan Tinbergen
was the first physicist to win the Nobel Prize for Economics for having de-
veloped and applied dynamic models for the analysis of economic processes.
Subsequently Benoit Mandelbrot, famous for his work on fractals, gave a very
important contribution to the definition of the Modern Portfolio Theory.

The Polish mathematician analyzed the stock market variations, in par-
ticular the fluctuations in all the time scales of prices, researching the multi-
scaling laws that could describe the evolution of a rate. His analysis started
from the leptokurtic distributions as a way to model return distributions,
corroborated from the experimental results in this thesis, and also to the ab-
sence of short memory on returns that has also been confirmed by our work.
In 1970 it was developed the ’Efficient Market Hypothesis’ or EMH, accord-
ing to which share prices reflect all information about the external market
having an independence between prices of two subsequent days, confirming
their evolution as a random walk. This theory assumes that when a new
information comes into the market, with natural disaster like 2004 Tsunami
in Asia or natural diseases like COVID-19 Pandemic, there is no way for
an investor to gain more than a benchmark made up of randomly selected
stocks [25]. EMH is the base of the technical analysis which is used by mil-
lions of traders each day to forecast stock prices. There have been created a
lot of technical indicators that make traders understand which direction the
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market is taking, without considering concepts from fundamental analysis or
behavioural finance.
Fundamental analysis, in fact, exploits a more general approach to analyze
the trend of a company [26], establishing its correct price both on the fi-
nancial conditions of the company and on the geopolitical features of the
market in which it is inserted. Behavioural finance, moreover, is a theory
that deals with the relationship between cognitive psychology and the lack
of rationality of economic agents, portraying why many investors don’t follow
the assumptions of game theory. Going back to the technical analysis, one
of the indicators applied to financial time series in the thesis was the Hurst
coefficient.

The starting point is always the EMH, so the assumption that in financial
markets prices do not have trends, behaving casually in an independent way
without presenting short or long term memory [27]. This thesis has been
denied by Mandelbrot because in the real markets prices often follow trends,
bullish or bearish, that depend on economic phases like inflation, recession
and others, with non periodic cycles. For example the average italian annual
inflation, or the general price increase, was larger than 3% in 2008, 2012
and maybe in 2022 according to [28], not following an aforethought scheme.
We can therefore recognize these trends in detail analyzing historical time
series of prices and returns, trying to detect long-term memory. These kind
of testings are very important both for the portfolio optimization and for
its prediction, being often used by algorithmic traders to device a financial
strategy to invest.

Harold Edwin Hurst was a British hydrologist who tried to explain why
on Nile river strong flood waves were followed by strong flood waves while
light flood waves were followed by light flood waves in different time periods.
So he tried to spot and describe these cyclical trends creating the Hurst index
that would be used in the analysis of financial markets.
Given a historical time series X1, ..., Xn of length n, we have to:

• Calculate the mean of the data mn = 1
n

∑n
i=1Xi

• Obtain the deviation of observation from the mean: Yt = Xt −mn for
t = 1, 2, .., n
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• Compute the cumulative deviation for each observation: Zt =
∑t

i=1 Yt
for t = 1, 2, .., n

• Take the range of this cumulative: Rn = max(Z1, ..., Zn)−min(Z1, ..., Zn)

• Estimate the standard deviation of the data: Sn =
√

1
n

∑n
i=1(Xi −m)2

• Standardize the range: Rn

Sn

• Fit the power law Rn

Sn
= CNH with H the Hurst coefficient and C ∈ R

Benoit Mandelbrot in 1972 [29] demonstrated that the Hurst coefficient could
assume values from 0 to 1 with the following meaning:

• H < 0.5 : historical data are dependent and mean-reversing, so there
is a negative correlation between subsequent events. A bearing phase
will be followed by a bullish phase and viceversa, having a long-term
correlation of the series.

• H = 0.5 : historical data are not dependent and their behaviour is like
a random walk. This is the only case in which EMH is valid.

• H > 0.5 : historical data are dependent and trend - reinforcing, so
there is a positive correlation between subsequent. The trend will be
maintained and we expect that if it is positive, it will remain positive,
if it is negative, it will remain negative.

As we will discuss later, non classical tools from Econophysics provide the
methods to intercept interesting features of the historical series of returns like
fat-tails and excess of kurtosis. This new area of research, moreover, is not
free from criticism because it tries to make physicists and economists agree.
The first ones, having a strong quantitative and scientific background, man-
age to detect some empirical laws from the financial markets describing them
by the use of dynamical laws, even not closely linked to the world of finance.
As we will show, in fact, there could be shown not only a very interesting con-
nection between Quantum Mechanics and Finance but also with the study
of earthquakes and with many different topics from Statistical Physics like
the Master Equation and the Ising Model. Economists, instead, can depict
many important variables that could guide periods of financial bubbles of
crisis, and working with physicists creating models to better control them.
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1.2 GBM and Financial Markets

We can observe a Brownian motion if there is a very small particle, with a
diameter of the order of 10−6m hanging on a gas or a liquid without the
effect of the gravity force. A little grain of smoke suspended in the air or
ink particles absorbed in a bottle of water have a continuous agitated and
disordered motion. Each of these particles endures thousands of bumps with
the neighbours, resulting in an almost null deviation of its position without a
preferential direction of flow. If we want to model the Brownian motion of a
set of flecks we need to introduce the Wiener Process, a Stochastic Gaussian
process in continuous time which follow the subsequent properties copied
from [31]:

’A standard one dimensional Wiener Process is a stochastic process Wt

with t ≥ 0+ having the following properties:

• W0 = 0.

• With probability 1, the function t→ Wt is continuous in t and a Markov
chain.

• The process Wt has independent, stationary increments, so is a Levy
Process.

• The increment Wt+s −Wt has the N(0, t) distribution.

We can comment each of the properties:

• The Wiener process is a Markov chain, so it depends on the past only
through the immediately previous state, not on other past states or
external information.

• The term independent increments means that ∀s1, t1, ..., sn, tn : 0 ≤
s1 < t1 ≤ s2 < t2 ≤ ... ≤ sn < tn <∞ the increment random variables
Wt1 −Ws1 ,Wt2 −Ws2 , ...,Wtn −Wsn are jointly independent.

• The term stationary increments means that for any 0 < s, t < ∞ the
distribution of the increment Wt+s −Ws has the same distribution as
Wt −W0 = Wt.’

Next passages are copied from [32]:

The Brownian Motion has other fundamental properties:
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• E[Wt] = 0 its expected value is null.

• V ar[Wt] = t its variance is equal to t.

• In an infinitesimal time δt we can say that Wt+δt −Wt = dWt = εt
√
δt

where εt ∼ N(0, 1).

• The variable εt is uncorrelated because E[εt, εs] = 0 if t 6= s

• From the last two properties we can say that E[dWt] = 0 and V ar[dWt] =
E[(dWt)

2] = δt

We can also generalize the Wiener process to more complex models, intro-
ducing the ’Brownian Motion with drift’:

dXt = µdt+ σdWt (1.1)

In which:

• µ is the drift parameter.

• σ is the variance parameter.

• dWt is the increment of the Wiener process.

• Xt is the increment of the Brownian motion with drift.

It is also very important to itemize the most useful properties for the Brow-
nian motion with drift over a finite time interval ∆t :

• Brownian motion with drift is also a Gaussian process with following
mean and variance.

• E[∆X] = µ∆t

• V ar[∆X] = σ2∆t

The Brownian motion with drift (or generalized Wiener process) is not suited
to model price stocks both because it can generate negative values making
it unfeasible and for its simplification of the phenomena. The mean and
the variance, in fact, are constant both over time and the variation of the
price, but we know that volatility varies each moment and is also one of the
technical indicators used by traders, with CBOE Volatility Index. A way
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to model the continuous shift over time is a generalization of the Brownian
motion with drift, also taken from [32]:

dXt = a(x, t)dt+ b(x, t)dWt (1.2)

In which:

• a(x, t), b(x, t), drift and variance are known function of current state
(price) and time.

The last one is an Ito Stochastic Differential Equation. As before, calculating
mean and variance:

• E[dXt] = a(x, t)dt instantaneous drift rate

• V ar[dXt] = b2(x, t)dt instantaneous variance rate

The most interesting application of the equation (1.2) is the Geometric
Brownian Motion, described by the following formula:

dXt = µXtdt+ σXtdWt (1.3)

The terms have the following meaning in finance:

• dXt : price variation over time

• µ, σ : constants

• dWt : variation of a Wiener process over time

To push ahead in our discussion we have to do a step back to the description
of the 3 Wiener process features: Markov chain, independent increments
and stationary and Gaussian changes. The first two assumptions could be
valid for the stock prices, because the Markov property is another way to
explain one of the main hypothesis of the EMH about the overall information
contained in the price, and it is also reasonable that price increments are
independent each other. The Gaussian property is not allowable because the
price of a stock could never be negative (except the Petroleum during Covid
lockdown but we will discuss later this extreme case), so assume that price
changes are log-normally distributed and natural logarithm of price follow
the Ito process. We can therefore define a variable F (t) = log(Xt) which
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is normally distributed, while Xt is log-normally distributed, rewriting the
(1.3) in the following way:

dFt = µXtdt+ σXtdWt (1.4)

with:

• a(x, t) = µXt

• b(x, t) = σXt

Heralding now the Ito’s lemma [32]:
Let’s consider a Ito stochastic process Xt, like the one described in (1.2) and
a function S(x(t), t) which is ’at least twice differentiable in x and once in t’,
we can expand writing its total differential:

dS =
∂S

∂t
dt+

∂S

∂x
dx+

1

2

∂2S

∂2x
(dx)2 + ...... (1.5)

Substituting the results of equation (1.2) and neglecting terms of the order
0(dt)2, we obtain the result of Ito’s lemma:

dS =

[
∂S

∂t
+ a(x, t)

∂S

∂x
+

1

2
b2(x, t)

∂2S

∂2x

]
dt+ b(x, t)

∂S

∂x
dWt (1.6)

Now we will carry this physical concepts into the financial world.

Until now we have consider Xt as the historical series of prices, so F (t)
is the historical series of log-prices. We can apply the Ito Lemma to F (t)
noticing that at each discrete time t = 1, .., T , X and so on F (X) = log(X)
do not depend on time, so ∂F

∂t
= 0. Applying to (1.6) the terms coming from

(1.4) we can obtain the differential of F . Knowing also that ∂F
∂x

= 1
x

and that
∂2F
∂2x

= − 1
x2

the final result is:

dF =

(
µ− 1

2
σ2

)
dt+ σdWt (1.7)

Equalizing the results coming from (1.7) and (1.4), calling τ as the holding
period of the data we can then write that:

dF ∼ N

[(
µ− 1

2
σ2

)
τ, σ2τ

]
(1.8)
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Defining the continuously compounded returns:

Rt =
252.5

τ
ln

(
xt+τ
xt

)
[1] (1.9)

with τ = 1, 5, 20 which represents the holding period if data are Daily, Weekly
or Monthly, we have demonstrated that the PDF of the continuously com-
pounded returns is:

Rt ∼ N

[(
µ− σ2

2

)
τ, σ2τ

]
[1] (1.10)

We have then confirmed the hypothesis of the GBM model depicted in [1],
which will be the basis for the estimation of µ and σ2 of the model for all
the historical series analyzed.

1.3 Quantum Mechanics and Financial Mar-

kets

There is a weird analogy between two topics seemingly far from each other,
but with many concepts in common: Quantum Mechanics and Financial
Markets.

In recent years, a specific branch of Econophysics has developed, namely
quantum finance. The primary concept is the study of the collective actions
of a group of particles at scales of very small lengths. Quantum Mechanics
describes the behaviour of radiation, matter and their interactions at scales
of the order of atomic and subatomic length scales with a probabilistic for-
malism.
As in classical physics, at macro-scale, we can be sure of the evolution of
a system governed by deterministic laws, in the financial markets we can
observe the price trend governed by stochastic processes, as explained in the
previous chapter. If we wanted to study the behavior of the individual atoms
of matter, however, we need particular formalism such as quantum mechan-
ics. Individual atoms, in finance, are individual investors whose individual
behavior is unknown, but we can only model the probabilities of buying or
selling stocks or commodities. They are called ’Quantum Financial Particles’,
as described in [33] and their analysis permit both to device many statistical
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models to describe the financial trends, like we are doing in this thesis, but
also to forecast their future patterns.

One of the main idea of the Quantum Mechanics is the wave-particle du-
ality, according to which matter and electromagnetic radiation have a dual
nature, both corpuscolar and waves. This behaviour was the agreement be-
tween two features of light that were observed in a distincted way:

• Corpuscolar: the photoelectric effect is a physical phenomena which
describes the emission of particles from a surface hit by EM radiation.
This effect shows the quantum nature of the light, because the energy
is distributed in discrete quanta, the photons. Each photon interacts
individually with an electron, giving him his energy only if it is greater
than the minimum threshold described by Planck’s equation.

• Waves: the Young experiment in 1801 proved the wave nature of the
light explaining the phenomena of diffraction and interference. These
features demonstrated that light behaved like elastic electromagnetic
radiation, and therefore like a wave.

The most interesting topic about this duality is that, depending on the ways
in which we detect the light, sometimes it behaves like a particle and some-
times like a wave. Quantum mechanics, with its Schrödinger equation, man-
ages to describe both of the two dynamics of light. In Financial Markets
also, especially visualizing the trend of a stock price, there is a wave - parti-
cle duality because, as in the atomic case, it assumes one of the two shapes
depending on the way we visualize it.
As we have seen before, traders use the technical analysis to study all the in-
dicators created to predict the price movement. These indicators are various,
here are some of the most important:

• Moving averages: mean of the last n values of a historical series of
data, used to scan the trend of prices. They can be simple or weighted;
in the previous case last prices have higher weight than the first ones.

• Bollinger bands: using the 20-days simple moving average, we double
the standard deviation of the price creating an interval for each time-
frame producing two lines, the upper and lower bounds. These bands
are used as indicator of volatility, that increases when they are broader,
and diminishes when they are more narrow.

15



• RSI indicator: Relative Strength index is a momentum indicator, so
it measures the variations of the prices with respect to their effective
levels, calculated as the closure price of fixed time intervals before, like
five days. It is calculated as:

RSI = 100 ∗
(

U

U +D

)
[34] (1.11)

in which U is the average of the upward closing differences along the
fixed time interval while D is the absolute value of the downward closing
differences along the same fixed time interval. RSI is then a percentage
which indicates whether a stock is overbought or oversold, giving an
indication to the traders about the trends.

Figure 1.1: Example of Bollinger Bands taken from investopedia.com

Besides, when we observe a chart analysis graph like the one shown in
Figure 1.1, studying the entire trend of the stock price and using trading tests
to predict its pattern, we are dealing with the waves features of the price,
considering its oscillatory motion. Using the technical analysis, furthermore,
allows traders to set a price at which to enter the market. They can then
decide based on technical analysis that if the price reaches a certain threshold
they will buy or sell. In this case we are considering the corpuscular nature
of the price, since all the information is contained in a single number that
determines the behavior of the investors.
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One of the most important blocks in Quantum Mechanics is the Heisen-
berg’s Uncertainty Principle:

∆x∆p ≥ h̄

2
(1.12)

according to which the product between the uncertainty of two conjugate
physical quantities like position and momentum has a lowering value, that
derives from the commutation relation [x, p] = ih̄. So we cannot measure
both the position and the momentum of a particle in the same moment with
an infinite precision. It looks like weird but this principle is also present
in the observation of Financial Markets, as broadly discussed in [33] and
in [35]. Having a look at the trend of a stock price using the corpuscolar
property, in fact, we can imagine that the operator related to the position in
Quantum Mechanics coincides with the price operator in Financial Markets
because, as written in [35], ’the fluctuation of the stock price can be viewed
as the motion of a particle in the space. Moreover, the energy of the stock,
which represents the intensity of the price’s movement, can be described by
the Hamiltonian that simulates the fluctuation of the stock’s price’. We can
also make a parallel between the Dirac representation of a stationary wave
function and the wave property of a stock:

|ψ〉 =
∑
n

cn |ψn〉 (1.13)

ψn is the state of the stock before making the measure of trading it while
cn = 〈ψ|ψn〉 is its relative coefficient. Each state, as we will see, represents a
different energy state of a stock which can be linked to its volatility which will
increase with an upper value of n. Before making an operation of purchasing
or selling a stock, then, each price will be a superposition of different volatility
states with probabilities |cn|2.

Getting back to the uncertainty principle, as written in [35], there should
be another operator p̂ corresponding to the momentum. As guidance in
quantum theory, the correspondence principle figures out that when the laws
within the framework of the micro-world extend to macroscope, the results
should be consistent with the outcomes of the classical laws. In the macro
system, the momentum can be written as the mass times the first-order time
derivative of the position in some special cases, so:

p̂ = m
d

dt
x̂ [35] (1.14)

17



m is the ’stock mass’ which is a constant of the motion and represent the
capitalization of the stock, or the difficult of the price to change. When m
increases, instead, so for very large companies like AMAZON with respect
to lower companies like Ferrari, it is more difficult for the price to change.
Moreover we can observe the uncertainty principle in finance because, as
taken from [35], ’at a certain time someone knows nothing but the exact
price of a stock. As a result, he certainly does not know the rate of price
change at next time and the direction of the price’s movement. In other
words, the uncertainty of the trend seems to be infinite. However in the real
stock market, we know more than the stock price itself at any time. We can
always get the information about how many buyers and sellers there are near
the current price. It is actually a distribution of the price within a certain
range instead of an exact price due to the representation in equation (1.13).
As a result, we can evaluate a standard deviation of the price. Thus the
trend of the stock price may be partly known via the uncertainty principle.
For example, a trader sees the number of buyers is far more than the number
of sellers near the current price, he may predict that the price will rise at
next time.’

According to the above, we need a quantum model to describe the trend
of a financial stock, in particular regarding the distribution of continuously
compounded returns, defined in (1.10), that could capture stock features like
positive excess kurtosis and negative skewness, as explained in [36]. This
quantum model is the one described in [1], with 3 great differences that will
be expounded later.
As in the GBM model, we start from a Brownian motion with drift, described
in (1.3). In the paper [1] the authors introduce the PDF ρ(x, t), which has
an evolution portrayed by the Fokker-Planck equation:

∂

∂t
ρ(x, t) =

∂2

∂x2
[D(x, t)ρ(x, t)] +

∂

∂x

[
ρ(x, t)

∂V (x, t)

∂(x)

]
[1] (1.15)

in which D(x, t) = σ2

2
[1] is a diffusion coefficient and V (x, t) is the potential.

If D is a constant and the potential does not depend on time, we can rewrite
(1.15) in the following way:

∂

∂t
ρ(x, t) =

[
∂2V

∂x2
+
∂V

∂x

∂

∂x
+D

∂2

∂x2

]
ρ(x, t) ≡ L̂ρ(x, t) [1] (1.16)

The operator L̂ is non - Hermitian due to the second term, which has the
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prime derivative. This non Hermitian property has non sense in our dis-
cussion treating observable quantities like prices and trends, so a possible
solution is to transform it to a stock Hamiltonian, discussed in [1] and [35]:

ih̄
∂ψ

∂τ
= Ĥψ(x̂, τ) [35] (1.17)

which evolution will be described by a Schrödinger equation shown in (1,17).
As we can see, Ĥ will depend on τ because analyzing one historical series at
a time, the model was not carried out on the temporal evolution of the stock
prices but at various scales like Daily, Weekly and Monthly.

Ĥ = Ĥ(x̂, p̂, τ) [35] (1.18)

Hamiltonian is a function of the price, of the momentum and of the holding
period. The most difficult challenge is to create an Hamiltonian because of
all the external information contained like the psychology of the traders, the
geopolitical information that could affect the price, liberal or statist policies
which could determine a free or controlled price trend and many others.
Writing as usual the Hamiltonian operator as the sum of the kinetic and the
potential part:

Ĥ =
−h̄2

2m
52 +U(−→r ) [1] (1.19)

The vector −→r has n components, each of which corresponds to a different
stock. From now on we will consider a 1D Hamiltonian, because in our model
we have analyzed one stock at a time.

U(x) = U(0) +
1

2
kx2 [1] (1.20)

In the paper [1] the stock Hamiltonian obtained is an harmonic oscillator
with equation (1.20) describing its potential. The mathematical steps have
not been entered in the thesis, but it is very important to clarify the reason
for the harmonic oscillator potential. It has been chosen this quantum model
to describe the mean reversion of a stock price at very long times, or the
price tendency to always return to an equilibrium value, neglecting terms of
high order then considering small values of oscillations, with:

k = d2U(x)/dx2|0 (1.21)
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the elastic constant of the oscillator which is a firm constant describing the
speed of the mean reversion, depending also on the external condition.

F (x) = −dU(x)

dx
= −kx (1.22)

F is the Hooke force that recalls the price towards the average.

ω =

√
k

m
(1.23)

The angular frequency ω, explains the price fluctuations around an equi-
librium point. We therefore expect lower fluctuations in higher time-frame
returns such as Monthly data, and greater fluctuations in Daily data. The
angular frequency of oscillation in this model is therefore expected to increase
from Daily to Monthly data.

It is very important to recall the solutions of the nth eigenfunctions of the
stationary harmonic oscillator:

φn(x) =
1√
2nn!

(mω
πh̄

) 1
4
Hn

(√
mω

h̄
x

)
exp

(
−mω

2h̄
x2
)

[1] (1.24)

As explained before, each one of these N states represent the volatility of a
time series, whose energy describes the excitation of the state, with Hn the
nth Hermite polynomials. Mentioning also the eigenenergies of a quantum
harmonic oscillator,

En =

(
n+

1

2

)
h̄ω [1] (1.25)

A time series described by an upper value of n will be more energetic and
then more volatile then another series with a lower value of energy.
As described in [1], we can write down the final solution of the Fokker -
Planck equation:

ρ(x, τ) =
∞∑
n=0

An√
2nn!

(mω
πh̄

) 1
2
exp(−Enτ)Hn

(√
mω

h̄
x

)
exp

(
−mω

2h̄
x2
)

[1]

(1.26)

Which can be rewritten in the following way, as a linear combination of
harmonic oscillators:

ρ(x, τ) =
N∑
n=0

Cn(τ) ρn(x) [1] (1.27)
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In which:

• ρ(x, τ): theoretical distribution probability, output of the model to
obtain

• N : number of harmonic oscillators of the model. We have considered
N = 5 in order not to increase the complexity of the model too much.

• Cn(τ): coefficients that depend on both the nth oscillator and the pa-
rameter τ , to be obtained through the optimization algorithm.

• ρn(x) = Hn

(
mω
h̄

)
exp(mω

h̄
x2)

The estimated coefficients Cn(τ) are very important because we can obtain
the probability of each singular state in the following way:

Pn =
|Cn|2∑N
k=0 |Ck|2

[1] (1.28)

We expect that the probability of the n = 0 state, the Gaussian one with the
least volatility, will be the more probable with a probability of more than
90%.

In [1] the coefficients Cn(τ) are obtained by minimizing the Cramer Von
Mises Test:

T (θ) =
1

12M
+

M∑
j=1

[
F (rj, θ)−

j − 1
2

M

]2

(1.29)

In which:

• rj = Rj−Rav with Rj the jth compounded sorted return and Rav their
mean

• M is the number of returns

• F (rj, θ) is the cumulative distribution function of the returns

The optimization algorithm used in the paper [1] is the Newton - Raphson
one, applying the GBM and Quantum models only to the FTSE ALL Share
Index.
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1.4 Mathematical Model of the Thesis

The differences in this thesis with respect to [1] are the following two:

• Optimization function:
Instead of the Cramer-Von Mises Test, in this thesis the N parameters
Cn(τ) and the parameter mω

h̄
for the Quantum Model and the 2 param-

eters µ, σ2 for the GBM model are obtained maximizing the posterior
distribution:

p(θ|x) ∼ p(x|θ) (1.30)

We have then considered each of the N + 1 parameters of the Quan-
tum model and each of the 2 parameters of the GBM model extracted
from a different continuous uniform distribution, whose choice of ex-
treme values will be explained later. So the goal has been to maximize
the Maximum Likelihood, that is analogous to minimize the Kullback-
Leibler divergence between the empirical distribution function and the
theoretical one, as demonstrated in [7]:

KL(p̃ || q(.|θ)) = − 1

M

M∑
µ=1

log(xµ|θ)− S(p̃) (1.31)

In the last equation:

p̃(x) =
1

M

M∑
µ=1

δ(x, xµ) (1.32)

is the ECDF (empirical cumulative distribution function) of the con-
tinuously compounded returns. The last 2 equations are drawn by [7]

For the entropy S of a historical time series we have considered the
Approximate Entropy introduced in [8] as a measure of complexity of
the data that analyzes the repetition of patterns into the time series.
If there are repeated patterns in the series and therefore it will be
forecastable, the entropy will be lower, if instead the series is random
with noise and difficult to predict, the entropy will increase. Describing
the formulas written in [8] at page 110:
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ApEn is a function that depends on 3 variables:

– U : historical series considered

– m: length of the sequences compared

– r: filter of the data sequences

Having the U series made up of N data points this is a step by step
explanation of the formula:

1. Create N −m + 1 vectors u of length m, each of them is x[i] =
[u[i]...u[i+m− 1]] with i = 1...N +m− 1

2. Define d(xi, xj) with i, j = 1...N+m−1 as the maximum difference
in absolute value between their scalar components

3. For each i = 1...N + m − 1 define Cm
i (r) as the (number of j ≤

N +m− 1 that d(xi, xj) ≤ r)/(N −m+ 1)

4. Define Φm(r) = (N −m + 1)−1
∑N−m+1

i=1 ln Cm
i (r) in which ln is

the natural logarithm

5. Finally ApEn(U,m, r) = limN→∞[Φm(r)− Φm+1(r)]

• Genetic Algorithms
Instead of the Newton - Raphson test, the N + 1 parameters for Quan-
tum and the 2 parameters for GBM were estimated using Genetic Al-
gorithms.
The GA steps have been the following:

– Initializing population: [9].

For both the GBM and the Quantum model the initial population
was made up of 1000 chromosomes or hyperparameters. GBM
chromosomes were 2 in length, estimating µ, σ2. Quantum chro-
mosomes were 6 in length, estimating C0, C1, C2, C3, C4,

mω
h̄

The parameters are greatly influenced by the initial distribution
chosen. In particular, the following values were used, assuming a
uniform priority for each single parameter:

∗ µ ∼ U(0.5, 1.5)

∗ σ2 ∼ U(3, 4)
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∗ C0 ∼ U(−0.1, 0.1)

∗ C1 ∼ U(−0.1, 0.1)

∗ C2 ∼ U(−0.1, 0.1)

∗ C3 ∼ U(−0.1, 0.1)

∗ C4 ∼ U(−0.1, 0.1)

∗ mω
h̄
∼ U(0, 0.3)

These initial values, kept constant also for the following time se-
ries, have been chosen heuristically to minimize the possibility of
having not physical probability distributions with negative values.
It was in fact observed at the beginning of the development of the
code that, following the indications of [1], the order of magnitude
of the coefficients C1, C2, C3, C4 of the Quantum algorithm was
about 10−3 times less than C0. Initially, therefore, very small val-
ues were chosen as extreme values of the uniform distribution of
these parameters, [−0.005, 0.005], with a smaller number of gen-
erations, 15, a smaller size of initial population, 100 instead of
1000, and a smaller value of hyperparameters selected at each cy-
cle, 50 instead of 100. This resulted in non-physical PDFs and,
for the code described in the pseudocode, in a choice of param-
eters having a fitness equal to 9999999, reducing the decrease in
fitness itself and the robustness of the code. The parameters of
the NASDAQ COMPOSITE, first data analyzed, were therefore
modified first and then these initial conditions were maintained
for all subsequent time series.

– Fitness Evaluation:

The Kullback-Leibler equation (2.7) has been the Fitness Function
for each hyperparameter, both for the GBM and for the Quantum
Model.

– Selection:

The goal is to minimize the Fitness Function filtering the hyper-
parameters not performing well, classified in two main classes:

∗ High Fitness value.

∗ Non - Physical PDF.
In the previous case we have decided to assign at each set of
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hyperparameters the default value of 9999999 so as not to be
selected by the algorithm.

The size of the initial population was 1000 both for the Quantum
Model and for the GBM one. At each generation the best 500 set
of coefficients have been selected passing to next step.

– Crossover:

The goal is to construct new chromosomes taking good features
from the past generation. The crossover between GBM and Quan-
tum was done in two different ways in the following way:

∗ Quantum Crossover:
At each one of the chromosomes it is associated a different
integer random number r from 1 to N, different at each gen-
eration, to create a crossover between two subsequent hyper-
parameters. The next chromosome will be obtained by the
coefficients from 1 to r in the same row, and by the coeffi-
cients from r to N in the next row. The mω

h̄
, instead, which

cannot negative, are scaled from one row to the next row to
preserve their physical meanings different to the other coeffi-
cients.

∗ GBM Crossover:
Two different integer random numbers are generated, one for
µ and the other one for σ2, different at each generation. The
two coefficients are then scaled in a various way randomizing
the association between the mean and the variance of the
distribution.

– Mutation:

At each generation two matrices are created of the same shape
of the coefficient matrices, one for GBM and one for Quantum.
The element of these mutation matrices, which change at each
generation, are random numbers close to 1 in order to modify a
little bit the coefficients mutating them.

– New generation:

At each new generation, which is composed by 1000 hyperparam-
eters, 500 will be the selected ones also called the parents, the
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other 500 will be the mutated ones. With this choice the worst
result in term of fitness will be almost the one of the parents, so
that the fitness will decrease at each generation.

– Final choice:

At the end of the generations, different for each model and time
series, we choose between the hyperparameters with the lowest
fitness values the one that fits better the histogram of the com-
pounded returns, creating the plot on Matplotlib that will be
shown in the next chapter.

In this thesis we have analyzed the behaviour of a variety of different
time series. The GBM and the Quantum algorithm have been applied
to financial indices like NASDAQ COMPOSITE, FTSEMIB, S&P500,
EURO STOXXX 50 and DOW JONES, to commodities like Gold and
Petroleum, to single stocks like Tesla and Amazon, to the forex change
between EUR-USD and to cryptocurrencies like Bitcoin. In the next
chapter we will show and discuss the results for each price series.
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Chapter 2

Financial Time Series Results

2.1 Introduction

In this chapter of the thesis all the financial time series analyzed will be
studied in detail. The results of the inference testing will be shown for each
historical series for both models, GBM and Quantum, with the explanation
of each stock, commodity, index or crypto displayed. All the historical data
have been downloaded on Jupyter Notebook from Yahoo Finance and the
PDF of their compounded returns are represented by ’density histograms’,
so the total area of all the bars add to 1. These histograms have been built
by the Freedman - Diaconis rule. The goal is to choose the optimal bin of an
histogram in order to let it be proportional to the variance of the distribution,
and diminishing by the sample size N.

∆ =
2IQR(x)

3
√
N

[10] (2.1)

In the previous formula:

• IQR(x) is the interquartile range of the data, so the difference between
the 75th and the 25th percentiles.

• N is the dimension of the sample.

The data analysis period is variable and will be made explicit in each histor-
ical series.
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2.2 NASDAQ

NASDAQ, which stands for ’National Association of Securities Dealers Au-
tomated Quotation’, was the first stock exchange exclusively electronic and
was born on February 8th 1971. In 2021, over 3000 different companies are
listed on NASDAQ many of which belong to the technology sector. NAS-
DAQ COMPOSITE is in fact the main reference for all securities in this
trade area ranking second globally, behind the NYSE, in Daily trading vol-
ume. The capitalization is in fact about 9700 billion dollars, according to
the information reported in [3].

NASDAQ COMPOSITE is a capitalization-weighted index; its compo-
nents are stocks whose weight is determined by the market value of its com-
pany. The weight of each stock is not a constant and it can be shifted based
on the number of the shares exchanged. The total price of the index is then
a weighted sum between all the prices of the stocks.

Currently the top 10 constituents of the index are [4]:

• Apple

• Amazon

• Microsoft

• Tesla

• Alphabet

• Paypal

• Intel

• Facebook

• NVIDIA

• Comcast
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In this thesis it was considered the behaviour of NASDAQ COMPOSITE
from 21st September 1996 to 1st September 2021.

Figure 2.1: NASDAQ COMPOSITE behaviour from 1996 to 2021.

From a preliminary analysis of the compounded returns of the data, the
following table was obtained:

Figure 2.2: Features of NASDAQ COMPOSITE compounded returns.

τ = 1 stands for Daily data, τ = 5 stands for Weekly data and τ = 20
stands for Monthly data. τ represents the interval of consecutive days in
which each time series is considered. In fact, on Saturday and Sunday the
stock exchanges are closed and therefore a week lasts 5 days and a month
lasts 20 days, considering it consists of 4 weeks. This is in fact the reason
why the months on the stock exchange are not the same as in the calendar.

As we can observe from NASDAQ table the PDF of compounded returns
remains leptokurtic but decreasing its kurtosis despite increasing τ , so the
holding period. This behaviour, that as we shall see is not true for all the
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series analyzed, it indicates that more extreme events will have a greater
likelihood in shorter time intervals. The mean remains almost constant be-
tween the holding periods, the standard deviations diminishes from Daily to
Weekly but increasing itself during the Monthly. This parameter, which is
one of the main constants for volatility, indicates how much the compounded
returns are dispersed from the mean and could predict the tendency of the
markets. The skewness is a little bit negative and increases in absolute value
during the holding period, so the compounded returns tend to be positive,
especially in the Monthly data. This means that the NASDAQ is bullish, in
fact its last price is 12.51 times the first one.

The volatility is one of the main components of the strategy of a trader
because, depending on the willingness to take risk, he might decide if opening
the position and going long expecting a bull market or rest. The index of
NASDAQ Composite is then a benchmark, in fact all investors analyze its
data as an index to understand if their strategies are profitable or not. When
a trader wants to invest in a stock like Apple, expecting a strong rebound
in its returns, he will compare the average volatility of his stock, normally
higher, with the NASDAQ, thus deciding the strategy.

The price fluctuations will then be broader for a Daily trader with respect
to a Monthly trader, increasing the risk and decreasing the predictability of
the series as we can see from the entropy, which is in Daily data 40 times
larger than the Monthly one. As explained before, analyzing the fractality of
the historical data, instead, we can observe that the 3 series are antipersis-
tent, having an Hurst coefficient lower than 0.5. The data are so exhibiting
a strong long - term memory and all the features explained before could
maintain themselves in the future, in fact Hurst coefficient is one of the main
parameters used to create a forecasting strategy for stock and index traders.
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Figure 2.3: GBM vs Quantum NASDAQ COMPOSITE.

As we can see in each of the three cases, the Quantum Model has a
good fit of the histogram, expecially in the Weekly data because it manages
to recover the kurtosis and the tails of the distribution. The GBM Model
overcomes the Quantum just in the Daily data fitting the extreme peak of the
PDF. We can therefore combine the information of the Monthly data with
that concerning the entropy and the Hurst coefficient by predicting that the
upward trend of the NASDAQ will continue in the future.

Running the Quantum Genetic Algorithm for 75 generations and the
GBM Genetic Algorithm for 40 generations, we have obtained the following
fitness results:

Figure 2.4: Fitness NASDAQ COMPOSITE.

Quantum Fitness is always less than GBM Fitness, so the Quantum Al-
gorithm manages to better describe the empirical distribution. We can also
observe that the fitness decreases by increasing τ , it can therefore be ob-
served that the efficiency of the genetic description algorithm increases for
longer time intervals.
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Figure 2.5: Estimated Parameters NASDAQ COMPOSITE.

As regarding GBM, both the mean and the variance decrease over the
holding period, so the parameters will confirm the drop of the kurtosis, re-
sulting in a more flattened distribution. For the Quantum parameters, in-
stead, we can observe that the product between mass and frequency, which
must be multiplied to h̄ with respect to the output of the code, increases for
the holding period. As explained in the previous chapter the mass represents
the firm capitalization or the total market value of its stocks. Being a pe-
culiar characteristic of an index, it remains constant for the holding period,
and increases because it is multiplied by ω.

Figure 2.6: Probabilities NASDAQ COMPOSITE.

The probability of being in n = 0, so the state less volatility, is the
greatest for each holding period as explained in [2]. It can also be observed
that the probability of the first state is almost constant during the holding
period, so the NASDAQ COMPOSITE tends to remain to the same state of
volatility. It is interesting to observe the behaviour of the probability of the
higher volatility states, that will be compared to the stocks of Amazon and
Apple.

As regarding the odd states, the one with n = 1 diminishes in probability
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instead of n = 3 that grows. For even states, the one with n = 2 increases in
the Weekly data and decreases in the Monthly ones, while the one with n = 4
tends to decrease. This information therefore helps to explain the behavior
of skewness, maximum in the Weekly for the combination of a decrease in P2

and an increase in P3.

2.3 FTSE MIB

FTSE MIB, which stands for ’Financial Times Stock Exchange Milano Indice
di Borsa’ is the index representing the Italian Stock Exchange trend. In par-
ticular, like NASDAQ, FTSE MIB is made up of the stocks of the 40 italian
largest companies, even if their registered office is in a foreign country, with
the greatest market capitalization. Some of the most important companies
represented are:

• Campari

• Poste Italiane

• Exor

• Eni

• Ferrari

In this thesis it was considered the behaviour of FTSE MIB from 21st Septem-
ber 1996 to 1st September 2021.

Figure 2.7: FTSE MIB behaviour from 1996 to 2021.
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From a preliminary analysis of the compounded returns of the data, the
following table was obtained:

Figure 2.8: Features of FTSE MIB compounded returns.

From FTSE MIB table we can observe that the mean remains almost the
same during the holding periods while the standard deviation diminishes,
restoring the centrality of the distribution around the mean. The skewness
remains negative, so the distribution has a longer left tail, with a peak of
its value at the Weekly data in which the kurtosis is also very high. We
can also point out that the 3 different distributions are leptokurtic with a
very fat-tailed distribution for the Weekly one. The entropy decreases with
the holding period, instead, being 10−6 times the Daily one for the Monthly
data indicating a time series much more predictable. The Hurst coefficient,
instead, remains under the value of 0.5 for each of the 3 holding periods
pointing out a long switching between very different values in size, so the
autocorrelation is low and the fractal dimension is high.

The FTSE MIB is like the NASDAQ for Italy, being a benchmark for
the italian traders who want to overcome the market returns. It is also
considered as an index for foreign investors regarding the Italian economic
situation. Looking at the figure (4.7) we can observe a very steep price
increase, precisely of the 32%, from the begin of 2020.
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Figure 2.9: GBM vs Quantum FTSE MIB.

Looking at the three graphs we can observe that for Daily and for Weekly
data the Quantum model recovers a better fit than the GBM, being more
able to describe both the excess of the kurtosis and the fat tails of the distri-
butions. In the Monthly graph, instead, neither of them succeeds to recover
the features of the distribution, missing the skewness and the peaks.

Running the Quantum Genetic Algorithm for 70 generations and the
GBM Genetic Algorithm for 30 generations, we have obtained the following
fitness results:

Figure 2.10: Fitness FTSE MIB.

We can behold that the GBM Fitness is always greater than the Quantum
one, resulting instead in a better fitting along the Monthly Data. Further-
more both of the values diminish for the increasing of the holding period, so
the description of the model becomes better both for the models.
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Figure 2.11: Estimated Parameters FTSE MIB.

The parameter C0 has a minimum in the Weekly data, then increasing
in the Monthly data. The parameter C1 remains negative but increases in
the absolute value, C2 becomes negative in the Weekly remaining positive
in Daily and Monthly, C3 passes from a positive value to negative ones, C4

remains positive and increases like obviously the product between mass and
frequency.

Figure 2.12: Probabilities FTSE MIB.

The probability of the lowest volatility state remains almost constant dur-
ing the holding period. There is an explanation about the higher kurtosis in
the Weekly data observing the P2 at τ = 5, which is the maximum proba-
bility of the table except for the P0. Moreover the odd probabilities in the
Weekly data are the greatest one, evincing its excess kurtosis with respect
to the other time scales like the Monthly ones. We can also point out that
the standard deviation, so the volatility, of the Monthly data is the fewest,
feature that could be outspread by the P0 for τ = 20, which is the major.

2.4 S&P500

The S&P500 is an American stock market index comprehensive of the 500
best American companies with the greatest market capitalization. Its name
come from Standard & Poor, the credit risk agency which created it in 1957,
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and only companies that are exchanged at NYSE, at AMEX or at NASDAQ
can be part of S&P500. In the end of June 2021, the total weight of the
largest 10 companies in the index was about the 26, 6% [11]. Some of the
most important companies listed at S&P500 are:

• Amazon

• Moderna

• Tesla

• PayPal

• Google

• Facebook

Like NASDAQ COMPOSITE and FTSE MIB, S&P500 is a capitalization-
weighted index, so not all the companies have the same weight that can be
modified over time. In this thesis it was considered the behaviour of S&P500
from 21st September 1996 to 1st September 2021.

Figure 2.13: S&P500 behaviour from 1996 to 2021.

From a preliminary analysis of the compounded returns of the data, the
following table was obtained:
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Figure 2.14: Features of S&P500 compounded returns.

As we can observe from the previous figure the mean of the price remains
almost constant increasing the holding periods, instead the standard devia-
tion decreases, so the compounded returns become less volatile. As for the
skewness, however, its value remains negative with a peak in absolute value
compared to the Weekly data which have a more asymmetrical probability
peak than the other time-frame data. The excess kurtosis remains more than
0, with a very leptokurtic distribution regarding the Daily data, diminishing
to Weekly and Monthly ones, more flattened. The entropy of the series is
also getting down from Daily to Monthly data, being about 600 times bigger
denoting a very sharp enhancement in the possibility of forecasting of the
Monthly returns. The Hurst coefficient, instead, remains almost the same in
a range between 0.24 and 0.30 showing a good long-term correlation of the
returns. It can also be seen that the GBM model excessively exaggerates the
PDF tails fitting an excess of the probability for extreme events.

Figure 2.15: GBM vs Quantum S&P500.

In each of the three figures we can observe a good fitting for both of the
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2 models. In particular the Quantum one manages to reach the peaks of
distribution in the Weekly data, but above all in the Monthly ones where the
fit is almost perfect. For Daily data the model is able to retrieve information
on skewness not on kurtosis, still obtaining an excellent fit.
Running the Quantum Genetic Algorithm for 70 generations and the GBM
Genetic Algorithm for 40 generations, we have obtained the following fit-
ness results:

Figure 2.16: Fitness S&P500.

The Fitness function, or KL divergence, is decreasing augmenting the
holding period due to the obvious lowering of the number of data. We can
furthermore observe that Quantum Fitness is always less than GBM Fitness,
resulting in a better description of returns.

Figure 2.17: Estimated Parameters S&P500.

Analyzing the GBM parameters we can observe a decreasing both of the
µ and σ2, For the Quantum parameters, instead, C0 has a minimum in the
Daily parameters and increases along the holding periods, C1 is negative
for the Daily, but becomes positive augmenting his value, C2 follows an op-
posite direction, being positive for Daily data and then becoming negative,
C3 remains negative with a minimum in Weekly data, C4 remains positive
increasing its value. The product between mass and angular frequency in-
creases as always.
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Figure 2.18: Probabilities S&P500.

The probability of the first oscillator with n = 0, the gaussian one, de-
creases over time in favour of the other odds. The one linked at the state
with n = 1, instead, increases very much from Daily to Monthly passing from
10−6 to 10−2 falling into a minimum in Weekly, which is also repeated in the
state with n = 2. The state with n = 3, instead, increases its probability
during the holding periods unlike the state with n = 4 which also becomes
more probable passing from Daily to Monthly but having a local maximum
in probability at Weekly data.

S&P500 has a maximum value in absolute value of skewness during the
Weekly data but this is not explained by the table of probabilities. Unlike
FTSE MIB, in fact, the state with maximum odd sum of probabilities does
not correspond to that with maximum skewness.

2.5 EURO STOXX 50

EURO STOXX 50 is an European stock market index made up of the com-
panies which are leader in their own sector. Like the other indices described,
its composition is not fixed and varies to have the largest fifty companies in
terms of capitalization and liquidity. Financial institutions like ECB (Euro-
pean Central Bank), FED (Federal Reserve Bank) esteem the EURO STOXX
50 as a benchmark to track the trend of the economic health of the most
wealthy countries in the EU.
Updated at March 2021 the percentage composition by country is [12]:

• France 17/50 = 34%

• Germany 16/50 = 32%

• Netherlands 6/50 = 12%
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• Spain 4/50 = 8%

• Italy 3/50 = 6%

• Ireland 2/50 = 4%

• Belgium 1/50 = 2%

• Finland 1/50 = 2%

In this thesis it was considered the behaviour of EURO STOXX 50 from 30th
March 2007 to 1st September 2021.

Figure 2.19: EURO STOXX 50 behaviour from 2007 to 2021.

From a preliminary analysis of the compounded returns of the data, the
following table was obtained:

Figure 2.20: Features of EURO STOXX 50 compounded returns

Being data available on Yahoo Finance since 2007, the number of ob-
servations in EURO STOXX 50 is less than the number of the other series
analyzed before. We can see that the mean is a very little value, positive for
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Daily and Weekly data but negative for Monthly data, so unlike the other in-
dices the distribution will be more centered to the zero value, so to a constant
value of the price. The standard values of the series get down increasing the
holding period, decreasing the volatility of the data as the other indices. Re-
garding the skewness, instead, it has a maximum in its absolute value during
the Weekly data with a minimum in the Monthly data. This behaviour is
the same as the excess kurtosis which recommends about three leptokurtic
distributions with a maximum in the Weekly kurtosis data. The entropy
diminishes of 375 times between Daily and Monthly data, denoting a more
repetitive pattern in Monthly data. Moreover, the Hurst coefficient remains
almost constant between 0,27 and 0,30, indicating long term correlations
about the data.

Figure 2.21: GBM vs Quantum STOXX 50.

As we can observe from the fits, the Quantum Model is always better than
the GBM one, expect in the Daily data in which the skewness is the lowest
one. Regarding the kurtosis, instead, the blue line manages to describe the
features of the leptokurtic distribution in each of the three case, which GBM
does not.
Running the Quantum Genetic Algorithm for 70 generations and the GBM
Genetic Algorithm for 40 generations, we have obtained the following fit-
ness results:
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Figure 2.22: Fitness EURO STOXX 50.

The better result of the Quantum fit is confirmed by the values of Quan-
tum Fitness which are always lower than the GBM one.

Figure 2.23: Estimated Parameters EURO STOXX 50.

The parameters show a decreasing both of the mean and of the standard
deviation of the GBM model. It confirms the diminishing of the volatility
which was observed in the table before. Regarding Quantum model param-
eters we can notice that the Gaussian parameter C0 increases from Daily to
Monthly data, and then decreases touching a minimum in Monthly data, C1

remains negative lowering its absolute value getting nearest to 0 while C2

gets positive with a minimum in Daily data and a maximum in Monthly.
For the last parameters we can observe that C3 has a peculiar behaviour
changing sign from Daily to Weekly and coming back positive at Monthly,
C4 follows the trend of C2 having a maximum in the Weekly data, and the
product between mass and harmonic oscillator increases.

Figure 2.24: Probabilities EURO STOXX 50.

The probabilities can explain the excess kurtosis because in the Weekly
data we can point out that the sum of the odds of the even states are at
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the peak, contributing to the PDF to be leptokurtic. The probability of the
state corresponding to n = 0 remains almost constant having a minimum
in the Weekly data, which is the same behaviour of both P1 and P2 with a
maximum in the Monthly data. P3 in the Daily data, instead, is negligible
being of the order of 10−13 and increasing until reaching a maximum in the
Monthly data while P4 has a maximum in Weekly data and a minimum in
the Monthly data.

2.6 DOW JONES

The DOW JONES is the second-oldest stock market index of US stocks,
being founded in 1896, and the most known index at New York Stock Ex-
change. It was created by Charles Dow, founder of ’The Wall Street Journal’
and Edward Jones, an American statistician with a different composition as
compared to the other indices analyzed in this thesis. NASDAQ or S&P500
are capitalization-weighted indices, while DOW JONES price is obtained by
the 30 main titles in Wall Street, including:

• Apple

• Boeing

• Coca-Cola

• Nike

• Visa

• Walt Disney

As written in [13], DOW JONES is a really democratic index giving the same
importance to each of the stocks inside. To reflect the overall health of the
market in the most useful weight, there is a choice of 30 different companies
that change in time both due to the market trend and also to the selection
of the editors of ’The Wall Street Journal’. The calculation of the DOW
JONES price involves the use of the divisor, avoiding high value fluctuations
of the index when a stock is added, delisted, split of a company or mergers.
To understand let’s make a practical example on Daily prices:
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Today there are 3 companies listed on DOW JONES; A,B,C respectively
with prices 30$,25$, 45$. If yesterday there were no changes in the index,
today the price will be the average of the individual companies, so:

DJIA =

∑n
i=0 Pi
n

(2.2)

with:

• DJIA: Daily price of DOW JONES

• Pi: price of each single stock

• n = 3: number of the stocks

Hence today DJIA = 33, 3$. Tomorrow the company D will join the DOW
JONES index with a price of 15$. According to [13] the new index value will
be:

DJIAnew =

∑nnew

i=0 Pi
D

(2.3)

with:

• DJIAnew: new Daily price of DOW JONES

• Pi: price of each single stock

• nnew: updated number of the stocks

• D =
∑nnew

i=0 Pi

DJIA
:

Thus D = 115$/33, 3$ = 3, 45 and the new Daily price of DOW JONES will
be: DJIAnew = 115$/3, 45 = 33, 3$ so its value will remain unchanged for
the first day and then the divisor of 3,45 will be constant until the number
of the stock is equal to 4.
In this thesis it was considered the behaviour of DOW JONES from 21st
September 1996 to 1st September 2021.
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Figure 2.25: DOW JONES behaviour from 1996 to 2021.

From a preliminary analysis of the compounded returns of the data, the
following table was obtained:

Figure 2.26: Features of DOW JONES compounded returns.

As we can observe from the table, the mean remains almost equal between
Daily, Weekly and Monthly data with a slight minimum in the Weekly data.
The standard deviation diminishes as the other indices, the skewness remains
negative with a peak in the Weekly data and an absolute value minimum in
Daily. The kurtosis, instead, has the same behaviour of S&P500 reaching
a maximum in Daily data and a minimum in Monthly data, the entropy
falls from 0.56 to a value 934 times lower, while the Hurst coefficient remains
between 0.20 and 0.30. It is slight less than the other indices having a similar
meaning, so long-term correlation between historical returns.
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Figure 2.27: GBM vs Quantum DOW JONES.

In the Daily data histograms the Quantum PDF manages to reach both
the kurtosis and the skewness of the data describing the peak in a very good
way, in the Weekly data both the GBM and the Quantum model do their
job, but GBM manages to catch the skewness. In the Monthly data, instead,
Quantum model is the better fitting, not peaking the PDF but understanding
its features.

Running the Quantum Genetic Algorithm for 75 generations and the
GBM Genetic Algorithm for 40 generations, we have obtained the following
fitness results:

Figure 2.28: Fitness DOW JONES.

The better result of the Quantum fit is confirmed by the values of Quan-
tum Fitness which are always lower than the GBM one.
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Figure 2.29: Estimated Parameters DOW JONES.

The parameters show a decreasing both of the mean and of the standard
deviation of the GBM model. It confirms the diminishing of the volatility
which was observed in the figure before. The positive parameter C0 goes down
from Daily to Weekly reaching a minimum and then growing at Monthly data,
C1 is negative both for Daily and Weekly getting down and then becoming
positive at Monthly data, C2 alternates its sign being negative at Daily data,
then positive at Weekly and so negative at Monthly. C3 follows the same
behaviour of C2, while C4 remains positive but diminishing from the order of
10−2 at Daily data to the order of 10−4 at Monthly data while the product
between mass and angular frequency increases due to ω.

Figure 2.30: Probabilities DOW JONES.

The probability of the first state P0 has its minimum in Monthly data,
so it is more probable to have volatility states there. P1 is almost the same
between Daily and Weekly data, becoming 104 times larger at Monthly data
while P2 has a minimum at Weekly data and a maximum at Monthly. For
the last probabilities P3 has a strong minimum at Weekly data, being of the
order of 10−11 while P4 diminishes in a regular way from Daily to Monthly.
These probabilities manages to explain the excess of kurtosis in Daily data,
being P4 ∼ 10−3 and its falling trend but not the skewness.
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2.7 Gold

Gold is a chemical element with symbol Au and 79 as atomic number. Gold is
the safest financial investment to achieve because being in a limited quantity
does not have large swings of price, being also a shield for inflation, the
continuous increase of prices. It is a commodity, its price is determined by
the continue trades on financial markets and its exchange rate is expressed
in dollars per ounce, which corresponds to about 31 grams. One of the most
important features is the gold purity when is in alloy with other metals like
platinum or copper. This property is measured by percentage with respect
to 24 carats which is the pure gold, so the green gold which is composed of
75% gold, 12,5% silver and 12,5% copper is 18 carats.

As described in [14], gold price is fixed by ’gold fixing’, valuating instru-
ments like rates and price of other precious metals like iridium, palladium and
platinum. The quotation determines the value of the price each day twice
by Iba (Ice Benchmark Administation). In this thesis we have considered
gold prices from Yahoo Finance, which exhibits its price by ’COMEX De-
layed Price’ with currency in USD, so it is exposed to fluctuations of dollars.
As written in [15], COMEX is the primary futures and options market for
trading metals such as gold, silver, copper, and aluminum and is the division
responsible for metal trading.
In this thesis it was considered the behaviour of Gold from 30th August 2000
to 1st September 2021.

Figure 2.31: Gold behaviour from 2000 to 2021.

From a preliminary analysis of the compounded returns of the data, the
following table was obtained:
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Figure 2.32: Features of Gold compounded returns.

The behaviour of Gold is almost the same as the financial indices analyzed
before with a mean that does not have so many variations between Daily,
Weekly and Monthly data with a thin peak in Monthly ones. The standard
deviation diminishes during the holding period and is smaller than the indices
one, about 77% of the EURO STOXX 50 and 90% of the S&P500. The
skewness remains negative with a peak in the Weekly data like in the indices,
while the excess kurtosis gets down from Daily to Monthly data like the DOW
JONES. Analyzing the last 2 features, the entropy of Daily data is almost
203 times the one of Monthly data while the Hurst coefficient is slightly the
same from Daily to Monthly, in a range between 0,22 and 0,26.

Figure 2.33: GBM vs Quantum Gold.

As we can see from the plots, the Quantum model exceeds the kurtosis
for all the 3 holding periods, expecially in the Daily data. The GBM model,
instead, captures the skewness of the data better than the Quantum model
except for the Monthly ones, in which Quantum model provides a very good
visual result.
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Running the Quantum Genetic Algorithm for 70 generations and the
GBM Genetic Algorithm for 40 generations, we have obtained the following
fitness results:

Figure 2.34: Fitness Gold.

As in the other indices we can observe that both of the two Fitness
functions diminishes over the holding periods, but differently from them the
Monthly ones are very similar, confirming the curves that almost overlap.

Figure 2.35: Estimated Parameters Gold.

Excluding NASDAQ, the standard deviations of the GBM models are
smaller than the ones of the indices, having a diminution with the mean
from Daily to Monthly data. Discussing the parameters, instead, we can ob-
serve that C0 increases from Daily to Weekly but having a global minimum
in Monthly data, C1 is positive at Daily becoming negative in Weekly and
Monthly, diminishing also in absolute value. C2 also has a weird behaviour
being positive at Daily but negative at Weekly and Monthly, increasing its
absolute value. C3, instead, is positive in Daily and Weekly but turns neg-
ative in Monthly being also 105 times larger while C4 has a maximum in
Daily data and a minimum in Weekly, increasing a little bit of a 10 power
in Monthly. The product between mass and angular frequency as always
increases during the holding periods.
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Figure 2.36: Probabilities Gold.

The probability of the less volatility state, P0, is almost the same between
the different time scales with a little minimum in Weekly, while P1 diminishes
of 105 times from Daily to Monthly, P2 is quite negligible in Daily data but
increases in Weekly of 109 times decreasing in Monthly. P3 is very similar to
P2 in Daily increasing over the holding periods, having then a warring trend
respect to P1, while P4is almost the same with a peak in Weekly data. The
probabilities don’t manage to describe neither the trend of the kurtosis or
the skewness of the data.

2.8 Petroleum

Petroleum is a fossil fuel that occurs naturally beneath the earth’s surface,
which is very important due to its social and economical geopolitical con-
sequences, being in the same time cause of desire and war. It is the most
traded commodity all over the world, becoming a product of speculation for
investors. All over the years there were a lot of fluctuations of its price,
giving rise to periods of very large volatility as referred in [16], basically
increasing the supply except particular events like 11th September 2001 of
COVID -19 pandemic, when petroleum has followed the collapse of the mar-
ket. The prices analyzed in this thesis have been downloaded from Yahoo
Finance, which follow the trend of crude oil futures, which is not the price it
would cost to buy oil at that time. Like the other commodities, the wholesale
manifacturers need to fix a price before the delivery to the final customer,
bonding for a future transaction
In this thesis it was considered the behaviour of Petroleum from 30th August
2000 to 1st September 2021.
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Figure 2.37: Petroleum behaviour from 2000 to 2021.

As we can see from the figure, on 21st April 2020 the price of the petroleum
became negative, touching −37 dollars per barrel. In the historical time se-
ries we have decided to avoid that price except for the forward plot. The
main cause of this particular phenomena is due to the sudden fall of the
world consumption of gas and oil due to the restrictions, not followed by a
drop of the world production. The principal effect was the payment from the
producers to the oil tankers to preserve the barrels to avoid the interruption
of production, which would have resulted in serious economic damages.

From a preliminary analysis of the compounded returns of the data, the
following table was obtained:

Figure 2.38: Features of Petroleum compounded returns.

We can observe that the properties of petroleum compounded returns are
very different to each of the prices analyzed before. The mean is almost the
same like the other time series, but the standard deviation is very high, 1,77
times more than the NASDAQ one, the most volatile compounded returns
index analyzed until now. The skewness is also much elevated in absolute
value touching a Daily data value of −1.89, with a minimum in Weekly data.
The most shocking element of the table is surely the excess kurtosis for Daily
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data of 57 together with its trend, going to an ordinary minimum for Weekly
data and increasing again in the Monthly data. Very high kurtosis is due
to the presence of many outliers in the data, so days when returns far from
the average were high. This is a volatility index of returns and therefore
also of prices, also confirmed by the high standard deviation. Furthermore
the entropy is higher than the other indices, being 1.26 for Daily data and
lowering to 9.6 times less in the Monthly data, slight fall respect to the other
series. The Hurst coefficient, instead, is under 0.5 but in average higher than
the other time series.

Figure 2.39: GBM vs Quantum Petroleum.

As we can observe from the fitting, the parameters of the Quantum model
for the Daily data were not obtained even by decreasing the number of gen-
erations in the Genetic Algorithm. A possible cause is excessive kurtosis due
to which the algorithm had excessive uncertainty in estimating the param-
eters giving an error. The fitting is already very good for the Weekly data,
the ones with a lower kurtosis and skewness, getting back in error for the
Monthly data with GBM model exaggerating the peak of the distribution
and the Quantum model not fitting the right skewness.

Running the Quantum Genetic Algorithm for 75 generations and the
GBM Genetic Algorithm for 30 generations, we have obtained the following
fitness results:
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Figure 2.40: Fitness Petroleum.

As always the GBM Fitness values are larger than the Quantum ones,
except for the Daily data we cannot discuss nothing about. We can then
observe that Fitness values are larger for Petroleum with respect to the other
indices.

Figure 2.41: Estimated Parameters Petroleum.

For the GBM model we can observe a weird behaviour of the Monthly
parameters with µ larger than σ2 for the first time. Discussing the Quantum
model instead, we don’t have the Daily parameters and we can observe a
similar trend with respect to the other indices of C0, C1, C2 and C4, increasing
from Weekly to Monthly and C3 changing sign from negative to positive. The
product between mass and angular frequency is getting down between Weekly
and Monthly data being an exception to the theory for the first time.

Figure 2.42: Probabilities Petroleum.

The table of probabilities, despite the lack of Daily values, explains the
excess of kurtosis because the sum of even probabilities, except P0 is more at
Monthly data than at Weekly data, being of the order of 10−3, highest even
probability met until this series.
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2.9 Amazon

Amazon, which is the first stock analyzed in the thesis, is the biggest internet
company of the world founded from Jeff Bezos in 1995 and entering into
S&P500 in 2005. It started as an online bookseller, but then also CD’s, DVD,
videogames, software, electronic products, comic books, clothing, furnishing
and many other objects were available on it.
In this thesis it was considered the behaviour of Amazon from 30th August
2000 to 1st September 2021.

Figure 2.43: Amazon behaviour from 2000 to 2021.

Unlike other time series like Petroleum when data were not available
before 2000, Amazon prices were present on Yahoo Finance since 1997. We
decided to start our analysis with data starting on 1st January 2020 because,
as described in [17], Amazon has split its stocks three times in the history:

Figure 2.44: Amazon stock splits, image taken from [17].

A stock split like Amazon one consists in stepping up its number of shares
decreasing its price of the same number. So an investor who had 100 shares
of Amazon on 1 June 1998 pricing $85, 68, next day he would have had 200
shares of value $42, 84. We therefore decided to analyze time series after
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the splits because importing from Yahoo Finance prices were displayed as
’not a number’. In particular this trouble was not present in Daily Data,
but in Weekly and Monthly, because Amazon stock split dates coincide with
weekend and month-end, making analysis useless.

From a preliminary analysis of the compounded returns of the data, the
following table was obtained:

Figure 2.45: Features of Amazon compounded returns.

As we can observe the mean remains almost equal with a peak in Monthly
data, having values bigger than the other time series. Furthermore the stan-
dard deviation is basically higher than indices, because stocks have more
volatility. For the first time we see also data with positive skewness, so many
compounded returns have value less than the mean in Daily and Weekly time
frame, turning into negative for Monthly. The kurtosis goes down from Daily
to Monthly with a very high value in Daily data while the entropy, being also
very large unlike indices, goes down of 5.9 times from Daily to Monthly. The
Hurst coefficient, instead, remains almost equal between the holding periods.
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Figure 2.46: GBM vs Quantum Amazon.

Like Petroleum, the parameters of the Quantum model for the Daily data
were not obtained maybe due to the excessive standard deviation.
For Daily data we can observe a good fit in terms of the skewness for the GBM
Model, while for Weekly and Monthly data the Quantum Model performs
visually better than GBM. Running the Quantum Genetic Algorithm for 75

generations for the three holding periods and the GBM Genetic Algorithm
for 40 generations only for Weekly and Monthly data, we have obtained
the following fitness results:

Figure 2.47: Fitness Amazon.

Like the other series the GBM fitness is always higher than the Quantum
one, except for Daily Data due to the troubles explained before.

Figure 2.48: Estimated Parameters Amazon.
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The GBM distribution is more flattened in Amazon than in the other time
series, as we can see comparing their standard deviations. The Quantum
coefficients, instead, follow a regular trend with an increase of C0 and mω,
while C1 and C3 turn from negative to positive growing its absolute value,
C2 from positive to negative and C4 decreasing a little bit.

Figure 2.49: Probabilities Amazon.

Obviously the probabilities for Daily data were not available. We can
see that the even probabilities, except the gaussian one, decrease over the
holding periods explaining the fall of kurtosis from Weekly to Monthly data.
The odd probabilities for Monthly data, furthermore, are larger than the
one of Weekly data, possibly explaining the increase in absolute value of the
skewness but not its change of sign.

2.10 Tesla

Tesla is an American luxury electric vehicle company whose name is a tribute
to Serbian inventor Nikola Tesla. This company is also part of both S&P500
with a weight of 1,5% and NASDAQ COMPOSITE with a weight of 4,25%
at September 2021.
In this thesis it was considered the behaviour of Tesla from 29th June 2010,
data of the IPO (Initial Public Offering) on NASDAQ to 1st September 2021.

Figure 2.50: Tesla behaviour from 2000 to 2021.
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From a preliminary analysis of the compounded returns of the data, the
following table was obtained:

Figure 2.51: Features of Tesla compounded returns.

We have deleted from the dataset downloaded from Yahoo Finance the
price referred to 31st August 2020 because, as described in [18], there have
been five-for-one split of Tesla’s common stock in the form of a stock dividend.
The price of that day was then a NaN value causing the same problem of
Amazon but for Monthly data.

Figure 2.52: GBM vs Quantum Tesla.

As we can observe from the fitting, Quantum Model performs better than
GBM Model in each of the holding periods data. In particular in Weekly and
Monthly data it manages to recover the kurtosis of PDF, even if in Weekly
it does not recognize the bimodal distribution. In Daily data, instead, it fits
the skewness while not the kurtosis.

Running the Quantum Genetic Algorithm for 70 generations and the
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GBM Genetic Algorithm for 40 generations, we have obtained the following
fitness results:

Figure 2.53: Fitness Tesla.

Like the other series the GBM fitness is always higher than the Quantum
one, except for Daily Data due to the troubles explained before.

Figure 2.54: Estimated Parameters Tesla.

The GBM parameters for Daily data are very large with respect to the
other time series and following their trend the mean is always less than the
standard deviation. In particular for Daily data the σ2 is greater with respect
to other time series, endorsing the thesis that stocks are much more volatile
than time indices. Discussing about Quantum parameters, instead, we can
observe that C0 has a maximum in Daily data and a minimum in Weekly
data, C1 increases of 102 from Daily to Monthly, C2 turns negative from Daily
to Weekly increasing its absolute value, like C3 which becomes negative in
Monthly. C4 and the product between mass and angular frequency, instead,
remains positive and increase.

Figure 2.55: Probabilities Tesla.
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We can observe that the probabilities of the state with n = 0 remain
almost the same with a slight diminution in Monthly data. All the other
probabilities, instead, increase over the holding period. In particular the
sum of the odd probabilities is maximum in Monthly data, explaining the
peak of skewness while the sum of even probabilities is not the maximum in
Daily data, not explaining the excess of kurtosis.

2.11 Forex EUR - USD

As explained in [19], foreign exchange, also known as forex or FX, is the
exchange of different currencies on a decentralized global market. It is one
of the largest and most liquid financial markets in the world. Forex trading
involves the simultaneous buying and selling of the world’s currencies on this
market.
It plays a very important role in foreign trade and business, as products or
services purchased in a foreign country must be paid for using that country’s
currency.

Forex is one of the most traded markets in the world, with total average
Daily turnover of over $ 5 trillion per day. The forex market is not based in
a central or exchange location, and is open 24 hours a day, Sunday evening
through Friday evening. Forex works traded in currency pairs. In this thesis
we have analyzed the behaviour of EUR / USD (pound against US dollar),
which was the most traded forex pair with 24% of the total market in 2019
according to the Bank of International Settlements (BIS) triennial survey.

It speculates whether the price of one country’s currency will rise or fall
against another country’s currency and takes a position accordingly. Looking
at the EUR / USD currency pair, the first currency (EUR) is called the
”base currency” and the second currency (USD) is known as the ”counter
currency”. Trading on forex means speculating that the price of the base
currency will rise or fall relative to the counter currency [19]. So, in EUR /
USD, if you think the pound will go up against the US dollar, and so that
the price will rise, you buy the currency pair going long. If you instead think
that the EUR will fall against the USD (or the USD will rise against the
EUR) and the price will go down, you go short selling the currency pair.
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In this thesis it was considered the behaviour of Forex EUR - USD from
12th January 2003 to to 1st September 2021.

Figure 2.56: Forex EUR - USD behaviour from 2003 to 2021.

From a preliminary analysis of the compounded returns of the data, the
following table was obtained:

Figure 2.57: Features of Forex EUR - USD compounded returns.

As we can observe the mean is already unchanged between the 3 holding
periods while the standard deviation or volatility is slightly going down from
Daily to Monthly data. The skewness instead, turns from positive to negative
showing a shift to the left of the center of the PDF, while the kurtosis, which
has the most interesting behaviour, going from the highest result obtained
in all the time series in Daily data down to an ordinary value in the other
holding periods. The entropy, instead, has a very low values with respect to
the other series going to 0 in the Monthly data, so it means that the price
fluctuations will repeat very much in that holding period and that this series
is optimum to forecast by algotrading.
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Figure 2.58: GBM vs Quantum Forex EUR - USD.

As we can observe from the fits, the Quantum Model is always better
than the GBM one, managing to take the peak of distribution in Weekly and
Monthly but not in Daily, maybe due to the very high kurtosis of the data.

Running the Quantum Genetic Algorithm for 70 generations and the
GBM Genetic Algorithm for 40 generations, we have obtained the following
fitness results:

Figure 2.59: Fitness Forex EUR - USD.

The Fitness of the Quantum Model is always higher than the GBM one,
and is lower than the other time series because the Forex EUR-USD data
analyzed were available only since 2003, while for time indices like NASDAQ
we started from 2003.

Figure 2.60: Estimated Parameters Forex EUR - USD.
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The GBM parameters follow a very similar trend to the other time series
with the mean less than the standard deviation, and both of the two parame-
ters decreasing from Daily to Monthly data. In the Quantum Model, instead,
the parameters C0 and C4 remain positive with a maximum in Monthly data,
while C1 turns positive from Weekly to Monthly and C2 negative from Weekly
to Monthly. mω, instead, increases along the holding periods.

Figure 2.61: Probabilities Forex EUR - USD

The probabilities in Forex EUR-USD confirm both the very high excess
kurtosis in the Daily data, because the sum of P2 and P4 is maximum there,
and also the maximum skewness in absolute value because also the sum of
P1 and P3 is maximum.

2.12 Bitcoin

Bitcoin is a digital decentralized cryptocurrency invented in 2009 by Satoshi
Nakamoto, a misterious and anonymous Japanese man who created this tech-
nology. The exchange of Bitcoins, digital money which does not have physical
counterpart, is kept sicure by the use of cryptography, writing each trans-
action to a public ledger called blockchain. There is no need of a central
control, like the one of banks or governments, keeping it non legal in many
states like China, but being very popular becoming the first one and also the
most famous of the cryptocurrencies, as explained in [19].
Despite its born in 2008, data were available on Yahoo Finance since 2019, so
in this thesis it was considered the behaviour of Bitcoin from 18th September
2019 to to 1st September 2021.
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Figure 2.62: Bitcoin behaviour from 2019 to 2021.

As we can see, bitcoin is very volatile, passing to a price of 10k dollars
in 2019 to a maximum of 50k dollars in April 2021, to a local minimum
of 30k dollars in June 2021, with dropping of over the 30% in 24 hours
breaking more than 2000$. There are many causes for this great uncertainty
of bitcoin price like its limited supply, because there is a complex procedure
called bitcoin mining to create new tokens, and this quantity entered into the
market is halving each 4 years. In fact currently there are about 18 millions
of bitcoin in circulation, but the maximum threshold will be 21 million in
2140, making bitcoin a very good investment to contrast inflation and very
apt to variations.

Another very important cause of such a volatility is the lack of a central
bank, as explained in [20], because its behaviour is so much affected by overall
news. In 11th May 2021, for example, Elon Musk announced on Twitter
that Tesla would have not accepted anymore bitcoin payments to purchase
electric cars. In a day bitcoin has lost 144 billions of dollars of capitalization
according to [21] falling of 13% in 2 hours, passing from the exchange value
of 54500 $ to 46980$.

From a preliminary analysis of the compounded returns of the data, the
following table was obtained:
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Figure 2.63: Features of Bitcoin compounded returns.

Starting in the begin of 2019, the number of observation is lower than
the other time series. We can observe that the mean is not equal during the
holding periods having an increase from Daily data to Monthly data while
the standard deviation drops from a high value of 10.27 to a lower value
of 2.67. The skewness remains negative diminishing in absolute value while
the excess kurtosis drops from a very high value of 24.16 to a negative low
value of −0.23, becoming a light platykurtic distribution having then fewer
extreme positive or negative events. The very high volatility of Bitcoin is also
evident from the entropy, because that values are among the highest, second
only to Tesla values, meaning that this series are not very predictable. The
Hurst coefficient, instead, is as usual under 0.5, but for the Monthly data
is not shown because the number of data is very low, under 100, and this
information would not be so meaningful.

Figure 2.64: GBM vs Quantum Bitcoin.

We can observe how good is the Quantum model to describe Bitcoin
PDF’s for Daily and Weekly data, in particular regarding data with the
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lowest holding period, despite the failure of intercepting the kurtosis. For
Monthly data, instead, the Quantum model isn’t meaningful due to the little
number of data while the GBM model manages to fit better the distribution.

Running the Quantum Genetic Algorithm for 75 generations and the
GBM Genetic Algorithm for 40 generations, we have obtained the following
fitness results:

Figure 2.65: Fitness Bitcoin.

The Fitness values are higher with respect to the other time series, so
the goodness of the algorithms is the lowest one, and they diminish over the
holding periods as usual due to the drop of the number of data.

Figure 2.66: Not physical Bitcoin Weekly PDF.

We have also wanted to show an output of the algorithm which is not
physical having values of the theoretical PDF less than 0. Despite the selec-
tion during the various generations, in fact, it may happen that some PDFs
with negative values have the lowest fitness. This shows that fitness is not the
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only parameter to evaluate the goodness of a fitting, but also the theoretical
PDF values must be greater than zero.

Figure 2.67: Estimated Parameters Bitcoin.

The first observation about the GBM parameters is that the standard
deviations are the highest of all the time series for the 3 holding periods
confirming the big volatility of Bitcoin returns. Analyzing the Quantum
parameters, instead, we can notice that C0 and C1 are always positive with
a minimum in Weekly data, C2 is negative in Daily and Monthly having a
positive maximum in Weekly, while C4 remains positive increasing during
the holding periods and C3 turns negative from Weekly to Monthly. The
parameter mω, instead, shows a weird behaviour being minimum in Monthly
data against the theoretical foresight, confirming that the Quantum model
for Monthly data is not so meaningful.

Figure 2.68: Probabilities Bitcoin.

The high volatility of Bitcoin prices is confirmed by its probabilities,
because P0 has the lowest values of all the time series, reaching the value of
0.96 in Weekly data and 3.26∗10−4 for the Monthly data, even if they are not
meaningful. The higher volatility probabilities, then, are larger with respect
to the other time series, confirming the accuracy of the model noticing in
particular the increase of the even probabilities which raise of 105 and of 10
respectively for P2 and P4.
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2.13 Conclusion

The results have confirmed the goodness of the models and in particular the
thesis described in paper [1] for almost all the historical series considered.
The series analyzed have a very similar behaviour, with Quantum Model out-
performing GBM Model almost always except in very rare case like Monthly
FTSE MIB. In general the result is satisfactory with the Quantum Model
that manages to recover the excess kurtosis of the data also in series like
Weekly Amazon or Weekly Petroleum, but not being obtained in series with
large standard deviation like Daily Petroleum and Daily Amazon. The Quan-
tum Fitness is always smaller than the GBM one, but the Quantum Model
almost never confirms the theory according to which the even probabilites
contribute to the kurtosis while the odd probabilities to the skewness. The
model, however, confirms in all series except that Petroleum and Bitcoin,
that the product between the capitalization and the angular frequency in-
creases. Moreover, perhaps the most important aspect, all the coefficients
are of the same order of those obtained in [1] with even better fits, so we have
confirmed the thesis that Financial Markets can be described by Complex
Systems like GBM and Quantum Mechanics.
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Chapter 3

Thesis codes

3.1 Entropy

def ApEn(U, m, r):
U = np.array(U)
N = U.shape[0]

def phi(m):
z = N - m + 1.0
x = np.array([U[i:i+m] for i in range(int(z))])
X = np.repeat(x[:, np.newaxis], 1, axis=2)
C = np.sum(np.absolute(x - X).max(axis=2) ≤ r, axis=0)/z
return np.log(C).sum()/z

return abs(phi(m + 1) - phi(m))

The Entropy code has been taken from a github profile, linked at [23].

3.2 ECDF

def ecdf(data):
xaxis = np.sort(data)
yaxis = np.arange(1,len(data)+1)/len(data)
return xaxis, yaxis
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3.3 Quantum Algorithm

3.3.1 Quantum PDF

def psisquare(C,y):
N = len(C)-1
P = np.zeros((N,len(y)))
y = np.sort(y)
for i in range(N):

P[i,:]=C[i]*np.exp(-C[-1]*y**2)*hermite(i)(np.sqrt(C[-1])*y)
return P.sum(axis=0)/np.trapz(P.sum(axis=0),y)

3.3.2 Quantum Fitness of a vector:

def Fitness(x,C):
M = len(x)
return -(M)**(-1)*sum(np.log(psisquare(C,x))) - ApEn(ecdf(x)[1],

m=2, r=3)

3.3.3 Quantum Fitness of a matrix:

def fitnessvector(data,C):
T = np.array([Fitness(data,C[i,:]) for i in range(C.shape[0])])
for i in range(len(T)):

if math.isnan(T[i])==True:
T[i] = 9999999

return T

3.3.4 Quantum Selection

def selection(fitness,C,number):
C = initial population of the coefficients
number = number of the rows of new vector
fitness = fitnessvector(data,C)
li = np.argsort(fitness)[:number]
return np.array([C[b,:] for b in li])
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3.3.5 Quantum Crossover

def crossover(C):
offspring = np.zeros(shape=C.shape)
crossoverpoints = np.empty(C.shape[0],dtype=int)
for k in range(C.shape[0]):

crossoverpoints[k] = random.randint(1,N)
parent1idx = k%C.shape[0]
parent2idx = (k+1)%C.shape[0]
offspring[k, 0:crossoverpoints[k]] = C[parent1idx, 0:crossover-

points[k]]
offspring[k, crossoverpoints[k]:N] = C[parent2idx, crossover-

points[k]:N]
offspring[k,N] = C[:,-1][parent2idx]

return offspring

3.3.6 Quantum Genetic Algorithm

As explained in the theoretical part, the mutation part of the algorithm has
been computed at each generation.

Inputs of the equation.
data

Number of the weights we are looking to optimize.
numweights = N + 1

Defining the population size.
numpop = 1000
popsize = np.array([numpop,numweights])

Initializing populations
trypopulation = np.zeros((numpop,numweights))

C0 coefficients.
trypopulation[:,0] = np.random.uniform(low=0, high=0.1, size =
numpop)

C1,CN coefficients.
trypopulation[:,1:N] = np.random.uniform(low=-0.1, high=0.1, size=(numpop,N-
1))

Oscillator masses m.
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trypopulation[:,-1] = np.random.uniform(low=0, high=0.3, size =
numpop)

Number of the generations decided.
numgenerations = 75

Number of the parents selected.
numparents = 500

Coefficientmatrix = pd.DataFrame(columns=[’Generation’,’C0’,
’C1’, ’C2’,’C3’,’C4’,’m’,’QuantumFitness’]).
entropy = ApEn(ecdf(data)[1], m=2, r=3)
for generation in range(numgenerations):

Measuring the fitness of each chromosome in the population.
fitness = fitnessvector(data,trypopulation)

Selecting the best parents in the population.
parents = selection(fitness,trypopulation,numparents)

Generating next generation using crossover.
cross = crossover(parents)

Adding some variations to the offspring using mutation.
row = cross.shape[0]
column = cross.shape[1]
mutationmatrix = np.random.rand(row,column)*np.array([[random.randint(-
1,1) for j in range(column)] for i in range(row)])
mutationmatrix+= np.ones((row,column))
mutant = mutationmatrix*cross

Creating the new population based on the parents and offspring.
trypopulation[0:parents.shape[0], :] = parents
trypopulation[parents.shape[0]:, :] = mutant
np.random.shuffle(trypopulation)

The best result in the current iteration.
gen = np.insert(trypopulation[np.where(fitness==np.min(fitness))],
0,int(generation + 1))
gen = np.insert(gen,len(gen),np.min(fitness)-entropy)
Coefficientmatrix.loc[generation] = gen
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3.4 GBM Algorithm

3.4.1 GBM PDF

def GBM(D,x,t):
mu = (D[0]-D[1]/2)*t
sigma = D[1]*t
return norm(mu, sigma).pdf(x)

3.4.2 GBM Fitness of a vector:

def GBMFitness(x,D,t):
M = len(x)
return-(M)**(-1)*sum(np.log(GBM(D,x,t))) - ApEn(ecdf(x)[1],

m=2, r=3)

3.4.3 GBM Fitness of a matrix:

def GBMfitnessvector(x,D,t):
T = np.array([GBMFitness(x,D[i,:],t) for i in range(D.shape[0])])
for i in range(len(T)):

if math.isnan(T[i])==True:
T[i] = 9999999

return T

3.4.4 GBM Selection

def GBMselection(fitness,D,number):
C = initial population of the coefficients
number = number of the rows of new vector
fitness = fitnessvector(data,C)
li = np.argsort(fitness)[:number]
return np.array([D[b,:] for b in li])
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3.4.5 GBM Crossover

def GBMcrossover(D):
offspring = np.zeros(shape=D.shape)
randommu = random.randint(1,D.shape[0])
randomsigma = random.randint(1,D.shape[0])
for k in range(D.shape[0]):

shiftmu = (k+randommu)%D.shape[0]
shiftsigma = (k+randomsigma)%D.shape[0]
offspring[k,0] = D[shiftmu,0]
offspring[k,1] = D[shiftsigma,1]

return offspring

3.4.6 GBM Genetic Algorithm

As in Quantum Model in the theoretical part, the mutation part of the
algorithm has been computed at each generation.

Inputs of the equation.
data

Number of the weights we are looking to optimize.
numweights = 2

Defining the population size.
numpop = 1000
popsize = np.array([numpop,numweights])

Initializing populations
Dpopulation = np.zeros((numpop,numweights))

µ coefficients.
Dpopulation[:,0] = np.random.uniform(low=0.5, high=1.5, size =
numpop)

σ2 coefficients.
Dpopulation[:,1] = np.random.uniform(low=3, high=4, size=numpop)

Number of the generations decided.
numgenerations = 40

Number of the parents selected.
numparents = 500
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CoefficientmatrixGBM = pd.DataFrame(columns=[’Generation’,’GBMmu’,
’GBMsigma’,’GBMFitness’])
entropy = ApEn(ecdf(data)[1], m=2, r=3)
for generation in range(numgenerations):

Measuring the fitness of each chromosome in the population.
GBMfitness = GBMfitnessvector(data,Dpopulation,t=1)

Selecting the best parents in the population.
GBMparents = GBMselection(GBMfitness,Dpopulation,GBMnumparents)

Generating next generation using crossover.
GBMcross = GBMcrossover(parents)

Adding some variations to the offspring using mutation.
GBMrow = GBMcross.shape[0]
GBMcolumn = GBMcross.shape[1]
GBMmutationmatrix = np.random.rand(GBMrow,GBMcolumn)*np.array([[random.randint(-
1,1) for j in range(GBMcolumn)] for i in range(GBMrow)])
GBMmutationmatrix+= np.ones((GBMrow,GBMcolumn))
GBMmutant = GBMmutationmatrix*GBMcross

Creating the new population based on the parents and offspring.
Dpopulation[0:GBMnumparents, :] = GBMparents
Dpopulation[GBMnumparents:, :] = GBMmutant
np.random.shuffle(Dpopulation)

The best result in the current iteration.
GBMgen = np.insert(Dpopulation[np.where(GBMfitness==np.min(GBMfitness))]
GBMgen = np.insert(GBMgen,len(GBMgen),np.min(GBMfitness)-
entropy)
CoefficientmatrixGBM.loc[generation] = GBMgen

3.5 PDF Plots

plt.figure(figsize=(5,5))
plt.title(’GBM Distribution vs Quantum Distribution’, fontsize=’15’)
plt.xlabel(’Compounded returns of Data’, fontsize=’15’)
plt.ylabel(’Density’, fontsize=’15’)
GBMdatad = np.array(CoefficientmatrixGBM)[-1,1:-1]
Quantumdatad = np.array(Coefficientmatrix)[-1,1:-1]
datarg=15 (depending on data if Daily, Weekly or Monthly)
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datat = np.sort([data[i] for i in range(len(data)) if -datarg¡=data[i]¡=datarg])
width = stats.freedmanbinwidth((data), returnbins=False)
histplot = sns.histplot(data,stat=”density”, binwidth=width,binrange=(-
datarg,datarg))
plt.plot(datat,GBM(GBMdatad,datat,1),color = ’r’,label = ’GBM’)
plt.plot(datat,psisquare(Quantumdatad,datat),color = ’b’,label =
’Quantum’)
plt.legend(loc=”upper left”)
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