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Chapter 1 

Introduction 
More and more in recent years, Service Providers have to manage an ever-increasing 

traffic on their networks, due to the spread of various types of services such as 

streaming video, audio, video games, etc. A concrete example can be found in the 

just passed year, where the pandemic has forced us in the majority of cases to use 

online services to make up for the inability to work, study or do recreational 

activities, making the networks increasingly busy. In this scenario, Service Providers 

need to consider issues such as packet loss, delay and jitter since the majority of 

traffic is now highly sensitive to these metrics. In fact, many applications, for 

example all video conferencing tools, but also all real-time applications, do not work 

properly if the delay and packet loss are greater than certain thresholds. Therefore, 

too high values of these metrics translate into a bad user experience which is then 

reflected on the customer satisfaction towards the service provider. 

In this scenario, while a lot of work has been done by the Internet Engineering Task 

Force (IETF) for what concern fault detection and connectivity verification, 

everything related to performance monitoring has not evolved in the same way. 

Performance monitoring instead is a key point for the service providers and is easy 

to understand why. “A good way to monitor traffic means easy maintenance and less 

effort to understand what and where do improvement, since it could potentially 

detect faults and weak points of their network infrastructure” [6].  For these 

reasons, ISPs were incentivized to design new methods for real-time performance 

monitoring that were as simple and effective as possible. From this need is born 

TIM's RFC8321 [1], described in detail below, which introduces the concept of 

alternate marking, the pivot on which this work is based. The process described in 

this RFC is based on passive/hybrid monitoring technique which, as described by 

RFC7799 [2], in opposition to active monitoring, which would need to generate 
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special packets to monitor the traffic, is limited to observing the existing traffic or at 

most to modify unused fields. Furthermore, the alternate marking is potentially 

applicable to any type of packet-based traffic such as IP, MPLS, and Ethernet, both 

unicast and multicast. This technique mainly addresses the measurement of packet 

loss, but as we shall see, it is easily applicable to the measurement of the delay 

variation as well. The advantages of this approach are: 

• Ease of implementation: can already be implemented on existing network 

nodes 

• Applicability: as already mentioned it can be implemented on any type of 

packet network. 

• Low computational demand: there is a minimum additional load 

• Accuracy: you can choose between different degrees of granularity, from the 

single package to larger groups. 

• Robustness: can handle out-of-order packet 

At this point, to obtain a monitoring divided by flows (where a flow is a set of packets 

that share some parameters, for example the same header field of the IP source in 

the IP packets) both the RFC8321 [1] and the RFC8889 [4], talk about a filter-based 

approach. In practice, a filter is installed on a network device for each flow we want 

to monitor. However, this approach raises two problems: 

1. The number of filters we can set is limited and the total number of flows can 

increase dramatically making this approach impractical. 

2. Setting up and configuring the filters requires considerable effort. The 

increase in monitored flows would require new filters making this approach 

non-scalable. 

1.1 Goal of the Thesis 
To overcome the problems described above, TIM in collaboration with the 

Politecnico di Torino has started various projects aimed both at the creation of two 

probes, both based on the eBPF [23] (Enhanced Berkeley Packet Filter), and at the 
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drafting of a first architecture capable of implement a new type of traffic analysis. 

This architecture, described in the draft The Big Data Approach for Multipoint 

Alternate Marking method [3] and in a previous thesis [6], consists in installing the 

first developed probe [5], both on border routers, which must collect data on 

packets entering and leaving the network, and secondly also on some routers within 

the monitored network, thus allowing us to have finer or coarser measurements.  

The idea is to consider a single filter instance per network node that captures all 

passing traffic and obtains performance details based on the flow at a later time, 

sending the collected data to a Big Data server, which will analyze it, revealing the 

criticalities of the network. This makes the measurement effort independent from 

the total number of flows. It is also possible to divide the results by "groups of nodes" 

(or clusters), which simultaneously with a flow-based approach, makes this 

architecture extremely flexible to different types of measurement. 

My work starts from these assumptions. In fact, this first architecture is not 

definitive and mainly served as a starting point to demonstrate the feasibility of this 

type of measurement. My task is to modify this model in some of its parts in order 

to get closer and closer to a final architecture actually applicable on real networks. 

To do this, a new probe [7], again developed by the collaboration between TIM and 

the Politecnico, will be analyzed and new technologies aimed at making the model 

easier and more practical to apply are considered. 

 

1.2 Chapters Content 
The thesis can be split in two main parts: a first theoretical part that illustrates the 

methods behind the starting architecture, and the architecture itself in detail, and a 

second one where the new technologies used, the new architecturesimulations and 

implementation of the latter are explained carefully.  

The following chapters are organized as follow:  
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• Chapter 2 presents an overview about performance monitoring with a 

special focus to RFC8321 and multipoint draft, that constitute starting point 

of the thesis.  

• Chapter 3 exposes the principles behind the big data approach in 

performance monitoring.  

• Chapter 4 describes the starting architecture deployed for simulation 

environment. It aims to describe its constituent components and all the 

possible improvements that can be done. 

• Chapter 5 provides a general view about some of the technology involved in 

this thesis to develop new components.  

• Chapter 6 illustrates the workflows of the new architecture, the modification 

applied to the starting one and how each component interacts with the other 

one.  

• Chapter 7 exposes, in addition to the simulated model, a more realistic 

configuration, implemented in the TIM laboratories and the results obtained. 

• Chapter 8 summarizes the overall results obtained and lays the foundation 

for the possible next steps. 
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Chapter 2 
 

Performance Monitoring 
In this chapter, Alternate Marking and Multipoint Alternate Marking methods will 

be described to better understand the mechanism used to monitor the performance 

of the network and to be more familiar with the terms used in this document. 

2.1 Alternate Marking 
The idea behind Alternate Marking is to count the packets passing through a node 

on the network and compare this number with that counted by the previous or next 

node in order to identify a possible packet loss. To make the comparison make sense, 

you need to make sure that the nodes count the same group of packets. There is 

therefore a need for a way to group the packets that must be counted together. 

The solution, which is described in RFC 8321 [1], is to mark packages with different 

colors so that those with the same color are counted together. It is logical to think 

that two colors are enough to make this approach feasible. In fact, by changing color 

after a certain period of time, the colored packages during two consecutive periods 

will have different colors, making it possible to distinguish the packets of one period 

from the next or the previous one. Hence the name Alternate Marking. 

  

Figure 2.1 - Traffic coloring [1] 
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It is clear at this point that the marking operation is crucial, and to do so you can 

follow two strategies: 

1. Mark the packets according to the flow 

2. Mark packages according to link 

This second case is to be used if we want to monitor the traffic that passes through 

a certain link. In this mode, all traffic must be colored before it passes through the 

link to be monitored by the nodes that use that link. 

The flow-based marking, on the other hand, is to be preferred when we are 

interested in monitoring certain traffic flows, and therefore avoiding marking the 

traffic that we are not interested in monitoring. The flows to be marked can be 

traced through some header fields (for example in IP the flows are identified by 

source and destination addresses and their respective ports). Since marked traffic 

will be able to pass through various points in the network, a large number of nodes 

will have to be able to recognize the marked traffic in order to follow the path of the 

packets.  

In this modality, the problem of where to mark packages is raised. In general, the 

most advantageous solution is to mark packages as soon as possible. Thinking about 

the network of an ISP, the best choice will be to mark the traffic on the border nodes, 

so that the traffic generated by the clients will be marked as soon as it enters the 

network. In cases where there are multiple marker nodes, these must be 

synchronized to avoid inconsistencies in the marking of the packets. 

For what concerns instead the color change, it can be done on the basis of a fixed 

number of marked packets, or as already mentioned, on the basis of a certain period 

of time. Although the first method is easier to implement, it can lead to 

synchronization problems between markers as we do not know after how much a 

node will change color. It is therefore recommended that the markers change color 

after a certain period of time. 
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2.1.1 Packet loss measurement 

The division into groups of packets serves, as mentioned, to measure the loss of 

packets. The idea is simple: each node counts the packets of a block and compares 

the value obtained with the one calculated by the next node. If the two values do not 

match, it means that there has been a packet loss between the two nodes. This is 

always true in a point-to-point path, like the one shown below. 

 

Figure 2.2 – Point to point network [1] 

 

So, imagining that we have two colors A and B, and want to monitor the traffic 

between R1 and R2, it will be necessary that the two nodes keep four counters each, 

Ci(A) and Co(A) to count packets of color A in input and output and Ci(B) and Co(B) 

to count those of color B. 

At this point, when traffic marked with A crosses R1 and R2, the counters C (A) of 

the two nodes will be updated respectively. When, after a given period of time, a 

color change occurs, the counters C (A) are stopped and the counters C (B) start 

counting and so on in a loop, resetting the counters each time it starts counting. 

 

Figure 2.3 – Color change [1] 
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The comparison between the counters of the same color allows to identify the 

packet loss in a period of time. 

 

2.1.2 Timing Aspects 

What has been described so far leads to an important consideration, namely the one 

concerning when to read the counters. R1 and R2 need to choose the best time to 

read the counters, in fact reading them too early can lead to incorrect data due to 

out-of-order packets. Furthermore, between R1 and R2 there is a network delay, 

calculated as the difference between the moment in which the packet arrives at R1 

and the time in which it arrives at R2. Another factor not to be ignored is the 

misalignment of the clocks between the nodes. 

What we want then is to identify a time interval in which we are sure that if all nodes 

read the counter, it is guaranteed that: 

• The value read refers to the same block in the whole network 

• The value is not affected by out-of-order packets and its counter is stopped. 

Therefore, considering a period of duration L, and a network delay d, in general, the 

most advantageous solution is to read the meter at L/2. 

 

Figure 2.4 – When read counters [1] 

However, these considerations suggest that there is a minimum limit for the length 

L in order to have d<L/2, and that it must be evaluated in every implementation. 

Choosing L long enough increases our chances of getting the right value. 
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2.1.3 Delay measurement 

As mentioned above, RFC 8321 [1] can be easily adapted to calculate network delay. 

In theory, it would be enough to compare the timestamps of the same packet 

recorded by two different nodes. In practice, there are several alternatives. 

In the Single-Marking method, a router retains the timestamp of the first received 

packet after a color change. This timestamp compared with the timestamp of the 

first packet received by the next node, gives us the delay to cross that piece of the 

network. For example, if router R1 stores the timestamp of the first packet of the 

block with color A, TS(A)R1, and router R2 does the same with the first packet 

marked with A, storing TS(A)R2, the delay TS(A)R2 − TS(A)R1 is the delay 

associated with that packet. To measure the delay of multiple packets, it is sufficient 

to store timestamps of different packets, for example every N received packets, or 

even the timestamps of each packet. This approach, however, is sensitive to packet 

loss and out-of-order reception, as the router cannot know if the sampled packets 

are the same as the previous routers (they may arrive in a different order), or if a 

packet has been lost in the path between R1 and R2 (in which case it can never be 

captured by R2). 

A more feasible approach is the Mean Delay method, which solves the problem of 

sensitivity to packet loss and out-of-order reception. In practice, the router collects 

N timestamps from N packets and calculates an average by dividing the sum of these 

timestamps by N; in this way we get more robustness to packet loss and out-or-

order packets, and it also saves disk space because the number of timestamps to 

send to the NMS is one per period. However, this method does not have only 

advantages; in fact, only one measurement is obtained for an entire period even if 

the duration of the block is high. We also lose the maximum, minimum and median 

delay, where the last is necessary if we want a statistical distribution of the delay. 

A last approach, which solves all the problems mentioned above, is based on the 

Double Marking method. In practice some packets are marked only once and are 

used to calculate the average delay, while others have a double marking to obtain 

other measures that give us a static distribution of the delay. 
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2.2 Multipoint Alternate Marking 
The Alternate Marking Method as it has been described so far, is only applicable to 

point-to-point traffic as it is assumed that all packets captured by a node will then 

be captured by a single subsequent node. This may not always be true on a real 

network, where a packet can follow different paths due to routing mechanisms. 

The Multipoint-Marking-Method [4][8] aims to extend Alternate Marking to all 

possible unicast flows. A unicast flow means that the packet is sent to one and only 

one destination, and the flow is a collection of packets having a common set of 

characteristics (for example same source IP and same destination IP).  

All the possible paths that we can encounter in a unicast flow and which are 

considered in the Multipoint-Marking-Method are showed in the figure below. 
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Figure 2.5 - Possible paths [6] 

 

What has been done in this approach is to introduce the concept of cluster. A cluster 

is the smallest subnet that guarantees the condition that the number of incoming 

packets is equal to (or greater than) the number of outgoing packets. With the 

concept of cluster, we can monitor the network with a different degree of detail, we 

can analyze a large portion of the network and if packet loss occurs, we can detect 

where the problem occurred, with an in-depth analysis. 

 

2.2.1 Packet loss 

In a monitored network, nodes can be of three types: input nodes, output nodes, or 

intermediate nodes. The input nodes are those in which the traffic passes first while 

the output nodes are the nodes through which the traffic leaves the monitored 

network. Obviously, the input and output nodes, being at the edge of the monitored 

network, are reversible depending on the direction of the traffic. The intermediate 

nodes, on the other hand, are used to define what happens within the monitored 

network and to provide details, but they are not necessary to monitor the network 

unlike those of inputs and outputs. 
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To calculate the packet loss we consider a principle already mentioned: the number 

of packets counted by the input nodes must always be greater than or equal to the 

number of packets counted by all the output nodes. 

We can therefore define the packet loss within the monitored network or within a 

single cluster as the difference between the number of packets counted by all the 

input nodes and the number of packets counted by all the output nodes, in a period: 

PL = (PI1 + PI2 + ... + PIn) - (PO1 + PO2 + ... + POm) 

where: 

• n is the number of input nodes 

• m is the number of output nodes 

• PL is the network packet loss (number of packets lost) 

• PIi is the number of packets passed through the i-th Input node in the period 

• POj is the number of packets passed through the j-th Output node in the 

period 

 

2.2.2 Clustering algorithm 

The monitored network mentioned so far can be seen as a graph whose nodes are 

represented by all the network devices that are Measurement Points (MP) and the 

arcs are all the links that connect directly or indirectly (if cross a node that is not a 

MP), each MP to another. In a fully monitored network, each network device is an 

MP and the monitoring network corresponds to a real network. A cluster is a subnet 

obtained from the graph of the monitored network and which maintains the packet 

loss properties just seen. 

The simplest algorithm for composing the smallest possible clusters, as also 

mentioned in the RFC8889 [4], is organized in two steps: 

1. Group the arcs that share the same initial node; 

2. Merge the groups with those that share at least the same end node. 
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Let’s assume to have the following monitoring network and to apply to that the 

clustering algorithm. 

 

Figure 2.6 – Example of Monitored Network [6] 

 

After the first step we will obtain 5 groups: 

• Group 1: (R1-R2), (R1-R3), (R1-R10)  

• Group 2: (R2-R4), (R2-R5)  

• Group 3: (R3-R5), (R3-R9)  

• Group 4: (R4-R6), (R4-R7)  

• Group 5: (R5-R8)  
 

Finally, applying the second point we will get the real clusters which in this case will 

be the following four: 

• Cluster 1: (R1-R2), (R1-R3), (R1-R10)  

• Cluster 2: (R2-R4), (R2-R5), (R3-R5), (R3-R9)  

• Cluster 3: (R4-R6), (R4-R7)  
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• Cluster 4: (R5-R8)  

 

Figure 2.7 – Clusters [6] 

 

Obviously, by joining these clusters into larger clusters, using the output nodes of 

one with the input nodes of another as a junction point, it is possible to obtain bigger 

clusters (called Super Cluster), where the packet loss equation is still true, or regain 

the entire monitored network. 

 

2.2.3 Delay 

The calculation of delay and jitter obviously remains of great importance. Since we 

are considering multipoint networks, however, a new approach must be found, as 

the Double Marking Method, described as the definitive solution in point-to-point 

networks, in multipoint networks is not applicable in the same way because packets 
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can take different paths and reach different network interfaces. From this need, new 

approaches based on hashing techniques [9][10] have been used, which allow to 

uniquely identify packets within the network and to select a small number, based on 

the hash. Subsequently, the delay will be calculated from the selected packets, using 

the associated timestamps. 

In particular, the possible methods are the basic hash and the dynamic hash. 

The basic hash consists in setting a certain number of bits of the packet hash that 

must be compared with the reference hash value, so that if the values are the same 

the packet is selected. This approach, however, leads to the capture of a very 

variable number of packets depending on the traffic. 

The dynamic hash solves this problem and is in fact the method applied within the 

existing architecture. In practice, the initial number of bits n (typically a few bits, to 

sample a high percentage of traffic) that must be compared with the reference hash, 

is provided together with NMAX, that is the maximum number of packets to be 

captured in a marking period. A hash function is applied to each packet entering a 

node and the first n bits are compared with the reference hash. If the first n bits are 

the same, the packet is selected and a value in a counter that keeps track of how 

many packets have already been captured, is updated. It is called dynamic hash as 

the length of the hash is dynamically adapted to the amount of traffic: when NMAX 

+ 1 packets are sampled, the length of the hash to be compared is increased by 1 bit 

so that, statistically, only NMAX/2 matches again to the reference hash. This 

mechanism is applied in a loop until the end of the period. 

This method is therefore to be preferred because it converges to a predetermined 

number of packets, which is between NMAX/2 and NMAX, also limiting the amount 

of data to be stored.  

Furthermore, these methods are resistant to packet loss, in fact if some packets are 

lost, the corresponding hash will not be present in the nodes that did not receive 

those packets, but all the others will be correctly coupled thanks to the hash value. 
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Chapter 3 
 

The Big Data Approach 
The Big Data approach [3] is designed for performance measurement based on a 

posteriori calculation and is based on the principles, just discussed, of Alternate 

marking [1], Multipoint alternate Marking Method [4][8] and Hash Sampling 

[9][10].  

This method allows you to perform two types of measurement:  

1. The per cluster approach, that allows to obtain a list of values, such as packet 

loss or average delay, which characterize the performance of each single 

cluster;  

2. The end-to-end approach, that aims to collect instead the packet loss and the 

average delay over an entire path.  

The results are calculated, as just said, not in a real-time scenario, but on request 

and for a certain marking period. This approach is based on packet sampling applied 

to all incoming traffic without flow distinction. Sampling takes place through 

hashing techniques, which speed up and facilitate the task of following the path of 

each packet in the network. The Big Data server deals with the splitting of data into 

flows, after having collected the identification field of each sampled packet (as well 

as timestamp, hash value and cluster identifier). As already mentioned, to make this 

mechanism feasible, the backbone network of an Internet service provider must be 

surrounded by routers, equipped with a running probe that collect the packets, as 

they are the first to handle traffic of customers. Packets must therefore be marked 

(via Alternate Marking [1]) outside the monitored network, as only marked traffic 

will be monitored (can be seen from the diagram below).  
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Figure 3.1 – Monitored Network Example [3] 

 

It is possible to mark even only partially the traffic and the results will not be 

affected by the unmarked packets and will refer only to the marked ones. The 

marking can be done both by the customers devices and by the border routers 

themselves, remembering however that the markers must be synchronized. 

 

3.1 The Working Principles 
The method consists of several stages: 

1. Data collection; 

2. Sending data to NMS; 

3. Preprocessing; 

4. Results. 

The following diagram is representative: 
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Figure 3.2 - Big Data method scheme [3] 

 

The probes must be placed in each router that we want to monitor in order to 

analyze the data that passes through the monitored interfaces. In fact, during the 

configuration phase, it is necessary to pass to the program a series of parameters 

such as: 

• the set of interfaces to be monitored; 

• the reference hash; 

• the maximum number of packets to be stored; 

• the duration of the period; 

• the two values that identify the marked traffic 

As regards the flows to be monitored, it is possible to monitor all flows without 

distinction. The packet collector only checks if the packet is consistent with the 

filters and if its hash value matches the reference hash, and if so, stores it. If the 

number of stored packets reaches the maximum NMAX, the number of bits to be 

matched is increased by one and a variable number of packets is discarded (this 

number is statistically approximately NMAX / 2). 
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The probes can send two different types of data to the management system: 

1. Detailed packet data including fields identifying the stream, packet hash 

value, timestamp, and period. 

2. Aggregated data on the period including, for each interface, the interface ID, 

the total packets counted, the packets captured by the hash system, average 

timestamp calculated on all the timestamps of the packets passed for the 

interface and the period. 

At this point, after the probes have sent the data to the management system, it is 

useful to have a preprocessing phase to produce, from the input records, new data 

ready to be effectively processed and analyzed more easily to obtain performance 

parameters. In addition to this, a further advantage is the decrease in the total 

amount of data to be stored. 

In this phase it is possible, by aggregating the incoming data from all the devices, to 

calculate the path followed by each sampled packet; this is possible by grouping the 

records by hash and sorting them by timestamp. The network management system 

must also know the topology of the network and the nodes that make up each 

cluster, so that it can determine the clusters traversed by packets by comparing the 

interface id with the nodes belonging to clusters. This is possible thanks to the 

cluster algorithm already implemented in a previous work [24] at Politecnico di 

Torino, that given the topology of a network and the desired node to monitor, 

returns a file with all the clusters and nodes that belong to them. 

The preprocessed records are stored on Big Data servers and can be queried as 

needed, to obtain desired results.  

 

3.2 Achievable results 
The results are provided by querying the storage system and giving as input the 

identifying parameters of the flow that we want to analyze plus the identifier of the 

required time period. 
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In addition to measuring the packet loss through the formula that considers all the 

input and output nodes seen in the previous chapter 

PL = (PI1 + PI2 + ... + PIn) - (PO1 + PO2 + ... + POm) 

another obtainable result is the average delay of cluster D_i (referred to cluster i).  

This is calculated as the sum of the delay of each d_j record (relative to j record), 

which is the difference between the output timestamp (when the packet left the 

cluster) and the input timestamp (when the packet entered the cluster). The result 

is then divided by the number of records belonging to the same cluster, obtaining: 

D_i = [d_0 + d_1 + ... + d_ (N_i - 1)] / N_i 

where: 

• D_i is the delay associated with cluster i,  

• d_j the delay associated with record j  

• N_i the number of records captured in cluster i. 

It is also possible to calculate the end-to-end mean delay, AD, as the sum of all delays 

belonging to all records that pass from the two considered points, divided by the 

total number of records: 

AD = [ad_0 + ad_1 + ... + ad_ (M - 1)] / M 

where: 

• AD is the average end-to-end delay,  

• ad_j the delay for record j  

• M is the number of all records. 

Other possible values that can be calculated, comparing all the timestamps relating 

to all the records, are the min / max / avg delay of a link. 
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Chapter 4 
 

Starting Architecture 
The drafting of the Big Data approach just seen is the continuation of a first model 

conceived and built in a thesis work [6] at the Politecnico di Torino. This first 

architecture was designed to test and prove the functioning of the Alternate Marking 

Method applied to Multipoint Measurements with a subsequent post processing 

phase based on Big Data. 

The architecture at issue consists of the following components: 

• Mininet [11]: a network emulation software that creates a network of virtual 

hosts, switches, controllers, and links. Mininet hosts run standard Linux 

networking software and its switches support OpenFlow [12] for highly 

flexible custom routing [13]. It was used to simulate a network (more 

realistic than a laboratory network) whose traffic will be monitored. 

• Probe: a software called IOVisor-PNPM [5] (IOVisor Packet Network 

Performance Monitoring) based on eBPF [14], as already mentioned, it is the 

first probe developed by the collaboration between Politecnico di Torino and 

TIM, and was used to collect the data from marked traffic generated by iperf 

(software for the active available bandwidth for IP networks) [15]. 

• Apache Flume: a distributed, reliable service for efficiently collecting, 

aggregating and moving large amounts of log data. It has a simple and flexible 

architecture based on streaming data flows. It is robust and fault tolerant 

with tunable reliability mechanisms and many failover and recovery 

mechanisms [16]. It is used in two instances, to send data captured by the 

probe directly to the HDFS cluster. 

• HDFS: Hadoop Distributed File System (HDFS) is a distributed file system 

designed to run on common hardware. It has many similarities to existing 
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distributed file systems, with some significant differences. HDFS is highly 

fault tolerant and is designed to be deployed on low-cost hardware. It enables 

high data throughput and is designed to store and process huge amounts of 

data [17]. It can also scale horizontally by adding new clusters or new nodes 

to existing clusters. In this architecture it is clearly the file system where all 

the collected data will end up. 

• Spark: the framework that provides a faster alternative to the MapReduce 

paradigm for querying in a cluster environment. Not only is it up to 100x 

faster than MapReduce, but it includes some key features like data 

parallelism and fault tolerance. It was originally developed at the University 

of California, the Berkeley AMPLab. Then, the Spark code was taken over by 

the Apache Software Foundation, which currently maintains it [18]. Used to 

obtain significant data for the actual network analysis. 

 

4.1 Implementation 
The entire model was implemented using two virtual machines, logically separating 

the two main parts that make up this architecture: 

1. the network emulation part with relative data collection 

2. the data storage part with related processing 

This choice allows you to have two machines that are independent of each other, 

favoring the modularity of the project and therefore a possible updating of the latter. 

The two machines are organized as shown in the next figure.  
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Figure 4.1 - Starting architecture [6] 

 

In practice we have VM0, also called source, and VM1, called sink, both based on 

Ubuntu 18.04 LTS. In VM0 we have Mininet which deals with the emulation of a 

network, precisely the GEANT2012 (chosen from the Internet Topology Zoo [19]), 

in which traffic is generated via iperf. The routing of traffic on this network is 

managed through the RIP [20] protocol, in conjunction with POX [21], the Open Flow 

controller, that manages the traffic on the switches. This solution, required to ensure 

that the routers find by themselves where to direct the packets, is however a limit 

since, if in reality the final version of the RIP protocol is already obsolete, and more 

efficient protocols such as IS-IS or OSPF are preferable, the version of RIP that we 

managed to integrate into the routers of the network emulated by Mininet, is a 

simplistic version where some known problems, such as split horizon, are not 

solved. This in fact conditioned the choice of the network to emulate, namely the 

GEANT0212, as the latter has only 40 routers and is more easily manageable by this 

implementation of the RIP. 

The traffic on this emulated network is then captured by the probe [5] running on 

VM0 which, through the dynamic hash mechanisms, mentioned in the previous 

chapters, captures the statistics of the packets and stores them within files with 
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name PERIOD_INTERFACE in a folder on the file system. So for what concerns the 

emulated network we will have a situation as represented below. 

 

Figure 4.2 [6] - Example of Network emulation on VM0 

 

The choice to save the data in a folder is justified by the fact that Flume, among other 

options, can send the data present in a specific location on the file system. In essence, 

we have an instance of Flume that checks every 30 seconds, that is the duration of 

the period chosen for the probe, in this directory and if there are new files, sends 

them. At this point to make the two VMs communicate has been used the bridge, a 

setting available in Oracle Virtual Box that allows a virtual machine to obtain an IP 

address reachable on the local network.  

On the other hand, in VM1 we have another instance of Flume which in this case is 

configured to receive data on an IP address (the one assigned to the VM from the 

bridge). Given Flume's strong integration with HDFS, it can save received data 

directly to HDFS servers running on VM1. The HDFS server is implemented through 

docker [22], an open-source platform for building, deploying and managing 
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containerized applications, in order to host a Hadoop cluster with three Data Nodes 

[23]. Within the HDFS servers, it will be possible to perform spark jobs that will pre-

process the data in first place to make them easier to manipulate, and then extract 

the information necessary to understand the progress of the network.  

In a possible real implementation, as thought by the colleague who built this model, 

we would have as many instances of the probe as there are interfaces to monitor 

and a flume instance, both running on the routers that we want to monitor in the 

network. Another instance of flume would then run on the HDFS server where the 

data is actually collected, as showed below. 

 

 

Figure 4.3 – Possible real architecture [6] 

 

4.2 Possible Improvements 
This model brings with it a series of problems and therefore of possible 

improvements, both as regards the emulation part, and as regards a subsequent real 

implementation. 
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The component that first of all in this model certainly needs to be updated is the 

probe. In fact, the probe used was, as already mentioned, the first born from the 

collaboration between TIM and Politecnico di Torino and although based on 

Alternate Marking, it was not designed to be used in this scenario. In particular, the 

probe as it has been programmed cannot filter traffic on virtual interfaces (and 

therefore on those emulated by Mininet). It has, for this reason, been modified to 

capture traffic only from the interfaces that you actually want to monitor, modifying 

the python part, resulting in a deterioration in performance. In fact, since at the 

kernel level the traffic will be captured from all the interfaces and only at the user 

level this will be filtered, there is obviously a waste of time and resources. However, 

the feature for which it was really necessary to have a new probe is the fact that the 

probe used in this model captures only incoming traffic, while it would be 

appropriate to also capture the output one to determine more accurately, for 

instance, where a packet loss occurs (whether on the link or in the router). This 

feature has also led to a particular configuration of the Mininet network, as shown 

below. 

  

Figure 4.4 [6] - Package path 

In practice, to connect two routers, R1 and R2, two switches were used that pass 

traffic from R1 to R2 and vice versa. In addition to this, however, the traffic entering 

the switches from port 1 (from R1 for switch 1-2 and from R2 for switch 2-1) is sent 

to port 3 where a router has been specifically connected to intercept outgoing traffic 
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from R1 and R2. In fact, since this router will only have incoming traffic, and having 

purposely named its interfaces as if they were the output ones of R1 and R2 routers, 

the probe used will function as if it were able to intercept the outgoing packets from 

R1 and R2. 

Other possible improvements concern the sending and saving of the data collected 

by the probe. In fact, although the used architecture is functional, it is not optimal 

for various reasons: 

1. In a realistic case, saving the data in a directory, asking in practice to a router 

to access its file system, is a quite unusual choice as it can lead to delays due 

to access to memory and does not take into account of the actual memory 

available on the router (which usually have limited capacity). 

2. For how it has been configured, sending data through Flume does not allow 

to have a good level of synchronization as the Flume instance running on the 

router checks the directory at issue every 30 seconds and not when actually 

new data are ready. Therefore, a change in the duration of the period would 

also require a modification to Flume, wanting to respect the idea that 

between one check and another there is a wait as long as a period. Obviously, 

from this situation also derives the obligation of having an instance of Flume 

that runs on the routers (and therefore having installed java on the latter). 

3. As regards the Flume instance on the sink machine, or on the HDFS servers 

considering a real case, this has no way to differentiate the aggregated data 

on a period from the specific data of the single interfaces (hence the choice 

in the simulation not to send at all aggregate data). 

4. Furthermore, given the need for preprocessing the data, in order to be able 

to manipulate them in a simpler way at a later stage, the condition whereby 

the data are somehow duplicated on the Big Data servers is created. In fact, 

in addition to the raw data that are saved directly from Flume on HDFS, there 

will be also the data preprocessed, effectively creating a duplication and 

therefore inefficiency from the memory point of view. 
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In addition to all this, there are other possibilities for improvements (some of which 

are also mentioned in the original work [6]), like: enhancing the Spark Jobs, 

improving the way in which they are executed (since now we have to run a series of 

scripts and you could instead think of a REST interface) and the possibility of 

creating a graphical interface where view in a more readable form the information 

extracted from the data.  

In this paper, my task was to solve some of the reported problems, replacing the 

probe, with the relative modifications to the emulated model, and finding a more 

efficient method of sending the data to the HDFS server. 
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Chapter 5 
 

Technologies 
The development of this thesis required the use of different technologies, some 

already used in the previous work, others totally new. Therefore, in addition to the 

use of software already seen as Mininet, the HDFS and Flume, although all 

configured differently, as we will see below, the main innovations are to be found in 

the use of a new probe [7], born from a further collaboration between TIM and the 

Politecnico di Torino, and Apache Kafka [27], both detailed below. 

 

5.1 Probe  
The development of the probe at issue was carried out through BCC [25], a toolkit 

developed by IOVisor, an open source project formed by a community of developers 

to innovate in the field of security and networking, aimed at simplifying the writing, 

validation and compilation of code eBPF [14]. 

5.1.1 eBPF 

The new probe, in fact, like the previous one, is based on BPF [26] (Berkley Packet 

Filter). Developed in the late 80's, BPF was designed to make packet filters. In 

particular, the peculiarity was to do packet filtering at the kernel level thus avoiding 

copies of packets in the user space, a very inefficient practice, and thus improving 

performance. Operation in kernel mode was possible thanks to a new pseudo 

machine language that could be injected directly into the kernel. 

Subsequently in recent years BPF has been improved leading to a new version, eBPF 

(extended BPF) which is the one on which the probe is actually based. 
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This new version allows you to inject code at runtime so you can create and execute 

code in the kernel at any time, moreover it is no longer necessarily tied to packet 

filtering events as the code in eBPF can be hooked to any kernel event. It can then 

be executed as soon as this event occurs. 

The programming language used in this new version is a restricted C (to avoid 

malicious code and ensure the security of the CPU) 

A further addition to the classic version (essential for the implementation of the 

probe) are the Maps. Maps are data structures, organized in key-value pairs, which 

reside in the kernel space and can be accessed by different BPF programs but also 

by programs in the user space. This allows for an exchange of data between the 

kernel and the user space. 

To access Maps an eBPF program must use a helper. Helpers are a set of functions, 

available in the Linux kernel, which allow you to use some library functions of the 

operating system, bypassing the limitations given by eBPF. These functions act as a 

proxy between the BPF code and the kernel. Basically, a helper calls functions that 

could not be executed or called directly from a BPF program. However, only a subset 

of the operating system functions is accessible through the helpers, and adding new 

ones requires a long consultation process within the Linux community. 

 

5.1.2 Overall architecture 

The probe [7] is made up of two parts:  

• the part executed in user space  

• the part executed in kernel space. 

The frontend, that is the part in user space, is written in python and is accessible 

from a REST interface that allows you to configure it or give commands (e.g. start / 

stop). In particular, the frontend is composed of two parts: a PNPM manager (which, 

as we will see, will be the one most subject to changes) and a BPF manager. 
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The PNPM Manager interacts with the NMS via the REST interface. The NMS can 

configure the probe as needed by sending a configuration file in json format that 

contains all the parameters necessary for the configuration, from the duration of the 

period to the maximum number of packets to be captured. The PNPM Manager also 

interacts with the BPF manager by passing the configuration parameters received 

from the NMS. 

The BPF manager is connected to the PNPM manager from which it receives the 

parameters to enable the execution of the BPF program; on the other hand, it 

interacts with the eBPF program in kernel space. For example, when the NMS sends 

the start command to the PNPM manager, in chain the BPF injects the eBPF program 

into the kernel by connecting it to the desired hook point. 

On the kernel side, we have the eBPF code. Its execution on the kernel side is, as 

mentioned, the main advantage, as the packet processing speed is really high 

compared to user space programs, thanks to the absence of context switch that slow 

down the execution. 

On the kernel side we obviously also find the NIC (Network Interface Card), the 

physical component that manages the sending and receiving of packets and the 

placing of the latter within the network stack. Each physical interface is split into 

two logical interfaces (one that receives packets with the suffix _IN, and another that 

sends packets with the suffix _OUT). 
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Figure 5.1 [7] – Overall probe architecture 

 

The eBPF program is connected to two Hook Points. A Hook point is a kernel event 

that calls a function when the above event occurs. The probe is configured on two 

hook points. In fact, the functions are called both when a packet arrives in the kernel 

network stack (which the previous probe already did) but also when a packet leaves 

the stack (in order to also capture the output traffic).  

The program analyzes the packet fields to check if it is compatible with the filters 

set (for example if it comes from a monitored interface or not) and then, since the 

selection of the packets to monitor is based on dynamic hash, calculates the hash, 

discarding or saving the packet depending on whether the hash matches the 

reference one. At this point it stores all the information inside the maps. 
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Maps, as mentioned, are data structures in memory, introduced by eBPF, necessary 

to interact from the kernel to the user space and vice versa. In this context, the probe 

saves the data of the sampled packets in the maps and at the end of the period, the 

PNPM Manager reads them and collects the aggregated values in a data structure, 

while the values of the individual sampled packets are saved in files divided by 

period. 

 

5.1.3 Possible Configurations 

The probe has been designed to work in two marking modes. 

Using two bits, alternately 0 or 1, if the traffic is marked externally (with the 

possibility that not all flows are marked) so that routers can understand which 

packets need to be scanned. The choice of bits was made thinking of the less used 

fields of the IP header. The two least significant bits of DSCP (Differentiated Services 

Code Point) have been chosen for this purpose. 

Since some service providers can use the DSCP field to guarantee a quality of service 

to their customers, an alternative solution has also been thought to avoid using that 

field. 

There is a bit in the IP header that is useless, it is called the unused bit or the evil bit 

and it corresponds to bit 0 of the flags field. Using a single bit to mark traffic leads to 

a number of trade-offs. In fact, since the reported traffic can be confused with 

unmarked traffic, the principle that guarantees the functioning of this method is that 

all the traffic that enters the network must be marked and that the probes can only 

contain a filter to discard the traffic generated by the internal routers (routing 

protocols, protocol configuration, etc.). This filter is based on the IP subnet of the 

backbone. 
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Figure 5.2 [7] – Used fields to mark packets (X first case, Y second case) 

 

To choose which of the two methods to use, just enter in the configuration file a 

subnet from which to discard the packets, and in this case the second method will 

be chosen.  

Another way is to explicitly define the marking values. Basically, if you want to use 

the first method, it will be defined as an initial value 1 and a subsequent value 2 (that 

are the values of the DSPC field). Conversely, if you want to use the second method, 

just define 0 and 1 as initial and subsequent values (that are the values of the unused 

bit). During my tests I always used the first mode. 

 

5.1.4 Differences with previous probe 

The reasons that led to the development of this new implementation are many and 

coincide with the differences between the new probe [7] and the previous one [5]. 

In particular, the main difference is that the new probe can, as already mentioned, 

also capture the output traffic from a router allowing better traffic monitoring, 

something that the previous one could not do. 

Further differences are to be found in the data collected. The new probe, in fact, for 

each captured packet, in addition to the fields collected by the previous probe (ip 

source and destination, source and destination port, protocol, hash, timestamp, 

departure and arrival cluster and period), keeps track of the number of bits matched 

with the hash, and the “color” (so 1 or 2 for example) of the packet. Furthermore, as 
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regards the aggregated data, it provides (in addition to the color, total number of 

packets, number of captured packets, length of the hash reached, and initial 

timestamp) also the average timestamp of the period. 

Last analysis must be made with regard to performance. The new probe allows 

filtering directly at the kernel level and this generally guarantees superior 

performance compared to the previous probe which for our use required filtering at 

the user level, a practice that led to context switches that certainly affected 

performance. 

As can be seen from the development work of the probe [7], and comparing the data 

with the previous one [5], it can be seen that if the improvement in terms of 

maximum data speed at which the probe can work without packet loss is marginal 

in single core, in multi core there has been a considerable improvement, reaching 

10Gbit without loss already with 700byte packets, and in any case significantly 

improving performance with smaller packets.  

 

 

Figure 5.3 [7] – Max speed without loss in the new probe 
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5.2 Kafka 
Among various possible options, examined during my thesis work, to replace Flume 

in the exchange of messages, or at least solve the problems mentioned in the 

previous chapter, Kafka, unlike other software such as Mosquitto broker or 0MQ, 

was the one that convinced me the most and in which I saw the greatest potential. 

Apache Kafka is an open-source flow processing software platform, initially created 

by LinkedIn and later left in open source to the Apache Software Foundation, which 

then developed it. Written in Scala and Java, the project aims to provide a unified, 

high-speed, low-latency platform for handling real-time data feeds [27].  

 

5.2.1 Functioning 

Kafka is a distributed system consisting of servers and clients that communicate via 

a high-performance TCP network protocol. Its operation is based on a message 

queue managed with an extremely scalable publish/subscribe pattern, which makes 

it extremely valuable to process streaming data. 

For what concern the server side, Kafka runs as a cluster of one or more servers that 

can extend on multiple datacenters or cloud regions. In other words, multiple server 

instances can run on multiple machines and form a cluster. Some of these servers 

form the storage tier, called the broker. In order to support mission-critical use 

cases, Kafka clusters are highly scalable and fault tolerant. In fact, if one server fails 

(for example, a disk failure), the other servers will take care of its work to ensure 

continuous operations without any data loss. In this context Kafka is supported by 

Zookeeper. 

Zookeeper “is top-level software developed by Apache that acts as a centralized 

service and is used to maintain naming and configuration data and to provide 

flexible and robust synchronization within distributed systems” [28]. Zookeeper 

keeps track of the status of cluster nodes, topics and partitions. It is essentially the 

brain that allows the various brokers to be synchronized with each other and allows 
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continuous operation even in the event of failures. Zookeeper also keeps track of the 

configuration related to all topics, including the list of existing topics, the number of 

partitions for each topic, the location of all replicas, which node is the preferred 

leader, etc. Access control lists for all topics are also maintained within Zookeeper, 

and it also maintains a list of all brokers that are operating at any given time and are 

part of the cluster. 

On the client side we have distributed applications and microservices that read, 

write and process event streams in parallel, on a large scale and with fault tolerance 

even in the event of network problems or machine failures. Kafka comes with some 

of these included clients, which are augmented by dozens of clients provided by the 

Kafka community: clients are available for Java and Scala, for Python, C / C ++, and 

many other programming languages. 

The clients are divided into: 

• producers, those who write / send data to Kafka servers 

• consumers, those who sign (read and process) these data. 

Data on Kafka is saved in the form of events. Conceptually, an event has a key, a 

value, a timestamp, and optional metadata headers. 

In Kafka, producers and consumers are completely decoupled and independent of 

each other, which is a key design element for achieving high scalability. An example 

of this is the fact that producers never have to wait for consumers, but can continue 

to publish events even if at a given time there is no active consumer. Kafka offers 

synchronization and guarantee mechanisms which, for example, allow a consumer 

to process events exactly once, or give certainty to a producer that an event has 

actually been received and stored by the Kafka brokers. In the latter case, again by 

configuring the clients and servers, you can decide whether: 

• have no acknowledgment mechanism 

• have an asynchronous mechanism, where the producer waits for at least one 

broker to have actually received and stored the message, ignoring whether 

the copy to other brokers is successful or not 
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• have a synchronous mechanism, where the producer waits to receive an 

acknowledgment from all brokers (assuming a replication factor of 3 means 

receiving a message from all 3 brokers). 

Although the last method is the one that guarantees the greatest safety in terms of  

data storage, a good compromise between speed and security remains the 

asynchronous mechanism. 

The events are organized and archived in a lasting way in topic. Simplifying, topics 

are similar to a folder in a filesystem, with events representing the files in that folder. 

Kafka topics can always be multi-producer and multi-subscriber. A topic can have 

zero, one, or many producers writing events, as well as zero, one, or many 

consumers listening. The events in a topic can be read as often as necessary because, 

unlike traditional messaging systems, the events are not necessarily deleted after 

consumption. In fact, it is possible to define how long Kafka must keep the data or 

even a memory threshold after which start deleting the oldest data. Kafka's 

performance is actually constant relative to the size of the data, so storing data for a 

long time isn't a factor that degrades performance significantly.  

Figure 5.4 [27] – Kafka Example Model 

As we can see from the previous image, topics are partitioned, which means that a 

topic is spread across a number of "buckets" located on different Kafka brokers. This 

distributed data placement is very important for scalability because it allows client 
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applications to read and write data from / to multiple brokers at the same time. 

When a new event is published on a topic, it is actually added to one of the latter's 

partitions. Events with the same key are written to the same partition and Kafka 

guarantees that any consumer will always read the events from that partition in the 

exactly same order they were written. 

 

Figure 5.5 [27] – Topic Partitions 

 

Looking at the figure we have a topic with four partitions P1 – P4. Two different 

producer clients are publishing, independently of each other, new events on the 

topic. Events with the same key (indicated by color in the figure) are written to the 

same partition. Note that both producers can write to the same partition. 

To make the data fault-tolerant and highly available, every topic can be replicated, 

even between geo-regions or data centers, so that there are more and more brokers 

who have a copy of the data in case a problem is encountered in a broker or you 

want to do maintenance. A replication factor often suggested, and which I applied 

within the model that we will see below, is a replication factor equal to 3, meaning 

there will always be three copies of the data. 
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5.2.2 Main use cases 

In the light of its characteristics, the uses that can be made of Kafka can be many, 

and among the main ones we can find: 

• Messaging: compared to most messaging systems, Kafka has better 

throughput, integrated partitioning, replication, and fault tolerance making 

it a good solution for large-scale message processing applications. 

• Activity Monitoring: Kafka can rebuild a user activity monitoring pipeline as 

a set of publish-subscribe feeds in real time. 

• Metrics: Kafka is often used for operational monitoring data, leading to the 

aggregation of statistics from distributed applications to produce centralized 

feeds of operational data. 

• Log Aggregation: Collect physical log files from servers and place them in a 

central location (a file server or perhaps HDFS) for processing. Compared to 

log-centric systems like Flume, Kafka offers equally good performance, but 

with greater guarantees thanks to data replication and much lower end-to-

end latency. 

The use that was made of Kafka within the project, follows, as we will see, a mix of 

the cases mentioned above. 
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Chapter 6 

 

New Architecture 
In this chapter we will explore the new simulation architecture that aims to replicate 

as much as possible what would happen in a real network. This simulated model 

serves to lay the foundations for what will be a possible real model of performance 

monitoring through Alternate Marking Method and Big Data approach. 

 

6.1 Mininet Configuration 
Before looking at the architecture in detail, I focus on the configuration of the 

Mininet network. As mentioned in the previous chapters, and as can be seen from 

the work done by those who preceded me [6], the configuration of the simulated 

network with Mininet was designed ad hoc to use the old probe [5], as the latter did 

not provide the capture of the outgoing traffic. 

First of all, therefore, I dedicated myself to modifying the configuration of the 

Mininet network to make it work with the new probe which instead also captures 

the output traffic.  

The problem to be solved basically lies in the addition of a third node connected to 

the two switches between two network routers, as shown in the figure 4.4. This 

additional node is therefore superfluous and would create confusion in packet 

capture. For this reason, the first necessary change was to eliminate this additional 

node by modifying the net2switchRandomLoss.py, the file in which the network was 

created. The rest of the file, such as the creation method based on reading a graphml 

file, and how the ip addresses are assigned to the nodes has remained unchanged 
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compared to the previous implementation. This led to the creation of a new file 

named net2switchRandomLossNew.py, which differs from the previous one only for 

the modification mentioned. The same goes for the Pox controller of the switches. In 

this case also, a minor change has been made, in order to forward traffic to the 

switches correctly, as these no longer have 3 ports, as before, but 2. This change can 

be found in the controller2switchNew.py file. The changes made have led to a 

configuration of this type: 

Figure 6.1 – Updated Mininet Configuration 

Desired choice was to leave two switches anyway as in this way I could only use the 

middle link to set the loss and delay between the two routers. 

At this point, however, the use of the new probe has raised a further problem. In fact, 

the new probe works in a way that doesn’t capture the outgoing traffic from the node 

that generates that traffic. To be clear, if I have 2 nodes R1 and R2, and R1 sends 

traffic to R2, the probe only captures the traffic entering R2 but not the one leaving 

R1. This happens because R1 is the generator of the traffic. Clearly if connected to 

R1 we imagine a third node R3 that wants to send traffic to R2 passing through R1, 

in this case the outgoing traffic from R1 will be captured without problems, because 

it will not be the one generating the traffic. This behavior is due to the hook point at 

which the probe for the output traffic is hooked, which probably does not see the 

packets generated by the device itself (probably because they are generated at a 

lower level, e.g. by the NIC directly). However this is not to be considered a defect 

because thinking about the use of the probe in a real context, clearly the traffic will 

almost never be generated by the routers inside the monitored network, but will 

come from external users. 
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This behavior has therefore created the need to add external nodes from which to 

start the traffic to not reduce the monitored network, which is already not 

excessively extended. In fact, the network emulated by Mininet is still the 

GEANT2012, a choice motivated, as before, by the limited routing capacity of the RIP 

algorithm that runs on the emulated hosts.  

The choice of which and how many nodes to add was based for continuity on the 

previous work. In that case, in fact, all the tests had been done by analyzing three 

flows in particular, which are highlighted below. 

 

Figure 6.2 – Analyzed Flows 

 

In fact, we can see the flow highlighted in green from R38 to R25, the one in yellow 

from R32 to R34, and the one in red from R33 to R16. To continue working on these 
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flows, three nodes have been added, respectively called Ext1, Ext2 and Ext3, 

respectively connected to R38, R32 and R33, as we can see in the next picture.  

 

Figure 6.3 – External nodes 

 

From these nodes, from this moment on, the traffic will start, considering them 

external to the monitored network. The addition of these three nodes was carried 

out by modifying the GEANT2012.graphml file.  

In particular, a new GEANT2012MOD+3.graphml file, copy of the original, was 

created, where the three nodes and the respective three links that connect them to 

the three routers R38, R32, R33 have been added, as we can see in the next figure.  
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Figure 6.4 – Modified code in GEAN2012.graphml 

 

In this way, passing the modified file to the net2switchRandomLossNew.py script, 

nodes, links and the RIP routing protocol on those nodes will be automatically 

added, creating the emulated network without further modifications.  

 

6.2 Implementation 
At this point, having solved the compatibility problems between the previous 

Mininet network and the new probe, we can move on to what is the new 

architecture. The fundamental change is to be found in the way the probe sends the 

collected data. As already explained, until now the system expected the probe to 

write into a folder on the file system. At this point, an instance of Flume periodically 

checked the directory to send, to another instance of Flume running on the server, 

the data which was then permanently stored on HDFS to be finally processed.  
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Therefore, to prevent the probe from writing to the file system and to guarantee  

• a higher level of synchronization, 

• safety in case of failures,  

• to be able to send information on aggregated data to the server  

• to avoid the problem of data duplication due to preprocessing,  

the choice inevitably fell on Kafka. 

The basic idea is to have a Kafka broker that receives data from the probes on one 

or more topics. After that a Kafka consumer that reads the data and saves it to HDFS 

is necessary. For what concern the monitored network, rather than having an 

instance of Flume running on the routers in addition to the probe, the latter will be 

modified in a way that it also behaves as a Kafka Producer by sending the collected 

data to the Kafka broker. 

This leads to the architecture I developed which consists of 3 virtual machines, as 

we can see below. 

Figure 6.5 – The new architecture 
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In practice, in addition to the two virtual machines present in the old model, whose 

role has basically remained the same (the Mininet machine simulates the network 

and generates the data, while the Sink machine collects them), a third has been 

added in which a Kafka server has been implemented. The latter acts as an 

intermediary and synchronization agent for the other two. In fact, the Mininet 

machine will act as a producer, while the Sink machine as a consumer through an 

instance of Flume modified ad hoc. The three machines communicate with each 

other thanks to a bridge, a setting within the Oracle Virtual Box (the software used 

to manage virtual machines) that allows the machines to have an address on the 

local network. This allows the three machines to be reached between them and, if 

necessary, also from PCs connected to the same local network.  

The detail of the three machines is explored below. 

 

6.2.1 Kafka Configuration 

The machine that in the graph I called Kafka VM is a virtual machine on which 

Ubuntu 18.04 LTS is installed, and on which a Kafka cluster consisting of three Kafka 

Brokers and an instance of Zookeeper has been set up. Although the usefulness of 

having three instances of Kafka on the same machine is lacking if you think about 

data security and their redundancy, this choice is motivated by wanting to create a 

configuration as much realistic as possible (hence the choice to remain with only 

one instance of Zookeeper, as in reality it makes no sense to have the same number 

of instances of Zookeeper and Kafka Broker). Once I have installed Kafka on the 

machine, I have configured the cluster, putting Zookeeper to listen on the address of 

the machine, which in my tests has always been 192.168.1.95, at port 2181 (that is 

the default one), and I have created three Kafka instances reachable on the same 

address but respectively on ports 9092,9093 and 9094. In addition, I have assigned 

to each of the instances a directory where to keep a copy of the logs and data, 

wanting to simulate three different disks for each instance. In detail, the directory of 

each broker is /home/ubuntu-kafka/kafka/logs,  ../kafka1/logs and ../kafka2/logs. 

These settings are visible in the respective configuration files in /home/ubuntu-
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kafka/kafka/config/server.properties, ../server1.properties and 

../server2.properties of which we can see an extract below. 

 

Figure 6.6 – Kafka server.properties file 

 

As you can see, further settings have been defined. In particular, a default replication 

factor equals to 3 has been set. In this way, every time a new topic is created 

automatically (for example when a producer sends data on a topic that does not yet 

exist), it will have three copies by default. The number of partitions instead has been 

set to 1. The motivation behind this choice is that, having in the current state of 

things, a single consumer reading the data from the topics, having more partitions 

would not bring any benefit in terms of performance. Finally, both to save space on 

the virtual machine and as a sensible choice in a possible real context, I set the log 

retention hours to 12 hours, so that the data is kept 12 hours after its arrival, after 

which it will be deleted to make place to the most recent ones. In this way, even in 

the presence of a network error or a failure on the server, the data of the last 12 

hours will still be available. 

Everything concerning the topics, like how many and which to create, although 

strictly connected to the Kafka brokers, will be discussed in the next paragraphs in 

order to clearly justify the choices made. 
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6.2.2 Sink VM 

The virtual machine Sink VM is none other than the machine used in the previous 

model [6], that is a machine with Ubuntu 18.04 LTS on which an HDFS cluster and 

an instance of Flume are installed. This was possible, thanks to the modular 

approach of the machines in the previous architecture, an approach also maintained 

in this architecture, which allows you to replace some parts and reuse others. 

While the emulation of the HDFS system and the injection of Spark queries has 

remained unchanged, what has changed is the way in which data is collected. As 

mentioned above, this machine has an instance of Flume that originally 

communicated with another instance of Flume to receive data. The solution I used 

was to reconfigure Flume on the server machine to act as a Kafka consumer. This 

was possible due to the strong integration of the two products, both developed by 

Apache.  

The main differences from the previous configuration are, as we can see, the type of 

source, that is now set as a Kafka source, and consequently the address and the port 

of the data source, which is now the address and the port of the Zookeeper instance 

running on the Kafka machine. In addition, a further field has been added that 

indicates on which topics you need to be listening. The address of the data saved on 

HDFS has also changed, adding the name of the topic to the path, in order to read 

and save data from multiple topics without overlapping problems. Finally, the 

readSmallestOffset option allows the client to keeps track of the data already arrived 

and read from the Kafka broker only those not yet received. 

The changes made are available in the configuration file at /home/ubuntu-

sink/Dropbox/TESI/apache-flume-sink/conf/myconf/avro-source-hdfs-sink.conf 

and an extract can be seen in the next figure.  
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Figure 6.7 – Flume configuration as Kafka consumer 

 

6.2.3 Mininet VM 

The last machine to be analyzed is the Mininet VM. This is also a machine on which 

Ubuntu 18.04 LTS is installed and which, for reasons due to the probe, needs a kernel 

version that is not higher than 5.3.0. In fact, a higher version does not allow the 

probe to work because the latter uses system functions that have probably been 

removed or modified in subsequent versions. 

Naturally, this machine emulates the network via Mininet and Pox controller, which, 

as explained at the beginning of this chapter, has been modified to work better with 

the new probe. 

The probe at issue has been modified to make it compatible with this architecture, 

because, although, as we have seen, it solves many critical issues of the old 
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implementation, it was designed to be compatible with the previous architecture, 

and therefore basically saves the collected data inside a folder of the file system 

exactly as the previous probe did. 

To make the probe compatible with Kafka and solve the problem of saving data on 

the file system, I modified the pnpm.py file in the Software/app folder of the probe. 

This file represents, as the name suggests, the PNPM manager described when I 

deepened the probe, that is the part performed in the user space, the one that is 

waiting to receive commands from the REST interface to actually start the probe and 

that takes care of saving the data received from the BPF manager. 

First of all, I therefore eliminated all the code inherent to saving the data in a folder 

of the file system, and then I implemented a solution to make the probe, or at least 

the user part of the probe, a Kafka producer. As the user part of the probe was 

completely written in python, the most sensible solution was to use Kafka-

Python[29]. 

Kafka-Python is an open-source community-based library. Provides a Python client 

for the Apache Kafka system, with interfaces for producers and consumers. It was 

designed to work very similar to the official Java client, with clearly some added 

Python interfaces (for example, consumer iterators). It works both with the now old 

version of Python 2.7, and with the most recent ones, and is compatible with all 

versions of Kafka brokers, from the most recent (being constantly supported by the 

community) to the oldest such as the 0.8.0. 

For this reason I then installed the kafka-python library and included it in the 

pnpm.py file. 

Therefore, I added some methods to the pnpm.py file to make it a Kafka producer 

and send data to the Kafka broker. 
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Figure 6.8 – Kafka-python methods 

 

In particular, as can be seen from the figure, I have implemented 3 methods.  

The connect_kafka_producer is used to connect to the Kafka Broker. We can see that 

the 3 addresses are passed calling a method readKafkaIP. This method read a file in 

the directory and return the addresses and respective ports of the 3 Kafka brokers 

present in the Kafka VM machine, so that we can contact all three in case the first or 

the second are not working. Reading the addresses from a file allows us to change 

the address at runtime, modifying the kafkabrokerIP file that the readKafkaIP 

checks.  Clearly if the Kafka server addresses are saved in a DNS, you can enter the 

server name rather than the IP address. 

As the name suggest the bootstrap servers is a list of Kafka servers used to bootstrap 

connections to Kafka. Therefore the order in which these addresses are passed to 

the connect method only affects which server will be contacted first to connect to 

the cluster and which ones will be contacted if the previous one does not respond. 

The broker contacted when sending the data will instead depend on the topic and 
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partition leader and will therefore always be the same for all producers and 

consumers. 

Another element to notice are the acks and retries settings which respectively refer 

to what type of acknowledgment to receive (in this case 1 indicates that it is enough 

that only one broker has received and saved the message), and how many times to 

retry sending in case no acknowledgment is received.  

Then we have the publish_message method which takes care, after the connection, 

of sending/publishing messages on the Kafka Broker, taking as input the topic to 

publish on, and the key and value to be published, converted in bytes objects. 

The flush_messages method instead, is a blocking function used at the end of a 

period, which serves to make sure there are no pending messages waiting to be sent. 

At this point it remains to be discussed in what format the data is sent and on which 

and how many topics. My work in this case resulted in two versions of the probe. A 

first version, which was used to be integrated more than anything else with the pre-

existing HDFS model, in order to have a functioning architecture starting from data 

collection up to their processing, and a second one, which was the one originally 

thought, developed instead with an eye to what will be in the future (a more complex 

and efficient HDFS and Spark query system). At the time of writing, in fact, another 

student is developing this part and some choices have been made in relation to the 

work he is developing. The two versions are both present within the Mininet VM and 

are respectively located in the Probe(oldHDFS) and Probe folders. 

 

6.2.4 Probe(oldHDFS) 

In the version designed to be adapted to the old HDFS model, the probe sends the 

collected data in each period, spreading them all on a single topic. The topic in 

question was called metrics. This choice is justified by the fact that in the previous 

version the data in the HDFS was collected under a single directory, and to work the 
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Spark queries needed and need to have all the data of a period available in the same 

folder. 

 

Figure 6.9 – Probe(oldHDFS) implementation 

 

A choice consistent with the old model, but which is also sensible in terms of data 

cataloging, is the choice of the key. In fact, the key consists of the period plus the 

name of the interface from which the data comes, as can be seen in the figure. This 

choice also allows, having set in Flume that the name of the directory where to insert 

the data is also composed of the key, to find the data in the HDFS exactly as if they 

had been loaded with the previous architecture (where the directory was the name 

of the file from which data was sent), allowing complete compatibility with the new 

message sending system. As for the value, this includes all the data that were already 

sent with the previous version, excluding the additional data that the new probe can 

capture, since they would still not be considered in post processing. 

 

6.2.5 Final Probe 

A problem that is not solved using the probe in the version just described, is the 

failure to send aggregate data over the period, and the exclusion of the additional 
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data just mentioned. In fact, leaving the HDFS part unchanged, it makes no sense, 

even if it is possible, to send them. 

From this need and from that of having a probe ready for future changes that will 

affect the Sink VM machine, this second version was born. In this version, the 

collected data is spread over a total of 4 topics. 

 

Figure 6.10 – Topics in the final version of the probe 

 

The four topics as we can see in the figure are Metrics0, Metrics1, Avg_metrics0 and 

Avg_metrics1. The topics Metrics0 and Metric1 contain the data collected by the 

probe on an interface in a period, and in particular in Metrics0 those whose division 

of the period by 2 gives remainder 0, and in Metrics1 those with remainder 1. The 

same goes for Avg_metrics0 and Avg_metrics1, where instead aggregated data are 

sent divided by interface over a period. The message key is unchanged from the 

previous implementation, both for Metrics and Avg_metrics topics. For what 

concerns the value part of the Metrics topics, this is comprehensive of the field left 

out before. The value part of the Avg_metrics topics instead consists of aggregated 

information collected by the probe in a period, like the total number of packets 
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passed through an interface, the number of collected packets and others that can be 

seen in the figure below.  

 

Figure 6.11 – Final Probe implementation 

 

The motivation behind the choice to divide the data on 2 topics according to the 

period, is to be able to analyze the data of a period without having to worry about 

separating the data of the previous and subsequent periods. In an ideal scenario, a 

consumer, listening on all the topics, will receive at a given moment the data of the 

period just passed on a topic, and at the end of their processing he will receive data 

on the topic that previously had not provided data and so on, respecting hence the 

duality of marking also in the processing time. 

Thanks also to the information received on the Avg_metrics topics, it will be possible 

to carry out further checks (such as the verification of the packets actually arrived 

at the Kafka Broker compared to those captured by the probe) or even obtain 

information that are less accurate but faster in the processing. 
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Use cases of this type, and more, will be the subject of the work that will happen to 

this. 

 

6.3 Workflow 
At this point, after having explored the various machines, it is possible to outline the 

workflow which can be represented as a sequence of steps listed below. 

1. In the Mininet VM the GEANT2012 network emulation (with the addition of 

the nodes previously seen) takes place via Mininet and Pox controller. 

Multiple streams are simulated by starting various iperf servers and iperf 

clients communicating with each other. 

2. The probe, when enabled, is waiting for marked packets arriving on the 

various emulated interfaces. When this happens, it calculates the first raw 

measurements, based on timestamps, hashes and identification fields. When 

it finishes analyzing the data coming from a specific interface in a period, it 

sends them through the kafka-python library, practically acting as a kafka 

producer, to the Kafka brokers (which in this case are all on the Kafka VM 

machine), within a single topic metrics. 

3. Meanwhile on the Kafka VM, the three Kafka brokers, already started 

previously, are waiting to receive data. When this happens, as soon as one of 

the brokers, realistically the leader of the topic/partition, receives and stores 

the data, it sends an ack to the producer (the probe). At the same time 

Zookeeper, while the data between the various brokers will synchronize to 

have data redundancy, will update all the information about the index and 

the number of replicas. 

4. The Flume agent on the Sink VM is waiting for new data arriving on the topics 

incoming data on the topics on which it is listening on. When the Kafka 

broker sends the arrived data, Flume immediately stores it within HDFS, in 

the path / user / root / data / input / topic / key. 
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From this point on, if we used the probe compatible with the old HDFS processing, 

the execution follows exactly what happened previously, namely the storage in the 

HDFS and the injection methods of the preprocessing and post processing Spark jobs 

in order to extrapolate relevant information from the data. 
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Chapter 7 
 

Lab Simulation 
At this point in my work, it became necessary to test this model in an environment 

that is as much realistic as possible. In fact, until now, both my work and the one 

before [6] mine have been tested in a highly controlled and emulated environment 

as all the tests were carried out on the three, or two in the previous case, virtual 

machines that all ran on the same PC. In addition to this, we wanted to test the 

potential of Kafka and its scalability. To take a step forward in this sense, thanks to 

the collaboration with TIM, I had some server machines on which to test this 

mechanism in a more realistic way. 

Although the initial idea was to test the probe directly on programmable routers, 

this turned out not to be feasible given the lack of availability of many routers of this 

type to be used at the time of my tests. We therefore opted for server machines 

(some of which were already used in the development of the new probe [7]) to set 

up a more realistic test environment. 

 

7.1 Model 
I therefore had 3 machines available. Two running Ubuntu 18.04 LTS and one 

running Debian 9, all with a kernel version lower than or equal to 5.3.0. 

The idea behind this model is to have a Kafka cluster, an HDFS cluster, a consumer, 

and then have more probes that act as producers, and consequently more flows to 

monitor, in order to generate more traffic for the Kafka cluster. 
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To do this, we have chosen to have a hybrid solution, that is, on the one hand a flow 

that passes through the physical machines available, on the other an emulation of 

the GEANT2012 network emulated with Mininet. In this way, since the machines are 

connected to each other with 1 gigabit ethernet cables, we can on the one hand have 

simple flows, i.e. passing through 2 or 3 nodes at most but with high throughput, and 

on the other hand more complex flows but with minor throughput (those emulated). 

In addition, this solution allows us to have 3 Kafka producers, that is the maximum 

number we can have with the servers at our disposal, in order to test the broker. 

To generate the flows that will pass from the real machines, the ideal solution would 

have been to use traffic generators, as happened in the work [7] on the new probe. 

At the time of my tests, however, these were not available and we therefore opted 

for the use of the iperf tool, already used previously to generate traffic in the 

emulated network. 

All these considerations led to the following model. 

 

Figure 7.1 – Lab Schema 
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As we can see, the model is based on the use of three server machines, respectively 

called Atreides, Gesserit and SvrQuic. 

The task of acting as a Kafka server broker fell on the SvrQuic (Server3) machine, 

the one with Debian on it. It will therefore be the server to which all the data, 

collected by the probes placed in listening to the various flows, both real and 

emulated, will arrive. The choice was forced since this machine, as we can see in the 

figure, does not have a direct connection with the other machines but can only be 

reached through the laboratory network 163.162.95.x, which is a 100Mbit network. 

However, since the other two machines were connected directly by a gigabit 

ethernet, the most sensible idea was to pass the flow of data to be captured through 

the other two. 

On Server3 we therefore have 3 instances of Kafka and one of Zookeeper, which is a 

scheme that strongly recalls the configuration detailed in the previous chapter on 

the Kafka VM. In fact, the main difference is the address at which the brokers are 

reachable, which in this case has become 163.162.95.151 with the respective ports 

9092, 9093 and 9094. All other settings such as topic redundancy and retention time 

remained unchanged. Clearly compared to the configuration seen previously, in this 

case we are on a real machine with 48 cores, which allows us to have a cluster that 

can certainly handle a more realistic traffic. However, it must be said that the three 

instances, in this case, all work on the same disk, while in a realistic environment 

each broker would have disks at exclusive disposal. 

On the Gesserit machine (Server2), the HDFS cluster has been set up instead. This 

will obviously have the task of collecting data in a lasting way and processing them 

through Spark jobs. As happened in the Sink VM, also in this case a docker container 

was used to virtualize the HDFS cluster as the latter needs multiple instances to 

function and in this case the performance could be neglected. To enter the data 

within this cluster, I also opted here for an instance of Flume modified to behave like 

a Kafka consumer. Its configuration follows the one seen in the virtual machine, with 

the only change of the address to contact. 
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On the Atreides machine (Server 1), the Mininet VM machine, running in VirtualBox, 

has been replicated, for the emulation of the GEANT2012 network, on which the 

probe, as seen before, will capture the marked traffic and send it to the Kafka broker, 

which in this case will be located at 163.162.95.151. To allow this virtual machine 

to be able to communicate with the local network, to which Server1 is actually 

connected, the Mininet VM has been bridged, through a setting of Virtual Box, with 

the interface on which Server1 is actually connected to the network. In this way the 

virtual machine will appear to the network as an additional physical machine, 

reachable at an address that will be assigned directly by DHCP. In this way the 

Mininet VM can therefore receive and send traffic on the 163.162.95.x network. 

 

7.1.1 Flow between servers 

At this point, however, we can see that a second function has been neglected in the 

last two server machines. In fact, as shown in the figure 7.1, there is a probe and a 

traffic generator in both.  

The two machines are connected to each other via a direct link, gigabit ethernet, 

which is addressed as a separate network that is 22.2.2.x. The two servers therefore 

have, in addition to the addresses on the network 163.162.95.x (.63 for Atreides and 

.58 for Gesserit), respectively, addresses 22.2.2.2 and 22.2.2.1. 

Since, as mentioned, the model also provides for the capture of real traffic, in 

addition to the emulated one, this traffic pass on this link. Hence the presence of the 

two probes on the two servers, so that they can intercept the traffic that passes 

between the two machines. 

Thanks to the lack of traffic generators and the characteristic of the probe, which I 

have already talked about previously, of not capturing the outgoing traffic from the 

device that generates that traffic flow, it was not possible to generate traffic via iperf, 

directly on the Atreides and Gesserit servers, as we would not have been able to 

capture the traffic exiting these two machines. It was therefore necessary to 

generate traffic from different machines or at least from different IPs. For this 
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reason, an iperf traffic generator has been inserted inside the Mininet VM on Server1 

and inside a virtual machine created for the occasion, on Server2. In fact, for both 

machines a bridge has been set up on the respective interfaces that connect the two 

servers, so as to be connected to the 22.2.2.x network. Both were manually assigned 

an IP address, as there is no DHCP. We therefore have that the Mininet VM in 

addition to the address on the network 163.162.95.x will also have a second address 

22.2.2.200, while on the other hand the virtual machine created exclusively to 

generate traffic will have an address 22.2.2.100. 

In the two virtual machines, a path was then set up to reach the other, which passes 

through the two servers Atreides and Gesserit. In essence, therefore, we will be able 

to create a bidirectional flow through two clients and two servers iperf located 

within the two virtual machines. 

From the point of view of the network the two virtual machines will appear 

connected as in the following figure. 

 

Figure 7.2 – Bridged Virtual Machine on 22.2.2.x network 
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The traffic from the Mininet VM will first pass from Server1 to address 22.2.2.2, then 

from Server2 to address 22.2.2.1 to finally arrive at the other virtual machine with 

address 22.2.2.100. On the other VM, the traffic path will instead be reversed. This 

will allow the two probes positioned on the two servers to capture both outgoing 

and incoming traffic without problems. 

 

7.2 IPMininet 
At this point in the design of the laboratory model, a further modification to the 

network emulated with Mininet was necessary. In fact, wanting to have bidirectional 

flows like the one set up between the two server machines, there was the need 

(always driven by how the probe works) to add another three nodes (considering 

the three flows analyzed previously). 

As we have seen previously, the changes made to the GEANT2012 network to work 

correctly with the new probe had led to the configuration with three additional 

nodes seen in figure 6.3. 

Therefore, in order to have the probe capture all the packets and wanting to have 

bidirectional flows, three further nodes must be added, respectively connected to 

r25, r34 and r16 in order to have a departure and arrival point of the flows external 

to the monitored network. 

To do this, a further version of the GEANT2012.graphml file was created, called 

GEANT2012MOD+6.gramphl, where in a similar way to what we saw with the 

addition of the first three nodes we arrived at the configuration in the following 

figure, in which the 6 external nodes and the 3 flows (distinguished by color) with 

the possible paths they can take, are highlighted. 
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Figure 7.4 – Final GEANT configuration 

 

In this configuration the RIP algorithm that is loaded on the routers during the 

creation of the network, showed his weakness. In fact, in most simulations, this 

increase in nodes leads to the failure of the entire network, which, due to the RIP 

routing algorithm, is unable to route packets from one end to the other. 

Although a solution based on the manual addition of some paths, adding static 

routes in the routers during the creation of the network, has been implemented in 

the net2switchRandomLossNew6ExNodeStatic.py file, in order to make at least the 

analyzed flows functional, it is clear that any other future modification that passes 

for the emulation of a network with this implementation of Mininet, will lead to 

malfunctions. 
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The main problem to be solved is the using of a more modern and performing 

routing algorithm to replace the RIP. 

A permanent solution to this problem has been found using IPMininet [30]. 

IPMininet is a Python library, which extends Mininet, to support emulation of 

complex IP networks. This library in fact provides new classes, including the Router 

one, which allows the automatic addition of the most various routing algorithms, 

such as OSPF or ISIS, to the network nodes. 

Through this library I have implemented a new solution that allows the creation of 

a network starting from a. graphml file, without node limits since OSPF [32] is now 

the default algorithm running on IPMininet nodes. 

Furthermore, this implementation allowed me to lighten the structure of the 

emulated network, as the presence of switches between the routers was no longer 

necessary, thus also eliminating the need to use the POX controller. In this way 

between two nodes/routers of the network there will be only the link that connects 

them, and on which the loss and delay will be set, as in the figure. 

 

Figure 7.5 – IPMininet node connection 

 

This implementation can be consulted in the netIPMininet3.py file, of which there is 

an extract below.  

By giving the GEANT2012MOD+6.graphml file as input to this script, the network in 

figure 7.4 will be emulated without problems, giving us the concrete possibility of 

having bidirectional flows as we wished.  
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Figure 7.6 – IPMininet script 

 

Another version of the netIPMininet3.py file, called netIPMininet3Test.py, was at the 

end created to automatize also the creation of client and server iperf on the external 

nodes and the subsequent traffic generation. 

Clearly, the use of the IPMininet library will allow in the future, if needed, to use even 

larger networks than the GEANT2012 that was chosen in the previous work because 

it was compatible with the stability of the RIP algorithm used previously. 

 

7.3 Workflow 
At this point, after having described the model in all its parts, it is possible to outline 

the workflow which also in this case can be represented as a sequence of steps listed 

below. 

1. First of all, the three Kafka brokers together with the zookeeper instance are 

started on Server3. 
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2. After that the Flume agent, on the Gesserit Server2, is started. From now on 

it will be waiting for new data arriving on the topics metric0, metrics1, 

avg_metrics0 and avg_metrics1. 

3. On Server 2 the HDFS cluster also is started trough the docker virtualization. 

4. At this point the 3 probes, those on the two servers and the one in Mininet 

VM, are enabled, in order to put them waiting for the start signal. 

5. In the Mininet VM the GEANT2012 network emulation (with the addition of 

6 external nodes) takes place via IPMininet. Multiple bidirectional flows are 

simulated by starting the various iperf servers and iperf clients that 

communicate with each other on the various emulated nodes.  

6. At the same time, iperf servers and clients are started on the Mininet VM and 

on the virtual machine on Server2 to generate bidirectional traffic between 

the two servers Atreides and Gesserit.  

7. At the same time probes are started through the start signal. From this 

moment on, they are waiting for marked packets to arrive on the various 

emulated and non-emulated interfaces. When this happens, the first raw 

measurements are calculated, based on timestamps, hashes, identification 

fields and at the end of a period when the probe finishes analyzing the data 

coming from a specific interface, these are sent through the kafka-python 

library, to the Kafka brokers (which in this case are all on Server 3). 

8. On server 3 as soon as one of the brokers receives and stores the data, it 

sends acks to the producers (probes) and will synchronize the data between 

the various brokers, to have data redundancy, thanks to the help of 

zookeeper. 

9. When the Kafka broker sends the arrived data to the listening consumer, 

Flume immediately stores it within the HDFS cluster, virtualized in the 

docker container, in the path / user / root / data / input / topic / key.  

 

For further clarification on the tests carried out, in the Appendix there is a point-by-

point explanation of all the command lines and settings used. 
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7.4 Tests and Performance 

During this laboratory tests, considerations regarding the traffic generated, the 

performance and the scalability of Kafka in relation to both the generated loads and 

the possible real loads, have been made.   

As for the laboratory model, two tests were carried out by having the probes on the 

servers capture at most first 10000 and then 20000 packets per period per interface. 

This means that having each server an input and output interface, where marked 

traffic pass, we have a total of 4 interfaces. As for the probe on the Mininet VM 

instead, this has been set to capture at most first 1000 and then 2000 packets per 

period per interface. In this case the number of monitored interfaces clearly 

depends on the routing and where the packets pass, but since there is a filter (that 

represent the interfaces that have to be monitored) we have approximately 20 

interfaces. We therefore have 40000 or 80000 messages at most sent by the probes 

on the servers and 20000 of 40000 messages at most from the probe on the 

emulated network, for a total of about 60000 messages per period in the first case 

and 120000 messages per period in the second case. 

Each message, looking at the length of key and value, currently weighs about 

100bytes (upwards). This means that to monitor all these real and emulated flows, 

each period, which in our tests has always been 30 seconds, generates about 6 MB 

of traffic in the first test and 12MB in the second one. 

For what concerns, instead, a possible real scenario, discussing with the TIM 

managers who supervised my work, we came to imagine a scenario in which in a 

network there are about 300 monitored interfaces and 1000 packets per period. 

This leads, with messages that are currently 100byte, to a traffic of 30MB per period, 

which on a network with links of at least 1Gbit is more than acceptable. 

For this reason, it would have made sense to try to increase the number of packets 

captured to test the broker with a 30MB of traffic. However, since the network that 

connect the Kafka broker is a 100 Mbit, increasing the number of packets captured 

would not have led to an effective load increment on the Kafka broker respect to the 
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one tested with 6 and 12MB of traffic. The reason why the number of packets to be 

captured was not increased further was to not saturate the 100Mbit network "only", 

that connected the Kafka cluster with the other machines, in order to also test the 

strength of the latter without delays due to the network. 

All these considerations do not account the traffic generated by the kafka broker to 

the Flume consumer on Server2. In this case we should consider a doubled traffic 

that for sure will saturate the 100Mbit network. 

 

7.4.1 Kafka Performance 

During my tests the broker Kafka did not give any signs of failures in receiving 

messages from the probes. Verification that there were no packet losses in this 

phase was done through a python script “check.py” which compare the number of 

messages received by the brokers on the two topics metrics with the one calculated 

by looking at the statistics in the two topics avg_metrics.  

However, wanting to have an idea of the load that it could support, various papers 

on the performance of the Kafka brokers tested in various configurations came to 

my aid. Among these, the article I selected as a reference (but which is still 

compatible with other works that I have consulted) is the one [31] made in 2014 by 

LinkedIn (the company that gave birth to the first versions of Kafka).  

In this work three consumer machines are used, as they have 6 core processors, 32 

GB of Ram and 7200rpm SATA disks as storage, to create a Kafka cluster.  

In this setup, according to the tests with 3 producers, and a replication factor 3 with 

asynchronous ack (i.e. the ack is sent when only 1 replica is ready) we get up to 

2,024,032 records/sec or 193 MB/sec (with messages of at least 100bytes). This 

number can grow (clearly not linearly) as the number of producers and brokers 

increases. However, even if this number were an upper limit, we are well below the 

30 MB per period, calculated for a real case study. 
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With regard to the choice of keeping the data saved on the Kafka brokers for 12 

hours, this will mean having about 40GB of space available on each broker (always 

considering 100byte messages), a requirement now satisfied even by low-end 

machines. This implies that, if it were necessary in the future, the retention time of 

messages could be increased. 

All this ensures that Kafka is a solution that can last firmly over time, even as the 

number of nodes or packets captured increases. 

 

7.4.1 Traffic Variability 

With regard to this last question, I would like to clarify. The numbers I have just 

provided refer to specific cases tested or that refer to what in the imagination will 

be the future of this performance monitoring system.  

Clearly these numbers can vary greatly depending on three main factors: 

1. Number of monitored interfaces 

2. Packages captured per period 

3. Length of the period 

In fact, doubling (and therefore increasing by 100%) the number of monitored 

interfaces or the number of packets collected in a period, results in a directly 

proportional increase in traffic on the network (therefore an increase of 100%) and 

consequently in data arriving to brokers. 

The length of the period, on the other hand, has a different effect. First of all because 

it does not necessarily imply an increase in collected packets. However, considering 

a proportional increase in packets, although at the point level (i.e. at the end of each 

period) we could measure more traffic, in general the traffic circulating on the 

network does not increase as we would simply have fewer periods of more packets, 

or vice versa. 

Given the dependence of traffic on these values, one way to have a unique measure 

of how much traffic is actually generated is to consider the packets captured per 
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second. In this way, the tests carried out in the laboratory can be summarized as 666 

packets/sec for each interface at most captured by the probes on the servers 

(considering the maximum of 20000 packets in a period of 30 seconds), and 66 

packets/sec for each interface at most captured by the probe on the Mininet VM. 
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Chapter 8 

Conclusions and future works 
Carrying out this thesis was challenging. It was, however, a fun challenge that 

increased my knowledge both on networks in general and on all the different 

software involved during development.   

One of the most time-consuming parts that clearly did not have space in the previous 

chapters, was the search for the component that should have replaced Flume in the 

exchange of messages. In fact, various alternatives have been evaluated to then 

arrive at Kafka. In particular, the possibility of staying on Flume was evaluated, 

trying to use a data source other than that of the reading in memory. Another option 

that has been evaluated is 0MQ, an asynchronous messaging library that provides a 

message queue. It can be used as a publish / subscribe system without a dedicated 

message broker. Finally, MQTT broker, another publish/subscribe system, similar 

to Kafka in certain aspects, was also evaluated as a possible choice. If in the first case 

Flume was rejected due to the impossibility of both a good level of synchronization 

and to differentiate the data sent, for the other two cases, the choice was conditioned 

in particular by the fact that Kafka, being an Apache product, was of easier 

integration both with HDFS in general but also for future projects such as real-time 

streaming of data to a Spark server. 

Even modifying the parts done by my colleagues previously took some time to 

understand in detail what to change and how. In this sense, however, the previous 

undergraduates Calogero Corbo and Marino Urso have always been at my disposal 

in case of doubts. 

In the end, although it was done during the pandemic period, I still consider this 

work a positive experience because it helped me to deepen topics that I might not 

have addressed. 
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The aim of this work was to bring the network performance monitoring through Big 

Data approach closer to the use on real networks and this work, with the 

modification of the message exchange system which guarantees the possibility of 

differentiating the data sent and allows a greater level of synchronization between 

producer and consumer, certainly moves in this direction. 

Clearly there are still a number of improvements to be implemented. In particular 

as regards the probe, this could be further modified to avoid peaks in sending data. 

At present, in fact, after that a period passed, the probe sends all the data collected 

on that period as quickly as possible. This behavior means that at the end of each 

period there is a traffic peak on the network in which all the probes send data. A 

solution could be to spread the sent of the data on the next period, while the probe 

collects the data of the new period. Furthermore, the probe needs an update due to 

incompatibility with kernels higher than 5.3 

Another part that needs a change as soon as possible is the processing part of the 

collected data. Although in fact a version of the probe was created to maintain 

compatibility with the old HDFS model and the way in which the data were 

processed, it is clear that to fully enjoy the potential of this model it is necessary to 

rethink this part. An idea, which the graduate student who will succeed me is already 

carrying out, is to analyze the data in real time and save only the necessary ones. 

In addition to these, other improvements, not explored in this work, such as the 

creation of routers that mark traffic, the improvement in the calculation of clusters, 

the choice of the points to be monitored, and the possibility of a graphical interface 

to consult the processed data, and others, will certainly give space for further 

refinement works. 

I am sure that the Politecnico di Torino, together with TIM, will try to explore these 

fields and continue these works. 
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Appendix  

Step by step test setup 

First of all on Server 3, Zookeeper is started via zookeper-server-start.sh (in kafka 

directory) to which the zookeeper.properties file is passed, where the zookeeper 

address and port are set. 

• sudo bin/zookeeper-server-start.sh config/zookeeper.properties 

Then, always on Server 3, the three Kafka brokers are started through kafka-server-

start.sh (in kafka directory) to which server.properties, server1.properties and 

server2.properties files are passed. In this configuration file, we set the brokers to 

have a redundancy of 3 and one partition. In addition we pass the address and port 

of zookeeper and set the address and port of each kafka broker which in this case is 

163.162.95.151:9092,9093 and 9094 (detail of the server.properties in chapter 6). 

• sudo bin/kafka-server-start.sh ../server.properties 

• sudo bin/kafka-server-start.sh ../server1.properties 

• sudo bin/kafka-server-start.sh ../server2.properties 

The Flume agent, on the Gesserit Server2, is started running the run.sh file in the 

flume directory. From now on it will be waiting for new data arriving on the topics 

metric0, metrics1, avg_metrics0 and avg_metrics1, according to the configuration 

file /apache-flume-sink/conf/myconf/avro-source-hdfs-sink.conf  seen in chapter 6. 

• ./run.sh 

The HDFS cluster, on Server 2, also is started running, in the docker-hadoop-master 

folder, the command “docker-compose up” that start the docker and create 

containers as indicated by the configuration file docker-compose.yml (also present 

in the folder). 

• sudo docker-compose up 
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The 3 probes, those on the two servers and the one in Mininet VM, are enabled via 

the python file run.py (which puts them waiting for the start signal) present in the 

directory probe/software. The script takes as input the configuration file 

config_filter.json, present in the directory probe/run. 

• sudo python run.py 

The configuration file is set in this way on the servers 1 and 2: 

o "prog_id": 3,  

o "mp":30, 

o "mpc":180, 

o "starter_mark": 1, 

o "next_mark": 2, 

o "proto": "udp", 

o "match_value":383146267, 

o "match_length": 1, 

o "hash_function": "bob", 

o "npkts": 20000  

On the Mininet VM the configuration is the same unless for the last value (that 

represent the max number of packet to capture) that is 2000, and the addition of a 

field “netifs” where there is the list of the interfaces to monitor. 

At this point, in the Mininet VM the GEANT2012 network emulation (with the 

addition of 6 external nodes) takes place via IPMininet. Multiple bidirectional flows 

are simulated by starting the various iperf servers and iperf clients that 

communicate with each other on the various emulated nodes. All this happens 

automatically by running the python script netIPMininet3Test.py and passing it as 

an argument the file Geant2012MOD+6.graphml. The iperf traffic on the emulated 

network is generated automatically whit a marked traffic of 100 packets/sec. 

• sudo python3 netIPMininet3Test.py 

topologies/Geant2012MOD+6.graphml 
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At the same time, iperf servers and clients are started on the Mininet VM and on the 

virtual machine on Server2 to generate bidirectional traffic between the two servers 

Atreides and Gesserit. This happens enabling on both machines a server iperf 

through command “iperf -s -u -B address.of.the.machine” and a client using the 

iperf_test.sh script, present in the probe/test folder, generating a traffic of 1000 

packets/sec (how to use it is explained in the file itself).  

• iperf -s -u -B 22.2.2.100 on VM on server2 

• iperf -s -u -B 22.2.2.200 on MininetVM 

• ./iperf_test.sh 1000 22.2.2.200 4 30 1 2 on VM on server 2 

• ./iperf_test.sh 1000 22.2.2.100 4 30 1 2 on MininetVM 

At the same time all the 3 probes are started through the start_capture.sh script.  

• ./start_capture.sh 

From this moment on, the simulation is running and following the settings in the 

configuration file config_filter.json, the probes are waiting for marked packets to 

arrive on the various emulated and non-emulated interfaces. When this happens, 

the first raw measurements are calculated, based on timestamps, hashes, 

identification fields and at the end of a period when the probe finishes analyzing the 

data coming from a specific interface, these are sent through the kafka-python 

library, to the Kafka brokers (which in this case are all on Server 3) following the 

schema reported in chapter 6. 
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