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Abstract
How can the development of new technologies impact the future of personal urban
mobility? What direction can we give to the advancements in fields such as automa-
tion and electric vehicles, so that they can become our allies in the development of
a more sustainable world? This thesis tries to provide an answer to those questions
by investigating the emergent world of Autonomous Mobility on Demand (AMoD).
Such new technology promises to revolution our cities and the way we travel across
them, by releasing fleets of autonomous electric taxis that are able to pick up pas-
sengers in few minutes upon request and carry them to wherever they might ask.
Many are the market players as well as the academic researchers currently taking
part in this new technological challenge, and if some of its aspects have already been
addressed and studied in detail, there are still numerous open issues that need to
be investigated. In order to make this technology interesting enough to be adopted,
so that it can cooperate with the already existing forms of transport and hopefully,
one day, even replace some of them, it is necessary to enhance it and optimize its
functioning. In this research, a new algorithm for an efficient control of such fleets
of autonomous electric taxis is developed and tested. It includes the optimal as-
signment of passengers to vehicles, a periodic redistribution of free taxis along the
network operated in a predictive framework, and a smart handling of vehicles’ charg-
ing. The policy developed here shows good results in terms of a reduction of mean
customers’ waiting time and distance travelled by the taxis when not transporting
passengers, resulting in an increased quality of the service and in a reduced energy
consumption of the overall system. Some of the questions that are raised on the
subject still remain open after this research, thus constituting interesting starting
points for possible future studies.

Keywords: Traffic modelling and simulation, model predictive control, assignment
problem, rebalancing, sustainability, efficiency optimization, charging optimization
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1
Introduction

Sustainable mobility is an ideal model of a transport system which aims at reduc-
ing its environmental impact while maximizing its efficiency and effectiveness. It
consists in a series of solutions that contribute to creating a new idea of mobil-
ity, enhancing its convenience for both the environment and the passengers. By
the dawn of the new millennium, the topic of sustainable transportation has been
widely discussed and developed, and it has seen a further advance with the emerge
of electricity-powered vehicles and self-driving cars. In the perspective of creating
a sustainable mobility system, in fact, it is necessary to both reduce the environ-
mental impact of the transport sector and to make mobility smarter by introducing
technology-driven innovations. Electrical vehicles represent nowadays a key tool for
providing strong responses to the current environmental, social and sanitary crisis,
by leveraging on the adoption of a different form of energy to power the vehicles,
leading to a sensible reduction of the harmful emissions connected to vehicles’ trav-
els. Autonomous vehicles carry several benefits as well, including: a reduction of
the drivers’ stress, as they can rest during the journey, time saving, as the riders can
spend the ride time doing other things, mobility for non-drivers and an increase in
safety. Nowadays, in fact, the majority of car accidents is caused by human errors,
the main factors being: drunk driving, speeding, distracted driving and drowsy. The
Transport area of the European Commission website [1] claims this percentage to be
around 90%, while according to the 2016 research of the NHTSA about fatal motor
vehicle crashes, that value would go up to almost 96% [2]. The use of autonomous
vehicles could potentially eliminate the majority of the factors that cause car ac-
cidents, thus making the roads much safer for both travellers and pedestrians. To
achieve all these benefits, vehicles must be able to operate autonomously under all
normal conditions, thus reaching the so-called Level 5 autonomy [3]. The benefits
of autonomous vehicles are obviously followed by related disadvantages, such as an
increase in vehicle and infrastructure cost: for this reason it is still necessary to
conduct further researches on the optimization of their functioning. Autonomous
vehicles would allow to replace cities’ transport systems, including taxis, private
cars and public buses, with automated mobility-on-demand systems, thus leading
to a reduction of the environmental impact of the transport sector. Such systems
would provide affordable mobility and at the same time offer a spatial and temporal
flexibility never seen before.

1



1. Introduction

1.1 Mobility on Demand

The advent of private vehicles in the last century has completely revolutionized the
nature of urban mobility, as they allow people to easily move either along short
or long distances at their discretion. Nevertheless, the exponential growth of this
phenomenon in the last decades has led to several environmental issues, such as an
excessive release of greenhouse gases and an increasing need of fossil fuels, as well
as to several infrastructural issues, namely the lack of parking spots the increase of
congestion in the cities. All these drawbacks of private automobiles made them an
unsustainable solution to the growing request of personal mobility in the future [4].
Most of the automobiles, nowadays, have the capacity of reaching high speeds and
elevated fuel capacity which, combined with a high fuel economy, allows them to
travel long distances on a full tank. Studies have demonstrated that in urban en-
vironments these features are underutilized, in fact the average cruising speed of
vehicles and distance they travel are much lower than their capacity. Moreover, the
cars’ utilisation rates are typically below 10%, as they spent most of the time being
parked [4].

One of the most up-and-coming solutions to these issues is adopting the concept of
Mobility on Demand (MoD), consisting of shared vehicles used for one-way passen-
ger mobility. Two categories of services can be included in this transport system
modality: taxis and car sharing. The first one involves vehicles with drivers that can
reach customers in their location and transport them to their desired destination.
This kind of service is provided, besides the common urban taxi suppliers, also by
companies such as Uber [5], Lyft [6] and Bolt [7]. Car sharing instead consists in
allowing customers to borrow the nearest vehicle, use it to arrive to their destina-
tions and leave it there, thus making it available for the next customers. All these
actions are easily done through an application on their smartphone in few seconds.
Many companies are providing this kind of service worldwide such as aimo [8], M [9]
CAR2GO [10], Share’ngo [11].

1.2 Autonomous Mobility on Demand

A common challenge that must be addressed by the companies providing MoD is
that of the imbalance defined as an uneven distribution of the resources among
the network. In fact, even though the network is symmetric, being the demand
stochastic, it will drive the system out of balance, leading to a periodic accumulation
of vehicles in some particular stations and a lack in the others, thus threatening the
quality of the service. For companies that provide bike- or scooter-sharing systems,
this issue can be solved by moving some of the vehicles from the areas of excess
to those of depletion using trucks. For MoD systems relying on the use of cars,
a possible solution to the imbalance problem would be to hire a team of drivers,
whose job would be to rebalance the vehicles across the network. This option would
lead to an increase of expenses in terms of cost and time, and the rebalancers
themselves would become unbalanced, thus giving rise to the need of rebalancing
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1. Introduction

also the rebalancers [12].

Driverless vehicles have the potential of solving this issue at its core, as they are able
to rebalance autonomously and reach charging spots when needed by themselves.
Besides that, a Mobility on Demand system based on the use of autonomous vehicles
would provide countless other benefits to urban mobility, which can be classified as
external or internal. The internal benefits are directly related to the consumers and
their interaction with the transport system, and they can be divided into two sub-
groups: there are aspects that differentiate AMoD from common taxis, in particular
the reduction of the cost of the trip due to the absence of the driver, and others that
come from the comparison of AMoD with car sharing services, namely a reduction
of physical and mental stress for the driver, considering that he/she can relax with-
out paying attention to the road, and the ability to ride even for customers without
driving license.

As for the external benefits, AMoD systems lead to an increase in safety, by elim-
inating all the human risk factors, a decrease in congestion of the roads, and a
solution to the problem of the parking spots, thanks to a more efficient utilization
of vehicles. They have also a positive impact on the environment, as they reduce
harmful emissions by promoting an increase in fuel efficiency [13].

For what concerns the financial analysis, it has been studied how AMoD affects the
fleet size. In particular, Pavone et al in [4] show that Manhattan’s taxi demand
can be satisfied with 30% less vehicles than the current taxi fleet, while the whole
personal mobility of Singapore can be fulfilled with only 1/3 of the actual taxis just
using AMoD systems.

The last years have seen an acceleration in vehicles automation technologies which,
coupled with an increase in public interest in MoD systems, has enhanced the per-
ceived economic and societal value of AMoD systems. This led to a new focus of
some automotive giants in the field of robotaxis development, as well as the foun-
dation of new startups with the same scope, such as Zoox [14], owned by Amazon,
and EasyMile [15].

As every revolutionary technology, the development of robotaxi systems is fueling
heated debates about the perceived risks and drawbacks connected to it, and it is
facing a certain amount of skepticism by the public opinion. The main arguments
against it involve primarily the economic aspect, as it is perceived to be very expen-
sive for both companies providing it and their potential customers, and safety issues,
that are mostly related to the aspect of autonomous driving. Other arguments in-
clude: the skepticism about the utility of such new technology, in fact a part of the
public has difficulty in seeing why AMoD systems are needed and how they could be
better than the current technology; apprehension about the reduction of unskilled
employment that such systems would cause, due to the fact that drivers would not
be needed anymore; and concerns about passengers’ privacy and cybersecurity in
general. In conclusion, the numerous challenges that come with the development of
AMoD systems include also facing of public’s technology adoption resistance, which
needs to be addressed in the right way in order to encourage the integration of this
technology in the society.

3



1. Introduction

1.3 Related work

Several studies have been conducted in the last decade, regarding the development
of Autonomous Mobility on Demand systems as a potential solution for generating
an intelligent and efficient transportation system in terms of travel time and fuel
savings. In particular, many researches, such as [16] and [17], analyzed the possibility
of adopting automated taxi services for urban transport, applying them to simulation
scenarios of big cities. Other studies evaluated autonomous on-demand systems as
a solution to the problem of transportation in rural areas [18]. In such regions the
organization of the mobility faces many challenges, due to the low population density
and to the larger and less direct routes, which make a common transportation system
inefficient and expensive.
In the past years, several researches have been conducted to explore the possibility of
adopting the techniques of Model Predictive Control (MPC) for an intelligent con-
trol of an AMoD fleet. The present work takes them as a starting point and a set of
guidelines to bring the research forward and explore new aspects and possibilities in
the field of autonomous taxi fleets control. In [19] for the first time the optimization
of vehicle scheduling in an AMoD system is conducted in a model predictive control
framework, and some considerations about vehicle charging are included. The cost
function implemented to solve the optimization problem includes two terms: one
considers customers’ waiting time, while the other takes into account the cost of
rebalancing vehicles. The addition of a third term involving charging is also evalu-
ated. The problem is solved as a Mixed Integer Linear Programming (MILP), and
the algorithm is shown to experimentally outperform the previous control strategies
considered. To obtain these results, a decision variable was assigned to each vehicle.
This led to a dependency of the problem size on the dimension of the fleet, thus lim-
iting the real-life applications of the method. A different strategy is adopted in other
works, where the complexity of the algorithm is set to be only dependent on the
number of stations, and not to the number of vehicles or customers, in order to make
it adoptable for larger-scale AMoD systems. This is done for example in [20], where
the objective function to be minimized includes the cost that comes from moving
vehicles to rebalance them, the cost connected to making the customers wait, and
the cost of not servicing customers. This paper also explores the effects of adopting
short-term forecasts of customer demand based on past data of the real demand,
which are shown to yield significant improvements in terms of customer waiting time
reduction. Several research groups encountered the issue of the excessive complexity
of the algorithms, which made them either impossible to solve or to scale. Some
of the techniques adopted to ease the problem’s complexity include decoupling the
dispatching and rebalancing actions in order to solve them as two separate unimod-
ular linear programs [21], and relaxing the integer constraint for some of the decision
variables in the optimization problem [22]. To the present date, only few works have
addressed the aspect of charging of the vehicles. One of these is [23], in which the
electricity price and availability variations over time are also taken into account. A
two-layers MPC optimization problem is implemented, with different time frames:
the charging optimization problem has a longer horizon, while the optimization of
the transport service happens within a shorter time frame, and takes as constraints
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1. Introduction

the results of the other problem. Two more elements are added in the cost function:
the state of charge of the vehicles and the charging rate. The results obtained in the
study are very positive in terms of reduction of the charging cost, but the problem
is limited in scale.
The aspect of charging in the research on AMoD control needs to be further in-
vestigated and properly simulated, in fact in a complete model it is essential to
account for it. Furthermore, solutions that implement a predictive framework, such
as the MPC optimization problem, need a reliable forecast of the demand on which
additional studies are required.

1.4 Objectives of the study

In order to see the real benefits of the adoption of a fleet of autonomous vehicles
for the purpose of passenger transportation, it is crucial to operate an appropriate
control of the system that grants it an efficient and fully optimized performance.
The control of an autonomous taxi fleet can be divided into routing, dispatching and
rebalancing, and here only the latter two parts will be addressed. The dispatching
part consists of matching the open customer requests with available vehicles. The
problem of imbalance is a drawback of the system’s high flexibility, and could lead
to drastically decreased service levels: it is thus necessary to periodically reposition
vehicles from oversupplied to empty areas of the city [16].
The main questions to which this research aims at providing answers are:

• Which factors should play a major role in the assignment of vehicles to cus-
tomers in an AMoD system, and what is their impact on the optimality of the
solution?

• How does the rebalancing of resources along the network behave in a predictive
framework?

• How can the energy consumption of the AMoD system be optimized?
• How well can the control policy scale to the complexity and dimensions of real

systems?
The aim of this research is then to create an optimal algorithm to control the
behavior of a taxi fleet for AMoD, with the objective of maximizing its efficiency
in terms of energy consumption while keeping customer waiting time under control.
In order to achieve a more efficient algorithm, a Model Predictive Control (MPC)
approach has been used in the rebalancing phase, which is thus approached as
an optimization problem with a receding horizon. Moreover, as suggested in [24],
this study introduces information about the desired destinations of the present and
future customers in order to improve the quality of the dispatching and rebalancing
decisions: previously, the actions issued by the controller were planned only basing
on the customers’ sources, preventing to obtain a fully optimized solution. The
aspect of vehicles charging is also introduced, to be addressed here in a pro-active
way in order to not penalize the system and to adjust to its necessities.
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1. Introduction

1.5 Thesis Organization
After this introduction on the subject, in Chapter 2 there is an explanation of all
the theory behind this research. The topics addressed include: the Hungarian algo-
rithm adopted to solve the dispatching problem, the techniques of Model Predictive
Control used in the rebalancing phase and the Autoregressive forecasting method
adopted to predict the future customer demand. Lately, in the same chapter, the
algorithm created in this study is explained in detail, comprehensive of the three
phases that compose it. Chapter 3 follows, which exposes how the algorithm was
implemented and tested, and the results that were extracted from it. This chapter
involves two different kinds of simulations. The first is performed on a fictitious
small network: it is useful mainly to extract theoretical results about the meaning
of different parameters and investigate their optimal values, as well as to test the be-
havior of the whole algorithm. Here, the three phases that compose it are separately
addressed and clarified with the aid of some examples. Afterwards, a network of the
City of Chicago was used to simulate the algorithm, providing realistic results in
terms of distance travelled by taxis and time that the customers need to wait for the
service. Finally, Chapter 4 contains a broader discussion on the results previously
exposed, as well as a presentation of the possible extensions of the study that would
be interesting to investigate in the future. In this way, the conclusion to the whole
research are finally drawn.
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2
Theory

In this chapter, the theoretical methods that constitute the basis of this thesis
are addressed. These include an explanation of the Hungarian algorithm, of the
Model Predictive Control techiques, and of the Autoregressive forecasting method,
which were all adopted in the development of the new algorithm that represents
the outcome of this research. Finally, such algorithm is presented and explained in
detail in the last section of this chapter.

2.1 Hungarian method
The Hungarian algorithm, also knows as Kuhn-Munkres algorithm, is a combina-
torial optimization method used to solve the assignment problem, an operational
research problem which consists in having to assign different resources to tasks in
an optimal way, thus minimizing the total cost. The assignment problem is ex-
pressed through a bipartite graph, represented by an adjacency matrix X ∈ Rn×m

where the element in the i-th row and j-th column represents the cost of assigning
the i-th task to the j-th resource. If the problem is balanced, meaning that the
number of tasks is equal to the number of resources (m = n), the opportunity cost
matrix is square, otherwise some dummy rows or column can be added to make it
square. The procedure that leads to solving it is based on a theoretical principle
stating that if an optimal assignment to the cost matrix exists, then it exists also
for a matrix obtained by subtracting or adding a number from all the entries of a
row or a column of the original matrix, and the optimal assignment in the two cases
is the same. The steps of the Hungarian algorithm, showed through an example in
Figure 2.1, consist in:

1. finding the smallest element for each row and subtracting it from all the ele-
ments of the same row,

2. finding the smallest element for each column and subtracting it from all the
elements of the same column,

3. covering with a line all the rows and columns that contain at least one zero
element: if the number of lines is equal to the size of the matrix, then a result
has been obtained, otherwise the next step takes place

4. finding the smallest element not covered by a line: subtracting it from all
uncovered elements, and adding it to all the elements covered by two lines,

5. repeating the last two steps until the number of covering lines equals the size
of the matrix. The assignment is then performed by pairing rows and columns
whose common element is a zero.
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Figure 2.1: Example of the Hungarian algorithm.

The Hungarian algorithm has a polynomial run-time complexity of O(n3) in the
worst case, meaning that the computational burden in large scale matrices can
become prohibitive [25]. For this reason, it was necessary to implement several
actions to reduce the computational complexity of the algorithm and make it scalable
and thus adoptable to real systems.

2.2 Model Predictive Control

The term Model Predictive Control (MPC) refers to a category of control strategies
based on the use of internal models of the plants, in which an open-loop optimiza-
tion problem is solved at each time step to produce a sequence of control actions
calculated up to a fixed time horizon. A schematic representation of the MPC loop
is shown in Figure 2.3. To leverage control inputs, the optimization uses predictions
based on the plant model for the whole horizon: the presence of the horizon provides
a tradeoff between short-term and long-term benefits. Subsequently, only the first
control action is applied as the input signal to the plant: the idea is to select the
input which promises the best predicted behavior. Then, one sampling interval later
the whole cycle of output measurements, predictions and input trajectory determi-
nation is repeated. As shown in figure 2.2, the length of the horizon remains the
same, but it slides along by one sampling interval at each time step: for this reason,
this control technique is also addressed as "receding horizon control". The main
advantages of this strategy are the possibility to easily deal with nonlinear systems
with complex objectives and multiple variables, ensuring profit maximization and
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Figure 2.2: Visual explanation of the receding horizon technique.

performance optimization, and its capability to explicitly handle the constraints of
the system. In fact, in classic control techniques, it is usually preferable to not
operate a plant exactly at the real limits of its capabilities, because in that way
unexpected disturbances from various sources could lead the system out of its con-
straints, but at the same time adopting an extremely conservative approach would
lead to a reduction of efficiency. MPC solves this problem, in fact the controller is
aware of the input constraints because they are included in the model design, and
thus it can better handle the different kinds of constraints, leading to the possibility
of operating the plant at its optimal set-point, even when it is very close to the
constraint [26]. The drawbacks of the MPC techniques include mainly their high
computational cost and coding complexity.

Optimizer Plant
Reference OutputInput

Objectives Model Constraints

Measurements

Figure 2.3: Block scheme of MPC.

2.3 AR models
A regression model predicts the values of an output variable of a stochastic process
basing on a linear combination of input variables, using coefficients obtained by
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optimizing the model on training data. An Autoregressive (AR) model is a particular
case of a regressive model where past values of the variable of interest are used
as inputs to the system, along with a stochastic term indicating the number of
regressors to be used in the simulation. An AR is in fact a tool for generating time
series forecasting of future data basing on past values, relying on the assumption
that older data have an effect on future values. Such relation between input and
output variables is called correlation, and in particular autocorrelation in the case of
autoregressive models: it is positive if an increase of one kind of variables corresponds
to an increase in the other, and negative if the variables have opposite behaviors. A
further extension of the concept of correlation is the Partial Autocorrelation Function
(PACF), which instead allows to evaluate the relation between a current observation
and a past observation corresponding to a specific lagged value, without accounting
for values at shorter lags: the effect of any correlation caused by terms at shorter lags
is removed. By studying the behavior of these statistics, it is possible to evaluate
the dependence of the variables on each other and consequently select the order
of the model, which corresponds to the optimal number of immediately preceding
values in the series that are used to compute the forecasts (lagged values) [27]. The
appropriate maximum number of lags is in fact selected as the order of the last lag
for which the value of the PACF is different from zero: beyond it all the partial
autocorrelations are null. An autoregressive model of order p can thus be written
as:

yt = c + φ1yt−1 + φ2yt−2 + ... + φpyt−p + Ôt (2.1)

where φ1, ..., φt are the parameters of the model, estimated through the least-squares
optimization or other more complex procedures, c is a constant and Ôt is a white
noise term [28]. A one-time shock in an AR model, consisting of a nonzero value of
Ôt at a certain time step, will affect the predictions of the values of the variable y
infinitely far into the future [29].

2.4 Developed Algorithm: T-EAMoD
The algorithm created in this research consists of three main steps, mainly: the
static assignment, the dispatching and the rebalancing. At the beginning of each
time step, an evaluation of the demand is first executed, in which new customers
are summed to the old ones who were not serviced before. In this way, a precise
notion on the total amount of customers presents in the network is available, as
well as their exact positions, desired destinations and waiting times. The network
is composed of stations, seen as the specific locations where taxis and customers
can be located, connected by roads, where vehicles can travel, either transporting
passengers or empty. In the scenario for which this algorithm is designed, the taxis
are electric and charging can happen in every station: the charging capacity of the
stations is not taken into account. The necessity of charging a vehicle in general
rises when its battery reaches a fixed lower threshold: in this way its State of Charge
(SoC) should never go to zero. The unplugging from the charging station instead
happens when the vehicle’s SoC gets to a certain higher threshold. The algorithm
developed here is addressed as "Tunable-Electric Autonomous Mobility on Demand
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(T-EAMoD)", where the term "Tunable" is used to highlight the fact that the many
parameters which play a role in the algorithm can be easily adjusted in order to
adapt the policy to different possible objectives, according to the need.

2.4.1 Static Assignment
Having obtained precise information about all the customers that want to benefit
from the service, the static assignment step takes place. It consists in the best-case
assignment, and it happens when a taxi and a customer are in the same station.
If the battery level of the taxi is enough to complete the trip that the customer is
requesting, then the two are matched, and they soon disappear from the station.
The taxi will then re-appear as available in the passenger’s destination station a
number of time steps later equal to the time needed to complete such trip. The
waiting time of a customer assigned in this way is almost zero (or no more than a
sampling period), and the taxi does not need to travel empty because the customer
is in its exact same position. For these reasons, this kind of assignment results very
beneficial to the overall performance of the system, so it is necessary to put it into
practice as much as possible. To do so, the option of reactively unplugging the taxis
that are currently charging is available. This means that, after assigning all the free
taxis, if there are still unserviced customers in a station and in the same location
there are taxis that are charging, some of them can be unplugged and assigned to
the residual customers. This can happen only after checking the battery levels of
the charging taxis and making sure it is higher than what is needed to transport the
customers to their desired destination.

2.4.2 Dispatching
The dispatching phase comes right after matching all the customers to the taxis
available and with enough battery that are located in their same stations. It consists
in running the Hungarian algorithm for all the residual customers and all the taxis in
the network. All the variables used to evaluate the matrix are reported in Table 2.1,
while the method used to calculate each value is described in Algorithm 1.
A NT × NC cost matrix is created, where NT is the total number of taxis in the
network, while NC indicates how many customers still need to be assigned. The
cij resource-task matching cost is constituted of multiple components, the main one
being the cost, for the taxi, of travelling to cover the distance that separates it,
or its last destination (if already assigned), from the customer. At the same time,
the battery of the taxi (SoCi) is compared to the battery needed to cover the trip
requested by the customer plus the distance to pickup the customer (SoC∗

trip). If
the taxi, according to its SoC, is not able to fulfill the requested trip, then the cij
element of the matrix is set to an infinite value, to ensure that assignment will never
take place. Otherwise, an additional cost factor inversely proportional to its SoC is
added. In this way, if the state of charge is very low, its assignment cost will increase.
Different other cost factors come into play, according to the state of the taxi. For
each taxi that is already on duty, an additional cost contribution (Presi

) must be
added, to account for the queue of customers that it has to serve before heading to
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NS Number of network’s stations
NT Number of fleet’s taxis
NC Number of unassigned customers

cij
Matching cost for the assignment of the i-th taxi to the j-th cus-
tomer

ipos Position of the i-th taxi
ilast_dest Last destination of the i-th taxi, valid only if it is assigned already
jpos Position of the j-th customer
Pij Length of the path between i-th taxi and the j-th customer
Presi

Remaining path of the i-th taxi, valid only if it is assigned already
WTj Waiting time of the j-th customer
SoCi State of Charge of the i-th taxi

SoC∗
trip

State of Charge needed to fulfill the whole trip (Pij + j-th cos-
tumer trip)

cs Starting cost

MAXP
The longest path among all the taxi-customer combinations
present at the moment

MAXWT The longest customer’s waiting time
MAXSoC Maximum level of battery of the fleet
wP = 0.65 Weight of the taxi’s path length
wWT = 0.15 Weight of the customer’s waiting time
wSoC = 0.1 Weight of the taxi’s State of Charge
ws = 0.1 Weight of the taxi’s starting cost

Table 2.1: Components of the cost matrix element.
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Algorithm 1: Cost matrix construction for dispatching

Input: taxis (NT ), customers (NC), cost components, weights

Output: Cost matrix ∈ RNT ×NC

1 for i in N do
2 for j in M do
3 if SoCi > SoC∗

trip then

4 if statei is stay or statei is charging then
5 Pij = shortest_path(from ipos to jpos)

6 cij = Pij

MAXP
·wP + MAXW T −WTj

MAXW T
·wWT + MAXSoC−SoCi

MAXSoC
·wSoC + cs ·ws

7 else
8 Pij = shortest_path(from ilast_dest to jpos)

9 cij = Pij+Presi

MAXP
· wP + MAXW T −WTj

MAXW T
· wWT + MAXSoC−SoCi

MAXSoC
· wSoC

10 end

11 else
12 cij = ∞

13 end

14 end

15 end
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the new customer. For the taxis that are not moving, a small contribution (cs) is
summed as well, to account for the cost of starting the vehicle when it is off. This
cost element is added in order to prioritize, in case of equal total distance of two
vehicles from a customer C1, the taxi that is already moving over the one that is
not. Such situation can only occurr when the customer that is already travelling
is transporting a person whose destination corresponds to the station where the
unassigned customer C1 is located, or is at least very close to it. It would then not
be necessary to start the vehicle that is not moving and send it to the same station
where the moving one is already going, in case the time it would take to reach such
station is the same for both. The inclusion of the starting cost would then allow to
avoid the energy expense that would come from moving an idle vehicle where it is
not needed.

In the dispatching phase, the charging is reactive, meaning that even the taxis that
are in charging state are considered suitable for the assignment, and thus included
in the cost matrix. If the dispatcher selects a charging taxi as the optimal resource
to be assigned to a customer, the vehicle is then reactively unplugged and sent to
pick up the person.

To prioritize customers according their waiting time, a supplementary factor is added
to the resource-task matching cost cij corresponding to them. In this way, the
customers that have been waiting for longer will be served first.

All the costs mentioned are normalized over the respective maximum value that each
of them can assume, and then they are multiplied for appropriate weight factors that
define how much impact each of them should have over the dispatching decision. This
action ensures that the cost corresponding to each possible resource-task matching
is comparable to those of the other options, and that the solution chosen is the
optimal one. The weights assigned to the different cost components are summarized
in table 2.1. In future applications of this algorithm, they can be appropriately
tuned according to the desired objective: if, for example, the main aim of a service
provider is to satisfy first the customers that have been waiting for longer, without
worrying much about the energy expense, it is possible to increase the weight wWT

while decreasing wP of the same amount. In the context of this study, the choice
of the values of the weights reflected the intention to reduce the overall energy
consumption: for this reason, the weight that accounts for length of the trips that
the taxis have to do to reach each customer, which is directly connected to the
energy expense of the vehicles, was assigned a higher value. The second objective
involves the quality of the service in terms of customer waiting time, and for this
reason the weight connected to such aspect is higher than the remaining ones, which
instead only make a difference in the cases where the lengths of the paths of different
taxis and the customers’ waiting times are already comparable to each other.

At the end of the dispatching phase, the maximum number of assignments that has
been made corresponds to the minimum value between the amount of customers
and that of the taxis, thus in the best case scenario either all the customers or all
the taxis in the network are assigned.
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2.4.3 Rebalancing
All the taxis that still remain available after the two previous stages undergo the
third and last phase of the T-EAMoD algorithm: the rebalancing. It consists in
providing empty vehicles with control actions aiming at redistributing them across
the whole network, in order to have taxis available in the stations where they will
be most needed in the future. This is done by controlling the vehicles in a predictive
framework, thus applying the techniques of discrete MPC. A control sequence is
obtained at each time step by solving an optimization problem defined by: the
objective to be minimized, the model which predicts the system’s behavior, and the
constraints that need to be satisfied. The first control action in the sequence is then
applied to the plant. The steps of the whole rebalancing process are summarized in
Algorithm 2.

Algorithm 2: Rebalancing

Input: network (NS), horizon (H), taxis (NT ), batch

Output: X0 , Z0 ∈ NNS×NS

1 for each rebalancing time step do
2 Σ = taxi_path_evaluation(network, taxis)
3 Φ = forecaster(batch, H)

4 Solve optimization problem to obtain X, Y , Z

5 for i in N do
6 for j in N do
7 if x0

ij > 0 then

8 Rebalance xij taxis with the highest SoC from station i to
station j

9 end

10 end
11 if z0

i > 0 then
12 Put in charge zi taxis with the lowest SoC in station i

13 end

14 end

15 end

Demand forecast

Since the rebalancing algorithm relies on the technique of Model Predictive Control,
it looks ahead in the future for a number of time steps equal to the size of the
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horizon H. In order to successfully adopt this method, it is necessary to foresee the
presence of customers in each station of the network, for H time steps ahead of the
present one: this is done by implementing an Autoregressive (AR) model. For each
instant, a batch of data from the previous time steps is used as input to create the
AR model for each station. In absence of real data, sequences of fictitious demand
are generated in order to simulate customers arrival for a full day and a full week.
The demand data include information about the position of each customer, as well
as its desired destination, and the forecaster will produce results that involve both
as well. To roughly evaluate the optimal number of regressors for each forecasting
action, the model needs first to be trained on previous data, for which the partial
autocorrelation between different values is studied. Eventually, a further analysis
is done to validate or improve the choice of regressors, basing on the performance
of the forecaster compared to the train data. For each couple of stations and each
time step of the day, the deviation between the average real demand and all the
average forecasts obtained using different numbers of regressors is computed, and
the number of regressors leading to the smallest error is chosen and saved, in order
to use it in the simulations.
To evaluate the effectiveness of the AR forecaster, as well as the sensitivity of the
system model to the quality of the forecasted information, it is possible to compare
the case where the AR is used with others where the model can be either subjected
to a predefined fixed demand, that also substitutes the forecasts for the future, or
to the same demand of a certain time step for the whole horizon.

Cost function

The objective function to be minimized is constituted of three components, which
represent opportunity cost sources connected to the rebalancing actions, mainly: the
energy expense of the rebalancing trip, the penalty given by the presence of an im-
balance between the amount of taxis and customers in each station, the opportunity
cost coming from the decision of charging some vehicles.
The three decision variables of the rebalancing problem, directly connected to the
cost components, are:

• xtij, which indicates the number of taxis sent by the rebalancer from station
i to station j at time t. X is a 3D-matrix whose dimensions depend on the
length of the time horizon (H) and the square of the number of stations (NS).
The value of xtij can be nonzero only if the two stations i and j are adjacent:
if a direct edge between them does not exist, in fact, the rebalancing cannot
happen;

• yti , the imbalance between the number of taxis and customers in station i at
time t. Y is a 2D-matrix, with size given by the length of the horizon (H)
and the number of stations (NS). Being defined as the difference between the
number of customers and that of the taxis, its elements can be either positive
or negative. A positive imbalance indicates an excess of customers in the
station, that can’t be satisfied at the moment being, while a negative value of
y means that there are more taxis than needed in the station, so some of them
could be easily sent away or charged;

• zti , representing the number of taxis to put into charging state in station i at
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time t. Z is a 2D-matrix whose dimensions depend on the length of the horizon
(H) and on the number of stations (NS), and its values can only be positive.
In this way, the rebalancer has the option to put vehicles into charging state
when there is an excess of them in a station, taking advantage of those hours
when they are less needed to restore their battery, in order to both reduce the
imbalance and also have taxis ready for the peak hours. Not all the vehicles
expressed in z are necessarily put in charge, in fact a selection will be done
basing on their battery level: z represents just an upper bound to the number
of taxis that can be plugged.

The expression of the cost function to be minimized is then:

J =
HØ
t=0

NSØ
i=1

NSØ
j=1

wxij
xtij +

HØ
t=1

NSØ
i=1

wyi
(yti + åyit)2 +

HØ
t=0

NSØ
i=1

wt
zi

zti (2.2)

Here, N indicates the total number of stations in the network, while H corresponds
to the length of the time horizon adopted.
The value of åyit indicates the steady state equilibrium point of the system. This
term is equal to the amount of taxis that should be present in each station when
the system is in equilibrium. It is useful mostly in the cases where customers are
absent or there are very few of them: an equilibrium condition can be re-established
by spreading vehicles along the network, with a fixed different amount of them in
every station indicated by the values of åyit. In this study, the value of åyit was always
set to zero, because the focus is on managing in the best possible way the cases with
high demand. For a proper use of this parameter, more accurate studies about the
optimum steady state condition of the system would be needed. To simplify the
notation, from now on the term (yti + åyit)2 will be indicated as (yti)2 or just y2.
The value of the imbalance in the expression is squared in order to eliminate the
negative sign. The difference between number of customers and taxis in a station,
in fact, needs to be as close as possible to zero. If the imbalance term in the
cost function is not squared, the optimizer will just tend to increase the number of
taxis where they are not needed: y would assume a negative large-module value.
This would easily lead to a decrease in the value of the cost function, but it would
correspond to a meaningless result. To solve the just mentioned issue and to reduce
the computational cost that the square brings, another version of the cost function
using the absolute value of y has been studied. The results obtained with this cost
function will be analyzed in Section 3.2.
Furthermore, as can be seen from Equation 2.2, the y-terms associated to time step
0 of the horizon are not included in the cost function of the optimization problem.
The results of this choice will be discussed more in detail in Section 3.2, although
the idea behind it is that the current situation should not affect the decisions taken.

The weights in the cost function are chosen in order to define the incidence that
each cost component should have on the decision-making process of the rebalancing
phase. The weight matrices Wx, Wy and Wz have the same dimensions of respectively
X, Y and Z. The selection of Wx and Wy, respectively associated to the cost of
rebalancing vehicles and the cost of the imbalance, was object of an accurate study
and will be discussed more in detail later in this section. The weight connected to
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the charging of the vehicles Wz, instead, is always set to zero. The cost components
related to the action of charging the taxis, in fact, are not differential: charging is
not an option, it needs to be done in any case, either sooner or later. And since
this study does not take into account the fluctuations of the electricity price and
availability, there will not be any cost difference in plugging a vehicle to a charging
station in different times of the day. The term z was still included in order to make
the cost function more general and complete: in this form it could also be adopted
in future studies aimed at investigating the charging aspect in a more detailed way.
In that case it would just be necessary to evaluate the right values for the weights
Wz, which would not be zero anymore.

Constraints

The constraints adopted in the optimization problem ensure that the decision vari-
ables x and z always assume integer positive values, in fact they represent the
amounts of taxi that have to do certain actions, so negative or non-integer values
would be meaningless in their case. For what concerns the decision variable y, it was
defined as an algebraic sum of all integer components, but it was not constrained to
be integer itself in order to avoid an unnecessary increase in the optimizer’s effort:
it was in fact defined as a continuous variable.
The other constraints are created to give an upper bound to the amount of outgoing
and charging taxis in each station at every time step, and to properly define the
imbalance as the difference between the amount of customers and taxis in each sta-
tion in every moment, considering all the existing contributes. The variables used
to define the constraints are summarized in Table 2.2.

For what concerns the imbalance, in each time step it is computed as the difference
between the net number of customers in each station and the net number of taxis
available in the same place.
The time step 0 of the horizon represents the current time step, thus all the variables
referring to it are either variables of the present state or control inputs that will be
sent to the network in the end of the evaluation. Consequently, the imbalance of
time step 0 of the horizon for station i, showed in Equation 2.3, includes only the
contributions given by: the remaining demand at time 0 after the static assignment
and dispatching steps (φ0

isource
), the available taxis (σ0

i ), the taxis to put in charge
(z0
i ) and the outgoing taxis (x0

iout
).

y0
i = φ0

isource
− σ0

i + z0
i + x0

iout
for i = 1, ..., NS (2.3)

In a scenario with zero demand within the whole network, a station where taxis are
present has a negative imbalance. Since the weight related to the charging cost is
always zero while rebalancing a taxi has a non-zero cost, the optimizer will try to
increase zi instead of xiout to minimize the overall cost. This action leads to a more
efficient management of the fleet avoiding unnecessary energy utilization.
Furthermore, the imbalance of the stations in the remaining time steps of the hori-
zon has to include all the previous decisions. This constraint, as can be seen in
Equation 2.4, is defined in a recursive way within the horizon, to establish a direct
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NS Number of stations
H Length of the horizon in time steps
yti Imbalance of the station i at the time step t

åyti Desired steady state equilibrium
σ0
i Number of taxis currently available in the station i

σti

Number of taxis becoming available in the station i at the time step t
because either their passenger’s trip ends there or they have completed
their charging phase

φ0
isource

Number of customer with station i as source not assigned yet

φtisource

Number of forcasted customer with station i as source at the time step
t

φtidest

Number of taxis that, according to the predictions, took a customer at
time t− tpathji

whose destination was i, where tpathji
is the time needed

to travel the distance from station j to station i. They arrive at time
step t in the station i

xtij Number of taxis rebalanced from station i to station j at time step t

xtiin

Number of rebalancing taxis entering in station i at time step t (Equa-
tion 2.6)

xtiout

Number of rebalancing taxis leaving the station i at time step t (Equa-
tion 2.5)

zti Number of taxis to put in charge in the station i at the time step t

ztiend

Number of taxis becoming available in station i at time step t because
they were put in charge at time step t−delay, where delay is the average
charging duration of a vehicle (Equation 2.7)

kti
Number of taxis in the station i at the time step t whose battery is below
a certain threshold

Table 2.2: Variables used in the constraints of the optimization problem.
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correlation between the different time steps: in this way, the value assigned to the
decision variables in a precise moment has clear effects on the next steps of the
horizon. This ensures that the solution found is optimal not for the present moment
but in the long-term.

yti = yt−1
i − σti + xtiout

− xtiin
− ztiend

+ zti + φtisource
− φt−pathidest

(2.4)

for t = 1, ..., H and i = 1, ..., NS

The imbalance at a certain time step for a specific station yti is the algebraic sum
of the imbalance at the previous time step, yt−1

i , and different other terms, whose
meaning needs to be clarified.

The term σti indicates the number of taxis that become available at time t because
either their trip or their charging phase ended. This is a well defined and consistent
number of taxis evaluated outside the horizon, because it depends on the taxis that
are on duty or in charging state, whose duty’s ending times are known.

The expression xtiout
represents the rebalancing taxis that are sent out from station

i at time step t, showed in the equation 2.5:

xtiout
=

NSØ
j=1

xtij (2.5)

while xtiin
indicates the rebalancing taxis that in previous time steps were sent to-

wards station i, and consequently arrive there at time step t, described in Equa-
tion 2.6:

xtiin
=

NSØ
j=1

t−pathjiØ
τ=0

xτji (2.6)

where pathji is a matrix that describes the average time required for a taxi to travel
from station j to station i.
The reason why both xin and xout appear in the constraint equation also reflects the
fact that rebalancing can only happen between neighboring stations. It is in fact a
flow movement of taxis through stations, until they reach the forecasted customers:
the imbalance of those stations where the taxis are only transiting does not need to
contribute to the overall imbalance cost. If a taxi transits through station i at time
t, in the computation of the imbalance yti it will count as +1 in the xin and +1 in
the xout, thus not affecting the net imbalance in the station at all. Example 2 in
Section 3 better clarifies this behavior.

The term zti consists in the number of taxis that have to be put in charge in station
i at time step t, while ztiend

represents the number of taxis that were previously put
in charge and that, at time step t, are available again, described in Equation 2.7:

ztiend
=

t−delayØ
τ=0

zτi (2.7)
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where delay is the average time that a taxi spends in charging, considering that
vehicles put in charge by the rebalancer usually already have a residual SoC.

The expression φtisource
indicates the number of predicted customers whose source

corresponds to station i, while φtidest
represents the number of taxis that took a

customer in the previous time steps and are expected to arrive at time t in station
i. Here, for the latter term, a simplifying assumption is adopted, by stating that
customers are picked up at the same moment they show up in a station. Includ-
ing φtidest

in the constraint equation is crucial in order to see the positive effects of
increasing the horizon length. Without this variable, in fact, when the length of
the horizon exceeds the length of the customers’ trips, the system becomes unstable
and an increase in waiting time and empty distance can be observed. When the
demand forecast predicts the arrival of customers in a station, in fact, those are
subsequently counted as positive imbalance terms, while the available taxis that
supposedly pick them up in the same station, with a predicted static assignment,
are subtracted from the count of the imbalance (see Equation 2.4). Neglecting the
term φtidest

, these taxis would disappear from the computation when assigned, and
they would never re-enter in any of the successive time steps: it would then not be
possible to re-assign the same taxi more than one time along the whole horizon. The
introduction of the forecast of the destinations solves this problem. For instance,
if the forecaster predicts a customer who appears at time step t whose source and
destination are respectively i and j, this counts as positive imbalance in the variable
φtisource

, where it indicates a request that has to be served, and as negative imbal-
ance in the variable φ

t+tpathij

isource
. In this equation, the term tpathij

indicates the average
number of time steps needed for a taxi to drive from station i to station j. In this
way, when it has completed its trip, the taxi appears in the station corresponding to
the destination of its passenger, and becomes available to pickup another customer.

The sum of the amount of taxis that can leave station i at time step t of the horizon
(xtiout

, see Equation 2.5), and the number of vehicles to put in charge at the same
time and station (zti) is limited by the algebraic sum of various contributions, as
defined in Equations 2.8 and 2.9. At the first time step of the horizon, indeed
the only one for which the control actions computed will be actually executed, this
upper bound is given by the amount of taxis that are currently available there, σ0

i ,
as shown in Equation 2.8:

x0
iout

+ z0
i ≤ σ0

i for i = 1, ..., NS (2.8)

For the residual time steps of the horizon, the constraints need to take into account
also all the decisions taken in the previous time steps. To do so, the upper bound is
defined for each station as the sum of the taxis that ever became available until that
time step (σi, xiin

, ziend
, φidest

) decreased of a quantity equal to the amount of taxis
sent out the station during all the previous time steps (xiout , zi). The constraint is
described in Equation 2.9

xtiout
+ zti ≤

t−1Ø
τ=0

(στi + xτiin
+ zτiend

+ φτidest
− xτiout

− zτi ) + σti + xtiin
+ ztiend

+ φtidest
(2.9)
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for t = 1, ..., H and i = 1, ..., NS

A last constraint equation is adopted to regulate the amount of taxis that are set to
charging state at each time step. As shown in Equation 2.10 in fact, the maximum
number of taxis to be plugged must be lower than a certain threshold kti defined by
the amount of vehicles in the station whose battery is below a given value.

zti ≤ kti (2.10)

Weight analysis

For the selection of the weight matrices Wx and Wy, a multi-objective optimization
problem was implemented: the service factor γ was introduced, useful to tune the
impact that each cost term has on the rebalancing decision. Each weight element
was in fact defined as the product of γ with a component that normalizes its cost
function term. In this way the range of value that the two costs x and y2 can as-
sume is restricted to vary between 0 and 1, so it is possible to define their relative
importance in relation to each other by varying the service factor γ.

Each wxij
, element of the matrix containing the weight of the rebalancing trip from

station i to station j, is given by:

wxij
= dij

dmax · ntaxi
· (1− γ)

where dij is the distance between the stations i and j, while dmax is the largest
possible distance between two stations in the network. Multiplying dmax with the
total number of taxis then it is possible to obtain the maximum value that the x
could ever assume, corresponding to the worst case scenario where all taxis move
along the longest edge in the network at the same time.

For what concerns the imbalance weight, each element of the vector is defined as:

wyi
= 1

[max(ntaxi, nnew_customers)]2
· γ

because the maximum magnitude value that the imbalance can assume is one of the
following:

• nnew_customers, the highest amount of customers that ever appear in the same
time step, reflecting the worst case scenario of all customers appearing together
in the same station;

• ntaxi, the total number of taxis in the network, reflecting the case where all
taxis are in the same station without any customer.

Since nnew_customer is typically not known in advance, ntaxi was used as maximum
magnitude of the imbalance. This assumption is reasonable because, choosing
a rebalancing period short enough, in most of the cases it is actually true that
ntaxi > nnew_customer, because customers will not have enough time to accumulate
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in a station.

With this method it was possible simulate various scenarios, in which different im-
portance was given to the two cost components in the evaluation of the rebalancing
decision, and the different cases were compared.

Optimization problem

Eliminating the zero terms and expressing the weights in an explicit way, the cost
function can then be rewritten in the following way:

J(x, y) =
HØ
t=0

NSØ
i=1

NSØ
j=1

C
dij

dmax · ntaxi
(1− γ) · xtij

D
+

HØ
t=1

NSØ
i=1

C
1

n2
taxi

γ · (yti)2
D

(2.11)

Therefore, the optimization problem solved at each rebalancing time step, and men-
tioned in Algorithm 2, is expressed as follows:

min
x,y,z

HØ
t=0

NSØ
i=1

NSØ
j=1

C
dij

dmax · ntaxi
(1− γ) · xtij

D
+

HØ
t=1

NSØ
i=1

C
1

n2
taxi

γ · (yti)2
D

subject to • x, z ∈ N

• y ∈ R

• y0
i = φ0

isource
− σ0

i + z0
i + x0

iout
for i = 1, ..., NS

• yti = yt−1
i − σti + xtiout

− xtiin
− ztiend

+ zti + φtisource
− φt−pathidest

for t = 1, ..., H and i = 1, ..., NS

• x0
iout

+ z0
i ≤ σ0

i for i = 1, ..., NS

• xtiout
+ zti ≤

t−1Ø
τ=0

(στi + xτiin
+ zτiend

+ φτidest
− xτiout

− zτi ) +

+ σti + xtiin
+ ztiend

+ φtidest
for t = 1, ..., H and i = 1, ..., NS

(2.12)

The method results then in a predictive optimization problem, thanks to the inclu-
sion of the predictions of future data in it. This leads to obtaining at each time step
a solution that aims at minimizing the overall cost of the simulation, and not only
the present cost.
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3
Implementation

This chapter describes the implementation of the algorithm described in Section 2.4
on a small sample network in a python environment, followed by the analysis of
its results. Subsequently, the application of the same theory on a real network
implemented of the software AMoDeus is reported. The chapter then concludes
with the analysis of the results of the real network simulation. As described in the
preface, the sample network implementation (Section 3.1) was primarily done by an
other student in the team, so it is briefly summarized here.

3.1 Sample network - python
A small-scale system was first implemented in python in order to test and optimize
the algorithm. The network was modelled as a graph composed of 9 stations, as
shown in Figure 3.1. The roads that connect the different stations are represented
through the indirect edges of the graph that can be run in both ways.

The demand was simulated by sampling a Poisson distribution generated with dif-
ferent expected rates of occurrences for each station and time of the day. In the
simulation the time is discrete, so all the data needed to be divided in time step.
The demand corresponding to a full day, evaluated as previously explained, was
stored in 180 time steps, meaning that each time step corresponds to a time interval
of 8 minutes.

For what concerns the charging, every time that a taxi travels from one node to
another, its SoC is reduced of an amount equal to the weight of the edge that con-
nects the two nodes. When the vehicle is plugged to the charging station, instead,
its battery increases of a value ∆soc every time step.

In the beginning of each time step, the static assignment (see Section 2.4.1) takes
place, involving all the customers that happen to be in the same location of an avail-
able taxi whose state of charge is high enough to complete the customer’s trip. The
next step can then take place: a cost matrix is built as summarized in Algorithm 1,
and processed with the Hungarian method in order to find the optimal dispatching
decision for the customers that are still waiting. Here taxis can be reactively un-
plugged when needed.

In conclusion, the last step consists in the solution of the optimization problem (see
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Figure 3.1: Network implemented in python.

Section 2.4.3), to obtain a series of rebalancing actions corresponding to each time
step of the time horizon, of which only the first one will be applied.
The optimization problem was formulated and solved with the aid of the optimiza-
tion software package CPLEX by IBM [30].

Actions implemented to improve scalability
The problem described through the cost function in the rebalancing step of the
algorithm is a Mixed Integer Quadratic Programming (MIQP) problem. This means
that, for large scale problems, the application of the method described might become
unfeasible. To solve this issue, a relaxation on the integer constraint was adopted,
as previously done in [22]: in the MPC, the values of all the decision variables for
all the time steps of the horizon are computed, but then only the first step of the
resulting strategy is implemented. For this reason, only the decision variables x0

i and
z0
i of the first time step actually need to be integer, in order for the algorithm to be
applicable: the decision variables of the other steps are set to be of the continuous
type instead. In this way, the dependence of the number of integer constraints in the
problem from the length of the time horizon H is relaxed, thus making the method
more scalable and potentially applicable to larger systems or longer horizons, while
the risk to lose some optimality in the solution is minor.

EXAMPLE 1 - dispatching
Here is a short example to visually understand how the dispatching phase of the
algorithm works.
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Figure 3.2: Scenario of dispatching example.

The initial scenario is the one showed in Figure 3.2, there are four taxis in the
network: T1, T2, T3, T4. Taxi T1, whose battery level is 62.5%, is currently in station
3, but it is travelling to station 5 to pick up customer C0, whose destination is
station 4. Taxi T3, with a SoC of 70% is in the same station and it is not moving,
while in station 9 there are taxis T2 (SoC = 80%) and T4 (SoC = 10%), which is
charging. Besides C0, that has already been assigned previously and is only waiting
to be picked up, there is also customer C1, in station 4 with destination 6, and C2,
in station 8 with destination 2. Both customers arrived just 2 minutes ago (Waiting
Time = 2).
The following calculations show how the elements cost matrix for the solution of the
dispatching problem are computed.

Customer C1:

•T1 → c11 = P11+Pres1
MAXP

· wP + MAXW T −WT1
MAXW T

· wWT + MAXSoC−SoC1
MAXSoC

· wSoC =

= 0+5
8 · 0.65 + 2−2

2 · 0.15 + 100−62.5
100 · 0.1 = 0.444

•T2 → c21 = P21
MAXP

· wP + MAXW T −WT1
MAXW T

· wWT + MAXSoC−SoC2
MAXSoC

· wSoC + cs · ws =

= 6
8 · 0.65 + 2−2

2 · 0.15 + 100−80
100 · 0.1 + 1 · 0.1 = 0.608

•T3 → c31 = P31
MAXP

· wP + MAXW T −WT1
MAXW T

· wWT + MAXSoC−SoC3
MAXSoC

· wSoC + cs · ws =

= 5
8 · 0.65 + 2−2

2 · 0.15 + 100−70
100 · 0.1 + 1 · 0.1 = 0.536
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•T4 → c41 = ∞ (taxi T4 does not have enough battery to reach customer C1)

Customer C2:

•T1 → c12 = P12+Presi

MAXP
· wP + MAXW T −WT2

MAXW T
· wWT + MAXSoC−SoC1

MAXSoC
· wSoC =

= 5+3
8 · 0.65 + 2−2

2 · 0.15 + 100−62.5
100 · 0.1 = 0.688

•T2 → c22 = P22
MAXP

· wP + MAXW T −WT2
MAXW T

· wWT + MAXSoC−SoC2
MAXSoC

· wSoC + cs · ws =

= 3
8 · 0.65 + 2−2

2 · 0.15 + 100−80
100 · 0.1 + 1 · 0.1 = 0.364

•T3 → c32 = P32
MAXP

· wP + MAXW T −WT2
MAXW T

· wWT + MAXSoC−SoC3
MAXSoC

· wSoC + cs · ws =

= 4
8 · 0.65 + 2−2

2 · 0.15 + 100−70
100 · 0.1 + 1 · 0.1 = 0.455

•T4 → c42 = P42
MAXP

· wP + MAXW T −WT2
MAXW T

· wWT + MAXSoC−SoC4
MAXSoC

· wSoC + cs · ws =

= 3
8 · 0.65 + 2−2

2 · 0.15 + 100−10
100 · 0.1 + 1 · 0.1 = 0.434

The cost matrix for the Hungarian algorithm is showed in Table 3.1:

C1 C2
T1 0.444 0.688
T2 0.608 0.364
T3 0.536 0.455
T4 ∞ 0.434

Table 3.1: Cost Matrix of Example 1.

In this case the steps of the Hungarian algorithm will be neglected, in fact optimal

assignment results trivial:

T1 → C1

T2 → C2

The preferred assignment for customer C1 results to be with T1, because that taxi
already has, in its planning, the task to go to station 4, where C1 is situated. For
this reason it is preferred over taxi T3 that is now in its exact same position, even
though it has a higher SoC. This happens thanks to the contribution of the starting
cost: taxi T1 is going to pick up customer C0 and will transport it to station 4, so
it will take in total 5 time steps for T1 to be ready to pick up C1. If T3 was chosen
for C1, 5 time steps would still pass before the pick up can be done. The energy
consumption connected to the trip of taxi T3 to reach station 4 is then completely
unnecessary and can be avoided thanks to the contribution of cS. Taxi T2 is not
chosen for C1 because it is more distant from it than T1 and, once again, it has also
the contribution of the starting cost; while taxi T4 does not have enough battery to
pick up C1. For customer C2 instead taxi T2 is chosen, because it is in the same
station of T4 but has a higher battery level, and it is closer than T1 and T2.
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EXAMPLE 2 - rebalancing
The following example shows how the decision-making process of the rebalancer
works, in the very simple scenario of Figure 3.3.

1

987

654

322

3 2

2 2

211

2 3

1

1

T1

t = 9
6 8

C2

Figure 3.3: Scenario of rebalancing example.

The horizon used is equal to 5 time steps, the taxi is waiting in station 1 while the
customer will appear at time step 9 in station 6 with station 8 as destination.

t = 4) The customer appears in the last time step of the horizon th = 5. The shortest
path from station 1 to station 6 takes 4 time steps, so if the taxi started moving
now then it would arrive before the customer appears. Thus, no rebalancing
action is made.

t = 5) At this time step φ4
6source

= 1 meaning that the forecaster predicted that a
customer will appear in station 6 at time step of the horizon th = 4. This
leads to the chain of decisions showed below, where red text highlights the
decision taken from the rebalancer to minimize the cost - omitted terms are
equal to 0:

• y4
6 = φ4

6source
− x4

6in
: to have y4

6 = 0→ x4
6in

= 1

• to have x4
6in

= 1→ x3
36 = 1
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• x3
3out

= x3
36 + x3

32 = 1 + 0 = 1

• y3
3 = −x3

3in
+ x3

3out
: to have y3

3 = 0→ x3
3in

= 1

• to have x3
3in

= 1→ x2
23 = 1

• x2
2out

= x2
23 + x2

25 + x2
21 = 1 + 0 + 0 = 1

• y2
2 = −x2

2in
+ x2

2out
: to have y2

2 = 0→ x2
2in

= 1

• to have x2
2in

= 1→ x0
12 = 1

The outcome of this chain is that x0
12 = 1, and according to the MPC policy

the system executes only the first decision of the horizon: one taxi is then sent
from station 1 to station 2.

t = 6) Now, the taxi is on the way to reach station 2 from station 1 (the trip takes
two time steps), and it is marked in the term σ1

2, that counts the taxis that
will arrive at time step t + th = 6 + 1 = 7 in the station 2.

• y3
6 = φ3

6source
− x3

6in
: to have y3

6 = 0→ x3
6in

= 1

• to have x3
6in

= 1→ x2
36 = 1

• x2
3out

= x2
36 + x2

32 = 1 + 0 = 1

• y2
3 = −x2

2in
+ x2

2out
: to have y2

3 = 0→ x2
2in

= 1

• to have x2
3in

= 1→ x1
23 = 1

• x1
2out

= x1
23 + x1

25 + x1
21 = 1 + 0 + 0 = 1

• y2
1 = σ1

2 − x1
2in

= 1− 1 = 0

The evaluation follows the same phases of the one in the previous time step,
however it ends without any physical action because the taxi sent in the pre-
vious time step is already on the way to station 6.

t = 7) Afterwards, when the taxi arrive in station 2, the evaluation ends assigning
the taxi to the following rebalancing trip, heading to the station 3:

• y2
6 = φ2

6source
− x2

6in
: to have y2

6 = 0→ x2
6in

= 1

• to have x2
6in

= 1→ x1
36 = 1

• x1
3out

= x1
36 + x1

32 = 1 + 0 = 1

• y1
3 = −x1

3in
+ x1

3out
: to have y1

3 = 0→ x1
3in

= 1

• to have x1
3in

= 1→ x0
23 = 1
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t = 8) Finally, in the time step just before the appearance of the customer, the rebal-
ancer moves the taxi to station 6, so that it will be available to pick him/her
up:
• y1

6 = φ1
6source

− x1
6in

: to have y1
6 = 0→ x1

6in
= 1

• to have x1
6in

= 1→ x0
36 = 1

The method described in this example is also able to select the shortest path among
the network. In fact, for each action that the rebalancer issues, the cost of the
optimization problem increases proportionally to the length of the path (see Section
2.4.3). Thus, the path chosen is the one that in the first place allows to pick up the
customer, and then increases the total cost as less as possible.

3.2 Theoretical Results
This section compares and analyzes different aspects and outcomes of the T-EAMoD
algorithm applied to the sample network with the set-up described in Section 3.1.

Sensitivity analysis to the service parameter γ

In order to evaluate the optimal relative importance of the two cost function compo-
nents, some analysis were performed by solving the optimization problem adopting
different values of the parameter γ that varies from 0 to 1 on Equation 2.11.

First of all, a scenario with no demand was constructed, where all the taxis were sit-
uated in the central station at the beginning of the simulation. The results showed
that, for values of the service parameter lower than 0.01, the taxis do not move
at all: the cost of the imbalance in this case results almost null, while the expense
connected to moving empty vehicles is very large. As γ increases, as long as γ < 0.6,
the vehicles start spreading along the network, but not uniformly. In particular, for
low values of γ, fewer taxis move, and only towards stations closer to their starting
point, while as the service parameter gets higher the taxis start moving also towards
the periphery of the network, and in general a higher number of vehicles moves. An
equilibrium is always reached, but the amount of taxis among the different stations
is different. A perfectly balanced equilibrium, with the same number of vehicles in
each station, is reached only when γ = 0.6: in this case the overall cost results to
be about 1. For values of the service parameter higher than 0.6, an equilibrium is
never reached anymore and there is a continuous ping-pong effect of taxis among
stations: a high imbalance penalizes the system more and more, while the cost of
sending around empty vehicles always becomes smaller. The rebalancer tends to
keep vehicles in movement because, when a taxi leaves a station and is on its way
to another one, it will not contribute to the imbalance of the two in the time steps
during which it is travelling. For this reason, the preferred station chosen for the
rebalancing in this case is the farthest away, so that the taxi will have to do a
longer journey and will not contribute to the imbalance of any station for longer.
Moreover, as γ increases, clusters of taxis of growing dimensions will tend to form,
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which move together around the network until, in the worst case (γ = 1), all the
taxis start moving together. This set of experiments proves that the rebalancing
algorithm works as expected, as it always drives the system towards a minimization
of the real overall price, even in the limit cases.

When the same experiments are performed on Equation 2.2 with values of åyit dif-
ferent from zero, the equilibrium configuration changes, but the system shows the
same behavior. For values of γ lower than 0.6, it does not tend anymore to an even
distribution of vehicles among the stations, but instead it aims at replicating the
equilibrium described by åyit, which is perfectly reached only for γ = 0.6.

It is necessary to point out that the previous analysis was done with a modified
version of the cost function described in 2.2 or in 2.11, that includes the term y0

i ,
related to the imbalance of time step 0. This was necessary in order to visualize the
outcome of the decision-making process of the rebalancer which, in case of absence
of demand, would not visible if the term y0

i was not included in the cost function.
Without y0

i , in fact, the simulation would result in a static behavior of the taxis,
which would not move at all unless a γ = 1 is adopted. A deeper understanding of
the real difference between these two options can be reached by investigating in detail
the functioning of the MPC rebalancing algorithm. As explained in Section 2.4.3,
in fact, at every time step there is an evaluation of the optimal control inputs for
the whole time horizon. As a consequence of this, if the imbalance term y0

i is
incorporated in the cost function, the output of the rebalancer will include actions
referring to the present time (instant t = 0) which aim at reducing such value of
present imbalance. Differently from the actions computed for the subsequent time
steps of the horizon, which will eventually be re-evaluated, those referring to the
present moment are actually put into action: the risk is that many vehicles might
be moved just in order to see a net reduction of imbalance at the moment being,
even when this motion is not justified by a real or predicted presence of customers
somewhere in the network.
Removing y0

i from the optimization problem, as was actually done in this research,
means instead that the movement of taxis by the rebalancer is driven by the pres-
ence of either real or forecasted customer demand. Some tests were conducted to
prove these different behaviors of the system in case of absence and presence of the
term y0

i from the cost function. The cases simulated included a fictitious demand
generated with Poisson samples with varying values of λ for different stations and
hours, as previously explained. The results in Figure 3.4 show that the behavior of
the overall waiting time as a function of γ is quite similar in the two cases, both
in terms of trend and values. On the other hand, from the analysis of the empty
distance (Figure 3.5) it is possible to note that the presence of y0

i drives the system
to an instability condition for values of γ > 0.6, thus confirming the behavior pre-
viously studied in absence of demand.

Subsequently, for the choice of the appropriate value of service parameter to use
in the simulations, and for a better understanding of the physical meaning of the
different values it can be given, the same scenario just described is simulated using
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Figure 3.4: Comparison between the overall waiting time obtained using the cost function with
and without yt

0. The times are evaluated as a function of the service parameter γ that varies from
0.2 to 1 with a horizon length of 15 time steps, simulated in the sample network.
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Figure 3.5: Comparison between the percentage of empty distance obtained using the cost func-
tion with and without yt

0. The distance is evaluated as a function of the service parameter γ that
varies from 0 to 0.85 with a horizon length of 15 time steps, simulated in the sample network.

the classical cost function described in 2.11, i.e. without the y0
i term, for varying

values of γ. In particular, the tests conducted showed the influence the parameter γ
has on the total customers’ waiting time and on the overall empty distance travelled
by the vehicles. The case simulated had all the taxis starting in the central station,
and a fictitious demand was generated with Poisson samples with varying values of
λ for different stations and hours, as explained before. In the rebalancing step, the
known future demand was used (oracle), and a horizon of 15 time steps was adopted,
corresponding to a time of two hours. The results in Figure 3.6 show that the curves
of the waiting time and empty distance percentage have inverse behaviors: in order
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Figure 3.6: Waiting time and percentage of empty distance as a function of the service parameter
γ with a horizon length of 15 time steps, simulated in the sample network.

to design an AMoD system which is as efficient as possible, without compromising
the quality of the service it provides, a trade-off between the two objectives must
be done. To explain the behavior of the empty distance percentage curve shown in
Figure 3.8 it is necessary to go back to the physical meaning of the parameter γ.
Adopting a γ = 0 would lead to not do any rebalancing at all. In fact in that case
the imbalance would have no influence over the value of the cost function, while
the cost of rebalancing vehicles would be very high: the optimal solution would
then be to not move empty taxis. As the weight of the imbalance term on the
overall cost increases, the controller starts issuing some rebalancing actions, that
have the positive influence of reducing the distance travelled by the vehicles to pick
up customers. Until the reduction of pick up distance is bigger than the increase in
rebalancing distance, the curve of the empty distance percentage shows a deflection.
This trend sees an inversion when the rebalancing trips become more onerous, and
the increase in energy consumption they bring is higher than the savings they cause
by reducing the pick up trips. Looking at Figure 3.7, it is possible to note that
low values of the service parameter cause a steep increase in customers’ waiting
time, that grows uncontrollably when γ decreases below 0.3. For this reason, the
values of gamma between 0.16 and 0.19 that, according to Figure 3.8, would lead
to a reduction in empty distance percentage, cannot be adopted. A good trade-off
between the two objectives would be to select γ = 0.7, which shows that the distance
travelled by empty vehicles is very close to the situation without rebalancing, thus
bringing good benefits in terms of waiting time reduction.
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Figure 3.7: Total waiting time as a function of the service parameter γ that varies from 0.2 to
1 with a horizon length of 15 time steps, simulated in the sample network.
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Figure 3.8: Percentage of the empty distance as a function of the service parameter γ that varies
from 0 to 0.95 with a horizon length of 15 time steps, simulated in the sample network.

Discussion about the optimal dimensions of the system

Considering a fixed total amount of customers along a whole day in all the simula-
tions, an analysis was done in order to find the optimal size of the AMoD system in
terms of number of vehicles and size of their battery. To this aim, the impact of dif-
ferent customers per taxi ratios (CT), defined as ncustomer/ntaxi, on the performance
of the system was investigated, repeating the simulations for different battery sizes.
Being the system adopted here completely fictitious, the battery size is addressed in
terms of amount of time steps that it allows to spend travelling, when fully charged.
Some 3D graphs were first created to observe the behavior of the system in terms of
waiting time and empty distance for different values of the two parameters, shown
in Figures 3.9 and 3.10.
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Figure 3.9: Waiting time as a function of CT and of the battery sizes, simulated on the sample
network with a horizon length of 15 time steps.
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Figure 3.10: Empty distance percentage as a function of CT and of the battery sizes simulated
on the sample network with a horizon length of 15 time steps.
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To select the optimal CT and battery size it was necessary to keep in mind that
having a big amount of vehicles, and/or equipping them with large batteries, causes
the cost of the AMoD system to substantially increase.
A battery size of 40 time steps, in this system, corresponds to a travel time of about
5 hours and half, which is a reasonable value for electric cars nowadays. This value,
assumed as a reference, was compared to a battery size of 20, its half, and of 80, its
double: slices of 3D graphs were cut in correspondence of those values. The graphs
obtained are reported in Figures 3.11 and 3.12.
For what concerns the waiting time, in Figure 3.11, its value remains within an
acceptable range until CT= 23, for a battery size of 20, or CT= 24 if the dimension
of the battery is 40. Adopting larger batteries it is possible to choose an even higher
value of CT. Observing then Figure 3.12, it is possible to note that the curves
corresponding to the three different battery sizes have the same trend, but the one
representing a battery of 20 is always above the others of some decimal percentage
points, thus resulting not convenient compared to them. Considering also the fact
that it would not be realistic for this application, it was excluded. Since the other
two curves are really close to each other, the battery size can be fixed at 40, which
results a more economical choice than 80. These constraints the Customers per Taxi
ratio to be fixed around 23− 24, as supported by both graphs. The values selected
in this way were used for all the successive simulations performed onto the sample
network.
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Figure 3.11: Waiting time as a function of CT with battery sizes of 20, 40, 80 simulated on the
sample network with a horizon length of 15 time steps.

Discussion about horizon

The length of the time horizon H adopted for the MPC in the rebalancing problem
is a crucial factor for the quality of the results obtained, and its optimal value needs
to be estimated carefully. Its lower bound is defined by the amount of time steps
needed to travel between the two stations of the network that are the farthest to each
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Figure 3.12: Empty distance percentage as a function of CT with battery sizes of 20, 40, 80
simulated on the sample network with a horizon length of 15 time steps.

other, in order to ensure that, if a taxi is sent to rebalance in the present time step,
its arrival in its destination happens before the end of the horizon. In fact, in case
the horizon is not long enough, the risk is that the controller might not rebalance
a taxi because it does not foresee the vehicle’s arrival in its destination, and thus
its action of customer pickup. In that case, the potential rebalancing action would
just seem to cause an increase of cost without any positive outcome, so it would
not be issued at all. This behaviour of the system, already explained in Example 2
of Section 3.1, is a consequence of the choice to allow the rebalancing of taxis only
between adjacent stations. The benefit of this approach is to rebalance taxis step
by step, from a station to another, avoiding to assign vehicles long rebalancing trips
that would keep them out of the availability for long time. Although this method
may increase the complexity of the system, it is mostly useful in applications where
a predicted demand is used. Forecasted data are not completely reliable, so the fact
that the rebalancer can move taxis only to neighboring stations gives it the ability
of re-evaluating its decision at every time step. The forecast of data corresponding
to a specific time step of the horizon, in fact, becomes more and more accurate as
the time in which it is evaluated gets closer to the instant it refers to. In this way,
if the forecaster changes its prediction with time, a taxi can still be sent back or
re-directed somewhere else. On the other hand, if the forecast previously done is
confirmed, then the taxi is already going in the right direction and it will continue
following it.

Even though a real upper bound to the horizon length seems to not exist, for its
selection it is necessary to take into account how the computational time of the sim-
ulation grows as it increases. As shown in Figure 3.13, in fact, the time needed to
run each single time step of the simulation, with the setup adopted in this research1,

1Setup used for the simulations: Dell Inspiron 7559 with Intel i7-6700HQ @ 2.60GHz and 16GB
of RAM [31]. Software used: Jupyterlab with Python 3 and CPLEX 20.1.0 as optimizer.
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increases significantly when H is extended.
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Figure 3.13: Average of the computational time per time step as a function of the horizon length
with γ = 0.7, simulated in the sample network.

Looking at Figures 3.14 and 3.15, it is then possible to select the optimal length of
the horizon time basing on the performance results in terms of customers waiting
time and vehicles empty distance in function of H. Values of H below 8 are not
acceptable from the point of view of the waiting time, because they cause a steep
increase in that parameter. The maximum distance between any two stations in the
network, which, as previously explained constitutes the lower bound to the length
of the horizon, is in fact here of 8 time steps. In particular it is possible to observe
a peak in the waiting time for a length of H of 2 time steps. Such a short horizon
in fact limits the capability of the rebalancer to visualize all the possible stations
in which each empty vehicle could be sent: only those at a short distance from the
taxis are taken into account. This leads to a non-optimized solution whose results
are even worse than the case with a shorter horizon. For H = 1, in fact, almost
no action is issued at all, and this paradoxically results to be a better policy than
executing the rebalancing without a proper horizon length.
For values of H > 10 instead the overall waiting time of the whole simulation seems
to settle around acceptable values. A similar behavior can be observed when looking
at the distance that vehicles without customers have to travel around the network
to rebalance or to pick up customers. In this case, even though the variability of the
parameter with H is very limited, it seems to almost reach a steady-state equilib-
rium when H is between 10 and 15. As a result of this analysis, an horizon length
of 15 time steps, corresponding to a time of 2 hours, seemed a reasonable choice to
be adopted in these simulations.
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Figure 3.14: Waiting time as a function of the horizon length with γ = 0.7, simulated in the
sample network.
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Figure 3.15: Percentage of empty distance as a function of the horizon length with γ = 0.7,
simulated in the sample network.

Smart charging

As previously explained, the charging aspect was introduced into the optimization
problem in order to optimize it while evaluating the rebalancing solution (smart
charging). The variable z does not have a direct effect on the value of the cost
function due to its weight Wz being set to zero, so its impact on the system comes
from its presence in the constraint equations. The necessity to include it in the
optimization problem comes from the fact that, if the taxis all start with full battery
and remain in service until they have a sufficient SoC, they are likely to all end up
needing charging at the same time, and often this happens right in correspondence
of the peak hours of the demand.
The inclusion of the terms related to the charging in the constraints of the rebalanc-
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Figure 3.16: Total number of requests per time step of the simulation.
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Figure 3.17: Evolution of the state of the taxis for each time step in the case without the smart
charging, simulated on the sample network with a horizon length of 15 time steps and γ = 0.7.
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Figure 3.18: Evolution of the state of the taxis for each time step in the case with the smart
charging, simulated on the sample network with a horizon length of 15 time steps and γ = 0.7.
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ing has the effect of decreasing the peaks of the charging and spreading them along
the day. Figures 3.17 and 3.18 show the evolution of the taxis states along the whole
simulation done with the demand in Figure 3.16. By comparing these two it is pos-
sible to notice that with smart charging (3.18) the taxis start being plugged much
earlier, and when the amount of customers in the network is at its peak most of
the taxis have already charged and can thus sustain the elevate amount of requests.
When the demand starts decreasing again, there is a new increase in the number of
taxis that are plugged to charging stations. For the whole simulation, in the case
where smart charging is adopted, the charging and occupied taxis continue having
inverse behaviors, as can be seen by their curves that are almost perfectly mirrored.

When only a reactive charging is adopted, instead, taxis are plugged only when they
need it. In this way, most of them end up needing battery during the peaks of the
demand, which cannot then be properly satisfied, as testified by the fact that there
is a saturation of available taxis and by the increase in customers’ waiting time in
Figure 3.19. This behavior is confirmed also by the trend of the vehicles’ state of
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Figure 3.19: Comparison of the overall waiting time resulting from the simulation of the sample
network in the cases with and without smart charging, with a horizon length of 15 time steps and
γ = 0.7.
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Figure 3.20: Comparison of the average SoC of the fleet resulting from the simulation of the
sample network with and without smart charging, with a horizon length of 15 time steps and γ = 0.7.

charge, shown in Figure 3.20: all the vehicles start with a quite elevate SoC, but in
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the case with smart charging some of them start to charge very soon anyways. As
a consequence, the drop in the overall level of battery in the case of smart charging
is not as steep as it is in the case of reactive charging, and the average SoC of all
the vehicles never goes below 45%, differently from the case with reactive charging,
where it sometimes reaches vales lower than 30%. This behavior is an effect of the
MPC approach adopted: when the rebalancer sees that not many taxis are needed
at the moment but it knows, thanks to the predictions, that there will be an increase
in the demand in the close future, it tries to immediately charge them, even if their
battery is not at a minimum level, in order to have them available for when they
will be more needed. On the other hand, in a moment when many vehicles are being
requested by the customers, taxis will not be charged unless it is really necessary,
because the rebalancer can foresee when the end of the demand peak will happen
and knows whether they can wait for it or need to be charged before.

Comparison with the linear cost function

The necessity to account for the magnitude of the imbalance in the optimization
problem, neglecting its sign, led to the possibility to define the cost function in two
alternative ways. Equation 2.11, in fact, was compared to the following one, in
which the squared term was replaced by an absolute value:

J2 =
HØ
t=0

NSØ
i=1

NSØ
j=1

C
dij

dmax · ntaxi
(1− γ) · xtij

D
+

HØ
t=1

NSØ
i=1

5 1
ntaxi

γ · |yti |
6

(3.1)

Adopting equation 3.1 instead of equation 2.11 would heavily affect the optimization
problem. In fact, in absence of the squared term, the problem would not be quadratic
anymore, turning instead into a Mixed Integer Non Linear Programming (MINLP).
The problem can be further simplified by rephrasing it as a MILP by removing the
absolute value from yti and replacing it with a secondary decision variable named
ytabsi

, defined through the following constraints:

ytabsi
≥ yti

ytabsi
≥ −yti

ytabsi
≥ 0

As a result, an optimization problem of the complexity of a MILP is obtained.
The effects of the approaches with the original squared term (2.11) and with the
modified version that include the absolute value (3.1) are evaluated in terms of cus-
tomer waiting time and empty distance travelled, in function of the values of γ that
can be adopted. The different ways the two functions impact the overall waiting
time can be observed in Figure 3.21: the trends are quite similar, low values of γ cor-
respond for both to a huge peak in waiting time, because in those cases rebalancing
is almost not performed at all. The curve corresponding to the equation with the
squared imbalance needs higher values of γ in order to settle to acceptable values of
waiting time, but for γ > 0.5 the behaviors of the two are perfectly comparable.
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Figure 3.21: Comparison between the waiting times obtained using the cost function with the
squared imbalance and that with the absolute value of the imbalance. The times are evaluated as a
function of the service parameter γ that varies from 0 to 1 with horizon a length of 15 time steps,
simulated in the sample network
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Figure 3.22: Comparison between the percentage of empty distances obtained from the cost
function with the squared imbalance and that with the absolute value of the imbalance. The distances
are evaluated as a function of the service parameter γ that varies from 0 to 0.98 with a horizon
length of 15 time steps, simulated in the sample network.

For what concerns the empty distance travelled by vehicles, in Figure 3.22 it is
possible to observe that in the case of cost function with absolute imbalance it
sensibly grows for values of γ > 0.4, thus making it clear why the choice, in this
research, fell on the squared imbalance version of the optimization problem. The odd
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behavior of the cost function in Equation 3.1 can be explained by noting that in its
case, the imbalance in general weights less in the decision-making process, compared
to the case where its term is squared. For this reason, when the rebalancer needs
to select the proper vehicles to be sent in certain stations, the aspect of reducing
the imbalance of other stations, when it is expressed as an absolute value and not a
squared variable, is not a priority. In the case of Equation 2.11, instead, a criterion
for the choice of the vehicle that needs to be rebalanced is also the amount of
imbalance present in its starting station, and how much it can be reduced by sending
such taxi away. This behavior in the case of Equation 3.1 leads to an accumulation
of vehicles in the corners of the network, which results in longer empty trips due to
a non-optimized behavior of the system.
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3.3 Real network - AMoDeus

The algorithm created in the present research was then applied to the case study
of the City of Chicago, with the aid of the open-source simulation environment
AMoDeus (Autonomous Mobility on Demand Simulator) [32], which is an add-on to
the multi-agent transportation simulator MATSim [33], implemented in Java. MAT-
Sim allows to simulate large transportation scenarios for one full day, modelling the
traffic with a queue-based approach, leading to a maximization of the agents’ (that
here correspond to the customers) profit. AMoDeus has some built-in algorithms
to test pre-written operational policies for mobility on demand systems, but it also
allows to implement and test new policies developed by its users, so it resulted very
useful for the purpose of this research.
Since the algorithm was written in python, it was necessary to establish a communi-
cation between the two applications through a socket, which works in the following
way. At the beginning of each time step, AMoDeus sends information to the python
script about: the customer requests appeared, comprehensive of their time of ar-
rival, precise position and desired destination both in terms of coordinate and of
node identification number, the taxis’ positions and state, and the exact time. This
information is then subjected to the previously explained operational policy, by pro-
cessing it with the algorithm, and the commands that have to be adopted are then
sent back to AMoDeus. Those correspond to indications about the taxi-customer
matches and the rebalancing actions that have to be executed right away. When
it receives information about an assignment, AMoDeus manages both the trip that
the taxi needs to do to reach the customer’s position before picking it up, if any,
and the passenger’s trip, unlike the python code where each part of trip needs to be
separately accounted for.

The input to AMoDeus’ simulations, the so-called scenario, should include also the
city network, which was modelled as a directed graph in the python script. It involves
all the information regarding each node, namely id and coordinates, and each link,
which include: id, coordinates, nodes it is connected to, travel direction, nominal
speed and length in meters. The city network for Chicago was already implemented
in AMoDeus. In the network that describes Chicago city on AMoDeus, nodes not
only represent crosses between roads, but are also placed along roads to subdivide
each of them in smaller segments, resulting in more than 62 000 nodes and about
145 000 edges. For this reason, the probability of having a customer and a taxi in
the same exact node is close to zero, thus the static assignment here was imple-
mented in a slightly different way than how it is explained in Section 2.4. For each
customer, the available taxi which is closer to it is first identified, using as metric
the Euclidean distance. The taxi has to be inside a maximum radius of 100 meters
for the customer in order to be taken into account. Its level of battery is checked,
and if it results high enough to perform the whole customer’s trip, the vehicle is
immediately assigned to the person. Being the taxi really close to the customer, the
time and space that separates them is negligible. In this way, a considerable number
of customers, that were very close to available taxis, are assigned right away and do
not need to enter the following phase.
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The steps of the dispatching part of the algorithm here recall exactly those illus-
trated in Section 2.4.2. For what concerns the calculation the distance between
two nodes, it was necessary to define whether the chosen path would need to be
the shortest in terms of length travelled or time needed for it, which often do not
correspond. If a totally realistic case was to be implemented, it would be necessary
to account also for the congestion of the roads, that here is not considered. In that
case, travel times would be strongly influenced by the traffic conditions, so it would
be more meaningful to evaluate the distance between two points in terms of time
needed to travel between them. Since this is not the case, and since the AMoDeus
code, that manages the routing of the vehicles by itself, selects the taxis’ routes
according to their physical length, then the same method was adopted for the dis-
patching and rebalancing steps. This decision also reflects the main purpose of the
present study: choosing to minimize the distance travelled by the taxis (in particular
the empty distance they need to cover to reach customers), at the expense of the
time needed for it, leads to better results in terms of energy efficiency. Since the
network of Chicago provided by AMoDeus was given in terms of a directed graph,
the algorithm used to compute distances along it is a bidirectional version of the
Dijkstra shortest path [34].

In order to execute the rebalancing, the network needed to be partitioned to create
the stations. A basic partitioning method was adopted, which consisted in dividing
the city into rectangular areas and adjusting their dimensions according to data
about the demand in different parts of the city, in order to obtain areas of different
dimensions with similar amounts of customers during a whole day. The partition
adopted can be seen in Figure 3.23. For each zone created by the partitioning pro-
cess, a central node was defined: for most zones it corresponds to their geographic
center, but in some cases it was positioned in a specific location with a particularly
high density of demand. For example, the central node of zone 15 was placed in
correspondence of Chicago airport. A graph was then created starting from this
partition. Each zone is represented by its central node, while edges are defined to
connect the neighboring stations. The weights of the edges depend on the distances
between the central nodes of the two zones they connect. For each taxi or cus-
tomer in the network, the coordinates of its position are used to find out the zone
where it is located, and consequently the rebalancing node to which it belongs. It
is necessary to point out that, differently from the sample network, in this case a
customer’s source and destination could also be in the same zone, which correspond
to the same node in the graph: for this reason, self edges were added to the rebal-
ancing graph. Their weights are defined as half of the diagonal of each zone. The
optimization problem solved in this step works as expressed in Section 2.4.3. In this
case, the interval between two consecutive rebalancing phases is 120 seconds, while
the dispatching takes place every 10 seconds. In this way, the input data to the
optimization problem can be gathered over a longer period of time, which makes
them more meaningful. Moreover, being the rebalancing quite expensive in terms of
computational time, reducing its frequency allows to speed up the whole simulation.
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Figure 3.23: Partitioned network for the rebalancing used in the AMoDeus simlations

For what concerns the charging aspect, here some specific functions were imple-
mented to account for it in a more realistic way. The real behavior of the curve of
the state of charge of an electric vehicle depends on many different variables, some
of which derive from the technical characteristics of the model of the vehicle, while
others depend on the state of the road, such as its slope, congestion and speed limit,
as well as on the atmospheric conditions and other factors. It would therefore be
impossible to take them all in consideration in the context of this research: an accu-
rate study regarding only the battery would be necessary. For this reason, charging
and discharging of the taxis’ SoC was approximated to be linear, and the data about
the vehicle’s battery capacity, duration and charging time were taken from those of
the Volvo XC40 Recharge model [35]. The linearization of the charging functions is
certainly an approximation, but it does not introduce large errors because the level
of the battery in the simulations was mostly kept between 20% and 80%, and in
that range the trend of electric vehicles’ SoC can be considered almost linear.

Actions implemented to improve scalability

The use of the software AMoDeus allowed the simulation of a large-scale model,
whose dimensions, amount of vehicles and passengers actually portrayed those of a
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real city. Although feasible, such simulation can become very expensive in terms of
computational time, to the extent of being almost prohibitive if no corrective action
is adopted to reduce it.

The role of the static assignment in this direction is crucial: when a taxi is really
close to a customer, it is assigned right away, without having to pass by the dis-
patching step. In this way, the amount of customers on which the cost matrix for
the Hungarian algorithm is built results much smaller.

There are two different computational time issues connected to the dispatching
phase. The first one involves directly the time complexity of the Hungarian: as pre-
viously explained, it is o(n3), where n is the dimension of the matrix, corresponding
to the largest between the number of taxis and of customers. It is clear, then,
that reducing the size of the cost matrix sensibly decreases the computational time
needed to process it and produce the dispatching decisions of each time step. The
second reason why the dispatching phase becomes unfeasible in terms of computa-
tional time is instead related to the time complexity of the algorithm used for the
evaluation of the shortest path. Considering that the running time of the Dijkstra’s
algorithm in the worst case performance is of the order O(E + V · log(V )), where E
is the number of edges and V is the number of nodes [36], moving to a real-world di-
mension network penalizes this step of the algorithm and thus the whole duration of
the simulation. An interesting option to solve this issue would be taking advantage
of the partition created for the rebalancing to run the dispatching step within each
of those stations, instead than in the whole network. However this action could lead
to a reduction in the optimality of the dispatching solution, in fact vehicles would
be assigned only to customers inside their same zone, and in the case where the
customers closer to them are outside the borders of the zone this would not lead
to the best result. Moreover, as specified before, the graph is directed, in order
to reflect real roads’ fixed travel direction. Dividing it into regions, then, it is not
guaranteed that in each area it will be possible to find a path that connects any
two internal nodes in it. The assignment of a taxi to a customer in its proximity
and in its same station could then potentially result impossible just because a part
of the path that connects them goes outside the borders of the region. To solve
this second issue and ensure the feasibility of the simulations, another strategy was
then implemented, with the aim of reducing the amount of times the shortest path
calculation through the Dijkstra method needs to be done to build the cost matrix.
For each customer, the Euclidean distance that separates it from every taxi of the
network is first evaluated. A certain amount of vehicles is selected among those
that result to be the closest to the customer. Only these then go through the next
step: the evaluation of the real distance with the Dijkstra algorithm. This method
allows to avoid performing the massive time-consuming computation of the shortest
path among each customer and a huge amount of taxis that with high probability
would not be suitable to be assigned to it, can be avoided. This action made the
simulations several times faster, thus definitely more suitable to be applied for a
real-time control of the fleet.
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3.3.1 Baseline Algorithm
In order to better visualize and evaluate the outcome of this research, it was neces-
sary to compare the performance of the T-EAMoD algorithm with that of a baseline
control policy. Unfortunately, it was impossible to find a suitable algorithm for such
comparison. In fact the T-EAMoD was designed to be applied to a fleet of au-
tonomous electric vehicles, that can thus potentially run for 24 hours per day, 7
days per week, and for which it is necessary to account for the charging time. A
comparison with the performance of a fleet of human-driven fuel vehicles would then
not be meaningful, because too many aspects would be different in the two cases.
Moreover, as previously stated, the software AMoDeus provides some control poli-
cies created by its developers that can be accessed by the users. The problem with
such algorithms is that all of them ignore the aspect of battery consumption, thus
neglecting the necessity of charging the electric vehicles. In absence of a suitable
algorithm to use for the comparison, it was necessary to create it. Such control
policy, addressed as "baseline", consists in a reactive assignment of available vehicles
to the closest customers, in order to reflect what usually happens nowadays with
the classical urban taxi services. The space that separates the vehicles from the
customers is evaluated in terms of Euclidean distance, instead of shortest path as
instead happens in the T-EAMoD, and also the charging of the taxis is implemented
in a reactive way: whenever a vehicle has a battery level lower than a certain thresh-
old, it is put in charge and remains in such state until it has overcome a pre-defined
level of SoC. In the following sections, the performance of the T-EAMoD algorithm
are compared with those obtained by adopting the baseline control policy to the
same city network with the same data set, while in the last Chapter of this the-
sis the results obtained by running the two simulations in parallel are shown and
discussed.

3.4 Real scenario results
The data used for the simulations on AMoDeus reflect the real demand of taxis
of the 19th July 2019 in the City of Chicago. These data are described in the
population file, where each customer is represented through a request composed by:
arrival time, source node and destination node. The population file of the day under
test includes 39 590 requests, and its distribution during the day, sampled with the
rebalancing period (120 s), is shown in Figure 3.24.
The size of the fleet used for the simulation is equal to the total number of taxis
employed in reality during the day to satisfy such demand (990 taxis). The majority
of these taxis are fuel vehicles, in opposition to the fleet used in this research that
includes only electric cars. This difference is substantial when considering refuelling
times. In fact, the time to refuel a petrol car is really short, almost negligible with
respect the service time, while the time needed for an electric vehicle to recharge
its battery is of the order of a hour. Furthermore, the taxis come from different
service providers, whose objective is to maximize their own profit. This behaviour
leads to a management of the whole amount of taxis extremely different from the
centralized method applied in this research. One of the main breakthrough of this
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Figure 3.24: Distribution of the requests during the 19th July 2019 sampled every 120 seconds.

work is the cars’ autonomous driving, thus the taxis can be on service 24/7 without
any selective working hours. The same could not happen with taxi drivers, in which
the number of available taxis would vary as a function of the hours of the day. As
just mentioned, this approach has different aspects that are too distant from the
current system of taxis, so it would not be meaningful to compare them. For this
reason the real performance of the system during the day tested, in terms of waiting
time and empty distance, was not taken into account.

Figure 3.25 captures one instant of the simulation with AMoDeus. The green dots
correspond to the taxis that are not moving, so they can be either available or in
charging state. The red dots instead are the vehicles transporting customers, while
the orange ones are those that are going to pick up their customer: the orange lines
connect their current position to the position of their passenger. The blue dots
correspond to taxis that are busy in a rebalancing trip, and the blue lines connect
them with their destinations. The blue regions within the network represent the
areas with an elevate amount of open requests and their color tends to red as the
number of customers increases.

Comparison of different horizons

As was previously done with the sample network, the simulations on the real net-
work were repeated for different lengths of the horizon H, in order to explore the
impact of such parameter on the results and complexity of the simulations. The
outcome of this comparison is summarized in Table 3.2.

The first outcome of this analysis that needs to be underlined is related to the base-
line algorithm which, as described in Section 3.3.1, tries to reflect what would happen
by applying nowadays’ taxi fleet management policies on a fleet of autonomous vehi-
cles. Comparing the first two rows of Table 3.2, it is possible to notice a substantial
improvement in the system’s performance, both in terms of waiting time and empty
distance, even in the case without any rebalancing action issued. The explanation
that can be given to this behaviour is twofold. First of all, the distance between taxi
and customer in the T-EAMoD case is evaluated through a shortest path algorithm
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Figure 3.25: Screenshot of an AMoDeus simulation.

that studies the network itself and thus takes into account all the possible paths that
connect their positions. The baseline instead uses the Euclidean method to evalu-
ate the distance between them, which leads to underestimating the real value and
thus to a loss of optimality: with that comes a higher distance driven by the empty
taxis. The second reason is related to the dispatching step. In the baseline, this
phase considers only the distance that divides the taxi from the customer, while in
the T-EAMoD algorithm, as described in Section 2.4.2, it takes into account many
other relevant aspects as well, such as the waiting time of the customers, the SoC
of the taxis and the residual path of the vehicles that are already travelling.

Going back to Table 3.2, and analysing it entirely, it is clear that an extension of
H in general brings positive results in terms of customer waiting time reduction:
both the mean and the 95% quantile of such parameter decrease when the length
of the horizon increases. The value indicated by the 95% quantile indicates the
upper bound to the WT of 95% of the customers that use the service along a full
day. On the other hand, the total distance travelled by the vehicles grows with
H, and the same happens with the empty distance percentage. These behaviors
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are due to the fact that the more the rebalancer sees ahead in the future, the
more rebalancing actions it will issue, and in this way the quality of the service
for customers is improved: this cannot happen, at least with the setup used here,
without an increase of energy expense of the overall system. A change in the trend
can be observed in the values of total and empty distance for horizon lengths of 2
hours and more: the total and empty distance do not increase anymore, they settle
around certain values and fluctuate around them, while at the same time bringing
benefits in terms of reduction of mean and 95% quantile waiting time.

Horizon Mean WT 95% quant. Total
Dist.

Empty
Dist.

Comp.
Time

Baseline 7 min 02 s 17 min 23 s 803832 km 208440 km 0 s

No Reb 6 min 14 s 14 min 49 s 788577 km 193189 km 0 s

30 min 6 min 01 s 14 min 36 s 793281 km 197892 km 3.65 s

1 h 5 min 51 s 14 min 06 s 799256 km 203867 km 10.11 s

1 h 30 min 5 min 08 s 13 min 07 s 807982 km 212599 km 21.8 s

2 h 4 min 44 s 12 min 52 s 808791 km 213406 km 39.02 s

2 h 30 min 4 min 41 s 12 min 34 s 810207 km 214824 km 70.03 s

Table 3.2: Comparison of the results obtained in function of different horizon lengths. The
computational time is related only to the rebalancing phase of the algorithm.

Further clarification about the concept of empty distance are necessary to under-
stand the origin of these values. The distance that a taxi covers without carrying a
customer can be divided into two contributions: pickup and rebalancing. The first
one depends on the length of the path that separates the taxi from the customer
assigned according the dispatching policy, while the latter refers to the trips made
in order for the taxi to anticipate the arrival of the customer, thus without being
assigned to a specific request. The data of the simulation without rebalacing policy,
in which taxis move only when customers appear, better explain the ones showed in
Table 3.2. In fact, with the "no-rebalancing" setup, an empty distance of 193 189 km
is travelled by the vehicles, over a total distance of 788 577 km, corresponding to
a percentage of about 24.50%. Such setup led to a mean and 95% quantile of the
waiting times of respectively 6 min 14 s and 14 min 49 s. In that case the empty dis-
tance can be considered as pure pickup distance in fact, without rebalancing, taxis
do not move in advance. Thus, from the aforementioned data, it can be deduced
how a slight increase in empty distance can lead to sensible improvements in terms
of waiting time reduction. Figure 3.26 shows how the ratio between the two compo-
nents of empty distance varies by increasing the length of the horizon: for a shorter
horizon less rebalancing is done, while the percentage of pick up distance among the
total empty distance is quite elevate. As H increases, more and more rebalancing is
done, and the percentage of pick up travelled distance decreases accordingly.

With this classification of the two contributes that constitute the empty distance,
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Figure 3.26: Variation of the ratio of "pickup" and "rebalancing" distance over the whole empty
distance with an increase in the horizon length, simulated on the sample network with γ = 0.7.

the understanding of the behavior of the curve of empty distance as a function of γ
(Figure 3.8, referring to the sample network), parameter which roughly represents
the amount of rebalancing done, becomes more straightforward. When the increase
of empty distance travelled due to the rebalancing trips is smaller than the decrease
of pick up trips, then the curve experiences a deflection. The trend is inverted
when instead the rebalancing distance travelled is more than the amount of pick up
distance it allows to save. It is also necessary to take into account the increase in
computational time for the rebalancing phase caused by an extension of H. Such
parameter grows more than linearly with the length of the horizon, and it becomes
quite elevate for higher values of H, thus limiting the possibility of increasing the
horizon length. In the remaining simulations of this thesis, a horizon length of 2h
was adopted, as it seemed to be the right compromise between the necessity of
improving the results and that of keeping the computational time under control.

Comparison of the effect of different values of the service parameter γ

...

Comparison of different forecasting methods

Different setups were tested on the real network for what concerns the aspect of
demand forecast used in the rebalacing algorithm. All the simulations discussed
previously, in fact, were conducted using the known future demand (oracle) as a
forecast, because this would allow to better observe the behavior of the algorithm
and to tune other parameters without the system being influenced by uncertainties
coming from inexact forecasts. In reality however the future demand is not known
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in advance, so it is interesting to evaluate the effect of a forecasting method on the
results of the simulations. Two methods have been tested: AR prediction and frozen
demand. The first one, already discussed in Section 2.4, takes as input a batch of
data composed by the costumers’ source-destination matrices of the nbatch previous
time steps and, selecting finely the number of lags, it predicts the demand for all the
H time steps of the horizon, where usually nbatch > H. The data forecasted along
the whole simulation are showed in Figure 3.27, where they are compared with the
oracle demand of each time step. Although the trend of the predicted demand fol-
lows well that of the real one, it is clear that the AR sensibly underestimates the
data, even after the corrections applied with the robustification step explained in
Section 2.4. This might be in part due to the fact that the AR has to predict pairs
of values, not singular ones, to account for both the source and destination of the
future customers: this makes the data less meaningful and more difficult to predict.
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Figure 3.27: Comparison between real demand and the first time step of the forecast done in
each time step of the simulation.

On the other hand, the frozen demand shows a scenario in which no predictions
are made and the customers that appeared between the end of the previous time
step and the beginning of the current one replace the forecast for the whole horizon.
Table 3.3 compares the main results of these three simulations.

Forecast
Method Mean WT 95% quant. Total

Dist.
Empty
Dist.

AR 6 min 03 s 14 min 55 s 801890 km 206510 km

Frozen 4 min 56 s 12 min 42 s 903115 km 307718 km

Oracle 4 min 44 s 12 min 52 s 808791 km 213406 km

Table 3.3: Comparison of the results obtained in function of different forecast methods simulated
with 2 h horizon.

The T-EAMoD algorithm is strongly dependent on the quality of the demand fore-
cast. The predictions made with the AR underestimate the real demand: for this
reason the waiting time connected to that case are large, while the empty distance
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travelled by the vehicles remains reasonable. The fixed demand instead works better
in terms of waiting time, but leads to more kilometers travelled by empty taxis. In
fact, assuming that the demand in the whole horizon will be the same as it is in the
present moment, vehicles are often moved to stations where in reality they will not
be needed, thus resulting in useless expensive trips. To be able to adopt this algo-
rithm with better results, a more accurate forecasting method would be necessary,
which could not be implemented here because it requires studies that go in different
directions than the present one.

Reduction of the fleet

Some analysis were performed to explore the possibility of reducing the amount of
taxis in the fleet. The comparison was run between the following configurations:

• Full fleet (990 taxis), baseline algorithm
• Full fleet (990 taxis), T-EAMoD algorithm
• Fleet reduced of 5% (940 taxis), T-EAMoD algorithm
• Fleet reduced of 10% (891 taxis), T-EAMoD algorithm

The data in Table 3.4 report, as expected, a decrease in performance as the fleet size
decreases. In fact, the simulations with 940 and 891 taxis both have higher mean
waiting time and 95% quantile with respect to the simulation with the full fleet.
The most interesting outcome of this analysis is related to the comparison between
the results obtained with the T-EAMoD algorithm applied on a reduced fleet and
those given by the baseline control policy. A reduction of fleet of 5% in the T-
EAMoD leads to an overall customers’ waiting time that is still sensibly lower than
the one obtained with the baseline. In the case of adoption of the T-EAMoD pol-
icy with a fleet of 891 vehicles (fleet size reduced of 10%), the value of the mean
customers’ waiting time becomes really close to that obtained with the baseline al-
gorithm and a full fleet. As was observed while analyzing the other results of this
research, the drawback of this behaviour is always an increase in distance driven by
empty taxis. This is reasonable since the demand and the size of the network is kept
constant, so the CT rate increases together with the density of the taxis along the
network.

Fleet Size Mean WT 95% quant. Total
Dist.

Empty
Dist.

990* 7 min 02 s 17 min 23 s 803832 km 208440 km

990 4 min 44 s 12 min 52 s 808791 km 213406 km

940 (-5%) 5 min 47 s 14 min 00 s 812324 km 216936 km

891 (-10%) 6 min 59 s 15 min 14 s 819599 km 224212 km

Table 3.4: Comparison of the results obtained in function of different fleet sizes. Simulated with
2 h horizon. *Simulation with baseline algorithm

Having a smaller amount of vehicles would result beneficial in terms of reduction of
the costs connected to the production, maintenance and management of the fleet.
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A service provider might then accept a slight increase in customers’ waiting time
and energy expense connected to the vehicles’ trips, in order to take advantage of
the benefits that would come from the fleet reduction. With a detailed study of
the cost savings and of the increase in efficiency that come from having a reduced
fleet, it would be possible to find the optimal fleet size, keeping in mind that the
optimization of the dispatching, rebalancing and charging phases would still allow
to offer a good service quality, by reducing customers’ waiting times compared to
the baseline that reflects the reality of taxi fleet management nowadays, even with
a lower amount of vehicles.
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Conclusion

4.1 Final results
The detailed analysis conducted in Chapter 3 shows the effect of all the parameters
that influence the system, their physical meaning and how they can be tuned in order
to obtain the desired objective. As an outcome of the research, a final simulation
was done adopting the set of parameters that, according to the analysis carried
out previously, seemed to bring to the most interesting and reasonable results. In
particular, the values adopted are the following:

• length of the time horizon: H = 2 hours,
• service parameter: γ = 0.7
• number of vehicles: NT = 990

The optimization problem solved in the rebalancing phase is shown in Equation 2.12,
which includes the cost function where the weights wt

zi
of the decision variables

related to the charging taxis zti are all equal to zero, the value of åyit is set to
zero and the imbalance term is squared. The forecast is once again replaced with
the real future demand (oracle) because, as was assessed by the analysis on the
Autoregressive model results, other forecasting methods need to be investigate to
find the most suitable one for the present application. The performance of the T-
EAMoD algorithm was compared with that of the baseline described in Section 3.3.1,
in order to better evaluate the results and the improvement that the T-EAMoD
control policy brings in the field of AMoD control.
The full simulations are visible here [37], and a frame extracted from them is shown
in Figure 4.1. The instant of the simulations visible in the figure corresponds to a
moment with a quite elevate customer demand, as testified by the coloured areas
on the network. Those represent the open requests in real time: they are blue when
the amount of customers in the zone is relatively low, and tend to become red as the
amount of people that are waiting increases. During the simulation, in the case of
the optimized algorithm those zones are on average smaller and lighter than what
happens with the baseline, meaning that the rebalancing anticipates quite well the
demand, and thus there is a lower accumulation of customers even during the peak
hours.

Some significant results are also shown in Table 4.1. The average customers’ wait-
ing time obtained with the T-EAMoD algorithm is of 4 minutes and 44 seconds,
resulting to be 33% lower than the baseline’s, while the 95% quantile is reduced
of 26%. Such improvement in performance costs to the system an increase of only
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Figure 4.1: Frame of the comparison between the simulation with the T-EAMoD control policy
and the one with a baseline reactive algorithm.

Control
Policy Mean WT 95% quant. Total

Dist.
Empty
Dist.

Baseline 7 min 02 s 17 min 23 s 803832 km 208440 km

T-EAMoD 4 min 44 s 12 min 52 s 808791 km 213406 km

Table 4.1: Results of the comparison between the simulation with the control policy developed in
the present research and the one with a baseline reactive algorithm.

2.4% of distance travelled by empty vehicles, thus suggesting that the T-EAMoD is
effective in managing the whole system in a more optimized way. The only aspect
on which the T-EAMoD performs worse than the baseline algorithm is obviously
the computational time: the time needed by the T-EAMoD to evaluate the data
and produce the optimal control actions at every time step is orders of magnitudes
higher than that required by the baseline for the same actions, so a more powerful
data processing machine is necessary in general to run the T-EAMoD policy.

4.2 Discussion
The algorithm illustrated in this research can adapt to various scenarios and be
oriented towards different objectives, according to what is the main goal that the
company providing the AMoD service wants to pursue and what are the resources
it can rely on. As discussed in Section 3.2, the user can easily decide to prioritize
either the empty distance travelled by the vehicles or the customers’ waiting time,
by accordingly tuning the service parameter γ. The value of γ = 0.7 seemed a rea-
sonable trade-off between the two objectives, and was adopted here to present other
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kinds of results, but it can be simply reduced for a system whose main goal is a cut
in energy expense, or increased in case customers’ satisfaction needs to be boosted,
at the expense of energy saving.

Moreover, a semi-realistic model of charging was adopted, with the aid of some
simplifying assumptions that neglect the nonlinear behavior of the electric vehicles’
SoC, which anyways do not cause large errors until the battery level remains in the
range 20 - 80%. The model can be improved to bring more accurate results, but the
main effects of the introduction of the charging aspect in the algorithm are clearly
visible and provide an interesting outcome. The method chosen to include it in the
model was to incorporate it into the optimization problem of the rebalancing, thus
to address it in a predictive framework. This was proven to provide considerably
better results compared to the option of dealing with charging just in a reactive
way, as it allowed to handle the charging of vehicles in a smart way, to avoid any
interference with the demand peaks. The fact that the charging decision variable z
was also included in the cost function expression leaves space to the introduction of
aspects that concern energy price and availability fluctuations over time, that here
were not considered.

Several studies about the optimal horizon length were also performed. Their results
show that the choice of H must remain between some predefined limits, the lower
bound being given by the minimum number of time steps needed in order for the
predictions to be meaningful, while the upper one is caused by the increase in com-
putational burden given by an extension of H, which limits the method in terms of
feasibility. An extension of the horizon in general is expected to bring an improve-
ment in the results only until a certain value of H, and after that the outcome of
the application of the algorithm is not influenced by an increase in horizon length.
The optimal solution would be to adopt such value, which differs according to the
system setup, after which the dependence of the results on H is not observable any-
more. In case of availability of more powerful resources than the ones used for this
thesis, such value of H can be better investigated in a real scenario and adopted,
thus improving the quality of the fleet management.

4.3 Future studies
Research in the field of AMoD control started in the recent years, and some of its
key issues have not been addressed yet. This thesis in particular, besides suggesting
solutions to some interesting questions on the topic, raises new issues and indicates
some possible new directions that researches on AMoD could follow in the future.
What would be interesting to implement, for example, is a multiple simultaneous
Hungarian algorithm for the dispatching phase, that would allow to assign a taxi
to more than one customer in the same time step, arranging them in a temporal
queue. This could be useful in case the destination of a passenger corresponds to
the source of another: energy could be saved by avoiding sending a vehicle to a
station where another one is already going, even if customers’ waiting time might
be slightly penalized. For what concerns the charging aspect, a more accurate
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model could be built to account for energy consumption, when the exact model
of the vehicle used is known as well as the road conditions and congestion. The
traffic in general is an aspect that needs to be taken into account in future studies,
because it also impacts the travel time and thus the assignments that can be made.
Moreover, it would be interesting to define the exact position and capacity of the
charging stations, which would add some more constraints in the algorithm. In
that case, the distance that the vehicles would need to cover to reach the charging
stations would also have to be included in the count of the overall empty distance.
Talking about demand forecast, different interesting models could be investigated,
in particular neural networks could be involved in it, as they could be properly
trained on data taken from the past and provide more accurate forecasts compared
to the Autoregressive models. For what concerns the implementation on the software
AMoDeus, different ways of partitioning the network could be investigated. For
example, it would be possible to adopt the technique of dynamically partitioning
the network to follow the behavior of the demand and its distribution along the
network, in order to make the algorithm more efficient. An interesting expansion
of the study involves the aspect of ridesharing, in other words the transportation
of multiple customers, each with his/her own source and destination, by the same
vehicle at the same time: this would definitely optimize the efficiency of the AMoD
system by further reducing the distance travelled.

4.4 Conclusion
In this study, an algorithm for the control of Autonomous Mobility on Demand
oriented not only in the direction of an increase of the service quality but also towards
energy efficiency was presented. Different aspects needed to be taken into account
when planning the dispatching and rebalancing phases of the fleet management, and
besides finding the optimal solution to service all the customers in the shortest time
possible, it was necessary to consider also the aspect of vehicles charging and distance
travelled by empty taxis. Electric vehicles in fact have the capability of reducing the
environmental impact of the transport sector, but in order for this to happen their
utilization must be optimized. The time to charge an electric vehicle, in fact, needs
to be taken into account: it is not as short as the time needed to refuel petrol cars
which, instead, could be neglected. Consequently, adopting electric vehicles without
an appropriate smart policy to account for their charging would mean that, for a
fixed amount of average demand, a much higher number of cars would be needed,
with repercussions on the environment as well as on the congestion of the streets.
The method presented in this thesis was meant to optimize the system taking into
account as many aspects as possible, including: the quest for the best taxi-customer
matching, the need of balancing the resources along the networks, the opportunity
cost connected to the charging of vehicles, the customers’ whole trips, including
not only their starting positions but also the destinations. The outcome of the
study shows useful results for the development of an optimal AMoD control policy,
but at the same time leaves much space for orienting the policy towards the most
desired objective by appropriately tuning the system parameters, whose impact on
the results was widely discussed.
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