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Abstract

Modern society is going through a period of profound stagnation, obsessed with the
necessity of controlling and removing any potential risk; we live in a “zero-risk soci-
ety”. The present work aims to model and describe a phase transition at the social
level from a risk-seeking environment to a risk-averse social mindset. Considering
an investment scenario where financial capitals of agents evolve through an expo-
nential Ornstein-Uhlenbeck stochastic process, we detailed the cyclic consequences
of investment decisions in risk avoidance spreading and, vice versa, the opinions’
reverberation on investments. Monte Carlo evolution of an appropriate constrained
time-dependent random field XY model illustrates the dynamics of individual risk
propensities. The former is affected by the simultaneous influence of idiosyncratic
risk inclinations, weighted social interactions at the local and global scale and mass
media impact, based on opportunistic management by extremes. The introduction
of suitable control parameters to trace the evolution of human society from early
1900 to present and future days revealed the model’s capability to predict the hy-
pothesized social phase transition.
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Chapter 1

Introduction

1.1 Trapped in the zero-risk society

The modern world society is going through a period of demographic, economic, tech-
nological, institutional, cultural, and intellectual stagnation [1]. We live in a “zero-
risk society”, a culture obsessed with the necessity of controlling and removing any
risk. While the technological and sanitary improvements contribute to developing
the wellness of our lives, bold risk-taking remains a fundamental constituent of a
resilient civilisation. Indeed we are diving into a definitely out of equilibrium sys-
tem where extreme events referred to as dragon kings [2] with exogenous nature like
supervolcano eruptions, earthquakes or pandemics together with endogenous ones
like market bubbles or terrorist uprisings constantly threaten the stillness of human
existence. These know unknowns and many other unknown unknowns require a
progressive, explorative avantgarde society to be faced. Dazzled by the apparent
technological innovations of modern times, the nowadays citizens do not realise how
they lack the massive and revolutionary impact of previous centuries discoveries.
Moreover, the modern wealthy and aged civilisation reveals decadent lassitude re-
garding intellectual, cultural and social growth. The are five deep reasons to which
the stagnation of human society has to be attributed:

1. Risk aversion as a consequence of increasing wealth and aging (welfare im-
provement).

2. Herding and imitation through social media.

3. Management shaped by extremes and overreaction.

4. Increasing inequality with a growing proportion of citizens that have no or less
access to opportunity.

5. Technology creating an ‘illusion of control’.
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CHAPTER 1. INTRODUCTION

The spread risk-averse mindset permeating the contemporary world necessitates a
profound social and educational change in order to be uprooted from modern culture.
Therefore, the crucial solution to transform the actual zero-risk society is to promote
risk-taking experiences, new research activities, and long-term untargeted projects,
even if they could seem meaningless. Society should facilitate access to opportunities
for the entire population. By considering failure as an essential part of the learning
process, strongly explorative and creative minds should become new influencers for
the young generations. In this way, modern civilisation will face a period in which
discoveries and inventions will support technological innovation, in a risk-taking
scenario ready to deal with the new unpredictable challenges of the future.

1.2 Model structure

Inspired by the exciting phase transitions observed in several Ising-like models of
statistical mechanics, the present Master Thesis aims to design a physical model
capable of describing the transition of human society from a risk-taking world to
a zero-risk social environment. In particular, we considered a population of N
interacting agents that dynamically invest a fraction of their wealth in a risky ex-
plorative asset according to their risk propensities. To be precise, we should say
that we considered “myopic agents”, i.e. agents neglect subsequent investment pe-
riods when investing at time t. After each investment, agents receive a gain or loss
whose extent depends on the wealth allocated to the risky solution and, later on,
update their opinions (in terms of risk propensity) by interacting with both their
personal connections both the worldwide social networks. Mass Media would play a
key role in shaping ideas spreading a distorted, fearful and irrealistic picture of the
actual events with opportunistic purposes. Therefore the model represents a cyclic
dynamical evolution in which investment decisions and the following realisations
influence the ideas spreading mechanism that correctly determines an alteration of
risk-aversion and, consequently, new investment decisions. Introducing suitable con-
trol parameters to scan human history, this two-layer structure characterised by the
alternation of wealth evolution and opinions’ dynamics will reveal how the previ-
ously discussed factors [1-5] pushed the society toward a substantial reduction of
the average risk propensity.
We start our analysis in chapter 2 with a brief introduction to state of the art in
decision theory and portfolio optimisation, presenting the ergodicity problem in eco-
nomics and discussing the choice of an appropriate stochastic process to represent
wealth evolution in a dynamical investment environment. Chapter 3 is devoted to
the core component of the present Master Thesis, the design of a constrained random
field time-dependent XY model that mimics opinions’ spreading in an interacting
social system with massive media influence. After analysing how wealth distribu-
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CHAPTER 1. INTRODUCTION

tion and inequality changed in human history during the last decades, we propose
an insightful description of social media interactions and media management by
extremes. Successively in Chapter 4, we combine the wealth evolution mechanism
with the XY Montecarlo dynamics for the diffusion of ideas and report the coherent
results of intensive numerical simulations. Chapter 5 presents an inspiring applica-
tion of the model to the Covid19 pandemic, highlighting why the social response has
been significantly different from other similar epidemics in the past. Chapter 6 is
devoted to the conclusion and perspectives. The current research project has been
entirely developed at ETH Zurich in collaboration with my friend and colleague
Francesco Maria Russo who dedicated his Master Thesis to detail the theoretical
conjectures and experimental results of the Covid version of the model.

10



Chapter 2

Wealth evolution

2.1 Expected Utility theory (EUT)

In economics, the utility function is a mathematical function that ranks consumption
goods by assigning a number to each where larger numbers indicate preferred goods.
Utility represents the satisfaction or pleasure that customers receive for consuming a
good or service. As discussed in [3] the expected utility theory represents the famous
first attempt to describe how individual decision making violates the expected value
criterion according to which the investment decision should be based on the average
value of the asset’s return. On the contrary, Expected Utility Theory (EUT) states
that the decision-maker chooses between risky or uncertain prospects by comparing
their expected utility values.

2.2 Risk aversion

In the framework of individual decision-making, risk aversion refers to the psycho-
logical tendency to prefer a situation with a highly predictable payoff rather than a
more unpredictable option, even with a possibly greater profit. Considering that an
agent has to choose between a guaranteed return and a risk reward with the same
average values, risk aversion is quantified by the difference in the average utility of
the two alternatives. In this frame, the certainty equivalent represents the minor
payoff that an individual would be indifferent to spending on a gamble or guarantee,
while the risk premium is the difference between the expected value of the reward
and the certainty equivalent. As a trivial consequence of Jensen’s inequality, the
former description can be embedded in the concavity of the utility function. There-
fore, while the utility functions of a risk-seeking agent and a neutral one are convex
and linear, respectively, a risk-averse individual has a concave utility function as
displaced in figure 2.1. Therefore, an opportunely weighted (to overcome invariance

11



CHAPTER 2. WEALTH EVOLUTION

Figure 2.1: Example of utility functions U with respect to reward x for
a risk-averse (green), a risk-neutral (blue) and a risk-seeking (red) agent.
x̄=expected reward, E=expected value, RP=risk premium, CE=certainty
equivalent.

under affine transformations of the utility function) version of the utility curvature
can be adopted to describe different types of risk avoidance. Kenneth Arrow (1971)
[4] and John Pratt (1965) defined the following two measures of risk aversion:

• Absolute risk aversion:

RA(W ) = −U
′′
(W )

U ′(W )
(2.1)

with W representing the wealth level and U ′(W ), U
′′
(W ) the first and second

derivatives of the utility function respectively. In case RA(W ) is an increas-
ing function of the wealth the agent has an increasing absolute risk aversion
(IARA), namely she decides to allocate a fewer absolute amount of wealth
to the risky asset as her wealth increases. Instead, an agent with decreasing
absolute risk aversion (DARA) will invest more money in the risky asset as
her wealth increases. The amount devoted to the uncertain investment will
be invariant by wealth changes for a constant absolute risk averse (CARA)
individual.

• Relative risk aversion:

RR(W ) = −WU
′′
(W )

U ′(W )
(2.2)

This measure describes how the relative amount of wealth invested in a risky
asset changes with respect to a change in the total wealth, for example an
increasing relative risk-averse (IRRA) agent will allocate a smaller fraction of
her money in the risky asset while her wealth increases.

12



CHAPTER 2. WEALTH EVOLUTION

2.3 Individual portfolio optimization

Consider an agent with wealth W who can invest in two assets, a risk free asset with
return r0 = 0, and a risky asset with random return r ∈ [−1,∞[ :

r =

{
+g, with probability p
−l, with probability 1− p

(2.3)

With g ≥ 0, 0 ≤ l ≤ 1 and such that E[r] = pg + (1 − p)(−l) > r0. The latter
condition ensures that the investor should purchase some risky asset (no matter
how risk averse she might be). If the agent invests the (absolute) amount k in the
uncertain solution, she gets in period 1 :

(W − k) (1 + r0) + k(1 + r) = W + kr = W

(
1 +

k

W
r

)
= W (1 + ar)

Where a = k
W

is the fraction of wealth devoted to the risky option. According to
the EUT she will decide the amount of wealth to allocate to the risky investment
considering the following optimization problem:

a∗ = maxa V (a) = maxaE[U(W (1 + ar))]
0 ≤ a ≤ 1 (no short-selling and no borrowing)

(2.4)

Therefore the individual portfolio optimization results to be intensely dependent on
the functional shape of the utility function. In the framework of our model, we de-
scribe individual portfolio optimization mechanism through a “power risk aversion”
utility function [5] of the form:

U(W ) =
1

γ

[
1− exp

(
−γ
(
W 1−σ − 1

1− σ

))]
, σ ≥ 0, γ ≥ 0 (2.5)

The set of parameters reproducing commonly observed investment choices in the
present society is γ > 0 and 0 < σ < 1 for which the agent, as wealth increases,
will increase her risky investment in absolute terms (DARA) while reducing it in
relative ones (IRRA) [4]. Consequently, the optimal (absolute) allocation of wealth
k∗ to the uncertain option that derives from Eq. 2.4, assuming utility function in
Eq. 2.5 and return distribution of Eq. 2.3 satisfies the following relation:(

pg

(1− p)l

) 1
σ
(
W − k∗l
W + k∗g

)
= exp

{
− γ

σ(1− σ)

[
(W − k∗l)1−σ − (W + k∗g)1−σ]}

(2.6)
Taking profit of several numerical simulations with different risky asset’s specifics
and numerous utility parameters, we inferred the general evolution of the absolute
amount devoted to the risky asset to be of the form:

k∗(W ) ≈ const ∗W σ (2.7)

13



CHAPTER 2. WEALTH EVOLUTION

2.4 Ergodicity problem in economics

The ergodic hypothesis is a key analytical device of equilibrium statistical mechanics
[6]. It is based on the assumption that the time average and the expectation value
of an observable coincide. When valid, this assumption allows to replace dynamical
descriptions with much simpler probabilistic ones, but the conditions for validity
are restrictive, even more so for non-equilibrium systems. Often in economics, the
analysis of wealth evolution through multiple investments has been conducted by
assuming ergodicity, thus replacing wealth with its expected value before computing
the dynamic time growth. This completely incorrect hypothesis will naturally lead
to experimental results enormously different from theoretical predictions unveiling
the exponential nature of wealth evolution [7]. For example, let us consider an agent
with initial wealth W0 that invests in a lottery with return X1:

X1 =

{
2 w. p. 1/2
q w. p. 1/2

0 < q < 1/2 (2.8)

The expectation value of her capital Wn after n bets in the same game with repeated
allocation of the whole accumulated wealth at each time will be:

E [Wn] = (1 + q/2)nW0 (2.9)

that seems to grow exponentially over time. However using the strong law of large
numbers (SLLN) [8] it’s possible to show that the capital typically vanish exponen-
tially. Indeed:

1

n
log (Wn/W0) =

1

n

n∑
i=1

logXi → E [logXi] =
1

2
log(2q) (2.10)

This means that almost surely

Wn ' W0e
−cn, c =

1

2
| log(2q)| > 0 (2.11)

For all a > 0:
P {Wn > a} → 0 as n→∞ (2.12)

Therefore, in the investment scenario illustrated in section 2.3, in which the agent
faces a choice between a riskless and a risky asset, the non-ergodicity problem plays
a significant role. Actually, for any fraction of wealth repeatedly allocated to the
risky option, an exponential wealth evolution leads the individual capital to either
an unbounded growth or a collapse to zero depending on the assets’ features.

14



CHAPTER 2. WEALTH EVOLUTION

2.5 Exponential Ornstein-Uhlenbeck process

As discussed in the introductory section, the present model’s primary purpose is
to analyse how individual risk propensity changes in an investing society charac-
terised by an intensive network of interactions in which media affect decision-making
through a distortion of real news (management by extremes). In this framework, the
dynamical evolution of wealth resulting from the probabilistic returns of financial
assets should not undergo an uncontrolled exponential drift. On the contrary, the
introduction of the investment panorama serves merely as a proxy for evaluating how
risk aversion influence human choices and, conversely, how random realisations of
external events can affect the individual propensity to take a risk. Therefore, a more
realistic description of the wealth distribution among the whole population should
be based on stationarity. The latter ensures a dynamic progression of the individual
capitals such that at each step of investment, the asset’s return can produce a gain
or a loss for any agent, but the final wealth distribution remains quite similar to
the initial one. Keeping in mind the association between risk propensity and actual
wealth fraction invested in a risky option, both represented by the parameter a in
our model, we will practically let the individual wealth evolve with a stochastic pro-
cess, guaranteeing the achievement of a stationary distribution (for further analysis,
the consequences of short time scales preventing equilibration could be examined).
Indeed, the use of a stochastic process is a coarse-grained description of a sequential
optimization problem performed by myopic agents in a time period “short enough”
such that the assumption of stationary average wealth is reasonable. Although
the volatility of financial assets prices could be evaluated through an appropriate
Ornstein-Uhlenbeck process [9], in the present Thesis, we decided to adopt the more
involved treatment introduced by Eduardo Schwartz to calibrate the evolution of
commodity prices [10]: the exponential Ornstein–Uhlenbeck process, that ensures
the wealth acquires only non-negative values. During this stochastic dynamics of
the capital W (t) under the white noise X(t) described by the equation:

dW (t) = θ{µ̂− Ln[W (t)]}W (t)dt+ σ̂W (t)dX(t) (2.13)

the logarithm of the individual wealth evolves through a standard Ornstein–Uhlenbeck
process as reported in figure 2.2 for θ = 0.1, σ̂ = 0.3, initial condition Ln(W )(t =
0) = −5 and several values of µ̂ = µ. Note that, to be able to define its logarithm,
wealth will be adimensionalized and expressed in units of a characteristic wealth
level (W = 1) corresponding to the most probable value of the Fisk distribution
from which the capitals of the population will be sampled, as discussed in the fol-
lowing sections. Since in stationary conditions, the logarithm of the wealth amount
will be distributed according to a Gaussian probability function with average µ and
standard deviation σ, the wealth stationary distribution will be log-normal of the

15



CHAPTER 2. WEALTH EVOLUTION

form:

P (W ) =
1

Wσ
√

2π
exp

(
−(lnW − µ)2

2σ2

)
(2.14)

as displaced in picture 2.3. Indeed, for any agent, after the allocation of the wealth
fraction a to the risky asset, we will evaluate the new wealth sampling from the
log-normal distribution in which µ and σ parameters have been tuned such that:

E[W ] = exp

(
µ+

σ2

2

)
= W0 (2.15)

STD[W ] =
√

[exp (σ2)− 1] exp (2µ+ σ2) = aW0 (2.16)

The new wealth will be sampled from a distribution with an average value equal
to the initial wealth (Eq. 2.15) and standard deviation represented by the absolute
amount of wealth devoted to the risky asset (Eq. 2.16), expressed in terms of initial
wealth capital. Hence a risk-seeking individual (large a) will invest many resources
in the risky option and have a significant standard deviation in the future wealth
distribution; namely, she could receive a notable gain or face a terrible loss. Instead,
a conservative risk-averse agent (small a) will exhibit a new wealth that slightly
oscillates around its original value.

0 25 50 75 100 125 150 175 200
time steps

4

2

0

2

4

Ln
(W

)

=3
=0.8
=-2

Figure 2.2: Time evolution of Ln(W ) under an Ornstein–Uhlenbeck process
for θ = 0.1, σ̂ = 0.3, initial condition Ln(W )(t = 0) = −5 and different
values of µ̂ = µ.
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Figure 2.3: Log-normal distribution for wealth update with different values
of the parameters µ and σ.
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Chapter 3

Spreading of Opinions

3.1 Collective models for social dynamics

Traditional macroeconomics often assume that the collective behaviour of intercon-
nected decision-makers can be expressed in terms of a representative agent embody-
ing and simplifying the group’s heterogeneity. In 1992, Kirman [11] strongly crit-
icised this position, considering it misleading and inadequate to capture collective
trends with massive macro-scale consequences. In this context, the Random Field
Ising Model (RFIM) and the Majority vote model appeared as insightful solutions
to capture the complexity of opinions dynamics in an interacting network where,
albeit the simple behaviour of the single agent, powerful critical social choices can
arise [12].

3.1.1 Random Field Ising Model

The Random Field Ising model(RFIM) represents an insightful description of the
natural stochasticity permeating solid-state physics. Indeed, quenched randomness
characterises all solid materials, either in terms of impurities and defects or as fun-
damental structural properties like those exhibited by alloys and glasses [13]. There-
fore, a complete understanding of the functional behaviour of solids must include
a random contribution; this is well exemplified by RFIM, where long-range inter-
actions compete with random ordering fields. The one dimensional Hamiltonian of
the model is:

H = −
∑
〈i,j〉

Jijsisj −
∑
i

hisi (3.1)

where the spin variable si ∈ {−1, 1}, Jij represents attractive or repulsive interac-
tion between spins i and j while the fields hi are independent random variables with
symmetric distribution, usually gaussian or bimodal. The first and second summa-
tions run over all the couples of interacting spins and over all the spin variables,

18



CHAPTER 3. SPREADING OF OPINIONS

respectively. The RFIM revealed interesting nonequilibrium and dynamic phase-
transition properties under the influence of periodically oscillating random fields, as
analysed by Yüksel et al. [14] in a simple cubic lattice with effective field theory
and by Acharyya [15] through a Monte Carlo simulation on a two-dimensional grid.
In 2005 Michard and Bouchaud [16] showed the possibility to adopt RFIM to reveal
the implications of social pressure and imitation together with public information
in interesting collective effects like birth rates, decay of applause or sales of mobile
phones. In the following, we will investigate the dynamical evolution (through free
energy minimisation) of the XY model, a generalisation of RFIM where continuous
unary vectors substitute spin variables [17]. In this framework, each variable em-
bodies agent decision; field terms stand for individual opinions or media influences
while the couplings Jij account for social herding.

3.1.2 Majority vote model

An alternative description for opinion dynamics in a population is the Majority
vote model, where individual preferences are encoded in the spin variables σ = ±1,
placed on the sites of a regular lattice [18] . At each time step, a spin is randomly
picked, and it adopts the majority sign of the neighbouring spins with probability p
and the minority with probability q = 1− p. Formally the i-th spin flip probability
can be expressed by

wi(σ) =
1

2

[
1− (1− 2q)σiS

(∑
δ

σi+δ

)]
(3.2)

where the summation runs over all the neighbouring variables of spin i, S is defined
as S(x) = sign(x) if x 6= 0 and S(0) = 0. Intensive Monte Carlo simulations and fi-
nite sizes analyses [18]revealed that the majority vote model exhibits a second-order
phase transition at the critical noise value qc = 0.075 with the equivalent critical
exponents of the square Ising model with periodic boundary conditions. Therefore
the isotropic majority vote model has the same universal critical behaviour as the
equilibrium Ising model. The corresponding result has been observed in the simu-
lation of a square lattice majority vote model with strong opinions individuals that
influence the neighbouring sites more than normal agents [19]. Thus, although the
universality class features of the Ising model are preserved, an increasing concen-
tration of individuals with stronger opinions weakens the consensus of the network,
reducing the critical noise value for the transition from ordered to disordered state.
Furthermore, a generalization of the spin variables to two-dimensional normalized ro-
tators on a square lattice [20] revealed the presence of low-noise Kosterlitz-Thouless
like phase [21] where the measured correlation function exponent depends on the
noise and the system is critical in the sense that the correlation length is infinity.
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The Majority vote model provided robust results in the description of group dy-
namics and correctly reported collective social phenomena like the consequences of
global and local mass media influence [22].

3.2 Random field XY model

In order to describe the transition of human societies to a zero-risk scenario por-
trayed by a diffused risk avoidance, we designed an XY model constrained in the first
quarter (with all spins having an angle between 0 and π/2) with time-dependent
random fields [17] . This model represents the fundamental structure on which
diffused social interactions and media hype and exaggeration, together with a con-
sistent fraction of humans with no access to opportunities, can alter the individual
risk propensity freezing the entire society in a stagnation condition. Let us consider
a system where N interacting agents with the same utility function but different
wealth perform a portfolio optimization choice among a risky and riskless asset.
In this framework, the agent’s decision can be encoded in the 2-dimensional spin
variable:

~si = (
√
ai,
√

1− ai), ||~si|| = 1 (3.3)

where ai is the fraction of wealth invested in the risky asset by agent i. Therefore,
the first (respectively second) component of the spin encodes the relative amount of
the wealth allocated to the risky (respectively riskless) option. At each time step t
the Hamiltonian of the system will be of the form :

H(t) = −
∑
i

~hi(t) · ~si −
∑
〈ij〉

Jij~si · ~sj −
∑
i

~hmedia,i (t) · ~si (3.4)

where the summations on the index i run over all the agents in the system while
the sum on 〈ij〉 takes into account all the possible spin couples of the network. The

idiosyncratic field ~hi(t) represents the individual preference over the two assets of
agent i if considered in isolation at time t. Furthermore, the couplings Jij display the

social interactions through imitation and herding while the term ~hmedia,i(t) encodes
the media influence that modify individual mindset of agent i at time t, especially
pushing toward fearful risk-averse thinking (as will be discussed in the following
sections). The time dependence of field terms in the Hamiltonian derives from
the dynamical progression of wealth through the exponential Ornstein-Uhlenbeck
process (for the moment kept at stationarity) modelling the probabilistic outcomes of
the risky asset. During the numerical simulations, after each investment realisation,
we will let opinions evolve through a Montecarlo dynamics based on the presented
Hamiltonian, with temperature initially equal to zero, for the sake of simplicity. In
this context temperature can be regarded as choice stochasticity, even in absence of
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CHAPTER 3. SPREADING OF OPINIONS

interactions. As a proxy for the population propensity to take risks, we consider the
average fraction of wealth invested in the risky asset as the model order parameter:

ā =
1

N

N∑
i=1

ai ∈ [0, 1] (3.5)

Therefore we analysed how the ā values change by varying opportune control pa-
rameters. In the following sections, the different ingredients of the Hamiltonian and
their dependence on capitals’ evolution will be detailed. Moreover, a profound note
will be placed on the development of wealth distribution and inequality crosswise
human history.

3.3 Wealth distribution

A fundamental ingredient specifying the evolution of human societies across different
historical periods is the distribution of wealth among the population. If we refer to
the US case study [23], albeit the functional form of the wealth histogram seems to
be left unaltered over the last decades, two relevant phenomena have been observed
[24]:

• a global shift of the average wealth illustrating how a diffused welfare truly
characterizes the recent historical period that is a profound reason underlying
the development and spreading of a risk-averse mindset;

• a growing wealth inequality represented by an increment in the tail of wealth
distribution such that the share of the global wealth owned by the top 1% of
the population increased from 25% in 1980 to 40% in 2016 [25].

A realistic function capable of capturing the main features of wealth distribution
from national to global scale is the log-logistic distribution, in economics typically
referred to as Fisk distribution [26]. It embodies the power-law behaviour of Pareto
probability density function for large wealth values (necessary to encompass wealthy
outliers) while preserving a good fitting for small wealth amounts like the log-normal
distribution. The mathematical expression of the Fisk probability density function
is:

P (W ) =
(β/α)(W/α)β−1

(1 + (W/α)β)2 (3.6)

with α being the scale parameter while β being the shape one. The functional
shape of the distribution is displaced in figure 3.1. In the following analysis, we will
tune both parameters to observe the consequences of wealth evolution in terms of
diffusion of a zero-risk culture. Mainly we will explore the role of the parameter β,
whose reciprocal form represents the Gini coefficient [27], a statistical measure of
dispersion meant to describe wealth inequality.
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Figure 3.1: Fisk Log-logistic distribution for α = 1 and several
values of β.

3.4 No access to opportunities

As a consequence of the increasing wealth inequality among the population, a grow-
ing portion of citizens in western countries has no or limited access to investment
and innovation opportunities. Sure enough, they face a harsh socio-economical con-
dition, daily struggling for their own lives, suffering poverty and health problems,
with no access to high-quality education. Deprived of an adequate intellectual back-
ground and, more relevant, constantly engaged in the risky challenges of their daily
life experiences, these individuals can not explore investments to improve the proper
social condition. Their attitudes and difficulties reflect in the XY model for opinions’
spreading. Indeed, a set of spins representing the risk propensities of the poorest
people with no access to opportunities point toward the vertical direction exhibit-
ing a null fraction of wealth invested in the risky asset a = 0. This phenomenon
strongly impacts the collective behaviour of the interacting network our society is
involved in. Even if their influence is weak (as discussed in section 3.7.1) the citizens
mentioned above contribute to changing the risk propensity of people they interact
with, pushing their spins along the vertical direction (coupling terms in the Hamil-
tonian). We controlled the portion of people with no access to opportunities from
the technical viewpoint by introducing the control parameter Poverty Threshold
defined as the quantile of agents whose wealth lies below a “wealth poverty thresh-
old” (W.P.T). The latter has been derived a posteriori by integration of the Fisk
wealth distribution P (W ) in the form :∫ W.P.T

0

P (W )dW = Poverty Threshold (3.7)
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The transition in wealth from free access to risky opportunities to socio-economic
exclusion from explorative investments should reveal a smooth shape. Therefore we
exploited a sigmoid function centred in the wealth poverty threshold and with a
sufficiently steep curvature to model the probability of accessing opportunities as
a function of wealth. If we consider an agent i with wealth Wi(t) at time t, her
probability of having access to opportunities is:

Pi (access to opportunities) (t) =
1

1 + exp W.P.T−Wi(t)
slope

(3.8)

In which W.P.T is the wealth poverty threshold while the slope parameter has
been fixed to the default value 0.1. The latter functional formulation results in the
behaviour shown in figure 3.2.

Figure 3.2: Probability of having access to opportunities
as function of the wealth. W.P.T. = 0.5, slope=0.1.

3.5 Idiosyncratic fields

The first essential element characterizing the Hamiltonian of the random field XY
model for opinions’ spreading is the set of idiosyncratic fields encoding the individual
risk propensity for any agent. If we consider the agent i with wealth Wi(t) at time

t her field ~hi(t) will be given by:

~hi(t) =
(√

a∗i (t),
√

1− a∗i (t)
)
Wi(t) (3.9)

where a∗i (t) represents the fraction of wealth Wi(t) invested by agent i in the risky
asset at time t according to her portfolio optimization. Supposing an investment
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scenario in which an agent with a DARA and IRRA utility function (as that of
equation 2.5 for an appropriate choice of the parameters) has to optimally allocate
her initial resources in a risky and a riskless assets, the portfolio optimization through
EUT will lead to the result of equation 2.7. Therefore we can estimate the quantity
a∗i (t) as:

a∗i (t) = Wi(t)
σ−1 0 < σ < 1 (3.10)

where σ embodies and quantifies the IRRA character of the utility function. In our
numerical simulations, we let σ = 0.5 since it does not represent a relevant control
parameter for our discussion. Note that the field modulus is equal to the individual
wealth ‖hi‖ = Wi accounting for the fact that richer people are less likely to be
influenced and will stick to their personal preferences.

3.6 Network

A coherent model that vividly explains the opinions’ dynamics in a population finds
its fundamental roots in the network topology and couplings strengths. Therefore,
before detailing the simulated social interacting system, we will devote the present
section to introduce the principles underlying graph theory and scale-free network
structures.

3.6.1 Introduction to graph theory

A directed graph (digraph) G is an ordered pair G = (V, E) where V is called the
set of vertices and E ⊆ V × V is called the set of edges. Self-edges (i, i) will not
be allowed; that is (i, i) 6∈ E, ever. An undirected graph, sometimes called simply
a graph, is G = (V, E) where E ⊂ V × V is a subset of pairs of vertices in which
opposite pairs [(v, w)] = [(w, v)] are identified in a single equivalence class.
Although the wide variety of graph structures account for the description of several
interacting systems, many physical models require a stochastic formalization of the
network, namely a random graph. A random graph ensemble is a probability dis-
tribution over graphs [28], that is P : G 7→ P (G) ≥ 0 such that

∑
G P (G) = 1. If

we consider distributions of graphs with fixed vertex set V = {1, ..., n}, there are
m = n(n − 1)/2 potential edges on such vertex set, therefore the probability space

is defined on a set of 2
n(n−1)

2 possible structures.
Among the numerous families of random graphs common examples are the Erdös-
Renýi G(n, p) random graph with probability measure:

P (G) = p|E|(1− p)
1
2
n(n−1)−|E| (3.11)

where each edge is inserted in the network with probability p and the Erdös-Renýi
G(n,m) random graph that is defined as the uniform probability space of graphs
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with n vertices and m edges. For large n, G(n, p = c/n) and G(n,m = cn/2) behave
very similarly, because the binomial distribution of the number of edges P (|E| = m)
characterising G(n, p) concentrates sharply around its mean value.

3.6.2 Scale free network

A scale-free network [29] is identified by a power-law distribution of the degrees of
nodes resulting in an organization where some individuals, the hubs, carry a massive
number of links, effectively overcoming the others. In details, the fraction of network
nodes with k neighbouring sites is expressed by:

P (k) ∼ k−γ (3.12)

where the γ typically belongs to the range 2 < γ < 3. These engaging networks with
size-independent topological properties have been frequently adopted in biological
models for protein-protein interaction, semantic networks [30], airline interactions
and appeared appropriate to describe the internet and web graph of the World Wide
Web. In order to build such an interesting topological structure, new nodes are
iteratively added to the network with preferential attachment Π, namely a certain
probability of a new node to be connected with sites already existing in the system.
In this framework, an insightful example of a generative algorithm for a scale-free
network is the Albert Barabàsi model [31], which begins with an initial connected set
of m0 nodes; progressively, a new node is added to the system and forms m < m0

edges with the older variables. The preferential attachment probability Πi to be
connected with the pre-existing node i is:

Πi =
ki∑
j kj

(3.13)

where ki represents the degree of node i and the sum runs over all the nodes already
placed in the network. Therefore, heavily linked nodes tend to quickly accumulate
a larger number of connected sites and eventually become the network hubs. In
many physical circumstances, the introduction of individual properties of the single
nodes provides a more realistic picture of the system beyond the approximation
of identical agents. Bianconi-Barabási model [32] [33] attributes to each node an
intrinsic and innate property called fitness which results in the individual capability
of attracting links in the network (fitter nodes attract more edges than less fit ones).
After designing an initially small and connected network, a new node carrying m
links will be connected to the already existing site i with probability:

Πi =
ηiki∑
` η`k`

(3.14)
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where ηi is the fitness of node i while ki represents its degree and the sum runs over
all the nodes already placed in the network. Fitness and degree jointly determine the
attractiveness and evolution of a node. Hence, node i will increase its connectivity
ki at a rate that is proportional to the probability that a new link will attach to it,
giving:

∂ki
∂t

= m
ηiki∑
j kjηj

(3.15)

The time evolution of i-th node degree follows a power law growth:

kηi (t, t0) = m

(
t

t0

)β(ηi)

(3.16)

where the dynamic exponent β depends on the fitness parameter, and t and t0
represent the actual and initial time step respectively.

3.7 Social interactions

3.7.1 Interaction strength

In modern world society, each agent steadily feels the pressure of the surround-
ing social environment that unavoidably modifies individual opinion and alters the
consequent decision-making. In the present model, the social interaction between
individual i with wealth Wi and agent j with wealth Wj is weighted by 1/2 of the
harmonic mean between the two wealth amounts:

Jij = Wi//Wj =
WiWj

Wi +Wj

(3.17)

This simple mathematical operation that mimics the parallel of resistors in elec-
tronics acquires a powerful meaning in an XY model where the intensity of personal
opinion, namely the modulus of the idiosyncratic field, coincides with the individual
wealth. The main properties of the chosen couplings can be valued in the following
situations:

• Wi >> Wj =⇒ Jij ≈ Wj

If a rich agent interacts with a poor one, their reciprocal influence is expressed
as the wealth of the poorest. Therefore while poor people feel an influence
from rich ones comparable with their own opinion, wealthy people feel a slight
impact from poor compared with their individual belief. Consequently, a rich
agent needs a remarkable number of links with poor people to change her
mind.
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• Wi ≈ Wj =⇒ Jij ≈ Wi/2
If two individuals with similar wealth condition communicate, they feel a re-
ciprocal influence quantifiable as half of their own ideas.

The chosen harmonic procedure to estimate social interactions deeply simplifies
the network analysis since it both avoids introducing a directed graph (digraph)
both prevents form the setting of an absolute and arbitrary reference to quantify
the intensity of the links. While the strength of interpersonal interactions can be
considered a constant quantity independent of the evolution of societies, a profound
constituent describing the progress of human history is the diffusion of social media
that removed geographical boundaries and budgetary classism from the opinions’
spreading mechanism. We captured the expansion in connectivity of the modern
world through the probabilistic superposition of a local and a social network.

3.7.2 Local network

Before the advent of Facebook, Instagram, Twitter, and many other social media
channels, interpersonal communication at the half of the past century was domi-
nated by a more restrictive network of private interactions mainly organized around
the principle of homophily as illustrated by McPherson et al. [34]. This preferen-
tial connection principle relies on the idea that the social organization of a human
community tends to promote aggregation of individuals sharing similar features like
age, religion, gender, education and social classes. In particular educational, occu-
pational and class homophily not only affect strong ties like marriage and friendship
but have even a more profound impact on the less intimate social links, as pointed
out by Verbrugge [35]. Based on the previous discussion, we firstly allocated wealth
resources to the simulated population by sampling from the Fisk distribution and
then designed a“local network” modelling the interactions in the pre-social media
world according to wealth homophily. After sorting the agents by their prosperity
levels such that W1 > W2 > ... > WN , we accept a link between agent i with wealth
Wi and agent i+ k with lower wealth Wi+k with probability qk. By setting q = 0.6
for a population of 81 interacting agents with Fisk wealth distribution (α = 1 and
β = 2.2), the local network has the structure displaced in figure 3.3. Note that the
colours of the nodes are ranked according to personal wealth, such that dark blu
agents are poor, light blue represent middle classes, while green, red and crimson
are the more affluent individuals.

3.7.3 Social network

From the interconnectivity perspective, the dynamical evolution of human history
can be interpreted as the superposition to the homophily based (wealth homophily)
local network of a worldwide social network where news openly circulate, typically
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Figure 3.3: Local Network of 81 agents for Fisk wealth distribution with
α = 1, β = 2.2 and q = 0.6.

undergoing self-reinforcing mechanisms referred to as social media hypes [36]. We
decided to model the social media global network with a scale free graph employing
the generative Bianconi-Barabási model. In the present framework, we associate to
the fitness parameter the amount of wealth each agent owns, mimicking the fact that
richer individuals are typically highly connected and can shape opinions of the poorer
social classes. As described by the fitness model’s procedure, we started the network
with a small cluster of interconnected whealthy people and then iteratively added
a node with m (default m=2) links. The social network processed with the former
procedure is shown in figure 3.4 for a population with 81 individuals with the same
wealth distribution and colours’ legend of the previous section 3.7.2. As expected,
richest people (red and green dots) posses the largest number of interactions.
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Figure 3.4: Social Network of 81 agents for Fisk wealth distribution with
α = 1 and β = 2.2.
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3.7.4 Complete network

We described the complete interactions of a realistic community as the superposition
of interpersonal communications based on wealth homophily and social media con-
nections. Starting from a local network we scanned all the edges of the social media
adjacency matrix and, if not already present in the local network, we included them
with probability equal to the control parameter media connectivity(MC). The lat-
ter symbolises a simple and efficient way to scan human history analysing the role
of connectivity in information dynamics and risk avoidance spreading. In partic-
ular, in the past, only the local network was available (MC = 0) and over time
the media connectivity has increased. The resulting network for 81 agents with
MC = 0.5 and the same wealth distribution and colours’ legend of the previous
section 3.7.2 is reported in figure 3.5.
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Figure 3.5: Complete Network of 81 agents for Fisk wealth distribution with
α = 1 , β = 2.2, q = 0.6 and MC = 0.5.

3.8 Media effect

The robust social network permeating modern world collectivities is psychologically
shaping our beliefs, persuading mass opinion and orientating everyday life deci-
sion making, the portrait of a powerful but delicate self-propelling hype machine
described by Aral [37]. Preceding this dense interconnected tissue of opinions dis-
semination, the Mass Media fulfils the director’s role by selecting the nature and
conveyance modality of information. Media policy has concrete rebounds in social
behaviour as illustrated by Vasterman et al. [38] in terms of impact in the After-
math of Disasters. The news magnification of terrorist actions after the Oklahoma
City bombing in 1995, for example, directly impacted the spread of post-traumatic
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stress symptomatologies in children exposed to television viewing [39] even if geo-
graphically distant from the explosion [40]. Although the technological development
of the modern world allows media to access a wide range of information directly,
the profit model underlying their practices determines management by extremes
attitudes such that media, merchants of attention [41], tend to select the worst
frightening news, enormously overestimating the probability of rare events. In the
XY model we propose for opinions’ dynamics, the media act as a time-dependent
random field pointing toward the y axis communicating bad news that naturally re-
duce the individual propensity to invest in a risky opportunity. The same harmonic
operation we illustrated for social couplings gives the intensity of the media field
perceived by each agent, representing how wealthy people have stronger opinions
and are less likely to be influenced by public information, differently from the poor.
If we consider an agent i at time t with wealth Wi(t) she will feel a media field:

~hmedia,i(t) = (Wi(t)//WM(t)) ûy (3.18)

where ûy is the y-axis unitary vector while WM(t) represent the content of media
news. As discussed in the introduction, the individual risk propensities update at
the end of any investment realisation through the Montecarlo evolution of the system
with previously discussed Hamiltonian (Eq. 3.4) . In particular, after disclosing the
investments’ returns, the wealth of each agent changes (gain or loss), implying an
adjustment in both idiosyncratic and media fields. According to their utilitarian na-
ture, media are supposed to collect wealth losses and report them in a weighted way
such that the gamma media (Γmedia) parameter describes the extent of management
by extremes. The information content conveyed by media is thus:

v(t) =

Γmedia∑
i=1

|∆Wi,loss(t)|
Γmedia

, |∆Wi,loss(t)| > |∆Wi+1,loss(t)| (3.19)

∆Wi,loss(t) =

{
0 if Wi(t) > Wi(t− 1)
Wi(t)−Wi(t− 1) otherwise

(3.20)

It is trivial to check that if Γmedia equal to 1 the media reports just the worst
loss (extreme management by extremes), instead if Γmedia is large media honestly
reports an average of all the losses. Finally media convey news on the basis of what
happened in the previous T days. The way we can account for this is a weighted sum
of the previous news with a memory discount factor β that explains the complete
expression of term WM(t) in equation 3.18:

WM(t) =
T∑
k=0

βkv(t− k), β ∈ [0, 1] (3.21)
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3.9 Control parameters

To sum up, considering a society with power-law wealth distribution and an ap-
propriate degree of wealth inequality, we combined idiosyncratic and media fields
with a scale-free interacting system designing a realistic picture of a human network
for risk-aversion spreading. Indeed we introduced appropriate physical parameters
embodying the fundamental reasons underlying the birth of the zero-risk society, as
described in table 3.1. The proposed measures act as suitable tuning knobs tracing
the evolution of human communities while in a more physical framework have the
role of control parameters for the random field XY model.

INGREDIENTS OF THE

ZERO RISK SOCIETY

CONTROL PARAMETERS

OF THE XY MODEL

WELFARE STATE
α AND β IN FISK

WEALTH DISTRIBUTION

NO ACCESS TO OPPORTUNITIES POVERTY THRESHOLD

HERDING AND IMITATION MEDIA CONNECTIVITY

MANAGEMENT SHAPED BY

EXTREMES AND OVERREACTION
GAMMA MEDIA (Γmedia)

Table 3.1: Mapping between zero-risk society ingredients and XY model control parameters.
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Simulations

4.1 Model dynamics

The designed model evolves dynamically with a cyclic alternation of wealth updates
(with the exponential Ornstein Ulhenbeck process at stationarity) controlled by the
individual risk propensity a (Eq. 2.14-2.16) and opinions’ revising through the XY
model that has been simulated in a Montecarlo algorithm at temperature T=0.
On each day, the outcomes of the risky assets are disclosed; namely, new wealths
are picked from the log-normal distribution and opinions update for the subsequent
investments. The first steps of the simulation are:

• Initial condition (Day 0): Wealth capitals are sampled from the Fisk distri-
bution and assigned to each agent. According to her idiosyncratic field, any
individual allocates a fraction a of wealth to the risky asset before interacting
with other investors. Therefore, as expressed in equation 3.10, wealthy people
(rarely sampled from the power-law tail of the Fisk distribution) have their
spins more oriented along the vertical axis rather than poor as observable in
figure 4.1 reporting the initial spins’ alignment in a fictitious 2D grid. A frac-
tion of people struggling to survive can not access the market opportunities;
they do not invest in the risky option and are represented by magenta spins
fixed on the y-axis.

• Day 1: At the beginning of day 1, each agent receives a new wealth extracted
from her proper Log-normal distribution with volatility (standard deviation)
proportional to her risk propensity on the previous day. According to the new
capital, all the investors change their idiosyncratic fields, the media fields turn
on reporting the worst losses of the day and people interact, determining a
new set of {ai}Ni=1 values for the population.

• Day 2: At the beginning of day 2, given yesterday’s investments, agents mod-
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Figure 4.1: Initial spin configuration for 100 agents. Magenta spins do not
invest.

ify again their wealths which induces a new opinion processing. The same
mechanisms characterize the following days of the simulation.

4.2 Results

After an intensive theoretical investigation, we devised an optimized and parallelized
Python3 code to simulate the model. We numerically reproduced the system dy-
namics for a large spectrum of parameters averaging over many seeds of the random
number generation to test the robustness of its conclusions. In the following, we
will report and comment on the simulation results for a system with 400 interacting
agents in a scale-free social media network (with m = 2 in the Bianconi Barabasi
algorithm) and Fisk wealth distribution, with α = 1 (3.6). The utility parameter
σ = 0.5 (3.10), slope = 0.1 (3.8) for the access to opportunities probability, q = 0.8
in the local network structure and β = 0.9 (3.21) for the social media memory effect.
The simulation has been carried for 500 days.
Setting poverty threshold = 0.05, we plotted the average value of the equilibrium
risk propensities (3.5) as a function of the remaining control parameters, time averag-
ing over the last 20% of the simulation steps to guarantee the achievement of a stable
behaviour. For β = 2.2 in the log-logistic law, as displaced in figure 4.2a the order
parameter strongly decreases with the reduction of gamma media, namely with the
amplification of the management by extremes tendency of mass media. Further-
more, social imitation and herding actively contributes to reducing risk propensity
in the population. In 4.2b, instead, by fixing the media connectivity = 1, we ob-
served how the increase in wealth inequality, reduction of β in the Fisk distribution,
strongly impact the diffusion of a risk-averse mindset.
Successively we fixed the parameter of wealth distribution to α = 1 and β = 2.2 and
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Figure 4.2: Average risk propensity vs gamma media, for different values of
media connectivity and β in Fisk distribution. Poverty threshold = 0.05.

analysed the risk propensity behaviour with respect to the poverty threshold, pre-
cisely the percentage of the population that, due to wealth inequality, can not access
risk investment opportunities. At fixed gamma media = 50 the average (over the
agents and in time) risk attitude significantly diminishes if the poverty threshold
grows with a clear reducing impact of social media interactions, as illustrated in
figure 4.3a. Moreover, for a strongly interconnected society (figure 4.3b), manage-
ment by extremes, expressed by small values of gamma media, affects the collective
opinion conveying a risk-averse perspective for any value of poverty threshold.
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Figure 4.3: Average risk propensity vs Poverty threshold, for different values of
media connectivity and gamma media. α = 1 and β = 2.2 in the Fisk wealth
distribution.

Finally, in the last panel we report the evolution of the average risk propensity in
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several historical periods. Figure 4.4a illustrates the time evolution of ā comparing
past and present days. In details, we modified together the four control parameters
of the model to mimic the transition from a risk-taking scenario with ā ≈ 0.24 to
a zero-risk society with ā ≈ 0.16. We used β = 4.2, poverty threshold = 0.05,
gamma media = 400 and media connectivity = 0 for the past (indicatively mod-
elling the beginning of the past century) while β = 2.2, poverty threshold = 0.10,
gamma media = 5 and media connectivity = 1 to describe the modern society. In
figure 4.4b, instead, we present the continuous dynamical evolution of the average
risk propensity (averaged in last 20% time steps of the simulation) across history, ide-
ally describing the transition from early 1900 to nowadays and future societies. The
x-axis is a fictitious scale indicating the transition from past, leftmost side of the axis
to future, rightmost side. We adopted a continuous shift of the control parameters
that simulate an increase in wealth inequality, a reduced access to opportunities,
a more prominent social media connectivity and a massive mind-controlling pub-
lic information influence through management by extremes and overreaction. The
combination of the four factors, as hypothesised, definitely pushed the contemporary
world to a reduction of the risk-taking nature essential for innovation: we live in a
zero-risk society.
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Figure 4.4: Average risk propensity in several historical periods.

The intensive numerical simulations revealed remarkable robustness of the model
results concerning some changes in the number of involved agents. Although the
Zero-risk factors reduce average risk propensity in any population, this effect is
stronger in a wide community than in a small social group due to the higher wealth
inequality and the consequent higher media probability of detecting and spreading
terrible losses.
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Covid model

The model we designed to describe the transition of modern societies into a zero-
risk environment can be easily adapted and detailed to explain the social response
to Covid19 and its difference from the human reaction to past worldwide diseases.
In details, we have substituted the investment layer of our network based on the
allocation of capital resources in a risky asset and the stochastic evolution of its
return with a SIRD model for epidemic spreading. Our analysis extends the bilay-
ered network proposed by Fast et al. [42] to illustrate the development of social
responses during a pandemic by introducing the reverse rebound of ideas diffusion
on the pandemic state itself. As far as the dynamical model for disease diffusion is
concerned, we added a death state (D) to the Susceptible-Infected-Recovered (SIR)
model for epidemic spreading [43] in a scale-free Network [44]. Especially we de-
signed a scale-free network of subpopulations or cities [45], [46] with random graph
modelling social connectivity inside single clusters. Agents can spread the virus by
moving inside their metapopulation and travelling abroad, with a probability of get-
ting in touch with other individuals that depend on their risk propensity; the latter
evolves with the zero temperature Montecarlo dynamics of the XY opinion model,
as in the original Zero-risk picture. Figure 5.1, from Francesco Maria Russo Master
Thesis, illustrates the model states and possible transitions. Infected agents after a
deterministic time TI die or become recovered with probabilities PID and PIR that
depend on the age through a nonlinear sigmoid function. At each time step, every
recovered agent has a certain probability PRS to become susceptible again.
We adopted the previously detailed XY model to describe opinion dynamics. Indeed
we associated the spin angle of any agent to the probability of exiting home under-
going external social interactions during the pandemic, a measure of the individual
risk propensity:

~si = (cos (θi) , sin (θi)) ; θi =
π

2
[1− Pi(exit)] (5.1)

The resulting order parameter will be the average exit probability in the whole
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Figure 5.1: SIRD model states and possible transitions.

population. After normalizing the age distribution, we introduced the health capital
parameter Θ equal to one minus the age such that young agents have high health
capital (Θ close to 1) while older people show small Θ values. In this framework,

idiosyncratic fields ~h continue to model individual risk propensities and result in a
decreasing function of the individual health capital Θ weighted by a step function
of the health status f(X):

~hi(t) = |~hi(t)| (cos (θ∗i ) , sin (θ∗i )) (5.2)

θ∗i =
π

2
(1− Pi ( Exit ∗ | Θi, Xi)) (5.3)

Pi ( Exit ∗ | Θi, Xi) = Θif (Xi) , Xi ∈ {S, I, R,D} (5.4)

f (Xi) =


1 Xi = S,R

1
2

Xi = I

0 Xi = D

(5.5)

The field modulus is described by the product of health capital and social connec-
tivity, accounting for the fact that younger and more influential individuals have
stronger personal opinions. The coupling terms of the model represent social com-
munications and the impacts of social interaction and mass media pressure on each
agent are weighted by the parallel operation of equation 3.18 where wealth is replaced
by a combination of health capital Θ and degree of social media interconnection k:

Jij = (Θi//Θj)(ki//kj) (5.6)

Therefore more influential individuals, together with very young guys, are less likely
to be influenced rather than older and less connected adults. At the same time, mass
media would achieve its opportunistic purposes by focusing on the very sporadic

37



CHAPTER 5. COVID MODEL

deaths of young citizens (management by extremes), conveying a state of fear and
risk aversion. We traced the dynamics of human society by substituting the wealth
evolution of the zero-risk society model with the progression of age distribution that
showed a considerable increase of the median age from 1950 data to 2050 projections
[47]. Therefore for fixed-parameters specifying the pandemic spreading, we analysed
how new age distribution, robust media connectivity and media management by
extremes deeply affected the average risk propensity, which heavily reduced over
the last decades. This study explains why the social reaction to Covid19 has been
very different from the human response to similar past pandemics like the 1957-1958
Asian flu. The complete theoretical details and simulation results of the Covid model
are discussed in the Master Thesis of my friend and colleague Francesco Maria Russo
while the parallelisms between the Zero-risk society model and the Covid model are
reported in table 5.1.

ZERO RISK SOCIETY MODEL COVID MODEL

WEALTH DISTRIBUTION AGE DISTRIBUTION

OU PROCESS FOR WEALTH EVOLUTION SIRD MODEL FOR HEALTH EVOLUTION

NO ACCESS TO OPPORTUNITY DECEASED AGENTS

(~si)x ENCODING RISK PROPENSITY (~si)x ENCODING RISK PROPENSITY

IN INVESTING IN THE RISKY ASSET AS EXIT PROBABILITY

IDIOSYNCRATIC FIELDS ARE IDIOSYNCRATIC FIELDS ARE

INDIVIDUAL RISK PROPENSITIES INDIVIDUAL RISK PROPENSITIES

BASED ON WEALTH BASED ON AGE AND HEALTH

HERDING AND IMITATION, WEALTHY HERDING AND IMITATION, YOUNG

AGENTS ARE LESS INFLUENCED AGENTS ARE LESS INFLUENCED

MEDIA FOCUS ON THE WORST LOSSES MEDIA FOCUS ON YOUNG DEATHS

(MANAGEMENT BY EXTREMES) (MANAGEMENT BY EXTREMES)

MONTE CARLO SIMULATION FOR MONTE CARLO SIMULATION FOR

INFORMATION SPREADING INFORMATION SPREADING

Table 5.1: Parallelisms between Zero-risk society model and Covid model
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Conclusion and perspectives

We designed a model that describes how the increased social welfare, wealth in-
equality and no access to opportunities, social media interactions, and media man-
agement by extremes across human history let the society evolve to a risk-averse
panorama, with scarce desire to explore new unknown, risky landscapes. This deca-
dent attitude, exhaustively displaced by the social reaction to the Covid19 pandemic,
profoundly threatens modern civilisation’s robustness that increasingly resembles a
static apparatus completely unprepared to handle the unstable volatility of its envi-
ronment. Although the numerical results validate the model capability to reproduce
the hypothesised mechanism, we need further simulations to explore the complete-
ness of control parameter space. This exploration will be essential to find potential
regions with a non-trivial behaviour of the order parameter whose functional shape
we hope will match the typical phase transitions observed in the Ising-like mod-
els. Moreover, by introducing a suitable symmetrisation, we could remove the first
quadrant constraint of the designed XY model, looking for the presence of a Berezin-
skii–Kosterlitz–Thouless transition [21] and the consequent typical vortex structure,
to be appropriately interpreted.
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