
Master of Science in Computer Engineering

Master Degree Thesis

Towards automation of Multi
Cluster Network Policies

Supervisors
prof. Riccardo Sisto
prof. Fulvio Valenza

prof. Guido Marchetto

dott. Daniele Bringhenti

Candidate

Giuseppe Sommese

Academic Year 2020-2021

This work is subject to the Creative Commons Licence

Summary

In recent years, novel cloud technologies have emerged and gained interest in the
field of software development. At the same time, the application development
methodology has started to change, moving from the monolithic application idea
to cloud-native application, composed of micro-services loosely coupled and inde-
pendent from each other. Developing applications in this way has permitted the
various parts to be deployed in different servers and this has contributed to the start
of developing new types of software called orchestrators, capable of managing all
the resource optimization, deployment, and security parts of a data center or cloud
environment. One of the most successful orchestrators at the moment is Kuber-
netes. Kubernetes allows new applications, developed using micro-services, to be
deployed in different parts of data centers and to still be able to communicate with
each other. Since its first release, developers have mainly focused on the work of a
single Kubernetes instance, called cluster, to try to make everything work within
a single cluster. Recently, the attention has shifted to the cooperation of several
Kubernetes clusters, which can also belong to different data- centers or companies,
with each other to be able to develop parts of an application independently, and
then make them communicate to form the entire application. Many projects have
also been developed together with Kubernetes that extend it with security net-
working and monitoring functions. Although Kubernetes doesn’t currently provide
any features for connecting multiple cluster instances and discovering the services
that are within them, the various projects have started to move in this area by
proposing different solutions. Even if some parts have been developed using dif-
ferent methodologies, at the moment, the automation part of both the security
functions and the creation of connections between clusters and services is missing
in these projects. Automating these functions is important to prevent the possi-
bility of a human error in the configuration both of security, which could lead to
branches and the connection between clusters and services that could lead to an
unwanted interruption of communication with difficult resolution. Furthermore,
if it refers to the communication between services of different companies, there is
some information in the configurations that could be unknown and that requires
cooperation between the parties that could lead to misconfigurations and, there-
fore, to undesirable effects. The objectives of this work are then the analysis of
the current technologies for multi-cluster communications and the development of
a Multi Cluster Orchestrator able to configure automatically security and commu-
nications in multiple Kubernetes clusters. For the first objective, three software
will be analyzed, highlighting their strengths and weaknesses, in particular the lack
of automatic configurations features. Based on one of these technologies a new

3

framework will be proposed, placed at a higher level of Kubernetes, that can auto-
matically configure security policies, connect clusters, and provide service-to-service
communication between services in different Kubernetes clusters.

4

Contents

List of Figures 8

List of Tables 10

Listings 11

1 Introduction 14

1.1 Thesis objective . 15

1.2 Thesis description . 15

2 Technologies 17

2.1 Kubernetes . 17

2.1.1 Cluster . 18

2.1.2 Pod . 18

2.1.3 Service . 20

2.1.4 Multi Cluster . 22

2.2 Istio . 24

2.2.1 Architecture . 24

2.2.2 Multi-cluster . 26

2.3 Calico . 27

2.3.1 Architecture . 27

2.3.2 Multi-cluster . 29

2.4 Cilium . 29

2.4.1 Architecture . 30

2.4.2 Multi-cluster . 30

5

3 Network Isolation in Kubernetes 33

3.1 Kubernetes Network Policy . 33

3.2 Network isolation . 36

3.2.1 Iptables . 39

3.2.2 Ebpf . 40

3.3 Istio Network Policy . 41

3.4 Calico Network Policy . 42

3.5 Cilium Network Policy . 43

3.6 Comparison between tecnologies . 45

4 Multi Cluster 47

4.1 Introduction to Multi Cluster Orchestrathor 47

4.2 Model . 47

4.2.1 Domain . 48

4.2.2 Requirements . 50

4.2.3 Global Configuration . 51

4.2.4 Single Configuration . 52

5 Implementation 53

5.1 Entities . 54

5.2 Requirements . 55

5.2.1 Services . 57

5.2.2 Clusters . 58

5.2.3 Domains . 58

5.3 Policy Refinement . 59

5.3.1 Ingress Refinement . 62

5.3.2 Egress Refinement . 63

5.4 Communication with Kubernetes 65

5.4.1 Kubernetes Java Client . 66

5.4.2 Cilium Network Policy API 66

5.5 Service Communication . 67

5.5.1 Services in the same Namespace 68

5.5.2 Services in different Namespaces 70

6 Validation 73

6.1 Use Case 1 . 73

6.2 Use Case 2 . 79

6

7 Conclusions 83

Bibliography 86

A Appendix A 89

B Appendix B 96

B.1 Set up . 96

B.2 Creating Clusters . 96

B.3 Intalling Cilium in the cluster . 97

B.4 Installing the cluster-mesh . 98

C Appendix C 101

C.1 Use Case 1 . 101

C.2 Use Case 2 . 105

C.3 Client . 107

7

List of Figures

2.1 Example of a Kubernetes Cluster 18

2.2 Example of a Pod’s structure . 19

2.3 Example of a Service . 20

2.4 Example of Replication model . 23

2.5 Example of Split-by-service model 23

2.6 Architechture of Istio . 25

2.7 Architechture of Calico . 28

2.8 Architechture of Cilium . 31

2.9 Cilium Multi Cluster . 32

3.1 Per pod firewall image . 38

3.2 Per node firewall image . 38

4.1 External Model Of Multi Cluster Orchestrator 48

4.2 Internal Model Of Multi Cluster Orchestrathor 49

5.1 Example of a scenario with two domains and four clusters 60

5.2 Example of configuration with services belonging to the same names-
pace . 69

5.3 Final request path to reach the real service backend from service
frontend . 69

5.4 Example of configuration with services belonging to different names-
paces . 71

5.5 Final request path to reach the real service backend from service
frontend . 72

6.1 Use Case 1 . 74

6.2 Request failure due to missing service in the cl3 77

6.3 Service2 created in cl3 . 77

6.4 Service2 External Service created in the default namespace 77

8

6.5 Namespaces of cl3 after Service2 creation 78

6.6 Successful request to Service2 . 78

6.7 Services in default namespace of cl3 after policy removal 78

6.8 Services in ns2 namespace of cl3 after policy removal 79

6.9 Namespaces of cl3 after policy removal 79

6.10 Use Case 2 . 80

6.11 Request from client-service to backend service 81

6.12 Request from client-service in cluster2 to client-service in cluster1 . 81

6.13 request from client-service to backend service 82

6.14 Policies after the backend service removal 82

6.15 Services in backend-ns namespace after service backend removal . . 82

A.1 Resource Graph . 90

9

List of Tables

A.1 RESTful API Design . 91

10

Listings

2.1 Example of a service specification 21
2.2 Example of a Global Service . 32
3.1 Example of a Kubernetes Network Policy 34
3.2 Example of a Calico Network Policy 42
3.3 Example of a Cilium Network Policy 43
3.4 Example of a multi-cluster Cilium Network Policy 44
5.1 Example of a requirement . 55
5.2 Request to communication with a single service 57
5.3 Request to communication with services of a cluster 58
5.4 Request to communication with services of a domain 59
5.5 Requirement example . 61
5.6 Ingress overwiew of Requirement Example 5.5 62
5.7 Final Ingress refinement Network Policy 63
5.8 Egress overwiew of Requirement Example 5.5 63
5.9 Final Egress refinement Network Policy 64
5.10 Example of a Context file . 65
5.11 YAML file of Service backend . 70
5.12 YAML file of Service backend in backend-namespace 70
5.13 External Service . 71
6.1 Example of Service with a Deployment 75
6.2 YAML file for Client Deployment 76
6.3 Policy requirement that allows domain1 77
6.4 Policy requirement that allows service backend 80
6.5 Example of a requirement that allows all services of cluster1 81
6.6 Example of a requirement that allows service backend 82
B.1 Example of a kind configuration file 97
B.2 Example of a Cilium installation with Helm 97
B.3 Service cilium-etcd-external . 98
B.4 Example of a ds.patch file . 99
B.5 Commands to aplly the cluster mesh 99
B.6 Example of a Cilium status report 100
C.1 Template of a JSON DomainRequest 102
C.2 Example of DomainRequest . 103
C.3 Example of a Policy Requirement request 104
C.4 DomainRequest for use case 2 . 105
C.5 Cluster creation request . 106
C.6 Service creation request in a single cluster 106
C.7 Service creation request in a domain 107

11

C.8 postRequest method . 107
C.9 Example of creation of a V2OrchestratorNetworkPolicy class from a

yaml file . 108

12

Chapter 1

Introduction

In recent years, novel cloud technologies have emerged and gained interest in the
field of software development. At the same time, the application development
methodology began to change, moving from the monolithic application idea to
cloud-native application, composed of micro-services loosely coupled and indepen-
dent from each other.
Developing applications in this way has permitted the various parts to be deployed
in different servers and this has contributed to the start of developing new types
of software called orchestrators, capable of managing all the resource optimization,
deployment, and security parts of a data center or cloud environment. One of the
most successful orchestrators at the moment is Kubernetes.
Kubernetes allows new applications, developed using micro-services, to be deployed
in different parts of data-centers and to still be able to communicate with each other.

Since its first release, developers have mainly focused on the work of a single
Kubernetes instance, called a cluster, to try to make everything work within a
single cluster. The data center is then split into clusters and in each, it’s possible
to deploy an application working on different servers. Recently, the attention has
shifted to the cooperation of several Kubernetes clusters, which can also belong to
different data centers or companies, with each other to be able to develop parts of
an application independently, and then make them communicate to form the entire
application. Many projects have also been developed together with Kubernetes
that extend it with security networking and monitoring functions.

Although Kubernetes doesn’t currently provide any features for connecting mul-
tiple cluster instances and discovering the services that are within them, the various
projects have started to move in this area by proposing different solutions.
Even if some parts have been developed using different methodologies, at the mo-
ment, the automation part of both the security functions and the creation of con-
nections between clusters and services is missing in these projects. Automating
these functions is important to prevent the possibility of a human error in the con-
figuration both of security, which could lead to branches [1], and the connection
between clusters and services that could lead to an unwanted interruption of com-
munication with difficult resolution. Furthermore, if it refers to the communication
between services of different companies, there is some information in the configu-
ration that could be unknown and that requires cooperation between the parties

14

Introduction

that could lead to misconfigurations and, therefore, to undesirable effects.

1.1 Thesis objective

The goals of this thesis, based on the previous introduction, can be divided in:

• Analysis of the current technologies for service-to-service communication,
cluster mesh, and security policies

• Implementation of a solution placed at higher level respect clusters, based on
an analyzed technology that extends it and provides automatic configurations
for service security, discovery, and communications.

The first objective is the analysis of the current state of the art for what concerns
the linking between clusters, how services can communicate and can be discovered if
they are run in different clusters, and how security it’s provided to protect services
from undesired traffic. In particular, three projects will be analyzed to compare the
different solutions they apply in those three fields. One of these three projects will
be the base for the second objective which is to create a Multi Cluster Orchestrator
that is placed at a higher level respect the Kubernetes clusters and that uses one
of these technologies to automate service security, service-to-service discovery and
communication, and creates a cluster mesh when it is needed that connects multiple
clusters also if they belong to different companies or data centers.

This Multi Cluster Orchestrator is able, given some information, to carry out a
refinement process of high-level requests and automate all configurations by creating
links between clusters and services, but also applying security functions in such a
way as to have applications that communicate only with those who are enabled to
preserve them from undesired traffic.
In particular, in this work, the focus will be mainly on the refinement process of
security policies, going to refine a higher-level request, and on the communication
between services of different clusters.

1.2 Thesis description

After Chapter 1 briefly introduced the problems to challenge and the goals to
achieve, the rest of the thesis is structured as follow:

15

Introduction

• Chapter 2: describes Kubernetes with its main characteristics, starting from
the basic concept of the pod to the advanced concept of multi-cluster, and
three software that extends it: Istio, Calico, and Cilium. The focus of this
chapter will be on their architecture and how they implement service discovery
and Multi Cluster communications, highlighting what are their songstresses
and weaknesses.

• Chapter 3: describes how the network isolation is provided in Kubernetes,
focusing on the high and low-level implementations. First of all, will be intro-
duced the Kubernetes Network Policy, which is the primary tool for securing
a Kubernetes cluster. Then will be described how the network of Kubernetes
works and what are the technologies for providing isolation and how they
are related to network policies. Finally, there will be a description of how
the three projects Istio, Calico, and Cilium extend the standard Kubernetes
Network Policy and a final consideration about these three projects.

• Chapter 4: describes the model of the Multi Cluster Orchestrator, what are
the main concepts, and how it is structured at a high level. For each step of
the process will be described what the Multi Cluster Orchestrator must do,
starting from requirements it needs to work, to the final single configuration
for every cluster.

• Chapter 5: resumes the previous Chapter and describes how the concepts
introduced are implemented and with what implementation’s choices, focusing
on policy creation, and service-to-service communication implementation and
what are the implementation’s choices applied.

• Chapter 6: provides some use cases to understand how the Multi Clus-
ter Orchestrator works. In particular, there will be two use cases, one to
understand how the Multi Cluster Orchestrator operates in a multi-domain
environment, and the second describing how the Multi Cluster Orchestrator
handles services running on multiple clusters.

• Chapter 7:summarizes which goals this thesis work succeeded in reaching,
what are the main research directions that could be followed to improve the
implementation, and which features could be introduced to enrich the capa-
bilities of the framework.

• Appendix A:describes the design of REST-based APIs to interface with
the Multi Cluster Orchestrator and the implementation of the corresponding
RESTful web service.

• Appendix B: provides a guide to install a Cilium cluster mesh between
clusters and the installation of Cilium and its components.

• Appendix C: describes the steps to do in order to replicate the use cases
in Chapter 6. The last part will introduce a client created to simplify the
interaction with the Multi Cluster Orchestrator

16

Chapter 2

Technologies

One of the first chapters of this work is dedicated to the description of technologies
representing the actual state of the art for service and multi-cluster communi-
cations. Understanding what are the main features and weaknesses will help to
introduce the reason that led to thinking of this thesis.
First of all, will be introduced Kubernetes with its characteristics and main fea-
tures, which represents, at the time of writing this work, one of the most used
solutions for management and deployment of containerized applications.
Kubernetes network can be easily extended with some plugins that use a different
approach to manage security and network topology.
The second part of the chapter will describe three projects that extend the Ku-
bernetes network for the improvement of security, service, and multi-cluster com-
munication. For all three projects will be given a description of the architecture
and how they implement the multi-cluster and service communications, while the
next chapter will be dedicated to the description of security policies and a final
comparison between the three technologies, highlighting what are their strength
and weaknesses.

2.1 Kubernetes

Kubernetes is an open-source platform that helps to automatically manage, scale
and deploy containerized applications [2]. It was created by Google and became an
open-source software in 2014.
Kubernetes is technically defined as a Cloud Orchestrator. A Cloud Orchestrator is
a software that automates tasks computing, networking, and storage infrastructure
on behalf of user workloads and is designed also to serve as a platform for building
an ecosystem of components and tools to simplify the deployment, scaling, and
managing of cloud applications.
Thanks to Kubernetes, all manual tasks involving scaling and deployment of ap-
plications are automated and optimized, permitting more efficient management of
cloud infrastructure.

The next sections will present the components of Kubernetes starting from the
concepts of cluster and pods, which are basic components, and continue with the
introduction of services and multi-cluster that are more advanced features.

17

Technologies

2.1.1 Cluster

When a Kubernetes instance is created, it’s organized in a cluster. A cluster consists
of a group of compute nodes, called worker nodes, and at least a management node
named the master node.

The master node is responsible for the management of the entire cluster, schedul-
ing the new deployments in the worker nodes, optimizing the resources of the
cluster(for example scheduling a new deployment in a worker node that is using
fewer resources), and exposing the Kubernetes Application programming interfaces
(APIs) for hosts inside and outside the cluster.

Worker nodes, instead, are the execution units of the Kubernetes cluster: they
are in charge of exposing compute, networking, and storage resources to applica-
tions deployed in the cluster. Each node runs a container run-time (for example
Docker), an agent that communicates with the node master via API and additional
components for logging, monitoring, service discovery, and other tasks based on
plugins.

Figure 2.1. Example of a Kubernetes Cluster

2.1.2 Pod

A Pod [3] is the smallest deployable unit of computing that Kubernetes can create
and manage.

Creating a pod means defining a REST (Representational state transfer) ob-
ject using the YAML (Yet Another Markup Language) language that might be
composed of one or more containers, sharing storage and network resources, and
containing specifications about how containers have to be run.
The containers in a pod run in a shared context and they are always located and

18

Technologies

scheduled in the same node. Also if the containers of pod share the same context,
which is a set of Linux isolation primitives (like namespaces and cgroups), the whole
application, composed by the union and interaction of these containers, may have
further sub-isolations applied.

In summary, a Pod in Kubernetes can be used in two ways:

• Run pod with a single container: this is the simplest use case to run a pod,
in which the Pod is used as a wrapper around one single container; Rather
than managing containers directly, Kubernetes manages Pods.

• Run a pod with multiple containers: an application, that requires more than
one container to run, can be deployed in a single pod, making containers
strictly coupled and sharing the same resources. In this scenario the pod acts
as a wrapper, sharing storage resources and an ephemeral network identity
among all containers and acting as a single unit.

Figure 2.2. Example of a Pod’s structure

Each Pod is defined and must run only a single instance of a given application. If
it’s required to scale an application horizontally (to provide more overall resources
by running more instances), it should use multiple Pods, one for each instance.

19

Technologies

2.1.3 Service

A service is an abstract way to expose an application running on a set of Pods as
a network service [4].
The reason why services exist is that pods cannot be a reliable resource for the
service discovery: Kubernetes gives pods unique IP addresses and a single DNS
name for a set of pods running the same application, load-balancing across them
(to avoid application’s modification for the service discovery), but based on the
cluster’s state and the use of resources, pods are created and destroyed to match
the desired state of the cluster. This makes a pod an ephemeral resource that can’t
be used for network service discovery.
A service is then an abstraction that defines a logical set of pods and a policy by
which to access them. The figure 2.3 shows how a request made for a service is
transferred to pods associated with it.
Usually, the association between a set of pods and service is done using a selector,
which is a key-value pair that helps to identify and group pods. Once pods are
linked to a service, they can be reached using always the same IP address, which
is the service IP. In this way, a service running into a pod can contact a service
in another pod always with the same DNS name and using the IP of the service.
Once a request to service IP is done, it will be passed to a proxy(Kube-proxy) that
will forward the request to one of the backend pods linked to the service, and it’s
Kubernetes which dynamically update the list of pods that run the service.

Figure 2.3. Example of a Service

Based on the visibility scope of the service, there are four types of services:

20

Technologies

• Cluster IP services: This is the default service type used if no type is
specified and gives an internal cluster IP to the service. In this way, only
entities internal to the cluster can reach the service.

• Node port: This is the type used to expose a service outside the cluster. In
this type, services are created on each node’s IP at a static port and, when
accessed, will route on a ClusterIP service (which is automatically created
when a Node port service is defined). To contact a service outside the cluster,
requests should be done to one of the cluster’s nodes at ¡NodeIP¿:¡NodePort¿.

• Load balancer: This type of service is created when a cluster is inside a
cloud provider that provides a load balancer. This load balancer will route
all the requests to an internal service, which can be of CusterIP or Nodeport
type (automatically created when Load balancer service is defined).

• External name: This type of service is used to refer services outside the
cluster. It has a parameter called external name that is used to return a
Canonical Name record (CNAME) with its value. With this value, it will be
possible to access the actual service.

A Service in Kubernetes is a REST object, similar to a Pod. Like all others REST
objects, it can be created doing a POST to the Kubernetes API server to create a
new instance. An example of a Service definition is the one in Code Box 2.1:

Listing 2.1. Example of a service specification

apiVersion: v1
kind: Service
metadata:

name: frontend−service
spec:

selector:
app: frontend

ports:
- protocol: TCP
port: 80
targetPort: 8080

This specification creates a new Service object named ”frontend-service”, which
targets TCP port 8080 on any Pod with the app=frontend label. Kubernetes then
assigns an IP address to this service, which will be used by service proxies to load
balance across pods linked to the service.

When a new pod is created and linked to a service, its IP is added, by the
Controller for the Service selector, to another object called Endpoint object(which
has the same name of the service, in this case ”frontend-service”), that is used by
proxies to retrieve IP addresses.
Port definitions in pods have names, and it’s also possible to reference these names
in the targetPort attribute of a Service. This works even if there is a mixture of
pods in the Service using a single configured name, with the same network protocol

21

Technologies

available via different port numbers. This offers a lot of flexibility for deploying
and evolving Services. For example, the port numbers that pods expose can be
changed, without breaking clients.

The default protocol for Services is TCP and if no type is specified in the spec
field, ClusterIp is used as the default type.
Kubernetes supports multiple port definitions on a Service object if any service
needs to expose more than one port(each definition can select also different proto-
cols).

2.1.4 Multi Cluster

Multi cluster is a strategy that permits the deployment of applications across mul-
tiple Kubernetes clusters. This could be interesting for new applications based on
the cloud, having parts separates in micro-services that interact with each other
and that could belong to different companies. Using this strategy can improve:

• availability: a service could be available in multiple clusters and if one
cluster is not reachable the other can be contacted.

• isolation: a particular part of an application or service can run in a single
cluster isolated from other parts.

• scalability: multiple clusters offers more resources for the application

Also, it could be possible to concentrate part of applications, that needs partic-
ular geographic or certification-specific regulations, in one cluster to ensure com-
pliance with different and conflicting regulations. Finally, the safety and speed of
software delivery could also be increased, having a separate cluster for the devel-
oping team that selectively exposes only services available for testing and release.
Based on how the separation of application is done across clusters, there are two
possible models to reach the deployment of an application in a multi-cluster envi-
ronment:

• Replication for increased availability

• Split-by-service for increased isolation

In the first model presented in the figure 2.4, each cluster runs a full copy of the
entire application. With this approach, if there are clusters in different availability
zones(i.e clusters running in data centers in Europe and others running in Amer-
ica) the application can scale globally and the traffic can be routed to the nearest
cluster respect where the user is located. This model helps also in the fail-over pro-
cess. For example, if it’s coupled with software that checks the health of clusters
and can load balance requests across them when a cluster is unreachable, requests
are forwarded to any other reachable cluster.

22

Technologies

Figure 2.4. Example of Replication model

In the second model instead (figure 2.5), the application is divided across mul-
tiple clusters, based on its service composition or different global compliance re-
quirements. This approach is also good if the application is composed of services
belonging to different companies: all parts can be isolated from each other, but the
complexity is increased(need communication between clusters and more security
has to be applied). Other advantages of this model are the independence of parts,
speed, and safety during the development and delivery of applications. Different
teams can work on their parts in an isolated way, and connect the new releases
when all it’s finished tested and validated.

Figure 2.5. Example of Split-by-service model

To realize this goal, it’s important that clusters can be able to communicate se-
curely and that is possible to decide the policy to apply to a single service. Three
projects can help in this regard and will be arguments for the next sessions. [5]

23

Technologies

2.2 Istio

The first project that will be described is a software that helps in the service-to-
service communication: Istio.
Istio is an open-source service mesh that layers transparently onto existing dis-
tributed applications. [6] As described by Istio’s developers

”A service mesh is a dedicated infrastructure layer that can be added to appli-
cations. It allows to transparently add capabilities like observability, traffic man-
agement, and security, without adding them to the code. The term ’service mesh’
describes both the type of software that is used to implement this pattern, and the
security or network domain that is created when that software is used.”[7]

With the service-mesh provided by Istio, developers can easily move from the
development of monolithic applications to cloud-native apps, based on independent
services loosely coupled between each other and that communicate, as they can
rely on a software that implements security features, load balancing, fault recovery,
testing, discovery, metrics, and monitoring for service-to-service communication.

The next sections will present the Istio Architecture and how the multi-cluster
and service-to-service communication features are implemented.

2.2.1 Architecture

Istio’s Architecture is divided into two main components: data and control plane.
The data plane is the component in charge of the communication between services.
When the service mesh is created, the data plane can make decisions based on the
type of traffic or who is the sender or receiver. To achieve this the data plane uses
a proxy(which is configured by the control plane) and that intercepts all network
traffic, allowing a broad set of application-aware features based on configurations.
When a service is started in the cluster or is running in a Virtual machine, Istio
deploys an Envoy proxy along with them.
An Envoy proxy is a component instantiated by Istio to interact with data plane
traffic. It is deployed as a sidecar to services(i.e. a container coupled to the pod) in
the traffic mesh and intercepts all inbound and outbound traffic and provides other
features like dynamic service discovery, load balancing, circuit breakers, health
checks, and fault injection.
With this sidecar deployment, Istio can enforce policy decisions, traffic management
and extract data that can be sent to monitoring systems, providing information
about the status of the mesh and its behavior.

The control plane, instead, based on its knowledge of services and the desired
configuration given by the user, dynamically programs the Envoy proxy servers,
updating them as the rules or the environment changes. Istio’s Architecture is
summarized in the figure 2.6. Every decision is made by three components: Pilot,
Citadel, and Galey:

24

Technologies

• Pilot: is the component that provides service discovery for the Envoy side-
cars, traffic management, deciding the best routes for every service, and re-
siliency with the application of timeouts or circuit breakers. Pilot can also re-
trieve Envoy configurations, converting high-level routing rules traffic behav-
iors, and propagate these configurations to the sidecars at runtime. Finally,
it can abstract service discovery mechanisms based on a specific platform and
transform them in a standard format consumable by any sidecar conforming
to the Envoy API.

• Citadel: is the component in charge of the service-to-service and end-user
authentication using built-in identity and credential management. Istio uses
only application layer security so Citadel can enforce policies based on service
identity rather than on layer 3 or layer 4 network identifiers.

• Galley: is the component in charge of the Istio’s configuration validation,
ingestion, processing, and distribution. It is responsible to obtain the user
configuration from the underlying platform (e.g. Kubernetes) and propagate
this information to all other Istio’s components.[8]

Figure 2.6. Architechture of Istio

25

Technologies

2.2.2 Multi-cluster

Istio uses a Multicluster service mesh for communication between services in differ-
ent clusters. A Multicluster service mesh is a mesh composed of services running
in more than one cluster, which can communicate normally as they are deployed
in the same cluster. In a Multicluster service mesh, every service with the same
name in all clusters connected is considered as the same service, different from a
loosely-coupled service mesh where two clusters may have different definitions of
the same service (in this case when clusters are integrated and linked together there
must be a process that will remove all the ambiguity about services name).

In a Multicluster service mesh then, all services look the same to clients, in-
dependently of where the workloads are running, transparently hiding if an appli-
cation is deployed using services running in multiple clusters or just a single one.
To achieve this behavior, services must be coordinated and managed by a single
logical control plane, but there could be different physical Istio control planes that
in a distributed way will act as a single one.
Based on if the physical control plane is one or distributed among clusters, there
are two possible deployments:

• Multiple Istio control planes in which service and routing configurations are
replicated among all clusters

• Shared Istio control plane chosen among clusters that can access and configure
the services in more than one cluster.

In a multiple control plane topology, in each cluster is installed an Istio con-
trol plane (which is the same for all clusters) and a cluster is responsible for the
management of its endpoints. To configure the Multicluster service mesh, which is
a single logical service mesh, other than a single control plane every single cluster
needs also an Istio gateway for traffic forwarding, a common root Certificate Au-
thority (CA) for entrusting security and service entries for service discovery. When
applying this deployment, there are no special network requirements (the only one
is to have a cloud provider’s load balancer implementation needed to load balance
requests among clusters), and is the best solution to start when clusters are not
connected yet.
With this approach, all shared services need to be replicated in all clusters as all
namespaces in which this service’s pods run. All clusters are in a shared admin-
istrative control for security and policy enforcement which needs also to provide
a common root CA configuration in such a way that all traffic over the Istio’s
gateways is secured.

In the shared control plane deployment, instead, a single Istio control plane is
configured which runs in one of the linked clusters. The control plane’s Pilot of this
cluster is in charge to manage services on the local and remote clusters, configuring
all the Envoy proxies coherently.
This approach works also if the underlying network is not the same among clusters:
creating Istio’s Gateways, which can act as a VPN, all traffic can be forwarded
through gateways and act as a single network. If a sidecar sends requests to services

26

Technologies

running in its clusters, the normal service IP is used and everything works as
the single cluster configuration. Instead, if a request has to be done to a service
workload running in a different cluster, the traffic is sent to remote Istio’s Gateway
which will provide a connection with the service.

The two deployment approaches described can be mixed. If the Multicluster
service mesh is large, some clusters could share the control plane while others can
have their own. Which approach to use depends on the requirements of applications,
on the features and limitations of the underlying cloud deployment platform. [9]

2.3 Calico

Calico [10] is an open-source community project that provides networking for con-
tainers and virtual machines.
One of the most important projects of the Calico community is the development
of the Kubernetes Container Network Interface (CNI) which provides network and
security implementation for pods in a Kubernetes cluster.
the next sections will describe Calico’s CNI Architecture, based on a BGP mesh cre-
ation, and how Calico provides service-to-service communication and Multicluster
connection with its management tool: Calico Enterprise.

2.3.1 Architecture

Calico implements the Kubernetes CNI as a plug-in on the third layer, also known
as Layer 3 or the network layer, of the Open System Interconnection (OSI) model.
It also provides networking and policy enforcement for containers and pods.
In the first place, Calico creates a flat Layer-3 network, assigning to every pod a
fully routable IP address, then it creates a BGP mesh between all cluster nodes
and broadcasts container networks routes to only worker nodes. Each worker node
has its subnet(assigned by Calico from a larger subnet), which serves connectivity
to pod subnets that are hosted on the host, and is configured to act as a Layer 3
gateway for that subnet. The BGP mesh advertises all of the local routes that the
worker nodes own to all peers participating in the mesh. It is possible to include
BGP peers external to the cluster, but how many BGP advertisements these ex-
ternal peers receive is conditioned by the cluster size. When routing pod traffic,
Calico uses the node’s local route tables and iptables in such a way that all pod
traffic traverses iptables rules before they are routed to their destination. The Ar-
chitecture of Calico is shown in the figure 2.7 To manage policy and networking
Calico uses the following components:

27

Technologies

• Felix: Agent Daemon running on machine hosts that programs routes and
Access Control Lists (ACLs), and anything else required on the host to provide
desired connectivity for the endpoints on that host.

• Bird: Internet routing daemon running on every node that hosts a Felix
agent. This component gets routes from Felix and is in charge of distributing
them to BGP peers on the network to guarantee inter-host routing.

• Confd: Component that periodically monitors the Calico datastore for changes
to BGP configuration. It is also aware of global defaults changing like AS
number, logging levels, and IPAM information. When there is an upcoming
update, Confd dynamically generates BIRD configuration files based on the
modification of the datastore and triggers BIRD to load the new files.

• Dikastes: Optional component, runs on a cluster as a sidecar proxy to Istio
Envoy and enforces network policy for Istio service mesh using Iptables for
levels 3-4 and using Istio policy for higher levels. [11] [12]

Figure 2.7. Architechture of Calico

28

Technologies

2.3.2 Multi-cluster

To achieve multi-cluster and service connection, Calico uses its management tool
that is Calico Enterprise.
Calico Enterprise is a solution working on Kubernetes primitives, which are ex-
tended with other features to work also on Calico’s custom resources. The tool aim
is to enable security and observability across multi-cluster, multi-cloud, and hybrid
cloud environments, and provide a single point of configuration to ensure consistent
application of security controls.
Calico Multi-Cluster Management is structured with a centralized management
plane with a single point of control for multi-cluster environments. With this cen-
tralized control plane, routine maintenance is simplified and speeded up, in fact, for
example, instead of logging into all clusters one at a time to make a policy change,
with a single log-in to Calico Enterprise it’s possible to apply policy changes con-
sistently across all clusters. Once network security controls are defined, it is also
possible to apply them automatically to new clusters as soon as they are added to
the management tool.
It is possible to create policies in one cluster that reference pods in another cluster
using the federated identity. Federated services provide service discovery of remote
pods in another cluster. With these two features, it is possible to create fine-grained
security controls between multiple clusters.[13] Using federated tiers and federated
policies, security policies can be defined and applied across all clusters, or to a
specific group of clusters. If multiple clusters are deployed, federated tiers and
policies can extend security controls to each existing and new cluster. This reduces
duplication of policies (and maintenance of identical policies per cluster) to sim-
plify the creation and maintenance of security controls. Calico enterprise is not an
open-source software and it’s possible to use it only by having a subscription to the
Calico cloud, for this reason, all details about service discovery and multi-cluster
communication are not provided by developers.[14]

2.4 Cilium

Cilium is an open-source software for transparently securing the network connec-
tivity between application services deployed using Linux container management
platforms like Docker and Kubernetes. Like Calico, the Cilium project has also
developed its own Kubernetes CNI that can be installed easily with cloud tools like
Helm. [15]
The main peculiarity of Cilium is that it has focused all the CNI implementation on
the new technology of eBPF, from network functions to security policies, making
the data plane really fast and able to process a large number of requests and match
a big number of policy rules.
In the following sections will be presented the Cilium architecture and how it con-
nects clusters with its Cilium cluster-mesh, providing also the service-mesh com-
munication.

29

Technologies

2.4.1 Architecture

When Cilium is deployed in the cluster, some components are instantiated on each
node of the cluster. Those components are:

• Cilium Agent (Daemon): This component is installed as a daemon in the
userspace of all cluster’s nodes and it’s used to setup networking and security
for containers running in the pods (when they are created) and uses plugins
to interact with the container runtime and Kubernetes. This component is
also in charge to provide an API for configuring network security policies and
extracting network visibility data.

• Cilium CLI Client: this component is a simple CLI client used for com-
munication with the local Cilium Agent, for configuring network security or
visibility policies.

• Linux Kernel eBPF: this is not a really Cilium component as it is already
integrated as capability of the Linux kernel to accept compiled bytecode that
is run in various points of the kernel(called hooks). Cilium uses eBPF to
compile programs that are executed by the Linux kernel in the key points of
the network stack to have visibility and control over all incoming and outgoing
network traffic of all containers.

• Container Platform Network Plugin: Each container platform (i.e. Docker,
Kubernetes) has its plugin model for how external networking platforms inte-
grate. In the case of Docker, each Linux node runs a process (cilium-docker)
that handles each Docker libnetwork call and passes data/requests on to the
main Cilium Agent.

In addition to components that run on each node of the cluster, Cilium maintains
and manages a key-value store to share data between Cilium Agents running on
different nodes. The full architecture of Cilium is summarized in the figure 2.8.
[16]

2.4.2 Multi-cluster

Cilium Multi-cluster or ClusterMesh is a mix of Istio’s and Calico’s multi-cluster
because it has the concept of service mesh of Istio but can be extended also to net-
work policies and the federation concept of Calico Enterprise called identity-based
here.
ClusterMesh can route Pods traffic across multiple Kubernetes clusters using tun-
neling or direct-routing and without the use of any gateways or proxies. It is
provided also a transparent service discovery using standard Kubernetes services
enriched with some annotation (which will be explained later) and the standard
Kubernetes DNS (coredns/kube-dns). Finally, all traffic of local nodes and exter-
nal clusters is encrypted.
To achieve this multi-cluster communication Cilium needs to unify the control plane
of all the clusters and to do it needs some requirements :

30

Technologies

Figure 2.8. Architechture of Cilium

• All Kubernetes worker nodes must be assigned a unique IP address and all
worker nodes must have IP connectivity between each other

• All clusters must be assigned unique PodCIDR ranges

• Cilium must be configured to use etcd as the kvstore

• The network between clusters must allow inter-cluster communication. Based
if Cilium is configured to work in direct-routing or tunneling mode, the fire-
walling requirements might change.

The figure 2.9 shows what are the services unified from cilium when creating a
ClusterMesh.

To unify the control plane, Cilium uses its key-value store, called cilium-etcd, which
is based on the standard Kubernetes etcd. The cilium-etcd is not unique but each
Kubernetes cluster maintains its etcd cluster containing the cluster state. Clus-
ters can read the state of other cilium-etcd using their Cilium-agent, to watch for
changes and replicate the multi-cluster relevant state into their cluster. Cilium-
agents will never connect directly to the store, but each cluster exposes its cilium-
etcd via proxies. Accessing the cilium-etcd is always read-only, so the state from
multiple clusters is never mixed in etcd itself and ensures also a circumscription of
failures: if a cluster has failures this will never propagate in other clusters.
As said before, ClusterMesh uses a similar approach as Istio’s mesh for service
discovery. In particular, the Cilium service-mesh, transparently to the existing

31

Technologies

Figure 2.9. Cilium Multi Cluster

Kubernetes deployments, can perform service discovery, using the standard Kuber-
netes services, adding only a few more information.

Listing 2.2. Example of a Global Service

apiVersion: v1
kind: Service
metadata:

name: frontend
annotations:

io.cilium/global−service: "true"
spec:

type: ClusterIP
ports:
- port: 80
selector:

app: frontend

In the Code Box 2.2 there is an example of how service discovery can be
performed using the Cilium ClusterMesh: Cilium monitors Kubernetes services
and endpoints and watches for services with an annotation io.cilium/global-service:
”true”. All services which match this requirement, and that have the same name
and namespace, are automatically merged along with all their information and can
be contacted from all clusters having that service. During this process, Kubernetes
and its DNS are not aware of global services in other clusters because each service
continues to maintain its ClusterIP. The DNS server will always return a ClusterIP
valid only in the local cluster and Cilium will transparently load balance requests to
endpoints in all clusters, based on the standard Kubernetes health-checking logic.
[17]

32

Chapter 3

Network Isolation in Kubernetes

In the last Chapter was introduced the Kubernetes Orchestrator with its most rel-
evant features, in particular, it was focused on all those technologies which allow
clusters communications and service-to-service communication.
Most of cluster-mesh technologies analyzed focus their operations on creating a
logical control plane that is in charge to provide connectivity between pods in all
clusters of the mesh. Especially if clusters belong to different companies, some
namespaces, pods or services could be wanted to remain private, or would be nice
to decide some policies to accept only some requests from specified entities.
Isolation is then an important requirement when connecting clusters, and Kuber-
netes uses the Network Policy resource to achieve this goal.

Recent works like [18] and [19], have highlighted also the importance of perfor-
mances when security is applied because the number of connections to control can
rise very highly. It’s important then know also what technologies are used when
security is applied to choose the one that can provide also the best performances.

The following Chapter will then describe at first what is a Network Policy and
how its structured, then will be introduced and described the various level of iso-
lation and how it’s implemented at a low level using Linux kernel components like
iptables or eBPF. In the final part of the chapter there will be a description of how
the three projects analyzed in the previous Chapter (Istio, Calico, Cilium) imple-
ments Network Policies and a final section that compare the three technologies,
based on the information of this and previous Chapter.

3.1 Kubernetes Network Policy

Network policy is the primary tool for securing a Kubernetes network. It allows to
easily restrict the network traffic in the cluster so only the traffic that is wanted to
flow is allowed.
By default, if no Network policy is applied, pods are non-isolated and they accept
traffic from any source. Once a network policy selects a pod or group of pods via
a selector, pods become isolated and they will start to reject any connections that
are not allowed by any network policy.

33

Network Isolation in Kubernetes

Network policy is implemented by the network plugin: a network plugin is
a component that provides the implementation of network policy (some plugins
translate network policies as rules in Iptables, others as eBPF programs in the
Linux kernel) and is responsible for inserting a network interface into the container
network namespace of pods that helps in the process of policies rules creation.
If a NetworkPolicy resource is created without any network plugin installed that
implements it will have no effect as it will not be possible to insert rules in the
Linux kernel (via Iptables or eBPF).

If there is more than one network policy that selects a single or multiple pods,
their effect will be additive: pods will be restricted to what is allowed for the union
of those policies rules, this is valid for the ingress and for the egress specification
and the order in which policies are evaluated doesn’t affect the finale result.

If two pods are restricted by network policies and want to communicate, it’s
important that there is a policy allowing the egress traffic to the destination pod
(in the source Network policy definition) and a policy allowing the ingress traffic
from the source pod(in the destination network policy definition), otherwise, the
traffic will be denied.
An example NetworkPolicy might look like this:

Listing 3.1. Example of a Kubernetes Network Policy

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:

name: my−network−policy
namespace: default

spec:
podSelector:

matchLabels:
role: backend

policyTypes:
− Ingress
− Egress
ingress:
− from:
- ipBlock:

cidr: 172.20.0.0/16
except:
- 172.20.1.0/24

- namespaceSelector:
matchLabels:

project: test
- podSelector:

matchLabels:
role: frontend
namespace: frontend−namespace

ports:
− protocol: TCP

port: 6379 5480

34

Network Isolation in Kubernetes

egress:
− to:
- ipBlock:

cidr: 10.0.4.0/24
ports:
− protocol: TCP

port: 5978 8800

As with all other Kubernetes configurations, a NetworkPolicy needs apiVersion,
kind, and metadata fields. The field spec specifies all the information needed to
define a particular network policy in the namespace, in particular the podSelector
which selects the grouping of pods to which the policy applies. In the example are
selected all pods that have the label ”role=backend” in the default namespace.If in
the policy it is not specified a selector, it will be applied to all pods belonging to
the specified namespace.

Another important field is the policyTypes, that is a list which may include ei-
ther Ingress, Egress, or both specification. The policyTypes field indicates if the
current policy has to be applied for ingress traffic to the selected pod, egress traffic
from selected pods, or both.
For the ingress list each rule specified allows traffic matching both the from and
ports fields. The example policy contains one single rule matching traffic on a single
port, and that arrives from one of three sources, specified via iPBlock, namespace-
Selector and podSelector.

The egress list instead contains the allowed egress rules. As for the ingress list,
each rule allows traffic matching both the to and ports fields. in the example, the
network policy contains only one rule, which allows all traffic on a single port that
is intended for any destination in the 10.0.4.0/24 subnet.
Summarizing, the example NetworkPolicy isolates pods with label ”role=backend”
deployed in the ”default” namespace for both ingress and egress traffic (if they
weren’t already isolated).
Ingress rules allows connections to all pods in the ”default” namespace with the
label ”role=backend” on TCP port 5480 from:

• any pod with the label ”role=frontend and that is in the ”frontend-namespace”
namespace

• any pod in a namespace with the label ”project=test”(namespaces can have
labels)

• IP addresses in the ranges 172.20.0.0/16 excluded the subnet 172.20.1.0/24

Egress rules allows connections from any pod in the ”default” namespace with the
label ”role=backend” to subnet 10.0.4.0/24 on TCP port 8800. There are still some
things Network policy can’t do and are done using other Kubernetes features like:

35

Network Isolation in Kubernetes

• forcing internal cluster traffic to go through a common gateway:
this might be best served with a service mesh or other proxy

• anything TLS related:service mesh or ingress controller for this might be
used for this intent

• targeting of services by name: it’s possible to target pods or namespaces
by their labels, which is often a viable workaround ability to log network
security events.[20] [21]

3.2 Network isolation

Before introducing the concept of isolation in Kubernetes it’s important to under-
stand how the network works. The Kubernetes Network model is defined with the
concept of a flat network: a flat network is an abstraction of the underlying phys-
ical network in which it’s possible to reach the connection of components without
the need to map host ports to container ports. With a flat network, every en-
tity deployed in any node of the cluster can be reached through its IP address, no
matter how the underlying network is. With this approach, the network design is
extremely simplified and allows easy management of the cluster. New workloads
can be scheduled, independently and dynamically, anywhere in the cluster with no
dependencies on the network design.
To set up the network, Kubernetes has specified a Container Network Interface
(CNI) that can be implemented in various ways, which is in charge of set up-
ping network interfaces when entities (pod, nodes, and services) are created for
the communication with other entities along with the implementation of security
policies(Network Policy).

With the use of this model, pods from different namespaces can be deployed on
the same node, and in the first place, they can communicate. Also, when creating a
cluster-mesh, the control plane is unified and the final mesh can be seen like one big
cluster where every communication is allowed. This rise the problem of isolation
and protection of services and pods, especially if the clusters are from different
companies (some services or namespace could belong to teams that for example are
not interested to communicate with other clusters).

As from the network, Kubernetes introduces a mechanism to abstract network
security from topology and leave to CNI the low-level implementation based on
different technologies. This abstraction is the Network Policy, which uses label
selectors as their primary mechanism for defining which workloads can talk to
which other, rather than IP addresses or IP address ranges. Thanks to this level of
abstraction, the effort to find an optimal allocation for the firewalls [22] is left to
the CNI that uses different approaches based on the technologies that are used.
Even if network policy abstract from the underlying network, it’s important to
know how those rules are applied because it can affect performance or growth of
latency if the number of policies applied increases a lot. there are different levels
where a network policy can be applied:

36

Network Isolation in Kubernetes

• Cluster level: these general policies are defined for every entity on the
cluster: applying this policy in the cluster will affect all pods and services in
every node. Those policies are applied usually due to specifications valid for
every namespace(for example in every namespace some kind of pods have to
communicate with another specified type of pod)

• Node level: it is possible to give labels to nodes and create Network Policies
based on them: every pod deployed in that node will be affected by the policy.
Usually, this level is used when a node contains entities that require the same
sources for incoming and outgoing traffic.

• Namespace: this level will affect all entities belonging to this namespace
independently from where they are deployed in the cluster. This level is
usually used to allow communications with other namespaces: it’s possible to
specify then only the namespaces which pods can send or receive requests.

• Single pod or service: this is the lowest level and applies to every single
entity matching that label and the specified namespace. This is the most
commonly used level to specify the allowed communication of a single appli-
cation.

Applying policies at any level requires to be consequently translated as firewall
rules in the cluster’s nodes. There are two approaches used based on where the
firewalling rules are applied:

• a firewall is placed for every pod in the node and contains only firewalling
rules for that pod

• a single firewall is placed in the node and contains all rules for all pods
deployed in the node.

In the first approach, high-level policies are translated into firewalling rules in
the network namespace of the pod. When a pod is created it’s assigned to a differ-
ent network namespace to guarantee (to its containers) isolation from other pods.
An example is given in the figure 3.1.

This approach can guarantee a low number of policies applied and it is easy to
maintain. When there is an update or an add of a new policy for that pod it’s
added directly to the network namespace. This guarantee also a fast lookup as it’s
easy to check if the traffic is allowed to enter or exit from that pod as the only
rules present in the firewall are the ones applied to the pod. A drawback for this
approach is the redundancy of firewall applied in the node: also if pods run the
same instance of application their network namespace is independent, two instances
of firewall need to be created, one for each pod.
In the second approach, the firewall is created in the root network namespace of
the node and contains all the rules for all the pods present in that node. When
pods want to communicate, every traffic that is not for its containers is sent in the
root network namespace, in which is present a virtual switch that is connected to

37

Network Isolation in Kubernetes

Figure 3.1. Per pod firewall image

all pod’s network namespace created in the node and will forward all traffic to the
right namespace. Before being forwarded by the virtual switch, as shown in figure
3.2, the traffic is matched with the rules of the firewall.

Figure 3.2. Per node firewall image

When a new pod is scheduled for that node there will be a controller in charge of
inserting the missing rules for that pod in the firewall. With this approach there
is no redundancy because now pods matching the same labels will be matched by
a single rule in the firewall. A drawback for this approach is the maintenance of
the rules in the firewall because pods can be created and destroyed very easily. If
it’s not done with a fast technology could introduce latency in the communication
or errors in the matching rules(for example using iptables as will be shown in the
following section).

38

Network Isolation in Kubernetes

Both approaches require the creation of one or more firewalls. The main imple-
mentations used to rely on the use of Linux kernel modules:

• iptables that is a user space program to configure a kernel module called
Netfilter

• eBPF that is a virtual CPU running in the kernel space

In the next two sections, the two technologies will be analyzed and will be
evidenced their strength and drawbacks to motive also choices made after in this
work.

3.2.1 Iptables

Iptables is the userspace command-line program that allows the network admin-
istrator to set up The Linux kernel firewall (from version 2.4.0) by inserting and
configuring IP packet filter rules.
Rules are organized in chains and are accessed by a kernel module called Netfilter.
Packets entering and leaving the host are captured by the Netfilter module that will
match those packets to the lists of iptables rules. Each rule is composed of packet
information (source, destination, source port, destination port, and protocol) and
the action to do which can be:

• DROP to drop the packet, commonly used in deny firewall type

• ALLOW to allow the packet and go out the system or reach the userspace,
commonly used in allow type firewall

• FORWARD to forward the packet to another destination that is not local to
the host

• pass the packet to another chain that will match the packet and chose the
right action or pass it to another chain of rules

Chains of rules are stored in tables, which might be built-in chains or user-defined
chains. By default, iptables has three tables: FILTER, NAT, and MANGLE. For
the translation of network policy rules, only the FILTER table is used and will be
the only table analyzed in this thesis.
In the FILTER table, there are three important chains where rules are placed once
translated from the initial Network Policy:

39

Network Isolation in Kubernetes

• INPUT: in this chain there are all rules of incoming connections. When
a request arrives in the network namespace, is matched with this chain to
decide the action to perform with that packet. Rules specified in the Ingress
field of Network policies are translated into rules of this chain.

• OUTPUT: this is the chain used for outgoing traffic. Before leaving the host,
packets are passed to this chain and can be allowed, dropped, or forwarded to
another chain. The Egress rules of Network policies are translated into rules
of this chain.

• FORWARD: this chain is used for forwarding incoming packets that are not
destined to the local network. This chain is used for implementing routing
behavior on the host and it’s not used in the process of Network Policies rules
translation.

Using iptables has main advantages. Firstly, they are easy to configure and auto-
mate: applying few simple rules in the INPUT and OUTPUT chain provides fast
and simple network isolation. Iptables can also be paired with a reactive framework
[23] which can react to security threats and configure rules automatically without
needing of human interaction.
Secondly, iptables can also be used for blocking or allowing any connection between
pods of different namespaces or entire clusters building a full local firewall.
Finally, iptables rules are portable, so the same set of rules can be used to configure
different pods or entire Kubernetes namespaces.
However, iptables also has its drawbacks. When the number of rules increases,
could be rather complicated to manage or update chains when a pod is created
or destroyed with the speed of Kubernetes, especially in the one firewall per node
model and also, the network performance could be affected by the high number of
rules present in the iptables.
The network isolation solution is implemented by modifying the iptables inside each
pod network namespace or the host root namespace.

3.2.2 Ebpf

Extended Barklays Packet Filter(eBPF) is a recent technology introduced in the
Linux kernel from version 3.15. It consists of a generic event-based virtual CPU
running in the kernel space. With this virtual CPU is possible to write programs
that can run sandboxed in the Linux kernel without recompiling it or loading other
kernel modules.
Being in the kernel makes execution of these programs really fast because there
is no overhead from system calls or context switching from user space to kernel
space and vice versa. These programs are executed when a kernel event occurs, for
example:

• a Network packet is received from the NIC and has to be processed

• a message at the socket-layer is received, for example, a request made by a
program in the userspace

40

Network Isolation in Kubernetes

• data written to disk or there is a page fault in memory

For all these cases it’s possible to pass the event or a copy to the eBPF program.
The main difference is that passing a copy(i.e a copy of network packet) is used for
monitoring or counting purposes while if the event could be modified (i.e modify a
source destination of a packet) the real event must be passed to the eBPF program.
eBPF is interesting especially for the possibility it offers to manage network packets
running programs in kernel space that can emulate physical network or security
devices. In this way, it’s possible to have, for example, a virtual firewall with
an optimized algorithm that can avoid the pitfalls of large iptables rulesets that
weren’t designed for the management of hounded thousands of rule changes in a
short time interval.
It is also possible to create a network service function chain because packets can
pass from an eBPF program to another and if required, can also transfer packets
extremely fast in the user space with a zero-copy operation provided by a shared
memory between user and kernel space, but also between eBPF programs.

CNI that decided to implement networking and security policies with eBPF, for
example Cilium, can optimize the data path and the process of packets, writing ad
hoc programs and making their solution fastest respect the ones that use Kernel
modules, such as Netfilter, which were written for general-purpose operations.
In the case of Network Policies, it is possible to write an eBPF program that stores
rules like iptables, but using more optimized algorithms for the lookup modification
and insertion of firewall rules with high frequency and number.

3.3 Istio Network Policy

Istio’s management and implementation of security policies are very different from
other solutions in the market as they are application-layer based and, so, policies
can be based on a virtual host, URL, or other HTTP headers. To use network
policies at Layer 3-4, a network provider should be used, like Calico or Cilium.

The Istio’s proxy that implements policies is based on Envoy, which is imple-
mented as a user space daemon in the data plane that interacts with the network
layer using standard sockets. This gives it a large amount of flexibility in process-
ing and allows it to be distributed in a container. Network Policies data plane is
typically implemented in kernel space using iptables, eBPF filters, or even custom
kernel modules. Being in kernel space allows policies to be extremely fast, but
not as flexible as the Envoy proxy. On the other side the number of service-to-
service communications, based on the number of clusters linked together, can rise
very high, so having a lot of rules and a lot of services can dramatically reduce
performances.

41

Network Isolation in Kubernetes

3.4 Calico Network Policy

Unlike some other network policy implementations, Calico implements the full set
of Kubernetes network policy features, but while Kubernetes network policy applies
only to pods, Calico network policy provides a way to apply security to multiple
types of endpoints like VMs, and host interfaces.[]

In addition to enforcing the Kubernetes network policy, Calico implements its
own Network Policy resources that can be namespaced like the standard, but also
it’s possible to have non-namespaced resources, which provide a way to apply
Network policies globally in the cluster. In addition, all namespaced and non-
namespaced Network Policies provides other features like the support for policy
ordering/priority, deny and log actions in rules, more flexible match criteria for
applying policies and in policy rules, including matching on Kubernetes ServiceAc-
counts, and (if using Istio Envoy) cryptographic identity and layer 5-7 match
criteria such as HTTP gRPC URLs and the ability to reference non-Kubernetes
workloads in polices, including matching on NetworkSets in policy rules.

To give an example of a Calico Network Policy, the Kubernetes Network Policy
in Code Box 3.1 was translated into a Calico Network Policy type in Code Box
3.2.

Listing 3.2. Example of a Calico Network Policy

apiVersion: projectcalico.org/v3
kind: NetworkPolicy
metadata:

name: my−network−policy
namespace: default

spec:
selector: role == ’backend’

types:
- Ingress
- Egress
ingress:
- action: Allow

protocol:TCP
source:

nets: 172.20.0.0/16
except: 172.20.1.0/24

source:
selector: role == ’frontend’

namespace: frontend−namespace
source:

namespaceSelector: project == ’test’

destination:
ports:
−6379
−5480

42

Network Isolation in Kubernetes

egress:
- action: Allow

protocol: TCP
destination:

nets: 10.0.4.0/24
ports:
−5978
−6379

The resulting policy structure is very similar to the default Kubernetes Network
Policy with the addition of a field action, which allows Calico Network Policies to
work also in deny mode. The other difference is the compression of fields that can
be expressed in one line with the use of operator ”==”.

Finally, Calico Network Policies are written in a YAML file and then translated
as firewall rules in the Linux kernel using iptables. This makes the deployment of
network policies easier but not optimized like a deployment using eBPF (see section
3.2.2) because iptables uses standard algorithms to match rules while with eBpf
these algorithms can be customized to provide better performances. [24]

3.5 Cilium Network Policy

Like Calico, Cilium provides the full set of standard Network Policy features and
enriches it with other ones. One of the features is to add labels to pods based on
the cluster, giving the possibility to select only a subset of pods matching a label.
Another feature is to add a non-namespaced Network Policy that applies to all
nodes in the Cluster.
As done for Calico, in the Code Box 3.3 is present the translation of the standard
Network Policy in Code Box 3.1. The structure is very similar to the standard
with only changes to the fields name.

Listing 3.3. Example of a Cilium Network Policy

apiVersion: "cilium.io/v2"
kind: CiliumNetworkPolicy
metadata:

name: my−network−policy
namespace: default

spec:
endpointSelector:

matchLabels:
role: backend

policyTypes:
− Ingress
− Egress
ingress:
− from:
- ipBlock:

43

Network Isolation in Kubernetes

cidr: 172.20.0.0/16
except:
- 172.20.1.0/24

- namespaceSelector:
matchLabels:

project: test
- endpointSelector:

matchLabels:
role: frontend
namespace: frontend−namespace

ports:
- protocol: TCP

port: 6379 5480
egress:
− to:
- ipBlock:

cidr: 10.0.4.0/24
ports:
- protocol: TCP

port: 5978 8800

Thanks to ClusterMesh introduced in Chapter 2 it’s also possible to apply policies
valid only for pods of a certain cluster. This is accomplished by enriching the
policies with labels containing the cluster name in the field endpointSelector and
in the specification of ingress and egress policies(in Cilium Network Policies these
fields are toEndpoints and fromEndpoints).

Listing 3.4. Example of a multi-cluster Cilium Network Policy

apiVersion: "cilium.io/v2"
kind: CiliumNetworkPolicy
metadata:

name: "allow-cross-cluster"
spec:

endpointSelector:
matchLabels:

name: frontend
io.cilium.k8s.policy.cluster: cluster2

egress:
− toEndpoints:
- matchLabels:

role:backend
io.cilium.k8s.policy.cluster: cluster1

The above example policy will allow frontend pods deployed in cluster2 to talk to
pods matching the selector role:backend in cluster1. Pods frontend won’t be able to
talk with other pods backend deployed in the local cluster or other clusters unless
additional policies exist that allow the communication.

44

Network Isolation in Kubernetes

Cilium uses eBPF for the implementation of its network policies. With the use
of Linux eBPF, it’s possible to have tables containing security rules based on the
identity of an entity (i.e service, pod, container) rather than traditional IP address
identification.
Kubernetes networking model is based on assigning an individual IP address for
each pod and make them reachable without any network address translation(NAT).
This simple architecture has to manage a large number of IPs with the increase
of cluster’s size or the number of pods, increasing also the number of security
rules to add or update based on that IP address. However, network events on the
application layer can be filtered by eBPF giving the ability to decouple security
from addressing and provide faster and stronger security isolation.
Cilium uses this feature from eBPF to give pods an identity and apply security
based on that rather than their IP address. This identity is derived through pods
labels and can be shared between pods. When starting the first pod with a label,
Cilium assigns an identity to that pod and saves it in its key-value store. The
pod is then allowed to start communications with other entities. When another
pod with the same label is started, there is first a lookup in the key-value store,
which resolves the identity giving to the new pod the same label of the first started.
This requires then no other actions to perform on other nodes of the cluster like
updating security rules. Rules are the same for every pod with that identity and
have to been configured only once, reducing a lot the number of rules applied and
consequently speeding up the process of update and lookup.

3.6 Comparison between tecnologies

After a description of the architecture, how the security and isolation are reached,
and how service-to-service and cluster-mesh are implemented, in this section there
will be a summary of the three technologies evidencing their strengths and weak-
nesses. Istio is a technology for providing service-to-service communication and a
lot of features like monitoring circuit breaking and traffic management. It can also
link clusters by sharing the same control plane or let a single control plane config-
ure others(see Chapter 2 section 2.2.2) and provide application-level security. Even
if is very advanced in providing communication between services it presents some
limitations. The main weakness of this project is the absence of layer 3-4 security
policies. Having security at application level is very useful to create fine-granted se-
curity policies, which can be based on HTTP requests, but this can lead to network
performance and introduce latency if all traffic has to reach the user space, match
the rule and return to kernel space. It is possible to pair Istio with the other two
technologies, Calico and Cilium, in order to provide also layer 3-4 security, but the
two software have to cooperate and presents already their mechanism to provide
service-to-service communication.

Calico instead is a complete solution stand-alone, providing multi-cluster con-
nection, service discovery and management, and full implementation of network
policies. Thanks to its network layer with BGP it can transport a lot of differ-
ent information to BGP nodes thanks to the extensiveness of the protocol. For
the security instead, it provides also deny rules and the possibility to set priority

45

Network Isolation in Kubernetes

to namespaced and global network policies allowing complete isolation in case of
multi-tenancy in one cluster. In fact giving higher priority to global network poli-
cies respect namespaced can deny the overwriting of rules that deny access to other
namespaces. One limitation is that it needs a management tool that is not free to
connect clusters and reach service-to-service communication. The other problem is
the network policy data path implementation with Iptables that can rise a perfor-
mance problem if there are a lot of policy rules changing in a short time interval.

Finally, Cilium is complete like Calico but presents some advantages. Thanks
to eBPF, Cilium can provide a faster data plane and security, using its own opti-
mized programs running in the Linux kernel that can manage the high frequency
with which Kubernetes changes the rules to apply to pods. Another advantage is
that Cilium provides an open-source cluster-mesh with service-to-service discovery,
making it possible to develop other software based on it or to extend it.
The main problem of this solution is that the cluster-mesh and network policy needs
to be configured manually for every cluster.

All the projects analyzed present their weaknesses and strengths, but all are
missing automated tools which can set security, cluster-mesh, and service-to-service
communications automatically. From the time of writing this thesis, all operations
described in the last two Chapters have to be done manually, or only a few oper-
ations are automated like the policy replication in all clusters provided by Calico
Enterprise.

The goal of this thesis then is to propose a Multi Cluster Orchestrator, based on
the Cilium project (which is the faster and complete solution for network policies,
service-to-service and cluster-mesh communication analyzed in this work), that can
automatically configure network policies, the service, and cluster mesh, for every
clusters given some high-level inputs.
The next Chapter will present the model of this orchestrator and what are its goals
and requirements.

46

Chapter 4

Multi Cluster

4.1 Introduction to Multi Cluster Orchestrathor

As described in the previous chapters, the lack of technologies that allow automatic
configuration of connections and application of security policies between services
belonging to clusters of different companies, has given rise to the idea of creating
an entity that can manage, in a higher way and globally, from high-level requests,
everything needed to put one service in communication with another, starting from
the connection between clusters up to the application of security policies which
protect the service from all unwanted requests for incoming and outgoing service
connections.

The Multi Cluster Orchestrathor it’s important because speeds up operations
that have been manually done until now, and in meantime prevents human errors
that can occur during the configurations. Furthermore, it allows communications
to service in clusters where some knowledge is missing(for example the pod selector
of the service in an external domain could be unknown to the domain manager, or
in which cluster and namespace the service is located)

In this regard, the model of this Orchestrator will be introduced in the following
section, specifying its interactions within the network, the entities involved in its
operations, and the various steps it will have to perform to pass from high-level
requests to a low-level configuration of the various clusters involved.

4.2 Model

The Multi Cluster Orchestrator is a software placed on a higher level of abstraction
than a Kubernetes cluster.
Before explaining the model of the Orchestrator it’s worth introducing the con-
cept of domain. The domain is a new entity created for the model which groups
clusters belonging to the same company to allow the same management towards
communications to clusters from other domains. More details will be addressed in
subparagraph 4.2.1.

47

Multi Cluster

Figure 4.1. External Model Of Multi Cluster Orchestrator

As shown in Figure 4.1, the Multi Cluster Orchestrator receives requests from all
domains linked to it, elaborates them, and creates a single configuration for all the
clusters of all domains.

Going deeply into the Orchestrator structure, in figure 4.2 it’s shown how a
request is transformed to a single configuration: first of all, requests are collected
and transformed in a global configuration, then the global configuration is refined
and a single configuration for a cluster is created and applied.

In the next sections every step will be explained in more detail, focusing on the
transformation of requests and information about every phase.

4.2.1 Domain

The concept of domain is introduced in this thesis to allow grouping clusters of a
single company. First of all, it’s useful to have a definition of what is a domain in
this model context and why it is important.

Domain. group of clusters belonging to the same company and under the control
of a single manager, called domain manager.

Grouping clusters it’s important for the following reasons:

• the management is entrusted to a single person who knows all the details of
all the clusters

• it is possible to apply different security policies for infra-domain and inter-
domain service communications.

Regarding the first point, the Multi Cluster Orchestrator needs to know some infor-
mation about clusters and services (that will be fully explained in the subparagraph

48

Multi Cluster

Figure 4.2. Internal Model Of Multi Cluster Orchestrathor

4.2.2) to reach its goal, and having a domain can simplify the work of the domain
manager, because he can give all information about the clusters he manages in one
time, reducing the setup time (i.e writing a single requirements file for all cluster of
his domain) and the possibility to make human errors writing more requirements
files.

Moving to infra-domain communications, defining different security policies
other than those applied for external domains can be useful to manage the clusters
belonging to different sections of the company(for example the testing department
may want to communicate with the cluster of the development department, but
not with the human resources section). In this way the Multi Cluster Orchestrator,
therefore, offers the possibility of managing clusters belonging to the same domain
in a completely automatic and autonomous way concerning the different domains
that are connected to the same.

Finally, for inter-domain communications, grouping into domains can be useful
to give to the various domains a possibility to communicate with each other without,
for example, knowing a service in which specific cluster it is, but leaving to Multi
Cluster Orchestrator the task of going to search for the specific service of that
domain and going to configure all clusters, so that they can communicate with the
service. It is also possible to adjust the application granularity of these security
functions by choosing whether to apply them to all clusters of the domain or a
single one.

49

Multi Cluster

4.2.2 Requirements

The requirements provided by the domain manager to the Multi Cluster Orchestra-
tor are a combination of domain structure and requests of policy application and
service communications. In particular, to operate the Multi Cluster Orchestrator
requires from domains:

• Knowledge of all clusters that belong to a domain

• Knowledge of all services that a domain wants to expose

• Security policies for the own domain services that can be applied to the incom-
ing and outgoing traffic to and from intra-domain and inter-domain services
or particulars IP addresses

The first point of the list is important because the Multi Cluster Orchestrator needs
to know all the clusters where it needs to apply the final configuration(more details
will be given in the section 4.2.4). The parameters needed for this first requirement
are the name of the cluster, which may change internally to the Multi Cluster
Orchestrator(see Chapter 5), and the API address, which is where Kubernetes has
its REST service API and can be used to create services and apply network policies.

Moving on to the second point, the knowledge of all services that the domain
wants to expose and in which cluster they are located is an essential requirement
to subsequently allow the other domains to make requests for connections to those
specific services. Some pieces of information may be unknown by domain managers
of other domains like the namespace where the service belongs, port and protocol
used, the cluster where the pods linked to the service are deployed, or the selector
that links pods to that particular service. By giving this information to the Multi
Cluster Orchestrator, the automation and optimization processes are improved,
providing transparently all that is needed to start a secure communication between
services.

Finally, the last requirement is a request for security policies that must be
applied to services of a domain that will protect from undesired traffic. In this
request for each service, the domain manager specifies what are the communications
allowed:

• Services belonging to the same domain: it’s possible to select one or
more services that belong to the same domain of the service, but maybe are
deployed in a different cluster.

• Services belonging to a different domain: it’s possible to select services
of different domains. In this case the Multi Cluster Orchestrator will add
the missing information about that service in a transparent way(see 5 section
5.3.1).

50

Multi Cluster

• External IP addresses not belonging to a domain: it’s possible to
specify a range or a single IP address not belonging to any domain registered
to the Multi Cluster Orchestrator.

The communications can be allowed for the incoming and outgoing traffic indepen-
dently. For example a service1 can start a communication with service2, but the
service2 cannot start a communication with the service1.
If the policy is applied for outgoing traffic, the Multi Cluster Orchestrator will also
create a link between services if they are not able to communicate yet.

4.2.3 Global Configuration

After receiving all requirements from a domain, the Multi Cluster Orchestrator
creates or updates, if already exists, a Global Configuration that keeps tracking of
the following aspects:

• Which services must be in communication

• Which clusters must be linked together

In the first point, the Multi Cluster Orchestrator maintains a list of all services
that communicate together. This is useful because can help in the process of opti-
mization for the mesh of clusters, but also in the optimization process of a single
cluster: for example if two services are in the same cluster and needs to talk with a
common service outside the cluster, it’s possible to apply one single configuration
that works for both if some conditions are meet(i.e the two services are in the same
namespace). This can be useful when a new communication between two services is
started: checking the service linking list it could be possible to skip the operation
of creating a path between the two services if it was created before for another
one(Communications are connection-oriented, in this case, the two services in the
same cluster and namespace started a connection to the same service in another
cluster).

Before achieving the goal of communication between services, it is important
that clusters in which the two services are deployed can reach each other. For the
cluster mesh optimization, the Multi Cluster Orchestrator maintains a list of clus-
ters that are in communication with each other, and they are only the ones that
have services talking together. This can give more flexibility to the domain man-
ager, that can choose only some clusters to link other domains with the cluster-mesh
and use a different type of technology for the infra-domain cluster communication.
Once the cluster-mesh is created, every time a new domain is added or a new link
from a service in a cluster not belonging to the cluster-mesh to a service in another
domain is created, the mesh is updated by the Multi Cluster Orchestrator which
will also derive the new single configuration for the new clusters added.

51

Multi Cluster

4.2.4 Single Configuration

Once a Global Configuration is created or updated, the Multi Cluster Orchestrator
creates a Single Configuration for every cluster and applies it.
This configuration includes:

• Parameters for the cluster-mesh

• Network Policy for services or pods of the cluster

• New services that refer to services in other clusters to allow service-to-service
communication.

For the connection with other clusters, there are some parameters to be set in the
cluster and some operations to be done in order to secure connections between all
clusters. These parameters and operations are different according to the technology
chosen for the implementation. In this thesis, the mesh creation is done using the
Cilium cluster-mesh(see Chapter 2) that requires parameters like an id and a cluster
name that could be different from the real name given by the domain manager in
the requirements, but which will still be transparently mapped by the Multi Cluster
Orchestrator. More details will be given in Chapter 5.

For the Network Policy instead, the Multi Cluster Orchestrator will start a
process of refinement from the high-level security policy requests, that will create
different network policies for all services or pods that have to be protected, allowing
communications only to the services specified by the domain manager for both
incoming and outgoing traffic.
The Single Configuration will contain, at the end of the refinement process, all the
policies for that specific cluster, that will be applied using the Kubernetes Cluster’s
API.

Finally, to allow services and pods to resolve a service name without the modi-
fication of the applications, transparently, in each cluster the Multi Cluster Orches-
trator will create new services that will refer to the original service deployed in a
different cluster. In this way, applications can resolve the name of the service they
want to connect as it belongs to the same namespace in a completely transparent
way. The Single Configuration will contain all these services and they will be cre-
ated using the Kubernetes Cluster’s API.
More details about the service creation will be given in the Chapter 5 section 5.5

52

Chapter 5

Implementation

In this chapter will be described the implementation of security policies and service-
to-service communication. The cluster-mesh and Global Configuration creation,
described in Chapter 4, will not be included in this thesis but can be implemented
as future work extending this one.
From now on there will be the hypothesis that clusters containing services that
need to communicate, are in a cluster-mesh created with the Cilium (Chapter 2)and
the Global Configuration has been already created, even if for this part a Global
Configuration is not needed. However, the process of creation and configuration of
the cluster-mesh is described in the Appendix B of this work and can be used to
set up the environment where the Multi Cluster Orchestrator can operate properly.

To make it easy to interact with, it was decided to implement the Multi Cluster
Orchestrator as a RESTful web service. This can help the domain manager to give
all the information needed by the Multi Cluster Orchestrator and the possibility
to request security policies and service connections for all the domains or a single
cluster. The full APIs provided are described in the Appendix A.

The first part of the chapter will introduce the entities created to represent the
model, how they are linked together, and the requirement’s format which includes
security policies and service connection requests.

The second part will describe the policy refinement process starting from re-
quirements and how they are applied to a single cluster using the Kubernetes Java
Client, which has been modified with the addition of methods that interacts with
the Cilium APIs.

The last part will describe the service-to-service communication, specifying
which operations are executed, what services and namespaces are created when
it’s needed.

53

Implementation

5.1 Entities

To be able to perform all the operations that are required by domain managers,
the Multi Cluster Orchestrator maintains some information in a database, saving
entities that help in the building of Single Configuration for the clusters.
Entities are linked together with one-to-many and many-to-many associations, in
such a way that is possible to find all the necessary information starting from an
entity and navigating through others.
The Multi Cluster Orchestrator creates and uses the following entities:

• Domain: this is the first entity created when a domain manager registers
the domain, he is in charge of, towards the Multi Cluster Orchestarthor.
It is characterized by a unique name across the Multi Cluster Orchestrator,
a one-to-many association with clusters belonging to it(cluster can have only
one domain and a domain can have multiple clusters), a one-to-many asso-
ciation with services, which are the ones exposed by the domain manager
(service can belong only to one domain and a domain can have multiple ser-
vices) and a one-to-many association with Network Policies applied in the
domain(a policy is applied to clusters belonging in one domain and a domain
can have multiple Network Policies)

• Cluster: this entity represents a Kubernetes cluster.
It contains an unique id given by the Multi Cluster Orchestrator, a name
which is the real name of the cluster and it is unique across the domain, an
unique name given by the Multi Cluster Orchestrator that is the name used
to identify the cluster in the cluster-mesh(see Appendix B for more details),
the name of the Kubernetes context for the interaction with the Kubernetes
API(see section 5.4), a reference to the domain(many-to-one association), a
many-to-many association with Network Policies that have been applied to
the cluster(Network Policies can be applied in multiple clusters and clusters
can have multiple Network Policies), a many-to-many association with ser-
vices deployed in the cluster(services can be deployed in multiple clusters
and clusters can have multiple services) and a one-to-many association with
the namespaces created for the service-to-service communication(a namespace
belongs only to a cluster while a cluster can have multiple namespaces, see
5.5 for more information about the creation of namespaces)

• Service: this entity represents a service exposed by a domain.
It’s characterized by a name that must be unique across all domains, a names-
pace name that is the namespace where pods linked to the service are de-
ployed, a reference to the domain the service belongs(many-to-one associ-
ation), the selector used to link the service to pods and that will help in
the policy refinement process(see section 5.3), a parameter that identifies the
port and protocol of the service, a many-to-many association with clusters
which the service is deployed and a many-to-many association with Network
Policies that contains the service in the Egress spec field(a service can be
referenced by multiple Network Policies and Network Policies can reference
multiple services) which helps in the creation of service-to-service communi-
cation path(see 5.5 for more details)

54

Implementation

• Policy: this entity represents a Cilium Network Policy applied to a service or
a group of pods with the same selector. The Network Policy can be applied
to a single cluster or all clusters in the domain.
It contains a unique id given by the Multi Cluster Orchestrator, a name that
is unique in the domain where the Network Policy is applied, the namespace
where the Network Policy is applied, a reference to the domain(many-to-
one association), a many-to-many association with the services contained in
the egress rules for the configuration of the service-to-service communication
path, a many-to-many association with the namespaces (a policy can reference
multiple namespaces and a namespace can be referenced by multiple policies
) created after the application of this Network Policy(see section 5.5) and a
many-to-many association with clusters where the Network Policy is applied

• Namespace: this entity represents the namespaces created in a cluster to
allow service-to-service communication after the application of an Egress rule
to a service in another cluster through Network Policy(see 5.5).
It’s characterized by a unique id given by the Multi Cluster Orchestrator, a
name that is unique across the cluster where the namespace is created, a refer-
ence to the cluster where the namespace is created(many-to-one association),
and a many-to-many association with policies that contains in the egress rule
spec a service deployed in a different cluster with that namespace name.

5.2 Requirements

In this section will be presented the format of a request for the application of se-
curity policy and service-to-service communication if needed.
The format is very similar to a Network Policy written in YAML with the addition
of more semantics.

Code Box 5.1. Example of a requirement

apiVersion: "cilium.io/v2"
kind: CiliumNetworkPolicy
metadata:

name: "allow-cross-cluster"
spec:
this select all pods in the default namespace with labels

name=x-wing

endpointSelector:
matchLabels:

name: x−wing
#egress rules: this will allow pods x-wing to connect and

communicate only with selected services and to external Ip in

the subnet 108.177.16.0/24

egress:
- toEndpoints:

55

Implementation

- matchLabels:
#labels : this will select all services from all clusters in the

domain1

service: "*"
cluster :"*"
domain: domain1

- toCIDRSet:
- cidr: 108.177.16.0/24

#ingress rules: this will allow all connection requests from

services in cluster1 of domain2 to start a connection with

pods x-wing

ingress:
- frmEndpoints:

- matchLabels:
#labels : this will select all services from cluster1 in the

domain2

service: "*"
cluster :"cluster1"
domain: domain2

In the Code Box 5.1 there is an example of a requirement and the most important
fields are:

• endpointselector: in these fields the domain manager specifies what are the
pods or nodes that need to be secured. In the example, based if was decided
to apply the requirement for a single cluster or all clusters in the domain, it
was required to apply a Network Policy and, eventually, the creation of service
communication paths for all pods in the default namespace that match the
label ”name=x-wing”. Pods can be linked to a service or can be normal pods
running in a node. If the policy and service-to-service communication need
to be applied for all namespaces in a cluster it’s possible to use nodeselector
instead of the endpointselector.

• egress: in this field will be added all services or IPs that can be reached by
pods specified in the endpoint or node selector. In the example pods with
label x-wing will be able to start a connection with all services in the domain1
and to all external IP in the 145.0.0.0/32 subnet.

• ingress: in this field will be added all services or IPs that can start a con-
nection with pods specified in the endpoint or node selector. In the example
pods with label x-wing will be able to receive connection from all services in
the cluster1 of domain1.

To make it easier for the domain manager to specify ingress and egress rules
from and to services outside the domain, without using labels he might not know(i.e.
labels of pods linked with a service), some other labels were added. These more
abstract labels help to group services also and will be substituted in the process of
refinement. The labels added are:

56

Implementation

• Service that selects a single service registered to the Multi Cluster Orchestra-
tor with the only specification of the service name

• Cluster that selects all services belonging to the cluster specified

• Domain that selects all services of all clusters in a specified domain

In the next sections will be given some examples for understanding the use of
new labels and the combination between them.

5.2.1 Services

In the first example in Code Box 5.2 it’s shown how is it possible to specify
requirements for a single service, in this case services rebel-base and dns.
Every service needs to be specified in a different toEndpoints field if it’s an egress
rule (fromEndpoints if it is an ingress rule) with its name that is unique across the
Multi Cluster Orchestrator.
If the rule is of egress type, like in the example, specifying the service it is equivalent
not only to the application of a Network Policy but is also a request of connection
with that service. This means that should be possible for the pods with label x-
wing to request a DNS resolution with the service name(i.e rebel-base), receive an
address of a pod serving that service, and be able to establish a connection with it.

Code Box 5.2. Request to communication with a single service

apiVersion: "cilium.io/v2"
kind: CiliumNetworkPolicy
metadata:

name: "allow-rebel-base"
spec:

endpointSelector:
matchLabels:

name: x−wing
egress:
- toEndpoints:

- matchLabels:
service: "rebel-base"

- toEndpoints:
- matchLabels:

service: "dns"

It will be up to the Multi Cluster Orchestrator to do all that is needed transparently
if it’s not possible to do one of the operations specified before.

57

Implementation

5.2.2 Clusters

Selecting single services for requirements can be a long operation to do for domain
managers if the specified group of pods has a lot of connections in ingress and egress
fields. If the request has to be done like the example in Code Box 5.2, not only
requires all time to specify all services but can also introduce errors if some service
is missing.
The Multi Cluster Orchestrator can group services based on the cluster where they
are deployed allowing to specify them in a single field of requirement.
The second example in Code Box 5.3 shows how is possible to select all services
in a cluster. Putting into the service field a value of ”*”, asks the Multi Cluster
Orchestrator to look for a new label which is the cluster label, and to start the
refinement for that value, which is cluster1 in the example. As for a single service,
if more clusters needs to be specified, new toEndpoints (or fromEndpoints) needs
to be specified. In addition to cluster labels, to uniquely identify a cluster, also a
domain label is required because clusters in different domains can have the same
name, so the Multi Cluster Orchestrator needs to know exactly what cluster the
requirements refer to without any ambiguity.
Finally, if a service is deployed in two different clusters but only one is selected
by the requirement, only pods in that cluster will be allowed for ingress or egress
connections.

Code Box 5.3. Request to communication with services of a cluster

apiVersion: "cilium.io/v2"
kind: CiliumNetworkPolicy
metadata:

name: "allow-cluster1"
spec:

endpointSelector:
matchLabels:

name: x−wing
egress:
- toEndpoints:

- matchLabels:
service: "*"
cluster: cluster1
domain: domain1

5.2.3 Domains

Another level of aggregation provided by the Multi Cluster Orchestrator is to group
all services belonging to a domain.
The example for this kind of aggregation is in Code Box 5.4, in which it’s required
to establish connections and apply security policies from pods with the label ”x-
wing” and all services belonging to all clusters in domain1. To select this behavior
both the service and cluster field needs to have the value of ”*”. In this case, even if

58

Implementation

services are deployed in more than one cluster, all connections and security policies
will be applied to all pods running that service.

Code Box 5.4. Request to communication with services of a domain

apiVersion: "cilium.io/v2"
kind: CiliumNetworkPolicy
metadata:

name: "allow-domain1"
spec:

endpointSelector:
matchLabels:

name: x−wing
egress:
- toEndpoints:

- matchLabels:
service: "*"
cluster :"*"
domain: domain1

This is the last level of aggregation, which provides a full connection with a do-
main. Will be now introduced, in the next section, the refinement process of these
requirements, which will create Network Policies and connect the services in the
request.

5.3 Policy Refinement

• a Network packet is received from the NIC and has to be processed

• a message at the socket-layer is received, for example, a request made by a
program in the userspace

• data written to disk or there is a page fault in memory

In this section will be explained the refinement process of the labels introduced
in section 5.2 that will create the Network Policy to be applied in the cluster.
Once a requirement is received by the Multi Cluster Orchestrator, a Cilium Network
Policy will be created including all services specified with the labels service, cluster
and domain. The decision of creating a Cilium Network Policy and not a standard
Kubernetes Network Policy is because the first one permits to separate pods linked
to a service across clusters with the cluster-mesh name, which simplifies the process
of refinement.
Will follow an example to help to understand the refinement process.

In figure 5.1 is presented the following scenario composed by:

59

Implementation

Figure 5.1. Example of a scenario with two domains and four clusters

1. a domain1 and domain2 are registered to the Multi Cluster Orchestrator

2. domani1 is composed by two clusters with name cl1 and cl2 while domain2
is composed by clusters cl3 and cl4

3. in the domain1 there are two services:

(a) backend that is in the backend-namespace and deployed in clusters cl1
and cl2

(b) database that is in database-namespace and deployed in cl2

4. in the domain2 there are two services:

(a) rebel-base that is in default namespace and deployed in cl3

(b) frontend that is in the frontend-namespace and deployed in clusters cl4

As shown in the Code Box 5.5, the domain manager of domain2 sends this require-
ment to the Multi Cluster Orchestrator for the pods linked to the service frontend
that has to be applied in cl4.

60

Implementation

Code Box 5.5. Requirement example

apiVersion: "cilium.io/v2"
kind: CiliumNetworkPolicy
metadata:

name: "allow-cluster1"
spec:

endpointSelector:
matchLabels:

app: frontend
egress:
- toEndpoints:

- matchLabels:
service: "*"
cluster: "*"
domain: domain1

- toCIDRSet:
- cidr: 108.177.16.0/24

ingress:
- fromEndpoints:

- matchLabels:
service: "*"
cluster :"*"
domain: domain1

- fromEndpoints:
- matchLabels:

service: "*"
cluster :"cl3"
domain: domain2

With this requirement the domain manager requires:

• ingress: the service frontend will accept only connection requests from all
services of domain1 (backend, database) and all services in the cl3 of do-
main2 (rebel-base), all other connection requests to the service will not be
allowed.

• egress: the service frontend is allowed to send connection requests to all
services in the domain1 (backend, database), and to an external IP subnet
(Google IPs).all other connection requests to other services, pods or external
IPs will be dropped.

To apply the right Cilium Network Policy needs to substitute the service, cluster
and domain labels with the information of all services.
For external IPs, it’s not required any modification as it is already in the exact
format of a Cilium Network Policy.
The next two sections will describe the information and operations that the Multi
Cluster Orchestrator has to do for the ingress and egress requirement request.

61

Implementation

5.3.1 Ingress Refinement

In the Code Box 5.6 is reported the section regarding ingress requirements of Ex-
ample in Code Box 5.5.

Code Box 5.6. Ingress overwiew of Requirement Example 5.5

ingress:
− fromEndpoints:
- matchLabels:

service: "*"
cluster :"*"
domain: domain1

− fromEndpoints:
- matchLabels:

service: "*"
cluster :"cl3"
domain: domain2

For the ingress refinement process, the Multi Cluster Orchestrator will look for
every service that has to be inserted in the policy and will add a new fromEndpoints
field for every new service added.

In particular, the Multi Cluster Orchestrator will add for every service:

• selector: this is the selector that links services to pods (at a low level,
services are run by pods with the selector specified in the service creation).
This parameter is given by the domain manager that registers the service, so
could be unknown by another domain manager.

• namespace: this parameter is the namespace of pods running the service. In
the end, requesting a service means connecting to pods that run the service,
so in the policy must be specified the namespace(if no namespace is specified
it will be interpreted as the pods to which the Network Policy is applied and
the pods in the ingress field are in the same namespace). The label for this
parameter has the key ”k8s:io.kubernetes.pod.namespace”

• cluster: this parameter specifies in which cluster are the pods running the
service. If this parameter is not specified it’s interpreted as the pods runs
in the same cluster of the pods specified in the endpointSelector(this is not
supported in the standard Kubernetes Network Policy and is the reason why
the Cilium Network Policy was chosen). The label for this parameter has the
key ”io.cilium.k8s.policy.cluster”

After applying the refinement process the ingress field will look like the Code Box
5.7:

62

Implementation

Code Box 5.7. Final Ingress refinement Network Policy

ingress:
− fromEndpoints:
- matchLabels:

app: backend
k8s:io.kubernetes.pod.namespace: backend−namespace
io.cilium.k8s.policy.cluster: cluster1

− fromEndpoints:
- matchLabels:

app: backend
k8s:io.kubernetes.pod.namespace: backend−namespace
io.cilium.k8s.policy.cluster: cluster2

− fromEndpoints:
- matchLabels:

name: database
k8s:io.kubernetes.pod.namespace: database−namespace
io.cilium.k8s.policy.cluster: cluster2

− fromEndpoints:
- matchLabels:

name: rebel−base
io.cilium.k8s.policy.cluster: cluster3

From Code Box 5.7 it’s possible to notice that the names of clusters are different
from the ones given by the initial requirement. The reason is that the ones in the
final policy are the name given to the cluster when the cluster-mesh was created.

The process of creation of the cluster-mesh is automatic and transparent to the
domain managers and requires the uniqueness of cluster names that might not be
satisfied with the real cluster names.

In this work it was supposed that the cluster mesh is already created but more
information about how to set up a cluster-mesh are given in the Appendix B.

5.3.2 Egress Refinement

As for the ingress, also egress section is reported in Code Box 5.8

Code Box 5.8. Egress overwiew of Requirement Example 5.5

egress:
− toEndpoints:
- matchLabels:

service: "*"
cluster: "*"
domain: domain1

− toCIDRSet:
- cidr: 108.177.16.0/24

The egress refinement is similar to the ingress but it has some operations more
to do, because this requirement is not only for the right application of Network

63

Implementation

Policy, but is also a requirement to connect the services if it’s not possible yet.
For this reason, the egress refinement will do, in addition to steps described in
section 5.3.1, the following operations:

• apply a policy to communicate with DNS

• save the services contained in the egress field

• connect the service selected by the requirement with all services in the egress
field

The first point is important because pods can communicate with everyone until
at least one Network Policy is applied. After that, only communications present
in Network Policies referring that pods are allowed so if in any isn’t specified the
communication with the DNS of Kubernetes, pods cannot resolve service names.
The Multi Cluster Orchestrator will transparently add this communication path so
the DNS resolution requests will always be permitted.

For the second point, the Multi Cluster Orchestrator, during the process of
refinement, will save a list of egress services present in the Network Policy in order
to permit the service-to-service communication process.

In the last point, based on the list in the previous point, the Multi Cluster
Orchestrator will check, for every service in the list, if a connection with the pods
selected by the requirement is established and, if it’s not, will provide to create a
pod-to-service path. These operations will be explained in the section 5.5.
In the Code Box 5.9 is present the final egress policy refinement of the example.

Code Box 5.9. Final Egress refinement Network Policy

egress:
− toEndpoints:
- matchLabels:

app: backend
k8s:io.kubernetes.pod.namespace: backend−namespace
io.cilium.k8s.policy.cluster: cluster1

− toEndpoints:
- matchLabels:

app: backend
k8s:io.kubernetes.pod.namespace: backend−namespace
io.cilium.k8s.policy.cluster: cluster2

− toEndpoints:
- matchLabels:

name: database
k8s:io.kubernetes.pod.namespace: database−namespace
io.cilium.k8s.policy.cluster: cluster2

− toEndpoints:
- matchLabels:

k8s:io.kubernetes.pod.namespace: kube−system
k8s−app: kube−dns

64

Implementation

toPorts:
- ports:

- port: ’53’
protocol: UDP

− toCIDRSet:
- cidr: 108.177.16.0/24

5.4 Communication with Kubernetes

Once the refinement process has ended and all the Cilium Network Policies have
been created, the Multi Cluster Orchestrator has to apply this policy in the re-
quired clusters.
For this reason, the Multi Cluster Orchestrator contains a client, that is used to
connect with a single Kubernetes API in a cluster. This client is written in java
and requires as input the cluster context to contact its API. To keep track of the
context of a cluster, the Multi Cluster Orchestrator maintains a file, which is shown
in the Code Box 5.10:

Code Box 5.10. Example of a Context file

apiVersion: v1
clusters:
− cluster:

certificate−authority−data:
name: kind−cluster1

− cluster:
certificate−authority−data:
server: https://127.0.0.1:39027
name: kind−cluster2

contexts:
- context:

cluster: kind−cluster1
user: kind−cluster1
name: kind−cluster1

- context:
cluster: kind−cluster2
user: kind−cluster2
name: kind−cluster2

current−context: kind−cluster1
kind: Config
preferences: {}
users:
− name: kind−cluster1

user:

65

Implementation

client−certificate−data:
client−key−data:

− name: kind−cluster2
user:

client−certificate−data:
client−key−data:

This file is created putting together all the contexts given by the domain managers
and contains, in addition to the context name, also the IP address of the cluster
API, the client-certificate-data, and client-certificate-key, which allows to start a
TLS session with the Kubernetes server API of clusters. When the Multi Cluster
Orchestrator needs to contact a specific server API, it will pass the context name
retrieved from the cluster entity and the client will transparently use the informa-
tion in the file to connect with the right API server.
The next sections will describe more extensively the Kubernetes Java Client and
what was added to this to permit the interaction with the Cilium API to create
the Cilium Network Policy in the real cluster.

5.4.1 Kubernetes Java Client

The Kubernetes Java Client is a library developed by Kubernetes in order to allow
communication with Kubernetes API.
The library contains useful methods for the Multi Cluster Orchestrator like the
creation, deletion, modification, and management of a service or a namespace, and
also methods to list namespaces and services in a cluster. The library is missing
methods for the Network policies and these were added for the scope of this thesis.
The next section will describe what methods were added in the library and also
the creation of the CiliumNetworkPolicy class which is required for the interaction
with Cilium API.

5.4.2 Cilium Network Policy API

When Cilium is installed in a Kubernetes cluster, in addition to installing and start
all pods and services to manage the network and network policies, it provides to
the Kubernetes API its APIs, which permit the creation of the Cilium Custom
Resources Definition (CRDs). One of these resources is the CiliumNetworkPolicy.
The Kubernetes Java Client project provides also a generate Java CRD Model tool,
which was used to generate the java class of CiliumNetworkPolicy in order to use
it as a parameter for the Cilium API.
The Kubernetes Java Client library was then extended with the addition of methods
that permits the creation of Network Policies in a synchronous and asynchronous
way.

The added methods are:

66

Implementation

• Creation of Cilium Network Policy: this method requires a new Network
Policy given with the CiliumNetworkPolicy class and the namespace where
to apply it.
This method will return an error in case the namespace doesn’t exist (with
a Not Found Exception) in that cluster or a policy with the same name
already exists (Conflict Exception) and the new policy created in the form of
CiliumNetworkPolicy class in case of success.

• Deletion of Cilium Network Policy: this method deletes a Cilium Net-
work Policy in a namespace. The parameters needed are the policy name and
the namespace where is applied. If there is no policy matching in the cluster
a Not Found error will be launched, otherwise, it will be returned from the
server the policy deleted.

• Edit of Cilium Network Policy: this method is used to substitute a policy
already created in the cluster, with another one. This method requires the
name of the policy to modify, the namespace, and the new policy given with
the CiliumNetworkPolicy class. If the policy doesn’t exist an error will be
raised(Not Found), while in case of success the edited policy will be returned.

• Read of a Cilium Network Policy: this method will return the selected
policy if it exists. The method requires the name and the namespace where
the policy is deployed and will return an error if it not exists(Not Found).
Otherwise, the CiliumNetworkPolicy class will be returned.

• Get Cilium Network Policy List of a namespace:this method will re-
turn the list of network policies in a namespace. The method requires the
namespace where the policies are deployed and will return an error if it not
exists(Not Found). Otherwise, a list of CiliumNetworkPolicy class will be
returned.

5.5 Service Communication

In this section will be described the operations done by the Multi Cluster Orches-
trator to connect services.
For clarification will be given first a definition of what is meant for service-to-service
communication in this context:

Service-to-service communication. pods running a service A can request a
DNS resolution name for service B, receive an IP address of a pod running service
B, and send connect requests to it.

This is not trivial in a Kubernetes Cluster because pods running in a namespace
that is not the one of a service it wants to connect to, should send a different name
to DNS for resolution(see section 5.5.2 for more information) or, if the service is in
another cluster, the DNS could not resolve that name because it doesn’t know it.
In this regard, the final goal of the Multi Cluster Orchestrator is to set up and cre-
ate all that is needed for a pod to transparently resolve and connect with a service
and act as it is in the same namespace.

67

Implementation

First of all, there are two possible scenarios:

1. pods of service A that want to start a connection with pods running the
service B are in the same namespace

2. pods of service A that want to start a connection with pods running the
service B are in a different namespace

In the next two sections will be presented two examples, one for scenario, and the
operations that the Multi Cluster Orchestrator does for the two scenarios will be
described.

5.5.1 Services in the same Namespace

The service-to-service communication between services in the same namespace and
cluster is trivial: it’s always possible to resolve DNS queries and connect to pods
in the same cluster’s namespace, the only requirement is that pods running the
service are included in the egress Network Policy rules.
If the services are in two different clusters but share the same namespace name,
it is required to import the service to connect in the cluster’s namespace and link
to the service in the other cluster using the annotation introduced in Chapter 2
section 2.4.2.
Will be given an example to list and describe what are the operations done by the
Multi Cluster Orchestrator in this case.
For the example will be considered the following scenario summarized also in figure
5.2:

1. a service frontend is deployed in the default namespace of cluster1 in the
domain1

2. a service backend is deployed in the default namespace of cluster2 in domain2
and is the one in Code Box 5.11

3. the domain manager of domain1 applies a policy like the one in Code Box
5.2, specifying backend as the only service in the egress rules.

4. there is no service with name backend in the cluster1.

5. the two clusters are already in a cluster-mesh

After the policy refinement process described in 5.3, the Multi Cluster Orchestra-
tor will check if there is already a service named backend and if it doesn’t find it,
will collect all the information about the service in its database (selector and port
introduced section 5.1) and will create the service in the cluster1.
It is important that both the service named backed in cluster1 and cluster2 have
the annotation ”io.cilium/global-service: ’true’”, because with this parameter Cil-
ium will group the two services and act like it is one service working on two clus-
ters(Chapter 2 section 2.4.2).

68

Implementation

Figure 5.2. Example of configuration with services belonging to the same namespace

Doing in this way pods of service frontend now can resolve the backend service
name and because in cluster1 there are no pods matching the labels of service
backend, after the DNS resolution of service backend, Cilium will resolve only IPs
of pods in cluster2. The final status is shown in the figure 5.3.

The Multi Cluster Orchestrator will also maintain a link between the policy
created and the service backend created in cluster1. In case the policy will be
deleted, the Multi Cluster Orchestrator will also delete the service backend in the
cluster1, if there are no other policies referencing the service backend in cluster2.

Figure 5.3. Final request path to reach the real service backend from service frontend

69

Implementation

Code Box 5.11. YAML file of Service backend

apiVersion: v1
kind: Service
metadata:

name: backend
annotations:

io.cilium/global−service: "true"
spec:

type: ClusterIP
ports:
- port: 80
selector:

name: backend

5.5.2 Services in different Namespaces

Will be now presented an example where the pods of requirement’s service are in
a different namespace. The example in section 5.5.1 will be slightly modified, in
particular:

1. the pods running service frontend are now deployed in the namespace ”frontend-
namespace”

2. the service backend is now the one in Code Box 5.12 with pods running in
the same namespace(backend-namespace)

The example is summarized in figure 5.4.

Code Box 5.12. YAML file of Service backend in backend-namespace

apiVersion: v1
kind: Service
metadata:

name: backend
namespace: backend−namespace
annotations:

io.cilium/global−service: "true"
spec:

type: ClusterIP
ports:
- port: 80
selector:

name: backend

70

Implementation

Figure 5.4. Example of configuration with services belonging to different namespaces

In this case, if all operations are done like in section 5.5.1, pods of frontend service
still can’t resolve the DNS name of the backend service because they are in different
namespaces.
Kubernetes allows to resolve DNS service name in different namespace changing
the request to ”service-name.service-namespace.svc.cluster.local”, but this means
that applications need to be modified in order to request the right resolution name
in the right namespace.
The solution adopted in the Multi Cluster Orchestrethor is to create a different ser-
vice in the frontend-namespace, that reference the backend service in the backend-
namespace.
In the Code Box 5.13 there is an example of the service deployed in frontend-
namespace and it’s a service of type external name. In an external name type
service, the field externalName has the same structure as the DNS resolution re-
quests for services in different namespaces. In this way, applications don’t need to
be modified as when they try to resolve the service backend, thanks to the external
service the name will be substituted with the right one, and pods can receive the
address of pods running the backend service.

Code Box 5.13. External Service

kind: Service
apiVersion: v1
metadata:

name: backend
namespace: frontend−namespace
annotations:

io.cilium/global−service: "true"
spec:

type: ExternalName

71

Implementation

externalName: backend.backend−namespace.svc.cluster.local
ports:
- port: 80

In the end for the service-to-service communication between two services in dif-
ferent clusters and namespaces the Multi Cluster Orchestrator will do the following
operations:

• in the cluster of the service selected by the requirement, create a namespace
and a mirror service with the same name of the service to connect and the
annotation ”io.cilium/global-service: ’true’” if they don’t exist yet

• create a service of type External name in the service namespace selected
by the requirement adding as externalName parameter ”service-to-connect-
name.service-to-connect-namespace.svc.cluster.local”

The final path and the final configuration after the operations of the Multi Cluster
Orchestrator are shown in the figure 5.5.

Figure 5.5. Final request path to reach the real service backend from service frontend

72

Chapter 6

Validation

This chapter will present some use cases to help understanding how the Multi
Cluster Orchestrator works. In particular, two use cases will be presented, one
that will expose an example of how the Multi Cluster Orchestrator operates in
a multi-domain environment, what operations it performs and what are the final
configurations for every cluster. In the second example, instead, a use case will
be presented in a single domain environment to analyze the possible operations,
in particular the interaction with services present on different clusters such as the
second model presented in the Chapter 2 section 2.1.4.
In order to make concepts simple and help to understand every operation done
by the Multi Cluster Orchestrator, in this Chapter the commands to perform for
reaching the final state of the examples are not included. As mentioned in Chapter
5, in the examples, there will be the hypothesis that clusters are already linked
with a Cilium ClusterMesh. Full information about how to install Cilium and set
up the cluster mesh is presented in the Appendix B.
If the examples want to be replicated, in the Appendix C are present all commands
and requests to do to the Multi Cluster Orchestrator to replicate the examples of
this Chapter along with the data that is needed for the requests.

6.1 Use Case 1

The first use case that will be presented is an example including a multi-domain
configuration in which two companies have some services that need to communicate
with each other and want to do it automatically and securely so as not to have
configuration problems that can lead to a disservice or a data breach. The following
scenario is the one presented in the figure 6.1:

1. a domain1 and domain2 are registered to the Multi Cluster Orchestrator.

2. domani1 is composed by two clusters with name cl1 and cl2 while domain2
is composed by clusters cl3 and cl4

3. in the domain1 there are two services:

(a) service1 that is in the ns1 namespace and deployed in cluster cl1

73

Validation

(b) service2 that is in ns2 namespace and deployed in cluster cl2

4. in the domain2 there are two services:

(a) service3 that is in ns1 namespace and deployed in cluster cl3

(b) service4 that is in the ns2 namespace and deployed in cluster cl4

All services used in this example are like the one in Code Box 6.1, in which
it is included, other than the service specification, also a deployment that creates
two pods running the service, and a ConfigMap, which contains a message that
specifies where the service is running and it’s returned when a request is made to
the service.

Figure 6.1. Use Case 1

74

Validation

Code Box 6.1. Example of Service with a Deployment

apiVersion: v1
kind: Service
metadata:

name: service
namespace: service−namespace
annotations:

io.cilium/global−service: "true"
spec:

type: ClusterIP
ports:
- port: 80
selector:

name: service

apiVersion: apps/v1
kind: Deployment
metadata:

name: service
spec:

selector:
matchLabels:

name: service
replicas: 2
template:

metadata:
labels:

name: service
spec:

containers:
- name: rebel−base

image: docker.io/nginx:1.15.8
volumeMounts:
- name: html

mountPath: /usr/share/nginx/html/
livenessProbe:

httpGet:
path: /
port: 80

periodSeconds: 1
readinessProbe:

httpGet:
path: /
port: 80

volumes:

75

Validation

- name: html
configMap:

name: service−response
items:
- key: message

path: index.html

apiVersion: v1
kind: ConfigMap
metadata:

name: service−response
data:

message: "{\"Domain\":␣\"1\",␣\"Cluster\":␣\"Cluster-2\"}\n"

To retrieve a message from services will be used a client specified in Code Box
6.2 that creates a Deployment with two pods that are able to request HTML pages
using the curl command.

Code Box 6.2. YAML file for Client Deployment

apiVersion: apps/v1
kind: Deployment
metadata:

name: client
spec:

selector:
matchLabels:

name: client
replicas: 2
template:

metadata:
labels:

name: client
spec:

containers:
- name: x−wing−container

image: docker.io/cilium/json−mock:1.2
livenessProbe:

exec:
command:
- curl
- −sS
- −o
- /dev/null
- localhost

readinessProbe:
exec:

command:

76

Validation

- curl
- −sS
- −o
- /dev/null
- localhost

First of all the client deployment is applied in the cluster cl3 in the default
namespace and in fig 6.2 it is shown how the client is not able to find and contact
the service2 of the domain1.

Figure 6.2. Request failure due to missing service in the cl3

Applying the policy requirement in Code Box 6.3, the Multi Cluster Orches-
trator will create the services and namespaces needed to start the communication
with the service1 and service2 in the cluster cl3 as shown in figures 6.3, 6.4, 6.5
that show the creation of service2 in the namespace ns2, witch is created as well,
and in default namespace.

Figure 6.3. Service2 created in cl3

Along with that also a CiliumNetworkPolicy has been created with the name of
”allow-domain1” and contains the labels of pods running the service1 and service2
in order to allow only this two traffics for the client’s pods.

Figure 6.4. Service2 External Service created in the default namespace

Code Box 6.3. Policy requirement that allows domain1

apiVersion: "cilium.io/v2"
kind: CiliumNetworkPolicy

77

Validation

metadata:
name: "allow-domain1"
spec:

endpointSelector:
matchLabels:

name: client
egress:
- toEndpoints:

- matchLabels:
service: "*"
cluster: "*"
domain: "domain1"

Figure 6.5. Namespaces of cl3 after Service2 creation

If the client now requests the service2 it will be able to contact it and receive a
response as shown in the figure 6.6

Figure 6.6. Successful request to Service2

If the policy is deleted, also the services and namespaces created will be deleted,
because there are no other policies applied in the clusters that need that service
and namespace. In the figures 6.7, 6.8, and 6.9, it’s shown how now the services
and namespaces have been deleted.

Figure 6.7. Services in default namespace of cl3 after policy removal

78

Validation

Figure 6.8. Services in ns2 namespace of cl3 after policy removal

Figure 6.9. Namespaces of cl3 after policy removal

6.2 Use Case 2

In this use case, the focus will be on services running in multiple clusters of the same
domain and how the Multi Cluster Orchestrator handles the removal of policies or
services. for this example, summarized in the figure 6.10, the main characteristics
are:

1. a domain1 is registered to the Multi Cluster Orchestrator

2. domani1 is composed by two clusters with name cluster1 and cluster2

3. in the domain1 there are three services:

(a) backend that is in the backend-ns namespace and deployed in clusters
cluster1 and cluster2

(b) database that is in database-ns and deployed in cluster1

(c) client-service that is in default and deployed in cluster1 and cluster2

The services are deployed as the ones presented in the Code Box 6.1 of use case 1
and the client presented in Code Box 6.2 is deployed in both clusters in the default
namespace and both are linked to the client service.

The Multi Cluster Orchestrator handles services running in multiple clusters in
two different ways based on the requirement request. The first is shown in the Code
Box 6.4 and is applied in the cluster1 to the client’s pods. In this case, selecting
only the name of the service for the egress rules, the communication is allowed for
both pods of cluster1 and cluster2. Even if in the ingress rule is specified that
the only allowed traffic is the one of cluster1, as shown in figure 6.11, the clients

79

Validation

Figure 6.10. Use Case 2

receive a response for both pods of cluster1 and cluster2 : this happens because
the traffic will be denied when the service backend tries to start a connection with
the client-service while if the traffic is allowed in egress is guaranteed to receive the
answer because client-service started the connection. This can be tested, as shown
in fig 6.12, trying to request from client-service pods of cluster2 to client-service
pods of cluster1. In this case, the connection is refused because the ingress rule
was only specified for the cluster1.

Code Box 6.4. Policy requirement that allows service backend

apiVersion: "cilium.io/v2"
kind: CiliumNetworkPolicy
metadata:

name: "allow-domain1"
spec:

endpointSelector:
matchLabels:

name: client
egress:
- toEndpoints:

- matchLabels:
service: "backend"

ingress:
- fromEndpoints:

- matchLabels:
service: "*"
cluster: "cluster1"

80

Validation

domain: "domain1"

Figure 6.11. Request from client-service to backend service

Figure 6.12. Request from client-service in cluster2 to client-service in cluster1

In the second case in Code Box 6.5, the requirement in the egress rules specifies
only services in cluster1 so only pods of cluster1 running the service backend are
allowed. The figure 6.13 shows how client-service pods are able only to contact
pods of backend service of cluster1, while the other requests are blocked.

Code Box 6.5. Example of a requirement that allows all services of cluster1

apiVersion: "cilium.io/v2"
kind: CiliumNetworkPolicy
metadata:

name: "allow-cluster1"
spec:

endpointSelector:
matchLabels:

name: client−service
egress:
- toEndpoints:

- matchLabels:
service: "*"
cluster: "cluster1"
domain: "domain1"

81

Validation

Figure 6.13. request from client-service to backend service

Will now be added a new policy containing only the service backend. the policy
is summarized in Code Box 6.6. If now the service backend is removed, the Multi
Cluster Orchestrator will look for all the applied policies containing that service,
and if it’s the only one, will remove also the policy. In this case, as shown in the
figures 6.14 and 6.15, the last policy is removed because the service backend was
the only one available for that policy.

Code Box 6.6. Example of a requirement that allows service backend

apiVersion: "cilium.io/v2"
kind: CiliumNetworkPolicy
metadata:

name: "allow-service-backend"
spec:

endpointSelector:
matchLabels:

name: client−service
egress:
− toEndpoints:
- matchLabels:

service: "backend"

Figure 6.14. Policies after the backend service removal

Figure 6.15. Services in backend-ns namespace after service backend removal

82

Chapter 7

Conclusions

During the work of this thesis, a lot of points were analyzed to reach the goals, which
were the analysis of the current technologies and the configuration’s automation of
clusters mesh, service-to-service communications between services from different
Kubernetes clusters, and security policies that allow traffic protection from other
entities that are not allowed to communicate with a particular service or group of
pods.

First of all, technologies representing the state of the art for the Multi Cluster
and service-to-service communications, and for the network isolation were analyzed
to understand how they work and what are their strengths and weaknesses. Based
on the analysis results, it emerged that all technologies have no tools for the auto-
matic configuration of cluster mesh, service discovery, and application of policies.
Cilium was chosen as a base to start with a more abstracted orchestrator, which
can be placed at a higher level from clusters to configure them based on users’
requirements.

To resolve all problems of these technologies, it was decided to create a Multi
Cluster Orchestrator that was able to provide automation for the configurations to
be made, and also to fill the lack of information on clusters of different companies, if
necessary. A high-level model was proposed which, based on high-level requirements
given by domain managers, would create a global configuration of the connections
between clusters and services which would then be used to derive the individual
cluster configurations.

The next step was to pass to the implementation phase which concerned in
particular the initial development of the REST server and the implementation of
the modules for the application of security policies and communication between
services. It was described at first the choice made to implement the requirements
format request, how the subsequent refinement took place and how the Multi Clus-
ter Orchestrator communicates with the individual clusters through the Cilium and
Kubernetes APIs in order to apply Network Policies and create global services for
the service-to-service communication.

Finally, two use cases were provided to fully understand how we can interact
with the Multi cluster Orchestrator and what operations it does initially. One
use case was about the interaction of the Multi Cluster Orchestrator with multiple

83

Conclusions

domains, while the second use case was focused on the operations done with services
running on multiple clusters of the same domain.

This work laid the foundation for the development of a new framework that
could help in the process of integration of multiple clusters of different companies,
simplifying and automate all the tasks required to perform to securely make services
communicate with each other.

The development of this thesis focused mainly on the first creation of a model
that could work to achieve the proposed objectives and to start the implementation
of the most important parts which are the application of network policies in the
clusters and the creation of paths and namespaces to automate the communication
between services.

One future work could concern the development of the module for the creation of
the cluster-mesh between clusters, which can optimally understand which clusters
to introduce into the mesh and automate all the required operations with also the
creation of the global configuration that keeps track of the clusters and related
services to speed up the creation of communication services. The development
can include also a verification process of reachability requirements for clusters and
services as described in [25] and [26].
This is a very important part that could provide great help to anyone who needs to
link clusters together in an automated way. The tasks to be performed manually
concern both the addressing spaces of the individual clusters and the assignment
of unique names in order to allow the mesh cluster to understand where to forward
the traffic. These operations, if done manually and on a large scale, can lead to
configuration errors that can cause unwanted events such as the application of
policies in a different cluster or the sending of traffic to an unwanted cluster. In
addition, some information that is now required in this version of the Multi Cluster
Orchestrator such as the cluster’s name attributed by Cilium, or the context of
a cluster, would no longer be requested from the domain manager but would be
automatically deduced during the creation of the mesh cluster.

Another development point could concern the creation of an interface that helps
the domain manager to set the requests in the most intuitive way possible so that
he can easily decide which services can communicate with external services and the
application of policies.
Currently, to create domains, policies, and services, it is necessary to provide the
server with objects that can be more or less complicated. For example, the require-
ment of the policy and communication with services has a very long and complicated
structure like that of the Cilium Network Policy. Going to create an interface that
visually allows to express the concepts at the highest level and which are then trans-
lated into objects to be supplied to the Multi Cluster Orchestrator, would reduce
and simplify the work for the domain manager who will no longer have to worry
about having to create these objects so complex, but perhaps simpler objects with
less information that will then be elaborated and transformed in the final request.
Having an interface can permit also a more refinement process as described in [27]
and [28] for network functions, which allow to having a high-level language that
can be then translated into formal verification models of different verification tools
to detect misconfigurations in the requirements.

84

Conclusions

Another future work could be the development of a CNI to make the Multi
Cluster Orchestrator independent from Cilium and that can provide more efficient
management of the service discovery or that provides for the insertion of the do-
main identity.
As for service discovery, currently with the solution adopted it is not possible to in-
teract with the DNS to make it understand that some clusters running the service,
for example, are not enabled by network policies, so the resolution is also made
towards those clusters and is subsequently blocked from policy controller. Going
to modify or create a new CNI that foresees to make the DNS aware that partic-
ular addresses are blocked by the policies, it would make possible a more efficient
communication between the services without having to make requests to addresses
that will then be blocked by the control of the network policy. As for the intro-
duction of the domain entity, it would make it easier to apply global policies for
the domain without the need to derive different policies for each cluster and apply
them individually, also reducing the configuration time as already it occurs for the
application of policies on services running on different clusters, which is done at
the kernel level using hashmaps.

85

Bibliography

[1] D. Bringhenti, G. Marchetto, R. Sisto, F. Valenza, and J. Yusupov, “Towards
a fully automated and optimized network security functions orchestration,” in
2019 4th International Conference on Computing, Communications and Secu-
rity (ICCCS), 2019, pp. 1–7.

[2] “What is kubernetes?” https://kubernetes.io/docs/concepts/overview/
what-is-kubernetes/, accessed: 2021-08-16.

[3] “Pods—kubernetes,” https://kubernetes.io/docs/concepts/workloads/pods/,
accessed: 2021-08-16.

[4] “Services—kubernetes,” https://kubernetes.io/docs/concepts/
services-networking/service/, accessed: 2021-08-17.

[5] “Understanding multi-cluster kubernetes,” https://www.getambassador.io/
learn/multi-cluster-kubernetes/, accessed: 2021-08-17.

[6] “What is istio?” https://istio.io/latest/about/service-mesh/, accessed: 2021-
08-17.

[7] “What is a service-mesh?” https://istio.io/latest/about/service-mesh/, ac-
cessed: 2021-08-17.

[8] “Istio/architecture,” https://istio.io/latest/docs/ops/deployment/
architecture/, accessed: 2021-08-17.

[9] “Istio/multicluster deployments,” https://istio.io/v1.2/docs/concepts/
multicluster-deployments/, accessed: 2021-08-18.

[10] “Project calico,” https://www.tigera.io/project-calico/, accessed: 2021-08-18.

[11] “Calico/ component architecture,” https://docs.projectcalico.org/reference/
architecture/overview, accessed: 2021-08-18.

[12] “Calico,” https://www.ibm.com/docs/en/cloud-private/3.2.0?topic=
ins-calico, accessed: 2021-08-18.

[13] “Calico-enterprise/federation,” https://docs.projectcalico.org/security/
calico-enterprise/federation, accessed: 2021-08-20.

[14] “Calico-enterprise an overview,” https://www.tigera.io/blog/
calico-enterprise-an-overview/, accessed: 2021-08-20.

[15] “Cilium/introduction to cilium and hubble,” https://docs.cilium.io/en/v1.10/
intro/, accessed: 2021-08-18.

[16] “Cilium/architecture guide,” https://docs.cilium.io/en/k8s-doc/
architecture/, accessed: 2021-08-18.

[17] “Cilium/deep dive into cilium cluster-mesh,” https://cilium.io/blog/2019/03/
12/clustermesh, accessed: 2021-08-20.

[18] D. Bringhenti, G. Marchetto, R. Sisto, and F. Valenza, “A novel approach
for security function graph configuration and deployment,” in 2021 IEEE 7th

86

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/
https://www.getambassador.io/learn/multi-cluster-kubernetes/
https://www.getambassador.io/learn/multi-cluster-kubernetes/
https://istio.io/latest/about/service-mesh/
https://istio.io/latest/about/service-mesh/
https://istio.io/latest/docs/ops/deployment/architecture/
https://istio.io/latest/docs/ops/deployment/architecture/
https://istio.io/v1.2/docs/concepts/multicluster-deployments/
https://istio.io/v1.2/docs/concepts/multicluster-deployments/
https://www.tigera.io/project-calico/
https://docs.projectcalico.org/reference/architecture/overview
https://docs.projectcalico.org/reference/architecture/overview
https://www.ibm.com/docs/en/cloud-private/3.2.0?topic=ins-calico
https://www.ibm.com/docs/en/cloud-private/3.2.0?topic=ins-calico
https://docs.projectcalico.org/security/calico-enterprise/federation
https://docs.projectcalico.org/security/calico-enterprise/federation
https://www.tigera.io/blog/calico-enterprise-an-overview/
https://www.tigera.io/blog/calico-enterprise-an-overview/
https://docs.cilium.io/en/v1.10/intro/
https://docs.cilium.io/en/v1.10/intro/
https://docs.cilium.io/en/k8s-doc/architecture/
https://docs.cilium.io/en/k8s-doc/architecture/
https://cilium.io/blog/2019/03/12/clustermesh
https://cilium.io/blog/2019/03/12/clustermesh

Bibliography

International Conference on Network Softwarization (NetSoft), 2021, pp. 457–
463.

[19] I. Pedone, A. Lioy, and F. Valenza, “Towards an efficient management and
orchestration framework for virtual network security functions,” Security
and Communication Networks, vol. 2019, p. 2425983, Nov 2019. [Online].
Available: https://doi.org/10.1155/2019/2425983

[20] “Network policies—kubernetes,” https://kubernetes.io/docs/concepts/
services-networking/network-policies/, accessed: 2021-08-17.

[21] “About network policy,” https://docs.projectcalico.org/about/
about-network-policy, accessed: 2021-08-17.

[22] D. Bringhenti, G. Marchetto, R. Sisto, F. Valenza, and J. Yusupov,
“Automated optimal firewall orchestration and configuration in virtualized
networks,” in NOMS 2020 - IEEE/IFIP Network Operations and Management
Symposium, Budapest, Hungary, April 20-24, 2020. IEEE, 2020, pp. 1–7.
[Online]. Available: https://doi.org/10.1109/NOMS47738.2020.9110402

[23] ——, “Introducing programmability and automation in the synthesis of vir-
tual firewall rules,” in 2020 6th IEEE Conference on Network Softwarization
(NetSoft), 2020, pp. 473–478.

[24] “Calico/about network policy,” https://docs.projectcalico.org/about/
about-network-policy, accessed: 2021-08-18.

[25] D. Bringhenti, G. Marchetto, R. Sisto, S. Spinoso, F. Valenza, and J. Yusupov,
“Improving the formal verification of reachability policies in virtualized net-
works,” IEEE Transactions on Network and Service Management, vol. 18,
no. 1, pp. 713–728, 2021.

[26] F. Valenza, S. Spinoso, and R. Sisto, “Formally specifying and checking
policies and anomalies in service function chaining,” Journal of Network
and Computer Applications, vol. 146, pp. 102–419, 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S108480451930253X

[27] G. Marchetto, R. Sisto, F. Valenza, and J. Yusupov, “A framework for
verification-oriented user-friendly network function modeling,” IEEE Access,
vol. 7, pp. 99 349–99 359, 2019.

[28] C. Basile, F. Valenza, A. Lioy, D. R. Lopez, and A. P. Perales, “Adding support
for automatic enforcement of security policies in nfv networks,” IEEE/ACM
Transactions on Networking, vol. 27, no. 2, pp. 707–720, 2019.

[29] “Cilium—setting up cluster mesh,” https://docs.cilium.io/en/v1.9/
gettingstarted/clustermesh/, accessed: 2021-08-22.

[30] “Github/cilium/clustermesh-tools,” https://github.com/cilium/
clustermesh-tools.git, accessed: 2021-08-22.

87

https://doi.org/10.1155/2019/2425983
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://docs.projectcalico.org/about/about-network-policy
https://docs.projectcalico.org/about/about-network-policy
https://doi.org/10.1109/NOMS47738.2020.9110402
https://docs.projectcalico.org/about/about-network-policy
https://docs.projectcalico.org/about/about-network-policy
https://www.sciencedirect.com/science/article/pii/S108480451930253X
https://docs.cilium.io/en/v1.9/gettingstarted/clustermesh/
https://docs.cilium.io/en/v1.9/gettingstarted/clustermesh/
https://github.com/cilium/clustermesh-tools.git
https://github.com/cilium/clustermesh-tools.git

Appendices

88

Appendix A

Rest API

This Appendix is dedicated to the Multi Cluster Orchestrator’s API server and will
describe all resources and paths to make requests.
In the figure A.1 its shown what is the resource graph, while in the tables are
described all the path with methods that is possible to request.

Some resources for POST requests in paths are composed by different classes,
in particular:

• DomainRequest: this is a resource required in the POST method for the
path API/domains to create a new domain. It is possible to specify only the
domain to create but also the clusters and servicese belonging to this domain.
For this reason the resource is composed of:

– a Domain class that specifies the name of the domain

– a list of Clusters class that specifies what are the clusters belonging to
the domain

– a list of Services class that specifies what are the services belonging to
the domain

– a Map with key the service name and value a cluster to link services
with clusters

if the Service list is specified, also the Map must exists or there will be no
service creation.

• ServiceRequest: this is a resource required in the POST method for the
path API/domains/services/create to create a new service in the domain. To
create the service it must be specified also what are the clusters running that
service. For this reason the resource is composed of:

– a Service class that specifies the service’s attribute

– a list of String that specifies what are the clusters name that run the
service.

89

Appendix A

Figure A.1. Resource Graph

90

Appendix A

T
ab

le
A
.1
:
R
E
S
T
fu
l
A
P
I
D
es
ig
n

R
es
ou

rc
e

V
er
b

R
eq
u
es
t
B
od
y

S
ta
tu
s

R
es
po
n
se

B
od
y

D
es
cr
ip
ti
on

A
P
I/
d
om

ai
n
s

G
E
T

20
0

O
K

40
4

N
ot

F
ou

n
d

D
om

ai
n
s

R
et
ri
ev
e

al
l
d
om

ai
n
s

in
th
e
d
at
ab

as
e

A
P
I/
d
om

ai
n
s

P
O
S
T

D
om

ai
n
R
eq
u
es
t

20
1

C
re
at
ed

40
9

C
on

fl
ic
t

40
0

B
ad

R
eq
u
es
t

D
om

ai
n

C
re
at
e
a
n
ew

D
om

ai
n
.

A
P
I/
d
om

ai
n
s/

{d
om

ai
n
N
am

e}
G
E
T

20
0

O
K

40
4

N
ot

F
ou

n
d

D
om

ai
n

R
et
ri
ev
e
a
d
om

ai
n
b
y

it
s
n
am

e
A
P
I/
d
om

ai
n
s/

{d
om

ai
n
N
am

e}
/r
em

ov
e

D
E
L
E
T
E

20
0

O
K

40
4

N
ot

F
ou

n
d

b
o
ol
ea
n

D
el
et
e
th
e
se
le
ct
ed

d
o-

m
ai
n
.

A
P
I/
d
om

ai
n
s/

{d
om

ai
n
N
am

e}
/c
lu
st
er
s

G
E
T

20
0

O
k

40
4

N
ot

F
ou

n
d

C
lu
st
er
s

R
et
ri
ev
e
al
l
cl
u
st
er
s
in

th
e
sp
ec
ifi
ed

d
om

ai
n
.

A
P
I/
d
om

ai
n
s/

{d
om

ai
n
N
am

e}
/c
lu
st
er
s

/r
em

ov
e

D
E
L
E
T
E

20
0

O
K

40
4

N
ot

F
ou

n
d

b
o
ol
ea
n

R
em

ov
e
a
cl
u
st
er

fr
om

th
e
se
le
ct
ed

d
om

ai
n
.

A
P
I/
d
om

ai
n
s/

{d
om

ai
n
N
am

e}
/c
lu
st
er
s

/c
re
at
e

P
O
S
T

C
lu
st
er

20
1

C
re
at
ed

40
0

B
ad

R
eq
u
es
t

40
9

C
on

fl
ic
t

40
4

N
ot

F
ou

n
d

C
lu
st
er

C
re
at
e
a

n
ew

cl
u
st
er

in
th
e
d
om

ai
n
.

91

Appendix A

R
es
ou

rc
e

V
er
b

R
eq
u
es
t
B
od
y

S
ta
tu
s

R
es
po
n
se

B
od
y

D
es
cr
ip
ti
on

A
P
I/
d
om

ai
n
s/

{d
om

ai
n
N
am

e}
/c
lu
st
er
s

/{
cl
u
st
er
N
am

e}

G
E
T

20
0

O
K

40
4

N
ot

F
ou

n
d

C
lu
st
er

R
et
ri
ev
e
a

cl
u
st
er

b
y

it
s
n
am

e
an

d
d
om

ai
n
’s

n
am

e.
A
P
I/
d
om

ai
n
s/

{d
om

ai
n
N
am

e}
/c
lu
st
er
s

/{
cl
u
st
er
N
am

e}
/p

ol
ic
ie
s

G
E
T

20
0

O
k

40
4

N
ot

F
ou

n
d

P
ol
ic
ie
s

R
et
ri
ev
e

al
l

p
ol
ic
ie
s

ap
p
li
ed

in
th
e
se
le
ct
ed

cl
u
st
er

in
th
e
se
le
ct
ed

d
om

ai
n
.

A
P
I/
d
om

ai
n
s/

{d
om

ai
n
N
am

e}
/c
lu
st
er
s

/{
cl
u
st
er
N
am

e}
/p

ol
ic
ie
s

/c
re
at
e

P
O
S
T

P
ol
ic
y

20
1

C
re
at
ed

40
0

B
ad

R
eq
u
es
t

40
9

C
on

fl
ic
t

40
4

N
ot

F
ou

n
d

P
ol
ic
y

C
re
at
e
a
n
ew

P
ol
ic
y
in

th
e
se
le
ct
ed

cl
u
st
er

of
th
e
se
le
ct
ed

d
om

ai
n
.

A
P
I/
d
om

ai
n
s/

{d
om

ai
n
N
am

e}
/c
lu
st
er
s

/{
cl
u
st
er
N
am

e}
/p

ol
ic
ie
s

/{
p
ol
ic
y
N
am

e}

G
E
T

20
0

O
k

40
4

N
ot

F
ou

n
d

P
ol
ic
y

R
et
ri
ev
e

a
P
ol
ic
y

in
th
e
se
le
ct
ed

cl
u
st
er

of
th
e
se
le
ct
ed

d
om

ai
n
.

A
P
I/
d
om

ai
n
s/

{d
om

ai
n
N
am

e}
/c
lu
st
er
s

/{
cl
u
st
er
N
am

e}
/p

ol
ic
ie
s

/{
p
ol
ic
y
N
am

e}
/r
em

ov
e

D
E
L
E
T
E

20
0

O
K

40
4

N
ot

F
ou

n
d

40
0

B
ad

R
eq
u
es
t

b
o
ol
ea
n

D
el
et
e
a
P
ol
ic
y
in

th
e

se
le
ct
ed

cl
u
st
er

of
th
e

se
le
ct
ed

d
om

ai
n
.

92

Appendix A

R
es
ou

rc
e

V
er
b

R
eq
u
es
t
B
od
y

S
ta
tu
s

R
es
po
n
se

B
od
y

D
es
cr
ip
ti
on

A
P
I/
d
om

ai
n
s/

{d
om

ai
n
N
am

e}
/c
lu
st
er
s

/{
cl
u
st
er
N
am

e}
/s
er
v
ic
es

G
E
T

20
0

O
k

40
4

N
ot

F
ou

n
d

S
er
v
ic
es

R
et
ri
ev
e
al
l
se
rv
ic
es

in
a

cl
u
st
er

of
se
le
ct
ed

d
om

ai
n
.

A
P
I/
d
om

ai
n
s/

{d
om

ai
n
N
am

e}
/c
lu
st
er
s

/{
cl
u
st
er
N
am

e}
/s
er
v
ic
es

/c
re
at
e

P
O
S
T

S
er
v
ic
e

20
1

C
re
at
ed

40
0

B
ad

R
eq
u
es
t

40
9

C
on

fl
ic
t

40
4

N
ot

F
ou

n
d

S
er
v
ic
e

C
re
at
e
a

n
ew

se
rv
ic
e

in
th
e
se
le
ct
ed

cl
u
st
er

of
se
le
ct
ed

d
om

ai
n
.

A
P
I/
d
om

ai
n
s/

{d
om

ai
n
N
am

e}
/c
lu
st
er
s

/{
cl
u
st
er
N
am

e}
/s
er
v
ic
es

/{
se
rv
ic
eN

am
e}

G
E
T

20
0

O
k

40
4

N
ot

F
ou

n
d

S
er
v
ic
e

R
et
ri
ev
e

a
se
rv
ic
e

in
th
e
se
le
ct
ed

cl
u
st
er

of
se
le
ct
ed

d
om

ai
n
.

A
P
I/
d
om

ai
n
s/

{d
om

ai
n
N
am

e}
/c
lu
st
er
s

{c
lu
st
er
N
am

e}
/s
er
v
ic
es

/{
se
rv
ic
eN

am
e}
/r
em

ov
e

D
E
L
E
T
E

20
0

O
K

40
4

N
ot

F
ou

n
d

40
0

B
ad

R
eq
u
es
t

b
o
ol
ea
n

D
el
et
e
a
se
rv
ic
e
in

th
e

se
le
ct
ed

cl
u
st
er

of
se
-

le
ct
ed

d
om

ai
n
.

93

Appendix A

R
es
ou

rc
e

V
er
b

R
eq
u
es
t
B
od
y

S
ta
tu
s

R
es
po
n
se

B
od
y

D
es
cr
ip
ti
on

A
P
I/
d
om

ai
n
s/

{d
om

ai
n
N
am

e}
/s
er
v
ic
es

G
E
T

20
0

O
k

40
4

N
ot

F
ou

n
d

S
er
v
ic
es

R
et
ri
ev
e
al
l
se
rv
ic
es

in
th
e
sp
ec
ifi
ed

d
om

ai
n
.

A
P
I/
d
om

ai
n
s/

{d
om

ai
n
N
am

e}
/s
er
v
ic
es

/c
re
at
e

P
O
S
T

S
er
v
ic
eR

eq
u
es
t

20
1

C
re
at
ed

40
0

B
ad

R
eq
u
es
t

40
9

C
on

fl
ic
t

40
4

N
ot

F
ou

n
d

S
er
v
ic
e

C
re
at
e

a
se
rv
ic
e

in
th
e
se
le
ct
ed

cl
u
st
er
s
of

sp
ec
ifi
ed

d
om

ai
n
.

A
P
I/
d
om

ai
n
s/

{d
om

ai
n
N
am

e}
/s
er
v
ic
es

/{
se
rv
ic
eN

am
e}

G
E
T

20
0

O
k

40
4

N
ot

F
ou

n
d

S
er
v
ic
e

R
et
ri
re
ve

a
se
rv
ic
e
in

th
e
sp
ec
ifi
ed

d
om

ai
n
.

A
P
I/
d
om

ai
n
s/

{d
om

ai
n
N
am

e}
/s
er
v
ic
es

/{
se
rv
ic
eN

am
e}
/r
em

ov
e

D
E
L
E
T
E

20
0

O
K

40
4

N
ot

F
ou

n
d

40
0

B
ad

R
eq
u
es
t

b
o
ol
ea
n

D
el
et
e
a
se
rv
ic
e
in

th
e

sp
ec
ifi
ed

d
om

ai
n
.

A
P
I/
d
om

ai
n
s/

{d
om

ai
n
N
am

e}
/s
er
v
ic
es

/{
se
rv
ic
eN

am
e}
/c
lu
st
er
s

G
E
T

20
0

O
k

40
4

N
ot

F
ou

n
d

C
lu
st
er
s

R
et
ri
ev
e
a
li
st

of
cl
u
s-

te
rs

in
th
e

sp
ec
ifi
ed

d
om

ai
n

th
at

ru
n

th
e

se
rv
ic
e.

94

Appendix A

R
es
ou

rc
e

V
er
b

R
eq
u
es
t
B
od
y

S
ta
tu
s

R
es
po
n
se

B
od
y

D
es
cr
ip
ti
on

A
P
I/
d
om

ai
n
s/

{d
om

ai
n
N
am

e}
/p

ol
ic
ie
s

G
E
T

20
0

O
k

40
4

N
ot

F
ou

n
d

P
ol
ic
ie
s

R
et
ri
ev
e
al
l
p
ol
ic
ie
s
in

th
e
sp
ec
ifi
ed

d
om

ai
n
.

A
P
I/
d
om

ai
n
s/

{d
om

ai
n
N
am

e}
/p

ol
ic
ie
s

/c
re
at
e

P
O
S
T

P
ol
ic
y

20
1

C
re
at
ed

40
0

B
ad

R
eq
u
es
t

40
9

C
on

fl
ic
t

40
4

N
ot

F
ou

n
d

P
ol
ic
y

C
re
at
e

a
p
ol
ic
y

in
th
e
se
le
ct
ed

cl
u
st
er
s
of

sp
ec
ifi
ed

d
om

ai
n
.

A
P
I/
d
om

ai
n
s/

{d
om

ai
n
N
am

e}
/p

ol
ic
ie
s

/{
p
ol
ic
y
N
am

e}

G
E
T

20
0

O
k

40
4

N
ot

F
ou

n
d

P
ol
ic
y

R
et
ri
re
ve

a
p
ol
ic
y

in
th
e
sp
ec
ifi
ed

d
om

ai
n
.

A
P
I/
d
om

ai
n
s/

{d
om

ai
n
N
am

e}
/p

ol
ic
ie
s

/{
p
ol
ic
y
N
am

e}
/r
em

ov
e

D
E
L
E
T
E

20
0

O
K

40
4

N
ot

F
ou

n
d

40
0

B
ad

R
eq
u
es
t

b
o
ol
ea
n

D
el
et
e
a
p
ol
ic
y
in

th
e

sp
ec
ifi
ed

d
om

ai
n
.

A
P
I/
d
om

ai
n
s/

{d
om

ai
n
N
am

e}
/p

ol
ic
ie
s

/{
p
ol
ic
y
N
am

e}
/c
lu
st
er
s

G
E
T

20
0

O
k

40
4

N
ot

F
ou

n
d

C
lu
st
er
s

R
et
ri
ev
e
a
li
st

of
cl
u
s-

te
rs

in
th
e

sp
ec
ifi
ed

d
om

ai
n
th
at

h
av
e
th
e

p
ol
ic
y
ap

p
li
ed
.

95

Appendix B

Cluster Mesh

B.1 Set up

The first step is to set up the environment where the Multi Cluster Orches-
trator can operate. A multicluster sandbox can be created using kind, a tool
that can generate Kubernetes clusters using docker containers. On top of that
after installing the desired number of clusters, a cluster-mesh will be added
between all clusters using the documentation provided by Cilium [29].

B.2 Creating Clusters

As mention before, kind can be used to create all clusters. Kind requires some
dependencies to work in particular:

– a stable version of docker

– kubectl version ≥ v1.14.0

– helm ≥ v3.0.3

After the installation of all dependencies, it is possible to download kind and
install it. To work kind requires a YAML configuration file for every cluster
that will be created. In the YAML file, it’s possible to set the number of
control nodes for every cluster, worker node, pod, and service subnet. It is
important to set different pod and service subnets for every cluster because
the cluster-mesh requires different address spaces for all the clusters in the
mesh. A configuration YAML file for kind might looks like this:

96

Appendix B

Code Box B.1. Example of a kind configuration file

kind: Cluster
apiVersion: kind.x−k8s.io/v1alpha4
nodes:
− role: control−plane
− role: worker
networking:
disableDefaultCNI: true
podSubnet: "10.0.0.0/16"
serviceSubnet: "10.1.0.0/16"

In this example a cluster with two nodes will be created, one control node, and
one worker node and the pods’ addresses will be in the 10.0.0.0/16 subnet,
while the services addresses will be in the 10.1.0.0/16 subnet.

To create the cluster, the following command must be launched:

sudokindcreatecluster−−name = cluster1–config = kind− cluster1.yaml

where the name parameter is the name of the cluster and the config parameter
is the configuration YAML file.

B.3 Intalling Cilium in the cluster

After the creation of the cluster, the next step is to install Cilium as CNI. For
this step the tool used is Helm. Helm is a tool that helps in the installation
of Kubernetes applications because it has its repository where all commons
Kubernetes applications are located and can be pulled and installed. First of
all its needed to pull the Cilium repository with the following command:

helmrepoaddciliumhttps : //helm.cilium.io

After the setup of the repository, the cilium image must be pre-loaded in kind
with these commands:

dockerpullcilium/cilium : v1.9.9; kindloaddocker − imagecilium/cilium :
v1.9.9

To install Cilium in the cluster1 for example, it’s possible to launch this
command:

Code Box B.2. Example of a Cilium installation with Helm

helm install cilium cilium/cilium −−version 1.9.5 \
−−namespace kube−system \
−−set nodeinit.enabled=true \
−−set kubeProxyReplacement=partial \
−−set hostServices.enabled=false \
−−set externalIPs.enabled=true \
−−set nodePort.enabled=true \

97

Appendix B

−−set hostPort.enabled=true \
−−set etcd.enabled=true \
−−set etcd.managed=true \
−−set identityAllocationMode=kvstore \
−−set cluster.name=cluster1 \
−−set cluster.id=1 \
−−set ipam.operator.clusterPoolIPv4PodCIDR=10.0.0.0/16 \
−−set ipam.operator.clusterPoolIPv4MaskSize=24

In this command it is possible to choose the version of Cilium desired, and
in witch namespace the Cilium pods will be deployed. It’s important to set
the parameters etcd.enabled and etcd.managed to true because it’s required
for the correct set up of the cluster-mesh. The cluster.name and the clus-
ter.id parameters must be unique for every cluster and the pam.operator.
clusterPoolIPv4PodCIDR parameter must be the same as podSubnet value in
the kind configuration file, while the pam.operator.clusterPoolIPv4MaskSize
defines the range of addresses for every node.

B.4 Installing the cluster-mesh

To set the cluster-mesh there are other dependencies required to be satisfied
in order to work properly. In the first place, every cluster needs to expose
its etcd in read-only mode, in order to be reachable by all other clusters in
the mesh. For this reason in the namespace where cilium was deployed it’s
mandatory to have the following service:

Code Box B.3. Service cilium-etcd-external

apiVersion: v1
kind: Service
metadata:

name: cilium−etcd−external
namespace: kube−system

spec:
type: NodePort
ports:
- port: 2379
selector:

app: etcd
etcd cluster: cilium−etcd
io.cilium/app: etcd−operator

This service must be applied to all clusters that have to join the cluster-
mesh. For the next steps the git repository of Cilium [30] will be used: the
repository contains all tools required to extract the TLS key of every cluster
and to generate the YAML files that will setup the cluster-mesh. For every

98

Appendix B

cluster is required to extract the TLS key and root CA authority of local etcd
using the script:

./extract − etcd − secrets.sh (Note: these scripts extract only the secret of
the cluster in the current context. To move thought contexts it’s possible to
use kubectl for example kubectlconfiguse− contextkind− cluster2)

After all secrets in all clusters are being extracted, a single Kubernetes secret
from all the keys and certificates extracted must be created. This secret
contains the etcd configuration that specifies the service IP or hostname of
the etcd and includes the keys and certificates to access it. To create this
secret the following script can be used:

./generate-secret-yaml.sh ¿ clustermesh.yaml

The next step is to create the patch to be applied to all Cilium DemonSet of
all clusters:

./generate-name-mapping.sh ¿ ds.patch

This script will generate a patch that might look like this:

Code Box B.4. Example of a ds.patch file

spec:
template:

spec:
hostAliases:
- ip: "10.0.0.18"

hostnames:
- cluster1.mesh.cilium.io

- ip: "10.0.2.19"
hostnames:
- cluster2.mesh.cilium.io

The next step is to apply the patch in all clusters, apply the Kubernetes
secrets, and restarting the cilium agents using the commands:

Code Box B.5. Commands to aplly the cluster mesh

kubectl −n kube−system patch ds cilium −p "$(cat␣ds.patch)"

kubectl −n kube−system apply −f clustermesh.yaml

kubectl −n kube−system delete pod −l k8s−app=cilium

kubectl −n kube−system delete pod −l
name=cilium−operator

After the cilium agents restart it’s possible to check the status of the cluster-
mesh by searching the Cilium-agent (for example cilium-asrtvg) and launch-
ing the following command:

99

Appendix B

kubectl − nkube− systemexec− ticilium− asrtvg −−ciliumstatus

the output should be similar to the one in the Code Box and should be checked
for every cluster in the cluster-mesh. If one cluster doesn’t find other clusters
or clusters keep being unreachable it’s wort to restart again the Cilium-agent
end Cilium-operator in that cluster using the last two commands in Code
Box.

Code Box B.6. Example of a Cilium status report

1 KVStore: Ok etcd: 1/1 connected, lease-ID=6b797bc07c20fb19,

lock lease-ID=6b797bc07c20fb21, has-quorum=true:

https://cilium-etcd-client.kube-system.svc:2379 - 3.3.12

(Leader)

2 Kubernetes: Ok 1.20 (v1.20.2) [linux/amd64]

3 Kubernetes APIs: [

"cilium/v2::CiliumClusterwideNetworkPolicy",

"cilium/v2::CiliumNetworkPolicy", "core/v1::Namespace",

"core/v1::Node", "core/v1::Pods", "core/v1::Service",

"discovery/v1beta1::EndpointSlice",

"networking.k8s.io/v1::NetworkPolicy"]

4 KubeProxyReplacement: Partial [eth0 (Direct Routing)]

5 Cilium: Ok OK

6 NodeMonitor: Listening for events on 8CPUs with 64x4096 of

shared memory

7 Cilium health daemon: Ok

8 IPAM: IPv4: 9/255 allocated from 10.0.0.0/24,

9 ClusterMesh: 3/3 clusters ready, 0global-services

10 BandwidthManager: Disabled

11 Host Routing: Legacy

12 Masquerading: IPTables

13 Controller Status: 75/75 healthy

14 Proxy Status: OK, ip 10.0.0.13, 0redirects active on ports 10

000-20000

15 Hubble: Ok Current/Max Flows: 4096/4096 (100.00%), Flows/s: 1

41.92 Metrics: Disabled

16 Cluster health: 4/4 reachable (2021-09-07T13:45:19Z)

100

Appendix C

Use Case replication

This appendix will contain all commands and data to replicate the use cases
presented in the Chapter 6. Before reading this Appendix is worth reading the
Appendix B that describes how to install and set up a Cilium ClusterMesh,
which is used as a prerequisite for the operations described here.

Although these use cases can be replicated manually following the next sec-
tions, it was also implemented a client that can communicate with the REST
APIs of the Multi Cluster Orchestrator and that contains already all opera-
tions to replicate these use cases. The last section of this Appendix will be
dedicated to this client explaining what methods it contains and commands
to launch to replicate the two use cases.

C.1 Use Case 1

For the first use case presented in Chapter 6 it’s needed first to install the
services presented in the Code Box of the Chapter 6 using the following
command in any cluster that needs a service:

kubectl apply -f servicefile.yaml

servicefile.yaml is the YAML file containing the service definition and the
deployment. If the namespace where the pods’ services need to be started
does not exists, it is possible to create it using the command:

kubectl create namespace namespaceName

Once installed all services and the client, the next step is to register the
two domains to the Multi Cluster Orchestrator. It is possible to register the
domain only with the name and add services and clusters after using other
APIs paths or use the path ”/API/domains/create” using the JSON object
described in Code Box C.1. In the Code Box C.2 there is the example for
the domain1.

101

Appendix C

Code Box C.1. Template of a JSON DomainRequest

1

2 {
3 "domain":{
4 "name":"",

5 "links":[]

6 },
7 "clusters":[

8 {
9 "domain":"",

10 "name":"",

11 "cilium_cluster":"",

12 "context":"",

13 "links":[]

14 },
15],

16 "services":[

17 {
18 "name":"service3",

19 "domain":"",

20 "namespace":"",

21 "selector":"",

22 "port":"",

23 "links":[]

24 },
25],

26 "servicesMap":{
27 "serviceName":[""],

28 }
29

30 }

Once the domain are registered to the Multi Cluster Orchestrator, to apply
policies and start the service discovery it’s possible to make request to apply to
all domains making requests to the API path ”/API/domains/{domainName}
/policies/create” or ”/API/domains/{domainName}/clusters/{clusterName}
/policies/create” giving as parameter the policy specified in the Code Box of
Chapter 6.

102

Appendix C

Code Box C.2. Example of DomainRequest

1

2 {
3 "domain":{
4 "name":"domain2",

5 "links":[]

6 },
7 "clusters":[

8 {
9 "domain":null,

10 "name":"cluster1",

11 "cilium_cluster":cluster3,

12 "context":"kind-cluster3",

13 "links":[]

14 },
15 {
16 "domain":null,

17 "name":"cluster2",

18 "cilium_cluster":cluster4,

19 "context":"kind-cluster4",

20 "links":[]

21 }
22],

23 "services":[

24 {
25 "name":"service3",

26 "domain":null,

27 "namespace":"ns1",

28 "selector":"name:service3",

29 "port":"TCP:80",

30 "links":[]

31 },
32 {
33 "name":"service4",

34 "domain":null,

35 "namespace":"ns2",

36 "selector":"name:service4",

37 "port":"TCP:80",

38 "links":[]

39 }
40],

41 "servicesMap":{
42 "service4":["cluster2"],

43 "service3":["cluster1"]

44 }
45

103

Appendix C

46 }

In the Code Box C.3 is present the JSON object for the request to apply the
policy 6.3 in Chapter 6.

Code Box C.3. Example of a Policy Requirement request

1

2 {
3 "apiVersion":"cilium.io/v2",

4 "kind":"CiliumNetworkPolicy",

5 "metadata":{
6 "annotations":null,

7 "clusterName":null,

8 "creationTimestamp":null,"

9 deletionGracePeriodSeconds":null,

10 "deletionTimestamp":null,

11 "finalizers":null,

12 "generateName":null,

13 "generation":null,

14 "labels":null,

15 "managedFields":null,

16 "name":"allow-domain1",

17 "namespace":null,

18 "ownerReferences":null,

19 "resourceVersion":null,

20 "selfLink":null,

21 "uid":null

22 },
23 "spec":{
24 "description":null,

25 "egress":[

26 {
27 "toCIDR":null,

28 "toCIDRSet":null,

29 "toEndpoints":[

30 {
31 "matchExpressions":null,

32 "matchLabels":

33 {
34 "service":"*",

35 "cluster":"*",

36 "domain":"domain1"

37 }
38 }
39],

40 "toEntities":null,

41 "toFQDNs":null,

42 "toGroups":null,

104

Appendix C

43 "toPorts":null,

44 "toRequires":null,

45 "toServices":null

46 }
47],

48 "egressDeny":null,

49 "endpointSelector":{
50 "matchExpressions":null,

51 "matchLabels":{
52 "name":"client"

53 }
54 },
55 "ingress":null,

56 "ingressDeny":null,

57 "labels":null,

58 "nodeSelector":null

59 },
60 "specs":null,

61 "status":null

62 }

It is also possible to retrieve the policy class using the YAML file with the
client create for the communication with the APIs of Multi Cluster Orches-
trator (more information will be given in the section C.3).

Finally to delete the policy to check that also namespace and services cre-
ated are deleted by the Multi Cluster Orchestrator, a DELETE request to
”/API/domains/domain2/policies/allow-domain1/remove” can be done.

C.2 Use Case 2

In the second use case, the initial setup is similar to the first use case but
this time will be shown how to register a domain with only the name and add
clusters and services after the creation of the domain.

First, in the Code Box C.4 it’s reported the JSON object for the registration
of the domain1 and one cluster making a request to the Multi Cluster Or-
chestrator at the ”/API/domains/create” path, services, and the other cluster
will be added after using other paths.

Code Box C.4. DomainRequest for use case 2

1

2 {
3 "domain":{
4 "name":"domain1",

5 "links":[]

6 },
7 "clusters":[

105

Appendix C

8 {
9 "domain":null,

10 "name":"cluster1",

11 "cilium_cluster":cluster1,

12 "context":"kind-cluster1",

13 "links":[]

14 }
15],

16 "services":[]

17 "servicesMap":[]

18

19 }

After registering the domain, using the JSON object in the Code Box C.5 and
making a request to ”/API/domains/domain1/clusters/create” it is possible
to create another cluster and add it to the domain.

Code Box C.5. Cluster creation request

1

2 {
3 "domain":null,

4 "name":"cluster2",

5 "cilium_cluster":"cluster2",

6 "context":"kind-cluster2",

7 "links":[]

8 }

To add a service instead, the path to use is ”/API/domains/domain1/clusters/
cluster2/services/create” and the service’s JSON object it’s shown in the
Code Box C.6.

Code Box C.6. Service creation request in a single cluster

1

2 {
3 "name":"database",

4 "domain":null,

5 "namespace":"database-namespace",

6 "selector":"name:database",

7 "port":"TCP:80",

8 "links":[]

9 }

To add services in both clusters instead it is also possible to make a request
to ”/API/domains/domain1/services/create”. In the Code Box C.7 there
is an example of a JSON object for the creation of service backend on both
cluster1 and cluster2.

106

Appendix C

Code Box C.7. Service creation request in a domain

1 {
2 "service":{
3 "name":"backend",

4 "domain":null,

5 "namespace":"backend-namespace",

6 "selector":"name:backend",

7 "port":"TCP:80",

8 "links":[]

9 },
10 "clusters":["cluster1","cluster2"]}

To delete the service backend as done in the use case 2 example, it is possible
doing a DELETE request to the path ”/API/domains/domain1/services/backend
/remove”, this will delete the service in both clusters and will also delete the
policy.

C.3 Client

In this section will be described a client created to interact with the Multi
Cluster Orchestrator API. In the main of the class there are all the operations
to replicate the two use cases presented in the Chapter 6.

In the Client project is present an ApiClient Class that contains generic meth-
ods which can be used for all type of requests. An example is in the POST
method in Code Box C.8.

Code Box C.8. postRequest method

1

2 public <T> T postRequest(String path,Object

request,Class<T> aClass){
3 WebClient.UriSpec<WebClient.RequestBodySpec> uriSpec =

this.client.post();

4 WebClient.RequestBodySpec bodySpec = uriSpec.uri(path);

5 WebClient.RequestHeadersSpec<?> headersSpec =

bodySpec.body(Mono.just(request), request.getClass());

6 Mono<T> res = headersSpec

7 .header("Content-Type", "application/json")

8 .accept(MediaType.APPLICATION_JSON,

MediaType.APPLICATION_XML)

9 .acceptCharset(StandardCharsets.UTF_8)

10 .ifNoneMatch("*")

11 .ifModifiedSince(ZonedDateTime.now())

12 .retrieve()

107

Appendix C

13 .bodyToMono(aClass);

14 return res.block();

15 }

This method requires the path where the POST request has to be performed,
an Object Class which is the request, and a Class¡T¿ object that correspond
to the response object class from the server.
Another class called MultiClusterOrchestratorAPI was created and uses the
generic methods of ApiClient to perform all the REST requests present in the
Server. This class contains methods like createDomain, createPolicyinCluster
etc. which can be easily extended as soon as new server’s REST API are
created.

Finally, to help domain managers to write requirements with the simple
YAML language and do not use a Class full of fields like the
V2OrchestratorNetworkPolicy or the V2CiliumNetworkPolicy classes, another
class was created called yaml class which translates a YAML file in the cor-
responding Java Class.
An example is given in the Code Box C.9, which translates a YAML file in
the V2OrchestratorNetworkPolicy class.

Code Box C.9. Example of creation of a V2OrchestratorNetworkPolicy
class from a yaml file

1

2 yaml.addModelMap("MultiCLusterOrchestrator.io", "v2",

"OrchestratorNetworkPolicy",

"orchestratornetworkpolicies",

V2OrchestratorNetworkPolicy.class);

3

4 File file = new File("/path/to/the/YAML file/YAMLfile.yaml");

5 V2OrchestratorNetworkPolicy yamlNp

=(V2OrchestratorNetworkPolicy) yaml.load(file);

108

