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Summary

Recent progress in neurobiology goes hand to hand with the development of artificial
intelligence. The latter allows decoding the complex patterns underlying the brain
activity recorded by new generation implanted electrodes. This combination
represents the turning point in the development of neuroprosthetic. In the past
decades, we witnessed advancements in this field like paralytics patients driving
wheelchairs by visual stimulation, monkeys controlling robotic arms, or patients
moving a cursor with their minds to write on a virtual keyboard. However, no
project ever tried to be as ambitious as some are being now, such as Neuralink or
B-Cratos, that aim at pushing the concept of the closed-loop neural interface to a
new limit. The challenge they state for the next decade is to exploit intra-cranial
EEG (with their low signal to noise ratio) and advanced neural networks to reach
fine controlling of external devices and to stimulate sensory feedback response in
the patient brain.

In this paper, I am investigating the possibility of controlling a prototype
prosthetic arm to replicate the movement performed by a macaque monkey during
a grasping trial composed of several phases (wait, cue, planning, moving, holding).
Every grasping trial had as a target one out of thirty-six objects, organised in
six shapes and six sizes. Researchers of German Primate Centre directed the
experiment, during which they recorded the brain activity of the animal using
implanted microelectrodes arrays. Next, they applied offline data processing
known as spike sorting, clustering raw electrical activity to identify individual
neurons activations. The first step of my work consisted in comparing several
network archetypes (Feed-Forward Networks, Convolutional Networks and Recurrent
Networks) on the task of classifying the target object from a part of the neural
activity. For doing so, I automatically optimised every network with the support
of the Hyperopt library: this is a tool that supports optimisation in Python,
drawing pseudo-random parameters configurations from a defined search space
while accounting also previous results. Such an optimisation history also allowed
me to investigate which parameters were most correlated to good classification
results. Eventually, I assessed that the recurrent ones were those performing the
better and, in particular, the idea to have a convolutional layer extracting spatial
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features and one successive LSTM or GRU layer to weigh temporal dependencies
was successful.

Secondly, based on this optimised network, I wrote the brain-computer interface
software that I used in a proof of concept of low-delay decoding. In the demonstra-
tion, I simulated a real-time neural recording, buffering the last ten measurements
from which the BCI decoded the current state of the experiment and the object
shape and size. Then, a proper actuation signal was composed and sent to the arm
via radio transmission.

The overall results are promising, showing that the different objects and trial
phases shape the neural activity in such a unique way that makes it possible
to classify them, with the size being the trickiest to decode. The respective
testing accuracy for state, shape and size decoding tasks are around 90%, 92%
and 25%. However, overfitting was a constant problem in the development of the
BCI. Therefore, building a deeper and more complex network and train it on more
examples might be a necessary future step.
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Chapter 1

Introduction

The research fields of Artificial Intelligence (AI) and neuroscience shared a mutually
beneficial relationship since their origin. In the early stages of the evolution of
Machine Learning (ML), neurobiology inspired to build Neural Networks (NN) that
mimic brain structure under two aspects [1]. Firstly, similarly to the human brain,
the NN consist of interconnected neurons that receive inputs, get activated and
send information to other neurons. Secondly, as humans learn new things creating
and strengthening the connection between neurons, in a NN, each connection is
associated with a weight that will be tuned during the so-called training phase to
reflect the strength of that specific interaction.

The flip side of the relationship, sees nowadays AI boosting the advancement in
neuroscience [2]. The ML main strength lies in the ability to recognise patterns
buried under the data and this is especially crucial when it comes to analysing the
information obtained from human minds. Actually, despite the brain recordings are
complex, described by many dimensions and requiring a lot of features extraction,
with the advancement of ML, neuroscientists are hacking them and discovering
how billions of brain neurons work together.

In recent years, ML found its evolution in the Deep Learning (DL) (i.e. ML
based on deep-NNs) that has replaced the traditional approaches in most of the
fields. Among all the differences, the most important one is the ability of deep NN
to extract features from raw (or lightly pre-processed) high dimension data, while,
on the contrary, ML algorithms rely on handcrafted features. This transformation
improved the research in many fields, particularly in computer vision and natural
language processing. Now the same evolution is found in the task of decoding the
brain activity (with high variability and non-stationary noise) into a meaningful
signal. DL models with a high number of parameters seem promising to learn from
raw Electroencephalogram (EEG) electrical measurements and to extract better
information to improve performance and robustness.

This possibility was initially an intuition of the professor Jacques Vidal, from
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Introduction

University of California, Los Angeles, that coined the term Brain Computer Interface
(BCI, or sometimes Brain Machine Interface-BMI) and stated the "BCI challenge":
control of external objects or devices using neural signals [3]. BCIs technology is
strictly related then to neuroprosthetics, subject with which it shares aims, such
as restoring sight, hearing, movement, ability to communicate and even cognitive
function [4]. The first application was from the same author in 1977 when a cursor
was moved through Visual Evoked Potentials (i.e. induction of higher brain activity
projecting specific images, light or colours) [5]. Since then, we witnessed huge
advancements in both hardware (electrodes) and software (neural networks), having
some recent examples of robotic arms actuated via EEG [6] or Electromyography
(EMG) (i.e. the electrical activity of peripheral nervous system recorded on the
limb) [7, 8]. Now, the next step seems to be found in the integration of invasive
techniques [9], with projects that aim to be milestones in neuroprosthetics such as
Neuralink [10] and B-Cratos [11].

Challenges for these ambitious projects include:

• Designing a fully implantable recording device not rejected by the organism
and not (or slowly) degrading in quality of time

• Further developing real-time computational algorithms
• Introducing a bi-directional communication, for stimulating the brain with

sensory feedback from the actuators beside the motor signal translated and
sent from the brain to the actuators

• Designing and building prostheses that can be controlled directly by brain-
decoded signals

By reaching these milestones, future BCIs will be able to drive and control
revolutionary prostheses that feel and act like the human arm.

1.1 Background
In this section, I will analyse the background in which BCI technologies are
developed, starting from their definition and origin.

1.1.1 Brain-computer interface
Neurophysiological signals are complex, as they result from the composition of a
multitude of parameters. Hence, even well-trained specialists spend a considerable
amount of time analysing them to perform diagnoses. BCI is the technology that
comes in aid to automate such a process and possibly to deliver much more accurate
results. This kind of system relies on NNs and exploits their ability to recognise
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Introduction

Figure 1: BCI flowchart

patterns to extract intent from the brain activity of a subject (humans or animals)
and translate it into messages appropriate for machines [12].

Nowadays, BCIs are intensively investigated by researchers because of all the
promising results obtained in the past decade [13, 14]. Among the others, some of
the most remarkable studies got a monkey controlling robotic arms to feed itself [15],
a patient handling a wheelchair with their thoughts [16] and moving a cursor on a
virtual keyboard to type about eight words per minute [17]. However, applications
are not only those in which the intent is translated into a command for an external
device, for instance, since some other regards: automatic analysis of drowsiness and
sleeping patterns [18], short-term epilepsy prognosis [19] or monitoring of attention
deficit hyperactivity disorder [20], mental workload [21], emotional involvement
while entertained [22] and many more. BCI based applications are virtually
unlimited.

Overall, all the BCI systems have in common a structure composed of six
phases: (i) collecting data, (ii) optional: preprocessing the raw data to remove
as much background noise as possible, (iii) extracting specific features from the
clean version of data depending on the kind of application, (iv) optional: selecting
the most salient features from the extracted ones, (v) classifying the obtained
features to decode an intent and use it depending on the application, and (vi)
eventually providing feedback to the user (both physically or visually) [23]. Figure 1
displays the decoding flow chart of a BCI system. Points (ii) and (iv) are optional
since manual features manipulation application depends on technology used and
researchers preferences.
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1.1.2 Neuroprosthetics
Neuroprosthetics refers to a variety of artificial devices or systems that can be
used to enhance compromised motor, sensory, cognitive, visual, auditory, and
communicative abilities. Those deficits might arise from spinal cord injuries, motor
diseases or other pathologies that disconnect the nervous system from the brain.[24].

Because of its characteristics, BCI represents the enabling technology for a new
generation of neuroprosthetics, since paralysed patients still manifest brain activity
related to the intention of acting, even if the signal never reaches the peripheral
nerves. Therefore, for these subjects, myoelectric prostheses are not applicable,
because they depend on activated nerves in limbs, but the brain activity could be
directly accessed and interfaced with assisting devices [25].

In most cases, such technologies are based on Motor Imagery (MI) neural data.
With the MI technique, the imagination of acting causes a variation of neuron
activation in the motor cortex area which is afterwards translated into electrical
signals. This signal then can be intercepted and measured with electrodes, both
externally on the scalp or internally, if they are implanted inside the cortex. MI
proved to apply to a different part of the body [26] and this rise aspiration to
design a reliable decoder for several actions.

1.1.3 MI EEG recordings
Electroencephalography is a monitoring technique where electrodes are placed on
the scalp surface to capture physiological activities of the brain underneath [27].
The conducting electrodes are placed on the scalp according to the well-known
10–20 international placement system (reported in Figure 2a) and each one of
them records a one-dimensional vector of raw EEG data. An example of the
recordings from multiple electrodes is shown in Figure 2b. The electrical signals are
the product of the postsynaptic potentials in cortical neurons, reaching the scalp
surface through volume conduction across multiple brain tissue. Hence, EEG signals
are prone to be weak, non-stationary, and characterised by a low signal-to-noise
ratio. Moreover, they are often affected by artifacts (i.e. signals recorded by EEG
but not generated by the brain) such as the power cable of the recording device and
electrode displacement. Often the undesired background noise is addressed through
hand-engineered features selection via traditional signal processing techniques.

Besides the drawbacks intrinsic to EEG, even more, issues arise when recording
MI-based signals. Firstly, signals related to different parts of the body like the eyes,
head, neck, or any other muscle, will be mixed with the imagined action. Secondly,
MI EEG signals are highly variable due to physiological and psychological features
for each person at each time, meaning that recordings of the same task may differ
from subject to subject and from session to session for a particular subject.
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(a) (b)

Figure 2: International 10-20 system for placement of MI EEG electrodes (a) and
example of EEG record (b)

Figure 3: Human motor cortex [28]

On the other hand, MI EEG brings some advantages over other neurological
acquisition techniques, is characterised by: (1) low cost of the hardware, often
composed by a wearable helmet and a variable number of electrodes, (2) portability,
and (3) no side effects thanks to its non-invasive approach.

It is worth mentioning some of the technical aspects of MI EEG recording. For
what concern the placement of the sensors, the electrodes used for MI recording are
chosen among the grey ones in the Figure 2a [29]. This is due to the central area
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of the brain cortex being recognised as the motor cortex, as pictured in Figure 3.
It is in this area where the brain activity related to the planning of a movement
and its execution is generated and propagated from [28].

Once the electrical activity is recorded, the amplitude and frequency values
in EEG signals are used for discriminating various physiological activities. The
amplitude is normally fluctuating in micro-volts and it is the main feature used for
classification, while the frequency range can be split into several bands, of which
the most popular for MI analysis are the mu (9 − 13 Hz), the alpha (8 − 12 Hz),
the beta (13− 30 Hz), and the gamma (> 30 Hz) frequency bands [30].

Due to their drawbacks, in particular being dependent on the subject state of
mind, the following key characteristics are to be annotated to any MI EEG datasets:
(i) number and type of MI tasks, (ii) number of EEG channels, (iii) number of
participated volunteers, (iv) number of sessions accomplished with each volunteer,
(v) number of trials within a session, (vi) length of a trial, and (vii) the period
between two successive sessions.

1.1.4 Intracranial EEG recordings
Intracranial EEG (iEEG) is an invasive recording technique, that requires electrodes
to be implanted inside the brain, at depth depending on the application. This
monitoring technique is a good answer to the limits of EEG systems: recording
the electrical activity directly below the surface of the scalp allows to obtain a
higher signal to noise ratio (and a higher quality signal in general) since no shading
was performed from the skull, skin and hairs. Moreover, the recorded signal is less
likely to be affected by artifacts. Recent developments in neural interfaces show
that it is possible to have fine control of a robotic prosthetic by interfacing directly
with the motor cortex of the human brain [31].

However, this advantage in quality does not come for free. The first constraint
regards the development of suitable hardware, that should be long lasting once
implanted while at present time, not constant results were obtained. Secondly, the
effects of damage from implantation are still inconclusive and immune responses
remain a problem for long-term use [31]. Some recent researchers tried bio-active
molecules and bio-compatible materials, to prevent immune responses, but still,
more controlled study is needed before intracortical systems become widespread.
Overall, given the uncertain performance and the risks related to human testing,
this technology must still prove to be way better than less invasive solutions.

The study of neuronal activity still lack a systematic theory, and mostly the
science is proceeding by independent attempt. In general, the intracortical systems
can be distinguished in bundle of wire systems or Microelectromechanical Systems
(MEMS). MEMS usually, refer to microscopic smart devices, build with conduc-
tive and semiconductive materials, that combine electronic, biologic, chemical or
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mechanical functions in a highly constrained place [32]. Both technology show
promise, but MEMS have been popularised for not only enabling the study of the
single neuronal unit but also to scale to the large population [33]. In particular,
more complex intracortical systems are built on top of the Michigan probe and
Utah microarray.

(a) (b)

Figure 4: Neuron action potential diagram (a) and example of collection of spikes (b)

Such implanted systems, if placed sufficiently close to a neuron can detect and
record the potential changes that happen during its activation. This is possible
because during that event, the usually constant voltage difference across the plasma
membrane of around −70 mV, called membrane potentials, temporary and rapidly
changes to ~30 mV. Synapses stimulation brings the neuronal cell to depolarise.
Once this depolarisation overcomes a neuron-specific threshold, an action potential
is triggered, during which, the membrane potential rapidly increases and then
suddenly drops back down in a spike-like waveform (see Figure 4a). This waveform
is typically fairly consistent within a cell throughout activation potentials. This
sudden variation then triggers synapses in the next connected neuron in a process
that will be propagated through the whole nervous system. Moreover, it will results
in a measurable extracellular current due to the ion flow through the sodium and
potassium channels of the cell, that is what an electrode usually measures [31].

However, measuring the activity of individual neurons accurately can be difficult
due to large amounts of background noise and the difficulty in distinguishing the
action potentials of one neuron from the other neighbour. The task of detecting
and classifying single action potentials is commonly referred to as spike sorting and
many algorithms and tools have been developed over the years [34]. In general, the
key concept is found in the previously mentioned cell-specific neural spike waveform.
Exploiting this assumption, and given the measurements of many electrodes in a
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close area, it is possible to recognise unique spikes, and then clustering them to
associate each wave shape to unique neurons, even when spikes overlap. As a result
of such processing, is obtained a collection of spikes for each sensed neuron.

1.2 Related Work
In this section, I will discuss the recent progress in the BCI research field. The first
point of the discussion will address the non-invasive techniques, for which a huge
number of works is available, and I will make use of two systematic reviews to try to
put an order in such heterogeneous literature. The first one provides an overview of
non-invasive BCI, and in particular, proposes a way to classify works. The second
one focuses only on the MI applications and draw conclusions. Secondly, I will
discuss the few pieces of literature available for invasive BCI and once more, I will
use a deep networks comparison to help to understand the current most promising
approaches.

1.2.1 Non-invasive BCIs
The first high-level discrimination for BCIs is whether their make use of non-invasive
(EEG based) or invasive (iEEG based) recording methods [23].

Literature provides a multitude of non-invasive examples, being EEG a largely
tested and accessible technique. Google scholar counts more than 2000 works only
in 2020 when searching for "non-invasive BCI". Despite this huge availability, it is
not easy to delineate a clear state-of-the-art: every possible technology sooner or
later was tested on the neural decoding task.

To help navigating such a heterogeneous literature I am supporting this discussion
with the review performed in 2019 by researchers from "Noninvasive Brain–Machine
Interface System Laboratory", University of Houston [14]. In their systematic review
they propose a categorisation of BCIs based on: (i) Task details, (ii) Artifact
removal strategy, (iii) Frequency included in the analysis and input formulation,
(iv) Deep learning strategy, and (v) Highest achieved accuracy. Some relevant
examples are reported in Table 1.
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Table 1: Some exemplar recent works related to EEG based BCI

Title and Authors Summary
A novel MI-EEG imaging
with the location information
of electrodes [35]
M.A. Li, J.F. Han, and L.J.
Duan

They extracted mu and beta frequency bands with
FFT. The experiment is divided into short sections
and for each of them, a 2D RGB image is gener-
ated, mapping the average power sensed by one
electrode to its location, and interpolating. Classi-
fication is performed with transfer learning based
on VGG-16 pre-trained parameters, and The de-
coding task scored a 10-fold cross-validation accu-
racy of 92.13% (4 classes) and 96.82% (2 classes).

Multi-class classification of
motor imagery EEG signals
using image-based deep re-
current convolutional neural
network [36]
W. Fadel, C. Kollod, M.
Wahdow, Y. Ibrahim, and
I. Ulbert

Energy distribution was mapped into 2D images
using azimuthal equidistant projection (AEP) of
electrodes. They filtered mu, beta and delta bands.
The decoder was a composition of CNN (inherited
from VGG) and an LSTM layer. The accuracy
on the 5 classes Physionet dataset MI EEG was
~70%

Application of continuous
wavelet transform and CNN
in decoding motor imagery
brain-computer interface [37]
H.K. Lee and Y.-S. Choi

They used the continuous wavelet transform
(CWT) to construct 2D images for training a CNN
model. The filters of the convolutional layer are
long as the number of channels, to reduce spatial
dimension to 1

EEG Classification with
Transformer Based Models
[38]
J. Sun, J. Xie, and H. Zhou

Tried to extract spatial or temporal features ap-
plying transformers on one dimension after CNN
extracted features on the other one. On the Phy-
sionet dataset, they obtained 68% accuracy on 4
classes

An end-to-end deep learning
approach to MI-EEG signal
classification forBCIs [39]
H. Dose, J.S. Møller, H.K.
Iversen, and S. Puthussery-
pady

CNN applied to raw EEG signals. It consists of a
temporal and spatial convolution layer for feature
extraction and a fully connected layer for classifi-
cation. The classifier reaches 80.10%, 69.72%, and
59.71% mean accuracy using Physionet dataset
with two, three, and four classes, respectively, val-
idated with 5-fold cross-validation

Continued on next page

9



Introduction

Table 1 – continued from previous page
Title and Authors Summary

A CNN-LSTM deep Learn-
ing classifier for motor im-
agery EEG detection using
a low-invasive and low-Cost
BCI head-band [40]
F.M. G. Moreno, M. B. Edo,
M.J. R. Fórtiz, and J. L.
Garrido

They used a composition of CNN and LSTM to
classify 2 classes EEG for 4 subjects with an accu-
racy of 86%. The best performances were obtained
with a 3-sec long window and with manual filter-
ing of alpha, beta, theta, delta and gamma waves.
Without the preprocessing, results drastically de-
creased

A deep learning scheme for
motor imagery classification
based on restricted Boltz-
mann machines [41]
N. Lu, T. Li, X. Ren, and H.
Miao

EEG recordings is processed in frequency domain
using FFT and WPD separately for comparison
purposes. Then deep belief network, composed
of restricted Boltzmann machines is trained using
the frequency data. The use of FFT led to a better
performance than that of WPD and the frequency
preprocessing proved to positively affect results

A novel deep learning ap-
proach for classification of
EEG motor imagery signals
[42]
Y. R. Tabar and U. Halici

They propose a deep network composed of two
other stacked: a CNN to extract the features and
SAE for classification. The training was performed
on 2D images, obtained mapping the frequency
bands power on the location of the electrodes. The
frequency filtering was performed with the short-
time Fourier transform (STFT)

Summarising, we can conclude that in this field, similarly to many others, the
recent focus is on deep NN based applications rather than on traditional ML ones.
Plenty of studies have shown the capability of deep NNs in analysing EEG MI
signals, and to cope with the so said "curse of dimensionality" problem. This is
arising from the non-stationarity of signals, multi-channel recording paradigm,
channel correlation, and the existence of noise and artefacts.

Other common findings include: most of the study performed a reduction of
frequency range under analysis between 10 and 40Hz; a huge majority ignored the
artefacts while only some manually removed it; most of the researches manually
calculated features, some directly work on raw measurements and only a few
transformed signals into images.

The strategy used to calculate features are many and mostly repeated in only
one work. Some of the most common are: FFT: fast Fourier transform, MAD:
mean absolute difference, PSD: power spectral density, STFT: short-time Fourier
transformation, SVD: singular value decomposition, SWD: swarm decomposition

From all the above-mentioned studies, only a few regards motor imagery. The
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work of the researchers from University of Mosul [26] represents at the moment
the only deep literature review on the use of deep NNs for classification of MI
EEG data. They focused on three aspects: (1) Identify which deep neural network
architecture is best suited for the classification process, (2) which structure of
input data has a more positive impact on deep learning and (3) what frequency
range must be considered during the analysis. Their findings can be summarised
as follows:

• Most of the projects filtered frequencies between 5 and 40Hz

• Popular regularisation for the model was dropout and batch normalisation

• Most used datasets are BCI Competition IV 2a and 2b (4 and 2 classes)

• As input, raw time series, images and calculated features, was proposed the
same way

• The features were calculated in many unique approaches, with few repetitions
of BCSP-Filter Bank Common Spatial- and CSP

• The images were generated in many unique ways, with few repetitions of
CWT.

• The most trendy network, used in the 3/4 of works was CNN, sometimes
stacked with LSTM, SAE or VAE.

• The CNN was mainly activated with ReLU 45% and ELU 19%

• The majority of optimisation algorithms was Adam 47% or SGD 26%

Overall Deep CNN architecture with the ReLU activation function is found
to be the most effective architecture for the classification task of MI EEG. DL
has the capability of exploiting the whole input data for training networks, hence,
raw EEG data could be reasonably used in the training process. Moreover, it is
observed that the classification of MI records that are related to a single limb, e.g.
tasks of different fingers, are more challenging than the classification of tasks that
are related to different limbs. This is because of the high similarity of the signals
propagated from the same area. It is worth mentioning that a large number of
hidden layers does not always lead to better performance; in contrast, it may cause
the network to have an overfitting problem, as well as increase the computational
complexity.
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Figure 5: Number of results for a query on google scholar about invasive and non-invasive
BCI over years

1.2.2 Invasive BCIs

Invasive BCI approaches are based on recordings of single or multiple neurons,
acquired in close proximity of the brain cells. The run to develop brain decoders
based on this technique started in 1980 when Edward Schmidt raised the possibility
that voluntary motor commands could be extracted from raw cortical neural
activity and used to control a prosthetic device designed to restore motor functions
in severely paralysed patients [43]. Those experiments proved that monkeys,
encouraged by a feedback reward, managed to learn how to control their cortical
neurons voluntarily. Despite being investigated for such a long time, this kind of
application is still not diffuse, and the few experiments are mainly performed on
animals. That is due to the complexity and the uncertain outcome of the delicate
brain surgery that is necessary to prepare a subject to the experiments [23].

Moreover, the research in this field is still focused more on the biology behaviour
analysis [44], on the hardware development or to assess the long term stability
and safety of invasive application on humans. To provide an idea of the shortage
of research in science about deep NN applied to iEEG, in Figure 5 are reported
the different number of results when searching for "non+invasive+bci" and "-
non+invasive+bci" over the last decade. Among those few words, it is hard to find
researches targeting the same dataset or the same task, making it hard to state a
clear state of the art. However, a good support is provided by researchers from
university of Chicago, Pennsylvania and Columbia [45]. In 2020 they performed a
deep comparison of different deep NNs and ML models applied on three distinct
datasets. Each dataset was composed of a collection of spikes collected from neurons
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located in the somatosensory cortex, hippocampus and motor cortex. The latter
is of interest for this discussion, being the area where the MI brain activity is
originated. In the task for decoding from the motor cortex, monkeys moved a
manipulandum (a level like object, with multiple degrees of freedom) that controlled
a cursor on a screen [46]. The dataset was composed of the recording from 164
neurons, and the 21 minutes recording was time binned in steps of 50ms during
which the number of activation was counted.

They proved that on the task of regressing the cursor position and velocity,
deep NNs outperforms traditional ML algorithms, such as Kalman Filter, Naive
Bayes, Wiener Cascade, Extreme Gradient Boost and Support Vector Machine. In
particular, LSTM was the network that performed the best among the simple ones,
as its performance was slightly exceeded by an ensemble model. The ensemble was a
complex model, that combined the outcome of all the other classifiers, and presented
it to a further fully connected network for obtaining the final output. Another
relevant finding is that the neural networks exceeded expectations in a context
with a limited amount of data. The explanation the researchers propose for these
good results is found in the size of the networks. On average, the tested deep NNs
had a number of parameters in the order of 105, while common networks for image
classification such as the famous VGG16 can have up to 108 parameters [47]. Thus,
the relatively smaller size of their networks (counting hundreds of hidden units)
may have allowed for excellent prediction with limited data [48]. Moreover, the fact
that the tasks under analysis had a low-dimensional structure, and therefore the
neural data were also likely low dimensional, could have contributed to increasing
the decoding accuracy [49].

1.3 Intent of this project
Thank the ongoing collaboration between Microwave for Medical Engineering
Group, Uppsala University and German Primate Center in the context of the
B-Cratos project [11] I had access to an exclusive dataset. It is composed of the
neural activity recording from the motor cortex of a monkey while performing a
grasping task, used in the context of a previous article [9].

The purpose of my work is to develop a full working demonstration, starting
from neural data analysis, network building and training, and real-time decoding
to actuate a prototype 3D printed prosthetic arm.

At the same time, I want to contribute to compensate for the lack of literature
about deep NN applied to neuron spikes dataset, offering a deep comparison of
different networks and hyperparameters configurations, on this dataset. Since only
a few pieces of literature regarding invasive BCI claimed the superiority of deep
NN, this is what be the focus of the research, and some approaches that were
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well-performing on non-invasive BCI will be included in the analysis.
This manuscript will be organised as follows: in chapter 2 I will present an in-

depth explanation of the dataset, as well as the experiment set up to collect it, and
the preprocessing performed on it. In chapter 3 I will present a deep comparison of
many deep NNs tested on a smaller portion of the dataset, with a particular focus
on the hyper-parameters role in the classification accuracy. Lastly in chapter 4
starting from taking the network that performed the best in the offline analysis, I
will present the procedure that brought to the development of the brain-computer
interface for online the demonstration on a prototype prosthetic arm reported in
chapter 5.
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Chapter 2

Dataset

2.1 Experiment description

The dataset used for this discussion was generated by researchers of German Primate
Centre in 2015, and firstly described in their article "Decoding a Wide Range of
Hand Configurations from Macaque Motor, Premotor, and Parietal Corticesa"
[9]. In their experiment, two macaque monkeys, a male (called subject M) and a
female (subject Z) were trained to perform a sequence of steps to grasp one object
presented to them, while both hand kinematic and brain activity were monitored
and recorded.

At the beginning of each session of trials the set up displayed in Figure 6a took
place: the monkey was sitting in a primate chair, with its head fixed and its hand
laying on a support, wearing a custom kinematic glove necessary to record the real
time position of the hand, fingers and wrist. A rotating turntable was placed in
front of the animal 25 cm far from its chest. It was used to quickly change the
object presented between trials. Eight different turn tables were available, and
the set up allowed to switch among them in less than one minute. In Figure 6b
is represented the content of every turntable: six of them had objects with the
same shape but increasing sizes; one had mixed object with mid size and the last
had special uniquely shaped objects. This variety was designed to acquire a huge
variation of grips type. The main shapes are rings, cubes, spheres, horizontal
cylinders, boxes and vertical cylinders. Alternatively, the monkey could have been
presented with an handle and be required to perform a strength or precision grasp
on it (Figure 6d).

The experiment session lasted around 90 minutes and it counted many trials, as
described in Figure 6c. While in complete darkness, the animal could initiate a
trial by pressing a button near its chest. Then, it had to fixate a red LED light
for a variable time (fixation epoch), with duration between 500-800 ms (mean 650
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Figure 6: Standard experimental task set up (a) and special precision/strength one
(d); list of 50 target objects (b); sequence of standard experiment phases (c) and special
precision/strength ones (e) [9]

ms). Then a spotlight illuminated the graspable object for 700 ms (cue epoch).
When the light faded, the animal had to wait another random delay of 600-1000 ms,
until the fixation LED blinked (planning epoch) and only after it could execute the
movement and lift the object (movement epoch). After holding it for 500 ms (hold
epoch) the monkey received some juice as reward. In case of a special task, the
handle was placed instead of the turning table in front of the animal, and it would
recognise it during the cue epoch (Figure 6e). Error trials were immediately aborted
without providing reward. Later in this section, the list of epochs will be longer,
including many sub-phases as well as the substitution and the operation of the
turntable. A comprehensive description for all of them is provided in Appendix A.

For the whole duration of the trial, all the behavioural and task-relevant param-
eters were controlled and recorded, by sensors and cameras. In particular the hand
kinematic was monitored using a custom developed instrumented glove for small
primates. This kinematic tracking device is based on an electromagnetic tracking
system (WAVE) and consists of seven sensors coils that are placed on all fingertips,
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the back of the hand and at the lower fore harm just proximal to the wrist. The
electromagnetic sensors were tracked also when partially occluded, because they
did not depend on line of sight to a camera, but only on the presence of inductive
metal (reason why all the instruments avoided such material as much as possible).
From this configuration was possible to reconstruct offline the whole kinematic
description of the arm and hand, including 18 joints and 27 degrees of freedom.

Concerning the brain monitoring, the recording were obtained with six surgery
implanted Floating Microelectrode Arrays (FMAs) producted by MicroProbes for
Life Science (Figure 7a). Specifically, two FMAs were inserted in areas AIP, F5,
and M1 as represented in picture Figure 7b, taken during the surgery of the female
monkey. Schematic placement of all the FMAs are represented in Figure 7c for
female (Z) monkey and Figure 7d for male one. Each FMA consisted of 32 non-
moveable monopolar platinum–iridium electrodes. From the implanted electrode
arrays, the researchers recorded spiking activity (single units and multiunits)
simultaneously from a total population of 192 electrodes in AIP, F5, and M1.
Neural activity was sampled at a rate of 24 kHz with a resolution of 16 bit and
stored to disk together with behavioral data and hand and arm kinematics using a
RZ2 Biosignal Processor.

Figure 7: Implantation of 32 individual electrodes (a) and their placement in the bank
of the sulcus (b); schematics of FMA placemets of animal Z (c) and animal M (d) [9]

The raw measurements were processed offline with two spike sorting algorithms.
First processing is performed with WaveClus [50] for automatic sorting and secondly
with OfflineSorter (Plexon) for subsequent manual resorting. Thanks to this
procedure the classification of neurons was automatized and as well as an additional
evaluation of cluster quality with respect to signal stability and interspike interval
histograms.

2.2 Classification dataset
From the authors of the work explained in the previous section, I received the
pre-sorted recordings of 759 trials (a whole session) of the male monkey, each
one labelled with the target object to grasp. Starting from it I generated the
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classification dataset used for this project. Data were provided in Neo format:
a data format specifically designed for representing electrophysiology recordings
[51]. Such format of data is easily explorable with Electro Physiology Analysis Tool
(Elephant) python module.

Of all the 759 trials, 131 of were aborted for errors of the animal, leaving 628
full measurements, associated to the 50 possible objects (Figure 6b). As previously
mentioned, the recordings were already pre-processed with spike sorting algorithms,
that well-isolated 552 firing neurons. With this data format, every neural unit
activity is represented by a SpikeTrains element: a collection of timestamps when
that neuron fired.

Figure 8: Normalised distribution of duration of trials in the dataset

Since this kind of data will be used to feed deep NN, being it convolutional
or recurrent, it is necessary to reshape such a format into another one more NN
friendly. In this discussion I propose to reformat every trial into a matrix fashion
where neural units are the rows, while columns are obtained dividing the total trial
time in small time units (time bins). Elements of the matrices will be the count of
how many times each neuron shoot during a specific time bin.

However, despite the number of neurons is constant for all the recordings from
this animal, to determine the number of time bins, was a design decision that would
affect the rest of the work. The problem arise for the the length of the trials being
variable but same dimension windows must be presented as input to a NN. In order
to get an equal dimension on time axis it was possible: (1) to fix a binning time,
and discarding some parts of the longest trials or (2) to use a variable binning time.

Figure 8 displays the probability distribution function of the duration of the
trials in the dataset. It is worth highlight how it resembles a normal distribution
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(a)

(b)

(c)

Figure 9: Example of a trial described as a matrix (a), associated to one of the 36
target object (b) and to a list of trial epochs (c)

with µ5.57s and σ0.72. This variance, and the long tails of the distribution are due
to a stacking of some random variables. Firstly the fixation time of the experiment
is normally distributed between 500-800ms, secondly the monkey is allowed to grasp
the object after a random period between 600-1000ms and lastly, the time to reach
the object is totally depending on the animal action, being therefore unpredictable.
Taking into account this distribution, the idea of cutting the windows to match
the shortest seemed to be too much of a waste of information, especially given
the long tails, while the second option on the contrary, would allow to use all
the data, if the time bin dimension will be taken from a normal distribution. So
the idea is to set a desired duration for each time bin, and calculate the number
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of bin that such a duration would generate in the average-length trial: this will
produce same dimension windows, where each time bin would be described by a
normal distribution with the desired mean and same standard deviation as the
whole dataset one.

The duration of a bin should be long enough to reduce the dimension on the
time axis, but still small for not losing temporal information. Researchers from
German Primate Centre suggested from that 40ms proved to be a good trade-off
in their experience. This is coherent with the related works discussed in chapter 1
where time bin for the motor cortex data was 50ms.

I evaluated the time binning transformation starting from the spikes lists,
exploiting the Elephant python module. Being the average duration of a whole
trial 5.57s, that led to 139 time bins. An example of a window obtained with such
a transformation is displayed in Figure 9a. Each trial is described as a matrix,
having the individual neurons as rows, and the count of their activation every
~40ms as elements. To each window is assigned as label the target object of that
trial. For this dataset, only the most common objects were accounted, having
only few examples for each special shape. A complete distribution of all the labels
in the complete session is reported in Appendix A. The object was picked the
from the 36 possible ones reported in Figure 9b, and each of them is uniquely
described as Shape_Number and Size_Number (an integer between 1-smallest-
and 6-biggest-). Lastly every time bin is also associated to its concurrent trial
epoch (Figure 9c), leading to an array with 139 elements used as second label for
each trial window.

2.3 Dataset Analysis
After discussing the procedures that brought to the creation of the dataset, in
this section I will discuss its consistency before proceeding to any application of
machine learning on it.

Firstly, I was concerned that the number of trials in the dataset might be too
few and possibly too similar among each other. Such a situation would likely
cause the ML model to learn the data and not how to extract features (the so said
overfitting problem). The most common solution to the small number of examples
is data augmentation: algorithms that randomly modify real examples to generate
synthetic ones. However, those are specifically designed for one kind of data and
are not likely to fit different ones: for example, it is well known the approach of
tilting, cropping, masking images, but this is not something applicable to time
series. The pattern of neurons activations is highly subject dependent, and so far
it is unclear how to generate realistic synthetic ones. For this reason, I avoided
trying this path. However, I could investigate the inner variance of the dataset.
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Once more, there is no clear suggestion about how to assess the diversity of binned
neural recordings. I decided to consider the total number of activations per time
step and to check how much it differs among the trials of the dataset, using the
standard deviation as the metric. The result is displayed in Figure 10. The blue
line reports the average number of total activations for all the trials in the dataset
over the experiment duration. The yellow area is the standard deviation in the
number of activations, evaluated per each time step. We can observe that the
variance is constantly high enough, with respect to the mean value, to assume the
trials are different among each others and not repetitive.

Figure 10: Average number and variation of activations among all the trials

Second analysis regards the distribution of target objects in the recorded trials.
As stated in the previous section, I reduced the number of objects to avoid the
special shapes that appeared only once and could confuse the model, keeping only
the standard six shapes (2-ring, 3-cube, 4-ball, 5-horizontal cylinder, 6-box and
7-vertical cylinder) with their six increasing sizes. In Figure 11 I plot the number
of time each object was presented to the monkey during the session composing the
database. Recall that each object is encoded as a two integers label, representing
"Shape" and "Size". All of the objects were presented to the monkey 12 times in
the intercourse of the session. Although the number of examples per class is really
small, I am assured that the dataset is not biased toward any particular classes.

Lastly, I am reporting in Figure 12 the analysis of the distribution of epochs of
the experiments. The distribution of this label is clearly unbalanced: the number
of times each epoch is presented in the dataset vary a lot. That is due to the
different phases of the experiment having different duration, especially few of
them are extremely short. This might be a problem when it comes to training a
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Figure 11: Distribution of target objects (encoded as Shape-Size) in the dataset

neural network, that might privilege the classification of the most common classes,
therefore some balancing procedure will be required before proceeding with the
regression training, such as removing the least important epochs and/or capping
the number of examples of the most represented ones.

Figure 12: Distribution of trial states in the dataset
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Offline decoding

In this section, I am about to discuss the classification results obtained with on
offline analysis of the dataset. With "offline", we usually refer to analysis performed
when the complete recording is already available and can be decoded at once,
without any constraints about the delay or resource usage. A decoder based on a
NN trained offline will be hardly implementable in a real-time situation, but it will
be rather used only for research purposes. To perform such an analysis I selected
some architectures to try, I investigated how their parameters affected results and
then compared the final results obtained by each of them, after being optimised. A
particular focus will be put on the network that outperformed the others and that
will be taken as starting point for the online decoding in chapter 4.

3.1 Methodologies
In chapter 1 I reviewed the related work about non-invasive BCI. In that context,
besides the shortage of references, I highlighted as important limitations of the
literature, that so far in around one-third of the works, features were manually
extracted, following researchers own knowledge of the data nature. However, this
approach that used to be popular, raises two objections. The first one introduces
an extra preprocessing step that, depending on the time it requires, can introduce
delays in the classification if it is short or do not apply to real-time applications if
it is long. Secondly, most of the features engineering algorithms, such as principal
component analysis (PCA), or selecting few frequencies bands, as in the case of
FFT processing, lead to a reduction of the information available. For instance,
PCA drops features that seem not necessary to reconstruct the final output, but
still, those deleted ones might have been correlated to temporary or spatially
connected measurements, in a deeper pattern that a statistical approach like PCA
can not detect. This problem is even more crucial with FFT, CWT, and similar
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approaches found in literature, where most of the data is discarded because so
far they have not proved to be necessary. But if such an approach was crucial to
reduce noise for statistical models, nowadays should be not necessary, and possibly
counterproductive when working with deep NNs, especially if the dataset is large.
For these reasons, and also considering that this field has not been deeply explored
yet, it is preferable to assess how much deep NN can extract proper features, and
eventually compare in future this raw results with others obtained on manipulated
data.

To decide which networks to involve in this offline analysis, I summarised the
major requirements they should answer to be suited for the real-time demonstration
that is the final purpose of this project:

• deep NN based, for it’s proving to be good at extracting features from raw
data

• Quick network, for granting short delay in real-time application

• Lightweight to be implemented on small microprocessors, perhaps wearable
and possibly implanted

The last two points can be also summarised as the necessity to keep the network
simple. This is also what researchers who compared the NNs applied on iEEG
claimed to be the reason behind their good performances despite the small dimension
of the datasets: probably due to the low number of parameters they were less likely
to overfit.

Overfitting represents indeed, the major problem to cope with, being the col-
lection of data relatively small, highly related to the subject and biased by the
experimental optimal conditions and routine: a too complex model might learn the
sequence of the experiment steps instead of proper features, or be badly affected
by the noise of brain activity not related to the task. Besides keeping the network
simple, regularisation techniques, such as L1, L2 or dropout will be implemented
for the same reasons.

Lastly, since science literature has not found yet the best models to work with
data of this nature, networks popular for other tasks will be considered, such as
convolutional neural network (CNN) that is especially effective on image detection,
or recurrent neural network (RNN), that is suited for natural language processing.
However, it is worth recalling that there is not any network that can outperform
all the others in every task. This is called "no free lunch theorem" [52] and it a
basic theorem of ML. This is because deep NNs are the best approximators of
non-linear correlations, and they do so by making intrinsic assumptions about the
nature of the relationship they are emulating. These assumptions are what make
one network more suitable for a task than the others. For this reason, it is a good
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practice to test basic and different models on this not deeply explored yet task,
instead of focusing on the most trendy networks.

3.1.1 Networks
To address all the requirements listed so far, I decided to only use only deep NNs,
composed of a single hidden layer, responsible to extract features from raw data
in a peculiar way. It is regularised by a dropout step and followed then by a final
fully connected (FC) layer for the classification task. The single layers that will
characterise the network are taken from the most popular ones but are not mixed to
reduce complexity and to make it easier to compare the performance that different
families of architectures can achieve on this dataset. The final FC will fix the
number of outputs to the number of possible classes. This layer is activated by
the Softmax function that will force all the outputs to sum up to one. This way,
each output can be read as the probability of the input belonging to that specific
class. All the following networks can be found in the GitHub repository under
"/utils/decoders.py". The code provides support to perform the same comparison
on a different dataset.

Dense Neural Network

Figure 13: An example of Feed-forward Neural Network with one hidden layer

In Dense Neural Network (DNN) all the hidden layers are FCs as displayed in
Figure 13. For this reason, this NN is also said Feed Forward. With such a fashion
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every unit broadcasts its output to all the ones in the following layer. The output
is obtained as linear transformation of the inputs activated by non some linear
function (e.g sigmoid, hyperbolic tangent, rectified linear unit, etc..)[53]. This
model requires data to be shaped in a long mono-dimensional array, so that every
entry can be treated as unique features in the input layer. Then, in the hidden
layer, an (usually) high number of neurons linearly combine all of the inputs before
activating them with the ’ReLU’ function, as attempt to generate new and possibly
more significant features. A dropout step is introduced for regularisation purpose,
to randomly cut a fixed percentage of connections. Some of the neurons in the
hidden layer will be forbidden to broadcast their output, reducing the chance of
overfit. Lastly a FC is add for classification.

1 DNN(window , channels , outputs , neurons , dropout )
2 " " "
3 window , channe l s : are the input data dimensions
4 outputs : i s the number o f c l a s s e s
5 neurons : i s the number o f neurons in the f u l l y connected l ay e r
6 dropout : i s the f r a c t i o n o f dropout r e g u l a r i s a t i o n
7 " " "
8 # I n i t i a l i s a t i o n
9 model = Sequent i a l ( )

10 # Flat t en ing the input to f i t the feed forward network
11 model . add (Reshape ( target_shape=(channe l s ∗ window , ) ,

input_shape=(channels , window) ) )
12 # Add hidden l ay e r
13 model . add (Dense ( un i t s [ i ] , a c t i v a t i o n=’ r e l u ’ ) )
14 # Add dropout
15 model . add (Dropout ( dropout ) )
16 # Add output l ay e r
17 model . add (Dense ( outputs , a c t i v a t i o n=’ softmax ’ ) )

Convolutional Neural Network

In CNN the input needs to be shaped matrix fashion so that several filters (i.e.
smaller matrices) can be used to perform convolution over it. With this term,
we refer to the sliding of a filter over the input and multiplying it for the area
underneath as displayed in Figure 14. Usually, the matrix product is also activated
by a non-linear function. Differently from the example, the input can be also
three dimensional (as usually, pictures are) and so will be the filters. This process
generates a new matrix that reflects how much the filter reacted to a different
portion of the input. Output dimensions depend on the filter size, the sliding step
and the number of filters. Actually, for every filter, a new layer will be added to
the final output, which will then be three-dimensional [53]. In the model used for
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Figure 14: Example of feature extracted by convolution (Samrat Sahoo - medium.com)

this work, the input is provided in its window shape, having as dimensions the
channel number and the time step. The output of the convolution is activated by
the ’ReLU’ function and regularised by dropout. Then a pooling layer is added,
that reduces the dimension of the output, substituting to every pair of cells, the
maximum one. This step has deeply proved to be useful in CNNs, as a processing
step before flattening the results and apply a final FC for classification.

1 CNN(window , channels , outputs , f i l t e r s , s i z e , dropout , poo l_s i ze )
2 " " "
3 window , channe l s : are the input data dimensions
4 outputs : i s the number o f c l a s s e s
5 f i l t e r s : i s the number o f f i l t e r s in the convo lu t i ona l l a y e r
6 s i z e1 , s i z e 2 : d imensions o f each one o f the f i l t e r s
7 dropout : i s the f r a c t i o n o f dropout r e g u l a r i s a t i o n
8 poo l_s i ze : s i z e o f the ke rne l used f o r MaxPooling
9 " " "

10 # I n i t i a l i s a t i o n
11 model = Sequent i a l ( )
12 # Reshaping the input adding a dimension to f i t the convo lu t i ona l

l a y e r
13 model . add (Reshape ( target_shape=(channels , window , 1) ,

input_shape=(channels , window) ) )
14 # Add convo lu t i ona l l a y e r
15 model . add (Conv2D( f i l t e r s , ( s i z e1 , s i z e 2 ) , a c t i v a t i o n=’ r e l u ’ ) )
16 # Add dropout
17 model . add (Dropout ( dropout ) )
18 # Add poo l ing l ay e r
19 model . add (MaxPool2D( poo l_s i ze ) )
20 # Add output l ay e r
21 model . add ( Flat ten ( ) )
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22 model . add (Dense ( outputs , a c t i v a t i o n=’ softmax ’ ) )

Simple Recurrent Neural Network

(a) (b) (c)

Figure 15: A comparison among simple RNN (a), GRU (b) and LSTM (c) (dprogram-
mer.org)

The peculiarity of RNNs is that they introduce recursion in the flow of informa-
tion. That is obtained having special units which store a hidden state so that the
output they send to the following layer is the activated linear transformation of the
input and the previous state. Such a network can be seen as the recursion over the
same unit or more often, the sequence of several units with unique states. Such a
network is suitable to find temporal dependencies, but they require input to be pro-
vided in temporal sequence fashion [53]. The first and most simple implementation
of such a network is based on the SimpleRNN unit described in Figure 15a. The
outputs generated by a layer composed of many units are activated by hyperbolic
tangent function, regularised by dropout and then fed to FC for classification.

1 SimpleRNN(window , channels , outputs , un i t s , dropout )
2 " " "
3 window , channe l s : are the input data dimensions
4 outputs : i s the number o f c l a s s e s
5 un i t s : i s the number o f un i t s in the r e cu r r en t l ay e r
6 dropout : i s the f r a c t i o n o f dropout r e g u l a r i s a t i o n
7 " " "
8 # I n i t i a l i s a t i o n
9 model = Sequent i a l ( )

10 # Swapping channe l s and window ax i s to f i t r e c u r s i v e l ay e r
11 model . add (Permute ( ( 2 , 1) , input_shape=(channels , window) ) )
12 # Add re cu r r en t l ay e r
13 model . add (SimpleRNN( units , a c t i v a t i o n=’ tanh ’ ) )
14 # Add dropout
15 model . add (Dropout ( dropout ) )
16 # Add output l ay e r
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17 model . add (Dense ( outputs , a c t i v a t i o n=’ softmax ’ ) )

Gated Recurrent Unit

Gated Recurrent Unit (GRU) is a variation of the basic RNN. It exploits gated
units represented in Figure 15b to regulate the information that can flow through
various parts of the network. In practice, these gated units allow for better learning
of long-term dependencies [53].

1 GRU(window , channels , outputs , un i t s , dropout )
2 " " "
3 window , channe l s : are the input data dimensions
4 outputs : i s the number o f c l a s s e s
5 un i t s : i s the number o f un i t s in the r e cu r r en t l ay e r
6 dropout : i s the f r a c t i o n o f dropout r e g u l a r i s a t i o n
7 " " "
8 # I n i t i a l i s a t i o n
9 model = Sequent i a l ( )

10 # Swapping channe l s and window ax i s to f i t r e c u r s i v e l ay e r
11 model . add (Permute ( ( 2 , 1) , input_shape=(channels , window) ) )
12 # Add re cu r r en t l ay e r
13 model . add (GRU( units , a c t i v a t i o n=’ tanh ’ ) )
14 # Add dropout
15 model . add (Dropout ( dropout ) )
16 # Add output l ay e r
17 model . add (Dense ( outputs , a c t i v a t i o n=’ softmax ’ ) )

Long Short-Term Memory

Like GRU, Long Short-Term Memory (LSTM) extends the concept of RNN, adding
extra gates beside the hidden state (Figure 15c), that allows the network to evaluate
when some information can be forgotten and perform better learning of long term
dependencies. However, this comes with a higher number of parameters [53].

1 LSTM(window , channels , outputs , un i t s , dropout )
2 " " "
3 window , channe l s : are the input data dimensions
4 outputs : i s the number o f c l a s s e s
5 un i t s : i s the number o f un i t s in the r e cu r r en t l ay e r
6 dropout : i s the f r a c t i o n o f dropout r e g u l a r i s a t i o n
7 " " "
8 # I n i t i a l i s a t i o n
9 model = Sequent i a l ( )

29



Offline decoding

10 # Swapping channe l s and window ax i s to f i t r e c u r s i v e l ay e r
11 model . add (Permute ( ( 2 , 1) , input_shape=(channels , window) ) )
12 # Add re cu r r en t l ay e r
13 model . add (LSTM( units , a c t i v a t i o n=’ tanh ’ ) )
14 # Add dropout
15 model . add (Dropout ( dropout ) )
16 # Add output l ay e r
17 model . add (Dense ( outputs , a c t i v a t i o n=’ softmax ’ ) )

Ensemble: CNN and LSTM

The last network tested is the composition of two different layers, to separate in two
phases the extraction of spatial and temporal features. Similar approaches were
investigated in works about raw EEG data [39, 38, 40], and I found it interesting
to propose a custom one for this analysis. For each time step, the recording from
the channels is processed by a mono-dimensional convolutional layer to reduce
dimensions while extracting spatial features on the channel axis. Secondly, a
recurrent layer learns temporal dependencies. After both layers, the output is
regularised by a peculiar dropout fraction.

1 Ensemble (window , channels , outputs , f i l t e r s , s i z e , dropout ,
pool_s ize , un i t s , neurons )

2 " " "
3 window , channe l s : are the input data dimensions
4 outputs : i s the number o f c l a s s e s
5 f i l t e r s : i s the number o f f i l t e r s in the convo lu t i ona l l a y e r
6 s i z e : s i z e o f each one o f the f i l t e r s
7 dropout : i s the f r a c t i o n o f dropout r e g u l a r i s a t i o n
8 poo l_s i ze : i s the s i z e o f k e rn e l s in the poo l ing l ay e r
9 un i t s : i s the number o f un i t s in the r e cu r r en t l ay e r

10 neurons : i s the number o f neurons in the f u l l y connected l ay e r
11 " " "
12 # I n i t i a l i s a t i o n
13 model = Sequent i a l ( )
14 # Reshaping the input swapping ax i s and adding a dimension to f i t

the convo lu t i ona l and the r e c u r s i v e l a y e r s
15 model . add (Reshape ( ( window , channels , 1) , input_shape=(channels ,

window) ) )
16 # Add convo lu t i ona l l a y e r to ex t r a c t s p a t i a l f e a t u r e s from each

time step
17 model . add ( TimeDistr ibuted (Conv1D( f i l t e r s , s i z e , a c t i v a t i o n=’ e lu ’ )
18 # Add dropout
19 model . add (Dropout ( dropout ) )
20 # Add poo l ing l ay e r
21 model . add ( TimeDistr ibuted (AvgPool1D( poo l_s i ze ) ) )
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22 # Add r e c u r s i v e l ay e r to ex t r a c t temporal f e a t u r e s
23 model . add ( TimeDistr ibuted ( F lat ten ( ) ) )
24 model . add (LSTM( units , a c t i v a t i o n=’ tanh ’ ) )
25 model . add (Dropout ( recurrent_dropout ) )
26 # Add f u l l y connected l ay e r
27 model . add ( Flat ten ( ) )
28 model . add (Dense ( neurons ) )
29 # Add output l ay e r
30 model . add (Dense ( outputs , a c t i v a t i o n=’ softmax ’ ) )

3.1.2 Hyperparameters tuning: hyperopt
The task of tuning the network searching for its best configuration is called Hy-
perparameters optimisation (or tuning). Hyperparameters are all the values that
can tweak in a network, that are not directly affected by the training phase but
influence the outcome (common examples are batch size, learning rate, number of
epochs, etc..). This task is known to be extremely long and greedy of resources
since it necessarily requires a lot of training sessions, during which a configuration
must be used for the training process and then tested on the validation set. The
complexity is related to the number of parameters to tune, their search space
(i.e. their range and density of variation) and the optimisation algorithm used.
Hyperparameters optimisation is represented in equation form as:

x∗ = argmin
x∈X

f(x) (3.1)

where f(x) is the metric score on the validation set to minimise, X is the set with
all the elements of the search space (all the possible combinations of parameters)
and x∗ is the configuration that minimises the metric score.

The most basic optimisation algorithm is said Grid Search and consists in
dividing the search space into several equally distant values, and methodically
try all their possible combinations. Grid search is guaranteed to find the best
configuration among all those it was given, but it might take forever. Moreover,
there is no assurance that the best combination with the given values corresponds
with the optimal one, and every time you make the grid denser or expand the
borders the computation time grows as well.

Different philosophy is found in searching algorithms based on randomicity
that usually shows the best results when time is limited: they randomly extract
configurations to test from the search space and repeat until a stopping condition is
met, like a certain number of iterations. Unfortunately, the common implementation
of random search completely ignores information on the trials already computed,
and each new sample is drawn from the same initial distribution. Both random
search and grid search waste a significant amount of time on evaluating bad
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hyperparameters. Fortunately, there is a way to account for them, correcting the
random sampling introducing some kind of weights that could penalise an area
close to a particular value that performed poorly. In other words, we want to get
more points from the regions with a high probability of yielding good results and
get fewer points from elsewhere. That’s exactly what Hyperopt module helps to
deploy [54]. This approach is said bayesian as it reshapes the problem from the
form of probability of the hyperparameters into the probability of the score given
hyperparameters:

P (score|hyperparameters) (3.2)

From this assumption begins the so said Sequential Model-Based Optimization
(SMBO), that is a formalization of Bayesian optimization: trials are executed
iteratively keeping track of a hystory (configuration-score), each time sampling
hyperparameters using Bayesian rule and updating the probability model [55]. In
particular, the standard algorithm embed by Hyperopt to select next configuration
to test is said Tree of Parzen Estimators (TPE) [56].

Figure 16: Grid search and hyperopt optimised random search sampling comparison
(Alexey Serov -Keggle) [57]

Figure 16 displays the different strategies that grid search and hyperopt follow
to draw a configuration from the search space [57]. In this simple example the
parameters are only two, represented by the two axes of the plots while the colour
represents the accuracy score obtained with that configuration: the brightest the
colour, the higher the accuracy. We can observe the advantage introduced by
hyperopt optimised random search, for which the selection of the parameters
converges toward an area of relative minimum of the search space.
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3.1.3 Experiment description

Figure 17: Experiment description to find the best network for offline classification

The flow chart in Figure 17 summarises the experiment set up to compare
networks and parameters configurations based on the performance they achieved
on the given dataset. From the collection of trials windows shaped as described
in chapter 2, a smaller dataset is generated, slicing only the brain activity simul-
taneous to the arm and hand movement. This choice purpose is to account for
the computational constraints for this project, speeding up the experiment, that
will count thousands of training phases. To operate a prosthetic arm, the ’holding’
phase cannot be used for classification, since by the time the command is to hold the
object, the decoder must already have decoded the hand configuration to replicate.
Therefore, the recordings anticipating that moment are considered to be the most
informative for the task. Recalling that the desired average binning time is 40ms,
the ’movement’ windows were 15 bins long.

After being shuffled, the 85% of the dataset was split to compose the training
and validation sets while the remaining 15% was used as testing set. Secondly,
for five times the larger split was re-shuffled and from it two smaller portions
were generated, counting around 80% and 20% entry each. With this procedure, I
generated five training sets, five validation sets and one testing set of samples not
present in any of the previous. The meaning of the five training sets is to repeat
every training session five times, and every time to be able to validate results on
some data unseen in that training phase. Repeating this for five times, all the data
are expected to be used at least once for training and validation due to the 80-20
proportion. I preferred this approach with multiple random repetitions over the
standard K-Fold cross validation for pursuing higher robustness.
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For each network under test, a searching space was defined and an exhaustive
description of the search spaces for every network is reported in Appendix B.

Summarising, the experimental process start selecting a network, Hyperopt
then chose a feasible configuration of hyperparameters to build the model with,
and then the network is trained on each one of the training sets and every time
validated on the respective validation set. After five training phases, the mean
validation accuracy score and the mean training and validation losses were stored
as performance related to that specific configuration. This was repeated with 200
configurations elected by the hyperopt module, leading to a total of 1000 training
sessions per network. The only exception is the ensemble network, for which 400
configurations were tested due to its higher number of parameters. Its 2000 training
sessions plus the ones for the other five networks under analysis led to a total of
7000 training phases.

It is important to highlight how the width of search spaces and the number
of variables were again limited to account for the limited hardware capabilities
available. There is a concrete chance that the best parameters were not found by
this research, due to the not so high density of parameters. However, the purpose
of this work was not to find the best possible network or parameters, but that of
exploring how different network layers and specific parameters were correlated to
the decoder ability to interpret this kind of brain activity record.

3.2 Results

3.2.1 Hyperparameters tuning history

In Figure 16 the convergence of the search is easy to picture in a two-dimensional
plot, due to the small number of parameters. The plots listed later in this section
are meant to provide the same information when the search space counts much
more dimensions. To understand them it is necessary to recall how the hyperopt
optimisation algorithm works: the higher the performance due to a parameter
value, the more its neighbour area was searched. Since the search space, I gave
to the algorithm was discrete and not continuous, searching the close area often
meant to repeat the same value. Therefore, the distribution of the 200 searches per
network, will be flat if no value of that parameter increased the objective function
result, while an area or a specific value should have been repeated many times,
otherwise. The parameters that all the networks shared are batch size, dropout
fraction and number of epochs; besides, some specific ones were investigated. The
objective of each search was to find the configuration that minimises the average
cross-entropy loss function on the validation sets.
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Dense Neural Network

Figure 18: DNN hyperopt results

In Figure 18 we can observe the searching history for the four parameters that I
tuned for DNN. They are the three common ones and the number of units in the
hidden feed forward layer. Starting the analysis from the latter, it seems that the
more the units the better the results, since the distribution constantly rise until it
meets its maximum at around 600 elements.

This decision makes the network highly prone to overfitting, in fact the number
of units is known to be the main issue in allowing the network to learn directly the
data and not the pattern underneath. On the other hand a lot of units are necessary
for this network, being that one the only step where features are extracted. The
other parameters were tuned accordingly to compensate for this risk.

A larger batch size force the model to generalise (i.e. to find weight that describe
more examples at the same time) and actually its distribution shows a peak at
18 and remains stable for values up to 24, while it linearly decreases for smaller
batch dimensions. It is similar the distribution of the number of epochs, where the
maximum is found for 20 or 25, but in general, there are not huge disadvantages
also for values close to them. However, it is highly discouraged to use a really
big number of epochs, once more to prevent the model to learn to carefully data
from training set. Last parameter is the dropout fraction, whose distribution is
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almost flat until 0.3 and then start rising with the maximum possible values 0.5
preferred over all the others. It is worth recalling the while batch size and number
of epochs are indirect way to address overfitting, the dropout represent the only
active regularisation applied in those network, and a strong was found necessary.

Convolutional Neural Network

Figure 19: CNN hyperopt results part 1

For the CNN model, the peculiar parameters I investigated are the number
of filters (or kernels) to apply in the convolutional step, their two dimensions
on channel dimension (kernel_size_1) and on the time bin one (kernel_size_2).
Moreover whether or not to apply a max-pooling layer with filter dimension 2 was
let as a choice to the algorithm. The results displayed in Figure 19 point out that
the choice of some parameters such as kernels sizes and the application of a pooling
layer were crucial since we observe that some values led to results much better
than the others. The favourite filter size was above 450 on the first dimension and
6 on the second one. It is worth recalling that the number of channels, i.e. the
row dimension of the input window was 552, therefore the first convolution greatly
reduced the dimension on this axis, acting itself as a regulator. The number of
filters is relatively small, with a peak between 128 and 160 with results that linearly
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Figure 19: CNN hyperopt results part 2

decrease with the distance from those values. Interesting is to find the extremely
beneficial effect of introducing a max-pooling layer, that shrinks the dimension
even more. For what concern common parameters we find the optimal batch size to
count at least 20 samples and the number of epochs to peak at 20− 25 iterations,
but in general preferred to be small. Despite the regulatory effect intrinsic in the
big batch size and the short training phase and the relatively small number of
parameters associated with the convolution layer, still, a high fraction of dropout
was necessary, at least 0.4. This means that among all the outputs found by
the convolution, most of them could and should be dropped in order to improve
accuracy.

Simple Recurrent Neural Network

The only network-specific parameter for all the recurrent layers is the number
of units. For what concerns the network composed of a simple RNN layer, we
observe in Figure 20 quite a predictable outcome. Firstly, the results improved
exponentially with the number of units of the recursive layer, getting stable around
the maximum value of 240− 252, which was the most popular. Secondly, middle
length training phases were required, with possibly 30-40 epochs, to allow the
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Figure 20: RNN hyperopt results

units to learn the temporal patterns. Similarly to what happened with DNN, the
maximum fraction of dropout was necessary to balance the high number of units,
but despite that, a small batch size between 6 and 10 was sufficient. This is curious
since batch size forces the model to generalise to more samples, but that was not
found by the algorithm to be proportional to the loss reduction. Probably the high
dropout is meant not to avoid overfitting, but to get rid of useless features found
by the recurrent step.

Gated Recurrent Unit

In Figure 21 are displayed the results of GRU tuning. Those are interesting
especially if compared to the RNN ones. Even if the same trend is found for the
number of gated units, which is directly correlated to the performance, the way
the network assures regularisation is the opposite. The dropout fraction seems to
be not important for this network, being the flattest distribution among all, with a
preference for small values of 0.05− 0.15. On the other hand, was crucial the batch
size, which peaked for 24 but in general, was proportional to the performance,
and the best number of the epoch was 24. Those results suggest that the network
extracted meaningful features that should not be discarded by dropout.
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Figure 21: GRU hyperopt results

Long Short-Term Memory

Figure 22 plots show how LSTM tuning history is similar to the GRU one and again
opposite to RNN. It is worth mentioning that slightly less dropout was necessary
since the best fraction is 0.05 and an even bigger batch size was preferred, with the
peak at 26. In general, we can claim that recursion based networks share the need
for a high number of units, but the introduction of some sort of gates effectively
allows the extraction of temporary features in a reduced learning time.

Ensemble: CNN and LSTM

The ensemble network is the one with the highest number of parameters to optimise:
besides the common ones, like batch size and the number of epochs, I included
the CNN specific number of filters and filter size (single value being the filters
mono-dimensional), the number of recursive units, one dropout fraction for each
feature extracting layer and the number of units in the FC one. Since applying
a pooling layer already proved in CNN analysis to be crucial, I substituted that
choice with the test of two different pooling rules, ’Max value’ and ’Average value’.
Then I let the algorithm compare whether to include GRU or LSTM layer. Lastly,
I took the chance to investigate if ’elu’ activation function, used in a similar work
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Figure 22: LSTM hyperopt results

[39], could be better than ’relu’ to introduce non-linearity after the convolution.
Due to the high number of combinations, only for this model, I doubled the number
of configurations tested from 200 to 400.

The results are reported in Figure 23. The complexity of the network required
long training phases with 40 iterations and a quite big batch size with 18 − 20
elements. The convolutional layer performance increased proportionally to the
number of filters, which best size was 208− 224 activated by ’elu’ function. One
characteristic of this network was that the stride of the filter was set equal to its
dimension, therefore filters with this size can be applied only twice on the channels
dimension, counting 512 rows. The max-pooling layer then was greatly preferred
to shrink even more the output, that however, seems to be often meaningful, since
only 0.2 dropout fraction was sufficient to generalise after this step. For what
concern the extraction of temporal features, the ’LSTM’ layer was preferred most
of the time, but differently from its own results, here only 32 units (or even less)
were sufficient. Probably because the really small arrays they are processing at this
step. However, even those few units require a high dropout fraction of 0.45. Lastly,
as happened for DNN, the number of units highly increased results, showing a peak
in the distribution at value 432.

40



Offline decoding

Figure 23: Ensemble hyperopt results part 1
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Figure 23: Ensemble hyperopt results part 2

3.2.2 Tuned networks comparison
As a result of the hyperparameter tuning, I identified the configuration that
optimised each one of the networks. An optimised network is the one that scored
the average lowest cross-entropy on the five validation sets. The next step was
to assess how much each of them could generalise to unseen data. It is for this
purpose that a testing set was prepared, composed of the samples not provided
during the tuning phase. Every network was trained with its best configuration
five more times on the training sets, and every time tested on the testing set. The
metrics for each network were stored and displayed in Figure 24. In particular, we
observe the cross-entropy loss and accuracy, in terms of mean value and standard
error. Being inversely proportional the rest of the discussion will address only
the accuracy score, which is more intuitive to understand. However, the same
considerations are specular for the loss score.

Firstly we observe that no visible overfitting affected the decoders the accuracy
on the validation and testing set are strictly similar, proving the decoders ability to
generalise to unseen data. Variance inaccuracy represents a concern only for DNN
and CNN. In particular, the latter is the most problematic model, whose results
vary significantly between extremely different scores of 0 and 35% accuracy. Such
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Figure 24: Network with tuned parameters comparison on test set
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behaviour might suggest that the model faced unknown conditions that forbade
it to converge, probably getting stacked at the beginning in a local minimum.
However, that remains the network that performed most poorly, followed by DNN.
This is not a surprise, being the dense one the most naive decoder. Performance
significantly rose after embedding temporal information in the decoding process.
In particular, GRU and LSTM proved to be good successors of vanilla RNN, and
their gates allowed to increase accuracy by few percentage points. Despite not
being successful alone, introducing a convolutional layer on top of an LSTM one
was a winning decision, since we observe the superiority of the proposed ensemble
over all the other networks. Its average accuracy on the test set is over 55% and
the standard error is only a little bigger than the LSTM one, reason why we can
consider it reliable.

Figure 25: Ensemble confusion matrix

In Figure 25 I reported the average confusion matrix obtained by the ensemble.
That picture is obtained averaging the five confusion matrices resulted from the five
times ensemble model predicted the test set after a training session. This allows us
to explore in-depth what did the accuracy score mean. On the vertical axis we find
the true label of a test sample, and on the horizontal one, its predicted classes. If
an element was correctly classified it is placed on the diagonal. The colour of the
cell represents the percentage of elements of that y class (sum of all the elements
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in a row) classified with a certain x label. The sum of elements on the diagonal
is 36.8 (decimal due to the average function among five matrices) corresponding
to 56.6% of the testing set. However, grouping classes by shapes makes it clear
that the intra-shape classification is almost perfect. In fact, it is worth recalling
that classes are not independent: most of the objects share the same shape and
differ only by size one to the others. In these terms, missing the correct class, for
one of its neighbours is not a huge mistake from the network. I translated this
one-step-mistake accuracy as the distance from the matrix diagonal. For instance,
a prediction located next to the diagonal was classified with the class (the size)
just before or after the correct one. As expected, the number of samples accepted
introducing flexibility is 60.4 that correspond to 92.9% of the whole set. Almost
double as the previous result.

The last analysis I propose in this discussion was meant to assess how much
those tuned network performances can generalise to a different input, in particular,
to a different number of time steps. This would allow getting a rough understanding
about how much the network features extraction can be applied in real-time, when
the amount of information is being collected, or how much they rely on already
having access to the complete window.

In Figure 26 I am reporting the average and standard deviation performance
that the networks scored on the test set. Once more the accuracy is specular to the
loss, and every consideration on the former is to be intended for both. This time the
training phase was repeated as before, but the testing phase was repeated 15 times,
every step decreasing the length of the windows provided as input. The missing
time steps were substituted by left zero padding in order to keep the windows the
same size as the ones used for training. CNN was the network more affected by
the reduction of the dimension, while the recurrent based ones were more robust,
being them suitable to work with different length input. Once more the ensemble
proved to be the most reliable, performing better than the others until four steps
long window, being then taken over from LSTM even smaller ones.

For the performance shown so far, I decided to develop my BCI based on the
ensemble network, and the parameters found in the optimisation phase.
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Figure 26: Networks performance changing input window size
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Chapter 4

Online decoding

In this chapter I am reporting the pipeline I followed to develop the decoder to use
in the online application. The difference from the task analysed in chapter 3 is that
this decoder must work in a context where time is a constraint and the available
information will be accumulated over time, but always limited by memory. The
final purpose is to realise a demonstration where a prosthetic arm will replicate
the hand and arm movement of a monkey, exploiting the brain activity of the
animal recorded during the experiment. The difference is more important than it
could seem, and actually will require reshaping the dataset and rethink the training
process.

In the previous chapter I tested and compared a set of simple deep NNs which
parameters were optimised to extract data from a spike binning brain activity. The
networks chosen answered the needing of being (1) quick, (2) lightweight and (3)
low resource consuming. Among all, the one that scored the highest results in the
classification of the ’moving’ epoch task, and that was also robust to a variation
of the input window is the ensemble, composed of CNN stacked over LSTM. For
those reasons, the ensemble will be used as the core for the BCI.

4.1 Methodologies
The first novelty introduced in this discussion is due to an online decoder having
different characteristics than an offline one: the computational time, which was
not a constraint in the latter, becomes one. Secondly, the amount of information is
not constant: no samples are available at the beginning but they will accumulate
over time. It is necessary then to decide what will be the buffer size: how much of
the past recording will be kept in memory and be available for decoding purposes.
In this proof of concept, constraints are only hypothetical, since no real hardware
is available, so a small buffer that stored the last 10 measurements was simulated.
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Note that a Numpy array of type float32 with shape (552, 10) weight on memory
22Kb. This seemed a reasonable number of recordings, short enough to be stored
on a small memory, but long almost as the whole ’moving’ phase, that in average
lasted 15 steps. To set up a simulation based on this assumption it is mandatory
to reshape the dataset to be composed of windows shaped as the buffer that the
network can learn from during the training phase. The last introduction of this
section is the needing for decoding the state of the trial besides the target object.
This is necessary to possibly replicate the monkey task, that the BCI can predict
when the movement must start and finish.

4.1.1 Sliding window to generate dataset
The first step consisted in generating the new dataset necessary to train the online
decoder. It is worth recalling that the set of recordings used as starting point
counted 628 trials, of which 432 were kept because they were associated with
non-special objects (the ones selected at the beginning, see Figure 11; 6 shapes
x 4 sizes x 12 samples each = 432). Each trial was described by a matrix of 552
channels and 139 time bins lasting around 40ms. Since the classifier model will be
required to analyse an input of only 10 time steps, it was necessary to cut smaller
windows from the whole trial. This reshaping of the trials was performed through
the sliding window approach described in Figure 27: to simulate a buffer that
progressively stored past recordings, a copying window with the desired dimensions
is placed on top of the first column of the trial window (one column represents
a collection of the 552 neurons activity in the past 40ms); then that column and
the 9 before it are copied and stored separately. Afterwards, the window is slid
by one step and the procedure is repeated until the last possible position. For
the first 9 time steps for which there are not enough past recordings to fill the
copying window, the missing information was replaced by 0 paddings. Such a
procedure results in the generation of 139 smaller windows with shape (552, 10)
from the whole trial matrix. However it would be a great mistake to consider this
transformation an easy way to drastically increase the dataset dimension: two
consecutive windows shares 90% of the information, and although the new column
could change the meaning, it is important to assume the two to be in general highly
correlated. NN learning from correlated examples is likely to overfit around them
instead of learning features. To prevent overfitting problems to distort the results, a
preventive division in training, validation and testing sets was performed before the
sliding window transformation: the trials were grouped according to their target
object, and from each group, a 70-15-15 division was applied. Therefore, three sets
were finally obtained: training set with 228 trials, validation and test with 72 each
(40032, 10008, 10008 respectively after reshaping).

During the slicing procedure, every window was also associated with three
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Figure 27: Sliding window transformation to simulate progressive buffered recordings

distinct labels: (i) object shape, (ii) object size, (iii) next trial state. It is worth
explaining the meaning of the next trial state. In order to replicate the real
experiment, the decoder should learn when to approach (’movement’ phase), to
lift (’holding’ phase), and to lay (’ending’ phase) the target object. Therefore, I
associated to each window, while slicing, the trial epoch of the next time bin, or
’end’ if the experiment was over. The decision of splitting object attributes shape
and size in two different labels is due to make it easier for the machine to predict a
single feature at a time, to have more examples per class, and possibly increase the
performance from those reported in chapter 3. However, this choice will require
distributing the decoding task among three individual networks, each one of them
specifically trained to predict one label.
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4.1.2 Dataset analysis
Before proceeding with the training phase of the models it is good practice to assess
the goodness of the training datasets (similarly to what was done in chapter 2),
in particular in this section I am discussing their balance, in terms of classes
representation.

States training set

Figure 28: Distribution of states in the examples in the new dataset

The first analysis regards the distribution of the state, the label introduced
specially for this task. In Figure 28 we can observe that the number of examples
relative to the experiment epochs is highly irregular. However, this is not a surprise
as it reflects what we already observed in the original dataset (see Figure 12). It is
worth mentioning that some small classes disappeared because they were the first
state of the trial which is lost during the sliding window transformation.

Although the state’s distribution is coherent with the reality since some epochs
actually lasted longer than others, it is not desirable to have the decoder knowing
it. Way better is to force the BCI to learn actual features to discriminate states
instead of learning the timing. It is not uniquely determined when a dataset can
be claimed to be balanced, but my guess was that 72% of standard deviation in
representation was not acceptable, and a 10% was the minimum I required.

The first transformation proposed, is to group the states in macro classes, as
researchers of the original paper of this dataset did [9]. So I grouped classes in
the following macro labels: Waiting (Start + Rest + Motor + FixLOn + Fix),
Cue, Planning (Memorise), Moviment (React + Go), Hold (Hold + Reward), End
(Intert + End).

As expected, grouping labels brought to the smother distribution displayed in
Figure 29. The variance got reduced to 60% proving that the idea was winning,
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Figure 29: Distribution of grouped states in the new dataset

Figure 30: Distribution of states grouped and capped in the new dataset

but still, the difference between the main classes and the others is huge. However,
aside from the ’Waiting’ class, the variation of the number of examples among the
others seems almost acceptable. Therefore, the last transformation I applied was
capping the number of elements in the major classes. To do so, I evaluated the
minimum number of elements to guarantee a variance of 10% and used that as
the superior limit for those classes having more examples, randomly removing the
exceeding examples. The final result is reported in Figure 30.
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Shapes training set

Before proceeding to the analysis of shapes and sizes distribution in the dataset,
it is worth recalling that not all the samples are useful. Even if all the small
windows are associated with an object, that was the target of the original whole
trial, there are many of them for which it is not possible that the animal knows
the object yet. For example, a ’waiting’ window can be associated with a ’ball’ of
size ’4’ but this is meta-information that the decoder should not exploit. Actually,
there is no chance that the brain activity of the monkey in the ’waiting’ phase
can already show anything characteristic of the object, and including them in the
decoding training would only badly affect results. For this reason, all the windows
associated with an epoch prior to the ’Cue’ phase are excluded from the shape
and size dataset. Besides those, also all the windows associated with an epoch
subsequent to ’Movement’ were discarded, since by the time the simulation reaches
the holding phase, the object must have already been decoded in order to replicate
the grasp. The examples that survived this filtering step are 21178. After this two
specifications, we can check the distributions of objects shapes in Figure 31 and
sizes in Figure 32. Variance in the shapes examples is 3%, with a light abundance
of boxes. However, dropping some elements from that group seemed a waste of
data, and on the contrary, the difference is not that huge to think it will negatively
bias the decoder learning phase.

Figure 31: Shapes distribution in the classification dataset for online decoding

Sizes training set

Optimal is the situation for the representation of the size, that it is clearly balanced
and did not require any further transformation.
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Figure 32: Sizes distribution in the classification dataset for online decoding

4.2 Results
To obtain the three working decoders, I built three ensemble models. Each one
of them was initialised with the optimal parameters found in chapter 3. The
main difference is the number of epochs that were not followed, since it was fit
around a different classification task. Instead, I used a fixed maximum number of
100 epochs and added an early stopping condition. Early stopping is a callback
function provided by keras that allow monitoring after every epoch one metric
on the validation set, and to introduce a condition to interrupt the training and
restore the weight that performed the best on the validation set. In this case,
the training is stopped if the validation loss stops decreasing for more than 10
consecutive epochs (minimum sensed improvement is 0.01). After training those
networks on the respective training sets, and keeping the weights that maximised
performance on their validation set I tested them on the previously unseen data
of the testing set. For each model, I am displaying its performance as accuracy
confusion matrix and distance from the diagonal.

4.2.1 State decoder
No feasibility tests were previously performed to regress the experiment epoch.
Therefore it was a surprise to find the extremely good results achieved by this
network, displayed in Figure 33. The accuracy score for the exact macro-state is
89.1% that rises up to 99.5% if one class error is tolerated. The network successfully
managed to learn proper weights to extract features to distinguish the phase of
the experimental trial and will be used to decide whether there is the will to start
moving the prosthetic limb.
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Figure 33: Testing phase of state decoder

4.2.2 Shape decoder
Figure 34 prove that shape decoding was the most successful among all the tasks.
With 92.2% of accuracy, it can be definitely claimed that the object physics induced
variation in the grasp positioning evident enough to be uniquely recognised. In this
case, the distance from the diagonal is not meaningful, being the classes different
and not correlated.

4.2.3 Size decoder
Lastly, I am analysing the performance of the size decoder represented in Figure 35.
Those are the poorest ones among all with the network correctly classifying only
the 25.4% of the testing samples. However, the accuracy increases to 62.2% if
allowing one class tolerance. Looking at results in confusion matrix, it is interesting
to observe that the decoder mainly learnt to distinguish two main classes: small
and big. It is worth recalling, that the network was trained to distinguish the size
of every object at once as I assumed this decision would make the network to be
less rigid and pushed it to learn features related to the closure of the hand and
fingers. Another possibility could have been to train an individual decoder for each
shape.
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Figure 34: Testing phase of shape decoder

Figure 35: Testing phase of size decoder
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Chapter 5

Demonstration

5.1 The bionic arm prototype

Figure 36: Bionic arm picture

The decoders trained in chapter 4 are tested in demonstration where the con-
trolled arm is the one pictured in Figure 36. This prototype has been designed,
printed and assembled by Arvin Selvand, a former master student collaborating
with MMG, whose work is still under publication. This device counts six degrees
of freedom: one for each finger and one for the wrist. Fingers are actuated by a
motor whose torque pull a wire causing the contraction of the finger, while the
wrist is directly connected to a step-motor responsible for its rotation. The arm is
controlled by an externally plugged Arduino system, which receives and unpacks
the command signal payload -composed by an array of six bytes- and activates
motors according to it. The communication happens via radio antennas Idas Probe
following the IEEE 802.15.4 protocol. Johan Engstrand is the PhD student who
assessed the packet loss affecting this communication.
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5.2 Software
To replicate the real time reading of brain activity the demonstration proceed in a
loop, set up as following:

1: procedure Simulation(trial_binned_window)
2: ó trial_binned_window is the matrix with shape (n_channels=553,

n_bins=139)
3: i← 0 ó Index of the first iteration set to 0
4: ó Execution
5: while i ≤ n_bins do
6: ó Slice the so far seen brain activity from the whole matrix
7: window ← trial_binned_window[:, max(0, i− 9) : i + 1]
8: ó Using the state decoder regress the next instant epoch
9: next_epoch← state_decoder(window)
10: ó Check if it is possible to classify object
11: if next_epoch in [Cue, Planning, Movement] then
12: obj_shape← shape_decoder(window)
13: obj_size← size_decoder(window)
14: end if
15: ó Generate and send payload
16: payload← action_dict(next_epoch, obj_shape, obj_size)
17: i← i + 1 ó Update index
18: end while
19: end procedure

The trial used is selected from the pool of experiments used to generate the
testing set of the online decoding.

The payload is composed of 8 bytes, each one of them corresponding to a value
[0-255] to actuate one of the motors. The first five values control the closure of the
fingers, the sixth the rotation of the wrist, the seventh the extension of the elbow
and eighth the rotation of the shoulder on the sagittal plane (one more DOF for
the shoulder rotation on the frontal plane could be included but it would imply
harder kinematics).

All the values are just simulated since the arm used to test the software was
only prototypical, with 6 DOF, therefore is no chance to approach, lift and lay
the object, and no fine granularity in fingers closure. As a proof of concept, I
associated the approaching phase to the closure of one finger, the holding as two
fingers, lifting as all fingers, and then backward for laying and retreat.The software
can however easily accept new kinematics, finely tuned to describe the movement,
in future development.
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Conclusion

In this thesis, I investigated the ability of deep neural networks to extract fea-
tures and decode lightly-preprocessed recordings from the brain, collected with
intracortical implanted arrays. I compared many networks archetypes finding that
recurrent ones were those performing the best. In particular, a combination of
a convolutional step to reduce the channels dimension and then an LSTM was
successful in classifying the target object shape in an online application with around
92% of accuracy. Two additional models, with the same architecture, were trained
to decode the object size and the trial state (i.e. the intent of extending, lifting,
laying or retreating the arm) and scored, respectively, 25% and 89% accuracy.

Given these results, I can claim that the execution of a grasp and the target-
specific hand configuration uniquely shape the neural activity. Consequently, it is
possible to decode the will to perform a movement and some information about
the target object. The main concern regards the classification of the object size,
which performed poorly. The idea of grouping the items by size had the intent to
push the decoder extracting information about the closure of fingers or the tension
of tends. However, this had not happened; it is not easy to understand whether
it is a problem of the quantity of data or if, perhaps, that is not information
expressed in the brain area under analysis. In conclusion, results suggest that
deep neural networks represent a promising tool for decoding intracortical neural
recordings. However, some adjustments must be included, especially regarding the
data collection.

6.1 Concerns about the quality of dataset
The first problem that I want to address regards the quality of the dataset. It
is well known that the performance of a neural network is highly affected by the
number of examples available to learn from and, if those are few, it will be harder
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for the network to learn the pattern underneath them. Since the beginning of this
work, 432 trials seemed to be not much, and the overfitting problem was addressed
in multiple ways. For example, the classes were grouped in order to have more
representation for each one, the networks were kept simple (since the more complex
they are, the more likely to memorise the data), and dropout regularisation was
largely used. This problem applies also to the classification dataset obtained after
the sliding window. Despite this transformation drastically increased the number of
samples, it is questionable to consider it a proper data augmentation. In fact, the
smaller windows mostly overlap, without really introducing diversity that might
force the network to generalise. Despite the overall good performance obtained by
shape and state decoders, their training history shows that the models only learnt
for a couple of epochs and then overfitted. Moreover, the size decoder learnt to
distinguish only between two-dimensions. The question about whether this is all
the information that can be extracted from brain data or if more can be obtained
through different software or more data, will remain unanswered in this discussion.

6.2 Concerns about the real world application
The second doubt regards the possibility to replicate the monkey movement in
real life. Being the demonstration mostly theoretical, the capability of the buffer
was only hypothetical; it is not guaranteed that it could be really possible to work
with a ten-step long window. Perhaps, a smaller one would be necessary, probably
affecting results. Moreover, the simulation took few milliseconds (around 37ms)
when decoding the state only, but it took around 100ms when decoding all three
labels. It is hard to state whether these results are limited by the available hardware
or if it is necessary to change the software. Probably, a real-time application would
require a single network that classifies at once the state, shape and size.

6.3 Future work
Given the concerns related to dataset limitation and real-time application, there is
a future step I would propose. A deeper and more complex network might be able
to find deeper patterns in the data that were missed so far, possibly increasing
the accuracy for all the labels. However, increasing the complexity of the network
would lead to overfitting results, so this could be allowed only by having more
recordings from the same animal. Another advantage of training a deeper network
is that possibly a single one might be sufficient to classify state, shape and size
simultaneously, highly reducing the decoding time.
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Appendix A

Dataset

The Figure 37a was attached to the dataset I received and describe all the sub
phases of the trials. All of them was finely monitored with the aid of a multitude of
sensors and cameras that kept track of the hand position of the animal. It is worth
mentioning that between two consecutive trials there was a waiting time during
which the platform rotated to present a new object. After all the six object on that
platform were presented in random order to the monkey, an operator manually
substituted the turning table. In total, there were eight turning tables, which
are those displayed as columns in Figure 37b. Therefore, in most of the cases,
consecutive trials presented the same shape of object with different size.

Figure 37: Complete list of trial states and target objects
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Hyperopt set-up

Hyperopt required to set up a search space from which sample the parameters to
test. A brief explanation of the main functions is following: hp.quniform define
values between a min and a max with a step; hp.choice define values among those
in a list.

DNN

• ’num_neurons’: hp.quniform(’num_neurons’, 32, 640, 32)

• ’frac_dropout’: hp.quniform(’frac_dropout’, 0., 0.5, 0.05)

• ’n_epochs’: hp.quniform(’n_epochs’, 5, 50, 5)

• ’batch_size’: hp.quniform(’batch_size’, 2, 26, 2)

SimpleRNN

• ’num_units’: hp.quniform(’num_units’, 16, 256, 16)

• ’frac_dropout’: hp.quniform(’frac_dropout’, 0., 0.5, 0.05)

• ’n_epochs’: hp.quniform(’n_epochs’, 5,50,5)

• ’batch_size’: hp.quniform(’batch_size’, 2, 26, 2)

GRU

• ’num_units’: hp.quniform(’num_units’, 16, 256, 16)

• ’frac_dropout’: hp.quniform(’frac_dropout’, 0., 0.5, 0.05)

• ’n_epochs’: hp.quniform(’n_epochs’, 5, 50, 5)

• ’batch_size’: hp.quniform(’batch_size’, 2, 26, 2)
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LSTM

• ’num_units’: hp.quniform(’num_units’, 16, 256, 16)

• ’frac_dropout’: hp.quniform(’frac_dropout’, 0., 0.5, 0.05)

• ’n_epochs’: hp.quniform(’n_epochs’, 5, 50, 5)

• ’batch_size’: hp.quniform(’batch_size’, 2, 26, 2)

CNN

• ’num_filters’: hp.quniform(’num_filters’, 32, 256, 32)

• ’kernel_size_1’: hp.quniform(’kernel_size_1’, 50, channels-50, 50)

• ’kernel_size_2’: hp.quniform(’kernel_size_2’, 3, window-3, 3)

• ’pool_size’: hp.choice(’pool_size’, [2, 0])

• ’frac_dropout’: hp.quniform(’frac_dropout’, 0., 0.5, 0.05)

• ’n_epochs’: hp.quniform(’n_epochs’, 5, 50, 5)

• ’batch_size’: hp.quniform(’batch_size’, 2, 26, 2)

Ensemble

• ’num_filters’: hp.quniform(’num_filters’, 4, 64, 4)

• ’size’: hp.quniform(’size’, 16, ceil(channels/2), 16)

• ’activation’: hp.choice(’activation’, [’relu’, ’elu’])

• ’frac_dropout_1’: hp.quniform(’frac_dropout_1’, 0., 0.5, 0.05)

• ’pooling_layer’: hp.choice(’pooling_layer’, [’max’, ’avg’])

• ’recurrent_layer’: hp.choice(’recurrent_layer’, [’gru’, ’lstm’])

• ’n_units’: hp.quniform(’n_units’, 16, 256, 16)

• ’frac_dropout_2’: hp.quniform(’frac_dropout_2’, 0., 0.5, 0.05)

• ’n_neurons’: hp.quniform(’n_neurons’, 32, 512, 32)

• ’n_epochs’: hp.quniform(’n_epochs’, 5, 50, 5)

• ’batch_size’: hp.quniform(’batch_size’, 2, 26, 2)
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