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1 Introduction to Optimization Problems

In recent years, analyzing big data sets and systems with a high number of particles has

become more and more important in several fields. These systems, presenting a high di-

mensionality, are difficult to tackle due to the large number of degrees of freedom we have

to handle. For instance, a common operation we have to perform is the minimization of a

function, like the energy, and in such situations, the landscape is usually rugged and reach-

ing the global minimum may become a non-trivial procedure; there could be several local

minima that prevent us from reaching the global one. Nevertheless, the simplest and most

used algorithms are based on the gradient descent (GD), which was developed two centuries

ago [1], and these have shown to be to be straightforward and successful in a various array

of applications.

Some examples of fields where such algorithms are used are:

• Machine Learning (supervised learning): where one has to minimize the cost function

of the model to estimate which are the best parameters that we will use to tune the

model itself. For instance, in the case of neural networks, the degrees of freedom can

rapidly reach values of order 106 − 107 and therefore the landscape becomes difficult

to explore [2, 3].

• Inference: where we have to deduce an underlying structure from a set of signals

(possibly noisy) and depending on the particular characteristic of the signal vector we

can end up in rugged landscapes where GD is showing promising results [4, 5, 6].

• Evolutionary Biology: here the fitness (the ability of passing on their genes to sub-

sequent generations) of a species or individual is fundamental in understanding who

has a higher likelihood to survive; the ones that show the maximum fitness will thrive

in the environment, but this function is influenced by several variables leading to a

complex landscape [7].

Due to their simplicity, vanilla algorithm are still the most used but, given that the problems

are getting tougher to solve and that the computational power is expected to increase at a

slower pace in the near future [8], interest is shifting more toward optimization and efficiency.

For instance, when we have to deal with non-convex optimization problems, newer and

updated versions of old algorithm showed promising results [9, 10].
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2 Mean field spin glasses as Hard Optimization Prob-

lems

2.1 Disordered systems

A computer scientist may initially think that a theoretical physical system has no meaning

for his studies; but one can soon realize that some of these are a fertile ground to develop and

test new algorithms given the complex settings. In this framework, there is a class of systems

that fits perfectly our interests: the disordered systems. We can be distinguish two two major

sub-classes based on two different kind of disorder. The first one is the annealed disorder

and it refers to systems where the random variables, defining the randomness, change over

time. For example if we have a hot material composed of different elements that is slowly

cooling down, the different particles will move to reach the equilibrium, thus changing their

position in space and their interaction with the other particles. The second case is the

quenched disorder, completely opposite to the first, the impurities do not equilibrate with

the environment but instead are stuck in random fixed positions. One of the most studied

model of that kind is the Edwards–Anderson model [11]:

H =
∑
<ij>

Jijσiσj

where the variables σi are spins, and the couplings Jij are Gaussian random variables and the

summation is performed over nearest-neighbor sites. The Hamiltonian is clearly quenched

because the Js are randomly chosen but have no time dependence. This randomness of the

couplings leads to the so-called “frustration”: a situation in which it’s impossible to satisfy

all couplings at the same time, as it would be in a ferromagnetic system. Formally, a system

is considered to be frustrated if there exists a loop in which the product of all the couplings

is negative. In a frustrated loop, if we fix an initial spin, and we try to fix the neighboring

spins in the loop one after the other according to the sign of the couplings, at the end we

will return to the initial spin and be forced to flip it. Which means that we are not able to

find such a configuration that satisfies all couplings and thus it’s impossible to minimize the

energy of all couplings simultaneously and we have a proliferation of meta-stable states.

2.2 The pure p-spin

Another model, belonging to the class of glassy systems [12], that has been widely used

in this framework is the pure spherical p-spin. Even though it presents a rugged energy

landscape it is somewhat easy to solve, allowing us to obtain some insights by studying it.
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2.2.1 Definition of the Model

The system is characterized by real spherical spins affected by long range p-body interactions,

weighted by random interaction coefficients, thus the HamiltonianHp for a system of N spins

reads as follows

Hp =
∑
i1,...,ip

Ji1,...,ip σi1(t) · · ·σip(t)
N∑
i=1

σ2
i = N

Notice that we will always use the following shortcut notation:
∑

i1,...,ip
=
∑

1≤i1<···<ip≤N
and that we will drop the time-dependence of the variables most of the time to restore it

only when necessary. The constraint on the right is the spherical constraint and we assume

that the couplings J are given by independent Gaussian variables with mean and variance

given by the relation below.

〈J2
i1,...,ip

〉 =
p!

2Np−1
〈Ji1,...,ip〉 = 0

The value of the variance is chosen in such a way that the energy is finite and it grows

linearly with the number of particles in the system.

2.2.2 The Energy Landscape: complexity of local minima

As we anticipated earlier, in high-dimension several local minima may appear and when this

happens our descent gets severely impacted. In the limit of an infinitely large number of

particles, this particular system can be studied analytically and, in particular, we can look

directly at the stationary points of the Hamiltonian to understand what is going on. These

points verify the following conditions

∂H
∂σi

+ µ σi = 0 µ = − 1

N

∑
i

σi
∂H
∂σi

Where µ, the radial reaction force, is a Lagrange multiplier that imposes the spherical

constraint on the spins and that takes the value on the right when the point is a stationary

one. What emerges is that the number of stationary points N increases exponentially with

the energy up to a certain value Eth [13] and in particular its functional form is the following

N (E) ∼ eN Σ(E) [14]. Σ is called configurational entropy or complexity, and its behavior is

shown schematically in Figure 1.

But what happens when we want to use a gradient descent algorithm to find the minimal

energy achievable? As we try to make our way toward lower energies, we realize that the

number of minima at Eth is so numerous that, in the macroscopic limit, the probability of
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reaching lower energy values becomes vanishing and thus our descent gets stuck over this

threshold value.

Figure 1: Relation between the complexity of the system and its energy in the case of the
pure p-spin. The large circle highlights the energy value Eth for which we have stationary
points with maximal complexity

2.2.3 Gradient Descent Dynamics Analysis

Even though the descent is not easy, the dynamics can be described analytically thanks to

the Crisanti-Horner-Sommers-Cugliandolo-Kurchan equations in spin glass theory [15]. For

this reason it appears to be a suitable field to analyze and compare the performance of GD

and other techniques. Later on we will derive directly the integro-differential equations that

allow us to describe the gradient descent evolution of the energy of such systems but, to put

in the right frame the discussion, we will show preemptively some results.

Firstly, we should remind that when we use a gradient descent algorithm we have to choose

an initial condition (or configuration) of our system and, if we do not have any insight that

can help us with our decision, we are forced to choose a random one. In our case, and

from the perspective of a physicist, this can be simply translated as choosing a random

configuration taken from the system at an infinite temperature. Following the similarity

with temperature, it may seem reasonable to choose a configuration associated to a lower

temperature; indeed it makes sense, as we will start from a lower energy and our descent

should be smoother and easier [16]. Therefore, we can initially equilibrate the system with a

thermostat that is set at a temperature Tin = 1/βin <∞. But it is important to stress that

we cannot choose a temperature that is too low, such as 0K; it has to stay above a constant,

the ’Mode Coupling Temperature’ TMCT , because at lower values we would not be able to
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generate the configuration in a polynomial time and thus the results cannot be checked in

real world experiments.

In the case where p = 3, following the theory of Cugliandolo-Kurchan, we are able to

compute the threshold using the Formula 1 below as Eth = −2/
√

3 ' −1.1547 [17, 18]. In

our numerical simulations, where we consider multiple temperature values, we see that the

system moves asymptotically toward Eth, confirming the prediction we’ve made previously.

Note that each value of β is compared to βMCT = 1/TMCT ' 1.24198.

Eth =
−f ′(1)2 + f(1)[f ′(1)− f ′′(1)]

f ′(1)
√
f ′′(1)

with f(q) =
1

2
q3 (1)

Figure 2: Gradient descent for the pure p-spin with p=3. The grid has been discretized with
N = 10000 points and a time-step of dt = 0.1 was used. Different values of β have been
chosen, but we can see that the long-time behavior is qualitatively the same.

3 The mixed p-spin model

The pure p-spin model has been been a topic of research for a long time and we know almost

everything we are interested into; at the same time, we thought that its properties could be

considered as universal and that its behavior would be shared by other similar problems, like

the mixed p-spin but it has been shown that it’s not always the case [18]. A mixed p-spin

system is structurally identical to the pure one, the only difference is that in the former we

have to consider interactions that can affect a different number of spins simultaneously, that

means multiple p values, and hence we have:
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Hp =
∑
p

∑
i1,...,ip

Ji1,...,ip σi1(t) · · ·σip(t)
∑
i

σ2
i = N

In these new settings, Eth is no longer the energy with the most numerous stationary states

but instead it corresponds to the energy where the stationary states dominate the complex-

ity. Interestingly, here we are able to cross the threshold barrier by modifying the initial

conditions, and therefore by choosing wisely the temperature of the thermal bath. What we

can witness is that for β small enough the descent shows a similar behavior to the one found

beforehand: we still reach asymptotically the Eth of the system, whose value is Eth = −71
42

(which can be derived by using Formula 1 while considering f(q) = 1
2
(q3 +q4)). On the other

hand, for β close to the mode-coupling one, the system does not forget its initial condition

[19], even after a long time, and we are able to cross the threshold that was previously

considered unsurpassable by the Cugliandolo-Kurchan argument. That behavior is clearly

shown in the Figure 3; where the small inset, representing a vertical magnification at higher

time t, allows us to see the crossing of the “barrier” which confirm the results recently found

by Folena et al. [18].

Figure 3: Gradient descent for a mixed p-spin model (p = 3, 4) with different values of β;
where the gray dotted line represents the threshold. The grid has been discretized with
N = 10000 points and a time step of dt = 0.1.
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4 Integro-Differential Equations

4.1 Dynamical Mean-Field Equations

Considering that a wise choice of the initial conditions (in our case by changing the value of

β) allows us to surpass the threshold energy, one may think if there are other ways to reach

the same result. To do so we will take into consideration a particular mixed p-spin system

with p = 3, 4 which presents a function vt in front of the 4-spin term. This function will be

exploited to reach the aforementioned aim in Section 5, in this propaedeutic part it won’t

play an important role.

Using the notation previously stated, its Hamiltonian is expressed as follows

H =
∑
i,j,k

Ji,j,k σiσjσk + vt
∑
i,j,k,l

Ji,j,k,l σiσjσkσl
∑
i

σ2
i = N (2)

To perform the standard gradient descent we consider the Langevin dynamic of each spin

with no additive noise term:

σ̇i = −µtσi −
∂H
∂σi

= −µtσi −
∑
j,k 6=i

Ji,j,kσjσk + vt
∑
j,k,l 6=i

Ji,j,k,lσjσkσl

To solve this set of equations we will follow a perturbative approach, also called Dynamical

Cavity Method [20]; we add to the system another spin, σ0, and then consider the effect it

has on the others.

First of all, we look at the new expression for the “initial” spins σi 6=0:

σ̇i = −µtσi −
∑
j,k 6=i,0

Ji,j,kσjσk + vt
∑

j,k,l 6=i,0

Ji,j,k,lσjσkσl +Hi (3)

perturbation Hi = −
∑
k 6=0

J0,i,kσiσk − vt
∑
k,l 6=0

J0,i,k,lσiσkσl (4)

As we can see from Eq. (3), σ̇i changes from the non-perturbed case only by an additive

term Hi (that is exactly the perturbation we are adding).

On the other hand, σ0’s behavior is described by the following differential equation:

σ̇0 = −µtσ0 −
∑
j,k 6=0

J0,j,kσjσk + vt
∑
j,k,l 6=0

J0,j,k,lσjσkσl

Following our perturbative scheme it is natural to express each σi term as a sum of the

non-perturbed value and the perturbation that the presence of σ0 induces on these. Up to
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linear order we can write:

σi = σ0
i + δσ0

i δσ0
i '

∫ t

0

ds
δσ0

i (t)

δHi(s)
Hi(s) (5)

If we now plug back the previous relations into Eq. (5), we will have multiple terms of the

form σ0
k δσ

0
j . We can notice that these terms will all have the same contribution due to

symmetry properties. Thus we retrieve the following expression for the evolution of σ0:

σ̇0 = −µtσ0−
[ ∑
j,k 6=0

J0,j,kσ
0
jσ

0
k + vt

∑
j,k,l 6=0

J0,j,k,lσ
0
jσ

0
kσ

0
l

]
︸ ︷︷ ︸

ηt

− 2
∑
j,k 6=0

J0,j,kσ
0
kδσ

0
j︸ ︷︷ ︸

A

− 3vt
∑
j,k,l 6=0

J0,j,k,lσ
0
kσ

0
l δσ

0
j︸ ︷︷ ︸

B

(6)

Where ηt can be thought as a noise term that contains the unperturbed variables σi 6=0.

Hereby we will assume that we can neglect terms sub-leading in N:
∑

i1,...,ik
≈ 1

k!

∑
i1
· · ·
∑

ik

Calculation of the 3-body term of Eq. (6):

A =
∑
j,k 6=0

J0,j,kσ
0
k(t)δσ

0
j (t) '

∑
j,k 6=0

J0,j,kσ
0
k(t)

∫
ds

δσ0
j (t)

δHj(s)
Hj(s) =

= −
∑
j,k 6=0

J0,j,kσ
0
k(t)

∫
ds

δσj(t)

δHj(s)

∑
l 6=0

J0,j,lσ0(s)σ0
l (s) =

= −
∑
j,k 6=0

∑
l 6=0

J0,j,kJ0,j,l

∫
ds σ0

k(t)σ
0
l (s)

δσj(t)

δHj(s)
σ0(s) =

= −
∑
j,k 6=0

J2
0,j,k

∫
ds σ0

k(t)σ
0
k(s)

δσj(t)

δHj(s)
σ0(s) =

' − 3!

2N2

∑
j,k 6=0

∫
ds σ0

k(t)σ
0
k(s)

δσj(t)

δHj(s)
σ0(s) =

' − 3!

2 · 2!

∫
ds
[ 1

N

∑
k 6=0

σ0
k(t)σ

0
k(s)

][ 1

N

∑
j 6=0

δσ0
j (t)

δHj(s)

]
σ0(s) =

= −3

2

∫
ds C(t, s)R(t, s)σ0(s)
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Calculation of the 4-body term of Eq. (6):

B = vt
∑
j,k,l 6=0

J0j,k,lσ
0
k(t)σ

0
l (t)δσ

0
j (t) '

∑
j,k,l 6=0

vtJ0j,k,lσ
0
k(t)σ

0
l (t)

∫
ds

δσj(t)

δHj(s)
Hj(s) =

= −
∑
j,k,l 6=0

vtJ0j,k,lσ
0
k(t)σ

0
l (t)

∫
ds

δσj(t)

δHj(s)

∑
m,n 6=0

vsJ0,j,m,nσ0(s)σ0
m(s)σ0

n(s) =

= −
∑
j,k,l 6=0

∑
m,n 6=0

J0j,k,lJ0,j,m,n

∫
ds vtvsσ

0
k(t)σ

0
l (t)σ

0
m(s)σ0

n(s)
δσj(t)

δHj(s)
σ0(s) =

= −
∑
j,k,l 6=0

J2
0j,k,l

∫
ds vtvsσ

0
k(t)σ

0
l (t)σ

0
m(s)σ0

n(s)
δσj(t)

δHj(s)
σ0(s) =

' − 4!

2N3

∑
j,k,l 6=0

∫
ds vtvsσ

0
k(t)σ

0
l (s)σ

0
m(s)σ0

n(s)
δσj(t)

δHj(s)
σ0(s) =

' − 4!

2 · 3!

∫
ds vtvs

[ 1

N

∑
k 6=0

σ0
k(t)σ

0
k(s)

][ 1

N

∑
l 6=0

σ0
l (t)σ

0
l (s)

][ 1

N

∑
j 6=0

δσj(t)

δHj(s)

]
σ0(s) =

= −6

∫
ds vtvsC(t, s)2R(t, s)σ0(s)

Where we have defined the functions C and R as follows:

C(t, s) =
1

N

∑
i 6=0

σ0
i (t)σ

0
i (s) = 〈σ0

i (t)σ
0
i (s)〉 R(t, s) =

1

N

∑
i 6=0

δσi(t)

δHi(s)
= 〈 δσi(t)

δHi(s)
〉

Finally, we can simplify the notation by defining a couple of two-variable functions: MR
3 and

MR
4

A =
∑
j,k 6=0

J0j,kσ
0
k(t)δσ

0
j (t) ' −

∫ t

0

ds MR
3 (t, s)σ0(s) MR

3 (t, s) := 3C(t, s)R(t, s)

B = vt
∑
j,k,l 6=0

J0,j,k,lσ
0
k(t)σ

0
l (t)δσ

0
j (t) = −

∫ t

0

dsMR
4 (t, s)σ0(s) MR

4 (t, s) := −6vtvsC(t, s)R(t, s)

And in the end we are able to write Eq. (6) as follows:

σ̇0 = −µtσ0 − ηt +

∫ t

0

dsMR(t, s)σ0(s) MR(t, s) := MR
3 (t, s) +MR

4 (t, s)

The last term we have to characterize is ηt, which can be considered as a bath produced by
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the initial variables σi 6=0 to the added one σ0.

ηt =
∑
j,k 6=0

J0,j,kσ
0
jσ

0
k + vt

∑
j,k,l 6=0

J0,j,k,lσ
0
jσ

0
kσ

0
l

This Gaussian noise has zero mean 〈ηt〉|J = 0 (average over the couplings J) and variance

given by:

〈ηtηs〉|J =
∑
j,k 6=0

∑
l,m6=0

〈J0j,kJ0,l,m〉σ0
j (t)σ

0
k(t)σ

0
l (s)σ

0
m(s)+

+
∑
j,k,l 6=0

∑
m,n,p 6=0

〈J0j,k,lJ0m,n,p〉σ0
j (t)σ

0
k(t)σ

0
l (t)σ

0
m(s)σ0

n(s)σ0
p(s)vtvs =

' 3!

2N2

∑
j,k 6=0

σ0
j (t)σ

0
k(t)σ

0
j (s)σ

0
k(s) +

4!

2N3

∑
j,k,l 6=0

σ0
j (t)σ

0
k(t)σ

0
l (t)σ

0
j (s)σ

0
k(s)σ

0
l (s)vtvs =

' 3

2N2

∑
j 6=0

∑
k 6=0

σ0
j (t)σ

0
k(t)σ

0
j (s)σ

0
k(s)+

+
4

2N3

∑
j 6=0

∑
k 6=0

∑
l 6=0

σ0
j (t)σ

0
k(t)σ

0
l (t)σ

0
j (s)σ

0
k(s)σ

0
l (s)vtvs =

=
3

2
C(t, s)2 + 2C(t, s)3vtvs := MC(t, s)

Gathering all these results, we are finally able to write down the equations for the evolution

of the correlation function C(t, t′) and the response function R(t, t′). Later we will provide

also the energy as a function of C, R and µ.

If we assume that, in the macroscopic limit, the new variable σ0(t) behaves like the other

ones, we are able to write down the following equations:

C(t, t′) = 〈σ0(t)σ0(t′)〉
∂C(t, t′)

∂t
= −µ(t)C(t, t′) + 〈η(t)σ0(t′)〉+

∫ t

0

dsMR(t, s)〈σ0(s)σ0(t′)〉 =

= −µ(t)C(t, t′) + 〈η(t)σ0(t′)〉+

∫ t

0

dsMR(t, s)C(t′, s)

The second term needs a careful treatment. After we explicit the average over the noise,

that is assumed to be Gaussian and governed by the kernel MC , we can apply the Novikov
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theorem and an integration by parts to reach a compact result

〈η(t)σ0(t′)〉 =

∫
D[η(t)] e−

1
2

∫∫
dτdτ ′η(τ)M−1

C (τ,τ ′)η(τ ′)η(t)σ0(t′) =

= −
∫ t′

0

ds

∫
D[η(t)] σ0(t′)

δ

δη(s)
e−

1
2

∫∫
dτdτ ′η(τ)M−1

C (τ,τ ′)η(τ ′)MC(t, s) =

=

∫ t′

0

ds 〈δσ0(t′)

δη(s)
MC(t, s)〉 =

∫ t′

0

ds R(t′, s)MC(t, s)

Where in the first step we have performed an integration by parts with respect to the noise

η(s).

4.2 Final equations

µt =

∫ t

0

ds MC(t, s)R(t′, s) +

∫ t

0

ds MR(t, s)C(t′, s) (7)

∂tC(t, t′) = −µtC(t, t′) +

∫ t′

0

ds MC(t, s)R(t′, s) +

∫ t

0

ds MR(t, s)C(t′, s) (8)

∂tR(t, t′) = ∂t〈
δσo(t)

δη(t′)
〉 = δ(t, t′)− µtR(t, t′) +

∫ t

t′
ds MR(t, s)R(s, t′) (9)

Notice that the last integral goes from t’ to t because the R(s, t′) = 0 for s < t′, due to

causality.

Where C(t, t) = 1, R(t, t′ → t+) = 1 and R(t, t′) = 0 for t ≤ t′.

If we let fk(t, s) = 1
2
qk we can write, in a easy and compact way, the two memory kernels

MC and MR as:

MC(t, s) =
3

2
C2(t, s) +

4

2
C3(t, s)vtvs = f ′3(C(t, s)) + f ′4(C(t, s))vtvs

MR(t, s) = 3C(t, s)R(t, s) + 6C2(t, s)R(t, s)vtvs = f ′′3(C(t, s)) + f ′′4(C(t, s))vtvs

4.3 Energy

Up to now we have been able to characterize the evolution of the correlation and response

function. Now we can apply the information gathered in order to express the energy of the

system using these quantities. First of all we define a normalized energy function and then
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we will compute the terms that will arise separately (but in the same manner):

e(t) =
1

N
〈H〉 =

1

N
〈H3 +H4〉 = e3(t) + e4(t) (10)

H3 =
∑
ijk

Jijkσiσjσk; H4 = vt
∑
ijkl

Jijklσiσjσkσl;

Recall Eq. (3):

σ̇i =
∂H
∂x

+ ηt = −µtσi −
∑
j,k 6=i,0

Ji,j,kσjσk + vt
∑

j,k,l 6=i,0

Ji,j,k,lσjσkσl +Hi (11)

Using the same technique followed by Castellani and Cavagna [21], we can beforehand use

an odd representation of the number 1:

1 := Z =

∫
D[σ]P (σ) =

∫∫
D[σ]D[σ̂]eS(σ,σ̂)

Where:

S(σ, σ̂) = −1

2

∫ ∫
dtdt′σ̂(t)D(t, t′)σ̂(t′) + i

∫
dtσ̂(t)

[
∂tσ+ ∂σH

]
:= −1

2
σ̂Dσ̂+ iσ̂

[
∂tσ+ ∂σH

]
And by using the properties of the (Gaussian) distribution of the noise terms (in this case

for p = 3, 4):

P (Ji1,...,ip) ∼ e−Ji1,...,ip
2/2 Ji1,...,ipe

−Ji1,...,ip
2/2 ∼ − ∂

∂Ji1,...,ip
e−Ji1,...,ip

2/2

We are able to compute both energy terms of Eq. (10)
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First term:

e3(t) =
1

N
〈
∫∫

D[σ]D[σ̂]eS(σ,σ̂)
∑
ijk

Jijkσiσjσk〉 =

= − 1

N
〈
∫∫

D[σ]D[σ̂]eS(σ,σ̂)

∫
dt′
∑
i′

∑
j′k′

Ji′j′k′σ̂i′(t
′)σj′(t

′)σk′(t
′)
∑
ijk

Jijkσi(t)σj(t)σk(t)〉 =

= − 1

N

∫∫
D[σ]D[σ̂]eS(σ,σ̂)

∫
dt′
∑
i′

∑
j′k′

∑
ijk

〈Ji′j′k′Jijk〉σ̂i′(t′)σj′(t′)σk′(t′)σi(t)σj(t)σk(t) =

= − 1

2N

∫
dt′

3!

2N2

∑
i

σ̂i(t
′)σi(t)

∑
j

σj(t
′)σj(t)

∑
k

σk(t
′)σk(t) =

= −3

2

∫
dt′

1

N

∑
i

σ̂i(t
′)σi(t)

1

N

∑
j

σj(t
′)σj(t)

1

N

∑
k

σk(t
′)σk(t) =

= −3

2

∫
dt′R(t, t′)C(t, t′)2 = −

∫
dt′f ′3(Ct,t′)R(t, t′)

Second term:

e4(t) =
1

N

∫∫
D[σ]D[σ̂]eS(σ,σ̂)

∑
ijkl

Jijklσiσjσkσl =

= − 1

N
〈
∫∫

D[σ]D[σ̂]eS(σ,σ̂)

∫
dt′
∑
i′

∑
j′k′l′

vt′Ji′j′k′l′ σ̂i′(t
′)σj′(t

′)σk′(t
′)σl′(t

′)
∑
ijkl

Jijklσi(t)σj(t)σk(t)σl(t)〉 =

= − 1

N

∫∫
D[σ]D[σ̂]eS(σ,σ̂)

∫
dt′vt′

∑
i′

∑
j′k′l′

∑
ijkl

〈Ji′j′k′l′Jijkl〉σ̂i′(t′)σj′(t′)σk′(t′)σl′(t′)σi(t)σj(t)σk(t)σl(t) =

= − 1

3!N

∫
dt′vt′

4!

2N3

∑
i

σ̂i(t
′)σi(t)

∑
j

σj(t
′)σj(t)

∑
k

σk(t
′)σk(t)

∑
l

σl(t
′)σl(t) =

= −6

∫
dt′vt′

1

N

∑
i

σ̂i(t
′)σi(t)

1

N

∑
j

σj(t
′)σj(t)

1

N

∑
k

σk(t
′)σk(t)

1

N

∑
l

σl(t
′)σl(t) =

= −6

∫
dt′vt′R(t, t′)C(t, t′)3 = −

∫
dt′vt′f

′
4(Ct,t′)R(t, t′)

And finally:

e(t) = −
∫ t

0

ds
[
f ′3(Ct,s) + vsf

′
4(Ct,s)

]
Rt,s (12)
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4.4 Discrete Equations

Everything considered, we were able to write down a set of integro-differential equations for

7, 8, 9, 12; to tackle this problem at a numerical level we have to discretize all the functions

we are handling and the calculations we have to perform. For that purpose we are going to

consider the 2-variables function, C and R, as matrices of size N ; similarly µ and the energy

will be discretized as arrays of length N .

All the derivatives will be approximated using the finite difference approximation and the

integrals as left-Riemann sums as shown below:

f(t+ dt) = f(t) + dt · f ′(t)
∫ t

0

f(x)dx = ∆x
N−1∑
i=0

f(xi)

If we let dt = ∆t, the four equations read:

µi = ∆t
i−1∑
s=0

[
MC

i,sRi,s +MR
i,sCi,s

]
+ β[f ′3(Ci,0) + vif

′
4(Ci,0)]Ci,0

Ci+1,j = Ci,j + ∆t
[
− µiCi,j + ∆t

[ j−1∑
s=0

MC
i,sRj,s +

i−1∑
s=0

MR
i,sCj,s

]
+ β[f ′3(Ci,0) + vif

′
4(Ci,0)]Cj,0

]
Ri+1,j = Ri,j + ∆t

[
− µiRi,j + δi,j + ∆t

i−1∑
s=j

MR
i,sRs,j

]
ei = −∆t

i−1∑
s=0

[
f ′3(Ci,s) + vsf

′
4(Ci,s)

]
Ri,s − β

[
f ′3(Ci,0) + vif

′
4(Ci,0)

]
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4.5 Pseudo-code

Upon initializing all the variables to a 0-value, we can summarize the algorithm we have

used with the following pseudo-code. The results have been shown and described in Section

3.

Algorithm 1: Gradient Descent

Initialization:
1 C(0, 0) = 1
2 µ(0) = compute.µ(0)

Loops:
3 for i = 1 to N − 1 do

foreach j ∈ {0, 1, . . . , i} do
R(i, j) = R(i− 1, j) + dt · ∂iR(i− 1, j)
C(i, j) = C(i− 1, j) + dt · ∂iC(i− 1, j)
C(j, i) = C(i, j)

µ(i) = compute.µ(i)

4 for i = 0 to N − 1 do
energy(i) = compute.energy(i)

5 Optimization of gradient descent dynamics in the

mixed p-spin

5.1 Lagrangian

What we would like to do now is to optimize the gradient descent by changing the shape of

the function v(t) in such a way that at the end of our simulation we reach a lower energy

value compared to the standard algorithm. To do so, we add a constraint, and thus a cost,

to the function v compared to its original (constant) value of 1.

Our goal can be summarized as follows:

find vt = argmin
vt

[
e(t∗) +

∆

2

∫ t∗

0

dt (vt − 1)2
]∣∣∣
Ċ,Ṙ,µ

Where t∗ is the final time that we want to reach in our simulation.

To complete this task we have to write down the complete Lagrangian of the dynamical

evolution, were we have to add 3 more variables: PC , PR and λ; these 3 are variables
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associated to the ones we have previously used in the forward-only protocol: C, R and µ.

L =
∆

2

∫ t∗

0

dt (vt − 1)2 −
∫ t∗

0

dt
[
f ′3(Ct∗,s) + vsf

′
4(Ct∗,s)

]
Rt∗,s − β

[
f3(Ct∗,0) + f4(Ct∗,0)

]
+

+

∫ t∗

0

dt

∫ t

0

dt′PC
t,t′

[
∂tCt,t′ + µtCt,t′ −

∫ t

0

dsMR
t,sCt′,s −

∫ t′

0

dsMC
t,sRt′,s

]
− βf̂ ′(Ct,0)Ct′,0

]
+

+

∫ t∗

0

dt

∫ t

0

dt′PR
t,t′

[
∂tRt,t′ + µtRt,t′ − δ(t− t′)−

∫ t

t′
dsMC

t,sRs,t′

]
+

+

∫ t∗

0

dtλt

[
µt −

∫ t

0

ds(MC
t,sRt,s +MR

t,sCt,s)− βf̂ ′(Ct,0)Ct,0

]
(13)

To have a simpler notation, we have defined: f̂(Ci,j) = f3(Ci,j) + vif4(Ci,j) and the partial

derivative is made with respect to the argument of f̂ : Ci,j.

To minimize the Lagrangian, and therefore the energy reached at the end of the simulation,

L has to satisfy the following conditions:

δL
δPC

i,j

= 0
δL
δPR

i,j

= 0
δL
δλi

= 0

δL
δCi,j

= 0
δL
δRi,j

= 0
δL
δµi

= 0
δL
δvi

= 0

The first three equations (the ones in the upper part) can be ignored as they would simply

give us back the original equations obtained in the previous sections; those we will focus on

are the ones on the bottom part. First of all, we remind that Ci,i = 1, Ri,i = 0, thus there

is no need to perform the functional derivatives over these parameter (being constants in

fact). Moreover the two-variable function C is symmetric if we swap the arguments and the

function Ri,j admits non-zero values only for i > j. This simplifies greatly our analysis given

that we can consider only the case where i > ji > ji > j and get information for all possible couples

(i, j)

5.2 Final Equations

The direct computation is simple but lengthy and for this reason these has been performed

directly in the Appendix A; here we present the final results.
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5.2.1 Initial conditions

Initial condition for PC :

PC
t∗−1,i =

[
f ′′3 (Ct∗,i) + vif

′′
4 (Ct∗,i)

]
Rt∗,i + β

[
f ′3(Ct∗,0) + f ′4(Ct∗,0)

]
δi,0/∆t

Initial condition for PR:

PR
t∗−1,i =

[
f ′3(Ct∗,i) + vif

′
4(Ct∗,i)

]
5.2.2 Backward Equations

Equation for λ:

λi = −∆t
i∑

t′=0

[
PC
i,t′Ci,t′ + PR

i,t′Ri,t′

]
Evolution for PR:

PR
i−1,j = PR

i,j −∆t

[
PR
i,jµi −∆t

i∑
t′=j+1

PC
i,t′(∂RM

R
i,j)Ct′,j −∆t

j∑
t′=0

PC
i,t′(∂RM

R
i,j)Cj,t′+

−∆t
t∗−1∑
t=i

PC
t,iM

C
t,j −∆t

j∑
t′=0

PR
i,t′(∂RM

R
i,j)Rj,t′ −∆t

t∗−1∑
t=i+1

PR
t,jM

R
t,i − λi

[
MC

i,j + (∂RM
R
i,j)Ci,j

]]

Evolution for PC :

PC
i−1,j = PC

i,j −∆t

[
PC
i,jµi −∆t

i∑
t′=j+1

PC
i,t′(∂CM

R
i,j)Ct′,j −∆t

t∗−1∑
t=i

PC
t,iM

R
t,j+

−∆t

j∑
t′=0

PC
i,t′(∂CM

R
i,j)Cj,t′ −∆t

t∗−1∑
t=i+1

PC
t,jM

R
t,i −∆t

i∑
t′=j+1

PC
i,t′(∂CM

C
i,j)Rt′,j+

− βδj,0
[ i∑
t′=0

PC
i,t′ f̂

′′(Ci,0)Ct′,0 +
t∗−1∑
t=i

PC
t,if̂
′(Ct,0) + λi

(
f̂ ′′(Ci,0)Ci,0 + f̂ ′(Ci,0)

)
/∆t

]
+

−∆t

j∑
t′=0

PR
i,t′(∂CM

R
i,j)Rj,t′ − λi

[
(∂CM

C
i,j)Ri,j + (∂CM

R
i,j)Ci,j +MR

i,j

]]
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Equation for v:

∆(vi − 1) = f ′4(Ct∗,i)Rt∗,i + β

i∑
t′=0

PC
i,t′f

′
4(Ci,0)Ct′,0 + βλif

′
4(Ci,0)Ci,0+

+ ∆t2
t∗−1∑
t=i+1

t∑
t′=i+1

PC
t,t′f

′′
4 (Ct,i)Rt,iCt′,ivt + ∆t2

i∑
t′=0

t′−1∑
s=0

PC
i,t′f

′′
4 (Ci,s)Ri,sCt′,svs+

+ ∆t2
t∗−1∑
t=i+1

i∑
t′=0

PC
t,t′f

′′
4 (Ct,i)Rt,iCi,t′vt + ∆t2

i∑
t′=0

i−1∑
s=t′

PC
i,t′f

′′
4 (Ci,s)Ri,sCs,t′vs+

+ ∆t2
t∗−1∑
t=i+1

t∑
t′=i+1

PC
t,t′f

′
4(Ct,i)Rt′,ivt + ∆t2

i∑
t′=0

t′−1∑
s=0

PC
t,t′f

′
4(Ci,s)Rt′,svs+

+ ∆t2
t∗−1∑
t=i+1

i∑
t′=0

PR
t,t′f

′′
4 (Ct,i)Rt,iRi,t′vt + ∆t2

i∑
t′=0

i−1∑
s=t′

PR
i,t′f

′′
4 (Ci,s)Ri,sRs,t′vs+

+ ∆t
t∗−1∑
t=i+1

λtf
′
4(Ct,i)Rt,ivt + ∆tλi

i−1∑
s=0

f ′4(Ci,s)Ri,svs+

+ ∆t
t∗−1∑
t=i+1

λtf
′′
4 (Ct,i)Rt,iCt,ivt + ∆tλi

i−1∑
s=0

f ′′4 (Ci,s)Ri,sCi,svs

6 Numerical implementation

The previous set of coupled equations allows us to compute the new functions PC , PR and µ

and thereafter we can use that information to estimate the function vt. To do so we initialize

accordingly the different variables at the step t = t∗, and then proceed backwardly toward

t = 0. We have to notice thought that the new vt we are able to compute is generated

using the initial vt, which in general will be different; for this reason we have to iterate the

algorithm till the initial v and the final v are the same, up to an error. To quantify this error,

we impose that the Frobenius norm of the difference between these two vectors v has to be

smaller than a given value ε. Moreover, In order to avoid oscillations and a poor numerical

behavior, at each iteration we update the function using a learning rate α that limits the

update.

The algorithm can be simplified in these 4 steps (which are summarized in Algorithm 3):

• Compute the functions µ, C and R using the v(t) found in the previous iteration.

• Propose a better vnew(t) using the updated λ, PC and PR.
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• Check if the v(t) and vnew(t) are (almost) the same:
√

1
t∗

∫ t∗
0
dt(v(t)− vnew(t))2 < ε

• Update v(t) = v(t) · (1− α) + vnew(t) · α.

Algorithm 2: Backward Algorithm

Initialization:
1 PC(t∗ − 1, :) = initialize.PC(t∗)
2 PR(t∗ − 1, :) = initialize.PR(t∗)
3 λ(t∗) = compute.λ(t∗)

Loops:
4 for i = t∗ − 1 to 0 do

λ(i) = compute.λ(i)
foreach j do

PC(i− 1, j) = PC(i, j)− dt · (∂iPC(i, j))
PR(i− 1, j) = PR(i, j)− dt · (∂iPR(i, j))

5 for i = 0 to N − 1 do
v(i) = compute.v(i)

Algorithm 3: Optimization Algorithm

1 v = 1
2 while Norm > ε do

compute(µ,C,R) using v
compute(λ, PC , PR) using v
v2 = find.new.v(λ, PC , PR)

Norm = sqrt( 1
t∗

∫ t∗
0
dt[v(t)− v2(t)]2)

vnew = v · (1− α) + v2 · α
v = vnew

3 compute(µ,C,R) with v = vopt

4 for i = 0 to N − 1 do
optimal energy(i) = compute.energy(µ,C,R, v = vopt, i)
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7 Numerical results

The sets of equations have been numerically simulated using the algorithms depicted pre-

viously. To have a good enough understanding of the model we considered different pos-

sible values of t∗ and for each one, 3 different lengths of the grid have been chosen (N =

500, 1000, 2000). This ensures that the simulation is stable when using different time-steps

and that the results are consistent. In our case, we also decided to set ε = 10−9 and a

learning rate α = 0.02, the last parameter ensures that our system doesn’t slip easily into

dangerous oscillatory cycle. Obviously, the easiest way to reach a lower energy at the end

of the simulation is to decrease the value of ∆; in this way we give little constraint to the

function v(t) but at the same time too much freedom can easily lead to bad outcomes and

numerical errors.

Interestingly, for several combinations of the parameters, the function v(t) has always a

similar shape: its value is greater than 1 for most of the time, starting from t = 0, but then

it rapidly falls below 1, reaching even negative values as we get closer and closer to t = t∗.

This is evident from the Figures 4, 5, in both images, in the central part (vertically), it is

shown how the Frobenius Norm changes with respect to the iterative step. Being the vertical

axis in log-scale, we can see that the algorithm is able to reach a considerably low precision

ε quite fast. In the bottom part, where several shapes of v(t) are displayed (one every 20

iteration, going from red at iteration 0 to blue in the last iteration) we reach a “controlled”

shape in few dozens of iterations; this means that we are able to hit a satisfying result even

without choosing such a low precision ε. When it comes to the behavior of the energy, we

see that in Figures 4, when we compare the optimized and not-optimized, we are able to get

a size-able gain: EGD(t∗)− Eopt(t∗) ' 0.039. On the other hand in the second plot, we can

notice that around t∗ = 3.9 the aforementioned change in the derivative of v(t) is huge; this

leads to an unwelcome result and a simulation that has to be discarded. This unfortunate

feature has been noticed in the cases where the e(t) is flatter (we remind that the time axis

is in log-scale), which means that the algorithm can become uncontrolled for choice of big

t∗ or β.
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Figure 4: Simulation for: t*=1, ∆=0.2, α=0.02, dt=[0.002, 0.001, 0.0005], β/βMCT = 0.
Top plot: evolution of the energy using the standard gradient descent vs the optimized one,
we have considered 3 different values of N and thus we have 6 different curves that collapse
into two.
Central plots: evolution of the Frobenius norm is shown for the different N values.
Bottom plots: evolution of the function v(t) (every 20 steps), where the last step is blue and
its colour ’linearly’ transforms to red one has we approach the initial iteration.
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Figure 5: Simulation for: t*=4, ∆=0.5, α=0.02, dt=[0.08, 0.004, 0.002], β/βMCT = 0.
Top plot: evolution of the energy using the standard gradient descent vs the optimized one,
we have considered 3 different values of N and thus we have 6 different curves that collapse
into two.
Central plots: evolution of the Frobenius norm is shown for the different N values.
Bottom plots: evolution of the function v(t) (every 20 steps), where the last step is blue and
its colour ’linearly’ transforms to red one has we approach the initial iteration.
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Figure 6: Simulation for: t*=1, ∆=[0.1 to 0.2], α=0.02, dt=[0.002, 0.001, 0.0005,], β/βMCT

= 0.
Note that here ∆ increases linearly from 0.1 to 0.2 over the time [0, t*]
Top plot: evolution of the energy using the standard gradient descent vs the optimized one,
we have considered 3 different values of N and thus we have 6 different curves that collapse
into two.
Central plots: evolution of the Frobenius norm is shown for the different N values.
Bottom plots: evolution of the function v(t) (every 20 steps), where the last step is blue and
its colour ’linearly’ transforms to red one has we approach the initial iteration.
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Figure 7: Simulation for: t*=1, ∆=[0.2 to 0.1], α=0.02, dt=[0.002, 0.001, 0.0005,], β/βMCT

= 0.
Note that here ∆ decreases linearly from 0.2 to 0.1 over the time [0, t*]
Top plot: evolution of the energy using the standard gradient descent vs the optimized one,
we have considered 3 different values of N and thus we have 6 different curves that collapse
into two.
Central plots: evolution of the Frobenius norm is shown for the different N values.
Bottom plots: evolution of the function v(t) (every 20 steps), where the last step is blue and
its colour transforms ”linearly” to red one has we approach the initial iteration.
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As we have seen from the previous Figures 4, 5 for low values of the time we always have

the same shape of the function v(t). On the other hand, for value of the time close to t∗,

v(t) changes more sharply and abruptly. This can lead to instability in our simulation. For

that reason we will constrain the freedom of the v(t) function in a different way over time:

for t close to 0 it will have more freedom (smaller ∆) and for t close to t* it will have less

freedom (bigger ∆). We do so by increasing or decreasing ∆ linearly over the time window.

This last analysis is depicted in Figure 6 and 7 which has to be compared to the simplified

case in Figures 4. In these new figures we tried to impose a linearly (or decreasing) ∆. Both

simulation reached convergence, but the second one appears to be closer to instability. This

is consistent with the fact that the shape of v(t) at high times, where ∆ is looser, leads to

a sharper change. On the other hand, the first image is way more stable, and in the end

reaches a gain of the order EGD(t∗)−Eopt(t∗) ' 0.047, greater than the 0.039 we reached in

the simplified case. For example, if we look at figure Figures 7, we notice that, compared

to the plots we had for ∆ = 0.05 the gain is greatly improved and the numerical stability

is preserved. At the same time comparing the first one to Figure 7, we notice that our

assumption was correct: constraining the final part of v(t) is more efficient compared to the

other way around.

8 Conclusions and Perspectives

The method that we have developed on mixed p-spin glasses has allowed us to improve the

performance of a simple gradient descent, although in limited situation. When the energy

descent is steep, the algorithm shows to improve the GD quite a bit and we are able to reach

lower energies than before. As the energy function reaches a flatter curvature, the algorithm

shows some difficulties, particularly due to the shape of the function v(t) that changes too

rapidly in such a delicate numerical simulation. This is just a preliminary research in a

context that has not been thoroughly studied and it can surely serve as a foundation for

future studies. Even though we are not able to see what happens in the long time limit, we

expect that further improvements on a similar fashion would allow us to cross the threshold

Eth. In particular, there are different options that could be followed to improve such an

algorithm. One would be to change the cost of adding the function v(t) with respect to

the initial constant value of 1; in our simulations we have used a parabolic shape centered

around 1 but there are several families of functions that could be suitable for our needs.

Moreover it would be interesting to look for an asymptotic solution to the problem, where

the final time t∗ goes to infinity.

This review has been written after completing a stage at the “Institut de Physique Theo-

rique” funded by CEA (Commissariat à l’énergie atomique et aux énergies alternatives).
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A Appendix A: equations for µ, PC, PR and v

A.1 Discrete Lagrangian

Our optimization problem presents two different sets of equations that we have to solve,

one is associated to µ, C and R which allows us to compute the energy evolution e(t) of

our descent, and the other one is associated to λ, PC and PR which lets us compute the

shape of the function v(t). The first set is characterized by its forward evolution, from an

initial time t = 0 we reach a given time t = t∗ > 0, and its integration is relatively easy as

it was discussed in Section 4.4. When we consider the second one, we expect that it will

follow a backward-protocol, going from t = t∗ to t = 0; this discrepancy has to be taken into

consideration when integrating the equations. As a matter of facts, when we want to use a

forward Euler method, we ignore the right-most point in our grid. On the other hand, if we

want to use the same method in the reverse-protocol, we will ignore the left-most point in our

grid, and we would not be able to conciliate the two sets of equations. For this reason, the

best approach is to substitute all the integrals and derivatives in the Lagrangian (13) directly

with their discrete counterpart and to perform the functional derivatives subsequently, and

not the other way around. In this way we are sure that we won’t have problems with the

extremal points of our grids and therefore the initial conditions of our differential equations.

Everything considered the new (discretized) Lagrangian can be written as follows:

L = ∆t
∆

2

t∗−1∑
t=0

(vt − 1)2

︸ ︷︷ ︸
v

−∆t
t∗−1∑
t=0

[
f ′3(Ct∗,t) + vtf

′
4(Ct∗,t)

]
Rt∗,t − β

[
f3(Ct∗,0) + f4(Ct∗,0)

]
︸ ︷︷ ︸

Energy

+

+
t∗−1∑
t=0

t∑
t′=0

∆tPC
t,t′

[
Ct+1,t′ − Ct,t′︸ ︷︷ ︸

α

+∆t µtCt,t′︸ ︷︷ ︸
A

−∆t2
t−1∑
s=0

MR
t,sCt′,s︸ ︷︷ ︸
1

−∆t2
t′−1∑
s=0

MC
t,sRt′,s︸ ︷︷ ︸
2

−∆t βf̂ ′(Ct,0)Ct′,0︸ ︷︷ ︸
3

]
+

+
t∗−1∑
t=0

t∑
t′=0

∆tPR
t,t′

[
Rt+1,t′ −Rt,t′︸ ︷︷ ︸

β

−δt,t′ + ∆t µtRt,t′︸ ︷︷ ︸
B

−∆t2
t−1∑
s=t′

MR
t,sRt′,s︸ ︷︷ ︸
4

]
+

+
t∗−1∑
t=0

∆tλt

[
µt −∆t

t−1∑
s=0

(MC
t,sRt,s︸ ︷︷ ︸
5

+MR
t,sCt,s)︸ ︷︷ ︸

6

− βf̂ ′(Ct,0)Ct,0︸ ︷︷ ︸
7

]
(14)

Where the different labels will be used to allow a simple follow-up of the calculations of the

single terms.
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A.2 Discrete equation for µi

δL
δµi

= 0 =⇒ λi = −∆t
i∑

t′=0

[
PC
i,t′Ci,t′ + PR

i,t′Ri,t′

]

A.3 Discrete equation for PC
i,j

A.3.1 Boundary term

The first thing we have to do is to consider what happens at the boundaries of our system,

therefore we perform the functional derivative only with respect to δCt∗,i. We consider the

contribution of all the different parts we have in our Lagrangian and then combine them.

α contribution:

δ

δCt∗,i

t∗−1∑
t=0

t∑
t′=0

PC
t,t′

[
Ct+1,t′ − Ct,t′

]
=

t∗−1∑
t=0

t∑
t′=0

PC
t,t′

[
δt∗,t+1δi,t′ − δt∗,tδi,t′

]
=

=
t∗−1∑
t=i

PC
t,i

[
δt∗,t+1 − δt∗,t

]
= PC

t∗−1,i

Energy contribution:

δ

δCt∗,i
∆t

t∗−1∑
t=0

[
f ′3(Ct∗,t) + vtf

′
4(Ct∗,t)

]
Rt∗,t +

δ

δCt∗,i
β
[
f3(Ct∗,0) + f4(Ct∗,0)

]
=

= ∆t
[
f ′′3 (Ct∗,i) + vif

′′
4 (Ct∗,i)

]
Rt∗,i + β

[
f ′3(Ct∗,0) + f ′4(Ct∗,0)

]
δi,0

Summing the previous terms we are able to write down the initial condition for PC :

PC
t∗−1,i =

[
f ′′3 (Ct∗,i) + vif

′′
4 (Ct∗,i)

]
Rt∗,i + β

[
f ′3(Ct∗,0) + f ′4(Ct∗,0)

]
δi,0/∆t

A.3.2 Evolution

Now that we have found the initial condition, we have to compute the integro-differential

equation governing the evolution of this Lagrange multiplier.

Term A:

δ

δCi,j

t∗−1∑
t=0

t∑
t′=0

PC
t,t′µtCt,t′ = PC

i,jµi
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Term α:

δ

δCi,j

t∗−1∑
t=0

t∑
t′=0

PC
t,t′

[
Ct+1,t′ − Ct,t′

]
=

t∗−1∑
t=0

t∑
t′=0

PC
t,t′

[
δi,t+1δj,t′ − δi,tδj,t′

]
=

=
t∗−1∑
t=j

PC
t,t′

[
δi,t+1 − δi,t

]
= PC

i−1,j − PC
i,j

The term labeled as (1) has to be treated a little bit differently. We want to consider

functional derivatives with respect to δCi,j with i > j. For that reason we have to split the

summation over s into two different summation, the first one (1A) where the condition is

valid and the other one (1B) where it isn’t valid.. In the former we apply the symmetric

property of C and exchange the order of the indices to let us handle the term.

Term 1A:

δ

δCi,j

t∗−1∑
t=0

t∑
t′=0

PC
t,t′

t′−1∑
s=0

MR
t,sCt′,s =

t∗−1∑
t=0

t∑
t′=0

PC
t,t′

t′−1∑
s=0

[
(∂CM

R
t,s)Ct′,sδi,tδj,s +MR

t,sδi,t′δj,s

]
=

=
t∗−1∑
t=j+1

t∑
t′=j+1

PC
t,t′

[
(∂CM

R
t,j)Ct′,jδi,t +MR

t,jδi,t′
]

==
i∑

t′=j+1

PC
i,t′(∂CM

R
i,j)Ct′,j +

t∗−1∑
t=i

PC
t,iM

R
t,j

Term 1B:

δ

δCi,j

t∗−1∑
t=0

t∑
t′=0

PC
t,t′

t−1∑
s=t′

MR
t,sCs,t′ =

=
t∗−1∑
t=0

t∑
t′=0

PC
t,t′

t−1∑
s=t′

[
(∂CM

R
t,s)Cs,t′δi,tδj,s +MR

t,sδi,sδj,t′
]

=

=
i∑

t′=0

PC
i,t′

i−1∑
s=t′

(∂CM
R
i,s)Cs,t′δj,s +

t∗−1∑
t=i+1

t∑
t′=0

PC
t,t′M

R
t,iδj,t′ =

=

j∑
t′=0

PC
i,t′(∂CM

R
i,j)Cj,t′ +

t∗−1∑
t=i+1

PC
t,jM

R
t,i
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Term 2:

δ

δCi,j

t∗−1∑
t=0

t∑
t′=0

PC
t,t′

t′−1∑
s=0

MC
t,sRt′,s =

t∗−1∑
t=0

t∑
t′=0

PC
t,t′

t′−1∑
s=0

(∂CM
C
t,s)Rt′,sδi,tδj,s =

=
i∑

t′=0

PC
i,t′

t′−1∑
s=0

(∂CM
C
i,s)Rt′,sδj,s =

i∑
t′=j+1

PC
i,t′(∂CM

C
i,j)Rt′,j

Term 3:

δ

δCi,j
β

t∗−1∑
t=0

t∑
t′=0

PC
t,t′ f̂

′(Ct,0)Ct′,0 =

= βδj,0

[ t∗−1∑
t=0

t∑
t′=0

PC
t,t′ f̂

′′(Ct,0)δi,tCt′,0 +
t∗−1∑
t=0

t∑
t′=0

PC
t,t′ f̂

′(Ct,0)δi,t′
]

=

= βδj,0

[ i∑
t′=0

PC
i,t′ f̂

′′(Ci,0)Ct′,0 +
t∗−1∑
t=i

PC
t,if̂
′(Ct,0)

]
Term 4

δ

δCi,j

t∗−1∑
t=0

t∑
t′=0

PR
t,t′

t−1∑
s=t′

MR
t,sRt′,s =

t∗−1∑
t=0

t∑
t′=0

PR
t,t′

t−1∑
s=t′

(∂CM
R
t,s)Rs,t′δi,tδj,s =

=
i∑

t′=0

PR
i,t′

i−1∑
s=t′

(∂CM
R
i,s)Rs,t′δj,s =

j∑
t′=0

PR
i,t′(∂CM

R
i,j)Rj,t′

Term 5-6:

δ

δCi,j

t∗−1∑
t=0

λt

t−1∑
s=0

(MC
t,sRt,s +MR

t,sCt,s) =

=
t∗−1∑
t=0

λt

t−1∑
s=0

[
(∂CM

C
t,s)Rt,s + (∂CM

R
t,s)Ct,s +MR

t,s

]
δi,tδj,s =

= λi

[
(∂CM

C
i,j)Ri,j + (∂CM

R
i,j)Ci,j +MR

i,j

]
Term 7:

δ

δCi,j
β

t∗−1∑
t=0

λtf̂ ′(Ct,0)Ct,0 = βλiδj,0

[
f̂ ′′(Ci,0)Ci,0 + f̂ ′(Ci,0)

]
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A.4 Discrete equation for PR
i,j

For PR
i,j, the same considerations as PC

i,j apply.

A.4.1 Boundary Term

β contribution:

δ

δRt∗,i

t∗−1∑
t=0

t∑
t′=0

PR
t,t′

[
Rt+1,t′ −Rt,t′

]
=

t∗−1∑
t=0

t∑
t′=0

PR
t,t′

[
δt∗,t+1δi,t′ − δt∗,tδi,t′

]
=

=
t∗−1∑
t=i

PR
t,i

[
δt∗,t+1 − δt∗,t

]
= PR

t∗−1,i

Energy contribution:

δ

δRt∗,i

t∗−1∑
t=0

[
f ′3(Ct∗,t) + vtf

′
4(Ct∗,t)

]
Rt∗,t =

[
f ′3(Ct∗,i) + vif

′
4(Ct∗,i)

]
Summing the previous two equations we are able to write down the initial condition for PR:

PR
t∗−1,i =

[
f ′3(Ct∗,i) + vif

′
4(Ct∗,i)

]
A.4.2 Evolution

Term B:

δ

δRi,j

t∗−1∑
t=0

t∑
t′=0

PR
t,t′µtRt,t′ = PR

i,jµi

Term β:

δ

δRi,j

t∗−1∑
t=0

t∑
t′=0

PR
t,t′

[
Rt+1,t′ −Rt,t′

]
=

t∗−1∑
t=0

t∑
t′=0

PR
t,t′

[
δi,t+1δj,t′ − δi,tδj,t′

]
=

=
t∗−1∑
t=j

PR
t,j

[
δi,t+1 − δi,t

]
= PR

i−1,j − PR
i,j
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Term 1A:

δ

δRi,j

t∗−1∑
t=0

t∑
t′=0

PC
t,t′

t′−1∑
s=0

MR
t,sCt′,s =

t∗−1∑
t=0

t∑
t′=0

PC
t,t′

t′−1∑
s=0

[
(∂RM

R
i,j)Ct′,sδi,tδj,s

]
=

=
i∑

t′=0

PC
i,t′

t′−1∑
s=0

[
(∂RM

R
i,s)Ct′,sδj,s

]
=

i∑
t′=j+1

PC
i,t′(∂RM

R
i,j)Ct′,j

Term 1B:

δ

δRi,j

t∗−1∑
t=0

t∑
t′=0

PC
t,t′

t∗−1∑
s=t′

MR
t,sCs,t′ =

t∗−1∑
t=0

t∑
t′=0

PC
t,t′

t∗−1∑
s=t′

[
(∂RM

R
i,j)Cs,t′δi,tδj,s

]
=

=
i∑

t′=0

PC
i,t′

t∗−1∑
s=t′

[
(∂RM

R
i,s)Cs,t′δj,s

]
=

j∑
t′=0

PC
i,t′(∂RM

R
i,j)Cj,t′

Term 2:

δ

δRi,j

t∗−1∑
t=0

t∑
t′=0

PC
t,t′

t′−1∑
s=0

MC
t,sRt′,s =

t∗−1∑
t=0

t∑
t′=0

PC
t,t′

t′−1∑
s=0

MC
t,sδi,t′δj,s =

=
t∗−1∑
t=i

PC
t,i

i−1∑
s=0

MC
t,sδj,s =

t∗−1∑
t=i

PC
t,iM

C
t,j

Term 4:

δ

δRi,j

t∗−1∑
t=0

t∑
t′=0

PR
t,t′

t−1∑
s=t′

MR
t,sRs,t′ =

=
t∗−1∑
t=0

t∑
t′=0

PR
t,t′

t−1∑
s=t′

[
(∂RM

R
t,s)Rs,t′δi,tδj,s +MR

t,sδi,sδj,t′
]

=

=
i∑

t′=0

PR
i,t′

i−1∑
s=t′

(∂RM
R
i,s)Rs,t′δj,s +

t∗−1∑
t=j

PR
t,j

t−1∑
s=j

MR
t,sδi,s =

=

j∑
t′=0

PR
i,t′(∂RM

R
i,j)Rj,t′ +

t∗−1∑
t=i+1

PR
t,jM

R
t,i
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Term 5-6:

δ

δRi,j

t∗−1∑
t=0

λt

[ t−1∑
s=0

(MC
t,sRt,s +MR

t,sCt,s)
]

=
t∗−1∑
t=0

λt

t−1∑
s=0

[
MC

ts + (∂RM
R
t,s)Ct,s

]
δi,tδj,s =

= λi

[
MC

i,j + (∂RM
R
i,j)Ci,j

]
A.5 Discrete equation for vi

Term v:

δ

δvi

∆

2

t∗−1∑
t=0

(vt − 1)2 = ∆(vi − 1)

Term Energy:

δ

δvi

t∗−1∑
t=0

(f ′3(Ct∗,t) + vtf
′
4(Ct∗,t))Rt∗,t =

t∗−1∑
t=0

f ′4(Ct∗,t)Rt∗,tδi,t = f ′4(Ct∗,i)Rt∗,i

Term 1A:

δ

δvi

t∗−1∑
t=0

t∑
t′=0

PC
t,t′

t′−1∑
s=0

MR
t,sCt′,s =

=
δ

δvi

t∗−1∑
t=0

t∑
t′=0

PC
t,t′

t′−1∑
s=0

[
f ′′4 (Ct,s)vtvsRt,s

]
Ct′,s =

=
t∗−1∑
t=0

t∑
t′=0

PC
t,t′

t′−1∑
s=0

f ′′4 (Ct,s)Rt,sCt′,s

[
vtδi,s + vsδi,t

]
=

=
t∗−1∑
t=i+1

t∑
t′=i+1

PC
t,t′f

′′
4 (Ct,i)Rt,iCt′,ivt +

i∑
t′=0

t′−1∑
s=0

PC
i,t′f

′′
4 (Ci,s)Ri,sCt′,svs
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Term 1B:

δ

δvi

t∗−1∑
t=0

t∑
t′=0

PC
t,t′

t−1∑
s=t′

MR
t,sCs,t′ =

=
δ

δvi

t∗−1∑
t=0

t∑
t′=0

PC
t,t′

t−1∑
s=t′

[
f ′′4 (Ct,s)vtvsRt,s

]
Cs,t′ =

=
t∗−1∑
t=0

t∑
t′=0

PC
t,t′

t−1∑
s=t′

f ′′4 (Ct,s)Rt,sCs,t′
[
vtδi,s + vsδi,t

]
=

t∗−1∑
t=i+1

i∑
t′=0

PC
t,t′f

′′
4 (Ct,i)Rt,iCi,t′vt +

i∑
t′=0

i−1∑
s=t′

PC
i,t′f

′′
4 (Ci,s)Ri,sCs,t′vs

Term 2:

δ

δvi

t∗−1∑
t=0

t∑
t′=0

PC
t,t′

t′−1∑
s=0

[
f ′4(Ct,s)vtvs

]
Rt′,s =

=
δ

δvi

t∗−1∑
t=0

t∑
t′=0

PC
t,t′

t′−1∑
s=0

[
f ′′4 (Ct,s)vtvsRt,s

]
Cs,t′ =

=
t∗−1∑
t=0

t∑
t′=0

PC
t,t′

t′−1∑
s=0

f ′4(Ct,s)Rt′,s

[
vtδi,s + vsδi,t

]
=

=
t∗−1∑
t=i+1

t∑
t′=i+1

PC
t,t′f

′
4(Ct,i)Rt′,ivt +

i∑
t′=0

t′−1∑
s=0

PC
i,t′f

′
4(Ci,s)Rt′,svs

Term 3:

δ

δvi
β
t∗−1∑
t=0

t∑
t′=0

PC
t,t′ f̂

′(Ct,0)Ct′,0 = β
t∗−1∑
t=0

t∑
t′=0

PC
t,t′f

′
4(Ct,0)Ct′,0δi,t = β

i∑
t′=0

PC
i,t′f

′
4(Ci,0)Ct′,0
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Term 4:

δ

δvi

t∗∑
t=0

t∑
t′=0

PR
t,t′

t−1∑
s=t′

MR
t,sRs,t′ =

=
δ

δvi

t∗∑
t=0

t∑
t′=0

PR
t,t′

t−1∑
s=t′

[
f ′′4 (Ct,s)vtvsRt,s

]
Rs,t′ =

=
t∗∑
t=0

t∑
t′=0

PR
t,t′

t−1∑
s=t′

f ′′4 (Ct,s)Rt,sRs,t′

[
vtδi,s + vsδi,t

]
=

=
t∗−1∑
t=i+1

i∑
t′=0

PR
t,t′f

′′
4 (Ct,i)Rt,iRi,t′vt +

i∑
t′=0

i−1∑
s=t′

PR
i,t′f

′′
4 (Ci,s)Ri,sRs,t′vs

Term 5:

δ

δvi

t∗−1∑
t=0

λt

t−1∑
s=0

MC
t,sRt,s =

δ

δvi

t∗−1∑
t=0

λt

t−1∑
s=0

f ′4(Ct,s)vtvsRt,s =

=
t∗−1∑
t=i+1

λtf
′
4(Ct,i)Rt,ivt + λi

i−1∑
s=0

f ′4(Ci,s)Ri,svs

Term 6:

δ

δvi

t∗−1∑
t=0

λt

t−1∑
s=0

MR
t,sCt,s =

δ

δvi

t∗−1∑
t=0

λt

t−1∑
s=0

f ′′4 (Ct,s)vtvsRt,sCt,s =

=
t∗−1∑
t=0

λt

t−1∑
s=0

f ′′4 (Ct,s)Rt,sCt,s

[
vtδi,s + vsδi,t

]
=

=
t∗−1∑
t=i+1

λtf
′′
4 (Ct,i)Rt,iCt,ivt + λi

i−1∑
s=0

f ′′4 (Ci,s)Ri,sCi,svs

Term 7:

δ

δvi
β
t∗−1∑
t=0

λtf̂ ′(Ct,0)Ct,0 = β
t∗−1∑
t=0

λtf
′
4(Ct,0)Ct,0δi,t = βλif

′
4(Ci,0)Ci,0
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