POLITECNICO DI TORINO

Master’s Degree thesis in Computer Science

Functional analysis and implementation of B2B e-commerce

on Salesforce B2B Commerce platform

L
: s W ge -
'{'llm a2 di Torino
W\ 1859 J"
Relator Candidate
Prof. Giorgio Bruno Sofia Munari

A.Y.2020/2021

ABSTRACT ...ttt et e e e s ettt e e e e e e s s b e e teeeee e e s s s ab et aeeeeeseaasabeaaaeeeeseaasnbeaaaeeeessanannreaeeaeas 3
ACKNOWLEDGEMENTS ..ottt ettt e e ettt e e e e e e sttt e e e e e s s s saabt b eeeeeessssassbeateeeeessannnseneaaens 4
INTRODUGCTION ...ttt ettt ettt et e sae e sttt et e bt e bt e s bt e s he e sab e et e e bt e sbeesseesmnesabeeabeenreenes 5
L. WHATIIS B2BY......eeee ettt ettt et sttt et e b e bt e s bt e s he e s ab e et e e beesbeesbeesanesabeeabeenneenns 7
2. MAIN CHARACTERISTICS OF B2B and HOW IT DIFFERS FROM B2C............ccccceouiniinnieenieeneennene 8
3. B2B MARKET AND TRENDS ...ttt e ettt e e e e s s ettt e e e e s s sbbreeeeeeesssnnseneaeeeeesanan 10
4. SALESFORCE B2B COMMERCE...............ottiiiiiiiiiiiiiiteeee e e ettt eee e e s s ssbtreeeeessessaabtteeeeeessannsraeeeeeas 13
4.1 SALESFORCE B2B LIGHTNINGEcoiiiiiiiiiiiniieiieeteettet ettt et sb e s s e s s 15
4.2 SALESFORCE B2B COMMERCE — Technical Characteristics.............ccccceeveenieniinicnneeenne. 16
5. A PRACTICAL EXAMPLE OF A B2B PROJECT ON SALESFORCE B2B LIGHTING COMMERCE........ 35
5.1 PROBLEM EXPLANATION ...ttt sssssssssssssnes 36
5.2 REQUIREMENTS ... ssssssnes 37
5.3 USER REGISTRATION AND MANAGEMENT ...ttt e e e 37
5.4 PRODUCTS, CATALOG AND PRICES MANAGEMENTccoctimiiiiiniieeeieeee et 48
5.5 CART AND CHECKOUT MANAGEMENTccoiiiiiiiiiiiiiees 56
6. GENERAL PROJECT DETAILS ... e e e e e s eens 71
7. CONCLUSION ... e e e e e e e e e e s e s e e saasaasaassaaasssassassssasassasansanennnns 74
8. APPENDIX ...ttt ettt e e e e ettt e e e e e e e b e e et e e e e e e e a b e b ee e e e e e e e e nbeeeeeeee e e nnraeeeaeas 78
Code 1: Contact POINT AQAIESS ..couvieiiieiiieecee ettt e s e sreeesaneeenne 78
Code 2: RESET PASSWOI PABE ..uviiiiiiiiie ittt ettt ee ettt e et e e st e e e e te e e e s satae e e e sataeeesntaeeesntaeeesnnsseeanas 82
(0o e [T T WY 4o T oo o s o O PPPRIN 84
Code 4: Self REGISTIatiONcciiciiiie ettt ettt e e e e e e te e e e e stteeeeesasaeeeeessaeeesaasseeesanseananan 85
0@ 5: USEI PrOfile ..ttt ettt sttt sttt b e bt b e sae e st e et s 89
(oo e [] R @ o 1Yol [NVZ=T o} o] o P 90
Code 7: Calculate ShipPiNg COSt .uiiuiiiiiiiiie et ee et e e e e e e s eaar e e e esntaeeessbaeeesansseaaeas 92
€odE 8: CalCUIATE TAXES ...eeeruriirieieeiieeee ettt st sttt et et s et st e bt e n e n e s meesmeeeaneenrees 94
FIOW 1: PAQyMENT FIOW ... ettt ettt e e e e e e et e e e e e e e e e abatee e e e e e e e e nnstaaneaeanenns 94
FIOW 2: USEr IMPOIt FIOW.....uiiiiiieei ettt e e e e e et e e e e e e e e abasae e e e e e e eennstaaeeeeaeeenns 95
[o YT e T @ e [T gl Tq oo o PP USSt 95
FIOW 4: Order SUMIMAIY ..ueiiiiiiieeieiieeeeciieeeeette e e e etteeeseetaeeeesbeeeessbteeaesnseeaesastseesssssesessasseeessssseeessnnes 96
Flow 5: Update FUIfIlled Ordersooiiiee ittt st e st e e s ette e e e svte e e s sate e e s snaneaesnnes 96
BIBLIOGRAPHY ...ttt e ettt e e e e e e ettt e e e e e e s e bbbt e e eee e s e s anbbeeeeeaeeeaannraneeaaaeesanan 97

ABSTRACT

The main purpose of this thesis is to present the core aspects of Salesforce B2B Commerce
technology, how it is designed, how it works and how to exploit all its functionalities.
Moreover, the thesis will deeply dive into the presentation of an e-commerce website
implementation for a real company. This project has been one of the very first use of the
newest Salesforce B2B Commerce on Lightning Experience in Italy and in Europe too. The
technology is forecast to grow exponentially in the next few years since it is already striking
the market and it has already imposed upon the American market. The script is divided in
three sections. The first part will simply be an introduction of B2B, it is not the purpose of the
work to present all its peculiarities, but mostly to give a clear explanation of what is it and
why it is important to distinguish it from B2C. The second section will explain the design and
the functionalities of Salesforce B2B Commerce platform. At last it will be presented an
accurate analysis of a real world scenario of a company in need of a new e-commerce website.
The solution is built through a previous analysis exploiting software engineering design and
then through the main characteristics, configurations and pieces of code used to produce the

expected result.

ACKNOWLEDGEMENTS

| would like to thank my relator, Professor Giorgio Bruno for supporting and assisting me
throughout this project and for his insightful comments and suggestions on how to approach

the problem and present the solution.

| wish to also thank my work team and Deloitte Digital for having taught me a lot in these few

months and having given me the possibility to take part in this experience.

Moreover, | am deeply grateful to my parents, who have supported my studies in all these
years. Thanks for having taught me the importance of hard work and for having believed in
me at my lowest and at my highest. They have inspired me to follow my passions and they
have always been present in any important decision of my life. | would also like to thank my

brother, who has been my constant landmark and my biggest supporter.

A final thought goes to my closest friends who have shared these last 5 years with me, thanks

for having made my University experience the best time of my life.

INTRODUCTION

“What we need to do is always lean into the future; when the world changes around you and
when it changes against you — what used to be a tail wind is now a head wind — you have to

lean into that and figure out what to do because complaining isn’t a strategy.” (Bezos, 2013)

It has become clear that we are surrounded by a continuously evolving world and we are
facing an exponential growth of technology, therefore companies can either embrace the
changes and dominate the market or slowly disappear. Indeed consumers have changed their
habits and companies who want to survive must adapt to it. Companies must change their
way of doing marketing, their way of reaching out to clients and mostly they must offer a new
purchase experience that satisfies the modern customers’ expectations. This radical mutation
of the buying experience has been mostly significant in the B2C market, which represents all
the transactions between a vendor and a final user. In fact, many companies has decided to
move part of their business online or even some companies are directly born online (we can
think of some banks born natively as an online service). Online sales means no need to rent a
store, no need to pay for employers to run the store, no need to pay electricity and everything
that comes from having a physical shop to maintain. This has obviously led many B2C
businesses to switch partially or totally their traditional way of selling to an online one. But
what about Business to Business market? B2B stands for all those transactions that happen
between two companies, so final clients are still people; however, they buy for the company
and not for themselves. We have a totally different type of sails experience, because we are
talking about few high price transactions, smaller amount of clients and long term
relationships with the vendor. B2B is indeed a completely different problem from B2C and we
must face it according to its own rules. What remains absolutely true in B2B commerce too,
is the fact that also companies who buy from other companies expect a totally new
experience. They expect to be able to buy what they need without having to call the vendor,
they expect to receive specific targeted marketing and discounts: the possibility to purchase
online is not an optional anymore, it is considered a commodity. In the following pages we
will see exactly what we mean for B2B, how it differs from B2C and which are its key points.
Then we will shortly analyze how B2B is evolving in relation to youngest business owner and

in a post Covid era that has undoubtedly speeded up the evolution towards online services.

We will see many McKenzie’s surveys that state how much is growing the desire and the
utilization of websites to make purchases also on B2B and we will see how this might impact
the general business. Buyers are paying much more attention to their purchase experience
and they might even choose a product over another one based on that. B2B e-commerce has
become a basic instrument for companies to reach out to possible clients, offer unique
experiences and create long term relationships. These platforms help companies gather much
more information about their clients, analyze it and improve their services, but they also allow
them to integrate all the services, from the CRM to the OMS, so that they all share data about
clients and they can build an overall complete user experience. This first part doesn’t want to
be a deep explanation of B2B or its marketing rules, but it aims to give a clear representation
of what is the problem that B2B companies are facing and why they should quickly adapt to

the changing trend of their market.

Then we will discuss one of the possible B2B commerce solutions that is striking the market
nowadays, which is salesforce B2B commerce. It is a new software product that is natively
built and designed to support the implementation of commerce for business to business
companies. We will see how the platform is designed, what types of advantages it offers and
how it can be useful to companies. The goal of the discussion is to deeply understand the
product and the logic behind it, which are the standard solutions offered and which parts can
be customized by the company. It is impossible to explain all the platform functionalities and
features, therefore the focus will not be on giving too much technical details, but mostly to
show how the platform is built to answer B2B problems. We will see how the platform deals
with each of the B2B key points, in order to really understand the structure behind an e-
commerce website. We will also deeply analyze the database structure through class
diagrams, the different processes and features that the platform offers and the main
characteristics of the Checkout process, which obviously represents the heart of a commerce

experience.

In the second part of the discussion we will see practical implementation of a B2B e-
commerce on Salesforce B2B commerce platform. We will analyze the project, and explain
step by step the requirements and user stories of each part, the data model used, the
processes structure and activity flow and also the actual implementation of the most

interesting functions. This part wants to be much more technical than the previous one and

will exactly show how a typical B2B problem can be tackled and which solutions we decided
to implement in this specific situation. This will also give the possibility to analyze how much
of standard parts are actually used compare to how much we needed to customize.
Moreover, it will offer the possibility to discuss the qualities of the platform, but also its
weakness and the features that should be improved. It is important to keep in mind that this
is a very new software and compare to its specular B2C solution is still extremely behind.
Having said this, it is now time to start the discussion and dive into this incredibly new and
exciting world of evolving technologies and ever-changing business, how one is influenced by
the other, how important it is to embrace the first to support the second. There is no way to
survive in the business if you do not adapt to the customer expectations and there is no way

to lean into the future without welcoming the newest technologies.

1. WHAT IS B2B?

Business-to-Business (B2B) refers to a form of transaction conducted by two companies such
as a manufacturer and a wholesaler, or a wholesaler and a retailer, so it mainly concerns
companies that provide products or services to other companies. A typical example is the old
fashion manufacturing industry (like steel industry or concrete industry), but also the newest
software houses and consulting services industry. Nevertheless, B2B marketing also concerns
companies whose clients are both small businesses and single individuals. It is called Business-
to-Business to underline the contrast with Business-to-Consumer (B2C) where the target of
the business is, indeed, an individual consumer rather than a company. Contrary to some
common assumptions, these two businesses, even if they have a common ground, actually
diverge deeply. It is well said that in nowadays world, where customers, both companies and
individuals, are used to receive high quality services and targeted advertising, it is not possible

anymore to consider B2C and B2B as the same type of problem.

2. MAIN CHARACTERISTICS OF B2B and HOW IT DIFFERS FROM B2C

In this first section | will provide the main characteristics of B2B, how it diverges from B2C and
why it is so important to have specific technologies to help companies managing this type of
business, which, by the way, is evolving with such an incredible speed. | will show the
importance of understanding the different mentalities that sit behind a purchase made by a
person for himself and one made by a company, in order to build a service that the customer
can easily use and personalize even without any type of informatics knowledge. After all,
understanding the intricacies of a marketing is essential for any business looking to increase

sales and profitability.

First of all, exactly like B2C marketing, also B2B marketing includes all the strategies that allow
a company to promote its products or services to potential buyers, which in the case of B2B
are companies. Unlike many people believe, marketing a target audience of business versus
marketing an audience of individuals may not be a one-size-fits-all problem. Individuals
buying something for themselves will have a greatly different emotional experience than
someone buying for their company. The main goal of B2B is to convert prospects into
customer, the process is much longer and much more involved than a B2C, which mostly
works with short campaigns. A B2C tool will have the ultimate goal of hooking customers,
which might never visit the website or purchase something from it ever again. A B2B
relationship, on the other hand, is based on long “courtships” and long-term relationships
with the business they are trying to attract. Therefore, a B2B tool will be characterize by ways
of making your customer feel special to you, rather that flat give-away campaigns. Indeed B2B
clients tend to make way less impulsive purchases and rather have specific needs and make

purchases of many units of product, sometimes even for third parties.

Some of the main differences between B2C and B2B are the following:

Limited number of Customers

Indeed the potential number of possible buyers for each product or service in B2B is usually
much lower than it is in B2C. The advertising, therefore, must be extremely targeted and

suited on the single client. An example of how this is put into practice by B2B commerce

software tools is to give the possibility to assign buyers (client accounts) to different Buyer
Groups and assign to each group different Price books, Discounts and Promotions. (This will
be well discussed later). It is important to underline that in this business even one single

customer not happy, might mean loosing a discrete amount of revenues.
Larger Orders

On the other hand, B2B sales are usually characterized by high number of units purchased at
once. Orders are, indeed, made in bulk. As a consequence, this will bring to higher revenues
on fewer sales in respect to B2C commerce. This also explains why every single customer

satisfaction is important.
Long-Term commercial relationships

When an individual decides to buy something from a website, it usually represents the last
stage of a marketing and sales funnel. On the other hand, when the buyer is a company, it
usually is the first stage of a long lasting relation. It is, therefore, fundamental to make sure
that the client will be able to access the finest post-sales and maintenance services.
Moreover, B2B marketing continues even after the sale, for example using newsletters to
update the client on new products or invite them to webinar and other similar ways to
maintain a strong relationship with him. Sometimes, companies have specific people, Account
Managers, who take care of the relationships with the customers in order to make them feel
unique. In these cases, becomes fundamental to have a software tool that allows to easily
manage client accounts, this is another piece at the basis of any well-built B2B commerce

tool.
B2B Buyers are usually more rational.

B2B buyers are usually experts of the sector, therefore they look for a specific product or
service and tend to avoid impulsive purchases. Moreover, they are spending company money,
so they also are accountable to the stakeholders for the purchases that they make. B2B buyers
are not hooked to buy just for a personal whim, they might want to make many questions
before buying something. This means give the clients an easy way to ask questions and receive
well-formed and exhaustive answers in a fast, easy way in order to generate an adequate user

experience, but mostly an efficient system.

Having said so, it is important to remember that not all B2B are the same. Different businesses
might differ from many point of views, which are an important part to take into account when

trying to build your commerce experience. (what-is-b2b-marketing, s.d.)

Firstly small/medium businesses obviously can rely on fewer resources than larger ones,
therefore there will be a few “key accounts” which will bring the largest portion of profits
over the other ones with lower purchasing power. This is much different from B2C Commerce

where the target audience has more or less the same economical status.

Secondly, because of the higher costs and dimension of the orders, the decision-making
process of B2B takes longer time and usually involves sector specialists to contribute in the
purchase and stakeholders who will need to approve the transaction. Therefore, it will past
more time from the initial contact with the potential client and the receiving of the payment

and each customer will negotiate individual discounts and promotions as incentives.

3. B2B MARKET AND TRENDS

Having understood what B2B means and which are its key points, it is now time to understand

how big is the B2B market and how much is forecast to grow.

We are now seeing an exponential growth in the market of B2B e-commerce systems. This is
directly connected to the need of many companies to be able to reach their clients throughout
the world with the simplicity and practicality of an automatic system. Until now the methods
available for B2B companies were quite unsophisticated, with superficial personalization and
contents to attract a rather broad audience (much more similar to the one of B2C), since
companies weren’t able to characterize well enough their potential customers. But with the
evolving of technologies we can say that, nowadays, there are advances that allow a much
greater degree of tailoring and personalization, including the use of Al algorithms on data to
improve the customer experience and relationship management, in order to build a so called
customer-centric approach. Another functionality that has been recently included in modern
B2B software tools is the Mobile-First approach. As it is well known, buyers are moving a lot
from PC purchases to buying directly on their cellphone. Even if this is mostly true for B2C,

also a great deal of B2B buyers (usually small businesses) tent to use a lot tablets and any

10

small screen device, making fundamental to being able to optimize the website for a mobile
use. The idea is to make the user experience on mobile devices as pleasant as on the laptop.
Indeed B2B buyers tent to use the mobile device mostly to have an easy access to first-hand
information rather that to make the actual order, but also the purchase will need to be taken
into considerations anyways as a possible scenario. Nowadays B2B companies can count on
sophisticated e-commerce platforms to allow their customer to conduct the transactions
online, avoiding the burden of having to make purchase through a phone call. Let’s see some
interesting statistics to better understand why it is important to have a solid basis technology

to conduct a successful B2B (Arnau, Liz, Dennis, & Jennifer, 2020).

Base on a B2BecNews article, B2B e-commerce had a $900 billion market in 2017 in the USA
alone and according to Forbes the marked will reach $1.8 trillion in 2023 (John, Susan, Charlie,
& Rachel, 2019). In general, B2B companies are increasingly looking for digital tools to boost
their sales and mostly to adapt to changing buyers. Indeed, in 2015 a Google search found
that 50 % of the B2B Buyers where millennials, while in 2012 it was around 25%, nowadays
the percentage has grown to 73%. The buyers change means the business’ sales process
should change too (Kelsey & Pashmeena, 2015). Millennials prefer personalized experience
and digital channels rather than a sales representative. According to a McKinsey survey in
October 2020 more than 75 % of buyers and sellers prefer digital self-serve and remote
human interactions over face-to-face engagements. This sentiment has much grown during
the lockdowns and keeps intensifying even after it. According to Google only 20 % of the B2B
purchases are based on the actual price and offering, while the remaining 80% are directly or

indirectly linked to the user experience.

The following graph from McKinsey shows how the B2B interactions have moved to remote

and customer are pleased by it.

11

Most B2B seller interactions have moved

to remote or digital ...

Current way of interacting with suppliers’ sales reps

during different stages'
%o of respondents

In-parson

Remaote
Digita
et e 22 22
ldentifying Evaluating
new suppliers new supplers
10 i
McKinsey
& Company

Even more interesting of the McKinsey survey is the fact that also the amount of money B2B
buyers are willing to spend on online e-commerce purchases has increased exponentially.

70% of B2B buyers states that they would spend up to $ 50,000 in an online purchase and 27

% would go over $500,000.

This has brought the majority of B2B companies to move from a traditional go-to-market to a
digital one, with heavily reliance on video and online chats. And this incredible change of
marketing that was boosted by the Pandemic, always according to McKinsey surveys, will

most likely become permanent after the COVID era. Indeed almost 90% of decision makers

Ordering

36

Reordering

... and that’s exactly
what customers want.

~70-80%

of B2B decision makers prefer

remote human interactions or
digital self-service’

Why?

+ Ease of schaduling

* Savings on travel expenses

* Safety

say that new e-commerce sales practices will stick even beyond this year.

We can, therefore, say that B2B technologies’ impact on today’s way of making B2B

transactions is and will definitely increase in the next years.

12

4. SALESFORCE B2B COMMERCE

It is now time to discuss one specific software technology that is now striking through the
market of Business to Business: Salesforce B2B Commerce. In particular, | will refer to the
newest come out platform called Lightning Salesforce B2B Commerce, that improved the
previous Classic one. We can say that the two solutions are two sides of the same coin, but
there are some differences that make the newest solution more flexible and easier to be used,
even by a not programming expert. One typical example is the fact that Classic Salesforce is
built natively on Visualforce, which is a powerful framework that can be used to create front-
end interfaces and works well with Apex language on the back-end. So what is the problem
about it? Well, the main issue is that you do not give the possibility to the B2B company to
autonomously create their own front-end pages unless they have programming language
knowledge. The incredible breakthrough of the newest Lighting Experience is that it uses Aura
Components or even the latest LWC (Lighting Web Components), which can be configured
simply using some clicks. Custom components will obviously need to be programmed, but you
can create these components so that then the B2B company will be able to change part of
them from the “Experience Builder”, through a nice, user friendly interface, that does not
involve any type of programming knowledge. The following picture, shows how a single LWC
component might look like on the Experience Builder. In particular, it is a custom LWC
programmed by me, that can be placed on the homepage of a website and allows the final
user (if logged in) to create quick orders just by searching the products through their SKU.
As you will see the B2B Commerce User will easily be able to add customizations to the
component without having to write a single line of code. On the left, there is the

customization wizard, while on the right there is how the component will show.

13

H - e _ I
| Quick Order v M
| Titie Ordina Veloce
Ordina Veloce i
Prodotto Quantita
Effective Account Id [}
{!CurrentUser.effectiveAccountld} SKU Prodotto ... 1
label prodotti
SKU Prodotto ... 1
Prodotto rodotto
label quantity
SKU Prodotto ... 1
Quantita
label placeholder for product sku
SKU Prodotto ... 1
SKU Prodotto ...
Add Line label SKU Prodotto .. 1
+ Aggiungi Linea
+ Aggiungi Linea Aggiungi a Carrello

Add To cart Button Label

This is just an example to show how powerful could be the Lighting Experience.

Another important difference between Classic and Lightning Experience is that Classic is built
as a managed package on the core Salesforce platform which limits its ability to be a
completely integrated OOTB cross-cloud solution. This means, basically, that it has a set of
components and applications that must be installed in the Salesforce Organization before
being used. On the other hand, the B2B Lightning commerce is designed on the core
Salesforce platform, which allows also on the data model point of view a complete control
over the customer journey. For example, the Product object used in B2B Lightning is the same
of the one used in CPQ, Sales Cloud and Service Cloud. This allows to build a connected OOTB
solution for the entire customer journey and helps learn about which products the user is
interested in, which ones he actually chose to buy (added to cart), the products the user
bought in the past (past Orders) and which ones he has some concerns about (products and
orders ready but not concluded). To be precise also Classic Salesforce provides an around the
circle customer journey data model, but it is not seamlessly connected with other clouds and

is custom and complex in nature.

14

4.1 SALESFORCE B2B LIGHTNING

Salesforce B2B commerce focuses on enabling companies to create e-commerce storefronts
designed specifically for making large volume purchases from other businesses online. This
particular technology includes all the basis elements to operate in a B2B transactions, such as
authenticated websites to make users create their account and being uniquely threated. This
means having the possibility to create custom storefronts for a unique look for each account
group and being able to offer different product catalogs by account selecting only a subsets
of the products for each one. Shopping carts must be able to accommodate hundreds of items
per order and the users must be able to reorder in a easy and quick way, with just few clicks.
More than that it allows to create products and variant products and negotiate specific
contracts and prices by single account. Finally it offers solutions to integrate complex shipping
functionalities, many different payment methods, such as credit card and purchase orders,
and many different storefront and order templates. Since B2B Commerce is built natively on
the Salesforce Lighting Platform, it integrates directly with Salesforce CRM data from Service
Cloud, Sales Cloud and Experience Cloud. This means that important data will be available and
accessible easily by both buyers and sellers. In this type of services it is always important to
remember that there are two sides of the system. There is the sales organization (the B2B
company that sets up the store in order to sell its products/services) and the buyer
organization (the company that uses the platform, the actual clients). The first one needs to
access all the information about the accounts of the customers in order to offer them the best
user experience as possible and also needs to access the purchases information in order to
carry on the purchase orders through an integrated Order Management System (OMS). On
the other hand the second ones need to be able to access their CRM data directly on the
website, to see the special promotions and prices that were reserved to them but also to
easily create orders, access their order history and account information. What is really
impressive about Commerce Lightning Experience is that provides a quite high number of
personalization without any kind of need of programming. In particular, it offers
administrators a tool to easily build their storefront called Lightning Experience Builder, which
allows to simply drag and drop components on the page and create the webpages. It also
provides a well structured BackOffice and class diagram implementation, ready to use, in

order to store all user information and that can be easily integrated with custom

15

implementations. So, even if the software offers a quite high number of out of the box
features it also allows to create custom objects, storefront pages, profiles, permission sets
and basically any part of the platform can be customized accordingly to the user need. This is
what makes this platform extremely flexible; the ability to both have a ready to use website
that can be very much easily configured, and, at the same time, it gives the user the possibility

to implement almost any type of personalization. (Salesforce Official Website, s.d.)

4.2 SALESFORCE B2B COMMERCE - Technical Characteristics
The platform can be divided into two main parts: the storefront and the back-office.

The Storefront represents the front-end site of the e-commerce; basically what the clients of

the B2B company will see and access while visiting the website.

The back-office is the part of the platform that will be accessed by the company itself in order
to make the configurations, create the store and the objects, access all the accounts
information, eventually create promotions and access the order management system. As said
before B2B commerce can easily integrate with other systems to allow the import and export
of data from any CRM system to the e-commerce database. It can for example be integrated
with SAP systems trough a middleware (for example Boomi) in order to export the e-
commerce orders to a SAP management system that will manage the OMS. A Salesforce
Database is integrated by default, it already presents a standard structure, that is applicable
to B2B systems. Anyways the Database can be customized with other classes as well as the

objects can be customized with more fields, other than the standard ones.

When an organization is created, it can assume different structures. It can be a single site with
one storefront, a single site with multiple storefronts or even multiple sites with multiple
storefronts. The idea is quite comparable to a traditional brand with many physical stores
situation; a company can sell its products in a single city (single site) or in many different cities
(multiple sites). At the same time, the stores in one city can have the same display window or
different ones. These would be your storefronts. The term “storefront” is usually used by B2C
Commerce websites but it also describes any online ecommerce experience, it represents any

place a shopper goes to buy something. When you build your website you need to think

16

about how many actual websites you want and for each how many storefronts you want to
offer to the users. So, each site will have its own domain URL to be accessed and then each

storefront will share the domain but will be associated with different store names.

Once the store is set up, it is time to populate it with your products. Notice that | will use
products to refer to actual physical objects but also software, services or anything that a B2B
commerce could sell. To associate products, firstly, you need to create a Storefront Catalog.
As the name suggests each storefront can only have one single catalog (that will be the
storefront catalog), so if the organization has more catalogs you will have to create multiple
storefronts. The storefront catalog needs to be structured using products categories. These
categories will create the storefront default navigation. (Even if we will see that this
navigation is actually quite customizable too). The categories are important because they
group similar products together, and separate different ones. They are the spine of the
website, so it is important to think them through before writing any type of custom code.
Categories can be structured in top-level and child categories. All categories are children of
the root category that does not have a name, while all other categories must have one. The
category tree can be as deep as you want it to be and you can choose not to show a specific
category or an entire branch of categories on the default navigation menu, without any need
of customization on the default navigation menu. Once the categories are set up, it is time to

add the products.

Products are characterized by their attributes (as per any other object), but in the case of
products the attributes are more important since they will contain the information that the
shopper will see on the storefront and use to decide whether to buy or not something. For
example, for a company selling glasses the attributes could include size, color, material, lens
type and brand. When you define the attributes, these will be applied to all your store
products. So each product is owned by a catalog, but you can include a product in as many
catalogs and categories of your store as you wish. To be displayed on the storefront a product
must at least be assigned to a storefront category, searchable, must be assigned to an
entitlement policy and a price book. You can then decide which attributes of your product

can be used by the user to search it on the storefront.

Sometimes you need to have the possibility to create variations of the same products. For
example, if you sell sunglasses you might want to sell products with the same exact

17

characteristics but with different sizes and colors. To do so, Salesforce has created variations,
variation groups and master products. The idea is that you can create a Master Product that
is basically the sunglass that comes in different colors and sizes. Then you can create a
variation group, that groups together all variations of the master that share one variation
parameter, such as all sunglasses that comes in blue. Finally, you specify the single variations,
that means you create the sunglass with size small and color blue, another one with color
yellow and size medium and so on. Normally variation attributes are either picklists or
checkboxes. It is important to underline a limit that Variations have, that is the fact that
product images displayed can only be associated to the parent object, this means that you
cannot add directly an image for each variation of the master product. This means that is
some cases you will need to use a naming convention to get the specific variation image on a

custom component placed on the storefront.

It can also happen that some products can be sold as a set of products, for example a makeup
kit that comes with a mirror, some make up and a hairbrush; in this case you can exploit the
Set object that will display all these elements together on the storefront. Notice that with Set

objects, the products can also be sold and displayed separately.

On the other hand, if you need to bound some products together, so that they can only be
displayed and sold together you can exploit Bundles, which will group the products and sell

them only as a group.

Finally, there are Options, which are accessories of a product, that cannot be sold by
themselves, do not come with an image and are strictly related to a product. A typical example
are warranties for different time periods. These types of products are nor searchable nor

orderable separately from the product they refer to.

In general, products can and should be associated with images. These can be links or can be
images directly loaded on the Commerce back-office, and managed by the Content
Management System (CMS). Each product will have a primary image, shown on default
category details page, and other images that will be shown on the default product detail page
in a carousel. Note that | always add the “default” term, because as usual all these pages are
customizable and therefore you can show whatever image of your products you want if you

write the code and the storefront component to do so.

18

What is also quite important in an e-commerce is the Inventory. Indeed the user must be
informed about when a product will be delivered, if the product is in stock or not and
eventually when the product will be available. This comes in a built-in solution provided by
B2B Commerce. In particular, you can use a list of product IDs to map to inventory details,
such as amounts, allocations, preorders and in-stock dates; this list represents the online
inventory. You can assign an inventory list to a specific site, but also to multiple sites to share
the product availability across your organization. At the same time it is important to underline
that inventory can also be managed using integrations with other systems. In this case, all the
inventory checks will have to be done by custom code and HTTPS calls to external services.
But, other than that, the process is pretty straight forward. We will see an example of how to

implement this in the practical section.

As | mentioned before products to be shown on the storefront must be associated with a Price
Book. These objects are used to define your products prices and also contain information
about the currency used. Consider that an organization might have multiple currencies, so it
will have different price books for each currency. More than that price books can also be
assigned to buyer groups, that means basically that you can assign different prices to the same
products depending on the user who is navigating the website. So you can have more active
price books at the same time on the same storefront. This is a powerful tool, because it allows
the Commerce Organization to establish specific negotiated prices to specific user. This is
really important in the B2B Marketing to make sure that the customer receives a treatment
that makes him feel special and unique. As we said at the beginning, one of the key concepts
of B2B Commerce Marketing is to create special offers targeted on the single (or on few)
account, in order to create a long term relation with each client. You can associate a price
book to one or more sites of your organization, but it must be associated with at least one to
be seen on the storefront. Moreover you can also define different prices for varying quantities
of a specific product using price tables. So for example you can decide to create a price table
that sells one sunglass for 10S and two to three sunglasses for 8 S each. This is helpful to
manage what so called Volume discount, that is one of the most used discounts in B2B
Commerce together with Coupons. Volume discounts are nothing more than discounts based
on quantity. In case of B2B Commerce it is not unusual that a user buys a large volume of

products all at once, so here comes the Volume discount.

19

Another important subset of objects are the ones used to characterized the users of the
Commerce, precisely I’'m referring to Contact, Account and User. As we already said we always
have to consider the two sides of the Commerce problem: the B2B Company that needs to
know who their customers are and the clients side, who wants to access their information
and eventually update them. In order to do so B2B salesforce Commerce offers some standard
Objects to track this information and make it available as needed. This object represent the
Client Company, so for each customer that enroll in the platform will be created an Account,
basically every client will be described by an Account. However, sometimes, it happens that
a customer needs to have different “profiles” for its employees, so that the Account is shared
among them, but each company user can access the platform separately and make its orders.
To do so an Account can be associated with many Contacts and each Contact refers to a User.

The following image better describes the relationship between these objects.

USER CONTACT
* Accountld
* Contactld * Name
* Name * ContactOwner
+ Alias 1 1| * Phone
* Username * Email
* Email * Currency Iso Code
* Currency Iso Code * Fax
* Timezone * HomePhone
* Language
n
ACCOUNT
1| Name
* Currency
* Ownerld

* BuyerAccount

This schema does not contain all the default attributes of these objects, but | selected a

representative subset of them.

The User keeps the information about the physical person who is logging in the portal. So, it
has a username and a secret password, other than the information about the default language

that the user wants to use, the currency type and his time zone.

20

The Contact specifies more details of the User, in particular the ones that concern how to

contact him, such as: Phone, Fax, Email, etc...
Contact and User have a one to one relationship.

Finally, the Account represent the company. It might be associated with many users and
indirectly with many contacts. It also stores the information about Buyer Account. So, what is

a Buyer Account?

Let’s remember that also the employees of the company owning the B2B Commerce might
want to access the platform. They for sure will not buy anything from the e-commerce, but
they might for example need to access the back-office in order to make changes or gather
clients’ information. Or even, sometimes, companies do not build their own e-commerce
platform, but they have their e-commerce programmed by somebody else. Also in this case
there will be some Users (for example the developers) who do not need to access the web
store, but they need to access the back office functionalities and code in order to do their job.
So the question now would be how salesforce distinguishes accounts and users who can
access the storefront and the ones who can access the back-office? The answer is Buyer
Account. When an account is enabled as a buyer, than the contact can be enabled as a Buyer
as well and so the user associated with that contact will be able to access the e-commerce.
This double enabling, both for the Account and the Contact, might seem useless, but is,
actually, not. Image the scenario in which an Account is linked to many Contacts, but not all
of them should access the portal, then the Account will be enables as a buyer, and only the

Contacts that need to be make purchase will be enabled too.

Now it is time to deal with the problem of how Accounts are linked to Price Books and
Products. As we already mentioned many times, we want to be able to control the prices to

which each Account is associated, and eventually offer special deals for some of them.

First things first, we want to be able to decide which product a user can see. Maybe we have
special products, like limited products that we want to show only to a subset of our clients.
To do so there is the Entitlement Policy object, that associates products with Buyers. So each
Product to be seen but at least somebody, must be associated with an entitlement policy, and
on the other hand also a Buyer to see some products on the store must be associated with at

least one entitlement policy. One possibility to manage this, would be to associate each buyer

21

to an entitlement policy that groups all the products we want to show him. Obviously, this

solution is not quite scalable.

Secondly, there is the problem of price-books. As we said earlier, each product might be
associated with different price book entries coming from different price books. So each Buyer

should be associated with a specific price book as well. Again this is not very handy.

So what is actually used are Buyer Groups. A Buyer Group is used to organize similar Buyer
Account together. This means grouping all Buyers who share store, products, prices, and
entitlement policies. So each time you have a new user that falls in these characteristics you
can just assign him to this buyer group and he is ready to go. The following class diagram gives

a visual representation of the relationships between these entities.

BUYER ACCOUNT BUYER GROUP BUYER GROUP
* Buyerld MEMBER .
* Credit Status « Buyerld * ame. .
* Available Credit 1| * Description
* BuyerGroupld ¢ Name
* Name
1
1 1
1
. BUYER GROUP
PRICE BOOK PRICE BOOK
ACCOUNT 1
1] ° Name : g:sr.:fiption * Pricebook2ld
* Currency . 1 * BuyerGroupld
* ValidTo
* Ownerld
* BuyerAccount * Currency lso
Code

One last important thing to mention with Accounts is Contact Point Address. This class stores
the information related to the addresses of an Account, both for Billing and for Shipping. In
the standard solution each Account can have many Shipping Addresses and Billing ones, so
on the checkout phase the user will be asked to choose one address for each type in order to
proceed with the order. We will see in the last section a practical example that has many more

constraints on how many addresses a User can have and also on the possible countries a user

22

can choose. As usual any customization is possible if you are willing to write some code. So
for the standard solution the relationship between accounts and Contact Point Addresses will
be as follows. To be fully complete, | have also included the Contact Point Phone object, which
is quite uncommon, since the phone number is already a field of the contact itself, but it still
exists and in some cases it might come in handy to have a more complex structure to store

more information related to the phone number (other than the number itself).

Another fundamental part of the platform deals with managing the object access. In order to
create a secure website it is important to apply the principles of least privilege and need to
know, which mean a user should be able to perform only the necessary actions for him to use
the platform (least privilege) and should be able to see only the data that concern him (need
to know). So, in this mind set, Salesforce provides two main objects that can be used to

manage the accesses: Profile and PermissionSet.

Profiles grant the minimum permissions on objects and actions that all users of a particular
type need. Each User must be associated with one and only one Profile, which gives him the
possibility to access objects or perform certain actions on them, like create, delete, edit,
clone, etc... On the other hand, permission sets grant permissions and access settings to a

specific user.

So you can use profiles to grant the minimum permissions and settings that all users of a
particular type need, then you can use permission sets to grant more permissions as needed.
The combination of profiles and permission sets gives you a great deal of flexibility in

specifying object-level access.

In particular, a profile is a collection of permissions and object settings. Object settings
determine which objects the user can access and also which attributes of each object is
accessible, while permissions determine what kind of actions a user can do with those objects
(create, delete, etc...). Each profile can be associated with many Users, but each User can
have only one profile. There are some standard Profiles, such as: Standard User, Marketing
User, Contract Manager, System Administrator and Minimum Access — Salesforce. Each one
includes some specific permissions, for example a standard user can create and edit objects,
while Minimum Access-Salesforce Users can only view records. The system administration

profile has the widest permissions and access to data, so it can configure a great deal of the

23

Salesforce Organization, therefore, it is important to assign this profile only to specific users.
On standard profiles it is not possible to edit permissions on Standard Object, while you can

set the permissions on the custom objects that you create on the platform.

Sometimes you need to create profiles outside the standard ones, to do so, the easiest way
is to clone an existing profile and modify the permissions and access to objects. Another way
would be to create a new profile from scratch, but that is quite complex and mostly it is easy

to make mistakes or forget something.

One particular profile is the guest one. With the term guest | refer to any user, who is not
logged in the platform, but still should be able to navigate the store. This profile must be
carefully configured, since it will be assigned to anyone who visits your website. Obviously
not all problems are the same, so there is no standard configuration for it, although there is
a default one, which can be modified as needed. Usually a guest user is set to be able to access
products and categories of the Store, but not prices and cannot add products to cart or

proceed to checkout.

A permission set is a collection of settings and permissions that give users access to various
tools and functions. The settings and permissions in permission sets are also found in profiles,

but permission sets extend users’ functional access without changing their profiles.

Users can only have one profile, but they % 1

USER PROFILE

can have multiple permission sets.

%
Permission sets are usually used for two

main general purposes: either grant PERMISSION

additional access to custom apps and * SET

objects or to grand additional access to

custom fields.

24

It is now time to discuss the data model of the most important objects in an e-commerce: the Cart,
the Order and the Order Summary. Obviously, the core aspect of an e-commerce website is that it
offers the users the possibility to order their favorite products just in few clicks. Therefore, the

Checkout process and all the related objects are a fundamental part of the platform.

The checkout flow has a default design offered by the platform, but it is completely customizable as
needed. Here we will discuss the standard design, which is the basis of any checkout flow, while in

the last section we will deeply discuss an example of a real implementation of it.

The Checkout flow design takes into considerations three main views: the browser side, the flow
side and the third-party services side, which we will map as the pools of our process model. The
flow starts when the buyer creates a cart and clicks on the checkout button. Immediately after the
user is asked to insert the desired delivery date, to do so the flows stops and uses a Screen Flow
object to pass information from backend to the user interface. This integration is basically managed
by the Salesforce platform, but the developer can decide to write its own screen flow or use a
standard one. A screen flow can be any Aura Component that implements the Screen Flow Interface.
The difference between how a screen flow page and a web page are visualized on the user interface
is only the fact that web pages are characterized by a unique url, while all screen flow pages of the
checkout share a common url. After the user has selected the desired shipping address, the flow will
manage the check inventory and the shipping costs calculations. Has you can see from the diagram,
both these actions might require the connection to an external system service. A typical example is
the check inventory, which might need to connect to a SAP system to gather the information about
the available quantity for each product of the cart. The connection to external systems is manage
through REST API calls, fully integrated in Salesforce. Shipping costs are instead a little different,
they might need to connect to an external system to me calculated, but then they pass through
another screen flow on the user interface so that the user can pick which type of delivery he wants
(with this | mean like: fast delivery, standard delivery, etc...). Once the flow receives the data from
the user interface it proceeds updating the shipping services costs on the cart and, then, calculates
the taxes. Also this action might require an external service connection. Once all the costs
information has been collected and saved the user will see on the screen a summary page of its cart,
with the total amount he will need to pay in the next step. Before the payment, though, there is a
flow action, that transform the cart to and order. At this point, the cart object is abandoned and

instead it is created a new Order object with all the related information from the cart. After this, the

25

user will choose a payment method and again the flow will need to connect to an external system
that manages the payment (for example Stripe for a card payment). Then the flow will change the
Order status to Active. This action will automatically create a new object: Order Summary, which
will keep all the final information about the user order. Once the Order Summary is created, the
user will be redirected to an actual new page (so the URL will change) that shows the Order
Summary details. Order Summary objects can be exported to external systems if needed. The
following process diagram gives you a visual representation of what | just explained. Consider the
green dot as an intermediate action that shows the User Interface, while the blue one represents a

connection to an external system.

BUYER | BROWSER
P § SELECT SELECT
| SHIPPING SHIPPING i
; ADDRESS COSTS ’

CHECK SHIPPING | SHIPPING | CALCULATE

CART INVENTORY COSTS @7 costs TAXES 5

{APICALLSTO I

{ THIRD-PARTY Y v v |

| SERVCES ;
: BROWSER
: CHECKOUT PAYMENT AND ORDER é
; SUMMARY BILLING CONFIRMATION ;
: ADDRESS ;
: T . ' :
TRLOW e i
i : Cciﬁ\T/ET*g ¢ MANAGE ACTIVATE E
L — — !
E ORDER PAYMENT ORDER |
APICALLSTO
| THIRD-PARTY v ;
! SERVCES ;

This previous diagram can quite well explain how the workflow of the process, but what about the
data? As we said before there are many objects involved in the process so | will try to dive deeper

into this aspect.

Firstly, it might be interesting to understand the relationships between these entities. Let’s start
from the ones concerning the Cart (called Web Cart in the Salesforce DB). As | did for the previous
class diagrams, | will not include all attributes of the objects but just the ones that | consider more
interesting and useful to understand the meaning and the relationship of them. Moreover | want to
remind that this entities, even if they are standard ones, they can be customized with other
attributes as needed, so this will remain a high level model to understand the structure and

architecture.

CART ITEM ORDER DELIVERY GROUP

Cartld METHOD
CartDeliveryGroupld

* Cart ltem Name * Carrier 1
WEB CART * List Price * ClassOfservice
nl = Quantity * Productld
Accountld * Productid * Name
Billing Address * SalesPrice * Description
PaymentMethodId * SKU
PurchaseOrderNo * TotalAdjustedPrice 01
Store * TotalAmount
Status * TotalLineAmount

TotalAmount 1 TotalLineTaxAmount
TotalProductAmount
TotalQuantity n "

TotalTaxAmount

TotalProductTaxAmount . CART DELIVERY
TotalChargeAmount GROUP METHOD
GrandTotalAmount CART DELIVERY S
GROUP * CartCheckoutSessionid
1 ——— - - - — | * CartDeliveryGroupld
1 * Cartld 1 * DeliveryMethodId
| * DeliverToAddress * WebCartld

= Name * ShippingFee

* Shipping Instructions

* DeliveryMethodId 0,1

[1

The Web Cart stores all the information related to the User’s purchase cart, that includes the
account related to the purchase, its billing address and payment method and all the prices data. The
prices are actually divided in the price of all the products with and without taxes, the total tax

amount and the total discount amount (if any), and obviously the total amount considered all

27

products and charges and also the shipping costs. A Web Cart is created as soon as the user click on
a product add to cart button. For this reason the relationship between a Web Cart and a Cart Item
is 1 to n. The Web Cart will have at least one product when it is created an potentially more than
one, while the Cart ltem will be immediately associated with a Web Cart when it is created. A Cart
Iltem represents the single product added to the Web Cart, so it keeps a link to the Product, but also
the quantity of that purchased product, its SKU (that is a product identifier commonly used in B2B
transactions) and all the prices of the single element. These include the unit cost, the cost with taxes
and discounts and also the total amount of the line, quantity considered. Moreover as soon as a
Web Cart is created also a Cart Delivery Group is inserted in the database. This object keeps all the
information about the delivery, that means the shipping address and shipping information. Itasa 1
to 1 relationship with the web cart, since they are created together, but it also has a one to many
relationship with each cart item. Finally ,the cart delivery group stores the information about the
chosen delivery method, this link is created after the user actually picks a delivery method during
the checkout phase, but the same order delivery method can be linked to many cart delivery group,

therefore the relationship is many to zero or one.

The order delivery group is the object used to store the possible delivery method offered by the B2B
company, therefore, it usually happens that the instances of this object are created a priori during
the data import. Each Order Delivery Group is related to a special Product that represent the specific
delivery method, never the less the actual price of that delivery method might change based on, for
example, the shipping address chosen by the user during the checkout phase. To manage this
variability of the price Salesforce offers another object, that is the Cart delivery Group Method.
When all the information needed to calculate the total delivery method cost is gathered, then a new
Cart Delivery Group Method instance is inserted in the database. This instance will be linked to the
related Order Delivery Method with a many to one relationship (so an Order Delivery Method can
be associated with many Cart Delivery Group Method, but this last one refers to only one possible
Order Delivery Group), but it will also be linked to the Cart Delivery Group instance. Notice that
when the Cart Delivery Group instance is created it has no related Cart Delivery Group Method,
therefore the relationship is zero or 1, while for the vice versa the relationship is 1 because the Cart
Delivery Group Method will immediately be associated with the related Cart Delivery Group. In the
following picture you can see the Data Flow related to the previously considered objects. This flow
does not consider all the actual operations the system and the user perform during the checkout,

but it stores the main actions that concern the instances in which we are interested right now. So
28

you can better understand when and how these object instances are created and updated during
the first part of the checkout process. As shown before the checkout process after the update of the
delivery method will convert all the Cart related objects into Order ones, so the data following data

flow stops right before the Cart to Order action. We will after see how the data flows continues with

the new objects.

------ . —
Is FIRST Ca Cart
,,,,,,,, | Lart)
Item in the Delivery
Cart ? Group
User clicks Create new
YES WebCart and
on Add To Cart Dol
Cart a G elivery Web
foup Cart
Cart
Iltem]
NO Create new Cart System update of
Item Web Cart state to Order
«Checkout» -| Delivery
Method
Keep
AN -
YES Sh}%g\ NO Use}: clicks on System creates new

— Methods for each
dert ,,,,,,,,,,,,,,,,,,, possible Order Cart
Delivery
; Group User picks a Delivery Method Ll Delivery
i delivery Address B Group
i ini Method
System Updates and a Shipping

checkout
{ button

Cart Delivery Group

Delivery Address Met}hod
and Delivery Account
Method on Cart ‘1 Shipping
Ch
Delivery Group gsen Addresses
Delivery
Method Chosen
Shipping —
Address

So when the user clicks on add to cart button of an object, the system will firstly understand if the
item added to a cart by that user is the first one or not. If it is the first element, it means that there
is still no web cart created, so it will create a Web Cart instance and a related Cart Delivery Group
Instance and put them in the Db, then it will create the new Cart Item instance and add it to the Db
too. Once the user decides to proceed to the checkout the system will present him with a screen
flow to pick a shipping address and a delivery method. To present the user with this information the
system queries the DB to gather the related data and create for each possible order delivery group

a corresponding cart delivery group method, that stores the information about that specific shipping

29

cost. When the user picks the two options and proceed, the system saves the ids of the chosen items
in local variables to pass them to the next action. The following activity is the update of the cart

delivery group with the shipping and delivery information.

Once this is completed the Order objects comes in play. So we will again first discuss the

relationships between the Order related entities and then we will see how the data flow continues.

PromisedDeliveryDate
Shipping Instructions

ORDER ITEM
ORDER * AdjustedLineAmount
« Accountld : gdjus’.ceﬂLlneAthWhTax
+ Billing Address .escr!p fon
+ ShippingAddress * ListPrice
* OrderDeliveryGroupld
* PurchaseOrderNo n
1 * Orderld
* OrderNumber
* OrderltemNumber
* Status + Product2id
+ TotalDeliveryAdjDistAmtWithTax ro u{_:
* Quantity
+ TotalAmount .
. » TotalAmtWithTax
+ TotalProductAdjDistAmount R . .
» TotallineAdjustmentAmtWithTax
+ TotalTaxAmount .
= TotalPrice
* GrandTotalAmount I
* UnitPrice
* SalesStore .« ListPri
1‘ . T';per'ce ORDER DELIVERY
| 1 o GROUP METHOD
ORDER DELIVERY GROUP 01 . Carrier
] * ClassOfService
. DellverTo.Address + Productld
* OrderDeliveryMethodid 1 « Name
* Orderld *» Description

. |

As you can see the order entities reflect the cart ones. The Order object keeps track of the Account
and Billing information, other than the Payment information, like purchase order number and the
prices. Every time there is the word “Adj” or “Adjustment” in the prices, it stands for the discounts
applied. It could be coupons or volume discounts. As usual, the Order is related to one or many
Order Items, which represent the single lines of the order and they basically include the same
information of the Cart Items objects. The Order Delivery Group remains the object to keep track of
the shipping information and is also stores the information about the chosen Order Delivery
Method. This last entities is exactly the same of the schema related to the Cart, indeed, this entity
is not recreated when moving from the cart to the order, but it is always the same. As you may

notice we have lost the information of the Cart Delivery Group Method, because we do not have a

30

Order Delivery Group Method. So how can we store the information about Shipping Costs? Well

when a Cart is transformed into an Order the Shipping Cost will be saves saved as an Order Item of

type Charge, to distinguish it from the other Order Items, which will have the type Product. It follows

the official prospect of how the Cart is transformed in an Order during the checkout phase.

ORDER OBJECT
Order Field Required for | Required for | Field Type | Value
Order Summaries | B2B Orders
Id Yes Yes Entityld *QGenerated at runtime
AccountId No Yes Entityld WebCart.Accountld
EffectiveDate Yes Yes Date CreatedDate
BillingCity No No Address WebCart.BillingCity
BillingCountry No No Address WebCart.BillingCountry
BillingEmailAddre | No No Email WebCart. GuestEmailAddr
ss ess
BillingLatitude No No Address WebCart.BillingLatitude
BillingLongitude | No No Address WebCart.BillingLongitude
BillingPhoneNumbe | No No Phone WebCart. GuestPhoneNum
r ber
BillingPostalCode | No No Address WebCart.BillingPostalCod
e
BillingStreet No No Address WebCart.BillingStreet
BillingState No No Address WebCart.BillingState
CurrencyIsoCode Yes Yes CurrencyCo | WebCart.CurrencylsoCod
de e

31

OrderedDate No No DateTime CreatedDate

OwnerId No Yes Reference WebCart.Ownerld

PoNumber No No String Collected at checkout.

SalesStore No Yes Entityld WebCart. WebStoreld

Status Yes Yes DynamicEn | Draft

um
ORDER DELIVERY GROUP OBJECT

OrderDeliveryGro | Required for | Required for | Field Type | Value
up Field Order Summaries | B2B Orders

Id Yes Yes Entityld *Generated at runtime
DeliverToStree | No No Address CartDeliveryGroup.Deliver
t ToStreet
DeliverToCity | No No Address CartDeliveryGroup.Deliver

ToCity
DeliverToState | No No Address CartDeliveryGroup.Deliver
ToState

DeliverToPosta | No No Address CartDeliveryGroup.Deliver
1Code ToPostalCode
DeliverToCount | No No Address CartDeliveryGroup.Deliver
ry ToCountry
DeliverToLatit | No No Address CartDeliveryGroup.Deliver
ude ToLatitude
DeliverToLongil | No No Address CartDeliveryGroup.Deliver
tude TolLongitude
DeliverInstruc | No No TextArea CartDeliveryGroup.Shippi
tions nglnstructions
DesiredDeliver | No No Date CartDeliveryGroup.Desire
yDate dDeliveryDate
OrderDeliveryM | Yes Yes Entityld CartDeliveryGroup.QOrder
ethodId

DeliveryMethod|d

32

OrderId Yes Yes Entityld Order.ld

DeliverToName | Yes Yes Text CartDeliveryGroup.Deliver
ToName
Note

ORDER ITEM OBJECT

Orderitem Required for | Required for | Field Type Value

Field Order Summaries | B2B Orders

Id Yes Yes Entityld *Generated at
runtime

OrderId Yes Yes Entityld Order.Id

OrderDeliv | Yes Yes Entityld ID

eryGroupld of OrderDelivery
Group

ProductZId | Yes Yes Entityld Cartltem.Product2ld

Quantity Yes Yes Double Cartltem.Quantity

TotalLineA | No Yes Currency Cartltem.TotalLineA

mount mount

Type No Yes Picklist Cartltem.Type

UnitPrice | Yes Yes Currency Cartltem.SalesPrice
or Cartltem.ListPrice
if SalesPrice is
empty.

ListPrice No No Currency Cartltem.ListPrice or

Cartltem.SalesPrice i
fListPrice s
empty.

Once the order is created the payment is proposed to the user. The payment can be managed in
many different ways and can be performed using different methods. The easiest way (from the
managing point of view) is using Purchase Order. This means the User will simply write a Purchase

Order Number that is saved by the system directly on the Order (and later on the Order Summary)
33

object. This solution does not need any type of integration with external systems. Sometimes you
do not trust your buyers enough to allow a purchase order payment, so you can for example use a
credit card payment method. To do so it is needed an integration with an external system. We will
see the example of an integration with Stripe system in the last section. In this case, what happens
is that during the payment the system creates an instance of the Payment Authorization Object,
which stores, among all, the information about: the Amount, the Balance, the Currency Iso Code,
the Payment Date and Status (pending, succeeded, failed) and also the Gateway Reference Number
that is needed to trace the payment on the external Platform. After the payment is completed, the
Order is Activated, this operation locks the Order instance so it won’t be modifiable anymore,
basically the order is completed and the User can not go back and change something. In particular,
one last family of objects is created, the Order Summary ones. These objects are very much similar
to the Order, so | won’t show it again in a class diagram. The main difference is that now we also
have a Order Payment Summary instance that is linked to a Payment Authorization and together

they store all the necessary information to trace the payment from the Order Summary.

From a more technical point of view, the checkout flow will be structures as follows. The picture is

taken directly from Salesforce documentation.

¢ Parent Checkout Flow

Fetch
Checkout
Session

locked Wait wait on async tasks :

determined by
-
Screen session next state

and locked flag

Checkout Y Carto ::grgﬁ:; Activate
Summary Order Address Order
. Redirect to Y Redirect to
If errors occured during Order Cart
subflow execution or errors

are present in cart
validation

34

What makes the flow move forward are the State of the Checkout Session Object, which also
contains the pointers to the Web Cart Id and Order Id. States are totally configurable, but the
standard ones are: Start, Shipping Address, Inventory, Confirm Price, shipping Cost, Taxes, Checkout
Summary, Cart to Order, Payment, Activate Order, Order Confirmation and Error. When the flows
starts, the state is “Start”, so the decision node will redirect and execute the subflow, whose
activation condition matches the “Start” state. In the standard case, as you can see from the picture,
the first subflow will be Shipping Address, which will make the user choose a Delivery Address. This
subflow is activated if the state is Start or Shipping Address, for all other subflows, the activation
condition is just their state. In each subflow, if no error occurs the state is updated with the next

one, otherwise, if an error occurs, it will be updated with the “Error” state.

| CART CHECKOUT SESSION
WEB CART
0,1 | = WebCart
+ State
* NextSate
0,1 + Order
ORDER * IsProcessing

5. A PRACTICAL EXAMPLE OF A B2B PROJECT ON SALESFORCE B2B LIGHTING COMMERCE

In this second part of the script, | would like to present a practical example of a real business to
business company that has chosen to switch from a traditional way of selling to a more modern and
much more efficient e-commerce website. The company’s core business is selling professional
refrigerators to other companies and businesses (of different sizes). An example of a client could
be a supermarket or a restaurant. The clients can, indeed, differ from small businesses to very large
worldwide known companies. This makes extremely important being able to identify the clients and
to divide the accounts in representative buyer groups, in order to provide targeted treatments. It
goes without saying that one big client might be worth basically what hundreds of other small
businesses are. This doesn’t mean that small clients are to be less considered, but on the contrary,

it's important to be able to recognize the clients and segment them appropriately.

The discussion will include the explanation of the project, the functional analysis to better
understand the context and the most interesting pieces of code used for the actual implementation.

35

5.1 PROBLEM EXPLANATION

The project was divided into two main releases, called waves. The idea was to being able to go live
fast with almost all the functionalities, leaving out only some more time-consuming and not core
functionalities to the second release. The company used to sell its product through direct phone call
from the clients to their referent seller, this meant that prices and promotions were discussed in a
one to one relationship with each client. It goes without saying that this is extremely inefficient both
for the client and mostly for the company. Just imagine if the company decides to make some
discounts for specific clients (for examples clients that had purchased more than a certain amount
of products in the last year), then it would have to contact all the sails representatives of those
clients and inform them about the sale. Then each sales representative would have to call all its
client who meet the requirements to access the discount and inform them about the new offerings.
Or let’s say that the company decides to create some discounts for new clients, then again it would
have to pass through all its sails representatives to inform them about the new policy. But this is not
all. Let’s say the company wants to have some information about its clients to conduct a survey and
understand which is its market segment, or how to improve its marketing campaigns. The company
does have access to the clients basic information, like company Name and contacts, but doesn’t
know other fundamental information, like the history of all purchases. Another inefficiency could
be also the fact that new clients are obtained only if the sails representatives find them, while
exploiting the power of a website we can manage the possible client to find the company. Nowadays
anybody that needs something, simply goes on the internet and search for it. Specially small
business who need a new refrigeration system they tent to go on the internet and search for
offerings, so why not exploiting this totally free sale possibility? We could actually go on with a
thousand of other reasons why that way of selling was inefficient but they all converge in one point:
having the possibility to access all clients at once, means having one single system that both the
company and its client can access an exploit to buy or sell. That is exactly why the company decided
to use Salesforce B2B Commerce platform, to implement its brand new ecommerce website, have
the possibility to access all possible information on all its clients and make any type of change (on

products, prices, marketing campaigns, etc..) available to its customers at once.

36

5.2 REQUIREMENTS

The sales countries of the organizations are Italy and France, therefore the website is completely
translated in one of the two languages based on the browser setup. On the other hand, since it’s
always good practice to write code that can be eventually expanded, the project also included the

possibility to extent the website to all possible countries, by adding the related translations.
The basic functionalities included are:

e User Registration and Management
e Products, Catalog and Prices Management

e Cart and Checkout Management

Obviously, this short list is a very high level view, so now | will break down each functionality in its
user stories. This will help understand what we want to achieve and therefore what we will need to
implement. As we will see user stories are written in a non-technical way, they do not include
anything about how the implementation will be done, but they simply specify the company
expectations of how the website will work. User stories are, indeed, just an informal way of
describing the features to implement using the natural language, in order to have a common

understanding between the developers and the business level.

5.3 USER REGISTRATION AND MANAGEMENT

Firstly, let’s talk about the user registration. This functionality must be divided in two main

requirements:

e User Self Registration

e User Import

New users must be able to create a personal account just by visiting the website and completing the
registration form. On the other hand, the company already has many clients and we want to import
the information of this clients directly from the company database systems, without the need to
make the customers fill up the registrations form. Therefore the website will have a complete
registration form and process for new user and also a special registration (containing only the
creation of a password) for all the previous customers of the company, for which the information

will be uploaded automatically (through a process) from the company database.
37

USER STORY | STEP DESCRIPTION EXPECTED RESULT POSSIBLE MISTAKE
CASES
User Import | 1 The company exports all clients | - Important information areused | If the imported
information to the website. Data | to create the Accounts Account has the
included is the same of the one | - Creation of a new User and | ‘Account For
inserted in registration form, | Contact instances for each. Ecommerce’ flag set
plus the following: - Creation of two Contact Point | to false than the
e Billing Address Addresses related to the billing | record must be
e Shipping Address and shipping addresses. skipped and no
- Creation of a Buyer Account for | account created
each Account and associate it to
a Buyer Group.
2 The client receives an email with | - Email created with user
a link to complete the | information and sent
registration. The Client clicks on
the link and arrives on a Change
Password page
3 The client inserts the new | - The new User is created and
password and click on the | activated in the organization.
registration button. The client is | Then it is associated with that
redirected directly to the home | Contact and with the Customer
page as authenticated user Community Plus Login User
profile and Customer 2
Permission Set.
- The Account become active.
New User | 1 - Clients click on Login button | - Clients gets on the registration
wants to and then on Create new Account | page
submit its link.
registration 2 Clients insert the following | If the specific PIVA is not already | If the PIVA is already
to buy information: present in the DB: present on the DB an
products e *Country (| - A new Account is created with | error message must

France/Italy)

e *Contact Name

e *Contact Last Name

e *Company Name

e *PIVA (TVA for France)

e *Email and confirm
Email

e *Phone Number

e *SDI (only for Italy)

e *PEC (only for Italy)

e *Fiscal Code (only for
Italy)

e SIREN (only for France)

e SIRET (only for France)

e *Accept terms and
conditions checkbox

e Accept Marketing
checkbox

e *Accept Privacy Policy
checkbox

Rules: fields must have specific
checks on the content inserted

all the related information
- The account is associated with a
Buyer Account and a new contact

be shown to the
user. Same if any
check on the
inserted field fails.

38

and fields with * are mandatory.
At least one between PEC and
SDI must be evaluated.

3 Client receives a confirmation | A new User instance is created
email with a link to complete the | associated with the Contact. The
registration. (the email used is | assigned Profile is Customer
the client email inserted in the | Community Plus and the

form) assigned Permission Set s
Customer. Account becomes
active.

From the user stories we can understand in a high level way the final expected results of the account

creation.

In the User Import case there is not a complex process to follow, indeed the new accounts are
created by simply running a snippet of code once (on the launch of the new website) in order to
import all the previous company clients from their systems to Salesforce platform and inform them
of the brand new e-commerce website to make the orders. The users will then receive an email
asking to complete the registration by clicking on the link contained. The users will be redirected to
the reset Password page, were they can create their new password and complete the registration.
From the system point of view, the Accounts and related Contact Point Addresses are created during
the import form the company DB, then the Users and Contacts will be created when the client

actually completes the registration by creating a new password. The process look as follows:

SYSTEM IMPORTS THE USER IS
MANUALLY RUN THE ACCOUNTS, CREATES THE ElkjﬂSAEI}E E;%Egjcsjk REDIRECTED TO
IMPORT USERS CLASS RELATED OBJECTS (CONTACT ON THE LINK IN IT RESET PASSWORD

POINT ADDRESS, ETC...) PAGE

THE SYSTEM CREATES THE NEW

THE USER IS REDIRECTED CONTACT AND USER INSTANCE USER CREATES A
TO THE HOME PAGE AS AND ASSIGNS IT THE RELATED NEW PASSWORD
LOGGED USER PROFILE, PERMISSION AND AND SUBMITS
BUYER GROUP

For the self registration case, the process is a little bit more complex. Once the User gets on the self
register page must firstly pick the country for the registration, then the related form will be shown

to him (as specified in the User stories there are some different attributes used between the French

39

and the Italian clients). Once the user enters the information, the system performs all the necessary

checks on the field values and if everything is correct, it sends the user a confirmation email. The

user will then be redirected, exactly like before, to the Reset Password page to create a new

password and complete the registration. Finally the user will be redirected to the home page for

logged users. You can see the process in the following activity diagram:

SERENTER TRTEa oo REGISTARTION FORM USER ENTERS
RELATED TO THE REGISTRATION
REGISTRATION COUNTRYOF | -
FORM PAGE REGISTRATION CHOOSEN COUNTRY INFORMATION AND
IS SHOWN SUBMITS
USER ALREADY ‘
REGISTERED
SRS REGISTRATION | USER USER
INFORMATION INFORMATION
REDIRECTED TO |+ ESERISLE"EKTSTSS EMA'LLJ SSEF';‘T O *Vaip NOT VALID
LOG-IN PAGE] |
USER CLICKS ON EMAIL USER IS REDIRECTED
LINK TO COCLUDE TO RESET/FORGOT
REGISTRATION PASSWORD PAGE
USER
STRONG USER ENTERS NEW
INFORMATION STRONS . PASSWORD
REGISTERED :

]

USER IS REDIRECTED
TO HOME PAGE FOR
REGISTERED USERS

USER IS ASSIGNED
TO A PROFILE

'y

Now that we have understood the processes for the User Registration we can move forward to

analyze the user login process. The situation is a quite standard one, the user has created username

and password and wants to login to its account. The user stories from the client are the following:

USER STORY | STEP

DESCRIPTION

EXPECTED RESULT

POSSIBLE MISTAKE
CASES

Client wants | 1
to log in the
website

Client gets on the store and
clicks on login button

Login page is shown

Clients inserts username and
password

System verifies the credentials
inserted

If credentials are
wrong the user must
be informed with an
error message “User
not found”

Client access the store. The
website is in the language
associated to the Country
related to that Account

40

Since the user login process intersects the forgot password one we add here also the user stories
related to it. Notice that the forgot password process is used also during the registration phase when

the user completes the registration and is redirected to the Reset Password page.

USER STORY | STEP DESCRIPTION EXPECTED RESULT POSSIBLE MISTAKE
CASES
Client has |1 Client gets on the store and | Reset Password page is shown
forgotten his clicks on login button and then
password on forgot password link
2 Clients inserts username System verifies the username | If the username

and sends an email to the user | doesn’t exists, the
with a link to reset the password | user receives an
error message

3 Client receives the email and | System verifies that the | If the password isn’t
resets the password password matches some | strong the client is
standard security criteria on | asked to create a
length and characters type new one
4 Client receives an email that the

password was reset and can
now log in the website

Since the Reset Password page is actually shared between users who wants to create their first
password and clients who want to reset their forgotten one, we need a way to distinguish the two
cases to present the user two slightly different pages (for example with two different titles). In order
to do so the Account object has the attribute “HasResetPassword__c” set to false for new users
creating a password for the first time, set to true for users who forgot their password. We will see
the attribute later in the Data Model. For what concerns the login process, what happens is that the
user gets on the log in page and can either click on the forgot password link or insert his credentials
to be authenticated. In the first case he will be redirected to the Reset Password page and the
process will continue exactly like explained for the registration completion. In the second case the
system will check the credentials, if the user gets the wrong credentials ten times in a row the
account is blocked and the user will be asked to reset his password. Otherwise, the user is logged
into the website, the system firstly retrieves all his information and then redirects the user to the

home page for logged in users. The process is the following:

41

USER PROFILE AND
INFORMATION
RETRIEVED

|

USER PRICES AND

USER ENTERS LOG IN USER ENTERS HIS |
PAGE CREDENTIALS CREDENTIALS

INVALID
CREDENTIALS

USER IS ALREADY
ENROLLED

INCREMENT OPPORTUNITIES
USER NOT INVALID LOG-IN RETRIEVED
ENROLLED YET USER FORGOT COUNT
PASSWORD
ORI 1 s [
ORDERS

A

REGITSRATION USER REDIRECTED RESET PASSWORD RETRIEVED
PAGE TO FORGOT EMAILSENTTO |[«— USER BLOCKED l

PASSWORD PAGE USER
USER PRODUCTS
RETRIEVED
USER REDIRECTED TO USER PRODUCT J
HOME PAGE FOR [«— SUGGESTIONS ::TE;ECE[T)
LOGGED USERS CALCULATED

Look at the final ‘APPENDIX’ section to see:

e the Reset Password page implementation: code 2
e the Login Form page implementation: code 3
e the Self Registration page implementation: code 4

e the User Import Flow implementation: flow 2
Data Model

Each B2B Customer must belong to a single Account. An Account may have multiple contacts and
each contact is associated with a User and has its own credentials (username and password).
Basically, the company is represented by the Account object and for each company we might have
many employers (Contacts) which are allowed to log in and make purchases. In order to see
products, each Account is then associated with a Buyer Group through a Buyer Group Member

object. We will see in the next session how Buyer Groups are then associated with product prices.

The following class diagram better explains the relationship among the entities with their attributes.
(Notice that there are more attributes than the ones shown, since Salesforce uses many standard
attributes like “CreationDate” or “LastModifyDate”, which however are not interesting for our
discussion and will therefore be left out). The entity shown are: User, Contact, Account, Buyer
Group Member, Buyer Group, Contact Point Address and Contact Point Phone. For each object you

can see the relationships with the others and its attributes. The attributes with a name that ends

42

only standard Object are needed).

with “__c” are the custom attributes (the same notation is used for custom Objects, but in this case

1

‘ *

ACCOUNT USER CONTACT
AccountForEcommerce__¢ * Accountld * Accountld
AccountNumber = Contactld * Creation_Channel__c
BillingCountry * Country CurrencylsoCode
Blocked_ c * CurrencylsoCode * Email
CurrencylsoCode * Email 1 * External_ID__c
Customer_Group__ ¢ < Id * FirstName
Distribution_Channel__c * IsActive *Id
Division__c » First Name LastName
External_ID__c * LastName MarketingFlagConsent__c
FiscalCode_ ¢ * Profileld * Phone
1 FiscalDrawer ¢ * ProfilePitcureUrl * PrivacyFlagConsent_ ¢
HasResetPassword__c * Username * TermsAndConditionsFlag__c
Id » UserType
IsBuyer
Name
PEC_ c CONTACT POINT PHONE
Risk_Code_ ¢ CONTACT POINT ADDRESS -
Sales_Organization__c - | *id
SelfRegisteredAccount_ ¢ + AddressType |+ Parentld
ShippingCountry - BillToCode_ ¢ /| * TelephoneNumber
SIREN__c « City
SIRET__c « ContactPointPhoneld
A - Country BUYER GROUP
* External_ID__c
01 1 - :-‘IjouseNumber_c Desscription
BUYER ACCOUNT n | . IsActive ¢ : :E;(ternal_lD_c
AvailableCredit BUYER GROUP * Eametld " adl + Name
Buverld * Paren ccoun

. Bu:erStatus MEMEBER * PostalCode 1

» CommerceType *+ BuyerGroupld * ShipToCode__c

+ CreditStatus = Buyerld + State

« Externalld_c + External__ID_c * Street

« 1d * Id

* Name * Name *

Starting from the Account, we can see all the attributes needed to store the registration form
information. In particular, notice that in the user stories related to importing Users, we want to
import only accounts with the AccountForEcommerce__ c flag set to true. The Blocked__ c attribute
is another interesting one, it is used to verify if a specific account has been disabled by the company.
Indeed the company can decide from the backoffice to block a client Account and therefore all
contacts related to that account will still be able to access the website and log in but will not be able
to make any purchase. The SalesOrganization__c attributed refers to the Area of purchase of the
client, in particular there are three areas, two for France customers and one for Italian ones. This
attribute is used in the Check Inventory Requests, since the same Product might have different

availabilities respect to the Area it is sold to, so the HTTP request to the external service must include
43

this information. It is also important to underline that the information about Marketing flag
Consent, Privacy Policy Flag Consent and Terms and Conditions Flag Consent, which were all asked
at registration time, are saved on the Contact object and not on the Account one, since the consent
is related to the single user and not to the company. Each Account can have many Contacts and
many Users referring to it. While the relationship between Contacts and Users is one to one. In order
to be allowed to make purchases an Account must be associated with a Buyer Account object, so

the relationship here is again one to one.

The Buyer Account object stores important information related to the Account credit and credit
status, which the company can exploit to decide the financial solidity of its clients. In particular for
this project we used the attribute Risk_Code__c on the Account object to distinguish risky clients
from the others. When created each Account self registered was assigned to Risk_Code__c = ‘Z6’,
that means risky client, while for Imported client the risk code value was retrieved from the external
system. The company can decide to change the code at any time. This code is used at Checkout time
since only trustworthy clients (therefore with Risk_Code__c !=Z6) have the possibility to pay with

Purchase Order, instead of only with Credit Card like the other ones.

Each Account is also associated with one or more Buyer Group through the Buyer Group Member
object. Buyer Groups are really important because they allow to assign different prices to the same
object and make them available to the Accounts enrolled in that Buyer Group. Since each Account
could be associated with many Buyer Groups the default behavior is to show always the lowest price
available for that user. We will see later how price books and buyer groups are associated, for now
it is important to understand that each Account can see different prices for the same object thanks
to its association with at least one Buyer Group. In practice we implemented 7 different buyer
groups (and therefore 7 different price books, since the relation between the two objects is one to
one), which are the following: Standard, IT Gold, FR Gold, IT Silver, FR Silver, IT Bronze, FR Bronze.

The meaning of them will be explained later when we will talk about products and prices.

For what concerns the Contact Point Address Object, this entity is used to store the information
about the addresses that will be presented to the user at Checkout time to make its purchase. The
logic chosen for the management of this object is quite complex, therefore to support it, it was

coded a totally custom form to create and edit it. The high level logic consists in the following rules:

- Each Account in order to make a purchase must have at least one Billing Address and one

Shipping Address
44

- In particular only one Billing Address is allowed for each Account, while multiple Shipping
Addresses are permitted

- If the Account is imported, then it will have exactly one Shipping Address and one Billing
Address from the creation (the needed information is imported from an external system)
and will be able to add other Shipping Addresses accessing the website “myAccount” page

- If the Account is self registered, then it is created without any Address associated, therefore
it might happen that at checkout time it does not have any address available for billing
and/or shipping. In this case the checkout page will give the user the possibility to create the
needed address.

- Shipping Addresses can always be created either from the checkout page or from the
“myAccount” page.

- Billing addresses once created can not be modified, while shipping addresses once created
can be set to default or activated/deactivated. Only one and at least one shipping address is
the default one, so if you set one shipping address to default the previous default address

will be unset from the default one.

We can better analyze these specifics by splitting them in pre-conditions, user action and post-
conditions. Notice that, in order to reduce the number of cases, when you see ‘User completes
the form’, we imply that all the inserted information is correct, therefore it respects the fields

requirements and no mandatory field is missing.

PRE-CONDITION USER ACTION POST-CONDITION

User doesn’t have any | User completes the form | Anew billing(shipping) addressis
address yet selecting Address Type: | created and automatically set to

Billing(Shipping) default one and active.

User already has a billing | The form presents only the | A new shipping address is
address and no shipping | possibility to create a shipping | created and automatically set to

addresses address. default one and active.

User already has both a | The form presents only the | A new shipping address is
Billing and at least one | possibility to create a shipping | created. If ‘Is default’ flag in the
shipping address address. form is true, the systems unsets

the old default shipping address

45

and sets this one as the new

shipping default one.

User edits a shipping

address. (The form
presents only the
possibility to

activate/deactivate the
address or to set/unset

the default option)

User deactivated a default

address

The system returns an error
message asking the user to first
set another shipping address as
default one and then deactivate

this address.

User edits a shipping

address

User sets to default a non

active address

The system returns an error
message asking the user to
activate the address to make it

the default one

User edits a shipping

address

User deactivate a non default
address

or

user sets to default an active

address

The address is deactivated

or

the address is set to default and
the old default address s

updated as not default.

Crea un nuovo indirizzo di Spedizione

* Nome e Cognome

* Indirizzo

*Citta

* Provincia

Seleziona una provincia

Numero di Telefono

72772727272

Eindirizzo predefinito
v EAttivo

You can see the related code implementation in the Appendix section under Codel.

To better visualize the result you can see a screenshot of the actual form implemented.

» Form title will be:
- «Create new Address»,
if no address is present.

Copia dall'indirizzo di fatturazione

- «Create a new Shipping

* Numero Civico

“CAP

Default and
Active flags

Annulla m

46

Address» (as in the
. picture) if a billing
b address is already
present and only
shipping is possible

N Ifa billing address was
already inserted then the

ftalla user has the possibility to
N copy directly those
\ information in its new

N shipping address

Paese

This is a picklist whose
values depend on the
Country. The Country is a
read only field
automatically retrieved
from the Account instance

Notice that the Phone Number is filled by default with the Contact phone number, but it can be
modified and in this case a hew Contact Point Phone is created related to that Account and to that

Contact Point Address.

Finally, you can see in the form that no Address Type dropdown menu is present, since the form
refers to the case in with the user can only create a shipping address. If, instead, there were the
possibility to create either a billing or a shipping address then there would have been a dropdown
menu to select the address type to be created (this would be the case in which the title of the form

would be just “Create a new address”).

As we said before also at checkout time there is the possibility to create a billing address (if missing
) and a hipping address (in any case). For this situation, we will see that the page offers to the user
two different buttons to create either a billing address (mandatory if not present) or a new shipping
address (mandatory only if none is present), therefore we will have to possible forms: “create a new
billing address” and “create a new shipping address”, which will not present the address type

dropdown, since they are specific and there is no choice.

Another interesting part of the User management is related to the user Profile page, which allows
the user to see his information, change his email and/or password, update his profile picture and

change his Marketing Consent settings.

The change password process is very simple. The user needs to fill a form with a new password and
submits. The systems performs some checks on the strength of the password and if everything is
fine sets the new password and returns a success message, otherwise returns an error message. If

the password was actually changed then the user is requested to log in the system again.

To change the Marketing settings the user can click on the marketing checkbox (which is selected
or not depending on the previous value of the marketing consent flag for that user). Then the user
will see a modal asking to confirm the decision of changing his marketing consents settings and if
the user accepts the system updates the attribute on the client and changes the checkbox value at

front end.

The profile picture update is simply a button that allows the user to import a png or svg picture from
a local folder and upload it as his image. This image will substitute the standard user icon on the top

right corner of the website header (where there is the user menu, viewable only to logged in users).

47

For what concerns the email update the process is slightly more complex. The user inserts the new
email, then the system sends him two emails. One to the old email address of the client to inform
him that the email was changed and the other one to the new email address to allow the user to
confirm his new email address through a link. The client must click on the link and the system will
automatically complete the update operation. If the user does not click on the link the system will
not perform the update and the email will not be changed. Once the address is updated the user

will see the new email address on his profile page. The profile page will look as follows:

Profilo dell'Utente

Nome Societa

Mario Rossi MR

User
Username . Paese
o Information
mariorossi@yopmail.com Italy
Email Telefono
Q mariorossi@yopmail.com 72772727272

Change
Change email and

Profile Picture
chane password

buttons

Ma rketlng + Acconsento al trattamento dei miei dati personali per l'invio tramite whatsapp, sms e/o e-mail di comunicazioni a fini

Consent Flag

promozionali, commerciali, marketing e vendita diretta, nonché di una newsletter da parte di Epta SpA in relazione alle
iniziative proprie e/o di societa controllate e/o collegate.

The code implementation is at Code 5 in the Appendix section.

5.4 PRODUCTS, CATALOG AND PRICES MANAGEMENT

Salesforce B2B Commerce allows to configure a product catalog for each web store. In this case we
have one single web store, therefore one single product catalog. All products that the company
wants to sell must be associated with that product catalog in order to be available to clients. To do
so we need to firstly create some Product Categories, then assign each product to one or more
product category through the Product Category Product object. Finally you can assign each category
to the previously defined catalog. So, the relation between products and categories is many to
many, while each category car refer to only one catalog, but each catalog can have many categories.

Here follows the Data Model of the objects of interest for this section:

48

ACCESSORY
RELATIONSHIP__C

= AccessoryProductld_c

* Externalld__c
* Id
* ParentProductld__c

* Available_to_guest_user__c

STORE CATALOG

©d
* Store
* (Catalog

1

CATALOG

+Id
* Name

| *

PRODUCT CATEGORY

+ (atalog

= Description
«Id

* Show In Menu
* Name

[N}

2

L T L I T T)

PRODUCT

Accessory_Type_ ¢
Available_to_Guest_Buyers_ ¢
Description

DisplayUrl

Energy Class_ ¢
Depth__c

Height__c
Range_Volume_ ¢
Volume__c

Width__c

External_Id_ ¢
FoodCategory__ ¢
IsAccessory__c
IsLogoAvailable_ ¢
Name

ProductCode
StockKeepingUnit
Technical_Feature_ ¢
Unit_of_Mesurement__c

1

n

PRODUCT CATEGORY
PRODUCT
Category
Id

Is Primary Category
Product

CROSS-SELL
RECOMMENDATION

* Externalld

e Id

* RecommendedProduct

* RecommendedParentProduct

ENTITLEMENT PRODUCT

* Id
* Policy
* Product

ENTITLEMENT POLICY

* Active

= Id

* Name

= View products

BUYER GROUP PRICE
BOOK

BUYER GROUP

* Desscription

* BuyerGroup
* id

* IsActive

* Name

* PriceBook

* External__ID_ ¢
= Id
* Name

R

PRICE BOOK ENTRY
Active

CurrencylsoCode

ListPrice

PriceBook

Product

ProductCode
StandardPrice
UseStandardPrice

PRICE BOOK

* Active

* Description

« Id

= Is Standard Price Book
* Name

The Store Catalog links the Catalog to the Store, and the categories are represented with the Product

Category object, which has a many to one relationship with the Catalog object.

Categories and Products are linked through the Product Category Product class which uses the “Is

Primary Category” attribute to define for each product which is its primary category. We can have

categories without any product, while each product when is created is automatically linked to at

least one category, therefore the relationship is “one to n” (at least one) with the product category

product. Categories can have complex hierarchical structures composed of parent and sub

categories. For the purpose of this project, the category structure was the following:

e |Ice Cream and Frozen Food
o Horizontal

o Impulse

o Scooping

o Vertical
e Drink & Dairy
o Counter

49

o Horizontal
o Impulse
o Vertical

e Food Storage Equipment
o Counter
o Horizontal
o Impulse
o Vertical
e Vending
e Additional contents
o Shelves
Basket
Priceholder
Bin
Sticker
Other

O O O O O

As you can see we have five parent categories and four of them have some sub category. Notice
that categories are by default shown in the navigation bar of the website is the attribute “Show In
Menu” of the specific category instance and of all its parent category instances is set to true.
However the client wanted to have five tabs in the navigation bar, the first four tabs were related
to the first four categories and their subcategories (if present), while the fifth one was just Stickers,
which is a subcategory of Additional Content and therefore it would be viewable only as a
subcategory of Additional Content tab in the standard implementation. To allow this, the header

navigation bar component was completely rewritten according to the specific given by the client.

It is possible, with Salesforce Commerce, to decide which products each Account can see, by
exploiting the use of many Entitlement policies, but for the purpose of this project, this was not
needed, since all products are available to all users. This means firstly that only one entitlement
policy was created and all Buyer Groups are associated to it, secondly that also all Products are
associated with that entitlement policy. The products are put in relation with the Entitlement policy
through the Entitlement Product object, which has a many to one relation with both the Product
and the Entitlement Policy. Nevertheless, as we saw earlier, we created many Buyer Groups,
because we want to be able to offer the clients different prices. Therefore, we have seven Buyer
Groups associated one to one with seven Price Books. Note that a price book does not keep any
type of information about the actual price of each product, but it behaves like a container of all the
price book entries which actually store the prices. To sum up, for each price book we have many

price book entries, which link a price book to a product. Each product can have many price book
50

entries and so can be associated with many price books, but each price book can keep track of only
one price book entry for a specific product. Price books and Buyer Groups are associated through
the Price Book Buyer Group object. The price books defined for the project have the same name of
the corresponding buyer groups: Standard, IT gold, FR gold, IT silver, FR silver, IT bronze, FR bronze.
To access the product from the store, it must be associated with at least the Standard price book,
this means each product at least has one price book entry with the Standard price book. This is the
highest price assigned to that product. Guest users who access the website will see the Standard
prices for the products. When a user logs in, he will then see the prices related to the price book of
its buyer group. In particularly for imported user the buyer group is given by the external system,
while for self registered users the system automatically assign the bronze buyer group (and as a
consequence the bronze price book). The ‘IT’ or ‘FR’ are related to the Account country of the client.
The company can decide to change a user buyer group from the back-office at any time. When
browsing as a logged in user, the client is able to see for each product its standard price and the
special price assigned to him. (Gold accounts have access to the best prices while Bronze ones have
access to worst ones). Object prices might lower based on the quantity selected, indeed some
products have special discounts, called Volume discounts if the quantity bought is higher than some
breakpoints. This problem was handled exploiting a CVS file loaded on the platform and keeping
track of the percentage of discount for each volume rage of each product that has a volume
discount. We will see later how the product detail page looks like and how the Volume discount is

presented to the client, if available.

Products are of two possible types: Simple products or products with accessories. The first ones are
standalone products, while the second ones are sellable both as standalone and with customized
accessories included. On the product detail page the user can specify the desired attributes to add
to a product. The accessories (also represented through the Product object) are not sellable as

standalone. Products with accessories can present this cluster of accessories:

1. Sticker: it refers to the sticker which can be applied to the product. For some stickers, there
will be the possibility for the customer to insert their personal logo (eg. the name of their
business) which will be applied on the sticker.

2. Shelves: it refers to the kit of shelves compatible and purchasable together with in the

products (e.g. wooden shelves, molded shelves).

51

3. Priceholder: it refers to the kit of price holders compatible and purchasable together with
the product

4. Basket: it refers to the kit of baskets compatible and purchasable together with the product

5. Bin: it refers to the kit of bins compatible and purchasable together with the product.

6. Other: it refers to the kit of other type of accessory compatible and purchasable together

with the product (e.g. foot stainless)

Notice that the accessories correspond to the subclasses of the parent class “Additional

Content”.
On top of the previous accessories, products might also have some additional services associated:

1. Warranty extension service: it is the warranty extension service associated to the product (it
may be extra 1-year or extra 2 years warranty)

2. Eco participation tax: it is a tax that only French customers have to pay whenever they
purchase a refrigerator.

3. Assembly: it is the cost of the assembly service of certain refrigerators for French customers.

Cost varies depending on the refrigerator it is applied to.

In order to keep track of all the accessories of each parent product it was used the
“Accessory_Relationship__¢” object that links one parent product to an accessory one. Each
accessory relationship has exactly two products linked, while each product might have zero or more
accessory relationships. The “IsAccessory__c” attribute on the product is used to distinguish
refrigerators from accessories, while the “Accessory_Type__ c” attribute indicates the accessory
name (among the ones listed above or is null for parent products). The other attributes, like
dimensions, material, description, etc... are shown to the user on the product detail page, which is
available only for parent objects. The implementation of the product detail page was almost
completely custom, since the requirements were very specific for this company case. Indeed as you
can see the Accessory Relationship object is a totally custom one and the whole management of

parent and accessories products is totally custom. The final product detail page looks like this:

52

Haoree = Bavarshs & lalticing

PRODUCT NAME
. [

\‘,f' Frodotio Daponibes

w Descrizione prodotio

T Classo enorgetics

=

LIT3IME

Cuantita 1

Parsonalizeszionl dispombil

Prersoralizzagions grafcs

Ciar anpia

Personalirracion grafte dipenibil

b il Tk £ bonre
%] Decal T IO

(ecal | BLACK MARELE
Decal 1 DODP ERDRALD GREEM
Decal | DEEP FURGLE

Dol L IMDUSTRIAL
Deecal § LIGHT MINT
Diecal § MATUIRAL
Decal 1 ORGANIC B
Diecal | TROFICAL

AUTY

Dcal § WWHITE MARBLE

Dol § Grafica peopeistanis

w Categoria Commerciale

or MR

Frutis e 'vVierdura

i i B

Latticind Bevande Controlkee slelirico

v

L IO Or G

&

il

Prodotti Consigliati

JOY 30 LITE 3M1 (SUSHI/MEAT)

SHL: ; Ty,

01435 .
W buy por i 1.-123.54{
JAZZ 56.3 N/P
SHL: . WEFLLE.Y
IR TO0RS

s 1.248,95 €

w Caratteristiche Tecniche

Comressone emetioo
altarnative

Condendalonrs i bonda

Isola panoramica el kgerata oon gruppo Inconporato funziorante & gas propanc R290, nells versions TH, caratferizzats i deskgn moderno ed
erenise hieake per g acouistd imoadso @ ke vendite oromoronal. ben o sdatta a gualsias puenko vendita Conga robusterca e laperersa
grapee 3 cantorah ¢ he peobeggore i mobike g e g e die vetole con s g ahe sloggenti che portana il procol ba mpcag o in prime gana

Decal 1 BIO
B werre: T900E
VA, 5

S —

w Document|

|! St Pyttt

E

-

§ Dt Teonicl
ST O g Cakdo I-—- -
el
ol rfr i il B2 P00
Propano

Descrizione:

Sapmivrticabe Plug: in dal dasign innovatha
dal per un look elegante e all svanguardia
P NG vendina o vases dimensiond

Family Feeling con il resto dells ganma

Dressign pulitd per ued mighan visibilich d

Descrizions;

Jarz N/P & un perfetio esposilone
EVANCASE A DEMpEraura combinata + T°C
12C e =130 7 -F5°C regolabile tramile
termastabo. Il banos si sdatta alle edigense
i verchita sia del retail che delle stazioni

For each product we have its images, the main information, the standard price crossed and the user

price. You can also notice the green tick that shows the client that the product is in stock. This is

obtained through a check inventory process that exploits an external service call in order to retrieve

53

the availability information of the product for the specified quantity. The solution implemented
makes a new call each time the client changes the product quantity, this might not be scalable and
definitely slows down the process, but these were the requirements given by the client. The check
inventory service is called also at checkout time to verify again the availability of all the products in
the cart right before the purchase, therefore we will better discuss this process later. Under this
part there is a dynamic tab menu showing all the accessories that can be added for the product. The
number and types of tabs shown depends on the accessories available for the specific product. For
each added accessories the system opens a window on the right, showing the price and the
information of that accessory. In the image you can see that for the chosen sticker the user can also
insert a logo name to be added to the sticker. Below the accessory section you can see all the data
related to the product (which are contained in the custom attributes of the Product object). To
improve the user experience each commercial category and technical feature is accompanied by an
illustrative icon. In the bottom part of the page the system presents the client some recommended

4

products. This feature exploits the “Cross-Sell Recommendation_c¢” custom object, which
represents the relationship between a parent product and a linked recommended one. Each product
might be linked to many recommended ones and each product can be the recommended for many
parent products. Each cross-sell recommendation is related to exactly two products. Notice that
Salesforce B2B Commerce platform offers more sophisticated systems of product recommendations
based on Artificial Intelligence routines, but these functionalities were not requested by the client.
Indeed the solution used was totally custom and simply based on the objects stored in the Database,

there was no dynamic logic applied. This means that every client visiting the product detail page of

a certain object will see the same recommended product on the bottom.

The user stories related to the product navigation are the following:

USER STORY | STEP DESCRIPTION EXPECTED RESULT POSSIBLE MISTAKE
CASES

Client 1 Guest user or logged in user | All products related to the | If there are no

navigates search a product through the | research are shown to the client. | products that match

the products search bar or by clicking on one | Logged user can see the prices | the searched words,

of the navigation bar tabs related to its buyer group, while | the user will be

guest user sees standard prices. | redirected to the No
The page gives the possibility to | search Result Page
filter the results based on
Commercial category, energetic
class, family, category or
subcategory of the products.

If the user uses the search bar
the products are searched based

54

on the best match with name
and description.

2 User access the product detail | All product informationis shown, | If the check
page by clicking on a specific | together with the inventorial | inventory returns
product availability. The user can see | out of stock the add

accessory tabs and cross-selling | to cart button is
recommendations disabled for that
product

3 User can add products and | User clicks on add to cart button
accessories to cart and adds all the products

selected with their accessories to
his cart.

The following activity diagram explains the process built from the given user stories:

USER ARRIVES ON USER CHOOSES USER CLICKS ON PRODUCT AND
— PRODUCT ACCESSORIES TO ADD TO CART |—— ACCESSORIES
DETAILS PAGE ADD TO PRODUCT BUTTON ADDED TO CART
KEEP LOOKING FOR
USER SELECTS PRODUCTS
PRODUCT
VIEW CART
orboUCT USER REDIRECTED USER FILTERS USER REDIRECTED
SEARCHED TO CATEGORY RESULTS TO CART
DETAIIT_ PAGE | SUMMARY PAGE
KEEP SHOPPING
PRODUCT NO SEARCH
NOT FOUND RESULT PAGE DONE WITH
SHOPPING
USER PROCEEDS
SEARCH PRODUCT TO CHECKOUT
OR CATEGORY
1

The User can search the product through the search bar on the header or can exploit the navigation
bar available also in the header on the webpage. In case of products not found the No Search Result
page is shown to the user, otherwise the client is redirected either to the product searched page (if
the research bar was used) or to the category detail page (if the navigation bar was used). In the
second case the page offers the possibility to the user to filter the results accordingly to the
attributes specified in the user stories at step 1. Once the user has found the product he was looking

for he can click on it and will be redirected to the product detail page, that we have already discussed

55

plenty. If the clients wants to buy the product with the combination of attributes chosen he clicks
on the add to cart button. If there are no mistakes the user will see on the top right corner of its
page the cart icon with the notification of the new objects added and will also receive a success alert
banner. If for some reason the operation fails (for example for a network temporary interruption)
the user will see an error banner appearing on the top of the page. The client can then decide to

keep shopping or can go to the cart summary page by clicking on the cart icon.

5.5 CART AND CHECKOUT MANAGEMENT

For this last section we will discuss the most important part of an e-commerce, that is the process
that manages the web cart and the order purchase. At a high level point of view, the logged in client
needs to be able to add a certain amount of products to his web cart. Each product can have

different sets of associated accessories.

In case of French accounts, the user can also decide to add the Assembly service as an “accessory”
of a product, that means that specific refrigerator will be assembled by the customer service. Always
for French accounts, the system needs to automatically add for each refrigerator a tax called

“Ecopartecipation”.

The user can add to his web cart either from the product details page or from the quick order form

on the home page.

e When adding from the product details page, the user can select a certain quantity for the
specific configuration of refrigerator and accessories selected. The check inventory process
will make sure that the picked products are available and, in the positive case, will activate
the “add to cart” button.

e When adding from the quick order form, the user needs to insert the SKU of the chosen
refrigerator and the desired quantity. The functionality doesn’t allow the user to select
accessories too. As soon as the user inserts the SKU and the quantity of a product, the system
will perform the check inventory to verify the availability. In case of positive response, the
“add to cart” button will be enabled and the user will be able to add the items to his web

cart.

56

When the user adds a product to the cart, the system firstly checks if there is already a web cart
active for the account. If not it creates a new web cart instance and a related Cart Delivery Group
instance (which we will see, is the object keeping all shipping data), otherwise it retrieves the
information related to the existing cart and cart delivery group. Then it creates one cart item for
each added element (refrigerators and accessories). Notice that also the écopartecipation tax and
the assembly service are considered as accessories and therefore will have a corresponding cart
item. In order to keep track of the accessories of each parent product, the cart item object stores

”

the parent information in a custom attribute called “ParentAccessoryCartltem__c”.

The user can check his web cart on the cart summary page, that looks as follows.

Carrello (7)
Riepilogo Carrello

- PRODUCT NAME 1 X
%\‘ o Totale rxcesns 3.982,10€
—t SKU Quantita: IVA esclusa)
: : 117394 €
|] ' 2 2.347,88 €
» IVAesclusa) et
VAes Coupon
Codice coupon Appnca
v Garanzia
Estensione garanzia gold - 2 anni x
Prezzo Unitario:
160,54 € 321,08 €
] 2 S

e PRODUCT NAME 2 .
J:\Ié’ Prezzo Unitari
| — T 117394€

v Garanzia
ACCESSORY: WARRANTY TYPE $%

60,20€ s 60,20€

IVA esclus

SKU

v Personalizzazioni

ACCESSORY: STCKER NAME x
Testo per personalizzazione : test
Prezzo Unitario:

Sk 73(,)0? L 7900€

Swvuota Carrello

57

As you can notice the web cart shows two level of products: the parent refrigerator (first level) and
its accessories (second level). The quantity of the accessories is directly calculated by the system
from the chosen quantity of the parent object. The quantity field of the parent refrigerators is still
editable in the cart summary page. The user can also decide to remove lines (either refrigerators or
accessories), by clicking on the ‘X’ symbol on the right, or he can clear the whole web cart with the
“Clear Cart” button. Notice that even if the parent refrigerator in the shown web cart is the same,
they are not considered as a unique block, since the accessories configuration is not the same,
therefore they will be treated as separated lines in the final order. The cart summary page offers
the user also the possibility to add a coupon code. In this case the system will firstly check the
availability of the coupon and apply the related discount to the web cart total price shown on the
top right panel. Once the user is satisfied with his web cart he can proceed to the checkout by

clicking on the “Checkout” button.
From the user point of view, the checkout process is divided in three main steps:

e Order data selection: Firstly, the system checks the inventory availability on the whole web
cart and shows the user the delivery date. Then the system sets the billing address (if not
available the system asks the user to create a new one), then the user picks a shipping
address among all his active addresses (if no shipping address is available , the system asks
the user to create a new shipping address). The possibility to insert a new shipping address
is always available at checkout time (even if the user already has a certain number of
addresses for the delivery), while the creation of a new billing address is possible only if the
account doesn’t have any billing address associated. Then the client can add some shipping
information in a dedicated text area and select the desired delivery method. The possible
delivery costs depends on the shipping address selected, therefore the price of the delivery
method might change if the client picks a different shipping address. The information related
to the cost of the delivery in relation to the shipping zip-code, is kept in a CVS file stored in
the assets file of the platform. This allows the company to easily access the file and edit it,
the system will be automatically updated and the clients will immediately see the new prices.
Finally the user can add to his web cart one or more delivery services. This services depends
on the client’s account country, therefore, French account will see different services from
Italian ones. Each service has a price and, in the case of “chosen delivery hour” service the

user has to insert the desired delivery time too. The mandatory information is: billing

58

address, shipping address and delivery method, therefore if the user clicks the next button
without any of this data inserted the system will show the same form again asking to insert
that. The bottom part of the form show a static table of the delivery times. Obviously, the
schedule depends again on the user account country code, that is also the country of the
billing and shipping addresses of the user. The described form for an Italian account looks as

follows:

Spedizions Rispilogn Pagamenta

VERIFICA LA DISPOMIBILITA' DELLORDINE

INVENTORY AVAILABILITY

NDIRIZZO DI FATTURAZIONE SCELTO

Nome e Cognome
Indirizzo

Citta

cap

Pravincia

BILLING ADDRESS

Paese

SELEZIONA IL TUD INDIRIZZO DI SPEDIZIONE SH’PP!NG ADDRESS

SHPPING INFORMATION

SELEZIONA IL METODO DI CONSEGNA

DELIVERY METHOD

SERVIZI AGGIUNTIVI

Preavviso telefonico Disimballe e Smaltimento Imballi Carrello saliscale

Telefonata preventiva per coordinare lo scarico Disimballaggio del banco e ritiro del materiale di Dispositivo che facilita il trasporto sulle scale e

del materiale ordinato scarto da parte del corriere consente [l sollevames insicurezza

i€ 3¢ 300¢
SHIPPING SREVICES
Datalmposta Datae Ora Imposta

All'interno delio slot di tempi di resail corriere si impegna a garantire ladata Alllinterno dello slot di tempi di resail cliente indica l'orario preferito e il
il vicina corriere si impegna a garantire la data pid vicina

rie

S0€ 65€

TEMPI DI CONSEGNA

Capolusghi di Pravineia / altre

Temypi di Consegna localit

DELIVERY TIMES

1 giori di CONRGN 51 INLENAOn0 COmE- GIoMO 2010 ¢ il GO SOl INOILIo STTording. Il Prima GIoma ¢ il GO SUCCossvo JlTinvio dolrording

59

e Checkout summary: once the user clicks on the next button, the system will show a final
screen summarizing the purchase information, which include: all the products in the web
cart (including the delivery services chosen), the total prices (including the taxes) and the
shipping information and addresses chosen. This way the user can verify his purchase before
proceeding to the next and final section.

e Payment: for this part the system, firstly verifies the user associated risk code and according
to its value shows different payment methods. Trustworthy client can pay both with credit
card and purchase order, therefore both payment methods will be shown and the user can
pick the preferred one. Risky clients will only be able to pay through a credit card. Once the
user has inserted the payment information the system will elaborate the purchase and if
everything proceeds without mistakes the client will be redirected to the Order Confirmation

payment page. (Flow 1 Appendix)

From a back end point of view the checkout process has many more phases which represents the
actual flows that were used to implement the process. As explained earlier Salesforce allows to
create process using simple and intuitive diagrams, called flaws. Flows can be created through many
different standard components (like object update, create or delete) and also some special
components like the ones linked to an apex action (for example the flow that calculates the taxes
uses an apex action component to call an apex class that produces the call to the external system)
or other special components called screen flow, which can contain lightning web components or
aura components and these are the ones through which the user can interact. If we see the
checkout flow in terms of flows, we have a hierarchical structure in which, the parent flow is the

Checkout_Flow, which looks as follows:

60

Checkout Flow Refetch Session

N

—p

\
5 - » B3
- ’
Sk Setaun Outeame = Subflow

Decision Duteutt Qutcorms Do won

h \ Wait Debug Outcome
AR Febasi

e Show Debug Serzen? Show Wait Debug’ X N E i

e =

Z i ——

(=1 > — \ Screen
Stbfiow A C Wait Debug
Get Or Create Session Decision -
Meain Decision Hub — =S
Screen
ebug b
Subflow
-: Emor

- ! 4 ““

- . S - Cart To Orde
Subfiow [l € (i
Shipping Cost (el T paymem 7 ‘

Subflow bl ¢ I g | —) Assignment
Shipging Information [N ¥ Activate Order ———— Loop
Grder Cenfrmatien
Subflow
Taxes :
v
Subflow |
Checkout Summary T
v
Subflow
-

g

Subflow _—
Activate Order

Subflow
Order Confirmation

The start component of this flow is standard and configured to begin when the user clicks on the
checkout button on the cart summary page. Then the process passes through the “Main Decision
Hub” component, which is like a “switch” command in any programming language. The system
compares the checkout status, which is kept in a variable throughout the whole process, with the
possible values (the ones in the circles) and chooses the corresponding path to take. Each path
leads to the execution of one sub flow. As you can see the process is characterized by many sub

flows for each user phase. In particular we have:

- Phase 1: Shipping Cost, Shipping Information (which contains the screen flow that the user
sees on the first phase and Taxes
- Phase 2: Checkout Summary and Cart To Order

- Phase 3: Payment, Activate Order and Order Confirmation

Now we will take a deeper look into each flow to better understand what actually was implemented
to manage these process. In order to better understand also the relationships between the involved

parts we use the following BPMN model.

Phase 1:

61

=)
2 PICK SHIPPING AND BILUNG erom
5 ADDRESS, DELIVERY METHOD, NExT
£ SHIPPING INFORMTION AND BUTTON
8 DELIVERY SERVICES.
3
g i
3 . \ 1
] UPDATE CART
5 ;::PE;’:ETEOSTS po— SAVE GETS USER GETS DELIVERY PROVIDE THE VERIFY ALL All CREATE SHIPPING DELIVERY GROUP
E AND CREATE CART »| INVENTORY INVENTORY) ADDRESSES METHODS [FIRST MANDATORY manadatory SERVICES CARTITEMS [] SHIPPING
E INFORMATION {BILLING AND AVAILABLE AND CHECKOUT INFORMATION ata provided AND DELIVERY METHOD INFORMATION AND
8 DELIVERY GROUP REQUEST SHIPPING) SHIPPING SERVICES PAGE TO USER WAS PROVIDED CART ITEM WEB CART BILLING
T]
S METHODS 'y INFORMATION
@ Missing
SET ERROR data GET TAXATION
@ MESSAGE COSTS
3 TRANSMITS RETURNS |
[THE REQUEST RESPONSE 4 i
k=] P
= oA - MESSAGE TRASMIT TRASMIT
s \ /)‘ TAXATION TAXATION
N\ S/ REQUEST RESPONSE
/
7 ~ v
W . e
N CHECKS AND Ny
% PROVIDES
vi INVENTORY powoe
INFORMATION TAXATION
INFORMATION

The first operation performed by the B2B commerce is to perform the Shipping Cost sub flow, which
retrieves from the database all the Order Delivery Method active instances for the country of the
account performing the checkout, which represent all the possible delivery methods (in that
country). Then the system creates one Cart Delivery Group Method instance for each order delivery
method, which stores the information about the price of that service. Notice that this is the standard
price, because the final price might change depending on the actual shipping address chosen on the
next step by the user. An interesting part of this flow implementation is that the Cart Delivery Group
Method object references both the Cart Delivery Group and the Order Delivery Method, and the
combination of this two must be unique, that means we cannot have more Cart Delivery Group
Methods associated with the same Order Delivery Method and Cart Delivery Group; therefore the
flow firstly checks and, if necessary, deletes the previous instances, before inserting the new ones.
Indeed it can happen that the user decides to interrupt the checkout before the end (on step 1 or
2) and so the process will start again from the beginning, but the Cart Delivery Group Methods were
already inserted. In this way we won’t have any issue when inserting the new instances in the
database. The Check Inventory implementation code is at Code 6, the Shipping Cost Calculation at

Code 7 and the Tax Implementation at Code 8 in the Appendix.

Then the process goes back to the main checkout flow, which will update the status and pass to the
execution of the Shipping Cost flow. This is one of the more complex flow of the project, it executes
a great deal of operations because it has to manage the front end screen and selections of the user
and all the backend database interactions needed to support it. The first operation is an apex
function that performs an HTTP request to an external system (SAP) to retrieve the check inventory

information. In order to integrate Salesforce systems with SAP systems it was used a middleware

62

called Boomi, which provides an integration platform as a service enabling the connection of
applications and data sources. The HTTP request includes the list of products (only refrigerators) to
be checked, some related information and the sales organization of the account. The response
includes again all products with the related availability date and one global availability date for the

whole order. The request fields and structure is the following:

Field name Requir | Type Example Description

ed
salesOrg True String BN10 4 |etter of the sales organization
isCheckOutStage True Boolean True If True => Checkout

If False => Product Detail Page

sku True Array List of Refrigerator SKU
>sku True String Refrigerator SKU to be checked
>quantity True Number Quantity to be checked
>hasAccessory True Boolean Specifies if Refrigerator has accessories. It will

be filled only at Checkout stage.

The “isCheckOutStage” field is used to specify if the check inventory is related to the checkout stage
or is performed on the product detail page or by the quick order form. For each “sku” the system
provides the quantity of the refrigerators orders and a flag “hasAccessory” set to true if the
refrigerator is bought together with some accessories. The request is transferred to SAP through by

the middleware and a response comes back as follows:

Field name Type Example Description

sku List List

>sku String 12345 Refrigirator Sku to be checked

>available String True, False, Block If Block, on PDP product will be shown as out of stock

and then Add to cart is not possible.

>skuAvailableDate String 01-06-2021 This is the available data show on PDP for the product
selected by customer. It will be ignored on Checkout

OrderAvailableDate String 01-06-2021 It will give the availability at order level for Checkout
check inventory call. It will ignored in PDP

For each product sku the external system provides an “available” flag set to: “True” if the product is
available, “False” if the product is not available but in production, “Block” if the product is not in
production anymore. This information is used by the check inventory of a single product on the

product detail page or by the check inventory of the products added with the quick order form.

63

https://en.wikipedia.org/wiki/Cloud-based_integration

For what concerns the shipping services and the delivery methods, they are all treated as product
objects, with accessory type attribute “Shipping service” or “Delivery charge” and is accessory flag
set to True. Once the user selects a delivery method and eventually some shipping services the
system will create the related cart items. In particular, for the delivery method, the system creates
a cart item of type “Charge”, while the shipping services are items of type “Product” like all other
cartitems. Once the user has clicked on the next button and the mandatory fields checks are passed,
the system performs a new HTTP request toward the external system, SAP to retrieve the country
taxation data. The request involves only the sales organization of the account and the chosen
shipping address, while the response is the percentage of the taxation to be applied. Then the
system calculates the tax amount for each cart item and creates the related Cart Tax instances. This
will automatically update the Web Cart object attributes, which depend on the taxation applied to
each cart item. Finally the shipping information and shipping address is saved on the cart delivery
group instance and the billing address is stored on the web cart instance. For what concerns the
objects involved in this first part, they are all the standard objects, so you can refer to the class
diagram of the Web Cart and the related classes that was explained earlier. The only important
custom attributed added was the “ParentProductCartitemld__c” on the Cart Item object. This
attribute is used to take track of the relationship between parent objects and their accessories,
because we will need it at the end of the checkout process for the order export to the external SAP

system.
Phase2:

For this phase we do not have any type of interaction with external systems, but only with the user,

through again a screen flow component.

=3 USER CAN SEE THE
5 CART SUMMARY CLICK ON
£ INFORMATION. OF p| NEXT
g WHAT HE WILL BUTTON
] PURCHASE.
O Y
g
g SYSTEM RETRIEVES THE CART CREATE THE ORDER OBJECT
£ ITEMS, SHIPPING, BILLING AND AND ALL THE RELATED RECREATE THE PARENT-
S DELIVERY INFORMATIONS. THEN IT OBJECTS. THEN TRANSFERS ATTRIBUTE RELATIONSHIP
P RETRIEVES ALL TEH COSTS DETAILS ALL CART RELATED BETWEEN CART ITEMS ALSO
o STANDARD ATTRIBUTE ON ORDER ITEMS
VALUES TO THE ORDER

64

The Checkout Summary flow will simply retrieve all the information about the cart items, the
shipping and billing addresses and the delivery method details. Then it collects the total costs (which
include cost of all products, cost of delivery method, coupon discounts (if present), total taxes
amount and the total purchase cost. This way the user can take a final check to the information
inserted before ordering. When the user clicks on the “next” button the system (user transparent)
will create the new object Order with all its related ones. The Order is put in a “Pending” status and
all the standard attributes for the web cart and related (or the custom ones that appear with the
same name on the two objects) are copied on the new instances of the Order object and related
ones. The standard operation was used here, so the copied fields are exactly the ones shown during
the Salesforce explanation. Obviously for the Parent Product Cart Item attribute, which is a custom
one and needs some behind logic, it was used a specific apex class to recreate the parent accessory
relationship from the cart items to the order items. (this because as said before this relationship

must be brought until the order export, therefore until the end of the flow).
Phase 3:

For the final phase we firstly have the payment. The system can manage two types of payments:
credit card payments or purchase orders. However not all the users can pay through purchase order,
so the system firstly checks the RiskCode_ c attribute on the Account object and only for
trustworthy clients the system gives also the possibility of using the purchase order payment option.
The Credit card option is instead available to any user. The credit card payment system is managed
by an external service, which is widely used in e-commerce nowadays, called Stripe. While the

purchase order (which is not an actual payment) is manage internally by the standard solution.

SELECTS PAYMENT METHOD,
INSERTS PAYMENT INFO,

s peoceris. ORDER ERROR
< ACCEPTS TERMS AND CONFIRMTION PAGE
CONDITIONS AND SUBMITS
|
o

PAGE
PAYMENT

|
o ENABLE

¥ Trustworthy
client PURCHASE SHOW PAYMENT
?ﬁmfﬁﬁ.‘ UNG Risk ORDER FORM [CREDIT CARD RETRIEVES
AND RISK CODE Code ENABLED BY PAYMENT
DETAILS ¥ DEFAULT) INFO
Risky client T

‘ ELABORATES PAYMENT

L 1
SAVES PAYMENT
ves | DETAILSONPAYMNET | L— | cHECKOUT
OBIECT AND ACTIVATE SESSION AND

ORDER { WITH ORDER OBRIECTS DELETED
SUMMARY CREATION)

T

SEND ORDER

Payment
completed
correctly?

B2B commerce | Customer (Ul)

CONFIRMATION EMAIL AND
REDIRECTS TO ORDER
CONFIRMATION PAGE

AND PROVIDES
PAYMENT UNIQUE
TRACE NUMBER

Stripe

Once the system has enabled or not the PO (purchase order) form, it presents the final payment

form to the user. The client picks the payment method and provides the details needed, then he

65

must accepts the terms and conditions in order to enable the submit payment button. If the
payment was through credit card the system connects to the external Stripe service that elaborates
the credit card information given and produces a trace number for the payment. Otherwise, if the
payment was a PO, there are no controls to make. Then if the payment has been completed correctly
the system saves the related information in the payment object and the related ones. Then the
system performs the Order Activation flow, which changes the Order status to Activated and creates
the Order Summary object and its related ones. This is again a standard process, exactly like from
the Web Cart object to the Order one. Again the relation between Order Items Summary is recreated
from the one among the Order Items, with a total custom code. Once the order is active and the
Order Summary object is completed the system executes the Order Confirmation flow, which
completes the checkout session and sends an Order Confirmation email to the user (Flow 4
Appendix), which shows all the data of the order purchased. Then the client is redirected to the
Order Confirmation page (which is outside the checkout flow). In case of errors in the payment the
system deletes the checkout session and all the related information and objects created. In general
the error management is really simple, in case of failures the system clears all the information and
the checkout restarts from the beginning. It might seems a drastic solution, but form the user point
of view, the checkout is completed in three simple steps, so it is quite quick, therefore it is not a big
deal to perform again the steps. On the other hand this solution allows to avoid many errors that
could be created when trying to restore from a system failure. The same solution has been adopted
if the user interrupts the payment and logs out the system. This means if the client doesn’t complete
the checkout steps all at ones the system will clear the checkout session and start from the
beginning again. In this case the problem was mostly related to the product availability problem.
Indeed if the user decides to interrupt the checkout in the middle and logs out the product
availability of his cart could change. So if we allow the user to reload the same checkout started
earlier, eventually the products are not available anymore (or at least the delivery date has changed)
and the order will not reflects the user expectations. For this reason an incomplete checkout is
deleted and restarted, so that the check inventory operation (performed on the first phase) is always

executed right before the payment and the order submission.

The Order Summary page offers the client the possibility to access the order details, the Ul looks as

follows:

66

Numero d'Ordine: 00000447

Dettagli Ordine Riepilogo Prodotti (Tasse escluse)
Data ordine: 16/9/2021, 17:35
e PRODUCT NAME

coount: MR

Indirizze di Fatturazione: via chieppa

23415 Rovigo Rovigo - |
Italy ® 8 ‘}*\\%’é _— . -
— o 1 1173946 117394€

Dettagli Spedizione

pa ?‘] ?“’1"; Rovigo, Rovigo Italy ACCESSORY NAME
& <. antita Prezzo otale
Rieni " kﬁ)\j ! 1 79€ 79¢€
iepilogo Ordine L3573,
Vgt
WARRANTY TYPE y
1 160.54€ 160.54€
Totale: 1786.67 €
SHIPPING SERVICE NAME
1 1€ 1€
SHIPPING SERVICE NAME
1 50€ 50€

The most interesting part of this page is related to the order tracking link, placed under the shipping
details section box on the left. In particular when a new order is created the order is exported to an
external system (we will see later the process). Then the external system manages the logistic of
the shipping, which in case of Italian orders is managed by an external delivery service that provides
a tracking link for his customers to retrieve the information about the delivery (like position of the
refrigerator and courier contacts). Therefore the tracking link is actually inserted by the middleware
directly in Salesforce database on the related Order Summary object when it is ready. Once the
“orderTrackingURL__c” field is updated on the Order Summary instance the systems automatically
triggers a process that sends an email to the user that his tracking URL for a specific order is now
available on the order detail page (Flow 5 Appendix). In order to perform this operation Salesforce
offers two possible solutions. The first one is to create a trigger on the Order Summary object, which
is an apex class executed each time a specific action is taken on the chosen object. In this case the
action would be after the update of the “orderTrackingURL__c¢”. The second possibility, that is also
the one used in the project, is to exploit the process builder to create a process that executes a flow

which sends the email. Processes can be triggered in different ways, one way is to update an object,

67

like in this case. There was probably no best choice in this case, because both solution were equally
valid, however in general the using process builder allows you much more flexibility since you can
attach a flow from which you can basically do anything, while a trigger is just an apex class, so its
functionalities are wide, but more restricted. Another thing that might make flows and process
preferable to apex classes is that apex classes require at least a 80% test coverage overall. This
means that every time you write an apex class you have to keep in mind to write also the Junit test
class for it, this is why if you can perform the same operation using the standard components of a

flow it is usually the chosen solution.

The last important part of the checkout phase is the Order Export. This operation is actually
performed in the Order Export flow in a totally asynchronous way. Indeed the system completes the
checkout as shown before and at the same time it runs the operations to create the JSON file to
export to the middleware system, which will be finally be exported to SAP systems. The information
exported is basically all the details that the company needs in order to manage the client order,

delivery and billing. The JSON format of the exported details is the following:

Field name Required Type Description

orderDate True String Timestamp of the order date in UTC format

accountNumber True String The customer number for identification

IsNewCustomerFirstOrder True boolean Defines if this order is the very first order of a self-registered
Customer

accountGroup True String It will always be: 2019

deliveryMethod True String The delivery mode for the goods.
Both For Italy and France it will be 01

orderNumber True String Salesforce order Number

shippingNetCosts True Number Shipping costs without VAT

shippingNotes False String Shipping notes by the customer

couponCode False String It is the coupon code used by the customer. Only one coupon may
be used for each purchase.

couponDiscount False Number It is the amount value to be discounted by the total cart value

paymentld True String Transaction number (if payment is prepaid) or purchase order
number (if payment type == Invoice)

isPrepayment True boolean Payment type: if true it is Prepaid (in case of card payments), if false
it is PO (in case of Purchase Order)

orderTotalAmount True Number Order Final Amount paid by customer with tax and including the
discount(coupon) and shipping

countryCurrency True String Currency

shipping True Object Contains shipping information about customer name, address and

contact information

>shipToCode True String It is the code which identifies the shipment customer. Range
starting from 30000000

68

> name True String Name for shipping recipient. This field will be splitted by Boomi in
2 line if the length is too large.

> address True String Address for shipping recipient.

>houseNumber True String House Number

> zip True String Zip Code for shipping recipient

> city True String City for shipping recipient

> province True String Province for shipping recipient. This field will be transcoded by
Boomi (only for France by removing the first two letter es from
FROO1 -> 001)

> country True String Country name

> phone True String Phone number for shipping recipient

billing True Object Contains billing information about customer name, address and
contact informatio2

Svat True String Vat Code

>salesOrganization True String Sales organization of the customer Account

>distributionChannel True String Distribution channel of the customer Account

>division True String Fixed value

>pec False String Optional, only in case of self-registered account for Italian
Customer

>sdi False String Optional, only in case of self-registered account for Italian
Customer

>cassettoFiscale False boolean True only if neither pec nor sdi are present and specifies that
customer doesn’t have neither pec nor sdi.

>fiscalCode False String Optional, only in case of self-registered account for Italian
Customer

>siren False String Optional, only in case of self-registered account for French
Customer

>siret False String Optional, only in case of self-registered account for French
Customer

> name True String Name for billing. It will be split in 2 by Boomi

> address True String Address for billing.

>houseNumber True String House Number

>zip True String Zip Code for billing

> city True String City for billing

> province True String Province for shipping recipient. This field will be transcoded by
Boomi (only for France by removing the first two letter es from
FROO1 -> 001)

> country True String Country code

> phone True String Phone number for billing. It is the contact phone number Salesforce
side.

> email True String Email for billing It is the contact email address Salesforce side.

orderLines True Array Contains objects with information about the individual items on the

order such as item id, quantity and sales price.

69

> lineld True String Salesforce Order line ID

>productCode True It is the product Code (SKU). May be a Refrigerator or Accessory
(only Sticker, Eco participation and Warranty)

>uom True It is the Unit of measure of the product

>productName True It is the product Name. For example Glee Glass if it is a refrigerator
or Kit Stainless if it is an Accessory

>parentProductLineltem False String It is the reference to the parent Product (Refrigirator) for Accessory
items

>isAccessory True Boolean Defines if the product is an Accessory or not.

>accessoryType False String May be: Sticker, Bin,Basket, Shelves, Other,

Warranty,Ecopartecipation,Shipping Services, Deliver. It is an
optional field, since it will not be filled in case the productCode is
not an accessory

>shopName False String It will be filled with the ShopName in case accessoryType is Sticker.
It is an optional field.

> netLineAmount True Number In case Product Code = Refrigirator it will be the Net line amount
with adjustments (discounts on volume, TBD IF to consider also the
distributed Coupon Discount) without taxes which compounds the
price of accessories related to the Refrigirator (except for Warranty
and Ecopartecipation Price)

Otherwise, in case Product Code = Warranty, this netLineAmount
will the Net line amount without taxes and adjustments of the
warranty

Otherwise, in case Product Code = Ecopartecipation, this
netLineAmount will the Net line amount without taxes and
adjustments of the ecopartecipation

Otherwise, in case Product Code = Sticker, this netLineAmount will
the Net line amount without taxes and adjustments of the sticker

In all the other cases (e.g. Accessory like Bin,Basket, Shelves,
Other), this field will not be filled.

> quantity True Integer Order line quantity

>hourOfShipping False String It’s the hour selected by the customer in case he chooses the
Additional Shipping Service:”Data e Ora Imposta”

As you can see the files structure is divided in the main information related to the order in
general(like account number, order date, all payment information and some more) and then there

are three subsections:

- Shipping: stores the shipping address and other related details

- Billing: stores the billing details and other related data

- Delivery Items: is the list of products ordered by the user. Each product can be an accessory
or not. All accessories must have the line number of the parent product under the

ParentProductLineltem field. Each product then has all the important details, like quantity,

70

price, product code. The shopName field is used to save the customized name to be added

to a sticker accessory, if it was inserted by the client.

The request is sent as usual with a HTTP request and it expects a response in maximum 60 seconds.
If the system doesn’t receive one in that time it sends again the request for maximum of other two
times. If also the third tentative fails the Order Summary status remains ‘Sent’, otherwise the status
is updated in ‘Exported’. Notice that it can happen that the order is received fine by the middleware,
but the answer comes in more time than 60 seconds, so the order results as failed in Salesforce, but
the order was actually exported fine. This is not a problem, since when the middleware receives
correctly an Order it updates the corresponding Order Summary object status on Salesforce system
with ‘Received’. The client can keep track of the Order status changes on the order summary page,
under the ‘Order Details’ section box on the left. This concludes the more interesting parts of the

Cart and Checkout management. (Flow 3 Appendix)

6. GENERAL PROJECT DETAILS
In this final section we will discuss just some general details of the project, that we haven’t yet seen.

The first interesting characteristic is the management of the languages and labels. The website must,
as obvious, be able to adapt to the browser language in order to offer the best user experience.
Salesforce, by default, offers the possibility to create a what so called Multilingual organization,
which, if enabled, it creates several Language object instances, one for each enabled language. This
will also create many “versions” of the experience builder, so that when you insert the labels directly
from the experience builder you can put the labels in the different languages. In addition, Salesforce
offers for standard objects and attributes default translations, which can be customized. For what
concerns the labels introduced by apex classes or directly on Lightning components, the Label global
variable is used. In particular, you can create any type of label (with a unigue name) and associate
it a translation for any language active in the organization. These labels will automatically assume
the correct translation according to the browser language. If the browser is in a language not active

in your organization, the website will assume the default language.

Another interesting feature is the country and state picklist setting. This feature allows to customize
the possible Country and related States values that can be inserted in the Address attribute present
on many Salesforce Objects (like the Account or the Contact Point Address). Basically, the Address

71

object accepts by default any value as Country and State, but you can configure State And Country
Picklist setting so that the country and state fields of the Address become picklists. This is really
important in order to make sure that the values inserted are correct and to avoid having the same
country name or state name written in many different ways. The problem of this feature is that
Salesforce offers many countries but only for some of them it also offers the related States. This
means that you should have to manually configure them one by one. Since this operation would be
extremely inefficient, we actually built a code that was able to perform the same HTTP request that
the manual configuration would do to insert the custom states, in this way we were able to insert
in a bulk way all the states for each country of interest at once. Since we activated France and Italy
countries and the relative states (Italian provinces and French regions), in the Contact Point Address
form we were able to dynamically show the user the French or the Italian picklist for the state field
(remember that the country was a read only field on the form, because was directly read from the

Account instance).

A final interesting feature of Salesforce is the Content Management System (CMS), that is the part
of the platform used to store images, videos and files for the website. The CMS system can be
structured in many folders and libraries. The File Asset library is the main one used to access images
also from outside the organization (if the content is set to be accessible from outside). The problem
with the current Salesforce Asset library is that it doesn’t allow a bulk immigration of content, that
means all images must be uploaded one by one on the Asset library of the organization. The good
news, is that once you have uploaded them on one org you can easily transfer them on another one
(this for example was not possible with the state and country configuration). In general, we used
the CMS system to store all product images, some CVS files (used for example to store the shipping
service SKUs or the delivery cost based on the postal code) and other images used in the website
(like the logo, the footer and header in the emails, the home page banner and other banners around
the website). Nevertheless, we encountered a problem on the product images, because the images
given by the company were all links but the ones related to the sticker accessories; for which we
had their png versions. This wouldn’t be a problem if the images were just used on the website,
because all type of CMS images (links or png) can be accessed from the website pages. However it
became a problem in the order summary email (which contains also the product images bought by
the client), because the client that receives the email is not allowed to see the image, since they
have a link inside the Salesforce organization and the png images uploaded automatically earn a link

inside the Salesforce organization. To solve this problem, thanks to the fact that the images were
72

just the ones related to stickers, so not too many, we decided to manually upload the product
images for sticker accessories on the Asset Library. In this way the images were available also outside
the organization, therefore also in the emails sent. Obviously, this solution implied a manual
insertion of all those images on the file asset library. For all other products, the images were
imported using a custom code, since they were just links, so there was no problem with them.
Unfortunately, the CMS system of Salesforce is not very sophisticated, for now, so for projects that
are more complex it is recommended to use an external Digital Asset Management (DAM) system,
like Cloudinary or Adobe, which are specifically designed to maintain your digital content and expose

an external link to them that can be used on your Salesforce platform.

73

7. CONCLUSION

In nowadays world, it has become impossible to ignore the exponential growth of technology.
Companies that do not keep up the pace with the new trends and the consumer desires are destined
to fail. Anybody, from the youngest user to the oldest companies, are inevitably changing their way
of approaching the buying experience. For sure, the change has had a different speed race in the
different fields, but it is indeed changing and if you do not evolve with it you won’t be able to stay
in the market. Competition on digital marketing is getting stronger and consumers expect more and
more from their experience; companies who cannot give that won’t last long. We need to “lean into
the future” and embrace the evolution, by giving the clients always the best services, the top
advertising and the most targeted marketing that will hook them to your products and services. It
is clear that the quality of what you sell is always fundamental, but the presentation and the
accessibility of your products is gaining a great deal of importance too. People expect to be able to
purchase quickly and efficiently from their home, without the need of interactions or phone calls,

but just using few clicks.

The evolution of the digital commerce in the B2B world has undoubtedly been slower that the one
in B2C commerce, probably due to the age of the target consumers, but it is changing and companies
need to acknowledge it to survive. B2B e-commerce is becoming the normality for many companies
and clients expect that, so it not an optional anymore, it is a commodity. Not having a well working
and efficient e-commerce simply means cutting out half of your possible clients and the percentage
is increasing. B2B must be approached as a totally different and unique problem respect to B2C. We
are talking about different type of clients, different types of purchase quantities and prices, different
types of expectations and services required. The problem is just very unlike B2C and cannot be
considered as just a branch of it. This was well understood by software house who started building
specific platforms to approach the problem. Salesforce B2B Commerce is an example of a software
build specifically to create a B2B ecommerce and integrate it with the classic CRM, Sales and OMS
systems. Indeed the commerce is the very heart of all other systems, is the starting point of
everything else and it must integrate with all other services. The client will interact with the CRM
system through the commerce website and the CRM system will improve and offer the best services
thanks to the great deal of data that it retrieves from the commerce platform. Then the client,
hopefully, will purchase your products on the commerce platform and the order will then be

exported to the OMS systems, but again the starting point is the commerce. The Sales team will too

74

interact with the e-commerce, to manage prices, offers and discounts. Everything is at the end
wrapped around the commerce platform. Before the e-commerce all these services where
separated and sometimes didn’t even share information and details about clients and offers. But
now they have the possibility to work together, to interact and share information, all thanks to the

e-commerce. Salesforce B2B Commerce allows this full circled user experience.

Salesforce B2B Lightning Experience is the newest version of the B2B e-commerce platform, it is
revolutionary thanks to its ability to work without the need of using any type of custom code, but
at the same time it offers the possibility to create any type of custom functionality and integrate it
in the system. It is efficient and intuitive and it offers the developer all the basic codes and objects
that any B2B commerce website would need, but then it allows the company to create its totally

unique experience.

Last but not least, we studied a real problem; a company that creates its new commerce website.
We have decomposed the problem and we have seen how to approach each part with standard

and, sometimes, custom configurations and code on Salesforce.

The project has been for me extremely interesting and challenging. We had an initial phase of
discovery, that implied talking to the client and understand their needs, but mostly their brand
values and messages that they wanted to give to their customers. It is, indeed, very important to
deeply understand the product of the company in order to build and experience that is completed
wrapped around it. The clients must be able to access the product, seeing it, gather information, be
involved in the product making and in the company way of working to truly be hooked to that
supplier. The second analysis that was made, was related to the target consumers. We had to
understand which was our market segment, who are the clients, what they expect, what'’s their age,
what’s their purchase capability, how much they are willing to spend and how much they want to
know about the products. The problem with B2B is that you could sell the same exact product (in
different quantities) to very different type of clients. We had to sell professional refrigerators to the
small ice cream shop, that makes one purchase every two years and the same refrigerator, but in a
much higher quantity, to the big supermarket chain, which makes orders of thousands of euros
many times a year. We had to build specific prices, discounts, marketing advertising and
experiences, unique for each type of client. This is the key point that makes the difference between
a fine commerce experience and a great one. If you want to make the difference of the market, you

need to understand the client segments and build your website according to it. On this first part of

75

the project the objective was to understand what the client wanted. It might seem to be quite simple
and straight forward, they ask for something and you give them that, but it is definitely not.
Companies are composed of many people and each one has ideas and expectations and usually they
don’t talk much across teams. So what happened was that it took us around two weeks to draft the
first version of the users stories. Obviously we adopted a totally agile methodology, so the client
could change a little bit the user stories during the project. Once we had a basic understanding of
what the client wanted, we started the technical analysis and we build the BPMN high level models
for the checkout flow, the activity flow diagrams for other processes and obviously we build the
data model. Then we also used some designers to create the Ul with the client and then reproduce
them on the website pages. The developments started after few weeks from the beginning of the
analysis. Since the project wasn’t very big, we didn’t have much time to build a very solid and deep
analysis of the project before starting the developments, this obviously led to some problems along
the way, because the client changed mind on many things and we had to recode many features.
Probably a deeper initial analysis, would have helped reducing the time spent in rewriting code, but
we also had to deal with the problem of fitting the whole project in just 4 months of work. On the
other hand this project really gave me the possibility to get in contact with what it really means
working with customers and be able to understand their needs and transform it in code. Sometimes
itis reallyimportant to be able to advise the client too, because we have seen many of these projects
and might have more experience, so it is always useful to reach a great result to advice and discuss
with the client. They set the specifics and the high level descriptions of what they wanted and we
gave them the solutions to realize them. We had to make changes along the way, since the platform
was new for us too, so we had learnt how to properly use it along the way. Moreover, we didn’t
have much reference to consult, since this has been literally one of the very first projects in Italy and
in Europe that has used this technology. We had to write a lot of custom code to realize a unique
experience. A very interesting part of this project is also the fact that you always have to keep in
mind that there are two clients. The company that wants to build the commerce platform and will
then use the back office to access customers data and orders information and the final clients, who
will use the website to make their purchases. So it is important to create what the company wants,
but is also important to keep in mind who are the final clients and discuss which are the best
solutions to win them. Moreover, you need to make sure the website you build is simple, intuitive
and efficient, but also the back office must be organized and eventually you might need to add

custom code and configuration to make sure the company can easily access it and perform the

76

needed operations. For example, the company wanted to be able to create a discounted pricelists
to make special offers to some clients or in some periods of the year. To create a new pricelist on
Salesforce you can simply use the standard creation button, but then you must remember to create
all the related price book entries for each product and the buyer group to associate the price list
with. This solution is fine for a developer or somebody who knows the platform and its
configurations, but it is not adapted to a customer. So we implemented a custom button directly on
the price book list page on backend, that allows the user to create a new price list based on a
previous one adding a percentage discount and some possible configurations. In this way the
company user just needs to click on a button and then will be guided trough the whole configuration
without the need of knowing anything about the platform. Basically there are two goals: building a
unique website experience for the final customer and giving the company the possibility to make
configurations without knowing anything about coding and very little (explained with some power

point presentations to the client) about the platform.

To conclude, the main purpose of this thesis was to, firstly, show the importance, in nowadays
world, of being supported by a structured and efficient B2B e-commerce websites. Then to present
a new technology that was developed to help reaching that goal by avoiding the developer the
burden of tons of configurations and lines of code that should be just a commodity and allowing hit
to concentrate on the custom features, which are the heart and soul of a project. They are what

makes the experience unique.

The ultimate goal of an e-commerce website is to be able to intercept the customer needs, present
the perfect solution, allow an easy and straight forward purchase process and, last but not least,

hook the client to your unique products and unforgettable experience.

77

8. APPENDIX

Code 1: Contact Point Address
FRONT END (Aura Component, HTML)

<aura:component implements="flexipage:availableForRecorddome,lightning:actionOverride, lightning:availableForFlowScreens”
controller="ContactPointAddressController™ 'global">
<div aur: "editDialog" role="dialeg” tabindex="-1" aria-labelledby="headerd3" cla
<div class="slds-modal container customModalContainer">
<div class="slds-modal header">
<h2 class="slds-text-heading--medium">{!v.componentTitle}</hz>
</div>
<div clas

slds-modal slds-fade-in-open">

slds-modal content slds-p-around medium">

<div class='slds-grid slds-wrap slds-grid vertical-align-start slds-p-vertical small'>
<div class="slds-col slds-size 1-of-1 slds-medium-size G-of-12">
<lightning:input aura:id="Name" name="Name" label="{!$Label.c.namelabel cpa}” required="true" class="slds-p-
horizontal x-small” value="{!v.contactPointAddress.Name}" />
</div>

<anra:if isTrue="{!v.showPickAddType)">
<div class="slds-col slds-size l-of-1 slds-medium-size 6-of-12">
<lightning:select aura:id="AddrType" name="AddrType" labsl="{!$Label.c.addressTypelabel cpa}" class="slds-p-
horizontal x-small® walue="{!v.contactPointAddress.AddressType}">
<aura:iteration item {!v.addressTypePickList}" war: tem">
<aura:if isTrue="{!v.contactPointAddress.AddressType item }">
<opticn value="{litem}" selectsd="selected">{!item}</option>
<aura:set attribute="else">
<option value="{!item}">{!item}</option>
</aura:set>
<faura:if>
</aura:iteration>
</lightning:select>
</div>
</faura:if>

<aura:if isTrue="{!w.hasBilling]">
<div class="slds-col slds-size l-of-1 slds-medium-size_ 6-of-12">
<lightning:button wariant="brand-outline" label="{!$Label.c.copyFromBillingLink cpa}" onclick="{!
c.setAddFromBilling }" class='extendedButten' />
</diwv>
</aura:if>
</div>

<div class='slds-grid slds-wrap slds-grid vertical-align-start slds-p-vertical small'>
<div class="slds-col slds-size 1-of-1 slds-medium-size 9-of-12"> B
<lightning:input aura:id="Street" name="Street" label="{!$Label.c.streetLabel cpal"” required="true" class="slds-
p-horizontal x-small" value="{!v.contactPointAddress.Street}" />

</div>
<div class="slds-col slds-size 1-of-1 slds-medium-size 3-of-12">
<lightning:input aura:id="HouseNumber c" name="HouseNumber c" label="{!SLabel.c.houseNumber _cpa}"
required="true" class="slds-p-horizontal x-small" value="{!v.contactPointAddress.HouseNumber c}" />

</div>
</div>

<div class='slds-grid slds-wrap slds-grid vertical-align-start slds-p-vertical small'>
<div class="slds-col slds-size l-of-1 slds-medium-size_ 9-of-12">
<lightning:input aura:id="City" name="City" label="{!$Label.c.cityLabel cpal}" required="true" class="slds-p-
horizontal x-small"™ walue="{!v.contactPointAddress.City}" />

</div>
<div class="slds-col slds-size l-of-1 slds-medium-size 3-of-12">
<lightning:input aura:id="PostalCode" name="PostalCode" label="{!5Label.c.postalCodelabel cpa}" required="true"

class="slds-p-horizontal x-small" value="{!v.contactPointAddress.PostalCede}" />
</div>
</div>

<div class='slds-grid slds-wrap slds-grid vertical-align-start slds-p-vertical small'>
<div class="slds-col slds-size 1-of-1 slds-medium-size 6-of-12">
<lightning:select aura:id="State" name="State" label="{!§Label.c.statelabel cpa}" required="true" class="slds-p-
horizontal x-small™ value="{!v.contactPointAddress.State}">
<option valu “>{1§Label .c.stateBaseOption}</option>
<aura:iteration items="{!v.statePickList}" var="item">
<aura:if isTrue="{!v.contactPointAddress.State == item }">
<option value="{litem}" selected="selected">{!item}</option>
<aura:set attribute="alse">
<option value="{litem}">{Vitem}</option>
</aura:set>
<faura:if>
<faura:iteration>
</1lightning:select>
</div>
<div class="slds-col slds-size l-of-1 slds-medium-size 6-of-12 modalCustom-alignRight">

<div cla modalCustom-label'>{!§Label.c.countrylabel cpa}</div>
<div cla 'modalCustom-text'>{!v i Country}</div>
</div>
</div>
<div class='slds-grid slds-wrap slds-grid vertical-align-start slds-p-vertical small'>

<div class="slds-col slds-size 1l-of-1 slds-medium-size 6-of-12">
<lightning:input aura:id="Phone" name="Phone" label="{!$Label.c.phonelabel cpa}" class="slds-p-horizontal x-
small" value="{!v.Phonelnserted}" />
</div>
</divx

<aur;

if isTrue="{!not(v.contactPointAddress.AddressType == $Label.c.billing cpa)}">
<div class='slds-grid slds-wrap slds-grid vertical-align-start slds-p-vertical small'>
<div class="slds-col slds-size l-of-1 slds-medium-size 6-of-12">
<lightning:input aura:id="IsDefault" type="checkbox" label="{!$Label.c.isDefaultLabel cpa}" name="IsDefault"
class="slds-p-horizontal x-small" checked="|!v.contactPointAddress.IsDefault}” />
<aur: £ isTrue="{!not (v.createNewCpa) | ">
<lightning:input aura:id="IsActive" type:
class="slds-p-horizontal x-small" checked:
</aura:if>
</div>
</div>
</aura:if>
</div>
<div class="slds-modal footer">
<lightning:button variant="neutral™ label="{!$Label.c.cancelLabel cpal" onclick="{'!c.cancelDialog|"™ />
<lightning:button variant="brand” label="{!$Label.c.saveLabel cpa}” onclick="{!c.save}" />
</div>
</div>
</div>
</aura:component>

checkbox" label="|[!$Label.c.isActiveLabel cpal" name="IsActive"
!v.contactPointAddress.IsActive cl™ />

78

CONTROLLER FRONT END (JAVASCRIPT):

"
deInit : function(component) {
//get parent account id
let action = component.get("c.getAccount
action.setParams({
"user1d":§A.get ("$SObject Type.CurrentUser.1d")

B
action.setCallback(this, function (response) {
let state = response.getState();
if(state === 'SUCCESS'){
let result = response.getReturnValue() ;
let results = result.split(" ");
let id = results[0];
let name = results[1];
let country = results[Z
let hasBilling = results[?
let phone = results[4];
component .set('v.contactPointAddress. Parentld’,id);
component .set {'v.ParentName ', name) ;
if (country=='IT' || country =='Ttaly' || country == S$A.get("{!$Label.c.italy country}")){
component . set (" ntactPointAddress.Country',$A.get ("{!$Label.c.italy country}"));
}else if{country — 'FR' || country — 'France' || country — $A.get("{!$Label.c.france country}")){
component.set{'v.contactPointAddr Country',$A.get("(!$Label.c.france country}"}):

='true

13
component .set ("v.hasBilling' hasBilling) ;
component.set{'v.ContactPhone',phone) ;
component .set (' v.Phonelnserted’ ,phone) ;
let addrTypes;
if({component.get ('v.createlewBilling')==false && component.get('v.createNewCps')==false && component.get('v.hazRilling')==false){
component . set ('v.contactPointAddress.AddressType', $A.get{"{!$Label.c.shipping cpa}"));
addrTypes = [$A.get("{!$label.c.billing_cpa}™),$A.get("{!$Label.c.shipping cpa}™)1;
component. set (' v. showPickAddType ', true) ;
component . set ('v.componentTitle',$A.get("(!$Label.c.create cpa)}®));
lelse if (component.get ('v.createNewCpa')==true || component.get('v.hasBilling')==true){
//it's a shipping address
component . set ('v.componentTitle',$A.get("(!$Label.c.create cpa shipping}"));
component . set { 'v. showPickRddType ', false) ;
component. set ('v.contactPointAddress. AddressType',$A.get{"{!SLabel.c.shipping cpa}™)):
lelse if(component.get ('v.createNewBilling')==true){
//it's a billing address
component . set (" v.componentTitle' ,$A.get("{!$label.c.create cpa billingl™));
component . set {'v. showPickhddType ', false) ;
component. set (' v.contactPointAddr Addr

Type',SA.get{"{!SLabel.c.billing_cpa}")):

component . set ('v.addressTypePickList ' ,addrTypes) ;

¥

$A.enqueueAction{action) ;
}.

save : function(component, event, helper) {
let checks = helper.check({component) ;
if (checks == null)(
wvar action = compeonent.get("c.createContactPointAddress”);
if {component.get ["v.contactPointAddress.Country”)== $A.get("{!$Label.c.france country}")){
component . sat ("v.contactPointAddress.Country", 'France') ;
}else if (component.get("v.contactPointAddr untry")== SA.get{"{!SLabel.c.italy country}")){
component .set ("v. contactPointAddress. Country®, *Italy') ; -

}
console. log (component . get ("v.contactPointAddress. Addr

action.setParams ({

Type™)) :

cpa" : component.get("v.contactPointAddress"),
phonelInserted” : component.get('v.PhonelInsertsd'}),
“contactPhone” : component.get({'w.ContactPhone')

action.setCallback (this, function (response) {
var resultsToast = SA.get{"s.force:showToast™);
var state = response.getState() ;
if (state =— "SUCCESS" £& response.getReturnValue().startsWith('Error')—false)
resultsToast.setParams ({
"title": $A.gat("SLabel.c.saved"),
nypen: " .

su

"message": $A.get{"Slabel.c.savedCorrectly_cpa")

n;
resultsToast.fire();
component . set ("v.NewCpald”, response.getReturnvalue () ;
component . set ("v.createNewCpa”,false) 7
component . set ("v. createlewhilling”, false) ;
$A.get("e.force:closeQuick
$A.get("e.forc
} else if (state =—= "HREOR") {
resultsToast.setParams ({
“title": $A.get("$Label.c.error®
"type" r
"message"”: $A.get{"$Label.c.srror") + JSOM.stringi.

response.getError ())
B
resultsToast.fire() ;

} else {
resultsToast.setParams ({
"title": $A.get("$Label.c.error"),

"type":"error",
"message": SA.get{"SlLabel.c.error”) + JSON.stringify{response.getReturnValue()})
n;
resultsToast.fire() ;
}
hi
$A. enqueueAction (action) ;
}else{

var resultsToast = SA.get("e.force:showToast™);
resultsToast.setParams ({

"title": $A.get{"sLabel.c.error"),

"type": "error”,

"message”: checks

i
resultsToast.fire();

79

SERVER SIDE (APEX):

public without sharing class ContactPointAddressController {

BRuraknabled
public static String createContactPointAddress(ContactPointAddress cpa, String phonelnserted, String contactPhone) (

tryl

if{phoneTnserted=='"}{
phoneInserted = contactPhone;
1
List<ContactPointPhone> cps = [SELECT Id FROM ContactPointPhone WHERE ParentId =:cpa.ParentId and TelephoneNumber = :phonelnserted];
if{eps.size (}=—=0){
ContactPointPhone cp = new ContactPointPhone (TelephoneNumber = phonelInserted,ParentId = cpa.ParentId);
insert cp;
cpa.ContactPointPhoneld = cp.Id;
Jelse{
cpa.ContactPointPhoneld = cps[0].Td:
1
/f3et is created by commerce
cpa.lsCreatedByCommerce c=true;
Account acc = [SELECT AccountNumber FROM ACCOUNT WHERE Id=:cpa.Parentld];
if(cpa.AddressType == System.Label.billing cpa) {
//convert to english for db
cpa.AddressType = 'Billin
//set bil to code
cpa.BillToCode ¢ = acc.AccountNumber;
//default = true

cpa.IsDefault = true;
cpa.External ID_ c = 'BILL '+acc.AccountNumber+' '+cpa.BillToCode_ c:
Jelse if(cpa.AddressTyps == System.Label.shipping_cpa) {

cpa.AddressType =
Counter ¢ ent;
List<Counter__c> cnts = [SELECT Counter cpa__c FROM Counter c];
if (cnts.size () 1=1){
//something is wrong, but we can ripristinate the walue
for(Counter_c ¢ : cnts){
delete c;

ipp

3
List<ContactPointAddress> shipToCodes = [SELECT ShipToCode c FROM ContactPointAddress WHERE AddressType = 'S
if (shipToCodes.size()==1){
cnt = new Counter c(Name='Coun
Jelse(
Decimal max = 07
for (ContactPointAddress ship : shipToCodes){
if(ship.shipToCode c 1= '’ && ship.ShipToCode c != null){
tryl
Decimal shipVal = Decimal.valueOf{ship.ShipToCoda_ c) ;
if(shipVal> max) {
max = shipVal;

ipping'l;

*,Counter cpa_ ¢ = 30000000) ;

]
}eatch (TypeException @) {}

]

max = max+!;

cnt = new Counter_c(Name='Counter',Counter_cpa_ ¢ = max);
1
insert cnt;

Jelse{
cnt = cnts[0];
}
if(cnt.Counter cpa ¢ == null || cnt.Counter cpa_c < 30000000){
List<ContactPointAddress> shipToCodes = [SELECT ShipToCode ¢ FROM ContactPointAddress WHERE AddressType = '
if (shipToCodes.size ()==1) {
ent.Counter cpa_c =

ipping'l;

lelse(
Decimal max = 0;
for (ContactPointAddress ship : shipToCodes){
if(ship.ShipToCode ¢ 1= '' && ship.ShipToCode c 1= null){
tryl
Decimal shipVal = Decimal.valueOf (ship.ShipToCoda_ c) ;
if (shipVal> max) {
max = shipVal:
I
}eateh (TypeException) {}
¥
¥

max = max+!;
ent.Counter _cpa_c = max;

3
cpa.ShipTeCode ¢ = cnt.Counter cpa_ c#'';
cnt.Counter_cpa__c = cnt.Counter_cpa_ ¢ +1;
update cnt;
cpa.External ID ¢ = 'SHIF '#acc.AccountNumber+' ‘+cpa.ShipToCode c:
//if this is the new default set old default ot not default
if(cpa.IsDafault = true){
List<ContactPointAddress> oldDefault = [SELECT Id,IsDefault FROM ContactPointAddress WHERE Parentld =:cpa.ParentId and AddressType = 'Shippin
and IsDefault = true];
if (oldDefault.size ()>0){
ContactPointAddress toUpdate = oldDefault[0];
toUpdate.IsDefault = false;
update toUpdate;

}
//set default if it's the first shipping cpa
Double count = [SELECT Count() FROM ContactPointRddress WHERE ParentId =:cpa.Parentld and AddressType = 'Shippi
if (cpa.IsDefault == false && count == 0){
cpa.IsDefault = true:

¥

insert cpa;

return cpa.Id;

} catch (Exception dmx) {
// BpexPages.addMessages (dmx) ;
return ‘br: ‘+dmx. getMessage () 7

80

@Auraknabled
public static String editContactPointAddress(ContactPointaddress cpa){
{

if (cpa.AddressType == System.Label.billing cpa){
//convert to english for db
cpa.AddressType = 'Billing';

Jelse if(cpa.AddressType == System.Label.shipping cpa)(
cpa.AddressType = 'Shipping’;

}

//verify that default is always only one

List<ContactPointAddress> oldDefault = [SELECT 1d,IsDefault FROM ContactPointAddress WHERE ParentId =:cpa.ParentId and AddressType

:System.Label.shipping_cpa and IsDefault = true];
if (oldDafault.size ()>0)(
ContactPointAddress cpabDef = oldDefault[(]:
if {cpaDef.Id != cpa.Id){
cpaDef.IsDefault = false;
List<ContactPointAddress> result = new List<ContactPointAddress>():
result.add(cpa) ;
result.add(cpabef) ;
update result;
Jelse{
update cpa;
1
Jelse{
update cpa;
}
return null:
} catch (Exception dmx) {
return dmx.getMessage () ;

eRuraBnabled
public static string getAccount(String userId){
String accountld = null;
String country = null;
String name = nall;
String phone = nul.
Boolean hasBilling = false:
String contactld = null;
List<User> u = [SELECT ContactId,AcconntId FROM USER WHERE
if(u.size()>0){
if(u[0].ContactId != null && u[7].AccountId
/fecustomer user
contactId=u[0].ContactId;
accountTd=u[0].AccountTd;
List<Contact> c = [SELECT Phone FROM Contact WHERE Id=:contactld];:
List<Account> a = [SELECT BillingCountry,Name FROM Account WHERE Id=:accountId];
if(c.size()>) £& a.size()>0){
phone = c[0].Phone;
country = a[0].BillingCountry;
name = a[0] .Name;

: userld];

null){

I

Integer cpa = [SELECT COUNT() FROM ContactPointAddress WHERE ParentId =:accountId and AddressType = 'Hilling']:

1€ (cpa>) |
hasBilling = true;

zreturn accountId+' ‘+name+’- ‘+country+' ‘+hasBilling+' '+phone;

eAuraEnabled
public static string getBillinghddress(String accountId){
String state = null:
String city = null;
String street = null;
String postalCode = null;
String houseNumber = null;
String pame = null;

List<ContactPointAddress> cpa = [SELECT Hame,State,Street,City,PostalCode,HouseNumber ¢ FROM ContactPointAddress WHERE ParentId = :accountTd and

AddressType = 'Billing' 1:
if(cpa.size O>0)(
name = cpal!].Name;
state = cpa[(].Statae;
city = cpal0].City;
street = cpa[(].Streat;
postalCode = cpall].PostalCode;
houseNumber = cpal0].HouseNumbar__c;

}

return name+'?'+state+'?'+city+'?'+street+’”? +postalCode+’?'+houseNumber;

BRuraEnabled
public static string getRecord(String recordld){

List<ContactPointAddress> cpa = [SELECT Name, ParentId, ContactPointPhoneld, AddressType, IsDefault, IsActive e,
IsRelatedToAnotherCompany c,City,Country,State,Streat,HouseNumber c,PostalCode FROM ContactPointAddress WHERE Id = :recordld];

if(cpa.size O30 (
if(cpalil].AddressType == 'Shipping'){
cpa[i].AddressType = System.Label.shipping_cpa:
)else if(cpa[i].AddressType == '8illing’){
cpa[0] .AddressType = System.Label.billing_cpa:

}
List<Account> ace = [SELECT Name FROM Account WHERE Id=: cpa[0].Parentld];

List<ContactPointPhone> cpp = [SELECT TelephoneNumber FROM ContactPointPhone WHERE Ide :cpall].ContactPointPhoneld];

iffacc.size()>0 && cpp.size()>0){
return
cpal(] .Name+'?'+acc[0] .Name+'?'+cpp[0] . TelephoneNumber+' ? ‘+cpa[U] . AddressType+
+'7'4cpal] .City+' ' #cpali].Country+'

81

4cpa[0].IsDefault+’ +cpa[i].IsActive c+'2'4cpa[(].IsRelatedToAnothezCompany c
+cpa[(].State+' 7' +cpa[(].Street+'? '+cpa[0].HouseNumber c+'?'+cpalil].PostalCode+'?'+cpal(].ParentId;

Code 2: Reset Password page
FRONT END (Visualforce, HTML)

<apex:page id="ResetPassword" showHeader="false" controller="ChangePasswordController" title="{!SLabel.ResetPassword}" docType="html|-5.0">

<div class="resetPasswordPage">
<apex:image styleClass='logolmage' width='183px' height="87px" value="{!LEFT(SApi.Partner_Server URL 510, FIND('/services', SApi.Partner_Server URL
510))}file-asset-public/iarploginlogo?oid={!$Organization.Id}"
/>

<apex:outputPanel rendered="{lifFromSAP}" styleClass="welcomeBox">
<apex:outputText styleClass="titlePage" value="{!SLabel.welcome_epta}" />

<apex:outputText style="font-size:14px; " value="{ISLabel.set_account1}" />

<apex:outputText style="font-size:14px; " value="{ISLabel.set_account2}" />

</apex:outputPanel>

<apex:outputPanel rendered="{!ifFromSAP==false}" styleClass="welcomeBox">
<apex:outputText styleClass="resetPageHeader" value="{|SLabel.reset_your_password}" />
</apex:outputPanel>

<apex:outputPanel>

<div class="errorMessage">

{lerrorMessage}

</div>
</apex:outputPanel>
<apex:panelGrid cellpadding="" cellspacing="" bgcolor="white" columns="1" styleClass="passwordTable">

<apex:outputlabel value="{!SLabel.passwordInfo}" />

<apex:outputLabel value="{!SLabel.passwordinfo2}" />

<apex:outputLabel value="{ISLabel passwordinfo3}" />

<apex:outputLabel value="{!$Label.passwordinfo4}" />
</apex:panelGrid>

<apex:form id="theForm" styleClass="formContainer">
<div class="labelSpaceBottom">
<apex:outputLabel style="color:rgb(240, 52, 52, 1)" value="*" />
<apex:outputLabel style="color:rgba(0, 0, 0, 0.81); font-size:14px;" value="{!SLabel.site.new_password}" for="psw" />
</div>
<apex:inputSecret id="psw" value="{InewPassword}" styleClass="inputPassword" />

<div class="labelSpaceBottom">
<apex:outputLabel style="color:rgh(240, 52, 52, 1)" value: />
<apex:outputLabel style="color:rgba(0, 0, 0, 0.81); font-size:14px;" value="{!SLabel.site.verify_new_password}" for="vpsw"
/>
</div>
<apex:inputSecret id="vpsw" value="{lverifyNewPassword}" styleClass="inputPassword" />
<apex:outputPanel rendered="{!ifFromSAP}">
<table class="termCondition">
<tr>
<td style="vertical-align: top;">
<apex:outputlabel style="color:rgh(240, 52, 52, 1)" value="*" />
<apex:inputCheckbox id="privacyflag" value="{!privacyflag}" label="Privacy Flag" selected="false" style="display: inline;
font-size:10px;
position:relative;
color: rgb(0, 0, 0);
background-color:#1797¢0;" />
</td>
<td style="font-size: 12px; font-family: sans-serif; color: rgha(s, 5, 5, 0.87);">
<apex:outputlabel value="{lSLabel.cond1}" />
<apex:outputPanel rendered="{liflsFra}"> </apex:outputPanel>
<l--<apex:outputLink target="_blank" value="../../../s/privacy-policy" id="theLink">{!5Label.PrivacyPolicy}</apex:outputLink>-->
<apex:commandButton value="{!SLabel.PrivacyPolicy}" action="{!openPalicy}" rerender="plpopup" style="background: none;
border: none;
padding: 0;
margin: 0;
font-size: 12px;
color: #0061al;
font-family: sans-serif;"/>
<apex:outputLabel value="{!SLabel.cond2}" />

</td>
</tr>

82

<tr>
<td style="vertical-align: top;">
<apex:outputlLabel style="color:rgb(240, 52, 52, 1)" value="*" />
<apex:inputCheckbox id="termsflag" value="{ltermsflag}" label="Terms Flag" selected="false" style="display: inline;
font-size:10px;
position:relative;
color: rgb(0, 0, 0);
background-color:#1797c0;" />
</td>
<td style="font-size: 12px; font-family: sans-serif; color: rgha(5, 5, 5, 0.87);padding-top: 4px;">
<apex:outputlabel value="{!SLabel.termsCond1}" />
<apex:commandButton value="{!SLabel.termsCond2}" action="{!lopenTermsAndCond}" rerender="tcpopup" style="background: none;
border: none;
padding: 0;
margin: 0;
font-size: 12px;
color: #0061a1l;
font-family: sans-serif;"/>
<|--<apex:outputLink target="_blank" value="../../../s/terms-and-conditions" id="theLink3">{!SLabel termsCond2}</apex:outputLink>-->

</td>
</tr>
<tr>
<td style="vertical-align: top; padding-left: 6px; font:lato; font-size:12px;">
<apex:inputCheckbox id="marketingflag" value="{Imarketingflag}" label="Marketing Flag" selected="false" style="display: inline;
font-size:10px;
position:relative;
color: rgh(0, 0, 0);
background-color:#1797¢c0;" />
</td>
<td style="font-size: 12px; font-family: sans-serif; color: rgbha(5, 5, 5, 0.87); ">
<apex:outputlLabel value="{!$Label.marketing_label1}" />
<apex:outputlLabel value="{!SLabel.marketing_label2}" />
<apex:outputLabel value="{!SLabel.marketing_label3}" />
<apex:outputlLabel value="{!SLabel.marketing_label4}" />
</td>
</ftr>
</table>
</apex:outputPanel>
<apex:outputPanel rendered="{lisFirstLogin}">
<apex:commandButton id="cpwbtn" action="{!changePassword}" value="{!SLabel.genPassButton}" styleClass="submitButton" />
</apex:outputPanel>
<apex:outputPanel rendered="{!IF (isFirstLogin==false,true,false)}">
<apex:commandButton id="cpwbtn1" action="{IchangePassword}" value="{15Label.ResetPassword}" styleClass="submitButton" />
</apex:outputPanel>

<apex:outputPanel id="tcpopup">
<apex:outputPanel styleClass="popupBackground" layout="block" rendered="{!openTermsAndCond}"/>
<apex:outputPanel styleClass="custPopup" layout="block" rendered="{lopenTermsAndCond}">
<c:termsAndCondComponent isFra="{liflsFra}"></c:termsAndCondComponent>

<apex:commandButton value="{!$Label.closelabel}" action="{!closeTermsAndCond}" rerender="tcpopup"” styleClass="myButtonClose"/>
</apex:outputPanel>
</apex:outputPanel>

<apex:outputPanel id="plpopup">
<apex:outputPanel styleClass="popupBackground" layout="block" rendered="{!openPolicy}"/>
<apex:outputPanel styleClass="custPopup" layout="block" rendered="{lopenPolicy}">
<c:policyComponent isFra="{liflsFra}"></c:policyComponent>

<apex:commandButton value="{!SLabel.closeLabel}" action="{!closePolicy}" rerender="plpopup" styleClass="myButtonClose"/>
</apex:outputPanel>
<fapex:outputPanel>

</apex:form>
</div>

</apex:define>
<apex:define name="footer"></apex:define>
</apex:page>

83

Code3: Login Form
FRONT END (Aura Component, HTML)

<aura:component controller="LightningLoginFormController" implements="forceCommunity:availableForAllPageTypes, force:hasRecordid">
<aura:attribute name="showError" type="Boolean" required="true" description="" default="false" access="private" />
<aura:attribute name="errorMessage" type="String" required="false" description="" access="private" />
<aura:attribute name="startUrl" type="String" required="false" default='/" description="The url you go to after a successful login" />
<aura:attribute name="usernamelabel" type="String" required="false" default="Username" />
<aura:attribute name="passwordLabel" type="String" required="false" default="Password" />
<aura:attribute name="loginButtonLabel" type="String" required="false" default="Log in" />
<aura:attribute name="RememberMelabel" type="Boolean" required="false" default="Remember Me" />
<aura:attribute name="expid" type="String" required="false" description="The branding experience ID" />

<aura:attribute name="forgotPasswordLabel" type="String" required="false" default="Forgot your password?" />
<aura:attribute name="selfRegisterLabel" type="String" required="false" default="Not a member?" />
<aura:attribute name="forgotPasswordUrl" type="String" required="false" default="/ForgotPassword" />
<aura:attribute name="selfRegisterUr|" type="String" required="false" default="/SelfRegister" />

<aura:attribute name="isUsernamePasswordEnabled" type="Boolean" access="private" />
<aura:attribute name="isSelfRegistrationEnabled" type="Boolean" access="private" />
<aura:attribute name="communityForgotPasswordUrl" type="String" access="private" />
<aura:attribute name="communitySelfRegisterUrl" type="String" access="private" />

<aura:registerevent name="sitePropagatedStartUrl" type="c:setStartUrl" />
<aura:handler name="init" value="{Ithis}" action="{!c.initialize}" />
<aura:dependency resource="c:setStartUrl" type="EVENT" />
<aura:handler event="c:setStartUrl" action="{!c.setStartUrl}" />
<aura:handler event="c:setExpld" action="{lc.setExpld}" />
<aura:dependency resource="c:setExpld" type="EVENT" />

<div>
<aura:renderlf isTrue="{!v.isUsernamePasswordEnabled}">

<aura:renderlf isTrue="{!v.showError}">
<div id="error">
<ui:outputRichText value="{lv.errorMessage}" />
</div>
</aura:renderlf>
<fspan>
<div id="sfdc_username_container" class="sfdc">

<uitinputText value="" aura:id="username" placeholder="{lv.usernameLabel}" keyup="{lc.onKeyUp}" class="input sfdc_usernameinput sfdc" label="{lv
.usernamelabel}" labelClass="assistiveText" />
</div>

ngn

<div id="sfdc_password_container" class="sfdc">

<uizinputSecret value="" aura:id="password" placeholder="{!v.passwordLabel}" keyup="{!c.onKeyUp}" class="input sfdc_passwordinput sfdc" label="{!
v.passwordLabel}" labelClass="assistiveText" />
</div>

<div class="sfdc">
<ui:button aura:id="submitButton" label="{!v.loginButtonLabel}" press="{lc.handleLogin}" class="sfdc_button" />
</div>
<div>
<lightning:input type="checkbox" label="{!SLabel.c.Remember_Me}" aura:id="RememberMe" placeholder="{lv.RememberMeLabel}" />
</div>

<div id="sfdc_forgot" class="sfdc">
{!v.forgotPasswordLabel}</s

pan>
<aura:renderlf isTrue="{!v.isSelfRegistrationEnabled}">
{!v.selfRegisterLabel}
</aura:renderlf>
</div>
<faura:renderlf>
</div>

</aura:component>

84

BACK END (APEX)

@AuraEnabled
public static String login(String username, String password, String startUrl) {

iflusername == null | | String.isEmpty(username)) {
return Label.email_is_required;

}

if(IPattern.matches('A[a-zA-Z0-9+_.-]+@[a-zA-Z0-9.-]+$', username.toLowerCase())) {
return Label.email_invalid;

}

if(password == null || String.isEmpty(password)) {
return Label.password_required;
}
Savepoint sp = null;
try {
ApexPages.PageReference Ign = Site.login(username, password, startUrl);
if(lgn == null){
J/return null;
ApexPages.addmessage(new ApexPages.message(ApexPages.severity.Info, '* You\'ve entered an incorrect username and/or password. Please re-
enter your log-in information.'));
}

System.debug('Login is successful: ' + username);
sp = Database.setSavepoint();

Id accountld = [SELECT Accountld FROM User WHERE Username = :username LIMIT 1].Accountld;
System.debug('Username: ' + username + ', Acconutld: '+ accountld);

Account accountToUpdate = [SELECT Id, Status__c¢ FROM Account WHERE Id = :accountid LIMIT 1];
accountToUpdate.Status__c = 'Active’;

update accountToUpdate;

System.debug('Update completed - Username: ' + username + ', Acconutld: "+ accountld);

System.debug('ld: ' + accountld + ', Buyerld: '+ accountld);

buyerAccount buyerAccountoUpdate = [SELECT Id, BuyerStatus FROM buyerAccount WHERE Buyerld = :accountid LIMIT 1];
buyerAccountoUpdate.BuyerStatus = 'Attivo’;

update buyerAccountoUpdate;

System.debug('Update completed - Id: ' + accountld + ', Buyerld '+ accountid);

aura.redirect(lgn);
return null;

}

catch(System.DmiException e) {
Database.rollback(sp);
System.debug('DmlException caught: ' + e.getMessage());
return 'Please contact system administrator’;

}

catch (Exception ex) {
System.debug('Error login - Username: ' + username);
return Label failedLogin;

}

}

Code 4: Self Registration
FRONT END (Aura Component, HTML)

85

<!-- add implements="forceCommunity:availableForAllPageTypes" to surface the component in community builder -->
<aura:component implements="flexipage:availableForAllPageTypes,forceCommunity:availableForAllPageTypes" access="global"
controller="LightningSelfRegisterController">

<|-- Please uncomment

<aura:dependency resource="siteforce:registerQueryEventMap" type="EVENT"/>
-—

<aura:handler event="c:setStartUrl" action="{lc.setStartUrl}" />

<aura:handler event="c:setExpld" actio setExpld}" />

<aura:dependency resource="c:setExpld" type="EVENT" />

<div id="sfdc_register_form" class="sfdc">
<aura:renderlf isTrue="{!v.showError}"'>

<div id="error">
<ui:outputRichText value="{lv.errorMessage}" />
</div>

</aura:renderlf>
<l-- <div class="alreadyCustomerCheckbox">
<ui:inputCheckbox aura:id="checkbox" change="{!c.onCheck}"/>
<p style="padding-left:0.5rem"> {Iv.alreadyCustomer}</p>
</div> -->

<table >
<tr>
<td style="padding: 0 15px;">
<uizinputCheckbox aura:id="checkbox" change=
</td>
<td>
<p> {Iv.alreadyCustomer}</p>
</td>
</tr>
</table>
<aura:renderlf isTrue="{!v.myBaool}">
<div id="sfdc_VATCode_container" class="sfdc" required="true">

c.onCheck}"/>

<!-- <div id="sfdc_VATCode_container" class="sfdc">

<uizinputText value="" vatcode" required="true" label="{lvVATCodeLabel}" keyup="{lc.onKeyUp}" class="input sfdc_usernameinput sfdc"

aura:i
/>
</div>-—->
<span id="sfdc_vatcode" class="login-icon sfdc" data-ico
<lightning:input id="vatcode" aura:id="vatcode2" value='

'k">
IvVat}" required="true" label="{IvVATCodelabel}" onkeyup="{!c.onKeyUp}" class="input

sfdc_usernameinput sfdc custominput” fieldLevelHelp="{lv.infoPIVA}" />
</div>
<aura:render!f isTrue="{!vincludeEmailField}">
<div id="sfdc_email_container" class="sfdc" required="true">

<span id="sfdc_email" class="login-icon sfdc" data-icon:
<uizinputText value="{!v.Email}" aura:id="email2" require:
</div>
</aura:renderif>

">
="true" label="{!v.emailLabel}" class="input sfdc_usernameinput sfdc" />

<div class="sfdc">
<ui:button aura:id="submitButton2" label="{lv.activateButtonLabel}" press="{lc.handleRegister}" class="sfdc_button" />
</div>

<faura:renderlf>
<aura:renderlf isTrue="

.myBool}">

<div id="sfdc_country_container" class="sfdc">
<uizinputSelect class="single" aura:id="country" value="" label="{!v.industryLabel}" change="{!c.handleChange}" required="true">
<uizinputSelectOption label="None" value="" text="" />
<uicinputSelectOption label="{l5Label.c.italy_country}" value="Italy" text="Italy" />
<ui:inputSelectOption label="{!$Label.c.france_country}" value="France" text="France" />
</uitinputSelect>
</fdiv>
<div id="sfdc_username_container" class="sfdc">

<uizinputText required="true" value="" aura:id="firstname" label="{lv.firstnamelLabel}" keyup="{lc.onKeyUp}" class="input sfdc_usernameinput

sfdc" />
</div>
<div id="sfdc_nickname_container" class=
<span id="sfdc_nickname" class="logi

<uizinputText value="" aura:id="lastname" required="true" label="{lv.lastnamelabel}" keyup="{lc.onKeyUp}" class="input sfdc_usernameinput
sfdc" />
</div>
<div id="sfdc_CompanyName_container" class="sfdc">

<uirinputText value="" aura:id="companyname" required="true" label="{lv.CompanyNameLabel}" keyup="{!c.onKeyUp}" class="input
sfde_usernameinput sfdc" />

</div>
<aura:renderlf isTrue="{lv.includeEmailField}">
<div id="sfdc_email_container" class="sfdc" required="true">

<span id="sfdc_email" class="login-icon sfdc" data-icon:
<uirinputText value="{!v.Email}" aura:id="email" required
</div>
</aura:renderif>
<div id="sfdc_VATCode_container" class="sfdc">

">
"true" label="{lv.emailLabel}" class="input sfdc_usernameinput sfdc" />

<l-- <div id="sfdc_VATCode_container" class="sfdc">
<span id="sfdc_vatcode" class="login-icon" data-icon="'

">

<uiinputText value="" aura:id="vatcode" required="true" label="{lvVATCodelLabel}" keyup="{!c.onKeyUp}" class="input sfdc_usernameinput sfdc"
/>
</div> >

<lightning:input id="vatcode" aura:i "' required="true" label="{Iv.VATCodelabel}" ankeyup="{lc.onKeyUp}" class="input
sfdc_usernameinput sfdc custominput” fieldLevelHelp="{lv.infoPIVA}" />
</div>

<div id="sfdc_phone_container" class="sfdc">
<span id="sfdc_phone" class="login-icon" data-icon=
<uizinputPhone value='
</div>
<aura:renderlf isTrue="{! v.industr ‘Italy' }'>
<div id="sfdc_sdi_container" class="sfdc">

<uizinputText value="" aura:id="sdi" label="{!v.SDILabel}" keyup="{!c.onkeyUp}" class="input sfdc_usernameinput sfdc" />
</div>
<div id="sfdc_pec_container" class="sfdc">

<uizinputEmail aura:id="pec" label="{Iv.PECLabel}" class="input sfdc_usernameinput sfdc" />
</div>
<div>
<lightning:input type="checkbox" label="{I5Label.c.FiscalDrawer}" aura:id="FiscalDrawer" placeholder="{lv.FiscalDrawerLabel}" />
</div>
<div id="sfdc_Fiscalode_container" class="sfdc">

<uicinputEmail value="" aura:i scalCode" required="true" label="{lv.FiscalCodeLabel}" keyup="{lc.onKeyUp}" class:
sfdc_usernameinput sfdc" />
</div>
</aura:renderif>

k">

<aura:renderlf isTrue="{! vindustry == 'France' }'>
<div id="sfdc_siren_container" class="sfdc">

<ui:inputText value="" aura:id="siren" required="true" label="{v.sirenLabel}" keyup="{!c.onKeyUp}" class="input sfdc_usernameinput sfdc" />
</div>
<div id="sfdc_siret_container" class="sfdc">

<ui:inputText value="" aura:id="siret" required="true" label="{!v.siretLabel}" keyup="{!c.onKeyUp}" class="input sfdc_usernameinput sfdc" />
</div>
<div id="sfdc_clinet_type-container" class="sfdc">
<lightning:select name="clientType" label="{ISLabel.c.clientType}" value="{!v.clientType}" required="true" >
<aura:iteration items="{lv.clientTypeOptions}" var="item">
<aura:if isTrue="{lv.clientType == item }">
<option value="{litem}" selected="selected">{litem}</option>
<aura:set attribute="else">
<option value="{litem}">{litem}</option>
</faura:set>
<faura:if>
</aura:iteration>
</lightning:select>

</div>
<faura:renderlf>

<div class="termCondition'>
<table>
<tr>
<td>
<lightning:input type="checkbox" placeholder="{!v.PrivacyFlaglLabel}" aura:id="privacyFlag" variant="label-hidden" required="true" />
</td>
<td>
{!SLabel.c.cond1}
<aura:renderlf isTrue="{!v.withSpace}"> </aura:renderlf><a target="_blank" href="../privacy-
policy">{!SLabel.c.Privacy_Policy} {!SLabel.c.cond2} .
</td>
<ftr>
<tr>
<td>
<lightning:input type="checkbox" aura:id="termsFlag" variant="label-hidden" placeholder="{lvTermsFlagLabel}" required="true" />
</td>
<td>
{!SLabel.c.termsCond1} {!SLabel.c.termsCond2}.
<ftd>
</tr>
<tr>
<td>
<lightning:input type="checkbox" aura:id="marketingFlag" variant="label-hidden" placeholder="{lv.MarketingFlaglLabel}" required="false" />
</td>
<td>
<label>{!SLabel.c.marketing_label1}</label>
<label>{ISLabel.c.marketing_label2}</label>
<label>{!SLabel.c.marketing_label3}</label>
<label>{!SLabel.c.marketing_label4}</label>
</td>
</tr>
</table>
</div>

<div class="sfdc">
<ui:button aura:id="submitButton" label="{!v.submitButtonLabel}" press="{lc.handleSelfRegister}" class="sfdc_button" />
</div>
</aura:renderlf>

BACK END (APEX)

@AuraEnabled
public static String selfRegister(

String country,
String firstname,
String lastname,
String companyName,
String email,
String confirmEmail,
String vatCode,
String phone,
String sdi,
String pec,
String FiscalCode,
String siren,
String siret,
Boolean privacyFlag,
Boolean FiscalDrawer,
Boolean termsFlag,
Boolean marketingFlag,
String clientType
"

Savepoint sp = null;

String salesOrganization = null;
String distributionChannel = null;
String salesArea = null;

String riskCode = 'z6";

Boolean privacy = false;

87

if(\checkFieldsMandatory(fieldsToCheck)) {
return Label fieldsMandatory;
}

if(IPattern.matches('A[a-zA-20-9+_.-]+@[a-zA-20-9.-]+5', email.toLowerCase())) {
return Label.email_invalid;

1

if(IPattern.matches('A[0-a-zA-Zadddadac ceeébde|iiiilnoo666planiyayy2ziccss AMAARAACCEEEEEEIMENOOOOO@UUD0YIVZZNRGEACSZAB ,\'-)+5',
firstname)) {
return Label firstname_invalid;
}

if(IPattern.matches('A[0-9a-zA-Zaaaaaac ceeébéejiilinad666puniyayyzifcessAAAARAACCEE EEEEIMENOOOOOAUUD0YIYYZZNRGEALSZO8 , \'-]+8',
lastname)) {
return Label.lastname_invalid;

1

if(country == 'France') {
if(IPattern.matches('A(FR)[0-9A-Z]{2}[0-9]{9}5', vatCode)) {
return Label.vatcode_invalid;
}
} else if(country == "ltaly') {
if(IPattern.matches('A(IT)[0-9]{11}$', vatCode)) {
return Label.vatcode_invalid;
}
}
phone = phone.replaceAll('(\\s+)', ");
if(!Pattern.matches('~([0-9\\+]{0,20})$', phone)) {
return Label.phone_invalid;

1

if(country == "Italy') {
if ((sdi == null | | String.isEmpty(sdi)) && (pec == null | | String.isEmpty(pec)) && (IFiscalDrawer)) {
return Label.SDI_PEC_FiscalDrawer_is_required;

!

if(FiscalDrawer){
FDrawer = true;

}

if((sdi 1= null && IString.isEmpty(sdi)) && |Pattern.matches('A[0-9A-2){7}5", sdi)) {
return Label.sdi_invalid;

1

if((pec I= null && IString.isEmpty(pec)) && IPattern.matches('A[a-zA-Z0-9+_.-]+@[a-2A-20-9.-]+8', pec)) {
return Label.pec_invalid;

1

if (FiscalCode == null | | String.isEmpty(FiscalCode)) {
return Label.FiscalCode_required;

}

if(!Pattern.matches('A([A-Za-z]{6}[0-9ImnpqrstuvLMNPQRSTUV]{2}{abcdehimprstABCDEHLMPRST]{1}[0-9ImnpgrstuvLMNPQRSTUV]{2}[A-Za-z]{1}[0-
9lmnpgrstuvL MNPQRSTUV]{3}[A-Za-z]){1})$|([0-9){11})$', FiscalCode)) {
return Label.FiscalCode_invalid;

1

}
else if(country == 'France') {
if (siren == null || String.isEmpty(siren)) {
return Label.siren_is_required;

1

if (siret == null | | String.isEmpty(siret)) {
return Label siret_is_required;
}

1

if(ItermsFlag) {

return Label.terms_flag_is_required;
}else {

termsFlag = true;
}

if(!privacyFlag) {

return Label.privacy_flag_is_required;
}else {

privacy = true;

}

if(!marketingFlag){
marketingConsentDate = null;
lelse {
marketingConsentDate = Date.today();
}

//calculate account number

Code 5: User Profile
FRONT END (JS controller for Aura Component)

dolnit : function(component) {
let action = component.get("c.getUserinfo");
action.setParams({
"userld":SA.get("SSObjectType.CurrentUser.ld") 0
action.setCallback(this,function(response){
let state = response.getState();
let result = response.getReturnValue();
if(state === 'SUCCESS' && result!= null && result!="){
let res = JSON.parse(result);
letu={};
u.Name = res.Name;
u.Username = res.Username;
u.Email = res.Email;
u.Phone = res.Phone;
u.FullPhotoUrl = res.FullPhotoUrl;
u.CompanyName = res.Company;
u.ld = res.Id;
u.Country = res.Country;
u.Marketing = res.Marketing=="true'?true:false;
component.set('v.User',u);
component.set('v.newEmail',u.Email);
if(u.FullPhotoUrl){
component.set('v.hasPicture',true);

Jelse if(state === 'ERROR'){
component.set('v.Error',response.getError()[0].message);
Jelse{
component.set('v.Error','There was an error');
}
1
SA.enqueueAction(action);

h

handleSaveMarketing : function (component){
let action = component.get("“c.updateMarketing");
action.setParams({
"userld":SA.get("$SObjectType.CurrentUser.ld"),
"marketingFlag":component.get('v.User.Marketing')
m
action.setCallback(this,function(response){
let state = response.getState();
let result = response.getReturnValue();
let resultsToast = SA.get("e.force:showToast");
if(state === 'SUCCESS' && result == true){
resultsToast.setParams({
"title": $A.get("SLabel.c.saved"),
"type": "success",
"message": component.get('v.marketingUpdated')
n

resultsToast.fire();

Jelse{
resultsToast.setParams({
"title": $A.get("SLabel.c.error"),
"type": "error",
"message": component.get('v.marketingError')
W
resultsToast.fire();
}

component.set({'v.changeMarketing' false);

1

SA.engueueAction(action);

h

89

BACK END (Apex)

@Auraknabled
public static String getUserInfo(String userld) {
if(userld==null){
return null;
}
Map<String,String> result=new Map<String,String>();
List<User> u = [SELECT Name,Username,Email, Accountld,Contactld,FullPhotoUrl FROM User WHERE Id=:userld];
if(u.size()>0 && u[0].Contactld |= null && u[0].Accountld!= null}{
Contact ¢ = [SELECT Marketing_Flag__c,phone,Email FROM Contact WHERE Id =:u[0].Contactid];
Account a = [SELECT Name,BillingCountry FROM Account WHERE Id =:u[0].Accountid]; result.put('Name',u[0].Name);
result.put('Username’,u[0].Username);
result.put('ld’,u[0].1d);
result.put('Email',u[0].Email);
result.put('FullPhotoUrl',u[0].FullPhotoUrl);
result.put('Phone’,c.Phone);
result.put('Company',a.Name);
result.put('Country',a.BillingCountry);
result.put('Marketing',c.Marketing_Flag__ c+");
if(c.Email 1= u[0].Email {
c.Email = u[0].Email;
update c;
}
return JSON.serialize(result);
}
return JSON.serialize(result);

}

@AuraEnabled
public static Boolean updateMarketing(String userld, Boolean marketingFlag){
try {
String contactToUpdate = [SELECT Contactld FROM User WHERE Id=:userld].Contactld;
Contact contact = [SELECT Id,Marketing_Flag__c,MarketingConsentDate__c FROM Contact WHERE Id=:contactToUpdate];
contact.Marketing_Flag__ c = marketingFlag;
contact.MarketingConsentDate__c = Date.today();
update contact;
return true;
} catch (Exception e) {
return false;
}
}

@Auraknabled public static String changeUserEmail(String userld, String newEmail){
if(userld==null){
return 'Error: Invalid Userld';
}
if(!Pattern.matches('~[_a-z0-9-]+(.[a-z0-9-]+)@[a-z0-9-]+(.[a-z0-9-]+)*(.[a-z]{2,4})S', newEmail.toLowerCase())) {
return Label.email_invalid;
}
List<User> u = [SELECT Email FROM User WHERE Id=:userld];
if(u.size()==0}{
return 'Error:User not Exists';
}
User myUser = u[0];
Decimal checkRepetitions = [SELECT Count() FROM User WHERE Email =:newEmail];
if(checkRepetitions> 0) {
return Label.email_already_used;
}
myUser.Email = newEmail;
update myUser;
return 'ok’;

Code 6: Check Inventory
APEX FUNCTION

90

// This must implement the sfdc_checkout.CartinventoryValidation interface
// in order to be processed by the checkout flow and used for your Check Inventory integration.
public with sharing class EPTAB2BCheckinventorySample {

public static Map<String,String> startCartProcessAsync(List<RefrigeratorToCheck> quantitiesFromSalesforce, String country, Boolean
isCheckOutStage) {
Map<String,String> returnValue = new Map<String,String>();
returnValue.put('Error',null);
try {

//prepare final http request body;
HttpRequestObject requestBody = new HttpRequestObject(country,isCheckOutStage,quantitiesFromSalesforce);

// Get all availabilities.
Result quantitiesFromExternalService = getAvailabilityFromExternalService(requestBody);

for(ResultSku result : quantitiesFromExternalService.sku){

//get all products answers

if ((String) result.available == null){
String errorMessage = ‘The product with sku ' + result.sku + ' could not be found in the external system’;
returnValue.put('Error',errorMessage);
return returnValue;

}else if (((String) result.available).toLowerCase() == 'block'){
//String errorMessage = 'Insufficient quantity for the product with sku ' + result.sku + ', The product must be Blocked';
returnValue.put(result.sku,'Block');
//return answer;

lelse if(((String) result.available).toLowerCase() == 'false'){
//String errorMessage = 'Insufficient quantity for the product with sku ' + result.sku ;
//return answer;
String ans = 'False_'+result.skuAvailableDate;
returnValue.put(result.sku,ans);

Yelse if (((String) result.available).toLowerCase() == 'true'){
// If the product exists and the available quantity is enough, set status as SUCCESS
String ans = 'True_'+result.skuAvailableDate;
returnValue.put(result.sku,ans);

}
}

returnValue.put('OrderAvailableDate',(String)quantitiesFromExternalService.OrderAvailableDate);

} catch(Exception e) {
// For testing purposes, this example treats exceptions as user errors, which means they are displayed to the buyer user.
// In production you probably want this to be an admin-type error. In that case, throw the exception here
// and make sure that a notification system is in place to let the admin know that the error occurred.
// See the readme section about error handling for details about how to create that notification.
returnValue.put('Error','There was an exception '+e);
return returnValue;

}

return returnValue;

}

private static Result getAvailabilityFromExternalService (HttpRequestObject requestBody) {
Http http = new Http();
HttpRequest request = new HttpRequest();
Integer SuccessfulHttpRequest = 200;

//this is the mock
HttpResponse response = new HttpResponse();
Resultr;
if(Test.isRunningTest()){
if(requestBody.sku[0].sku == 'A1111"){
r=mockResult(requestBody);
lelse if(requestBody.sku[0].sku == 'A2222'){
r=mockResultFalse(requestBody);
lelse if(requestBody.sku[0].sku == 'A3333'){
r=mockResultBlock(requestBody);
lelse if(requestBody.sku[0].sku == 'A4444'){
r=mockResultError(requestBody);
}
response.setBody(JSON.serialize(r));
response.setStatusCode(SuccessfulHttpRequest);
telse{
//r = mockResult(requestBody);

//this is the real request;

//Get MiddleWare Settings
MiddleWareSettings__c theMiddleWare = [SELECT Inventory_Endpoint__c, Inventory_Key__c FROM MiddleWareSettings__c];

91

public static Result mockResult(HttpRequestObject requestBody){
List<ResultSku> resList = new List<ResultSku>();
for(RefrigeratorToCheck ref : requestBody.sku){
ResultSku rss = new ResultSku();
rss.sku = ref.sku;
if(ref.sku != null){
rss.available = 'True';
rss.skuAvailableDate = '27/12/2021";
}
resList.add(rss);
H
Result res = new Result();
res.sku = resList;
res.OrderAvailableDate = '27/06/2021";
return res;

}

public static Result mockResultFalse(HttpRequestObject requestBody){
List<ResultSku> resList = new List<ResultSku>();
for(RefrigeratorToCheck ref : requestBody.sku){
ResultSku rss = new ResultSku();
rss.sku = ref.sku;
if(ref.sku = null){
rss.available = 'False’;
rss.skuAvailableDate = '27/12/2021";
}
resList.add(rss);
}
Result res = new Result();
res.sku = resList;
res.OrderAvailableDate = '27/06/2021";
return res;

}

public static Result mockResultBlock(HttpRequestObject requestBody){
List<ResultSku> resList = new List<ResultSku>();
for(RefrigeratorToCheck ref : requestBody.sku){
ResultSku rss = new ResultSku();
rss.sku = ref.sku;
if(ref.sku = null){
rss.available = 'Block’;
rss.skuAvailableDate = "';
}
resList.add(rss);
}
Result res = new Result();
res.sku = resList;
res.OrderAvailableDate = "';
return res;

}

public static Result mockResultError(HttpRequestObject requestBody){
List<ResultSku> resList = new List<ResultSku>();
for(RefrigeratorToCheck ref : requestBody.sku){
ResultSku rss = new ResultSku();
rss.sku = ref.sku;
if(ref.sku != null){
rss.available = null;
rss.skuAvailableDate = ";
}
resList.add(rss);
H
Result res = new Result();
res.sku = resList;
res.OrderAvailableDate = ";
return res;

}

public class HttpRequestObject{
public String salesOrg;
public Boolean isCheckOutStage;
public List<RefrigeratorToCheck> sku;

public HttpRequestObject(String country, Boolean isCheckOutStage, List<RefrigeratorToCheck> sku){
this.salesOrg = country;

this.isCheckOutStage=isCheckOutStage;
this.sku = sku:

Code 7: Calculate Shipping Cost
APEX FUNCTION

92

public with sharing class CreateDeliveryServicesCartltems {
@InvocableMethod(label='Create delivery services cart items' description ='Create delivery services cart items')
public static void createDeliveryServicesCartltems(List< DeliveryServiceslinput> input) {
List<String> productsld = input[0].services;
if(productsid.size()>0){
Boolean hasTime = false;
Boolean hasDate = false;
//String communityld = Network.getNetworkld();
List<ShippingAddressScreenController.Service> allServices =
ShippingAddressScreenController.getDeliveryServices(input[0].accountld,input[0].cartid);
List<Cartltem> cartitemToCreate = new List<Cartltem>();
List<String> possibleServices = new List<String> ();
for (ShippingAddressScreenController.Service ser : allServices){
//add product ids of services
possibleServices.add(ser.ld);
}
if(Test.isRunningTest()){
//add a fake service just for testing purproses
String id = CreateDeliveryServicesCartitemsTest.fakeDel.ld;
ShippingAddressScreenController.Service myfakeService = new ShippingAddressScreenController.Service (id,'fake service','this is a
fake service');
myfakeService.UnitPrice = 10;
myfakeService TotalPrice = 20;
myfakeService.Npieces = 2;
allServices.add(myfakeService);

}

//delete all previous delivery services
List<Cartltem> oldService = [SELECT |d FROM Cartltem WHERE Cartld=:input[0].cartld AND Product2Id IN :possibleServices];
delete oldService;
List<String> skus = new List<String>();
String skusAsString = [SELECT ShippingServices__c FROM b2bconfiguration__c].ShippingServices__c;
skus = skusAsString.split(',');
List<Product2> productsNewlList = [SELECT Name FROM Product2 WHERE Accessory_Type__c = 'Shipping service' and ProductCode IN
:skus];
for(ShippingAddressScreenController.Service service : allServices){
if(productsld.contains(service.|d)){
Product2 prod;
for(Product2 p : productsNewList){
if(p.ld == service.ld){
prod = p;
break;
}

}

//= [SELECT Name FROM Product2 WHERE Id=:service.Id];

Cartltem cti = new cartltem(Name = prod.Name, cartDeliveryGroupld = input[0].cartDeliveryGroupld, AdjustmentAmount =
0,Cartld = input[0].cartld,Product2id = service.ld, Quantity = service.Npieces,SalesPrice = service.UnitPrice, TotalLineAmount =
service.TotalPrice,TotalPrice= service.TotalPrice,Type='Product’);

cartltemToCreate.add(cti);

if(service.hasTime == true){

hasTime = true;

}

if(service.hasDate == true){

hasDate = true;

}

}

}
insert cartitemToCreate;
if(hasDate == true){
CartDeliveryGroup cdg = [SELECT DesiredDeliveryDate,HasDeliveryTime__c,HasDeliveryDate__c FROM CartDeliveryGroup WHERE
Id=: input[0].cartDeliveryGroupld];
cdg.HasDeliveryDate__c = true;
if(hasTime == true){
cdg.HasDeliveryTime__ c = true;
String theTime = input[0].deliveryTime;
Date dtToday = Date.today();
Integer h = Integer.valueOf(theTime.split(":')[0]);
Integer m = Integer.valueOf(theTime.split(‘:')[1]);
Time t = Time.newlnstance(h,m,0,0);
Datetime myDT = DateTime.newlnstance(dtToday,t);
TimeZone tz = Userinfo.getTimeZone();
Integer offset = tz.getOffset(myDT)/3600000;
myDT = myDT.addHours(offset);

cdg.DesiredDeliveryDate = myDT;
}
update cdg;
}
}

Code 8: Calculate Taxes
APEX FUNCTION

public with sharing class EPTAB2BTaxSample {
@InvocableMethod(label="EPTA Calculate taxes' description='Calculate and create taxes within cart')
public static List<String> createCartTaxes(List<CalculateCartTaxesInput> input) {

List<CartTax> taxdelete = [SELECT Id FROM CartTax WHERE Cartld = :input[0].cartid];
delete taxdelete;
//Get Org defualt taxations
List<CartTax> cartTaxestolnsert = new List<CartTax>();
Taxation__c orgTax = Taxation__c.getValues(input[0].country);
Decimal taxRate;
Decimal taxAmount;
//Define tax rate
taxRate = orgTax.Tax__c/100;
// Get all SKUs, the cart item IDs and product information, and the total prices from the cart items.
for (Cartltem cartltem : [SELECT Id,CouponDiscount__c,Name,Sku,TotalPrice, Type FROM Cartltem WHERE Cartld =
:input[0].cartld WITH SECURITY_ENFORCED]) {

String cartltemSKU = ";

if (cartltem.Type == 'Product’) {

cartitemSKU = cartltem.Sku;
Jelse if (cartitem.Type == 'Charge') {
cartltemSKU = 'ChargeSKU';

//Calculates taxes amount
taxAmount = (cartitem.TotalPrice - cartitem.CouponDiscount__c) * taxRate;
//Define CartTax values
CartTax tax = new CartTax(Amount = taxAmount, Cartitemld = cartltem.ld, Name = 'Tax ' + cartltem.Name,
TaxCalculationDate = Date.today(), TaxRate = taxRate, TaxType = 'Actual’);
cartTaxestolnsert.add(tax);
System.debug(cartTaxestolnsert);
}
try {
insert(cartTaxestolnsert);
} catch(Exception e){
System.debug(e.getMessage());
}

return new List<String>{'Taxes correctly created'};

}

Flow 1: Payment Flow

©

Start
Checkout Faw

*
I Aasignment
Assign PO o mull
f
- :
—
- Assignment
Assign PO b vahee
Set Stages '
L ['
Assigrment , ,
Proceed ta next stage o
. ['
» .

‘ l : ’.
! Decizion
N ey S, - : 15 26 Cusstomer
y) :
o
Apex Action a
Stripe Check P -

Get Records
) Gt Accoumt Risk '
Code .
5
. show errar

Dacisian E—]
CheckPayment]
Y .-, [-, ﬁ i

\ = —P i &

Get Recards Gat
Get
PaymentGatewsyid

94

Flow 2: User Import Flow

Sart
Rscord- Triggered Flow

Ctject: Buyer Account Edit

Trigper A recard is created

Ogptmize for Actions and Related Records

4 Add Scheduled Paths {Opticaal)

s -
 1en imerctoty |

I B Ig... I

o]
i
Choazs Cxuntry

Get Records
Usier created

Apex Action
Assign Pemissian Set

@
(@)
Decigion ‘Get Records

Check Channel and Get account

Acesunt Far Coamm.. a

| napsndcammene | (®)
Get Reconds
Get Customer

]

Get Records
Get Contact Name:

Flow 3: Order Export

Coenmunity Pius U

[]
(o)
Get Records

‘Get Permission Set

(|

o

95

To User

Assignment
Setlocalelanguage

5
L

Assignment
SetlocalelanguageFR

Flow 4: Order Summary

Chedkouwt Flow

—p e T wiusit o 1y m o
= Bacion o L,
C.

Shewdd Clese Cart Get Records
et Order Summary
0 Apox Action
Update Parert Order —
Lu Clows Cart J Items Swmmary 4

(@]
Get Records

-
(o) — ﬁ
ol —
Get Records

Get Newsst Cart

l

Get Order Mumber

I
-; Ar;iun
S Update Checkout Update Records
[:.”:"'. Session State Claze Cart
S 1
[o ' —
= —.Ll.-..:" - -
iyl _ (&)
o Email Alert
i ! | Send Order
, l . Confirmatian Email
v
.
(%]
Subflow
Show Errar
Flow 5: Update Fulfilled Orders
Start
Autolaunched Flow
I'd
(@)
Update Records
Update Order
Product Status
— c -
[R (USRI | forfachitem) »
Get R?cnr\ds Loop Assignment
Get Order Products I Loop Order Products Assign Fulfilled
Cluantities
Q
0 ——
= Send The Email |
Get Records N met -
Get Country Code (@) /
And Tracking Email ... Decision O

Update Records
Update Tracking
Email has Sent

Send Email Cnly If
ltaly and Email neve...

(@)
Email Alert
Send Order Tracking
Email

96

f...:j___---- _@

Update Records
Update Ordar
Summary Exterral id

BIBLIOGRAPHY

Retrieved from Salesforce Official Website: https://www.salesforce.com

Arnau, B.-A., Liz, H., Dennis, S., & Jennifer, S. (2020). New analysis makes it clear: For B2B sales,

digital is the wave of the future.

Bezos, J. (2013, 09 25). Jeff Bezos: A Down-to-Earth CEO Reaching for the Stars. (J. STERN,

Interviewer)

John, B., Susan, W., Charlie, R., & Rachel, B. (2019). US B2B eCommerce Will Hit 51.8 Trillion By
2023. FORRESTER.

Kelsey, S., & Pashmeena, H. (2015). The Changing Face of B2B Marketing. Google.

what-is-b2b-marketing. Retrieved from Salesforce: https://www.salesforce.com/it/learning-

centre/marketing/what-is-b2b-marketing/

97

