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Summary

The last few years have seen a growth in popularity of Cloud Computing, a computational
paradigm to deploy IT services, through which cloud providers make computing resources avail-
able at the request of users, ensuring greater flexibility, availability and cost reduction, without
the need for the user to purchase and manage them. Cloud Computing achieves these benefits
taking advantage of virtualization technologies, which can host services in a full virtualization
environments, such as the Xen hypervisor or Kernel-based Virtual Machine, or in a lightweight
virtualization environment, such as Docker. Nowadays the trend is towards the use of lightweight
virtual machines, also named containers, considered by companies more advantageous for their
flexibility, simplified deployment, compatibility with various operative systems, rapid availabil-
ity, fine-grained subdivision of computational resources in micro-services. The Cloud Computing
paradigm, however, while providing great benefits to users, introduced an entire whole world of
security threats, such as isolation failure, economic denial of service, malicious insider, which ex-
pose companies and users to great security and privacy risks. Being able to verify the integrity
and correct configuration of the software running on the cloud nodes is crucial to early detection
of any type of tampering and breach, in order to react promptly to attacks. Remote Attestation is
the process by which an external entity can assess the level of trustworthiness of a computational
node; it works well for physical nodes, but it is not yet a well established process for virtual nodes,
as traditional and lightweight virtual machines. Proposals have been published in the scientific lit-
erature but none of them completely satisfies the desirable requirements of scalability, low latency
and availability in any deployment scenario. This thesis proposes a new solution to carry out pe-
riodic remote attestation of lightweight virtual machines deployed in a container runtime engine
among those most used in current cloud platforms, such as Docker and containerd. The solution
complies with Trusted Computing Group’s specifications, relying on Trusted Platform Module
2.0, “Integrity Measurement Architecture” Linux’s security module and Keylime as remote attes-
tation framework. As proved by performance tests performed in laboratory, the proposed solution
is highly scalable, adapts to different containerization technologies and guarantees low attestation
latency as the number of containers, deployed on the cloud node, increases.
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Chapter 1

Introduction

Over the years, ICT infrastructures have developed and evolved, passing from a centralized
scheme, where applications and data reside on a single processing node, to a scheme in which
numerous distributed components contribute to the storage and processing of data. Among dis-
tributed systems, the most widespread currently is Cloud Computing which changed the delivery
model for IT services based on Internet, providing users with dynamically scalable and virtualized
computing resources. Cloud Computing is based on the idea of delegating the management and
delivery of software and hardware resources to third-party companies (cloud providers) which,
being specialized in that particular field, can offer a better quality of service at lower costs.
Thanks to this paradigm, enterprises can achieve significant cost savings by purchasing IT re-
sources based on their actual demands, according to the “pay-per-use” model, at the same time
leveraging leading-edge technologies for their computational and storage needs. For these reasons
cloud computing, initially aimed only at large companies, has grown rapidly, spreading to small
and medium-sized businesses and currently also to consumers.

Nowadays in the world there is a myriad of Internet of Things (IoT) devices which allow
companies and individuals to take advantage of a great variety of sophisticated and targeted
services. All of these devices produce a huge amount of data that needs to be processed and
stored. Managing this new scenario only with the Cloud Computing paradigm would lead to an
overload of the backbone network of Internet, a large overhead in the Cloud servers and would
not allow the creation of fully real-time services as IoT requires. These new needs are met by
Edge Computing and Fog Computing, two new distributed paradigms currently emerging, which
differ in design and purpose and both play a complementary role to that of Cloud Computing. By
allowing for the processing and storage of part of the data locally, they achieve a smooth transition
to fully decentralized systems. Edge Computing is a distributed paradigm where computation
and storage usually occur either directly on the device that generates data or on a gateway device
that is physically close to sensors. Each edge device can act as a server in the edge network, so
while cloud computing is typically distributed to dozens of servers, edge computing is distributed
over hundreds or thousands of local nodes. Fog Computing, instead, moves part of edge activities
to fog nodes more distanct from sensors and actuators, but situated within the same LAN, and it
brings more intelligent data analyses to servers in the Cloud; so, it bridges Edge Computing and
Cloud Computing. The local processing and storage, even if partial, of the enormous amount of
data generated by these devices bring great advantages such as low network traffic, real-time data
analysis, low latency, reduced operating costs. Fog and Edge computing are designed to adapt to
these scenarios and certainly in the near future more and more companies and service providers
will want to use and benefit from them.

If on the one hand distributed infrastructures offer enormous benefits to companies and con-
sumers, on the other hand they introduced new criticalities about security and privacy. Nowadays,
attacks by cybercrime are unrelenting and continuously cause very serious damages to companies,
government organizations and individual users. Perimeter-focused security architectures are no
longer suitable to protect new ICT infrastructures, which are characterized by a dissolution of
traditional boundaries. Modern security paradigms focus on the concept of “trustworthiness”
of a computational entity, which concerns the determination of its behavior: it is trusted if it
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behaves as expected for the intended purpose, consequently it is trustworthy if its behavior is
predictable. The determination of the trustworthiness level of a computational node requires the
periodic verification that all its software and configuration files have not been tampered with by
malicious attackers; this can be achieved through Trusted Computing (TC) technology, which
has the Trusted Platform Module (TPM) chip as its founding element. The TPM is a secure
cryptoprocessor whose primary scope is to protect the integrity measurements, which are digests
calculated through cryptographic hash algorithms on the platform components, inside its special
memory locations called Platform Configuration Registers (PCRs), and to report them to a third
party in an authenticated way. These TPM capabilities, together with the platform components
that perform the measurements, enable the Remote Attestation (RA) process through which a
platform, the Attester, demonstrates its integrity state to an external entity, the Verifier. The
integrity verification can concern only the boot phase of a system or also include its runtime.
Integrity Measurement Architecture (IMA) is the Linux kernel module responsible for measuring
the files accessed by the system at runtime; each measurement acquired by IMA is extended in a
specific PCR and stored in a log file, whose format is established by the configured IMA template.

Modern infrastructures heavily rely on virtualization techniques in order to optimize the use
of IT resources, so user services are often hosted not directly in physical machines but in Virtual
Machines (VMs) managed by the Hypervisor, a software layer, installed on a physical server, that
controls and emulates the hardware resources, assigning them dynamically to the VMs. Since VMs
are widely used in cloud environments, extending the RA process to them is extremely important.
However, while remote attestation of physical nodes is a well-established process, attesting VMs
is still a challenging task because VMs do not always have direct access to the TPM and, even
when this is available, the number of available PCRs is insufficient for managing all the VMs
running on a physical machine.

Further challenges have arisen in recent years as Lightweight Virtualization techniques began to
be adopted in cloud environments, replacing classic virtualization in some use cases. Containers,
which are the computational entities provided by the lightweight virtualization, have near bear-
metal performance, unlike traditional VMs which entail a considerable overhead of management;
since they offer an extremely advantageous price/performance ratio, companies are encouraged
to adopt them for deploying their services. While VMs have their own operating system and
the isolation among them is guaranteed by the hypervisor, containers share the kernel of the
host system and isolation among them is achieved through kernel features; hence, if the host
environment is not properly configured, they are more exposed to the lack of logical isolation and
maliciuos insiders than VMs. It follows that the ability to perform the RA process of containers
and their underlying host system is fundamental to guarantee the trustworthiness of containerized
services.

Some solutions have been proposed and discussed for realizing RA of containers, such as Docker
Integrity Verification Engine (DIVE) [1] and Container-IMA [2]. Both solutions allow to perform
a separate evaluation on the integrity state of each container running on the platform; however,
they have some limitations and their implementations rely on TPM 1.2, a specification deprecated
and substitued by TPM 2.0. DIVE requires the Docker engine to be configured with a specific
storage driver, Device Mapper, not allowing to use other storage drivers which, in some situations,
could have better performance. Moreover, DIVE identifies the measurements relating to a specific
container through the virtual device identifier that Device Mapper assigns to all processes running
in that container; however, when a container is terminated and a new one is created, the new
container acquires the same virtual device identifier assigned to the previous container, inheriting
all the measurements generated by the terminated container and causing, in this way, an integrity
failure when its status is evaluated by a Verifier. Container-IMA is particularly effective for
ensuring the privacy of container measurements in multi-tenant environments, because a Verifier
receives only the measurements related to the container that it has to attest. However this solution
is based on the assumption that there is no need to attest to the entire host system to assert that
the environment, in which the container is running, is trusted. Furthermore, the privacy guarantee
of the measures concerning a container is based on a shared secret between the kernel space of the
system where the container is running and the Verifier, but the mechanism by which the secret
can be shared in a secure way is not well defined.

Purpose of this work was to overcome some criticalities of the previous solutions and provide
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an implementation of container attestation which relies on TPM 2.0 specification. The thesis work
consisted in developing a new IMA template that allows to identify the measurements related to a
specific container directly through its container ID; this was realized by exploiting a behaviour of
containarization technologies, which assign control groups with name equal to the container full-
ID to the processes running in a specific container. Furthermore, the thesis work also concerned
the extension of Keylime, a remote attestation framework able to attest physical nodes by relying
on the TPM 2.0 specification. The Keylime code was appropriately modified in order to make the
Keylime Verifier able to interpret the new IMA template and support attestation of individual
containers. Moreover, it was decided to exploit the algorithm agility introduced by TPM 2.0,
allowing to use hash algorithms with a higher security level than SHA-1 during the integrity
verification of the IMA measurements. Then, in order to optimize the attestation times, it was
decided to check, at each attestation cycle, only the last IMA measurements not yet attested,
instead of the entire measuements log. In order to support the registration of containers inside
the Keylime Verifier, new REST APIs were also added to the Keylime framework and some
already present were adapted.

The Keylime framework, extended for container attestation, was then integrated with the
Trust Monitor, a monitoring entity developed by the TORSEC research group for verifying the
integrity state of all the components of a Network Functions Virtualization (NFV) platform.
In modern networks, in fact, many functions are no longer performed by dedicated hardware
appliances, but are deployed inside VMs or containers running on general purpose computational
nodes. Consequently, all these virtual components must be constantly monitored to verify their
integrity through the RA process, analogously to what has to be done for virtualized components
in a cloud infrastructure. The thesis work provided the Trust Monitor with a new tool which takes
advantage of the TPM’s capabilities introduced by the 2.0 specification for attesting containers
deployed in a NFV infrastructure.
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Chapter 2

Trusted Computing and TPM 2.0

This chapter provides an overview of Trusted Computing (TC), examining the reasons that led to
its definition and to the specification of the Trusted Platform Module (TPM), and what are the
functional capabilities offered by TPM 2.0, pointing out the introduced innovations compared to
TPM 1.2.

2.1 Trusted Computing and TCG

The problem about computer security was highlighted since 1960’s by the United States military.
They saw in the use of resource-sharing systems, emerging during those years, an advantage for
the increase of computer performance and efficiency, but also a threat and a security risk since
users had the possibility to read each other’s data. For this reason, in 1967 U.S.’ National Security
Agency (NSA) promoted several research projects which were the basis for computer security. In
1981 the Department of Defense (DoD) founded the Computer Security Initiative (CSI) which,
at the “IEEE Symposium on Security and Privacy”, presented a paper [3] containing a first
definition of Trusted Computing systems. These were described as systems that “employ sufficient
hardware and software integrity measures to allow its use in processing multiple levels of classified
or sensitive information”. In December 1985, the DoD published the “Trusted Computer System
Evaluation Criteria” (TCSEC), commonly known as the Orange Book, a standard for estimating
the effectiveness of computer security controls built into automatic data processing systems. This
document provides the first formal definition of the Trusted Computing Base (TCB) of a computer
system, stated as the set of all the elements of the system responsible for supporting the security
policy and the isolation of the objects (code and data) used to protect the system. The TCB,
whose boundaries constitute the “security perimeter”, includes hardware, firmware and software
critical to protection and must be designed and implemented such that, even if system components
out of it become untrusted, this does not compromise system protection [4]. The criteria expressed
in the Orange Book were ahead of the times, because they were introduced in the era of mainframe
systems, when the computer security was intended mostly as physical security of the system, with
few logical security delegated to the operating system, so the “science and discipline of trusted
computing” was neglected for a long time [5].

In the 1990s, with the widespread of Personal Computers (PCs), connected each other through
Internet, the computer industry understood that the security in PCs had to be enhanced in
order to allow the diffusion of important applications, sensitive in terms of security and privacy,
as the electronic commerce. In fact, PCs were primarily designed having in mind ease of use,
with little thought to their security. IT vendors, however, tried to improve computer security,
producing software to protect the system, like firewalls and Intrusion Detection Systems (IDS),
to discover viruses, worms, trojans and so on, but their solutions were single vendor focused and
not interoperable. Moreover, it became clear that all attempts to detect malicious code through
software-only solutions were ultimately circumvented, while it was quite easy to detect software
compromise with a little bit of hardware support [6].
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This approach was fostered by the Trusted Computing Platform Alliance (TCPA), formed
in 1999 by Microsoft, Intel, IBM, Hewlett Packard (HP) and Compaq with the aim to promote
the development of Trusted Computing by relying on both hardware and software implementa-
tions. The TCPA proposed a hardware anchor for PC’s security, called Trusted Platform Module
(TPM), on which secure systems could be built. Starting from August 2000 many releases of the
TPM specifications were published, till the publication of the TPM version 1.1b on 22 February
2002. In order to keep low the chip cost, the designers developed a minimal chip intended to be
physically affixed to the motherboard of a PC, with a command set containing only the needful
security functions and moving to the software layer all the functionalities for which an hardware
implementation was not necessary. IBM was the first that integrated the TPM 1.1b into its
PCs, soon HP and Dell followed it and, by 2005, almost all commercial PCs and servers had one
attached to their motherboard, or had the slot to add it afterwards.

The TPM 1.1b specifications contained the following basic functions [7]:

❼ key generation (limited to RSA keys);

❼ storage of integrity metrics in special registers called Platform Configuration Registers
(PCRs);

❼ reporting of integrity metrics;

❼ secure authorization;

❼ use of Attestation Identity Keys (AIKs) associated to TPM identity;

❼ cryptographic operations.

A new network entity called privacy Certificate Authority (CA) was designed, whose role was to
prove that an AIK key generated in the TPM came from a real TPM without identifying it, so
guaranteeing the privacy. The protection of the TPM from physical attacks was out of the scope
of the specification and was left as an area where vendors could differentiate their chips, while
any software attacks were considered within the scope of TPM-based security.

In 2003, on the initiative of AMD, Hewlett Packard, IBM, Intel, Microsoft, Sony, Sun Microsys-
tems and other companies (for a total of fourteen members, to which many other companies joined
over the following years), the TCPA became the Trusted Computing Group (TCG), which inher-
ited TPM version 1.1b and published in 2004 the version 1.2 of the specification [8], which was
developed with the aim to overcome the drawbacks of TPM 1.1b. The main changes regarded [7]:

❼ a standard software interface, so that TPMs produced by different vendors would not re-
quired different drivers;

❼ a mostly standard package pinout;

❼ a protection against dictionary attacks for discovering the authorization passwords for using
the keys protected in the TPM;

❼ the implementation of a new method for anonymizing keys, Direct Anonymous Attestation
(DAA) and delegating key authorization and administrative functions;

❼ the introduction of a small nonvolatile RAM (usually about 2 kB) for storing the certificate
of the TPM’s Endorsement Key (EK);

❼ the definition of a kind of keys specifically intended for migration from a TPM to another,
called Certified Migratable Keys (CMKs), in order to simplify the migration mechanism;

❼ the synchronization of a TPM internal timer with an external clock, in order to enable the
possibility to add a timestamp to a sign.
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TPM 1.2 was a success, it was deployed on most x86-based client PCs starting from 2005 and on
most server starting from 2008, resulting in more than 1 billion TPMs 1.2 deployed in computer
systems. However, just the presence of hardware is not valuable if there isn’t software that exploits
its capabilities, so Microsoft developed a TPM driver for Windows, IBM developed an open TPM
driver for Linux and applications that used TPM began to be deployed.

While the TPM 1.2 began to be almost ubiquitous on all systems, the TCG started the work on
the TPM 2.0 specification. The trigger was the publication, in 2005, of the first significant attack
on the SHA-1 digest algorithm, which was heavily used in the TPM 1.2 architecture. Although
the reliability of the TPM 1.2 was not compromised by this attack, the TCG decided to create
a new specification that was agile with respect to digest algorithms, considering the common
axiom in cryptography, according to which algorithms become weaker over time, never stronger
[7]. The TCG designers chose to not hard-code any algorithm in the TPM 2.0 specification, but
rather to incorporate an algorithm identifier that allowed to use a wide range of cryptographic
algorithms in the TPM and to enlarge the set of algorithms over time without the need to change
the specification. The algorithm agility was the first motivation for a new TPM specification, but
during the work many other generalizations were added, such as [7][9]:

❼ the Enhanced Authorization (EA), which increased the flexibility of the authorization meth-
ods and at the same time it reduced the implementation cost, by:

– unifing the mechanism that authorizes the use, delegates the use and migrates objects
and entities in the TPM;

– allowing authorization with clear-text passwords and Hash Message Authentication
Code (HMAC);

– allowing the construction of an arbitrarly complex authorization policy of an object
through multiple authorization qualifiers;

❼ block symmetric key encryption, which removed the barrier on the size of TPM structures,
while TPM 1.2 structures have to be compact enough for being encrypted with a 2048-bit
RSA key in a single encryption operation;

❼ support for the Elliptic Curve Cryptography (ECC) algorithms;

❼ multiple key hierarchies to accommodate different user roles;

❼ dedicated BIOS support;

❼ simplified control model;

❼ a compilable specification, which has the advantage of being much less ambiguous since, in
case of doubts, it permits to be compiled by an authoritative emulator to see how it should
work.

2.2 Trusted Platforms

According to the TCG specifications, something is trust if it conveys an expectation of behavior.
It is worth notice that predictable behavior does not mean correct behavior. This definition
implies that a platform is trusted if it behaves as expected for a specific purpose, from which it
follows that, in order to establish if a platform behaves as expected, it is important to determine
its identity, that is to determine the identity of its hardware and software components. The TPM
is the component proposed by TCG for collecting and reporting these identities in a way that
permits to determine the expected behavior and, from that expectation, to establish trust [9]. The
TPM is a system component whose state is separate from the host system on which it reports
and interacts with the host system only through the interface defined in the specification.

The TCG maintains the definition of Trusted Computing Base (TCB) stated in the Orange
Book. In fact, in the TPM specifications a TCB is defined as the collection of system resources
(hardware and software) that have the responsability to enforce and maintain the security policy
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of the system. An important property of a TCB is that it cannot be compromised by any hardware
or software component that is not part of the TCB. The TPM is not the TCB of a system, but
it is a component that allows an external entity to verify if the TCB has been compromised.
The TPM can also be used to prevent the system from starting in the case the TCB cannot be
properly instantiated [9].

2.2.1 Roots of Trust (RoTs)

The TCG defines the Roots of Trust (RoTs) as the minimum set of system elements on which the
trustworthiness of the platform is based and whose misbehavior is not detectable. A TPM can
accomplish its design goals if and only if the RoTs are properly implemented. A component or a
collection of components required to instantiate a RoT is called Trusted Building Block (TBB).
Even if it is not possible to check at runtime if the behaviour of the RoTs is correct, there are
certificates that provide assurances that they have been implemented in a trustworthy way. For
example, a certificate provided by an independent testing lab may report the Evaluated Assurance
Level (EAL) of a TPM, consequently providing confidence in the correct implementation of its
RoTs. In addition, a platform manufacturer certificate may provide assurance that the TPM
was properly attached to the matherboard of a machine compliant with the TCG specifications,
so that the RoTs may be deemed trusted. For example, most designs of TPM 1.1b were both
FIPS 140-2 Level 1 and Common Criteria (CC) EAL3 certified, while most TPM 1.2 and TPM
2.0 designs are validated based on FIPS 140-2 Level 2 and CC EAL4+. Tests are conducted
according to a specific TCG protection profile.

The TCG requires that a Trusted Platform (TP) provides at minimum the following three
RoTs:

❼ Root of Trust for Storage (RTS);

❼ Root of Trust for Measurement (RTM);

❼ Root of Trust for Reporting (RTR).

Root of Trust for Storage (RTS)

The RTS is the TPM memory, which has the property to be shielded from access by entities other
than the TPM [9]. Since this feature needs to be trusted, the TPM acts as a RTS.

The TPM memory locations (called Shielded Locations) can contain:

❼ non-sensitive information (for example the digest contained in the PCRs) which does not
need to be protected from disclosure, so the access for reading is never denied, while the
access for writing follows a specific policy;

❼ sensitive information (for example the private part of an asymmetric key) to which the TPM
denies access without proper authorization.

Root of Trust for Measurement (RTM)

The RTM supports the integrity measurement of the TP by calculating digests taken on config-
uration data and program code, and sending them to the RTS. The concept at the base of the
integrity measurement of a platform is the Transitive Trust, by which the trust in a software
component is used to evaluate the trustworthiness of the subsequent software component which
will take the control of the platform. The TPM cannot implement the RTM, since it is conceived
as a slave device that receives commands. Instead, the RTM of a platform is the Core Root of
Trust for Measurement (CRTM) when it is executed by the CPU at system reset. Typically,
the CRTM is a small subset of the BIOS, the first set of instructions that get the control of the
system; its purpose is to record in the TPM which BIOS is being used to boot the system before
passing control to the full BIOS. CRTM is the starting point of a chain of trust that is transferred
to the subsequent software components [9] [6].
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Root of Trust for Reporting (RTR)

The RTR reports on the contents of the RTS. Typically an RTR report is a digitally signed digest
calculated on the values of some Shielded Locations within a TPM, such as:

❼ the content of PCRs, which provide evidence of the platform status; in this case, the RTR
report is called Integrity Report ;

❼ audit logs;

❼ key properties.

The reports cannot be created on Shielded Locations that contain sensitive information, such as
the private part of asymmetric keys and authorization passwords. The TPM can implement the
RTR since it has the cryptographic capabilities to create an RTR report.

The interaction between the RTR and RTS is a critical point of the TPM design, since its
misbehaviour would prevent to create an accurate RTR report. TCG recommends that RTR and
RTS implementation:

❼ resists to all kinds of software attacks and to the physical attacks specified by the TPM’s
Protection Profile;

❼ provides an accurate digest of the integrity metrics that took place in the platform.

Over the year, flaws were discovered in the RTR and RTS implementation of some TPMs certified
EAL4+, showing how critical is a proper implementation of the RoTs.

2.2.2 Secure Identity

The TPM reports on the integrity state of a Trusted Platform by quoting the PCR values. For
this quote to be used by external entities to check the platform state, it is essential to:

❼ identify the RTR (hence the TPM) that issued the quote;

❼ have a proof of the proper binding between that RTR and the RTM that took the measure-
ments.

The RTR (and TPM) identification is accomplished by means of non-migratable asymmetric keys
called Endorsement Keys (EKs), derived from an endorsement seed contained in the TPM. The
seed is statistically unique for the TPM; from this it follows that the probability to have two TPMs
with the same EK should be insignificant and all the EKs generated from the same seed represent
the same TPM and RTR. Moreover, the fact that EKs are non-migratable ensures that they exist
for a given TPM and never outside that TPM. The nominal method of establishing trust in a
key is through a certificate that attests the authenticity of the key. The TPM manufacturer can
generate an EK from the endorsement seed and provide a certificate of authenticity for that EK,
commonly called Endorsement Certificate. However, the EK does not need to be permanently
installed in the TPM, so the TPM owner may use the endorsement seed and recreate the EK
for which he provides another certificate of authenticity [9]. Instead, the proof of the physical
binding between the RTM and the RTR can be provided through a Platform Certificate emitted
by a Certifying Authority.

EKs can raise a privacy problem because, since they represent the TPM identity, a direct use
of them could permit the creation of activity logs, which could reveal personal information that
the user of a platform would not otherwise want to reveal to entities that aggregate data [9]. To
counter this issue, TCG recommends not to use EKs either for signing or for encrypting, but
only to decrypt certificates of other non-migratable keys generated by the TPM (the Attestation
Keys (AKs) or AIKs) during the Attestation Key Identity Certification protocol. This happens
at request of the TPM owner with the cooperation of an Attestation CA (or Privacy CA) and
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has the purpose to certify that a given AK has been generated by a valid TPM. AKs, in turn,
can only be used to sign a digest that the TPM has generated, like the digest calculated on the
content of PCRs (the quote operation). In order to prevent forgery, an AK cannot be used to
sign digests generated out of the TPM, because they could be related to data that appears to be
authentic and TPM-produced but is not. In particular, the data on which the digest is calculated
can be produced inside or outside the TPM but, for data coming from outside, the TPM checks
that the first bytes are not equal to TPM GENERATED VALUE before generating the digest
and signing it with the AK. In this way, an AK can be used to sign values that reflect the TPM
state or for general signing purposes [9]. Although the Attestation CA could keep track of the 1:1
association between AKs and EKs, the end user has the possibility to choose a CA that promises
not to. Once the AK certificate is created, it does not have any link back to the EK and the AK
can be used to identify the TPM. Moreover, if the AK authorization is known only to one user,
it can be used also to identify that particular user of the TPM.

After the TPM 1.1b specification, however, few Attestation CAs were been implemented. This
was probably due to a dearth of EK certifications provided by the TPM manufacturer because,
if the EK is not certified by a trusted entity, its trust and privacy properties are equivalent to
any other asymmetric key generated by pure software methods. Therefore, by itself, the public
portion of the EK is not privacy sensitive. However, this lack of Attestation CA implementations
caused strong skepticism in the privacy community, as this could lead full identification of all
attestations. These considerations led to the inclusion in the TPM 1.2 specification of a new
method for authenticating AKs, called Direct Anonymous Authentication.

Direct Anonymous Attestation (DAA)

DAA is a cryptographic protocol based on the group signatures mechanism. A group signature
gives to a group of people the possibility to sign messages as “members of the group”, without
having to share a common secret, which exposes to a Break Once Run Everywhere (BORE) attack,
and without exposing the identity of the member of the group that signed a particular hash [6].
Nevertheless, if the individual secret owned by a member of the group is revealed, the secrets
owned by the other members of the group are not compromised, so it is possible to invalidate only
the revealed secret.

DAA provides a means to certify an AK as member of the group of TPM AKs, without the
need for each AK to be individually certified by a CA. A DAA Authority authenticates some
TPM secrets as belonging to an authentic TPM and this authentication is done once, before the
TPM is shipped out to its final owner or afterwards, when the TPM is already in field.

The DAA protocol is composed of the following phases:

1. the DAA Authority issues a DAA certificate, after it verified that the TPM belongs to the
group of authentic TPMs;

2. the TPM uses the DAA key to sign a message and a verifier uses the DAA certificate to
validate the signature, without having the possibility to know the identity of the TPM or
even recognize that multiple signatures derive from the same TPM;

3. the DAA Authority can revoke a DAA certificate; this happens if the TPM chip becomes
compromised, for example its private keys become exposed.

2.2.3 Attestation Hierarchy

Integrity evaluation of Trusted Platforms is based on an Attestation Hierarchy as described in
figure 2.1.

1. The Endorsement Certificate, issued by an external entity (typically the TPM manufac-
turer), attests that the TPM (which holds the RTS and the RTR) is authentic and compliant
with the TCG specifications. In particular, the certificate vauches that a given EK has been
generated by a genuine TPM and can be used to identify it during an attestation process.
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Figure 2.1. Attestation Hierarchy

2. The Platform Certificate, issued by an external entity (typically the platform manufacturer),
attests that a given platform implements all the RoTs needful to consider it a Trusted
Platform and that they have been correctly integrated through trusted paths. In particular,
this certificate vouches that a given EK has been generated by a genuine TPM, which is
integrated with the RTM through a trusted path.

3. The Attestation Key Certificate, issued by an Attestation CA (or Privacy CA) at the end
of the Attestation Key Identity Certification procedure, attests that an AK key has been
generated by an authentic but unidentified TPM, is a non-migratable key and can be used
to sign the contents of Shielded Locations. The Attestation CA typically provides this kind
of attestations relying on attestations of type 1 and 2.

4. A certified AK can be used to certify that other AKs are resident in the same TPM and
have the same properties as the certified AK. This kind of attestation, issued by the Trusted
Platform, is a sign performed with the private part of a certified AK key over the digest
calculated on the properties of the key to be certified. Attestation of type 4 relies upon
attestation of type 3 for the sign verification.

5. The Quote, issued by the Trusted Platform, attests a particular software/firmware state in
the platform. A quote is a signature performed with the private part of a certified AK over
the digest calculated on the measures of the software/firmware stored in the PCRs. This
kind of attestation relies upon attestation of type 3 or 4 for the sign verification.

6. The Third-party Certification is emitted by an external entity (Verifier) and attests the
measurements of a Trusted Platform in order to vouch a particular state of its software/-
firmware. It’s a credential containing the measurements of the software/firmware together
with the state they represent.
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2.2.4 Trusted Boot

For determining if a platform has a trusted status, it’s necessary to evaluate the trustworthiness
of all the software components that take the control of the platform, starting from the boot
sequence till the runtime. Transitive trust is the concept on which this evaluation is based and
has its foundation in the RoTs. It uses the trustiness in the RoTs as the entry point of a chain of
trust, which is transferred in a transitive way from an executable function to the next one that
takes the control over the machine.

Transitive trust may be realized in two different ways, both supported by the TPM:

1. evaluating if a function is trusted before passing the control to it, repeating the same pro-
cedure in the subsequent functions;

2. measuring a function, storing that measure in the RTS and passing the control to it anyway;
the same procedure is repeated in the subsequent functions, leaving to an independent entity
to evaluate the platform status in a transitive way, so that if a function is deemed untrusted,
the measures it took are not reliable, hence all the subsequent functions are considered
untrusted as well.

The “measure” is a digest calculated with a cryptographic hash function on anything of mean-
ing to evaluate the trusted state of a platform, such as code, data values or an indication of
the signer of some code or data [9]. As already mentioned, this digest is stored in a special
shielded location of the RTS in the TPM, the PCR, whose value can only be changed through
the operations:

❼ Reset, that sets the PCR value to all-zero and is performed at power-on of the platform; it
can occur afterwards only if the PCR has an attribute that allows it to be reset (typically
PCRs with index greater than 15);

❼ Extend, that lets to store an accumulative hash in a PCR; it takes the current value of the
PCR, concatenates an input value, calculates a digest with a cryptographic hash function on
the resulting concatenation and stores the output of this operation as the new PCR value:

PCRnew = HhashAlg(PCRold ||measure)

It is possible for a single PCR to store all digests of the boot sequence, since the extend operation
allows to accumulate an indefinite number of measurements in a PCR. However, in order to
simplify the evaluation of the stages of the platform from the boot to the runtime, normally
multiple PCRs are provided in a TPM, each one dedicated to store measurements of different
modules (the BIOS, the OS boot loader, ...). All PCRs that are extended with the same hash
algorithm constitute a PCR bank. While the TPM specifications 1.1b and 1.2 forseen only one
PCR bank for the SHA-1 algorithm, the TPM 2.0 specification allows the presence of multiple
banks of PCRs, at least the SHA-1 bank and the SHA-256 bank.

The digest contained in a PCR is statistically unique and, if the sequence of the extensions
performed in the PCR is known, it is possible to know the trusted value that a particular sequence
of measurements should have. If the sequence of the extensions is not predictable, the trusted
values of the PCRs cannot be known a-priori. To handle this case, the RTM keeps Measurement
Logs (MLs) in which each entry represents a Measurement Event (ME), that is a change in
the system state. The PCR values can be used to determine the integrity of the MLs, and an
individual log entry can be used to determine if the event indicated by it caused a change in
system state that is evaluated acceptable [9]. The RTM implementers decide what information
a log entry has to contain to represent the Measurement Event. The process of attesting the
integrity measurements stored in the PCRs is called Integrity Reporting. The concepts of integrity
measurement, logging and reporting are the basis of a Trusted Platform and are motivated by the
fact that the platform’s software can be compromised at any time during its life-cycle. Thus it is
necessary that the Trusted Platform has the capability to accurately report the states, including
undesirable or insecure ones, in which it enters, so that an independent process may evaluate the
state and take actions accordingly.
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Figure 2.2. Trusted Boot (source: [6]).

The Measured Boot is a process whereby all the software components and configuration files
involved in the system boot are measured and the digests stored in a specific PCR. Typically, PCRs
with index less than 10 contain measures related to the system booting, those with index from
10 upwards contain measures of events happened after the kernel booted. The boot sequence
depends on the particular platform configuration, but it mostly can be described as shown in
figure 2.2. The Measured Boot starts from the CRTM (typically a subset of the BIOS) which
firstly measures itself, the rest of the BIOS and extends the measurements in PCR 0, then it
measures the motherboard configuration settings and extends the result in the PCR 1, finally it
passes the control to the rest of the BIOS. This measures the ROM firmware (card’s BIOSes)
and extends the measure in the PCR 2, then measures the ROM Firmware Configuration and
Data and extends this information in the PCR 3 before passing control to the ROM Firmware.
After the ROM Firmware finishes the execution, the control returns to the BIOS, which measures
the Initial Program Loader (IPL) code, that usually is the content of the Master Boot Record
(MBR), referred to as the primary boot loader, and extends the measurement in the PCR 4, then
measures the IPL Configuration and Data and extends the information in the PCR 5. PCR 6
contains information about the host platform manufacturer, PCR 7 regards the secure boot policy,
the security state and the debug state. Then the control is passed to the IPL, whose purpose is
to load the secondary boot loader, which for default is GRUB in the x86 platforms, and to pass
the control to it. GRUB extends in the PCR 8 any grub command executed, any command line
parameter passed to the kernel and the modules of the kernel, while it extends in the PCR 9 any
file it reads and finally it passes the control to the kernel. This process establishes a chain of trust
that goes from the CRTM to the kernel; since the chain of trust is created only once at platform
reset, it is called a Static RTM (S-RTM).

Some new processor architectures provide a different method to establish a new chain of
trust without rebooting the platform. With this method, the CPU acts as the CRTM, applying
protections to portions of the memory it measures [9]. Since the chain of trust implied by the
RTM may be re-established dynamically, without the need of resetting the platform, this method
is called Dynamic RTM (D-RTM). The Intel processors equipped with the Trusted Execution
Technology (TXT) are an example of implementation of D-RTM.

A Measured Boot can be of two different kinds:
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❼ a Secure Boot, in which the measurements stored in the TPM are used to check if the selected
subsequent component is trusted; this check can be done by verifying the digital signatures
of the software components; in the case the signature is not valid, the control is not passed
to the subsequent component and the system stops booting; in this way the implementer
can enforce the machine to boot only into a trusted state by selecting a trusted firmware;
Secure Boot could be implemented without the TPM as well;

❼ a Trusted Boot, in which the measurements recorded in the TPM are not used to prohibit
booting in an insecure state, rather they are used to report the state of the platform to an
independent entity, that can verify if the system booted in a secure way.

2.3 TPM

The TPM 1.2 specification was the TCG’s first attempt to solve the security problems that the
advent of Internet raised, particularly for the new applications that Internet enabled like electronic
commerce. The main issues that TCG addressed were the following [7].

Identification of devices Before the TPM specification, device identification was performed
with MAC or IP address, which are not security identifiers since they can be easily re-
configured. TCG provided a way to prove device identity by means of TPM-generated
non-migratable asymmetric keys.

Secure Generation of Keys The TCG forsaw for the TPM to have an internal Random Num-
ber Generator (RNG), which allowed a more secure creation of keys with respect to previous
solutions.

Secure storage of keys The TPM provides two ways to protect user’s keys and data from
software attacks. The first consists in storing them in the TPM’s Shielded Locations, that
can only be accessed through Protected Capabilities; in this way objects are protected from
disclosure, tampering and deletion without authorization, like having them in a bank vault.
The second technique consists in encrypting data with keys internal to the TPM and storing
them in memory locations outside the TPM, called Protected Locations; data stored in this
way are protected from disclosure but not from tampering and deletion, nevertheless this
technique provides virtually unlimited amounts of secure storage.

NVRAM storage The reason that led TCG to add a Non-Volatile RAM (NVRAM) internal to
TPM was the need to store the EK certificate inside the TPM. Storing the EK certificate
in the hard disk of the platform was not a good solution because IT organizations, when
they received a new device, often wiped the hard disk and installed their own software load,
causing the EK certificate to be erased.

Integrity platform attestation When systems didn’t have TPMs, their integrity was attested
by leveraging software solutions. But, if software was compromised, it reported an healthy
status of the system even when it was not so. The presence of the TPM in the platform
allows to report the real state of the platform even when it has been compromised.

In the following discussion we will focus on the version 2.0 of the specification, pointing out
its architecture, the main differences with the previous standard 1.2 and the various types of
implementations.

2.3.1 TPM 2.0 Architecture

The functional units that compose the architecture of TPM 2.0 are represented in figure 2.3.

22



Trusted Computing and TPM 2.0

I/O 

Cryptographic   
Co-processor 

HMAC Engine 

SHA-1 Engine 

Opt-In 

Authorization 

Non-Volatile 
Memory 

Key Generation 

Random Number 
Generator 

Power Detection 

Execution Engine 

Volatile Memory 

Communication Bus 

I/O 

Asymmetric Engine(s) 

Hash Engine(s) 

Symmetric Engine(s) 

Management 

Authorization 

Non-Volatile Memory 
• Platform Seed 
• Endorsement 

Seed 
• Storage Seed 
• Monotonic 

counters 
• Etc. 

Key Generation 

Random Number 
Generator 

Power Detection 

Execution Engine 

RAM 
• PCR Banks 
• Keys in use 
• Sessions 
• Etc. 

Data communication 
path 

TPM 1.2 architecture TPM 2.0 architecture 

Figure 2.3. TPM 1.2 Architecture vs TPM 2.0 Architecture (source: [8] [9]).

I/O buffer

The I/O buffer is a memory area that permits the communication between the TPM and the
host system. The Input buffer contains command data sent by the host system, while the Output
buffer contains the response data produced by the TPM. TPM 2.0 specification doesn’t require
the I/O to be physically separated from the host system, it could be a shared memroy; however,
when the command processing begins, command data has to be in a TPM shielded location.

Cryptography Subsystem

The Cryptography Subsystem contains the TPM’s cryptographic functions that are invoked by
the Execution Engine or the Authorization Subsystem. It is constituted by Asymmetric En-
gine, Hash Engine, Symmetric Engine, Key Generation, Random Number Generator. The TPM
2.0 specification contains both asymmetric (as 1.2 version) and symmetric algorithms, for en-
cryption/decryption and signing/signature-verification operations. With regard to the algorithms
recommended by TCG, the specification refers to another TCG document, the “TCG Algorithm
Registry” [10], containing the list of algorithms to which the TCG has assigned an algorithm
identifier. The algorithms are classified as:

❼ S, “TCG Standard”;

❼ A, “Assigned”;

❼ L, “TCG Legacy”.

Currently, the only supported asymmetric algorithms are RSA (S) and prime field ECC (S),
used for encryption and decryption operations (secret sharing). The asymmetric signing schemes
supported by TCG are:

❼ RSASSA (S) and RSAPSS (S) depending from RSA;
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❼ ECDSA (S), ECDAA (S), SM2 (A), ECSchnorr (S) and EDDSA (A) depending from ECC.

TPM 2.0 uses symmetric encryption for ciphering command parameters and objects stored
in protected locations (memory outside the TPM). In the latter case, the encrypted objects have
an HMAC calculated with the symmetric key, used for integrity checking. The HMAC is checked
on encrypted data, in order to make performing power analysis more difficult [9]. The symmetric
block ciphers supported by TCG are AES (S), TDES (A), XOR obfuscation (S, used only for
confidential parameters), SM4 (A), CAMELLIA (A). Cipher FeedBack (CFB) mode is the only
block cipher mode required by the specification, while the modes CTR, OFB, CBC, ECB are
“A” classified. If a symmetric key is paired with an asymmetric one (as in ECC decrypting key),
it is required that the two keys have the same number of bits as security strength. TPM 2.0
may implement also symmetric signature forms, that provide integrity protection over some data
and the assurance that it comes from an entity that knows the value of a symmetric key. For
symmetric signatures, TCG supports Cypher-based Message Authentication Code (CMAC) (A)
using a symmetric block cipher algorithm, or the Hash Message Authentication Code (HMAC)
(S) algorithm.

TPM 2.0 provides also Hash functions, used either directly by external software or in the
processing of other TPM operations, as PCR extend. Hash functions are useful for integrity
checking and authentication or as one-way functions (such as KDF). TCG supports the following
hash functions: SHA1 (S), SHA256 (S), SHA384 (A), SHA512 (A), SM3 256 (A), SHA3 256 (A),
SHA3 384 (A), SHA3 512 (A). The implemented hash function should have the same security
strength as the strongest implemented asymmetric algorithm.

TPM 2.0 implements a Random Number Generator (RNG) module as source of randomness,
for internal and external requests. It’s a TPM’s Protected Capability, whose random values are
used for generating nonces, keys and randomness in signatures. Random numbers are produced
as follows:

1. an internal entropy source (possibly more than one) generates entropy collected by a process,
the entropy collector, that removes the bias;

2. a state register is updated with the collected unbiased entropy;

3. a mixing function, usually an approved hash function, uses the value in the state register to
compute the random number.

The specification requires RNG to provide at least 32 bytes of randomness, more if the imple-
mented internal functions require so.

With regard to Key generation, the TPM 2.0 can produce keys of two different types:

1. Primary Keys: they are computed starting from a given seed, generated by the RNG
Protected Capability and persistently stored in the TPM for subsequent key generations
(like the endorsement seed);

2. Ordinary Keys: they are computed starting from a seed generated by the RNG and different
for each computation; the generated key is stored in a shielded location.

Key Derivation Functions supported by TCG are: KDF1 SP800 108 (S), KDF1 SP800 56A (S),
KDF2 (A) [9] [10].

Authorization Subsystem

When a TPM 2.0 command is executed, if it accesses to shielded locations that need authoriza-
tions, the Authorization Subsystem is invoked by the Command Dispatch module:

❼ before the execution of the command in order to check, for each authorization, if it is of the
right type and is valid for that object;
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❼ after the execution of the command, to generate an acknowledge session value for the re-
sponse.

The Authorization Subsystem requires the implementation of an hash function, the HMAC al-
gorithm and an asymmetric algorithm (the latter is required only if TPM2 PolicySigned() is
implemented) [9].

Random Access Memory

The RAM module holds TPM transient state, that is data that may be lost when TPM power
is turned off. The values contained in the TPM RAM are in shielded locations, except those
contained in the I/O buffer (if this is contained in a portion of the RAM). This memory contains
data related to temporary state, authorization sessions and entities (keys and data objects loaded
in the TPM from external memory) required for completing an implemented command. PCR
banks are part of the TPM RAM [9].

Non-Volatile Memory

The NV memory module stores TPM persistent state. All the NV memory values are in shielded
locations. NV memory can contain:

❼ structured data defined by the TPM 2.0 specification, that includes TPM’s private data
(hierarchy authorization values, seeds, keys, proofs) and data that can be read by a caller
(counters, a clock and so on);

❼ unstructured data defined by a user or a platform specification.

The platform can access an NV memory location through an index (a handle) assigned to it,
for this reason the location is called NV index. TPM 2.0 defines four types of NV indexes: NV
Ordinary Index (already present in TPM 1.2), NV Counter Index, NV Bit field Index and NV
Extend Index [7].

Power Detection Module

The Power Detection Module administrates TPM power states, which are ON and OFF power
states. Since TPM power states should be directly related to platform power states, the TPM
should be notified of all platform power state changes, so that [9]:

❼ any platform power transition that requires an RTM reset causes a TPM reset;

❼ any platform power transition that requires a TPM reset causes an RTM reset.

2.3.2 TPM 2.0 vs TPM 1.2

When the TCG worked on the TPM 2.0 specification, it considered the same design goals as for
the TPM 1.2, adding to them several more. Moreover, changes in the TPM 2.0 architecture were
needed to overcome some limitations arised with the TPM 1.2 [7].

Algorithm Agility

TPM 1.2 specification allowed only specific algorithms to be implemented in TPMs, SHA-1 as hash
algorithm and RSA as asymmetric algorithm. TPM 2.0 specification overcomes this limitation
and allows more flexibility in the type of algorithms that can be used. It does not enforce specific
algorithms but refers to the TCG Algorithm Registry [10], that contains the list of algorithms to
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which the TCG has assigned an algorithm identifier and that can be updated independetly by the
TPM 2.0 specification. Algorithm agility [7] allows to implemet in the TPM a set of algorithms
compatible with specific use cases, for example those compatible with legacy applications, with
governments’ requirements and so on. Moreover, if an algorithm becomes deprecated in the
future because weakened by cryptanalysis, there will be no need for a new specification because
algorithms can be easily upgraded to stronger ones.

Enhanced Authorization (EA)

The TPM 1.2 specification was very complex for what concerns the authentication mechanism for
accessing TPM objects. TPM keys had two kinds of authorizations, one for using the key and
another for migrating the key. Moreover, keys could be locked to specific localities, that is the
software that originated a particular command, and to particular PCR values. NVRAM indexes
also had two authorizations, one for reading and another for writing the index, and could be
locked to particular localities and PCR values.

The TPM 2.0 specification extends and at the same time simplifies the previous authorization
mechanism, unifying the way in which TPM objects can be authorized. The new policy autho-
rization scheme constitutes the so-called Enhanced Authorization [7]. It is possible to acquire
authorizations through proofs of identity, such as:

❼ HMAC key, useful for authorization in not trusted environments;

❼ passowrd in the clear, useful for the BIOS, where the added security of an HMAC key is not
necessary;

❼ signature, for example through a smart card, possibly with additional information provided
by a fingerprint reader, a biometric reader or a GPS.

The authorization can also be bound to the match of particular conditions, such as:

❼ PCRs values, to authorize access only when the system is in a trusted state;

❼ localities, for performing some operations only through a given secure software;

❼ certain periods of time, useful for allowing particular operations only during business hours;

❼ a range of values in an NVRAM counter, useful for limiting the usage of resources to a
maximum number of times;

❼ value of a bit in a NVRAM index, useful to revoke access to a key for a given user;

❼ the fact that a given NVRAM index has been initialized;

❼ the physical presence of the user at the console of the machine, that requires BIOS-level
confirmation for operations such as activating, deactivating, clearing or changing ownership
of TPM.

All these authorization types can be combined through logical AND or OR operators for creating
arbitrarly complex policies.

Quick Key Loading

In TPM 1.2 specification, the process for loading a key in the TPM was time-consuming since
only asymmetric encryption could be used for protecting user’s data. This limitation in the
specification was due to the US export-control laws about cryptographic devices, to avoid the
prohibition to export TPM implementations outside the US. So, when a user had to use a private
key protected by the TPM, this key had to be decrypted with RSA algorithm by using another
private key, the “parent” key, used to cipher user’s key. To avoid having to perform this time-
consuming process several times during a session, TCG adopted the solution to store in a “cache”
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file an already loaded key, ciphered with a symmetric algorithm. This procedure speeded up the
subsequent uses of the key since symmetric encryption was much faster than the asymmetric one.
However, the problem about long delays for loading a key was not completely solved because,
once the TPM was turned off, the symmetric key used to protect the cache file was erased and
the next loading of the user’s key required again a slow asymmetric operation.

The weakening of the export-control laws allowed the TCG to introduce in the TPM 2.0
specification the use of symmetric encryption for directly protecting user data, not only as an
internal TPM’s optimization. So, the TPM 2.0 implementations have a key loading time as long
as that for recovering it from a cache file, and this quicker loading makes possible the use of the
TPM by multiple users without they experiencing long delays [7].

Non-Brittle PCRs

The TPM 1.2 specification allowed an operation called sealing, that consists in authorizing the
access to a key or a data only if a set of PCRs contain particular values. For example, we can seal
a signing key to certain values contained in the PCRs related to the boot sequence, in order to
enforce the usage of the key only if the system is in a trusted state. This operation, however, has
the disadvantage to make tricky upgrading the system software because the measures calculated
on it and stored in the PCRs change after the upgrading. For example, if we locked a key to a
particular PCR 0 value, we had to unseal the key before upgrading the BIOS, then upgrade the
BIOS and reseal it to the new PCR 0 value; if we didn’t do so, the key had to be changed. This
problem is known as PCR fragility.

With TPM 2.0 specification this problem has been solved giving the possibility to seal resources
to PCR values signed by a particular authority, for example the OEM of the system software,
instead of to a certain PCR value (although this is still possible). With this new capability we
can lock data to be used only on systems that have any of the BIOS signed by the OEM, or any
of the kernels signed by the OEM [7].

Flexible Management

In the TPM 1.2 specification only two kinds of authorization existed, the owner authorization and
the Storage Root Key (SRK) authorization. Since the SRK authorization was typically 20 bytes of
zeros, the owner role was used for many aspects that conceptually could be managed by different
roles, like the privacy administrator or the platform manufacturer. The specification foresaw the
possibility to delegate the owner role to different entities, but the command was difficult to use
and required considerable NVRAM space, so almost no applications used this possibility.

The TPM 2.0 specification overcomes this problem by separating the different roles that were
previously enabled by the owner authorization. This separation is realized by creating different
hierarchies of objects, each one with its own authorization password and policy [11]:

❼ Platform Hierarchy : it’s used by the platform manufacturer for controlling the integrity of
the system firmware;

❼ Storage Hierarchy : already present in TPM 1.2 specification, it’s used by the platform owner
for controlling the access to the RTS;

❼ Endorsement Hierarchy : it’s used by the privacy administrator for controlling the access to
the EK, which represents the identity of the TPM;

❼ Null Hierarchy : it’s used by any entity that want to employ the TPM as a simple cripto-
graphic coprocessor; differently from the previous ones, it doesn’t require any authorization
password and policy.

Finally, TPM 2.0 forsees specific authorization passwords and policies for resetting dictionary-
attack counters [7].
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Figure 2.4. Different kinds of TPM implementations (source: [13]).

Identifying Resources by Name

In the TPM 1.2 specification TPM resources were identified by means of indirect references, the
handles. Sigrid Gürgens found that this identification method exposed to a kind of attack. If two
resources shared the same authorization policy, a user used the authorization believing to perform
a given action, while it was possible to trick the low-level software by changing the handle to the
resource, making it perform an action other than what the user wanted to perform.

The TPM 2.0 specification eliminated this attack identifying TPM resources by names cryp-
tographically bound to them. Moreover, the name can be signed with a TPM key, thus providing
a proof of its correctness [7].

2.3.3 TPM 2.0 implementations

The TCG called Trusted Platform Module Library the TPM 2.0 specification, in order to high-
light the fact that the specification describes all the commands and the features that could be
useful in a platform, leaving to the designers and developers to choose with more granularity the
appropriate features and the required level of security for the targeted use case. This makes the
TPM 2.0 specification much more flexible than the previous one, allowing TPM 2.0 to be used in a
wide range of applications, from servers to PCs to embedded applications, including automotive,
industrial and Internet of Things (IoT) contexts [12].

The most popular TPM 2.0 implementations nowadays are the following, summarized in figure
2.4:

1. Discrete TPM is implemented as single-chip component attached to the system using
a low-performance interface (such as, Low Pin Count, or LPC). In this implementation,
the TPM component has its own processor, RAM, ROM, and Flash memory; the only
interaction with the system is via the LPC bus. The Discrete TPM provides the highest
level of security, so it has to be designed, built and evaluated for resisting to tampering
attacks. It is recommended for most critical systems.

2. Integrated TPM is still an hardware TPM but it is integrated into a chip that provides
components implementing functions other than security. This kind of implementation has
to be resistant to software attacks but it is not designed for resisting to tampering attacks.
So, its security level is the next level down with respect to a Discrete TPM. Intel pro-
vides implementations of Integrated TPMs in some of its chipsets. Typically it is used for
gateways.
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3. Firmware TPM (fTPM), or TEE TPM, is implemented as protected software, that is
as code running on the main CPU while it is in a special execution mode. The code
executes in a protected execution environment, called a Trusted Execution Environment
(TEE), separated by the other programs that runs on the host system. In this case the TPM
memory, that contains secrets like private keys, is a part of the system memory, partitioned
by hardware, and it is only accessible when the host processor runs in this special mode.
So, this implementation does not require a separate hardware. The host system can cause a
change to the internal state of the TPM only through welldefined interfaces. The Firmware
TPM provides a security level lower than the previous implementations because, in addition
to lack of tamper resistance, its security level dependes on the TEE Operating System, bugs
in the code that runs in the TEE and so on. Firmware TPMs have been implemented from
Intel, AMD and Qualcomm.

4. Virtual TPM (vTPM), or Hypervisor TPM, is a software implementation of the TPM
provided by an hypervisor to make TPM’s capabilities available to Virtual Machines (VMs).
It runs in an isolated execution environment with respect to the VM, in order to secure the
vTPM code from that of the VM. In the hypervisor environment, each VM refers to its own
instance of vTPM. Virtual TPMs provide a security level comparable to that of Firmware
TPMs.

5. Software TPM is a TPM simulator that runs as a regular program within an operating
system. It doesn’t offer any security guarantee, since it is exposed not only to tampering
but also to its own software bugs and to attacks addressed to a normal operating system.
Nevertheless, it is very good for testing purposes, during the development of applications
that interact with a TPM. There are many implementations of Software TPM 2.0, like
IBM’s “Software TPM 2.0” [14], based on the Microsoft’s implementation of Part 3 and 4 of
the specification. The project “TPM 2.0 Simulator Extraction Script” [15] instead contains
a script that extracts the source code for the TPM 2.0 simulator directly from the PDF
versions 01.16 and 01.38 of the Trusted Platform Module Library Specification.

2.4 TPM Software Stack 2.0

The TPM Software Stack (TSS) 2.0 is a TCG standard specification designed to provide an
high level API to programmers that develope applications accessing the TPM 2.0. The TSS is
constituted by multiple software layers, represented in figure 2.5, that allow TSS implementations
to scale from resource constrained embedded systems to high-level systems [16].

The TSS lower layer is the TPM Device Driver , that is the driver of an operating system.
It manages the communications with the TPM by reading and writing data in the TPM I/O
buffer.

The Resource Manager handles the limited amount of TPM memory by performing a con-
text swapping in a way similar to what the OS’s virtual memory manager does for the system
memory. It swaps the objects in and out of the TPM RAM so that multiple applications can per-
form TPM operations in parallel. This layer is transparent to the upper layers; if not implemented,
upper layers have to implement its functionalities.

The next software level is TPM Access Broker (TAB), that has the purpose to manage
multi-process synchronization for TPM applications. It guarantees an application that accesses
TPM to be able to complete a TPM command without interference from other processes competing
with it.

The TPM Command Transmission Interface (TCTI) interacts with the layers below
it by managing two different interfaces to communicate with TPMs: the legacy TPM Interface
Specification (TIS) and the command/response buffer (CRB). So, it can support all the different
TPM implementations: local hardware TPMs, firmware TPMs, simulator TPMs, virtual TPMs
and remote TPMs.

29



Trusted Computing and TPM 2.0

Application 

Feature API (FAPI) 

Enhanced System API (ESAPI) 

System API (SAPI) 

TCTI 

TPM Access Broker TPM Access Broker TPM Access Broker 

TCTI 

Network 

Resource Mgr 

Local TPM Driver 

Local TPM 

TPM Access Broker 

Resource Mgr 

Remote TPM Driver 

Remote TPM 

Resource Mgr Resource Mgr 

SimTPM Driver 

TPM 
Simulator 

Virtual TPM Driver 

Virtual TPM 

MUAPI 

Crypto 
Library 

Figure 2.5. TSS 2.0 overview (source: [16]).

The System API (SAPI) provides access to all TPM 2.0 functionalities. It is a low level
API, designed for “expert” applications that has to access the TPM, such as firmware, BIOS, OS,
etc.

The Enhanced System API (ESAPI) is an interface designed to be directly above the
System API. It has three primary purposes [17]:

1. providing an enhanced session management functionality on top of the basic SAPI function-
ality;

2. providing cryptographic functionalities for applications that want to encrypt data stream
to the TPM, in order to protect against the probing of the data bus to the TPM;

3. providing 100% of the TPM functionality.

So, the ESAPI has the advantage to simplify some functionalities (managing sessions, calculating
HMACs, encrypting and decrypting data) rather than the SAPI, allowing to reduce the program-
ming complexity of an application accessing the TPM. However, differently from the ESAPI, the
SAPI can be used in heapless environments, uses less RAM and its implementations have a smaller
footprint (since it doesn’t include cryptographic functions).

TheMarshaling/Unmarshaling API (MUAPI) is used by the SAPI and ESAPI to perform
the marshaling of the TPM command byte streams and the unmarshaling of the TPM response
byte streams.

The Feature API (FAPI) provides higher level API to application programmers, allowing
to write applications that uses the TPM without the need of knowing all low level details. It
provides about 80% of the functionality of the TPM, differently from ESAPI that provides 100%
of the functionality of the TPM.
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2.5 TPM use cases

A TPM can perform the same cryptographic operations as an Hardware Security Module (HSM)
or a smart card, so it can be used to solve all the problems that traditional cryptographic tokens
solve. But, since it is directly attached to the motherboard of a platform, the TPM enables use
cases that traditional HSMs couldn’t perform at a low cost, like measuring the boot sequence of
a platform for performing Remote Attestation (RA). Removable security tokens cannot be
relied upon to be present before the OS is loaded, so they cannot be used for reporting on the
boot sequence of the platform. In addition to Remote Attestation, software measurements stored
in the PCRs can be used for sealing keys or other sensitive data stored in the TPM, authorizing
their use only on a system whose software has not been tampered in any way. This allows to
protect keys also from rootkits and bootkits.

Secure storage of private keys and cryptographic parameters can be used for trusted execution
of cryptographic protocols. For example a Virtual Private Network (VPN) application can securely
store an authentication key in the TPM and then perform authentication by interacting with the
TPM device, without direct access to the private key.

Moreover, since a TPM is soldered to the platform, the strong identity established for the
TPM with the EK certification is transferred in a transitive way also to the platform, and this
can be used to ensure that a system is an authorized part of a cluster, while portable HSMs don’t
provide this property.

These TPM powerful features can be combined for providing more complex and powerful
security functionalities to PC clients, servers and management systems [18].

2.6 Attacks against TPMs

The TPM has been designed by the TCG to provide a hardware-based Root of Trust to platforms,
protecting cryptographic keys and sensitive data from software adversaries like malware, rootkits
and physical adversaries. Most laptop, desktop computers, smartphones and embedded devices
have a dedicated TPM chip or use a firmware TPM, since nowedays it is considered by computer
scientists and IT industry at the base of Trusted Computing. However, over the years reserachers
discovered several attacks that could be performed against some TPM implementations.

In 2010, Christopher Tarnovsky presented an attack against TPMs at the “Black Hat Briefings”
security conference. This attack, performed for the Infineon SLE 66 CL PC, requires physical
access to the chip, since it is necessary to remove the chip’s case and top layer for inserting a probe
to the internal bus. He was able to extract secrets from the TPM by spying on its communication
after six months of work [19].

In 2015, among the documents that Snowden disclosed to the public there was one reporting
that in 2010 a group of US CIA researchers declared at a secret annual conference called “Trusted
Computing Base Jamboree” that they carried out a differential power analysis attack against
TPMs, being able to extract TPM’s secrets [20].

In 2017, a vulnerability, known as ROCA, was discovered in the code of a library developed by
Infineon for its TPMs. The library generated weak RSA key pairs that let to infer the private key
starting from the public conterpart. Consequently, cryptosystems that store these keys directly
in the TPM without blinding allow an attacker to decrypt private data and impersonate their
identity (identity theft and spoofing attacks) [21]. Infineon released firmware patches for its TPMs
on October 10th 2017 [22].

In 2018, a group of reserchers of the National Security Research Institute described, at the
“27h Usenix Security Symposium”, two attacks against the TPM regarding the Power Detection
module. These attacks allow an adversary to reset and forge the PCRs that store the measure-
ments regarding the boot of the platform, by abusing of power interrupts that reset PCRs contents
without causing the reset of the platform’s RTM. The first attack exploited a design flaw in the
TPM 2.0 specification regarding the Static Root of Trust for Measurement (SRTM). The second
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attack exploited an implementation flaw regarding the Dynamic Root of Trust for Measurement
(DRTM) in the “Trusted Boot” (tboot), an open source module used with Intel Trusted Execution
Technology (TXT) to perform a measured boot of an Operating System. The countermeasure to
these attacks needs hardware specific firmware patches [23].

Physical access to computers allows also cold boot attacks, a kind of side channel attack that
allows an attacker to dump the contents of pre-boot physical memory to retrieve the private key
used for disk encryption [24].

In 2020, D. Moghimi, B. Sunar, T. Eisenbarth and N. Heninger published a paper, presented
at the “29h Usenix Security Symposium”, where they describe the timing leakages discovered on
Intel fTPM (FIPS 140-2 certified) as well as in STMicroelectronics’ TPM chip (Common Criteria
EAL4+ and FIPS 140-2 level 2 certified). Their analysis reveals that both devices exhibit secret-
dependent execution times during cryptographic signature generation based on elliptic curves,
allowing an attacker to apply lattice techniques to recover 256-bit private keys for ECDSA and
ECSchnorr signature schemes. On Intel fTPM, the private key is recovered after about 1300
observations and in less than two minutes, while on STMicroelectronics’ TPM chip the private
ECDSA key is extracted after fewer than 40000 observations.They performed also a remote attack
against StrongSwan IPsec VPN, that uses a TPM to perform digital signatures for authentication,
recovering the server’s private authentication key by observing 45000 authentication handshakes
on the network connection. The reserchers discovered these attacks at the biginning of 2019 and
informed both Intel and STMicroelectronics about their findings. Intel issued patches to correct
this issue on November 12th 2019, while STMicroelectronics updated their TPM chip making it
resistent to this kind of attacks on September 12th 2019 [25].
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Chapter 3

Integrity Measurement
Architecture (IMA)

As stated in chapter 2, TCG’s specifications [8][9] expose all the concepts that are at the base
of Trusted Computing philosophy, defining the RoTs that a Trusted Platform has to implement.
TCG’s specifications define the building blocks on which a Trusted Boot is based, in particular the
fact that the CRTM and the transitive trust concept allow to establish an RTM that measures the
system boot components and stores the measures in the RTS (the PCRs in the TPM), permitting
to an external entity to verify that the system booted in a secure way. However, TCG’s specifi-
cations are operating system agnostic, they do not state how the RTM of the platform extends
in the OS. Integrity Measurement Architecture (IMA) is the Linux kernel’s implementation of the
integrity measurement system conceinved by the TCG and it allows to extend the chain of trust
from the BIOS up to the application layer, as shown in figure 3.1. IMA extends the principles
of Trusted Boot and Secure Boot to the Linux kernel, thus resulting in an essential part of the
TCB of a Trusted Platform. It is part of the Linux Integrity Subsystem since 2009 starting from
version 2.6.30 and is currently one of the most accepted TCG-compliant solutions for measur-
ing dynamic executable contents [11]. IMA measures all the executables, configuration files and
kernel modules as soon as they are loaded onto the Linux system before passing the control to
them, and extends these measures in the TPM. This permits an external entity to verify not only
the boot of the system, but also which applications and kernel modules have been loaded in the
platform, if they are expected or undesirable invocations, if the software has a trusted state and
if its configuration is as expected. All this can be done without requiring a new CPU mode of
execution or a new operating system, but merely relying on the hardware RoT provided by the
TPM, which is nowadays ubiquitous in all platforms [26].

While in the boot process the modules to be measured and the sequence in which they are
executed is predetermined, in an operating system there is large variety of software components
to be managed (e.g., binaries, shared libraries, scripts, kernel modules) and the order in which
they are loaded is not predictable. For this reason, in order to let an external entity to attest
the state of the platform during runtime, the measures collected by IMA cannot be only stored
in a PCR otherwise the external entity could not be able to check if the measurement aggregate,
contained in the PCR, represents or not a trusted state. Instead, a Measurement Log (ML) file
is used in order to store the sequence of the Measurement Events (MEs) as they occurred in the
system and a PCR in the TPM (typically PCR 10) is used to protect the integrity of this ML. In
order to attest the system state at runtime, the external entity can use the content of the IMA
PCR for checking that the ML has not been tampered with; if the ML is valid, the remote entity
analyzes it entry by entry, in order to determine if the change in the system state represented by
each ME is trustworthy.
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Figure 3.1. Chain of trust from BIOS to the application layer (source: [26])

3.1 Measuring System Integrity

The main goal of IMA designers was to let a remote entity (challenger) to verify that an application
running on another system (attesting system) has a sufficient integrity level to be used. The
integrity of an application is a binary property that indicates if the application and/or its execution
environment have been modified in an unauthorized manner, which may cause the application to
have an incorrect or malicious behaviour so that the challenger cannot rely on it [26]. In order
to establish if an application or its environment has been tampered with, it is fundamental to
understand what are the elements that can affect the integrity of the application or its environment
and how they can be monitored. The platform starts by booting the operating system and, in order
to have a trusted OS, the system has to support the Trusted Boot process 2.2.4, so that a challenger
is able to determine whether all the boot components meet the desired integrity requirements.
Once the kernel is booted, user-level programs can be executed. Since all the executable content
related to a program impacts its integrity level, it is fundamental to measure all information of this
type, such as the main executable file, all the libraries used by the executable and, if the application
is an interpreter, such a bash, all the script files that are read as normal files but then are executed.
Besides the files with executable content, there are other files that affect the execution behaviour
of the application and should be measured to establish the application’s integrity level, such as
configuration files, security policy files, in general all files that contain constrained “structured”
data whose measure can be compared to reference values. The integrity of an application also
depends on dynamic “unstructured” data that is consumed by running executables, such as data
coming from remote clients, other applications, files and so on. Differently from “structured” data,
“unstructured” data measurement is useless because it is difficult for a challenger to predict all
possible values that do not subvert the application’s integrity. So, data affecting the application
integrity can be devided in two categories:

❼ high integrity code and data is all the information (executable code and “structured” data)
whose measure can be used to state the application’s integrity level;

❼ low integrity data represents dynamic “unstructured” data whose measure cannot be used
by a challenger for determine the application’s integrity level.

The IMA measurement module was designed taking into account the principles exposed by
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Clark and Wilson at the “IEEE Symposium on Security and Privacy” in 1987 [27]. An integrity
verification procedure of an application [26] should first determine the verification scope: if the
information flows in which the application is involved comply with a ”mandatory policy”, then
it is sufficient to check the state of integrity of the application itself and of all the processes on
which it depends; otherwise, the integrity level of the application involves measuring all processes
running on the system. What needs to be measured of a process is: all its executable content,
including modules loaded by the kernel, libraries loaded by the dynamic loader and code loaded
by the process itself; all structured data, that is data having defined integrity semantics. Instead,
unstructured data does not have identifiable integrity semantics, so it can not be measured; its
integrity can be considered dependent by the integrity of the processes that managed it, or it can
be determined by data history and security policies; another possibility is to make unstructured
data undergo transformation procedures that upgrade low integrity data to high integrity data.
Moreover, for the challenger to correctly verify the application’s integrity level in a given moment,
the measurement list has to be:

❼ fresh, that is not subject to replay attacks;

❼ complete, that is it has to include all the measurements performed up to the time when the
attestation is executed, so the truncation of the list for hiding a corrupted state has to be
detected;

❼ unchanged, the measurements contained in the list regarding executable code and structured
data have not been tampered with and any modification has to be detected.

The previous analysis shows that measuring the integrity level of traditional flexible systems is
a complex problem that has to be divided into several coordinated tasks. IMA designers addressed
this problem with the aim to provide a tool able to identify integrity bugs and form a basis for
constructing reasonable system’s integrity verifications [26].

3.2 IMA Design

The goals of the Linux kernel integrity subsystem are [28]:

❼ detecting accidental or malicious file changes, both remotely and locally;

❼ appraising a file’s measurement against a trusted value;

❼ enforcing local file integrity.

These goals require implementing in the kernel the functionalities collect, store, attest, appraise,
audit and protect of file measurements. These goals are achieved in the Linux kernel by means of
the IMA module, which consists of the following major components:

❼ IMA Measurement is responsible, on the attesting system, for determining what files
to measure, performing measurements on files and maintaining them in a secure way; by
means of the Integrity Challenge Protocol and the Integrity Validation Mechanism, it enables
a challenging system to perform the Remote Attestation of the entire software stack of
the attesting system; in particular, the Integrity Challenge Protocol enables authorized
challengers to retrieve the measurement list and to validate its freshness and integrity;
while the Integrity Validation Mechanism, performed by the challenger, verifies that all the
measures contained in the measurement list are representative of code and structured data
in a trusted state;

❼ IMA Appraisal is responsible for locally comparing file measurements against trusted
digests, stored in the file’s security extended attributes, possibly denying the access to the
file in case of measurement mismatch;
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❼ IMA Audit is responsible for including the file’s name and measurement in the system
audit logs, that can be used for system security analytics/forensics.

Listing 3.1. IMA components invoked in the process measurement() function

static int process measurement(...) {

...

rc = ima_collect_measurement(...);

...

if (action & IMA_MEASURE)

ima_store_measurement(...);

...

if (rc == 0 && (action & IMA_APPRAISE_SUBMASK)) {

...

rc = ima_appraise_measurement(...);

...

}

if (action & IMA_AUDIT)

ima_audit_measurement(...);

...

}

IMA Measurement, IMA Appraisal and IMA Audit complement each other, but can be configured
and used independently of each other [28]. Listing 3.1 shows that the process_measurement()

function, defined in the kernel source file ima main.c [29], invokes the IMA components indepen-
dently of each other, on the basis of the action that has to be executed on the file and that
depends on the configured IMA Policy (described in section A.1.4). The Linux Integrity subsys-
tem comprises also the Extended Verification Module (EVM), which is responsible of protecting
the file’s security extended attributes.

3.2.1 Assumptions

IMA design is based on some assumptions about the threat model and the platform configuration,
without which it would be possible attackers to be able to trick a remote client. IMA uses services
and protections specified in the TCG standards in order to provide to challenging parties the
mechanisms to prove platform identity and integrity protection of the measurement list. For
this reason, IMA should be used on platforms where a hardware TPM, compliant with TCG’s
specifications, is installed, ensuring that the measurements of the boot components and of the
runtime system are properly taken and stored with a hardware-rooted chain of trust. The threat
model comprises all kinds of software attacks but not direct hardware attacks against the system,
since not all TPM implementations resist against physical attacks.

The measurements of the code and structured data are assumed to be representative of their
identity, consequently of their integrity state. Self-changing code can also be evaluated through
its measurement since the ability of the code to change itself is reflected in the measurement.
This is true also for the kernel code, that changes itself through loading and unloading of kernel
modules. Kernel changes performed by overwriting kernel code with malicious DMA transfers are
not addressed, although the code that sets up the DMA is measured and so it can be evaluated.

The challenging parties are assumed to hold an AK certificate, emitted by an Attestation CA,
binded to an AKpub identity key generated by the attesting system’s TPM, in order to prove that
the quoted PCRs belong to the TPM of that attesting system, before they are used to evalute
the system boot and the integrity of the measurement list.

No confidentiality requirement is assumed on the data of the measurement list, other than
those that can be achieved by controlling access to the attesting system.

Finally, the challenger system is assumed to safely evalute the trustworthiness of the measure-
ments received by the attesting system, either by comparing them to a list of trusted measurements
(whitelist), or by using measurements signed by trusted parties according to common policies [26].
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Figure 3.2. Integrity Measurement Architecture (source: [2])

3.2.2 Remote Attestation

Before entering into the details of the different IMA components, it is worth to describe how
they interact to enable Remote Attestation (fig. 3.2). The IMA Measurement mechanism starts
when an IMA Hook in the attesting system receives a ME (a), such as loading a binary program,
mapping a file in RAM or opening a file for reading or writing. It is responsible for measuring the
received ME, that is for calculating the hash value of the file’s content with a proper secure hash
function. Then IMA Measurement stores the file digest, together with other file metadata, in an
ordered list of MEs in the kernel (b) and extends a digest computed over the ME into a PCR in
the TPM (typically PCR 10) through the extend operation (c).

This measurement mechanism enables a remote challenger (also called Verifier) to validate
the integrity state of the attesting system by performing the Remote Attestation. The integrity
challenge starts when a challenger sends a challenge request to the Attestation Agent, specifying a
nonce for guaranteeing freshness of the response (1). When receiving the request, the Attestation
Agent requests to the TPM a quote, containing the nonce sent by the challenger and the PCR
values (2) (typically PCRs related to the boot and PCR 10 containing the IMA measurements
aggregate); the TPM sends back the quote, signed with the AKpriv identity key (3). Then, the
Attestation Agent retrieves the IMA ML (4), creates an Integrity Report (IR) containing the quote
and the IMA ML and sends it to the Challenger (5). The Challenger validates the received IR,
verifying that the quote is fresh and authentic, the ML is non-tampered and the measurements
contained in the ML represent a trust system (6).

3.2.3 IMA Measurement

IMA Measurement extends the principle of the Measured Boot into the operating system, so that
BIOS measures the bootloader, the bootloader measures the initial kernel code and the kernel,
enhanced by IMA, measures changes to itself (kernel module loads) and to the application layer.
IMA Measurement handles a linked list of measures in the kernel memory. This list is called
measurement list and contains all the MEs that represent the integrity history of the attesting
system. The first node of the list is always the boot_aggregate, containing the digest computed
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over the PCRs with indexes from 0 to 7. If the attesting system does not have a TPM chip, the
measurement associated to the boot_aggregate is all-zeros. IMA calculates the boot_aggregate
digest in this way:

1. it reads the PCRs from the bank with hash algorithm equals to that configured for measuring
the files;

2. if the TPM does not have a PCR bank with the hash algorithm used for measuring the
files, it reads PCRs from the bank required by the TCG, that is, SHA-256 for TPM 2.0 and
SHA-1 for TPM 1.2;

3. if the SHA-256 bank is not found, it reads the PCRs from the SHA-1 bank also for TPM
2.0.

After the boot_aggregate, IMA Measurement processes all the accessed files that match
one of the measure rules configured in the IMA policy and determines if that file needs a new
measurement. In particular, IMA performs a new measurement over the file contents only if:

1. the file was never measured yet;

2. the file changed since last measurement;

3. the kernel has no way of detecting changes for that file.

For IMA to dectect file’s changes, the filesystem needs to be mounted with the i version option.
Starting from Linux kernel version 4.17, i version is considered an optimization so, if i version
is not enabled, either because the local filesystem does not support it or the filesystem was not
mounted with i version support, the file will always be re-measured, even when it did not change.
Supposing that the file has to be measured, the measurement is performed by calculating a digest
over the complete contents of the file. The digest is computed with a secure hash function which
for default is SHA-1; the kernel command line parameter ima_hash allows to specify another hash
algorithm among those supported by the Linux kernel, listed in the /crypto/hash info.c kernel’s
source file.

After having measured the file, IMA determins if a new node has to be added to the measure-
ment list, with the criterion that a new node is added only if it is not already contained in the
measurement list. For doing this, IMA manages also a hash table containing the nodes inserted
in the measurement list, so that the check on the nodes is faster. This behaviour, referred to as
IMA caching mechanism, allows to keep the size of the measurement list as small as possible. In
the case in which the new node has to be added to the measurement list, the hash computed on
this node is extended into the IMA PCR in the TPM. This makes any modification to the mea-
surement list visible to challenging parties during the Remote Attestation process. Moreover, the
extend operation is performed before the measured component takes the control of the platform,
directly as executable or indirectly as data file, so a potentially corrupted component does not
have the possibility to extend a measurement of itself that does not correspond to its real state.
Although a corrupted component, ones gained the control of the platform, may perform other
extensions in the IMA PCR, the properties of the secure hash algorithms guarantee that it is not
possible to adjust the aggregate in the IMA PCR so that it represents a trusted system. Thus,
malicious components can tamper with the measurement list, but the tampering is detectable by
recomputing the aggregate on the measurement list and comparing it with the aggregate stored
in the IMA PCR [26].

Afterwards, each node of the measurement list is recorded in two ML files both located in
the securityfs, one in ASCII format named ascii_runtime_measurements, the other in binary
format named binary_runtime_measurements. The writing of these files does not occur contex-
tually to the measurement process, it is performed by a different task. The information contained
in the ML files depends on the selected IMA template.
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Figure 3.3. Example of IMA ML created with ima-ng template.

IMA Template Management Mechanism

Each entry in a ML contains the information that represents a ME. An IMA template specifies
what kind of information regarding the ME has to be recorded in the IMA measurement list and
consequently shown in the ML files. The first IMA template, called ima, contained only two fields
for each entry: the file digest limited to 20 bytes (computed with SHA-1 or MD5 algorithms)
and the name of the file limited to 255 characters. To overcome this limitation and allow ML
entries containing additional file metadata, the template management mechanism was introduced
starting from Linux 3.13.0. The core of this mechanism consists of two data structures:

❼ a template field, that defines a type of data that can be stored in a ME;

❼ a template descriptor, that states all the template fields that a ME will contain.

The figure 3.3 shows an example of ML created with the default template ima-ng. From left to
right, the fields represent:

1. the index of the PCR in which the entry was extended, in this case PCR 10;

2. the template-hash, that is the digest extended in the PCR with index specified in the first
field; the digest is computed over the template fields with the SHA-1 algorithm;

3. the template-name used for the entry;

4. the eventdata-hash, that is the hash computed over the file’s contents or the boot-PCRs
contents in the case of boot_aggregate; in the figure the algorithm used is SHA-1, which
is the default hash algorithm;

5. the event-name, that is typically the file pathname.

3.2.4 Integrity Challenge Protocol

The Integrity Challenge Protocol has a fundamental role in the Remote Attestation process and
describes how a challenger can securely retrieve the attestation information from the attesting
system. In this section some aspects of the protocol are examined in more detail, particularly
how it protects the Integrity Report (IR) from the major threats.

A malicious attesting system could try a replay attack by sending back to the challenger an
IR (containing the IMA ML and the TPM quote with the IMA PCR aggregate) created before
the system was corrupted. The challenger protects itself against this kind of attack in this way:
it makes an IR request tied to a non-predictable random nonce of 160 bit, then when it receives
the response from the attesting system, it verifies the freshness of the IMA PCR aggregate by
checking that the quote has been computed with the nonce that it sent in the request and, if the
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Figure 3.4. ML verification process (source: [11])

nonce does not match, it rejects the IR. Freshness of the quote is guaranteed as long the nonce is
unique and unpredictable. If the attesting system receives the same nonce twice, it could respond
to the challenger with old measurements withouth being discovered, for this it is necessary the
nonce to be unique. Moreover, if the attesting system could predict a small enough set of values
in which the nonce most likely will fall, it could collect TPM quotes using predicted nonces and
afterwards respond to the challenger with them, providing a valid quote that does not reflect
the current status of the system, for this it is necessary the nonce to be unpredictable. If the
mechanism of nonce generation doesn’t provide adequate security, then the validity of the AK key
could be restricted in time, making collected quotes unusable for replay attacks.

A malicious attesting system, or an intermediate attacker, could try a tampering attack with
the ML and the IMA PCR aggregate, before or during their transmission to the challenger. The
challenger detects the tampering with the IMA PCR by validating the quote signature performed
by the TPM of the attesting system: if the attesting system, or an intermediate attacker, changed
the IMA PCR aggregate, this tampering will invalidate the signature. Moreover, the challenger
can detect tampering with the ML by walking through the entries contained in the ML and
recomputing the IMA aggregate as performed by the TPM. The figure 3.4 shows the process of
verifying the integrity of the ML performed by the challenger. Supposing that i MEs have been
stored in the ML, the IMA PCR aggregate can be recomputed by performing the extend operation
with the template-hash thi of each ML entry:

result = SHA1(...SHA1(SHA1(0 || th1) || th2)... || thi)

If the recomputed aggregate matches the signed one, it means that the ML is authentic and can
be used for evaluating the integrity state of the platform; otherwise it is invalid and has to be
rejected.

A malicious attesting system, or an intermidiate attacker, coud try a masquerading attack ,
by replacing the original attestation information with the ML and the IMA PCR aggregate gen-
erated by another non-compromised system. The challenger can discover a cheating system by
verifying the quote signature with the AKpub key binded to the attestation certificate, issued by
an Attestation CA, that guarantees the identity of the attesting system. If the signature verifica-
tion fails, the quote is not authentic and has to be rejected. Obviously, the attestation certificate
must be verified to be valid by checking the Certificate Revocation List (CRL) issued by the
Attestation CA.
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Figure 3.5. ML measurements validation

3.2.5 Integrity Validation Mechanism

In order to evaluate the trusted state of the attesting system, the challenger has to evaluate the
file measurements contained in the ML entries, by comparing them with a list of trusted values
(called whitelist). The validation of measurements related to executable files is logically the same
as for measurements of data files. Entry by entry, the challenger takes the event name (i.e. the
file path-name) and retrieves from its whitelist the set of valid measurements for that event. If
the challenger doesn’t find the file path-name in the whitelist, it means that an unknown program
has been executed on the attesting system. Otherwise, the challenger compares the measurement
contained in the ML entry with those contained in the whitelist, as shown in figure 3.5. If the
measurement matches one contained in the whitelist, the file has a known integrity state which
does not alter the trustworthiness of the platform. If the measurement does not match the whitelist
contents, it means that the file could be an updated version of the program, or its code or data
has been manipulated by an attacker. The challenger must have a policy that establishes what
actions to take when unkwnon file names or untrusted measurements are detected in the ML.
Usually, a distrusted measurement leads to evaluate untrusted the whole attesting system, unless
additional isolation mechanisms guarantee the isolation of the detected untrusted executable.

The integrity of the attesting system can be monitored over the time by periodically repeating
the Remote Attestation process: as long as the attesting system is evaluated as trusted every time
the process is repeated, we could say that the system has never been tampered with. However, in
order this to be true, the measurements evaluated in the various attestations should belong to the
same epoch, that is, any system change occurred after an attestation should have been recorded
and be visible in the following attestation. However, if the attesting system is compromised after
an attestation and is rebooted before the following one, it results trusted after both attestations
because the reboot hid its untrusted state to the challenger. So, in order to be sure that the
system has always been trusted, it’s important to implement a mechanism to discover if the
epoch changes, that is, if the system rebooted between two attestations. A way to do this is
by using TPM counters, a kind of NVRAM indexes that can be only increased throughout their
lifetime, never reset or decreased. Each time the system reboots, the BIOS could increment a TPM
counter so that, adding the counter value, signed by the TPM, to the attestation information,
the challenger can detect if the attesting system rebooted between two consecutive attestations,
because in this case the value of the counter would be different. While, if the counter remains
the same, we can be sure that the ML offers a retrospective view of everything happened to the
attesting system up to that point [26].
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3.2.6 IMA Appraisal

IMA Appraisal is part of the Linux kernel starting from version 3.7 and extends the principle
of the Secure Boot into the operating system. While IMA Measurement enables the Remote
Attestation process, IMA Appraisal enables a local validation of the file integrity validation by
comparing the file measurement against a trusted value stored in an extended attribute of the
file. This attribute, named security.ima, can contain either a digest of the file for evaluating its
integrity, or a signature of the file for evaluating its integrity and authenticity. IMA Appraisal is
disabled by default so, in order to use it, it is necessary to activate it in the kernel configuration
file and then to build and install the new kernel.

3.2.7 Extended Verification Module (EVM)

EVM is part of the Linux Integrity subsystem since version 3.2 of the kernel and is responsible for
detecting offline tampering of the standard security extended attributes of the files. The possible
attributes are:

❼ security.ima, which contains the file’s trusted hash used by IMA Appraisal to take deci-
sions;

❼ security.selinux, which contains the file’s SELinux label;

❼ security.SMACK64, which contains the file’s Smack label;

❼ security.capability, wihch contains the file’s capability label.

In addition to these security extended attributes, EVM can be configured to protect other infor-
mation:

❼ newly defined SMACK xattrs: security.SMACK64EXEC, security.SMACK64TRANSMUTE and
security.SMACK64MMAP;

❼ the filesystem UUID;

❼ all the xattrs specified in the file /sys/kernel/security/integrity/evm/evm_xattrs.

EVM protects the set of attributes by using another extended attribute called security.evm,
which can contain:

1. the HMAC computed on the xattrs, keyed with an evm-key loaded on root’s keyring;

2. the digital signature of the xattrs.

For allowing EVM to check digital signatures, it is possible to load onto the .evm trusted keyring
the RSA public key or the X509 certificate containing the public key to be used for verification.
The X509 certificate path has to be specified in the kernel configuration file.

3.2.8 IMA Audit

IMA Audit, available in the Linux kernel since version 3.7, augments the kernel audit subsystem
by adding IMA specific records used to assist with security analytics/forensics. It is enabled
specifying rules with the audit action in the IMA policy file. For example, in order to audit all
executed programs, the rule can be specified as follows:

audit func=BPRM_CHECK

The default policies of the Linux kernel do not include audit rules.
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Chapter 4

Container Attestation

Virtualization is the virtual simulation of something that is real. For a long time, in computing
this concept was tied to hardware virtualization or platform virtualization, which allows the ab-
straction of the computer hardware and for this reason we talk about virtual computer or Virtual
Machine (VM) [30]. This means that every piece of hardware, including processors, memory
and peripheral devices, is emulated by a software layer, called hypervisor or Virtual Machine
Monitor (VMM), which enables the execution of an Operating System (OS), called Guest OS.
A VM accesses the physical hardware, for example to communicate over the network, through
interfaces provided by the hypervisor. The virtualization concept has a fundamental role in the
cloud computing, since it enables to optimize the use of the overall hardware resources and to
facilitate service management, improving flexibility, availability, and lowering costs.

However, in recent years a new concept of virtualization has emerged, when developers looked
for more efficient alternatives to VMs for answering the question: why virtualize an entire ma-
chine when it would be possible to virtualize only a small part of it? Especially if an application,
like the simple services that are typically deployed on the cloud, does not need of all the func-
tionalities that a VM provides. Working on this problem, Google developed new kernel features
(namespaces, cgroups and capabilities), that were included in the Linux kernel since 2008 and led
to the development of a kind of virtualization, the containerization, which provides a higher level
of abstraction than a VM, raising it from the hardware level to the operating system level. In
fact, containers do not have their own virtualized hardware but, directly communicating with the
host kernel, use the hardware of the host system. For this reason, this kind of virtualization is
called OS-level virtualization. The advantage of a container compared to a VM lies in the lightness
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Figure 4.1. Virtual Machine and Container deployments (source: [31])
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because, not having its own operating system, it has a weight of a few tens of MB, against the
GB of a VM and this means lower demand for computing power and higher speed, not having
the overhead of the hypervisor. This explains why the OS-level virtualization is also known as
lightweight virtualization and the containers as light VMs. “Containerized” services can be run or
added, removed or upgraded in a fraction of second, facilitating the application management and
enhancing the customer experience. A study commissioned by Red Hat to TechValidate, involving
more than 383 IT managers and operators from around the world, highlighted that 67% of respon-
dents were considering the introduction of container-based applications in their business plans; at
the same time, respondents had also expressed concerns on issues about security, certification and
skills [32]. In recent years there has been a considerable growth of container-based applications in
the cloud thanks to all the advantages this technology offers; for this reason, it is fundamental to
address the study about the security problems related to containers usage and find solutions for
keeping security risks low. In particular containers, providing less isolation than VMs, are more
vulnerable to attacks and expose the host system to privilege escalation, so monitoring the in-
tegrity state of software and data related to containers and the underlying host platform is crucial.
Remote Attestation based on TCG’s standards works very well to attest physical platforms; it
has been adapted to VMs attestation, even if many problems still need to be solved for efficiently
providing a hardware-root of trust; while a way to apply Remote Attestation to containers is a
challenge still opened to researchers, who are presenting various kinds of solutions to the scientific
community for building container trust. In this chapter, the major solutions developed in the last
years in this reserach field will be illustrated.

4.1 Container-based Virtualization

This section focuses on Linux’s container-based virtualization, which is rooted in the kernel fea-
tures namespaces, cgroups and capabilities.

A namespace abstracts a global system resource, making it appear to processes belonging
to that namespace as they have their own instance of the global resource, isolated from processes
not belonging to that namespace. Changes to the global resource are visible only to processes
within the same namespace, while are invisible to other processes. Namespaces are the foundation
of process isolation for implementing container-based virtualization. The following list shows the
namespace types available in Linux since kernel version 2.6.26 [33]:

❼ a cgroup namespace isolates the root directory of control groups;

❼ a IPC namespace isolates System V Inter Process Communication (IPC) and POSIX mes-
sage queues;

❼ a network namespace isolates network devices, stacks, ports, etc.;

❼ a mount namespace isolates mount points;

❼ a PID namespace isolates process IDs, so that it is possible to create processes in a PID
namespace with a PID already in use in another PID namespace;

❼ a time namespace isolates boot and monotonic clocks;

❼ a user namespace isolates security-related identifiers and attributes, in particular user and
group IDs;

❼ a UTS namespace isolates hostnames and Network Information Service (NIS) domain names.

Control groups, typically referred to as cgroups, allow to organize processes into hierarchical
groups in order to limit and monitor the usage of several kinds of resources. A cgroup hierarchy is
defined through a pseudo-filesystem called cgroupfs. Each level of the hierachy can have attributes
for defining resource limits which act throughout the entire subhierarchy. A cgroup is therefore
a collection of processes that share limits assigned to their cgroup and their ancestor cgroups in
the hierarchy. While grouping of processes is implemented in the core cgroup kernel code, the
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monitoring of resource usage is delegated to kernel components called subsystems, specific for
resource type (cpu, memory, pids, rdma, freezer, etc.). The various kinds of subsystems currently
implemented allow a fine-grained resource control, making it possible for example to limit the
amount of CPU time and memory available to a cgroup, freezing and resuming the execution of
processes in a cgroup and so on. For this reason subsystems are also called resource controllers
[33]. This ability to assign resources to groups of processes and manage those assignments is
fundamental for container-based virtualization and constitutes a powerful mechanism for avoiding
Denial of Service (DoS) attacks, guaranteeing the availability of the assigned resources to all
containers.

Capabilities are a list of privileges, traditionally associated to superuser, which can be inde-
pendently enabled or disabled for each process [33], allowing a fine-grained permission checking.

Moreover, the Linux Security Modules (LSMs) enhance the access control on sensitive infor-
mation, allowing to add another layer of protection to mitigate attacks that a container could
perform against the host or other containers. Traditionally, access to resources is performed with
Discretionary Access Control (DAC), which allows or denies the access by leveraging only
on information about users and groups. Yama module extends the DAC support with additional
system-wide security settings. Differently from DAC, the Mandatory Access Control (MAC)
uses policies that specify authorization rules for allowing or denying access to sensitive resources
that should be accessed in specific contexts: only if the requirements defined in the policy are sat-
isfied, the access to the resource is gained. There are several implementations of the MAC concept
considering different approaches, such as NSA Security-Enhanced Linux (SELinux ), AppArmor,
Simplified Mandatory Access Control Kernel (SMACK ) and TOMOYO modules.

Taking advantage of these Linux kernel features, several containerization technologies have
been implemented, based on two different approaches [1]:

❼ process containers create an isolated execution environment targeting a specific appli-
cation which determines the container life cycle; so, the container lifetime starts when its
target application begins to run and terminates when the target application finishes; Docker
and Rkt are examples of this kind of containerization;

❼ machine containers create an isolated execution environment that targets multiple pro-
cesses and services, customizable as traditional VMs; examples of this technology are Linux
Containers (LXC) and (LXD); since they offer less flexibility, reusability and composability,
they are less used in cloud environments than process container technologies.

More recently, a new approach has been proposed to implement lightweight virtualization ad-
dressed to cloud services, the Unikernels. They combine strengths of process containers and
VMs: like process containers, unikernels are single application oriented, like VMs they can be
executed on hypervisors. The entire software stack of the application and its dependencies, com-
prising language runtime and system libraries, is compiled into a single bootable VM image that
can be run directly on a standard hypervisor or the bare metal [34]. Differently from traditional
VMs, they embed only what is needed to the application to run, so they require less system
resources than VMs to run.

In the rest of the thesis work, we will focus on Docker containers which are currently the most
used containerization technology in cloud environments, being integrated with all open source
Linux based tools and taking advantage from the Kubernates orchestration system.

4.1.1 Docker

Docker is an open source platform for developing, deploying and running applications in process
containers. All what is needed to an application to run in a Docker container is defined in
an image, which can be considered a collection of files packaged together, containing all the
“source code” of a Docker container. Images are made up of layered filesystems with different
access privileges and layers ordered and stored in a single filesystem by using the Linux Union
filesystem. The figure 4.2 represents the image hierarchy of Docker containers. The first layer
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of the hierarchy is the boot filesystem, bootfs, which contains data needed to boot the container.
The second layer is the rootfs, or base image, which hosts the OS image. The upper layers contain
application specific filesystems, such as the Apache web server, the MySQL server and so on.
All these layers have read-only privileges since they can be shared among different containers;
this optimizes the overall resource usage (disk and RAM) required by containers. On top of the
read-only hierarchy, each container has a read-write layer containing the runtime information of
a specific container. Docker manages all these layers by means of a Storage Driver, which by
default is overlay2 but can be configured with a different one, such as aufs, devicemapper or btrfs.
Storage drivers perform the copy-on-write operations every time a container executes a writing
operation on a read-only information, by copying it in its own read-write layer. We can create
containers by using images already created and published in registries, or we can define a new
image by writing it in a Dockerfile, a kind of script that defines the steps needed to create the
image and run it, starting from a base image up to the target application.
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Docker Architecture

The Docker platform uses a client-server architecture, as shown in fig. 4.3. The server-side is
the Docker daemon (dockerd), which is the container runtime; its purpose is to manage Docker
objects, such as images, containers, networks and volumes. The client-side can be:

❼ the docker Command Line Interface (CLI), which provides commands for performing op-
erations on Docker objects;

❼ Docker Compose, a client specifically designed for managing applications composed of several
containers.

Docker clients communicate with Docker daemons through a REST API, so they can run on the
same system or on separated systems. The Docker platform provides a third component called
Registry, which stores Docker images. When a Docker client asks a Docker daemon to pull or
run an image, the daemon firstly searches the image in the local Registry; if the image is not
found locally, the daemon looks for it on a configured remote Registry. Docker Hub is the public
Registry configured by default in the Docker daemon, but there is the possibility to configure
private Registries.

4.1.2 Major Risks for Core Components of Container Technologies

This section describes the major risks for the core components of container technologies (images,
registries, orchestrators, containers, host OSs) on the basis of what is stated in the NIST specifi-
cation 800-190 [36]. This analysis is applicable to most container deployments, regardless of the
specific container technology or host OS.

Image Risks

A common risk in container-based environments is to have deployed containers with vulnerabil-
ities, because generated from images containing components for which at some time new vul-
nerabilities have been discovered. This happens because, differently from traditional computing
environments where the software deployed on the host is updated automatically, container up-
dates must be performed first in the image files, and then these updated files have to be rebuilt
by the container engine in order to free containers from new vulnerabilities. Moreover, even if all
the image components are up-to-date, image configuration defects may expose the container to
attacks. For example, an image may be erroneously configured to run as privileged user, giving
to the container greater privileges than necessary; or, an image could contain an enabled SSH
daemon, exposing the container to unnecessary risk of network-based attacks. Images could also
refer to malicious files, included intentionally or inadvertently, which could be used to attack other
containers or hosts within the environment. This happens especially when images are provided by
unknown third parties, which can provide untrusted images. Another source of risk occurs when
an application that uses secrets is packaged into an image. These secrets (such as username and
password for accessing a database, private keys etc.) can be embedded directly into the image
file system, letting anyone with access to the image to easily parse it and learn the secrets.

Registry Risks

Registry is a centralised entity to which container engines connect for downloading images to de-
ploy in containers. This entity is crucial in a container architecture, so its inadequate protection
or management can lead to several security risks. If the connection is performed over an inse-
cure channel, it is subject to man-in-the-middle attacks for stealing developer or administrator
credentials or secrets embedded in the image or for providing fraudolent or vulnerable images to
the container engines. Moreover, it can happen that registries store stale images with known vul-
nerabilities. This does not represent a threat per se, but it increases the risk that the out-of-date
version of the image is accidentally deployed in a container. Then, registries configured with weak
authentication and authorization restrictions can lead to the compromise of the registry contents,
or to the theft of proprietary images by attackers.
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Orchestrator Risks

Administrators of an orchestrator typically have unbound access to the whole execution environ-
ment. However, an orchestrator may run applications managed by different teams, with different
sensitivity levels; so the access to the orchestrator should be fine-tuned on the basis of specific
needs, otherwise an administrator could inadvertitelly or intentionally corrupt the operation of
some containers. Moreover, a poor management of orchestrator’s accounts (e.g., if no longer
needed accounts are not removed) can lead to unauthorized accesses and, since these accounts
are highly privileged, this can expose to systemwide compromise. Another risk is represented by
unauthorized access to container’s data. Since the orchestrator manages the data storage volumes
and these could contain sensitive data of containers’ applications, it is necessary to encrypt data
at rest to prevent unauthorized access.

Orchestrators are responsible to manage the virtual overlay networks that interconnect con-
tainers. A poor management of the inter-container interaction can lead to configure containers
with different sensitivity levels in the same virtual network, exposing sensitive applications to
greater risk from network attacks. Orchestrators are also responsible to manage the workloads
of the hosts of the cloud environment. In the default configuration, orchestrators may place on
the same host containers running applications with different sensitivity levels, thus exposing the
most sensitive applications to a greater risk of attack.

Being the orchestrator the most important node of the cloud environment, its trustworthiness
should be verified with particular care. A poor orchestrator configuration can lead to serious
risks, such as unauthorized hosts joining the cluster, compromise of a single host implying the
compromise of the entire cluster, unencrypted or unautehnticated communications between the
orchestrator and other environment nodes.

Container Risks

Container runtime vulnerabilities can lead to scenarios in which software running in a container
can escape from its sandbox and attack other containers or the host OS. Vulnerabilities can also
be exploited by an attacker to alter the runtime software itself, allowing it to compromise other
containers, monitor their communications and so on. Applications running in containers may
themselves contain vulnerabilities that can lead the container to be compromised, allowing an
attacker to access sensitive information or to attack other containers or the host OS.

Moreover, improper container runtime configurations can lower the stability and the security
of the overall system. In particular, erroneous configuration settings may lead: to allow containers
to invoke system calls that it would not be safe to call from inside containers; to run containers
in privileged mode; to permit a container to mount sensitive directories on the host OS (such as
/boot or /etc) so that it can change files in those directories, with negative consequences for the
host and all the containers running on it.

Host OS Risks

The attack surface of a host OS is the collection of all the entry points (“attack vectors”) which
unauthorized users (“attackers”) can exploit to enter data to or to extract data from the host OS.
For example, any service accessible from the network provides a possible entry point to attackers,
enlarging the OS’s attack surface. The larger the attack surface is, more likely an attacker may find
a vulnerability in an entry point in order to compromise the host OS and the containers running on
it. Containers run on a shared kernel and this results in a larger inter-object attack surface than
that relating to hypervisors. Moreover, since containers run inside the host OS, vulnerabilities
in foundational system components (like cryptographic libraries or kernel primitives for process
management) impact not only the host OS but also the containers running on it.

If administrators directly log on to host OSs for performing container management, they
expose the platform to wide-ranging changes that could affect all containers running on the host,
when they most likely wanted to manage containers of a specific application. Hence container
management should happen through an orchestration layer.
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4.1.3 Integrity verification of container-based environments

In order to contrast the issues previously exposed, an integrity verification mechanism should be
in place for guaranteeing the trustworthiness of the software and the configuration data for all the
entities involved in the container execution: the container runtime image, the container engine,
the underlying host OS.

Docker, starting from version 1.8, natively offers Docker Content Trust (DCT) for verifying the
container image against the creator’s digital signature. A similar solution, called Trusted Docker
Containers, is proposed by Intel for ensuring that images are not tampered before launching
the container. These solutions however are not enough since they do not ensure the container
integrity for its whole lifetime but at load-time only, while container image or configuration may
be changed during runtime. Hence the need to develop solutions that allow to extend the RA
mechanism to the attestation of container-based enviornments.

4.2 Docker Integrity Verification Engine (DIVE)

DIVE [1] is a solution proposed by the TORSEC research group of Polytechnic of Turin and, as
the name suggests, it targets the Docker container engine. DIVE enables the integrity verification
of host OS, container engine and containers running on a platform equipped with a TPM. This
solution allows to identify, inside the IMA ML, the entries corresponding to the various running
containers, thus giving the possibility to distinguish which container is compromised. In this way,
the untrusted container can be immediately stopped and replaced by a freshly created one, without
the need to reset the whole platform. The DIVE architecture comprises three components:

❼ the Attester is the target of the RA process; it represents a host machine belonging to
the host cluster in the cloud environment, equipped with all the features that a Trusted
Platform should have, that is a TPM and a root of trust for measurements that extends
up to IMA; the Attester runs the Docker container engine and an RA Agent , which is
responsible to respond to attestation requests by sending Integrity Reports;

❼ the Verifier is the node responsible of verifying the integrity state of each Attester and of
containers running on them;

❼ the Infrastructure Manager is the node in charge of creating the containers at user needs
and keeping track of the mapping between the Attesters and the containers, identifying these
entities with their Universal Unique Identifiers (UUIDs).

The Remote Attestation work-flow is shown in fig. 4.4. The Infrastructure Manager is in
charge of periodically asking the Verifier to evaluate the trustworthiness of a list of containers,
along with the list of Attesters on which the containers are running. To minimize the attack
surface of the Attester’s OS, the RA Agent does not accept incoming requests from third parties,
rather it periodically polls the Verifier at a predefined time interval (1). If the RA Agent finds
an RA request, it issues a quote command to the TPM for getting the PCR values signed with
the TPM’s AK (2), then it retrieves the IMA ML (3), creates the Integrity Report (IR) and
sends it to the Verifier (4). When the Verifier receives the IR, it checks the integrity and the
authenticity of the attestation information (5): firstly it verifies that the quote is valid, checking
its digital signature against the public-key contained in the Attestation certificate stored in the
Verifier when the Attester was registered; secondly, it verifies that the ML is not tampered with,
by recalculating the extend operation on the template-hash of each entry and comparing the result
against the IMA PCR contained in the quote. After having established the validity of the ML,
only the entries of interest for the current attestation request are evaluated, retaining the entries
belonging to the host system and to all the containers specified in the attestation request from the
Infrastructure Manager. The measures contained in these filtered entries are then checked one by
one against the reference database containing the whitelist (6). Finally, the Verifier returns the
result of the integrity verification to the Infrastructure Manager specifying, in case of untrusted
result, which measures are unknown from the reference database and which container they belong
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Figure 4.4. DIVE Remote Attestation work-flow (source: [1])

to (7). If the Verifier reported any compromised entity, the Infrastructure Manager can activate
a roll-back strategy to restore the integrity state in the environment. For example, if a container
results compromised, the Infrastructure Manager just needs to terminate the untrusted container
and to start a new one, without rebooting the whole system to restore trust. Instead, if the
host OS is compromised, then it is necessary to reboot the whole system otherwise the containers
running on it are exposed to great risks (as discussed in section 4.1.2). The possibility to identify
an untrusted container makes the RA process much more efficient in containerized environments,
making it applicable in real scenarios.

The software prototype implemented for the DIVE architecture relies on OpenAttestation
(OAT) SDK v1.7, a RA framework compliant with TCG specifications until version 1.7. OAT
provides a HostAgent, corresponding to the RA Agent running on the Attester system, and an
Attestation Server corresponding to the Verifier. These components expose a set of RESTful APIs
for easy integration in other tools. OAT provides also a web interface to present the history of
integrity reports. All communications within the RA workflow are encrypted relying on Transport
Layer Security (TLS). In particular, communications between the HostAgent and the Attestation
Server are performed on server-authenticated TLS connections, while communications between
the Attestation Server and the Infrastructure Manager happen on mutual TLS connections, so
that only authorized entities can request the trust level of the infrastructure to the Attestation
Server. For what concerns the Infrastructure Manager, it could be a container management
engine, such as Kubernates, or an orchestration platform such as OpenStack, that provides tools
for supporting Docker containers in a cloud environment.

4.2.1 Attester prototype

The Attester, in the prototype implementation, relies on the following elements:

❼ the Linux IMA module, patched for supporting a new template called ima-cont-id;

❼ the TPM 1.2 device;

❼ the Docker container engine configured for using Device Mapper as storage driver;

❼ the OAT HostAgent, modified for supporting the DIVE architecture;

❼ a new command added to the Docker CLI client.
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PCR#  template-hash     template    dev-id     filedata-hash   filename-hint 
 
10    ccd75...21c04    ima-cont-id   8:19      sha1:1bc28...2c  /usr/bin/ls 
10    74af2...1f412    ima-cont-id   8:19      sha1:123ac...31  /usr/sbin/sshd 
10    aa1c1...89a2a    ima-cont-id   253:1     sha1:12cc5...d2  /usr/bin/ls 
10    ff122...11b2a    ima-cont-id   253:1     sha1:762ad...aa  /badScript.sh 
10    bc58a...739bf    ima-cont-id   253:2     sha1:8910f...ae  /usr/bin/find 

Figure 4.5. IMA ML with ima-cont-id template (source: [1])

<Container Id="8948d6f37d41"> 
     <DevId>253:1</DevId> 
</Container> 
<Container Id="1beb7b9c05a6"> 
     <DevId>253:2</DevId> 
</Container> 
<Container Id="2f9695f9db36"> 
     <DevId>253:3</DevId> 
</Container> 
<Host> 
     <DevId>8:0</DevId> 
     <DevId>8:1</DevId> 
     <DevId>8:19</DevId> 
</Host> 

Figure 4.6. Excerpt from the modified OAT Integrity Report (source: [1])

Processes running in Docker containers are seen by the host system as “normal” processes, so
every time they load files into memory, these operations are automatically captured by the IMA
module via the IMA Hooks present in the host system. Standard IMA templates neither allow to
differentiate the MEs generated by container processes from those generated by other processes in
the host system, nor permit to distinguish MEs belonging to one container from those belonging
to another. So, the DIVE solution proposes the new IMA template ima-cont-id, that add to the
ML entries an additional field, called dev-id, which correlates each file with its execution virtual
device identifier, thus enabling the identification of the container that generated the ME. This
feature is based on the Docker’s Device Mapper storage driver, which assigns a different virtual
device identifier to the processes running in each container. The figure 4.5 shows an example of
IMA ML with the ima-cont-id template, where the first two entries belong to the host system,
identified by dev-id 8:19, the subsequent two entries belong to a container identified with dev-id

253:1, the last entry belongs to another container identified with dev-id 253:2.

The modifications to the OAT HostAgent regard adding new information in the IR, used by
the Verifier to map the device IDs stored in the ML entries to the container UUIDs. The figure
4.6 shows the new XML items added to the OAT Integrity Report: <Container>, that allows the
mapping between a Docker container UUID and the virtual device ID associated to it by Device
Mapper, and <Host>, that contains the list of all physical device IDs associated to the host system.
Finally, the Docker Command Line Interface (CLI) has been extended with a new command, for
retrieving the mapping between the container UUID and its device ID in an efficient way.

4.2.2 Verifier prototype

The Verifier prototype relies on the OAT Attestation Server, extended with a new type of analysis
that doesn’t consider the Attester as a whole, while it evaluates the integrity state of the entities
specified by the Infrastructure Manager in the attestation request, that are a list of containers
along with a list of Attesters on which the containers are running. The analysis ignores the
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integrity state of containers that are not specified in the attestation request performed by the
Infrastructure Manager.

The Verifier receives the full IMA ML and, after having verified its integrity, only the measure-
ments contained in the entries of interest are compared with the those contained in a reference
database. This database is initially populated with the names and digests of all the elements con-
tained in packages stored in official repositories for Linux distributions. Since the ima-cont-id

template relates each entry with the host or a specific container, the result of the verification
process is able to specify which measures are unknown and which entity they belong to (container
or host); only if the host system of the Attester results untrusted, the Infrastructure Manager
have to reboot the entire platform, otherwise it can restart only the compromised container, while
the rest of the platform is not interrupted.

4.2.3 Conclusions

DIVE is a solution for Docker container attestation that relies on the hardware RoT enabled by
the TPM for the attestation information, making the IR non-forgeable. This strong protection
against remote attacks comes at a nearly negligible performance impact on the Attesters, fea-
ture that makes this solution appliable in real scenarios. Another important feature of DIVE
is that the Verifier is able to identify which container or host system is compromised, allowing
the Infrastructure Manager to take the most efficient decision to restore trust: restarting only
the compromised containers or the entire physical platform. Moreover, DIVE doesn’t require any
modification to the applications running in containers, the only modifications needed to enable
this solution are applied to the host system. This makes DIVE very easy to be adopted in real
case scenarios.

Limitations of DIVE regard the fact that it needs Device Mapper as storage driver for Docker,
but there are scenarios in which other storage drivers provide better performance and stability.
Another drawback is that collisions in the device Id assigned to containers may occur; in particular,
if a container is stopped and a new one is started, the new container could acquire the same device
Id of a previously terminated container; this means that the new container will inherit all the
entries in the ML from the previous one, possibly resulting in an attestation fail when the integrity
check is performed for the new container.

4.3 Container-IMA

Container-IMA [2] is another solution for container attestation, proposed by a research group
of Peking University in China. This work addresses privacy issues that the RA can cause when
containers belonging to different users run on the same physical host. Other solutions based on
vTPM obtain a separation of the attestation information among the different containers, but they
suffer from several security and efficiency issues. Container-IMA, as DIVE, is a solution based on
IMA and it requires neither an additional layer in user space (like vTPM), nor any modification
to the existing applications running in containers. The proposed implementation is based on the
OAT framework and TPM 1.2.

The figure 4.7 shows a use case scenario, in which the prover (that is the attesting system)
hosts two containers belonging to user A and two containers belonging to user B. The verifier
represents a remote user that wants to know the integrity status of his containers running in the
prover. The container management services represent the container runtime engine (such as
Docker Daemon), which is responsible for starting and managing containers. All other processes
running in the underlying host system are classified as host applications. Container-IMA as-
sumes that the prover is equipped with a TPM (the prototype implementation supports TPM
1.2) and supports trusted boot for providing an integrity evidence of the firmware components
and the OS kernel. The threat model for this solution does not cover physical attacks to the
host system and doesn’t detect runtime memory attacks, which can be mitigated by leveraging
other mechanisms, such as address space layout randomization and control flow attestation. The
adversary is classified in two categories: a local adversary is capable of eavesdropping on, and
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Figure 4.7. Use Case in a Container Setting (source: [2])

interfering with, the prover ’s communication; a remote adversary can remotely infect the prover
with malware, modifying files or integrity evidence related to containers, corrupting the attesta-
tion mechanism or impersonating as container management services. Finally, Container-IMA
assumes that only authorized Verifiers can receive attestation information.

In a platform that runs containers, the chain of trust, established with trusted boot and
extended to the OS kernel thanks to IMA, can be decomposed as follows [2]:

1. Integrity of prover’s Boot Time (IPro
boot): starts from prover power on and ends with OS

kernel loading; it includes BIOS, GRUB and OS kernel;

2. Integrity of Containers’ Dependencies (ICon
dep ): refers to the container management services

and all files and libraries required by them;

3. Integrity of a Container’s Boot Time (ICont
boot ): refers to the images and boot configurations

used by container management services to launch a container;

4. Integrity of a Container’s Applications (ICon
app ): starts when container management services

launch a container and ends when the container terminates; it includes all processes and
files belonging to a container;

5. Integrity of Host Applications (IHost
app ): starts when the OS kernel is successfully launched

and ends when the prover is shut down. The container management services and the
containers do not belong to this partition.

The figure 4.7 highlights the containers’ chain of trust. Containers directly depend on the
container management service; thanks to namespaces, containers are isolated from other host
applications, so the chain of trust for a given container includes IPro

boot , I
Con
dep , ICon

boot and ICon
app (the

last two belonging to the container to be attested). When a verifier requests the attestation in-
formation for a container, the prover can aggregate only these subsets of information, while other
measurements not belonging to these partitions should not be revealed to the verifier, in partic-
ular information belonging to IHost

app and other containers’ ICon
app and ICon

boot . Moreover, the verifier
cannot distinguish whether his container is the only one running on the prover or not. To realize
this privacy requirement, Container-IMA subdivides the traditional IMA ML into the partitions
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Figure 4.8. Overview Architecture of Container-IMA (source: [2])

mentioned above. In order to realize the ML partitioning, Container-IMA modifies the IMA mod-
ule by adding three new modules, as shown in figure 4.8: the Split Hook, the Namespace Parser
and the cPCR Module. The overall architecture that allows individual container attestation is
based on two mechanisms: the measurement mechanism and the attestation mechanism.

4.3.1 Measurement Mechanism

The measurement mechanism consists of two phases, the Namespace Register Procedure, which
allows the initial partitioning of the ML belonging to a container on basis of its mount namespace,
and the Measurement Procedure, that allows to add a given ME to its corresponding ML partition.
As previously mentioned, the chain of trust of a container is composed of the following integrity
measurements: IPro

boot , I
Con
dep , the container’s ICon

boot and ICon
app . The integrity of the prover at boot

time, the IPro
boot , is measured by the trusted boot and protected by PCR0-7; the MEs generated

in the boot phase are already in a separate ML, so they are not considered in the following
description.

Namespace Register Procedure

As described in paragraph 4.1, processes running in a container are isolated from those belonging
to other contaienrs and the host system by means of namespaces. This is the feature used by
Container-IMA to distinguish the MEs generated by a container from those generated by other
containers and from the host applications. By parsing the mount namespace number of the process
that spawned the event, the IHost

app and the various ICon
app can be separated.

The workflow of the Namespace Register Procedure is depicted in figure 4.8. The Split Hook,
introduced by Container-IMA, is responsible to notify the IMA Measurement Agent that the
system call unshare() has been invoked to generate a new mount namespace. As response to this
event, the IMA Measurement Agent has to allocate new data structures so that the MEs generated
by the processes in this new namespace can be separated by the others. For each namespace
Container-IMA maintains in the kernel memory a measurement list, each of them having its
corresponding separated Measurement Log (s-ML). So, a s-ML contains the MEs generated in a
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given namespace ns:
s-ML =< {measure(MEns)}, ns > (4.1)

If n is the number of namespaces generated through unshare(), the set of all s-MLs can be
represented as:

s-MLs = {< {measure(MEns)}, ns >}n (4.2)

Container-IMA provides a hardware-based RoT to the ML’s partitions, but it can not accomplish
this by assigning a different PCR to the various partitions, since it would be unfeasible for tens or
hundreds of containers running on a host system. So, Container-IMA implements the container-
based PCRs (cPCRs) Module, responsible to manage the cPCRs data structure in the kernel
memory. Each cPCR has three data associated to it:

1. value, that contains the digest resulting from the extentions of the MEs belonging to a given
namespace;

2. ns, that is the namespace corresponding to this cPCR;

3. secret, which is a random number generated by the TPM, used to hidden the cPCR value
to verifiers that have to attest their own containers but do not have the ownership of the
container corresponding to ns.

If n is the number of ML’s partitions, the list of all cPCRs can be represented as:

cPCR-list = {cPCR}n = {< value, ns, secret >}n (4.3)

When the IMA Measurement Agent receives from the Split Hook the event for creating a new
namespace, it notifies the Namespace Parser to parse the new mount namespace number and pass
it to the cPCR Module. This firstly requests to the TPM to generate a new random number to
use as secret, then it creates a new cPCR and a new s-ML for the namespace just created:

cPCR-listnew := cPCR-listold ∪ {< all-zero, ns, secret >} (4.4)

s-MLsnew := s-MLsold ∪ {< {}, ns >} (4.5)

Measurement Procedure

The Measurement Procedure is responsible for measuring and storing MEs. When a ME is
generated, an IMA Hook notifies it to the IMA Measurement Agent, which measures this ME if
it matches the IMA Policy. Then the Namespace Parser receives the ME and tries to retrieve its
mount namespace number. If the ME does not have a mount namespace or its mount namespace
has not been previously registered in the cPCR Module, this ME is considered belonging to the
host applications and managed with traditional IMA behaviour, so the measurement result
is extended in PCR10 and recorded in the ascii_runtime_measurements file. Otherwise, if the
ME has a mount namespace previously registered through the Namespace Register Procedure,
the Namespace Parser passes it to the cPCR Module, which locates the cPCR corresponding to
its mount namespace (target-cPCR) and extends the ME template-hash in the target-cPCR.value,
by performing the same extend operation defined in the TPM specifications for PCRs:

target-cPCR.valuenew := HASH(target-cPCR.valueold ||ME.template-hash) (4.6)

Then, the cPCR Module appends the ME in the target s-ML. In this way, the integrity of each
s-ML is protected by its corresponding cPCR.value and a verifier can check that the received
s-ML is not tampered with by comparing the cPCR.value with the result of the extend operation
computed over the template-hashes of each s-ML entry. However, the cPCRs are in the kernel
memory, so the s-MLs integrity is not protected by a hardware-based RoT.

In order to provide a hardware-based RoT to the s-MLs, the cPCR Module binds the cPCRs
into a physical PCR that is not already used for other purposes; PCR12 is the default PCR for

55



Container Attestation

extending cPCRs in the prototype implementation, but Container-IMA provides a kernel com-
mand line parameter to change the PCR index. Before proceeding with the extension, the cPCR
Module records the current value of PCR12 in a internal variable called historyPCR, which will
be sent to the verifiers for allowing them to check that the cPCR list has not been tampered with.
After that, the cPCR Module computes, for each cPCRi, its sendcPCRi value that corresponds
to the cPCRi.value xored with the cPCRi.secret:

sendcPCRi := cPCRi.value xor cPCRi.secret (4.7)

This operation is performed because, when a verifier receives the list of the sendcPCRs, it can
disclosure the cPCR.values only for those containers of which it knows the secrets, while the other
cPCR.values remain hidden, preventing a malicious verifier from getting ideas of what software
is running inside other containers. The verifier that owns a container should be notified about its
corresponding secret when the container is created; after container creation, the kernel does not
provide the secret anymore. Then, all the sendcPCRs are extended one after the other, simulating
the extend operation performed by the TPM:

tempPCR0 := sendcPCR0 (4.8)

tempPCRi := HASH(tempPCRi-1 || sendcPCRi), ∀i ∈ [1, n] (4.9)

Finally, the resulting tempPCRn value is extended in the TPM’s PCR12, where PCR12old has
been recorded into the historyPCR variable:

PCR12new := PCR Extend(PCR12old, tempPCRn) (4.10)

In this way a hardware-based RoT is established, because TPM’s PCR12 protects the integrity
of the sendcPCRs list and each sendcPCR protects the integrity of its corresponding s-ML. In
particular, when a verifier wants to check the integrity of a given container, for example container
A, it has to receive the container’s s-MLA (containing all the MEs of container A), along with
the historyPCR value, the list of all sendcPCRs and the quote containing the PCR12 value signed
with the TPM’s AK. Firstly, the verifier checks that the sendcPCRs list is genuine and, in order
to do that, it recomputes the extend operation on all the sendcPCRs as explained by equations
4.8 and 4.9; then, the final tempPCRn value is extended with the historyPCR value:

PCR12 = HASH(historyPCR || tempPCRn) (4.11)

If the resulting value is equal to the signed PCR12 value received with the quote, then the
sendcPCRs list is authentic. Now, if the verifier knows the secretA corresponding to container
A, the verifier uses it to disclosure the corresponding cPCRA.value:

cPCRA.value = sendcPCRA xor secretA (4.12)

Finally, the verifier can use the cPCRA.value to check the integrity of s-MLA by extending
all the template-hashes contained in each entry and checking that the resulting value matches
cPCRA.value.

The process described until now allows to partition the IHost
app and the ICon

app s, but it doesn’t

allow to record in a separate ML the Integrity of Containers’ dependences (ICon
dep ) and Integrity of

Containers’ Boot Time (ICon
boot ). Regarding ICon

dep , the idea is to reuse the Namespace Register Pro-
cedure also for partitioning the Containers’ dependencies but, since the container management

service does not run in a new namespace, in order the solution to work, it is necessary to launch
the containers’ dependencies through a program, named bootstrap program, whose purpose
is to create a new namespace in which the containers’ dependencies will run. In the imple-
mented prototype, the researchers chose /usr/bin/unshare as the bootstrap program. In this
way, when the container management service will be launched through /usr/bin/unshare,
the Split Hook will be triggered and a new cPCR and s-ML will be allocated for it. Since the
container management service is launched before any other container, it will always corre-
spond to cPCR0. Moreover, since all verifiers will need the containers’ dependencies secret, the
cPCR0.secret is set to a well known value, that is all-zero. Obviously, for this solution to work,
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==> 4026532222 <== 
 
4026532222  ccd75...21  ima-ng sha1:38919a... 1990->1980->1907->1447->1249->1071->1 
                                                                           ->0_4026532222:/usr/bin/unshare 
4026532222  74af2...1f  ima-ng sha1:a348d3... 4026532222:/usr/bin/dockerd 
4026532222  aa1c1...89  ima-ng sha1:80a5ea... 4026532222:/usr/bin/docker-containerd 
4026532222  ff122...11  ima-ng sha1:126ee5... 4026532222:/var/lib/docker/tmp/docker-default618280113 
4026532222  bc58a...73  ima-ng sha1:a00d30... 4026532222:/lib/modules/3.13.11- 
                                                                          ckt39/kernel/ubuntu/aufs/aufs.ko 

==> 4026532238 <== 

 
4026532238  2a34c..14  ima-ng sha1:d5442f... 2358->2354->2346->2001->1990->1980->1907->1447->1249->1071 
                                                                    ->1->0_4026532238:/usr/local/sbin/runc 
4026532238  f1aee..ac  ima-ng sha1:611a59... 4026532238:/bin/bash 
4026532238  78fcb..1d  ima-ng sha1:b43aec... 4026532238:/lib/x86_64-linux-gnu/ld-2.23.so 
4026532238  45cdd..df  ima-ng sha1:eaae87... 4026532238:/etc/ld.so.cache 
4026532238  ace7e..5b  ima-ng sha1:2bd938... 4026532238:/lib/x86_64-linux-gnu/libtinfo.so.5.9 

==> ascii_runtime_measurements <== 

 
10  17f4a..21  ima-ng sha1:27d6a1... boot_aggregate 
10  accb7..3a  ima-ng sha1:a5e65f... 4026531840:/init 
10  09acc..83  ima-ng sha1:dc3e62... 4026531840:/bin/sh 
10  cbefe..a6  ima-ng sha1:67c253... 4026531840:/lib64/ld-linuc-x86-64.so.2 
10  34dda..c1  ima-ng sha1:fac553... 4026531840:/etc/ld.so.cache 

==> docker-boot <== 

 
"... [4026532238] sha256:7aa3602ab41e...  ...   
    /var/lib/docker/containers/.../config.v2.json" c952b062e8be3cbc407242cb2ebcb27c8111b489 

Figure 4.9. An example of the first 5 entries of each ML partition after having
bootstrapped dockerd through unshare command and then set up a new container
docker run -it ubuntu:16:04 (source: [2])

the first namespace created with the unshare syscall in the system must be that created for the
containers’ dependencies. So, when a Verifier attests a container, it has to receive the s-ML0

along with the attestation information previously mentioned.

There is another problem to be solved: how can a verifier prove that its container has been
actually launched through the containers’ dependencies whose s-ML it received? Container-IMA
solves this issue by adding as first entry in the s-MLs the measurement of the process that created
the new namespace (createProcess), adding in the template of the first entry the process PID
and the PIDs of all its ancestors. So, the first s-ML’s entry is different from other entries, firstly
becacuse it does not represent a ME that matches the IMA Policy but represents the “creation of
a new namespace” event, secondly because it has a different template. In order to prove that its
container has been launched through the containers’ dependencies whose measures are stored in
s-ML0, a verifier checks the PIDs: if the PID-chain stored in the container’s s-ML contains the
PID of the bootstrap process (/usr/bin/unshare in this case), that is the first PID in the PID-
chain contained in s-ML0, then the measures contained in the s-ML0 are indeed those generated
by the dependencies of its container, otherwise they are not. The figure 4.9 shows an example
of ML partitions. The s-ML files are named with the mount namespace number they represent,
in particular file 4026532222 refers to the s-ML for containers’ dependencies (ICon

dep ) and file

4026452238 refers to the s-ML for a container (ICon
app ); while file ascii_runtime_measurements

contains measurements related to the host applications (IHost
app ), which are deemed irrilevant for

the containers attestation by Container-IMA developers. The template used in the prototype
implementation is ima-ng, with some fields modified from the original template:

1. index, the namespace number or the PCR index (in the case of ascii_runtime_measurements);

2. template-hash, the hash that protects the entry information;
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3. template-name;

4. file-hash, the hash computed over the file data;

5. file-path, the file absolute path, with a prefix equals to the mount namespace number
and, for the first entry only, the PID-chain.

In file 4026532222 the createProcess is /usr/bin/unshare, whose PID is 1990, while in file
4026532238 the createProcess is /usr/local/sbin/runc, whose PID is 2358 and has the pro-
cess with PID 1990 among its ancestors. It follows that file 4026532222 actually represents the
dependencies for the container represented by file 4026532238.

The Integrity of Containers’ Boot Time (ICon
boot ) comprises the image and configurations to

bootstrap a container. In order to store the measurements on these information in a separate ML,
Container-IMA extends the chain of trust from the IMA module to the containers’ dependencies;
that is, since containers’ dependencies have been measured by IMA and the measurements are
protected by a hardware-based RoT, the containers’ dependencies could implement the function
of Measurement Agent with respect to the containers’ boot time information. In the prototype,
the researchers implemented the Measurement Agent in the runc process, which collects the mea-
surements on the containers’ image and configurations in a file called docker-boot and extends
the template-hash computed on each entry of this file in the physical PCR11. The figure 4.9
shows an example of docker-boot file, whose template has six fields:

1. id, the Container ID;

2. ns, the mount namespace number;

3. HASH(image), the digest computed over the container’s image;

4. HASH(config), the digest computed over the container’s configuration;

5. PATH(config), the absolute path of the container’s configuration file;

6. template-hash, the digest computed over the entry’s information.

For privacy reasons, the docker-boot file is not transmetted as is to the verifiers: the entry related
to the container owned by the verifier is transmitted with all its information, while, for the other
entries, only the template-hash is transmitted. This lets the verifier to check the integrity of
the container’s boot information against the PCR11 value, at the same time not revealing other
containers’ information.

4.3.2 Attestation Mechanism

The Container-IMA Attestation Mechanism enables a verifier to attest the integrity of a given
container and its dependencies. Container-IMA assumes that an effective user management system
that identifies the verifiers is already in place, such as Kubernates, preventing unauthorized
verifiers from receiveing attestation information.

Message Transferring

When an authorized verifier wants to attest the integrity of a container running in a prover,
it sends to the Attestation Agent a request:<nonce, containerID>, where nonce is a random
number generated by the verifier, and containerID is the UUID of the target container. When
receiving the request, the Attestation Agent sends to the verifier an IR containing the following
information:

1. a TPM’s quote, that is SignAK{nonce || PCRs}, where the PCRs are PCR0-7 (for the
prover ’s boot time), PCR11 (for containers’ boot time measures) and PCR12 (for containers’
dependencies and applications);
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2. sendcPCRs and the historyPCR (that is the old value of PCR 12);

3. s-ML for prover ’s boot time (IPro
boot);

4. s-ML for container’s dependencies (ICon
dep );

5. s-ML for container’s boot time (ICon
boot ), containing for the target container the complete

information, while for other containers only the template-hash;

6. s-ML for the target container’s applications (ICon
app ).

Verifier Workflow

When receiving the response from the Attestation Agent, the verifier firstly validates the authen-
ticity of the TPM quote by checking the signature with the public part of the AK. If the quote
is authentic, the verifier validates its freshness by checking if the nonce is the one sent in the IR
request.

If these checks are passed, the verifier uses the trusted PCR values for checking the integrity of
all the received s-MLs. In particular, the integrity of the s-MLs for prover ’s boot time (IPro

boot) and
the container’s boot time (ICon

boot ) can be easily checked by simulating the PCR_Extend operation
and comparing the result with the corresponding trusted PCRs (PCR0-7 for IPro

boot and PCR11
for ICon

boot ). While, for checking the integrity of the s-MLs for ICon
dep and ICon

app , the verifier has
first to check the validity of the received sendcPCRs, so it performs the extend operation with all
sendcPCRi for obtaining tempPCR, as shown in equations 4.8 and 4.9; then it extends tempPCR
with the historyPCR and verifies if the final value is equal to the trusted PCR12. If the values
match, the verifier uses the contaienr’s secret for getting its cPCR.value and all-zero for getting
cPCR0.value, then it uses these values for verifying the integrity of the s-MLs for container’s
applications (ICon

app ) and container’s dependencies (ICon
dep ), respectively. Finally, the verifier checks

whether the received ICon
dep is actually its container’s dependency by checking the PID-chain of the

container’s createProcess. If all these verifications are passed, the verifier can use the s-MLs
for evaluating the trustworthiness of the container, by comparing the measurements contained in
them against its expectations, which are collected from software and hardware manufacturers.
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Chapter 5

Keylime Framework Analysis

Keylime born out of the security research team in MIT’s “Lincoln Laboratory” and was presented
to the scientific community, in December 2016, with the whitepaper “Bootstrapping and Main-
taining Trust in the Cloud” [37]. It is currently a “Cloud Native Computing Foundation” (CNCF)
hosted project which provides an open source solution both for bootstrapping hardware rooted
cryptographic identities for cloud nodes and for system integrity monitoring of those nodes via
periodic attestation.

5.1 Background

Keylime’s idea starts from the observation that IaaS services are becoming more and more popular
among companies. “Infrastructure as a Service” (IaaS) is a cloud computing service model where
fundamental computing resources (processing, storage, networks) are provisioned to customers
to deploy and run arbitrary software, which include operating systems and applications. These
IaaS resources are referred to as cloud nodes and can be physical hardware, virtual machines or
containers. With this service model, cloud tenants do not manage or control the underlying cloud
infrastructure but control operating systems, storage and deployed applications. Typically, cus-
tomers are able to self-provision this infrastructure by using a web-based graphical user interface
that acts as a IT operations management console for the overall environment. This console allows
customers to upload a whole image to the provider infrastructure or to configure a pared-down
base image made available by the provider. Users often start by customizing a provider-supplied
image and then, when they achieved the desired configuration, they create their own image by
using tools like Packer, to speed up the deployment of new cloud nodes. IaaS is nowadays very
popular among companies since it offers advanced technologies with savings of time and money,
allowing them to:

❼ access applications and data, from anywhere and at any time, simply using a PC connected
to Internet;

❼ avoid the initial expense of setting up and managing a datacenter;

❼ implement innovation quickly, because the computing infrastructure necessary to launch a
new product or a new initiative can be ready in a matter of hours, versus the days, weeks
or even months needed to set up a local datacenter;

❼ focus on the main business of the company, without wasting human resources for managing
IT infrastructures.

However, IaaS cloud service providers do not currently offer all the required components to estab-
lish a trusted environment for hosting sensitive data and business critical applications. Tenants
have limited ability to verify the underlying platform when they deploy their application to the

60



Keylime Framework Analysis

cloud and to verify that the platform remains trusted for the entire duration of their computa-
tion. Tenants have also a limited ability to establish unique unforgeable cryptographic identities,
bound to a hardware RoT, in the cloud nodes. Frequently, those cryptographic identities rely
exclusively on a software-based solution and often the methods used to inject the identities in the
cloud nodes require trust in the service provider, since secrets are passed unprotected to the cloud
nodes via the cloud provider. Typically, cloud providers use cloud-init as a standard mechanism
for allowing tenants to specify bootstrapping data, including secrets, for the cloud nodes. These
bootstrapping data are not encrypted, thus allowing a provider to intercept them.

A solution for bootstrapping trust and detecting changes in the system state is represented
by the TPM but it has not been widely used in IaaS cloud environments for the complexity of
its standards, the difficulty of their implementation, the low performance (500+ms to generate
a digital signature), the fact that the TPM is a physical device while most IaaS services rely
upon virtualization, which separates cloud nodes from the underlying hardware on which they
run. Although the Xen hypervisor supports a virtualized TPM that has a hardware RoT in the
physical TPM, IaaS environments don’t have protocols that allow to use vTPMs.

In order to address these issues, Keylime developers identified a set of desirable features that
an IaaS trusted computing system should have:

❼ Secure Bootstrapping : the system should allow a tenant to securely inject an initial root
secret into each one of his cloud nodes; then, the tenant can use this initial secret to chain
other secrets, so enabling higher level security services;

❼ System Integrity Monitoring : the system should enable the tenant to monitor the
integrity state of cloud nodes and detect integrity deviations, reacting within one second;

❼ Secure Layering (Virtualization Support): the system should enable a tenant for
secure bootstrapping and integrity monitoring also in VMs by leveraging a TPM in the
provider’s infrastructure; this requires provider collaboration, but it must be done giving
the provider the least privilege;

❼ Compatibility : the system should permit the tenant to use hardware-rooted cryptographic
keys in software so that the services they already use are made more secure (such as disk
encryption or configuration management);

❼ Scalability : the system should scale to support secure bootstrapping and integrity mon-
itoring of thousands of cloud nodes, since IaaS resources can be elastically spawned and
deleted.

Keylime is proposed by MIT’s researchers as the first end-to-end IaaS trusted cloud key manage-
ment service that supports all the desirable features listed above:

❼ it implements a new bootstrap key derivation protocol for injecting identities and other
secrets into cloud nodes, combining both tenant intent and integrity measurements (Secure
Bootstrapping);

❼ it performs periodic remote attestations, linking the identity revocation of a cloud node to
integrity deviations of the system (System Integrity Monitoring);

❼ it provides the previous functionalities in both bare-metal and VMs in a way that minimizes
trust in the cloud provider (Secure Layering);

❼ it has been integrated with applications and services common to IaaS cloud deployments
and non-trusted-computing aware, such as cloud-init, IPsec, Puppet, Vault, LUKS (Com-
patibility);

❼ it can handle thousands of cloud nodes simultaneously, managing to check thousands of IRs
per second (Scalability).

61



Keylime Framework Analysis

       TPM / Platform Manufacturer Enrollment 

Keylime 
Trusted Computing Services 

Software-based Cryptographic Services 

Signed 
EKs 

Valid 
TPM? 

Software 
ID Keys 

ID key 
revoked? 

Figure 5.1. Decoupling of trusted hardware from high-level security services (source: [37]).

The central idea of Keylime was to integrate Trusted Computing with high-level security
services, leveraging on integrity measurements for bootstrapping and revoking identity in the
cloud nodes, allowing higher-level services that use these identities (IPsec, Puppet, etc.) to
work independently, without the need to be trusted computing aware. As shown in figure 5.1,
Keylime provides a software layer between trusted hardware (TPM) and software-based security
services, exposing a clean and easy to use interface that allows integration with existing security
technologies.

5.2 Design

Keylime has been proposed as a solution to overcome security issues that arise in cloud com-
puting environments, as it is capable to provide a hardware root of trust to tenants in order to
establish the trustworthiness of the IaaS infrastructure and of their own systems running on that
infrastructure.

5.2.1 Threat Model

The threat model of Keylime assumes that the cloud provider is “semitrusted”, that is, it is
organized in a trustworthy manner but still susceptible to compromises or malicious insiders. In
particular, Keylime assumes that [37]:

❼ the cloud provider has all the processes, technical controls and policies for limiting the impact
of compromises, preventing them from spreading throughout the entire infrastructure, but
a fraction of the provider’s resources can be under the control of the adversary, for example
a subset of racks in an IaaS region may be controlled by a rogue system administrator;

❼ the adversary can arbitrarily monitor or manipulate compromised portions of the cloud
network or storage;

❼ the adversary cannot physically tamper with host resources, such as CPU, bus, memory or
TPM;

❼ the provider does not intentionally deploy a hypervisor coded with the explicit purpose of
spying on tenant VM memory;

❼ the TPM is provided with a certified EK, which establishes the authenticity of the TPM
hardware;

❼ the adversary’s goal is to obtain persistent access to tenant resources in order to steal,
disrupt or deny the tenant’s data and services, and this can be done modifying the code at
load-time or the process at run-time;
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Figure 5.2. Keylime simplified architecture.

❼ load-time modifications can be detected by integrity measurements of the hypervisor/kernel
(with trusted boot) and of the applications (with IMA);

❼ run-time modifications can be detected by runtime integrity measurements of the kernel
(LKIM [38]) and of the applications (DynIMA [39]).

5.2.2 Simplified Architecture for Physical Nodes

This section describes the simplified architecture for managing trusted computing services when
cloud nodes are physical hosts. The simplified architecture, represented in figure 5.2, comprises
the following components.

The Registrar stores valid AIKpub keys, EKpub keys and EK certificates and indexes them by
means of cloud nodes’ UUIDs. The registrar is a simplified implementation of the TCG Attestation
CA because it implements the protocol for the Attestation Key Identity Certification [40], proving
that the node which holds the EKpriv key knows also the AIKpriv key, but it doesn’t validate
the EK certificate (this validation is performed by the Tenant during the key derivation protocol,
described in section 5.2.2) and doesn’t hide the EKpub key to its clients. Clients request TPM’s
credentials from the registrar through a server authenticated TLS channel.

The Cloud Verifier (CV) is the core component of the Keylime architecture since it is
responsible for verifying the integrity state of the tenant’s IaaS resources. The CV relies upon
the registrar for retrieving the AIKpub key needed for the validation of a TPM quote.

The Cloud Agent is the component that runs on the cloud node and provides information
about its current integrity state by sending IRs.

The Tenant represents the customer (human or organization) of the IaaS resources. It kicks
off the Keylime framework, providing to the agent an encrypted payload that contains information
to start up his service and to the CV all the information to attest the integrity state of the cloud
node that runs the service.

The Software CA is a software-only certification authority whose purpose is to link trust
and integrity measurements rooted in the TPM with the higher-level security services, avoiding
the need to make each service trusted computing-aware.

The Revocation Service completes the linkage between the trusted computing services and
higher-level security services. When a CV detects an untrusted cloud node, the revocation notifier
sends a “revocation event” to the software CA and to all the cloud nodes registered for this service.
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Figure 5.3. Physical node registration protocol (source: [37]).

Upon receiving this event, the software CA, that hosts a CRL service, revokes the software identity
key corresponding to the untrusted cloud node by publishing an updated CRL, while the cloud
nodes execute specific scripts, allowing higher-level security services to automatically react to this
change.

One of the purposes of Keylime is to protect tenant’s sensitive data from the cloud provider.
These data may be software identity keys or configuration metadata like a cloud-init script.
For this reason, at the beginning of the process the tenant generates a fresh symmetric key Kb

and uses it to encrypt, with AES-GCM algorithm, the sensitive data d to be passed to the node,
denoted EncKb

(d). Then, the tenant requests the IaaS provider to instantiate a new resource (a
physical or virtual node) and sends EncKb

(d) as part of the resource creation. Upon creation,
the provider returns the UUID for the new node and the IP address to which the node can be
reached.

The Keylime framework can be subdivided in the following operational phases:

1. the Physical Node Registration Protocol ;

2. the Three Party Bootstrap Key Derivation Protocol ;

3. the Continuous Remote Attestation;

4. the Revocation Framework.

Physical Node Registration Protocol

The initial interactions of the Keylime framework concern the Registration Protocol, implemented
by leveraging the existing TCG standard for the creation and validation of AIK keys. When
the cloud agent starts up, it contacts the registrar for performing the enrollment of the standard
credentials of the TPM installed in the system. As represented in figure 5.3, the cloud agent sends
to the registrar its UUID, along with the AIKpub, the EKpub and the EKcert of the TPM. The
registrar stores these information and challenges the cloud node to prove that it owns the EKpriv

and the AIKpriv corresponding to the public counterpart that it received. The registrar creates
the challenge in this way: it generates an ephemeral symmetric key Ke, it computes a hash of
AIKpub (denotedH(AIKpub)) and it encrypts these two information with EKpub. When the cloud
agent receives the registrar’s challenge, it passes this encrypted blob to the ActivateIdentity

TPM command. The TPM will correctly decipher Ke only if it owns EKpriv corresponding to
EKpub and AIKpriv corresponding to AIKpub. The cloud agent proves that it retrieved Ke by
sending to the registrar the HMAC of its UUID computed with Ke. Upon receiving the response,
the registrar recomputes the HMACKe

(UUID) and, if the result is equal to the agent’s response,
it marks the cloud agent UUID as active and starts sending the cloud node’s TPM credentials
when asked.
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Figure 5.4. Three Party Bootstrap Key Derivation Protocol (source: [37]).

Three Party Bootstrap Key Derivation Protocol

After the Node Registration Protocol, the Keylime framework can execute the Three Party Boot-
strap Key Derivation Protocol. Purpose of this protocol is to securely deliver the bootstrap key
Kb to the cloud node, after having verified that it is in a trusted state. This protocol realizes two
objectives:

1. demonstrating the tenant’s intent to derive the bootstrap key Kb;

2. demonstrating the cloud node that will receive Kb is in a trusted state.

These objectives are realized through secret sharing between the tenant and the CV, in particular
the tenant splits Kb into two parts U and V. These shares are obtained by generating a secure
random value V of the same length as Kb and calculating U = Kb ⊕ V . The tenant will send
U directly to the cloud node to demonstrate its intent to derive Kb, and will share V with the
CV, which in turn will send it to the cloud node only after having verified that the cloud node is
trusted.

The interactions between tenant, CV and cloud agent can be subdivided into three phases,
represented with letters A, B and C in figure 5.4. During phase A, the tenant notifies the CV that
a new cloud node exists and, connecting over a secure channel, sends it the cloud agent’s UUID,
the V share, the IP address and port to which the cloud agent is reachable, the TPM policy,
the whitelist and, optionally, the MB refstate. In particular, the TPM policy specifies both the
PCRs that the TPM quotes have to contain and the expected values associated to those PCRs;
the whitelist is used for validating the IMA ML and contains the list of trusted digests for the
configuration files and the programs running on the cloud node; the MB refstate is the “Measured
Boot reference state” and is used for validating the Measured Boot ML. After completing phase
A, the tenant and the CV begin the attestation protocol in parallel (represented by phases B
and C respectively), at the end of which the cloud agent receives U from the tenant and V from
the CV. Since the cloud agent does not have a certified software identity key to establish secure
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communications, it generates an ephemeral asymmetric key NK and sends the public part of this
key, NKpub, to the CV and the tenant, so that they can use it to cipher V and U rispectively and
transmit them securely over an untrusted network. In order to prove the authenticity of NKpub

to the tenant and to the CV, the cloud agent extends NKpub in a freshly reset PCR 16 and adds
the PCR 16 in the TPM quotes. In this way, the identity of NKpub is bound to the TPM identity
and this allows the tenant and CV to authenticate NK by validating the TPM quote.

Now the interactions of phase B wil be examined in detail. The CV sends a request for a
TPM quote to the cloud agent, specifying a fresh nonce (nonceCV ) and a mask (PCR mask) that
indicates the PCRs that the TPM quote has to contain. The node sends back NKpub along with
the quote QuoteAIK(nonceCV , 16 : H(NKpub), xi : yi), where 16 : H(NKpub) represents the PCR
16 containing the hash of NKpub, while xi : yi represent the PCRs requested by the CV with
their respective values. Then, the CV asks the registrar for the node’s TPM credentials (AIKpub,
EKpub and EKcert) over a server authenticated TLS and uses AIKpub to verify the authenticity
of the quote; if the quote is authentic, the CV verifies that the cloud node has a trusted state
by comparing the PCRs values contained in the quote with the trusted values specified in the
TPM policy and by validating the IMA ML with the whitelist (the cloud agent adds in the IR the
IMA ML only if PCR mask contains the IMA PCR, typically PCR 10). The CV also verifies that
the received NKpub is correct by computing the hash over NKpub and checking that the result
is equal to the content of PCR 16. If all the verification steps are passed, the CV sends back
to the cloud agent the V share, encrypted with NKpub, then it starts the “Continuous Remote
Attestation” phase described in the following section. Otherwise, the CV does not send V and
sets the state associated to the cloud node as INVALID_QUOTE; even if the tenant already sent the
U share (phase C), there is no concern of leaking U to an untrusted node because Kb is different
for each cloud node.

The interactions of phase C occur in parallel to those of phase B and, except for some small
differences, are similar. The tenant requests a TPM quote to the cloud agent, specifying a fresh
nonce (noncet) and an empty PCR mask. The empty PCR mask is due to the fact that, differently
from the CV, the tenant does not use the quote to verify the trusted state of the node but only
to verify the identity of the TPM in order to authenticate NKpub. The cloud agent sends back
NKpub along with QuoteAIK(noncet, 16 : H(NKpub)), a TPM quote containing only PCR 16 for
validating NKpub. The tenant asks the registrar to provide the TPM credentials related to the
node UUID, then it uses AIKpub to verify the authenticity of the quote, EKpub and EKcert to
verify that they correspond to an authentic TPM. In particular, the tenant verifies that:

1. the public key contained in EKcert is equal to EKpub;

2. the issuer of EKcert is a trusted TPM manufacturer whose certificate is contained in a
tenant’s local repository (called “tpm cert store”);

3. the signature of EKcert is autentic, verifying it with the public key contained in the TPM
manufacturer’s certificate.

If one of the previous checks is not passed, the tenant notifies this to the CV, which sets the
state of the cloud node to TENANT_FAILED and stops the periodic attestation on the cloud node.
Moreover, the tenant will not send the U share to the cloud agent which will not be able to derive
Kb and consequently to disclose the encrypted payload. Instead, if the TPM of the cloud node is
authentic, the tenant verifies the validity of the quote with the AIKpub key, then it verifies the
correctness of the received NKpub in the same way as the CV does. If NKpub results authentic,
the tenant sends to the cloud agent the U share encrypted with NKpub, the HMAC over the
node’s UUID computed with Kb (HMACKb

(UUID)) and the encrypted payload EncKb
(d), if it

is not been sent contextually to the IaaS resource request.

When the cloud agent receives U from the tenant or V from the CV, it verifies whether it
has received both shares of Kb and, in this case, it computes Kb = U ⊕ V . Then it checks if the
derived Kb is the correct one by computing HMACKb

(UUID) and verifying that it is equal to
the value sent by the tenant; if so, the cloud agent uses Kb to decipher the encrypted payload
and proceeds with the startup of the tenant’s service. After decrypting the payload, the cloud
agent deletes Kb and V while it stores U in the TPM NVRAM in order to automatically support
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node’s reboot or migration without the need for the tenant to interact again with the cloud node.
Every time the cloud agent needs of the V share after reboot or migration, it sends CV a new
NKpub along with the TPM quote; upon receiving a new NKpub, the CV provides the V share
to the cloud agent, so that the it can recombine Kb and decipher the encrypted payload again.
Obviously, the automatic reboot or migration only work if the provider has correctly and securely
migrated the TPM NVRAM containing U.

Encrypted payload contents

The payload that the tenant provides to the cloud agent, ciphered with Kb, is typically an archive
containing several files, regarding both the deployment of the application and the Keylime frame-
work. The archive may contain the following files:

❼ software identity keys and certificates for higher-level security services;

❼ a bash script automatically executed after the payload is decrypted; by default, this script
has to be named autorun.sh, but the name can be changed through the Keylime’s configu-
ration file; this script acts as a “deploy-hook”, thus it has to contain instructions to deploy
the application, for example a call to ansible-playbook;

❼ the revocation certificate, used to check the signature over the revocation events received
from the Revocation Notifier ; a revocation event notifies that one of the cloud nodes in the
tenant’s cluster became untrusted and it is accepted only if it has a valid signature;

❼ a list of Python scripts, whose name begin with local_action_<any_name>.py, executed
when the cloud agent receives a revocation event with a valid signature; these scripts should
contain instructions for notifying higher-level security services that something changed and
for fencing off the compromised machine; for example, the scripts could contain calls with
Kubectl, make some changes to IPtables, close VPN tunnels and so on;

❼ a text file called action_list, containing the names, separated by commas, of all the scripts
local_action_<any_name>.py contained in the payload; this file specifies the order in which
the “local action” scripts will be executed and, if a script is contained in the payload but it
is not inserted in this list, it will be ignored.

Continuous Remote Attestation

Once the Three Party Bootstrap Key Derivation Protocol terminates, the Keylime framework
moves into the third phase, which is Continuous Remote Attestation. After having verified that
the remote system performed a trusted boot, so that the application will be deployed in a trusted
environment, the CV periodically polls the cloud node to monitor its integrity state and verify
that it remains trusted over time, by relying on the integrity measurements that IMA performs
on the applications launched in the system. As shown in figure 5.5, the CV periodically requests
a new IR to the cloud agent and performs the IR validation, so it is able to detect any integrity
change that happens in the system. In particular, in order to validate the IR, the CV verifies
that:

❼ the quote signature is valid, checking it with the AIKpub key provided by the registrar;

❼ the quote contains all PCRs specified in the TPM policy;

❼ the quote contains PCR 16 (not specified in the TPM policy) and its content is equal to the
digest (computed with the hash algorithm associated to the PCR 16) of the NKpub sent by
the cloud agent during the Bootstrap Key Derivation Protocol and stored in the local DB;

❼ the IMA ML matches the PCR 10 value;

❼ the measurement events contained in the IMA ML match the whitelist;
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Figure 5.5. Continuous Remote Attestation.

❼ the PCR values specified in the Measured Boot (MB) ML match the corresponding PCR
values contained in the quote;

❼ the MB ML matches the MB refstate provided by the tenant.

The time interval that elapses between an attestation request and the next one determines
the latency with which the detection of compromise occurs; by default this time interval is of two
seconds, but it can be set to a different value via the Keylime’s configuration file. However, this
latency will be at least 500 ms, considering that the TPM quote operation alone could take more
than 500 ms.

Revocation Framework

As soon as the CV detects that a cloud node is untrusted, it triggers the Revocation Framework,
whose interactions are represented in figure 5.6. This framework relies on the revocation notifier,
a ZeroMQ server spawned by the CV at start up. This server implements the publish/subscribe
pattern, in particular the CV publishes a new revocation event by sending a signed message to
the ZeroMQ server, which in turn forwards it to all its subscribers. For doing this, ZeroMQ server
binds two sockets:

❼ a unix socket for Inter Process Communication with the CV;

❼ a TCP/IP socket, to which all the subscribers that want to receive revocation events have
to connect and await to receive notifications.

The subscribers can be:

❼ the software CA which, upon receiving a revocation message for an untrusted cloud node,
revokes the certificate of the identity key owned by that node and publishes an updated
CRL;

❼ the cloud agents which, upon receiving a new revocation message, execute the “local action”
scripts for ring-fencing the untrusted node;

❼ other tools that want to be notified about the events related to the trusted computing layer.
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Figure 5.7. vTPM supports in Xen hypervisor (source: [41]).

5.2.3 Layered Architecture for Virtual Nodes

Keylime designers expanded the architecture previously exposed to work also across the layers of
virtualization, considering the widespread use of virtualization in today’s IaaS infrastrutcures. In
this scenario, tenant nodes are VMs managed by VM orchestrators like Amazon EC2 or Open-
Stack. Each VM needs a root of trust on which to build trusted computing services, but physical
TPMs, having limited performance and resources, cannot be used to directly serve the VMs be-
cause a direct multiplexed use of them would not scale to the numbers of VMs typically hosted
on modern systems. Keylime tries to overcome this problem by relying on vTPMs, described by
Berger et al. [42] and implemented in the Xen hypervisor. In this implementation, each VM has
its own vTPM running in a separate Xen domain, isolated from all other VMs running on the
hypervisor, as shown in figure 5.7. The vTPM interface is the same as a physical TPM, except
for the addition of the deep-quote operation, that binds the vTPM quote to the hardware TPM
quote. A deep-quote consists of a vTPM quote and a hardware TPM quote, where the first is
computed by using the nonce provided by the verifier and is signed with a vAIK generated by
the vTPM, while the second is computed by using as nonce the hash of the vTPM quote and
is signed with an AIK generated by the physical TPM. To assure a chain of trust rooted in the
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Figure 5.8. Keylime layered architecture (source: [37]).

hardware TPM, the IaaS provider has to add some additional components in its infrastructure
and allow the tenant’s trusted computing services to query them, in particular:

❼ a Provider Registrar , whose purpose is to provide the credentials of the physical TPM
installed in the system that hosts the virtual cloud node;

❼ a Provider Whitelist Authority Service , that publishes an up-to-date signed list of the
integrity measurements of the provider infrastructure;

❼ optionally, a Provider CV that attests the provider infrastructure.

The layered Keylime architecture, represented in figure 5.8, conceptually works the same way as
the simplified architecture, with little modifications to some protocols to support the presence of
the vTPMs.

Virtual Node Registration Protocol

The Virtual Node Registration Protocol, represented in figure 5.9, involves the cloud agent running
in a VM, the tenant registrar and the provider registrar. It begins when the cloud agent sends the
node’s UUID, the vAIKpub and the vEKpub of the vTPM to the tenant registrar (the vEKcert

is empty because the TPM is virtual and has no manufacturer). The tenant registrar generates
an ephimeral key Ke and responds with EncvEKpub

(H(vAIKpub),Ke). The cloud agent decrypts
Ke by means of the ActivateIdentity command of its vTPM, extends the node’s UUID and
the vTPM credentials (vAIKpub and vEKpub) in a freshly reset vPCR 16, computes SHA1(Ke)
and uses it as nonce of a deep-quote that contains the vPCR 16. With this deep-quote, the cloud
agent demonstrates to the tenant registrar that:

1. the vTPM correctly disclosed Ke, so it owns vEKpriv and vAIKpriv;

2. there is a link between the vTPM credentials (vEK, vAIK) and a physical TPM in the
provider’s infrastructure.

Upon receiving the deep quote, the tenant registrar asks the provider registrar to provide the
credentials of the physical TPM installed on the system where the cloud node UUID is running,
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Figure 5.9. Virtual node registration protocol (source: [37]).

then uses AIKpub and vAIKpub to check the validity of the deep-quote signatures. It checks
also that the deep-quote’s nonce is SHA1(Ke) and that the content of vPCR 16 matches the
information previously provided by the cloud agent. If the deep-quote passes the verifications,
the tenant registrar marks the cloud node as active and starts to provide the virtual and physical
TPM credentials when asked.

Virtual Node Remote Attestation

As described for the simplified architecture, the CV attests the cloud node at the beginning, in
order to check the trusted boot and complete the Three Party Bootstrap Key Derivation Protocol ;
then it continues to monitor the cloud node to detect any integrity compromise that can occur
during the runtime. Since the cloud node runs in a layered environment, the CV has to attest
both the cloud node’s VM and the hosting system; so, when it asks a deep-quote to the cloud
agent, it sends in the request:

❼ a fresh nonce;

❼ the PCR mask that specifies PCRs of the physical TPM contained in the deep-quote;

❼ the vPCR mask (derived from the vTPM policy sent by the tenant) that specifies the vPCRs
of the vTPM contained in the deep-quote.

Then, in order to verify the deep-quote, the CV needs of both the vAIKpub and the AIKpub; it re-
trieves them from the tenant registrar, which obtained both physical and virtual TPM credentials
during the Virtual Node Registration Protocol.
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Chapter 6

Docker containers attestation
with Keylime

This chapter exposes the proposed solution for performing remote attestation of Docker contain-
ers. The integrity attestation of containers deployed on a host system is currently achievable
through various solutions already presented to the scientific community, as explained in the chap-
ter 4. However, these solutions are not always satisfactorily applicable and their implementations
are based on TPM 1.2, a currently deprecated specification. The solution proposed in this thesis
aims to improve the performance of the previous solutions and overcome some of their limitations.
The main objective of the thesis was to be able to individually attest Docker containers running
on a node, relying on TPM 2.0. The integrity attestation of individual containers is essential
in order to isolate and stop any untrusted container in the platform and let other trusted con-
tainers continue to provide their functionalities without being interrupted. This was achieved by
creating specific IMA templates, described in section 6.3.1 and 6.3.2, that is, by inserting in the
ML entries appropriate fields that can unequivocally determine their association to a particular
container. The prototype of the proposed solution is based on the Keylime, a RA framework
whose architecture was exposed in chapter 5 and which is based on TPM 2.0 as hardware RoT.
Various changes have been made to the Keylime code in order to add support to the new templates
created, improve the latency times of the RA process and allow the use of hash algorithms other
than SHA-1 for the integrity verification of the IMA ML. The overall architecture for performing
remote attestation of Docker containers is shown in section 6.2, while the details on the changes
introduced in the Keylime modules are described in section 6.4.

6.1 Approach

As described in chapter 4, recently researchers proposed several solutions that address the problem
of measuring the integrity status of services deployed in a lightweight virtualization environment.
All of them are based on the TPM for building trust in the platform, on the Trusted Boot for
measuring the boot of the platform and on IMA for measuring the files accessed at runtime.
As already discussed, a RA mechanism that aims to monitor the integrity status of container-
based environments should have the following desirable features: measuring the integrity status
of a container and the underlying host, generating a tamper-proof integrity evidence, ensuring
efficiency and scalability, guaranteeing the privacy among containers in the case of multi-tenant
attesting systems. The solutions proposed up to now do not always satisfy all these objectives and
their implementations are based on the OAT framework which only supports TPM 1.2, currently
substituted by the TPM 2.0 specification.

Focus of this work is to create a solution that allows to attest Docker containers deployed in
a single-tenant host system, trying to satisfy the characteristics listed above and using TPM 2.0
as hardware RoT. In order to realize this objective, two approaches were examined. The first
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Figure 6.1. Architecture of the proposed solution. The Keylime components with a light blue
background are those affected by code modifications.

approach, chosen by DIVE and Container-IMA solutions (described in sections 4.2 and 4.3 re-
spectively), starts from considering containers simply as processes running on the host system and
relies on the integrity measurements taken by the IMA module of the host kernel, as described in
chapter 3. In this approach it happens that MEs generated by processes belonging to the different
containers and to the host system are stored in the same ML; this implies that, in order to attest a
specific container, we have to be able to state which MEs belong to that container and which one
to the host system. The second approach considers containers as VMs and builds for them sepa-
rate RoTs via vTPMs [43]. Since a vTPM aggregates the integrity measurements of a VM inside
a vPCR located in the user-space memory, the measurements do not have a hardware-based RoT
and the solutions proposed so far to anchor a vTPM to a hardware TPM do not guarantee good
performance. Moreover, this approach is not transparent from a container perspective because it
requires to modify the container image for including a vTPM driver. Analyzing these two possible
approaches, we chose to follow the first one because it better meets the TCG specification, which
assume a one-to-one relationship between the operating system and the TPM chip [44].

6.2 Architecture

The overall architecture to perform remote attestation with the proposed solution is based on
Keylime, whose architecture is described in section 5.2.2; the changes introduced in the framework
did not affect its architecture but only some parts of the implementation of Cloud Agent, Cloud
Verifier and Tenant, as shown in figure 6.1. The components of the architecture are:

❼ the Attester is the target of the RA process and is the platform which hosts containers
belonging to a single tenant; it supports trusted boot to ensure the integrity of all the boot
components, relies on the IMA module to measure the integrity of services running on the
platform, both containerized and non-containerized ones, and is equipped with a TPM 2.0
chip to provide hardware RoT to measurements;

❼ the Cloud Agent is a service running on the Attester; it receives attestation requests, to
which it responds with an IR containing a TPM quote and the IMA ML;

❼ the Cloud Verifier is the component in charge of deciding the trustworthiness of the host
system and the containers running on it;

❼ the Registrar receives the TPM’s credentials from the Cloud Agent and provides them to
the CV and the Tenant, in order to allow them to check the authenticity of the IR;

❼ the Tenant registers a new Cloud Agent in the CV and sends to it the TPM policy, specifying
the TPM’s PCRs to be checked, and the whitelists, containing the expected values of the
measurement events generated by physical host and containers;
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$ cat /proc/3170/cgroup 
12:memory:/docker/5cbc6f87377485c0355317cedf536979cde8c38023fdff42e2cf2093ec20ea0b 
11:devices:/docker/5cbc6f87377485c0355317cedf536979cde8c38023fdff42e2cf2093ec20ea0b 
10:cpuset:/docker/5cbc6f87377485c0355317cedf536979cde8c38023fdff42e2cf2093ec20ea0b 
9:perf_event:/docker/5cbc6f87377485c0355317cedf536979cde8c38023fdff42e2cf2093ec20ea0b 
8:cpu,cpuacct:/docker/5cbc6f87377485c0355317cedf536979cde8c38023fdff42e2cf2093ec20ea0b 
7:hugetlb:/docker/5cbc6f87377485c0355317cedf536979cde8c38023fdff42e2cf2093ec20ea0b 
6:blkio:/docker/5cbc6f87377485c0355317cedf536979cde8c38023fdff42e2cf2093ec20ea0b 
5:pids:/docker/5cbc6f87377485c0355317cedf536979cde8c38023fdff42e2cf2093ec20ea0b 
4:freezer:/docker/5cbc6f87377485c0355317cedf536979cde8c38023fdff42e2cf2093ec20ea0b 
3:net_cls,net_prio:/docker/5cbc6f87377485c0355317cedf536979cde8c38023fdff42e2cf2093ec20ea0b 
2:rdma:/ 
1:name=systemd:/docker/5cbc6f87377485c0355317cedf536979cde8c38023fdff42e2cf2093ec20ea0b 
0::/system.slice/containerd.service 
 

Figure 6.2. Content of cgroup file related to the init process pid 3170 of a container with ID
5cbc6f873774. and result of the command systemd-cgls name=systemd.

❼ the Relying Party represents the tool or human user that manages the containerized services
running on the Attester and wants to check their integrity state; it registers the remote
services in the Keylime framework through the Tenant module, from which it will later
receive the attestation results.

6.3 IMA patches

The first problem faced was how to allow a verifier to recognize if a given ME belongs to a container
or to the host system. IMA, in fact, stores all MEs in the same ML and the builtin IMA templates
(ima-ng, ima-sig and so on) do not contain fields which allow a verifier to determine if a given
ME belongs to a container or to the host system and, in the first case, to which specific container
it is associated. DIVE solved this problem by defining an IMA template containing the dev-id

field, which allows to determine if the accessed file belongs to a particular container or to the host
system. However, this solution has some drawbacks. It works only if Docker is configured to use
Device Mapper as storage driver; moreover, if a container is terminated and a new one is created,
the new container acquires the same dev-id as the previous one, so all the MEs generated by
the terminated container are inherited by the new one, making it impossible to correctly assess
the integrity state of the new container. Container-IMA, instead, uses the mount namespace

to identify the MEs generated by a container; however, this identifier has the same problem as
dev-id if used alone inside an IMA template, because mount namespace numbers assigned to
terminated containers are immediately “recycled” by the Linux kernel when new containers are
created.

In order to overcome this issue, the first step was the deepening of what characterizes a
container within the Linux kernel, in particular the resource isolation features on which the
container technology is based, such as cgroups, namespaces and kernel capabilities [33]. Working
with an Ubuntu 20.04 operating system on which Docker version 20.10.5 was installed, it was
observed that Docker creates, for each new container, control groups with name equal to the
container full-ID which is an identifier of 256 random bits, used by Docker to identify a container
within its data structures. What is called container ID corresponds the most significant 48 bits of
the container full-ID, that is, the most significant 12 hexadecimal digits. As discussed in paragraph
4.1, Docker is a containerization technology that creates process containers, that is each Docker
container targets a main application, whose process can be called the init process of the container.
All processes running inside a container are children of the init process and the control groups
assigned to the init process are inherited by all its children processes. Moreover, a process running
in a container neither can change its namespaces or cgroups nor can launch children processes in
other namespaces or cgroups; thus, all processes running inside a given container have the same
cgroups. The figure 6.2 shows all the cgroups assigned to the init process of a container with
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$ systemd-cgls name=systemd 
Controller name=systemd; Control group /: 
    
   1645 bpfilter_umh 
   docker 
      987d703b44240bf5193fe6e6408f07e944317fac733d5d75bc819427a0dd5fd2 
         2990 /bin/bash  
      5cbc6f87377485c0355317cedf536979cde8c38023fdff42e2cf2093ec20ea0b 
         3170 /bin/bash 
   user.slice  
      user-1000.slice 
         user@1000.service 
            gsd-xsettings.service 
               2165  /usr/libexec/gsd-xsettings 
            gvfs-goa-volume-monitor.service 
               1863  /usr/libexec/gvfs-goa-volume-monitor 
 ... 

Figure 6.3. Snippet of the name=systemd cgroup hierarchy on a system that runs two
Docker containers.

ID 5cbc6f873774, stored in the file /proc/3170/cgroup, where 3170 is the process PID. The
file contains a row for each cgroup hierarchy of which the process is member; each row has three
colon-separated fields [33]:

hierarchy − ID : controller − list : cgroup− path

where:

❼ hierarchy-ID is the unique hierarchy ID number for cgroups hierarchies of version 1; it’s the
value 0 for the cgroups hierarchy of version 2;

❼ controller-list contains a comma-separated list of controllers bound to the hierarchy for
cgroups hierarchies of version 1; it’s the empty string for the cgroups hierarchy of version 2;

❼ cgroup-path contains the pathname of the cgroup in the hierarchy, relative to the mount
point of the hierarchy.

As we can see, all cgroups version 1, except rdma, have the container full-ID in the cgroup-path.
Instead, figure 6.3 represents a snippet of the cgroup hierarchy related to the name=systemd

controller, on a system where two Docker containers, with ID 5cbc6f873774 and 987d703b4424,
are running.

6.3.1 IMA template ima-cgn

On the basis of the observations exposed above, it was chosen to use the cgroups of the process
that generated the ME for being able to associate its corresponding ML entry to a particular
container or to the host system. So we defined a new IMA template, called ima-cgn, which adds
a field containing the name of a cgroup to the fields present in the ima-ng template. The format
string defined for ima-cgn is "cgn|d-ng|n-ng", where cgn is the cgroup name, d-ng is the digest
of the file data and n-ng is the file path. As shown in figure 6.2, Docker creates cgroups with
name equal to the container full-ID for several control subsystems; among the various subsystems,
in the implementation it was chosen to use name=systemd cgroup, with hierarchy ID = 1. The
details regarding the implementation of ima-cgn template are described in section C.1.1.

The figure 6.4 shows some ML entries formatted with ima-cgn template; each entry is made
up of fields PCR index, SHA-1 template-hash and template name, followed by the specific fields
of ima-cgn defined in the format string, which are cgroup-name, filedata hash and file path. The
figure highlights the entries belonging to the container with ID 5cbc6f873774, which are distin-
guished, by means of the cgroup-name field, from those generated by the container 6fae267e6042
and by the host system.
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PCR template-hash templ-name cgroup-name filedata-hash filename-hint 

10 9cab3[...]ab7e3 ima-cgn / sha256:c20ff[...]8dd boot_aggregate 

10 1590d[...]94e7 ima-cgn / sha256:b0537[...]fca /usr/bin/kmod 

10 767f0[...]8802 ima-cgn dev-hugepages.mount sha256:f2909[...]4bf /usr/bin/mount 

.. ... ... ... ... ... 

10 92edf[...]ffd51 ima-cgn 5cbc6f873774[...]a0b sha256:04a48[...]ea9 /usr/bin/bash 

10 4f9f2[...]ec917 ima-cgn 5cbc6f873774[...]a0b sha256:69ba8[...]bd8 /usr/lib/x86_64-linux-gnu/ld-2.31.so 

10 07ab4[...]5596c ima-cgn 5cbc6f873774[...]a0b sha256:42537[...]6fa /usr/lib/x86_64-linux-gnu/libtinfo.so.6.2 

... ... ... ... ... ... 

10 29d8a[...]0b2 ima-cgn 6fae267e6042[...]5e1 sha256:175a5[...]54c /usr/bin/groups 

10 6d5c7[...]a511a ima-cgn 6fae267e6042[...]5e1 sha256:e40a[...]139 /usr/bin/dircolors 

10 b18a1[...]936 ima-cgn user.slice sha256:35f94[...]9a3 /usr/../systemd-cgl 

10 38125[...]629 ima-cgn user.slice sha256:37591[...]e34 /usr/bin/less 

... ... ... ... ... ... 

Figure 6.4. Example of IMA ML with ima-cgn template, generated on a system
after creating two Docker containers with ID 5cbc6f873774 and 6fae267e6042 via
docker run -it ubuntu /bin/bash.

PCR templ-hash template-
name 

dependencies cgroup-name filedata-hash filename-hint 

10 ea99f9d4[...] ima-dep-cgn swapper/0:swapper/0 / sha256:7fd05f333
e1b [...] 

boot_aggregate 

... ... ... ... ... ... 

10 8af8cfc4f[...] ima-dep-cgn runc:/usr/bin/containerd-
shim-runc-

v2:/usr/lib/systemd/systemd:s
wapper/0 

8b2ad985209b
510bfd466aea8

7c11[...] 

sha256:04a484f27
a4b [...] 

/usr/bin/bash 

10 01c73d7f[...] ima-dep-cgn /usr/bin/bash:/usr/bin/contai
nerd-shim-runc-

v2:/usr/lib/systemd/systemd:s
wapper/0 

 

8b2ad985209b
510bfd466aea8

7c11 [...] 

sha256:69ba80c7
1bff [...] 

/usr/lib/x86_64-
linux-gnu/ld-2.31.so 

10 07bb4c6 
[...] 

ima-dep-cgn /usr/bin/bash:/usr/bin/contai
nerd-shim-runc-

v2:/usr/lib/systemd/systemd:s
wapper/0 

 

8b2ad985209b
510bfd466aea8

7c11 [...] 

sha256:425378a0
c71b[...] 

/usr/lib/x86_64-
linux-

gnu/lbtinfo.so.6.2 

... ... ... ... ... ... ... 

Figure 6.5. Example of IMAML with ima-dep-cgn template, generated on a system after creating
a Docker container with ID 8b2ad985209b via docker run -it ubuntu /bin/bash.

6.3.2 IMA template ima-dep-cgn

The cgroup-name field allows to identify the entries associated to containers in the ML. However,
it was decided to strengthen the link of an entry to a container through an additional field that
shows the dependencies of the process that generated the ME. So we created another template,
ima-dep-cgn, which adds the dep field, containing the paths of all the ancestors of the process
that generated the ME, to the fields already defined by ima-cgn. In this way a verifier can
consider an entry as belonging to a container only if it has both the cgn field with the format of
a container full-ID and the dep field containing the container runtime service in the dependencies
list; otherwise, a verifier should consider the entry as belonging to the host system.

The figure 6.5 shows an example of ML generated with the ima-dep-cgn template, where
the highlighted entries belong to a container with ID 8b2ad985209b. The format string of the
ima-dep-cgn template is "dep|cgn|d-ng|n-ng", which means that the entry mandatory fields
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PC
R 

template-hash template-
name 

dependencies cgroup-name filedata-hash filename-hint 

10 sha256:ea99f9d40d
63[...] 

ima-dep-cgn swapper/0:swapper/0 / sha256:7fd05f333
e1b[...] 

boot_aggregate 

10 sha256:1590da5718
a7[...] 

ima-dep-cgn kworker/u8:3:kthreadd:swa
pper/0 

/ sha256:b053785f
6308[...] 

/usr/bin/kmod 

10 sha256:8af8cfc4caa
3b66d[...] 

ima-dep-cgn runc:/usr/bin/containerd-
shim-runc-

v2:/usr/lib/systemd/system
d:swapper/0 

8b2ad985209b
510bfd466aea

87c11[...] 

sha256:04a484f2
7a4b[...] 

/usr/bin/bash 

10 sha256:01c73d70f2
4cabd[...] 

ima-dep-cgn /usr/bin/bash:/usr/bin/cont
ainerd-shim-runc-

v2:/usr/lib/systemd/system
d:swapper/0 

 

8b2ad985209b
510bfd466aea

87c11 [...] 

sha256:69ba80c7
1bff[...] 

/usr/lib/x86_64-
linux-gnu/ld-2.31.so 

10 sha256:7bb4c6ce48
f64c3[...] 

ima-dep-cgn /usr/bin/bash:/usr/bin/cont
ainerd-shim-runc-

v2:/usr/lib/systemd/system
d:swapper/0 

 

8b2ad985209b
510bfd466aea

87c11 [...] 

sha256:425378a0
c71b[...] 

/usr/lib/x86_64-
linux-

gnu/lbtinfo.so.6.2 

... ... ... ... ... ... ... 

Figure 6.6. Example of IMA ML with ima-dep-cgn and template-hash computed with
the SHA-256 algorithm.

(PCR index, template-hash and template-name) are followed by the colon-separated list of de-
pendencies, the cgroup name, the filedata hash and the file path. All the implementation details
regarding this template are described in section C.1.2.

6.3.3 The template-hash field

Another important point of the thesis work was to make sure that the solution exploited the
potential offered by TPM 2.0. Differently from TPM 1.2, a TPM 2.0 chip has a number of
configurable PCR banks, to which any of the hash algorithms supported by the TPM can be
associated; typically, a TPM 2.0 chip has at least one PCR bank for SHA-1 and another for SHA-
256. Keylime, while supporting TPM 2.0, uses the PCR 10 from the SHA-1 bank for checking
the integrity of the IMA ML, as required by TPM 1.2. Going deeper into the IMA code, it was
observed that IMA supports the algorithm-agility of TPM 2.0, and therefore it is possible to use
any PCR bank for the integrity verification of the ML. However, when IMA writes the template-
hash field in the ML, it uses only the one computed with the SHA-1 algorithm and extended in
the SHA-1 bank, without allowing the user to choose the template-hash to be recorded in the ML.
While this opportunity is not strictly necessary to perform the ML integrity check, it was decided
to overcome this limitation and to give the user the option to specify the template-hash to record
in the ML. So a new kernel command line parameter has been introduced, ima_template_hash=,
through which the user can specify one of the hash algorithms supported by the Linux kernel; it
was also decided that, if the selected algorithm does not correspond to a PCR bank in the TPM,
the value written in the ML will be a padded SHA-1.

The figure 6.6 shows an example of ML in which the template-hash field has been computed
with the SHA-256 algorithm. The details about the implementation of the ima_template_hash=
kernel boot parameter are presented in section C.1.3.

6.4 Keylime changes

As already mentioned at the beginning of this chapter, Keylime was chosen as RA framework
since it, differently from OAT, supports TPM 2.0. The second part of the thesis work concerned
the changes that needed to be made to the Keylime code in order to support the registration of
containers inside the CV and their attestation by means of the IMA templates described in the
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Figure 6.7. Workflow of the registration process and the periodic attestation of a host system on
which Docker containers are running.

previous sections. The modifications pertained the Cloud Agent, the CV and the Tenant modules.
The details about the REST APIs exposed by each Keylime module are described in appendix D.

6.4.1 Registering Docker containers

The registration of Docker containers in the CV can occur at the same time as the registration of
the Cloud Agent or later. In the following description, it is assumed that the IMA module of the
attesting system has been configured to use the ima-dep-cgn template. The figure 6.7 represents
the workflow of the registration process of Docker containers launched on the attesting system
after verifying that it performed a trusted boot.

(1) The Relying Party kicks off the process by requesting the registration of a new Cloud Agent
to the Tenant; the body of the request specifies the UUID and the IP address of the remote node,
the payload containing the autorun.sh script for deploying Docker containers, the whitelist, the
exclude list and the TPM policy for attesting the host system. It was decided to add another
parameter in the registration request, allow_unknown_containers, for specifying if the CV has
or not to evaluate the detection, on the attesting system, of unregistered containers as an integrity
violation; in the scenario described in this section, the Relying Party sends the registration request
of Cloud Agent with this parameter set to 1, in order to manage the time interval between the
moment in which the containers are launched on the attesting system and the moment in which
they are registered in the CV. Then, the Tenant encrypts the payload for the Cloud Agent with a
random bootstrap keyKb and starts the Three Party Bootstrap Key Derivation Protocol described
in section 5.2.2. (2) The Tenant registers the new Cloud Agent in the CV, delivering to it all the
information received from the Relying Party, with the addition of the port at which the Cloud
Agent service is reachable and the V share of Kb. Then, the Cloud Agent receives (3) V from
the CV and (4) U, together with the encrypted payload, from the Tenant, after that all the
checks exposed in 5.2.2 were carried out by the CV and the Tenant, respectively. (5) The Cloud
Agent recomposes Kb, deciphers the encrypted payload and executes the autorun.sh scripts that
deployes the Docker containers. (6) The CV, after having delivered V, continues to periodically
monitor the integrity state of the attesting system; in this phase the CV checks only the host
system, because the Tenant has not yet sent the information about the containers to be attested.
(7) When the Relying Party retrieves the container IDs from the container orchestrator, (8) it
sends the request for registration of the containers to the Tenant, specifying for each container
its ID, the whitelist and exclude list needed to attest it; moreover, if the host system is assumed
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Figure 6.8. IR creation process of the proposed solution.

to execute only those containers, it specifies also allow_unknown_containers=0 in the body of
the request. (9) The Tenant forwards the registration request of the containers to the CV which,
from that moment on, attests the integrity state of both the registered containers and the host
system. The requests for registration of containers are done through REST APIs added to those
already present in the Keylime framework and presented in appendix D.

6.4.2 Creating the Integrity Report

The figure 6.8 illustrates the interaction between the CV and the Cloud Agent during the re-
mote attestation process; the changes made to the original implementation are highlighted in
red. (1) The CV requests a new IR at the Cloud Agent by sending a GET request to the
/quotes/integrity URI exposed by the Cloud Agent, comprising the following query parame-
ters:

❼ nonce, a string of 20 alphanumeric characters used by the CV to verify the freshness of the
quote received from the Cloud Agent;

❼ mask, a hexadecimal number used as bitmap to specify the PCRs that have to be included
in the quote, with the exception of PCR 16, which must not be specified in the mask because
it is always added to the quote since it contains the extension of the NKpub key;

❼ partial, a boolean that specifies if the CV needs of the NKpub ephemeral key generated by
the Cloud Agent and used for encrypting the V share during the bootstrap key derivation
protocol.

Upon receiving an attestation request, (2) the Cloud Agent requests a new quote from the TPM.
In the example represented in figure 6.8, the hash algorithm configured in the Cloud Agent is
sha256 and the PCRs requested by the CV have indices 0, 1, 2 and 10; when the Cloud Agent
requests the quote to the TPM, it specifies the PCRs with indices 0, 1, 2 and 16 belonging to
the SHA-256 bank and PCR 10 (the IMA PCR) belonging to the SHA-1 bank. Then, the Cloud
Agent composes the Integrity Report specifying:
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❼ the TPM quote;

❼ the hash, encrypting and signing algorithms;

❼ (3) the contents of the entire IMA ML, if the mask sent by the CV specifies the IMA PCR;

❼ (4) the contents of the entire Measured Boot ML, if the mask sent by the CV specifies PCR
0.

The changes introduced in this procedure concern the IMA PCR contained in the quote and the
IMA ML sent to the CV. Regarding IMA PCR, the following behaviour was introduced: the IMA
PCR has to belong to the same bank chosen for the other PCRs, according to the configuration of
the Cloud Agent. Regarding the IMA ML, an optimization was introduced that allows the CV to
request only the portion of the IMA ML not yet attested, instead of the entire ML. To that end,
a new query parameter, named ml_seek, was added to the attestation request; this parameter
indicates the offset starting from which the CV requires the IMA ML contents, which correspond
to the portion of the file not yet attested. This is possible because the CV, at each attestation
cycle, memorizes the IMA PCR contained in the quote and the offset where the IMA ML matched
the PCR; at the next attestation cycle, the CV sends the recorded offset in the ml_seek parameter
and uses the IMA PCR of the previous attestation cycle as initialization value for checking the
integrity of the portion of ML received. This optimization is significant when the time for reading
and sending the IMA ML is comparable to the time needed to create the TPM quote.

6.4.3 Validating the Integrity Report

The IR validation process performed by the CV goes through several stages. First of all, the
CV checks that the IR received from the Cloud Agent contains a quote and that the algorithms
used for creating the quote are among those accepted. In particular, when the Tenant registers a
new Cloud Agent in the CV, it also sends three lists containing the accepted algorithms for hash,
encryption and signing. If the Cloud Agent sent an IR without quote or containing unacceptable
algorithms, the validation process stops. Passed these first checks, the CV proceeds to validate
the quote, verifying that:

❼ the quote is authentic by checking the signature with the AIKpub retrieved from the Reg-
istrar;

❼ the quote is fresh, that is, it has been computed with the nonce provided in the IR request.

If these steps are passed, the CV examines the PCRs contained in the quote one by one, in order
to establish the trustworthiness of host system and containers:

❼ if the PCR is the TPM_DATA_PCR (by default PCR 16), the CV checks that its content
corresponds to the extension of the NKpub key received from the Cloud Agent;

❼ if the PCR is the IMA_PCR, the CV checks that the IR contains the IMA ML and starts its
validation process, described later;

❼ if the PCR belongs to the MEASUREDBOOT_PCRS list (PCRs with indices between 0 and
15 except IMA PCR) and if the CV received a Measured Boot policy from the Tenant,
then it verifies that the Cloud Agent sent the Measured Boot ML (the content of the
/sys/kernel/security/tpm0/binary_bios_measurements file) and validates it based on
the Measured Boot policy;

❼ if the PCR does not fall in the previous categories, the CV verifies that its value is in the
whitelist associated to that PCR and contained in the TPM policy.

Finally, the CV checks that the quote contains all the PCRs specified in the TPM policy. If
one of the previous checks fails, it means that the host system is untrusted, so the CV stops
the verification process, sets the operational state of the Cloud Agent to INVALID_QUOTE, notifies
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Figure 6.9. IMA ML integrity check for template-hash algorithm SHA-256

the host system’s integrity verification failure via the Revocation Framework and suspends the
periodic attestation. Instead, if all the previous checks are passed, it means that the host system is
trusted, the Cloud Agent operational state remains to GET_QUOTE and the CV continues periodic
attestation; however, the integrity state of one or more containers could be untrusted and this
depends on the IMA ML validation process.

Validating the IMA Measurement Log

The process of validating the IMA ML consists of a series of checks performed for each ML entry.
The CV splits the entry into fields by using the white space as separator, since the Cloud Agent
sends the IMA ML in ASCII format. Then the CV, based on the template-name contained in the
third field, verifies that the template-hash matches the template-fields of the entry by computing
the digest on them with the hash algorithm received in the IR, as a result of the changes described
above. If the computed digest is not equal to the template-hash contained in the entry, the CV
records this error in an array that collects all errors detected during the ML verification process.
Then, the CV computes the extend operation between the template-hash and the PCR aggregate,
which is named runninghash in figure 6.9 and is constructed as the entries are examined, then
the CV verifies if the result of the extend operation equals the IMA PCR received in the quote.
During the first attestation of the Cloud Agent, the initialization value of the runninghash is an
all-zero string since the CV receives the entire ML; in subsequent attestations, it is initialized with
the value of the IMA PCR received in the previous attestation because the CV receives only the
portion of ML not yet attested. If runninghash matches the IMA PCR received in the quote, this
means that the ML contents are not tampered with up to that point. The figure 6.9 represents
the sequence of template-hash extensions performed by the CV with hash algorithm SHA-256.

After verifying that the entry is not tampered with, the CV analyzes the contents of the
template fields and, if the template is ima-dep-cgn, it performs the following verifications. The
CV checks the cgn field in order to determine if the entry has to be associated to the host system
or to a container. If the cgn field is a string composed of 64 hexadecimal characters, the CV
analyzes the dep field and, if this contains the container runtime among the dependencies, the
entry is considered associated to a container; otherwise, it is considered associated to the host
system. If the cgn field is not a string of 64 hexadecimal characters, the CV immediately deduces
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PCR template-hash templ-name dep cgn file digest file path 

10 sha256:81c5[...]771 ima-dep-cgn ... containerd.service sha256:82c27[...]759 /usr/bin/containerd 

agent_id:UUID 

"allow_unknown_containers": 0 

"host_allowlist": { 
                                    "/usr/bin/containerd": ["82c27887c169[...]573759", 
                                                                                "13ee42fafcc53[...]2ac16c" ] , 
                                    "/usr/bin/containerd-shim-runc-v2":  ["47fe1[...]991" ], 
                                     ... 
 } 

"host_exclude": "/var/log/wtmp 
                               /root/etc/fstab" 

"host_operational_state": GET_QUOTE 

"containers": { ... } 

  Cloud 
      Verifier 

ML entry processed by CV 

Figure 6.10. Representation of the CV’s memory contents and a ML entry associated with the
host sytem and evaluated as trusted by the CV.

PCR template-hash templ-name dep cgn file digest file path 

10 sha256:81c5[...]771 ima-dep-cgn ... user.slice sha256:85a5f[...]edf /usr/bin/pkexec 

agent_id:UUID 

"allow_unknown_containers": 0 

"host_allowlist": { 
                                  "/usr/bin/containerd": [ "82c27887c169[...]273759", 
                                                                              "13ee42fafcc53[...]2ac16c"  ], 
                                  "/usr/bin/containerd-shim-runc-v2": [  "47fe1[...]991 " ], 
                                     ... 
                               } 

"host_exclude": "/var/log/wtmp 
                               /root/etc/fstab" 

"host_operational_state": INVALID_QUOTE 

"containers": { ... } 

  Cloud 
      Verifier 

ML entry processed by CV 

Figure 6.11. Representation of the CV’s memory contents and a ML entry associated with the
host sytem and evaluated as untrusted by the CV.

that the entry is associated to the host system.

Then the CV checks the filedata hash and file path fields for determining if the entry represents
or not a trust event; for doing so, the CV uses the whitelist and exclude list associated to the
host system or to the identified container. In the case of an entry belonging to the host system,
the CV checks if the file path matches the exclude list of the host system (which is a regular
expression representing all the file paths that do not need to be attested), in which case it doesn’t
perform other checks. If the file path doesn’t match the exclude list, the CV checks if the whitelist
(called allowlist in Keylime) related to the host system contains the file path and, in this case,
if the file digest matches one of the trusted digests associated to that path. If the CV detects
some errors in the entries related to the host system, it sets Cloud Agent’s operational_state
to INVALID_QUOTE, sends a message to the Revocation Notifier (described in 5.2.2) in order to
communicate the change in the integrity state of that host system and stops the monitoring
process; otherwise, the Cloud Agent’s operational_state remains to GET_QUOTE.

The figures 6.10 and 6.11 represent two situations that can occur when the CV examines
entries related to the host system. Figure 6.10 shows the case of an entry associated to the host
system based on the cgn field; the CV evaluates it trusted because the file path and the file digest
are both contained in the host system’s whitelist. Instead, figure 6.11 shows the case of a host
system entry resulted untrusted because the file path /usr/bin/pkexec is not contained in the
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PCR template-hash templ-name dep cgn file digest file path 

10 sha256:dc02[...] ima-dep-cgn runc:/usr/bin/co
ntainerd-shim-

runc-v2:... 

af55109cc157[...] sha256:3af1c[...]f2c /usr/bin/bash 

agent_id:UUID 

"allow_unknown_containers": 0 

"host_allowlist": { ... } 

"host_exclude": "..." 

"host_operational_state": INVALID_QUOTE   # host 
operational state 

"containers": { 
                           "6fae267e6042":   {  ... } , 
                           "8b2ad985209b" : {  ... }, 
                            "57aafcc9012d":   {  ... }, 
                            "34ee7810bef1":  {  ... }, 
                            "7aaefcc801af":   {  ... } 
                         }                                

  Cloud 
      Verifier 

ML entry processed by CV 

Figure 6.12. Representation of the CV’s memory contents and a ML entry associated with an
unregistered container and evaluated as untrusted by the CV.

host system’s whitelist.

If the CV associates an entry to a container, because the cgn field has the format of a container
full-ID and the dep filed contains the expected dependencies for a container, it takes the first 12
hexadecimal characters that represent the container ID and checks that a container with this
ID is registered in the list of containers associated to that Cloud Agent. If the container ID
is not found in the list and the allow_unknown_containers flag is set to 0, the CV considers
this event as an integrity failure and adds this container ID in the list of unknown containers
detected. Instead, if the CV finds the container ID among those associated to the Cloud Agent,
it goes on in the validation of the entry, firstly verifying if the file path matches the container’s
exclude list, then checking if file path and file digest are contained in the container’s whitelist,
in which case the entry is evaluated trusted. If a container’s entry is evaluated untrusted, the
CV sets the operational_state of that container to UNTRUST, then it sends a message to the
Revocation Notifier related to the untrusted state of that container; however, the Cloud Agent’s
operational_state remains GET_QUOTE and the CV will continue the monitoring process for it.
In this way, the CV is able to identify in a precise manner the portion of the platform that is
compromised so that, when a container results untrusted, it is possible to stop only that specific
container and replace it with a freshly created one, without the need to reset the whole platform.

The figures 6.12, 6.13 and 6.14 represent some situations that a CV can encounter while
evaluating container entries. The figure 6.12 displays an entry related to a container with ID
af55109cc157 which is not registered in the list of containers associated to the Cloud Agent; the
flag allow_unknown_containers set to 0 makes the presence of an unregistered container illegal,
so the CV considers the host system’s integrity status as untrusted and sets the Cloud Agent’s
operational state to INVALID_QUOTE. The figure 6.13 represents an entry of a container with ID
8b2ad985209b evaluated trusted because the file digest field matches a trusted digest contained in
the container’s whitelist for that file path. Finally, the figure 6.14 represents an entry belonging
to a container with ID 6fae267e6042 evaluated untrusted because the file digest field does not
match any of trusted digests associated to the path /usr/bin/bash in the container’s whitelist;
this event does not change the integrity state of the host system, so the Cloud Agent operational
state remains to GET_QUOTE.
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PCR template-hash templ-name dep cgn file digest file path 

10 sha256:dc02[...] ima-dep-cgn ...:/usr/bin/cont
ainerd-shim-

runc-v2:... 

8b2ad985209b[...] sha256:92a2bade
1[...]4fde175 

/usr/bin/find 

agent_id:UUID 

"allow_unknown_containers": 0 

"host_allowlist": { ... } 

"host_exclude": "..." 

"host_operational_state": GET_QUOTE   # host operational state 

"containers": { 
                             "6fae267e6042" : { ... }, 
                             "8b2ad985209b": { 
                                                                "allowlist": { 
                                                                                        "/usr/bin/bash": [  "04a484f27a4b[...]5f2eea9", 
                                                                                                                          "aeb68ff721e76d[...]80cbcf0"], 
                                                                                         "/usr/bin/find": [ "92a2bade19a9[...]4fde175" ], 
                                                                                          .... 
                                                                                       }, 
                                                                "exclude": "^(?!/usr/bin/).*$", 
                                                                "operational_state": TRUST   # container operational state 
                                                              }, 
                             "57aafcc9012d":   {  ... }, 
                             "34ee7810bef1":  {  ... }, 
                             "7aaefcc801af":   {  ... }          
                        }                                

  Cloud 
      Verifier 

ML entry processed by CV 

Figure 6.13. Representation of the CV’s memory contents and a ML entry associated with a
registered container and evaluated as trusted by the CV.

PCR template-hash templ-name dep cgn file digest file path 

10 sha256:dc02[...] ima-dep-cgn runc:/usr/bin/co
ntainerd-shim-

runc-v2:... 

6fae267e6042[...] sha256:3af1c[...]f2c /usr/bin/bash 

agent_id:UUID 

"allow_unknown_containers": 0 

"host_allowlist": { ... } 

"host_exclude": "..." 

"host_operational_state": GET_QUOTE   # host operational state 

"containers": { 
                            "6fae267e6042": { 
                                                                "allowlist": { 
                                                                                         "/usr/bin/bash": [   "04a484f27a4b[...]5f2eea9", 
                                                                                                                            "aeb68ff721e76d[...]80cbcf0"], 
                                                                                           ...   
                                                                                     }, 
                                                                "exclude": "^(?!/usr/bin/).*$", 
                                                                "operational_state": UNTRUST   # container operational state 
                                                             } , 
                             "8b2ad985209b" : {  ... }, 
                             "57aafcc9012d":   {  ... }, 
                             "34ee7810bef1":  {  ... }, 
                             "7aaefcc801af":   {  ... }       
                         }                                

  Cloud 

      Verifier 

ML entry processed by CV 

Figure 6.14. Representation of the CV’s memory contents and a ML entry associated with a
registered container and evaluated as untrusted by the CV.
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Chapter 7

Trust Monitor

After having exposed the characteristics of the Network Functions Virtualization (NFV) paradigm
in 7.1 and highlighted the need to monitor the integrity of a NFV network, the chapter focuses
the attention on the Trust Monitor in 7.2, a monitoring entity developed with the aim of timely
detect any tamper with a NFV platform tailored for the “Security-as-a-Service” scenario. Finally,
a proposal of integration of the Trust Monitor with the Keylime framework is described in 7.3,
for future use of this component in a generic cloud infrastructure.

7.1 Network Functions Virtualization

The traditional networking infrastructure requires, particularly at the edge of the network, to
chain different dedicated hardware appliances which implement particular Network Functions
(NFs), such as WAN accelerator, Firewall, Network Monitor, IDS, QoS. The Internet Service
Providers (ISPs) offer added-value network services to their customers through the installation of
these special-purpose appliances, which a network administrator has to manually configure and
manage. This modus operandi involves a waste of time and resources, which translates in lack of
flexibility and scalability of the service, long times for network innovation and great dependence
on specialized hardware. In order to meet today’s steadily growing demand of customers for new
network services, the ISPs would have to continuously purchase and install new appliances and
network administrators would have to quickly upgrade their skills, with a conspicuous increase
in investment (CAPEX) and management (OPEX) costs. So, ISPs need of new solutions to
innovate and optimize their network infrastructures, without passing costs on their customers or
losing money.

Network Functions Virtualisation is an innovative network paradigm that proposes to sub-
stitute the traditional network infrastructures with highly virtualised platforms, where NFs are
deployed as Virtualised Network Functions (VNFs), software implementations of the hardware
appliances running on top of commodity servers. In this paradigm the NFs, that before were
implemented in physical boxes, run now inside VMs or containers, enabling several advantages.
The decoupling of NF software from the hardware facilitates the innovation process of both and
shortens the development cycles, resulting in shorter time to market of new network services. Vir-
tualization enables the automatic scaling of network services to adapt them according to current
traffic; the scaling can be done in two different ways: scaling up/down (adding/removing com-
putational resources to a NF) and scaling out/in (multiplying/reducing the number VMs that
perform a given NF and adding a Load Balancer for splitting the traffic among them). VNFs
can be deployed within a few tens of seconds in a completely dynamic and automatic way and
they can be connected together in a completely programmable way, making it possible to easily
differentiate the network services offered to customers. NFV simplifies the way in which dedi-
cated services are offered to customers: it is just a matter of starting the VMs that implement
the requested service, allocating them to that particular customer and ensuring that, with the
appropriate OpenFlow rules (a protocol used with Software-defined Networking (SDN), which is
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Figure 7.1. High-level NFV framework.

a complementary technology to NFV), only the traffic of that user ends up in those VMs. More-
over, the NFV paradigm facilitates the use of open source solutions, more advantageous than
proprietary ones because they potentially have a lower cost and avoid the technology lock-in to
a particular vendor. All of this translates into economic benefits for ISPs because it allows to
reduce both management and upgrade costs of the ISP’s infrastructure [45].

NFV may be considered as a special case of Cloud Computing because both paradigms enable
the execution of applications and services on commodity servers on a large scale, the optimization
of hardware resources and the service management through orchestration systems. However, a
VNF has some peculiarities compared to a typical application running in the cloud. In the cloud
computing world, a VM has CPU and memory as its most valuable resources, and produces
little network traffic; in the NFV world, a VM containing the image of a NF has a low software
complexity, so it consumes few CPU and memory resources, but it needs to dispose of an extremely
high amount of traffic, of the order of tens of Gbps. For this reason, the pedestrian use of
orchestrators borrowed from the cloud world would give suboptimal performance in the NFV
environment: cloud computing orchestrators allocate VMs on the basis of the computational
resources available on the physical servers, NFV orchestrators have to allocate VMs in a way that
minimizes the amount of network traffic generated in the data center.

In order to facilitate the interoperability of NFV components and to allow different stake-
holders to integrate NFV in their infrastructures, the “European Telecommunications Standards
Institute” (ETSI) consortium founded, since 2012, an “Industry Specification Group” (ISG) that
works on the standardization of NFV technology, which is based on three fundamental functional
blocks [46], represented in figure 7.1:

1. Virtualised Network Function , the software implementation of a network function which
is capable of running over the NFV infrastructure;

2. NFV Infrastructure (NFVI), including the set of the physical resources and the software
virtualization layer that support the execution of VNFs;

3. NFV Management and Orchestration (MANO), the set of components that entail
the orchestration and lifecycle management of physical and software resources that enable
virtualization, and the lifecycle management of VNFs.

Despite the numerous benefits offered by the NFV paradigm in terms of cost reduction, re-
source optimization and scalability, it introduces new security risks that could hinder its adoption
in production environments. ETSI created the NFV-SEC Working Group (WG) with the aim
of defining the NFV-specific security threats and the countermeasures to them. Their work [47]

86



Trust Monitor

generic  
virtualisation 
threats 

generic  
networking 
threats NFV-specific 

threats 

Hypervisor- 
mitigated threats 

Figure 7.2. Visualisation of the NFV threat surface [47].

defined the NFV attack surface as the union of all generic threats of virtualization (e.g. memory
leakage, interrupt isolation) with specific threats of physical network functions (e.g. flooding at-
tacks, routing security); so, the new threats introduced by NFV are due to the combination of
virtualization technology with networking, as shown on figure 7.2. However, it should be consid-
ered that virtualization can introduce security benefits as the hypervisor, thanks to introspection
and other techniques, allows to eliminate or mitigate threats typical of physical network functions;
this is represented in the figure by the presence of a “hole” in the intersection area. It follows that,
in order to bring a NFV platform to a level of security sufficient to be deployed, it is necessary
“to shrink” the intersection area and “to widen” that of the benefits provided by the hypervisor
as much as possible.

The NFV-SEC WG listed the potential areas of concern regarding NFV-specific threats and
stated the good rules to follow in order to counter the risk of attacks. One of the aspects analyzed
with particular attention concerns the need to establish trust in all components of the NFV
architecture, proposing Trusted Computing as the enabling technology to establish the trust in
the network infrastructure. More specifically, NFVI nodes shall establish hardware-based RoTs for
allowing the attestation process, which shall verify the integrity of Network Services (NSs) (logical
entities comprising a chain of VNFs), NFVI computing nodes and network nodes (constituted by
the SDN switches and the SDN controller). In order to realize that, NFV-SEC WG proposed the
definition of a specific entity, i.e. the Trust Manager [48], containing all the trust logic for the
entire NFV deployment, to sit in the MANO administrative domain as a long-lived entity. The
availability of the Trust Manager gives great benefits to the NFV deployment:

❼ it allows a semplification of the logic of other entities within the deployment;

❼ it provides information through the different layers of the architecture;

❼ it interfaces the different administrative domains and operators;

❼ it acts as trusted repository for VNF packages and vendors;

❼ it provides historical data on entities that are longer-lived than the entity that wants estab-
lish trust on it.

However, it should be carefully designed and shielded because it becomes a single point of failure
and a single point of attack.

7.1.1 SECaaS

ETSI described a list of use cases for the NFV paradigm, among which the Security-as-a-Service
(SECaaS) use case. As online incidents and cybercrime are constantly growing and evolving,
users and enterprises need to protect themselves from attacks and cyber threats. However the
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Figure 7.3. SecaaS based on NFV [47].

continuous updating of cybersecurity and cyber-defence techniques is a too expensive and complex
process to be done effectively by the individual consumer or organization and usually it is not
fast enough to counter the ever new types of attacks. This situation will worsen in the future due
to several reasons: availability of ultrabroadband for residential customers, that can be used as
DDoS tools; massive deployments of IoT devices which, for their characteristics of heterogeneity,
low cost and lack of updates, can be exploited to access sensitive resources and data; an ever
increasing Internet dependency of small enterprises which, not having enough resources to invest
in cyber security, become perfect victims for cybercrime [49].

The NFV technology can provide solutions to this situation through a special type of VNF,
the Virtual Network Security Function (vNSF), so it can be conveniently used to offer enhanced
SECaaS services with the following benefits: dynamic and tailored response for security threats,
automatic resources scalability, security data gathering and monitoring for intelligent analysis and
remediation. The figure 7.3 represents this use case, where the actors are: the ISP customers, that
require security services; the ISP operators, that provide network services; vNSF developers, that
develop and publish the vNSF and can work for an internal ISP department or for third-party
companies. The main components that constitute the SecaaS scenario are:

❼ vNSFs, security-oriented VNFs that can monitor the network (e.g., network probes, event
generators, honeypots) or act on the network (e.g., firewalls);

❼ Data Analysis and Remediation Engine (DARE), a central information-driven engine that
processes data deriving from the vNSFs in order to discover current malicious behaviours
and, by means of threat monitoring and cognitive intelligence techniques, takes decisions
based on a holistic vision of the network;

❼ vNSF store, a logically centralized repository and catalogue used for adveritsing, browsing,
selecting and trading vNSFs;

❼ vNSF orchestrator, a functionality associated to the NFV MANO stack, with the purpose
of orchestrating security policies, managing the vNSFs and controlling their lifecycles;

❼ Dashboard, a graphic interface that allows the ISP customers or the ISP admin to interact
with the NFV platform, providing different views on it depending on the user;

❼ vNSF and infrastructure attestation, an integrity monitoring process that proves to the ISP
customers that the selected security service is trustworthy.
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Figure 7.4. Trust Monitor architecture [45].

7.2 Trust Monitor for SECaaS use case

The Trust Monitor (TM) is a monitoring entity of a NFV platform and has the aim of providing
remote attestation of both NFVI and VNFs in a SECaaS scenario, enabling the assurance that
the deployed security services are trustworthy. It can be considered as an implementation of the
Trust Manager entity proposed by ETSI [48]. The TM is not intended as an isolated component
in the NFV platform but as an entity that cooperates with the other entities defined in the
NFV SECaaS use case, described in 7.1.1. It was developed by the TORSEC research group of
“Polytechnic of Turin” as part of the SHIELD project, funded by the European Union’s Horizon
2020, and presented in 2019 at the “IEEE Conference on Network Softwarization” [45]. The TM
has been designed as a stand-alone component inserted in the MANO administrative domain and
it is compliant with the ETSI NFV Trust Manager definition [48]. The definition of the TM as a
stand-alone component rather than as integrated in a MANO entity allows integrity verification
of other MANO entities as well, even if its focus is the integrity verification of NFVI and vNSFs
only. This is because they are directly exposed on the external ISP network and therefore more
vulnerable to potential threats from external attackers; instead, the MANO domain is considered
shielded from the operator’s public network, so it is supposed to be protected from external
attackers.

7.2.1 TM architecture

The TM was conceived with a modular architecture, whose sub-components are shown in figure
7.4, and provides the following functionalities:

1. integrity verification of both NFVI compute nodes and vNSFs;

2. notification and reporting of integrity status information to external entities;

3. audit of historical logs about the integrity status information.

The TM achieves the integrity verification of heterogeneous hosts in the NFVI by means of several
Attestation Drivers, developed as plugins, which allow to instantiate different remote attestation
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workflows, depending on the type of host, each one with its specific verification logic. This
makes the TM able to attest nodes with different architectures (e.g., x86, ARM) and with RoTs
based on different technologies (e.g., hardware TPM, Intel SGX, AMD SEV but also virtualised
TEEs, although these offer lesser assurance than hardware-based ones), avoiding the lock-in with
a particular vendor. Currently, three attestation drivers have been developed for supporting Open
Attestation (OAT), Open Cloud Integrity Technology (OpenCIT) and Hewlett Packard Enterprise
Switch (HPESwitch) frameworks. OAT allows integrity verification of NFVI compute nodes and
vNSFs running in Docker containers, by means of the DIVE technology (described in 4.2), but
it supports TPM 1.2 only. OpenCIT can attest only NFVI compute nodes but it supports both
TPM 1.2 and 2.0 specifications. HPESwitch, instead, is used for integrity verification of SDN
switches and SDN controller.

The TM uses different sources as Whitelist Database for retrieving the trusted reference mea-
surements of NFVI nodes and vNSFs. In particular, regarding the NFVI nodes, the TM considers
a global whitelist of reference measurements for the Linux distribution adopted by each of them;
regarding the vNSFs, it relies on the vNSF Store as the source of reference measurements, whose
values are either provided by the vNSF developer or obtained via static analysis of the vNSF
image. Authentication and authorization policies, as well as replication and high availability of
data, are considered mandatory for the Whitelist Database configuration in a production-oriented
deployment of the TM.

The TM is an entity integrated in the NFV architecture, so it reports attestation results to
external entities and exposes Attestation and Management APIs that allow to register NFVI nodes
and attest them. The notification and reporting functionalities are implemented via pluggable
Connectors, that allow the TM to interact with the other entities defined in the SecaaS scenario:

❼ vNSFO Connector for querying the vNSF Orchestrator about the list of physical nodes
present in the NFVI and the vNSFs running on them;

❼ vNSF Store Connector for retrieving the reference measurements of the vNSFs;

❼ DARE Connector for conveying information about the trust status of the infrastructure and
for long-term storage of historical audit logs;

❼ Dashboard Connector for showing end-users (ISP customers or ISP administrator) the at-
testation results.

7.2.2 NFVI attestation workflow

This section describes the steps, illustrated in figure 7.5, that implement the attestation process
of a NFVI infrastructure in the TM architecture.

1. The vNSF Orchestrator sends to the TM an attestation request, regarding the entire NFVI
platform or a subset of its nodes; then, for each node to be attested, the TM retrieves the
list of vNSFs running on it.

2. For each NFVI node, the TM initiates the RA process through the specific Attestation
Driver associated to the node. In the case of a TPM-based Attestation Driver, the Attester
sends back to the TM an integrity report containing the IMA ML and a TPM quote.

3. The TM queries the vNSF Store for retrieving the list of reference measurements related
to the vNSFs to be attested and stores them in its Whitelist Database; then, it verifies the
authenticity of the IR and compares the measurements contained in it with those stored in
the Whitelist Database.

4. The TM sends a notification with the attestation result to the Dashboard, containing the
level of trust of both NFVI nodes and vNSFs. So, the ISP administrator can be aware
about the trust status of the entire NFV platform, while the ISP customer can know the
trustworthiness of the purchased Network Services.

5. The TM forwards the entire attestation log to the DARE, which will use it for data analytics
and for long-term storage of attestation results.
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Figure 7.5. The Trust Monitor NFVI attestation process [45].

7.3 Trust Monitor 2.0

The TM described in the previous section is tailored for the SECaaS use case. However, its mod-
ular architecture makes it adaptable to heterogeneous deployment scenarios, since the TM core
logic is decoupled from the SECaaS-specific workflow. So, in the next future, the designers plan
to use this monitoring entity in a generic cloud deployment based on lightweight virtualization,
updating it with new emerging technologies. With this in mind, the TM 2.0 is an entity capa-
ble of interacting with a container orchestrator, like Kubernetes, and attesting containers where
generic cloud applications run. My contribution in this project was to create a new attestation
driver for the integration of Keylime in the TM, and a Whitelists Web Service for the creation
and management of host and container whitelists. The figure 7.6 represents the TM architecture
with the components introduced with the thesis work.

The TM has been implemented as a set of microservices, where the TM core application has
the central role; each of them is a Web Service developed in Python language, with a Dockerfile
that allows its deployment through the Docker container engine; in addition, the Docker Compose
tool was used to quickly and efficiently instantiate all sub-components of the TM and easily enable
network interaction between them.

7.3.1 TM core application

The TM core application was developed with Django REST web framework and exposes APIs to
register computational nodes of a cloud infrastructure, to attest them and to verify the correct
configuration of all the TM’s subcomponents. It manages an internal database, created automat-
ically when the TM is started based on the classes defined in the models.py file. In particular,
this file defines the Host class, which represents a physical node of the infrastructure for which
it is possible to request the attestation procedure, and the KnownDigest class, which represents
the digest of a custom software running on a physical node. For each class, the Django REST
framework creates a table in the database and each instance of the class can be saved in the corre-
sponding table. The digests stored in the KnownDigest table are used for creating the whitelist of
a physical host, together with the reference measurements corresponding to the Linux distribution
present on the host.
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Figure 7.6. Trust Monitor architecture with added components.

The registration and the deletion of physical hosts within the TM takes place through the API
https://<trust monitor IP>/register node/, on which the following HTTP methods can be
invoked: GET to retrieve the list of all the physical hosts registered in the TM; POST to register a
new host inside the TM and in the corresponding attestation framework, specified in the request
body; DELETE to remove a previously registered host from both the TM and the attestation
framework. The integrity check of one or more hosts can be done through three different APIs:

❼ https://<trust_monitor_IP>/attest node/ exposes the POST method to attest one or
more nodes with their containers, whose identifiers are contained in the request body;

❼ https://<trust_monitor_IP>/nfvi_attestation_info/ exposes the GET method to at-
test all nodes registered with the TM;

❼ https://<trust_monitor_IP>/nfvi_pop_attestation_info/?node_id=... exposes the
GET method to attest only one node in the infrastructure, whose identifier is specified as
query parameter.

The attestation process of each host and of its containers is performed through the specific attes-
tation framework associated with it in the registration phase. The contents of the KnownDigest
table can be managed through the API https://<trust_monitor_IP>/known_digests/, which
exposes three HTTP methods: GET for retrieving the list of all the digests contained in the table,
POST for adding a new digest to the table, DELETE for removing a digest from the table.

The TM core application exposes also management and audit APIs:

❼ https://<trust_monitor_IP>/status/ allows to verify, through a GET request, the cor-
rect configuration and the active status of all the sub-components within the TM architec-
ture, in particular attestation drivers, connectors and databases;

❼ https://<trust_monitor_IP>/audit/ allows to retrieve, through a POST request, the
audit log of the attestations performed on a specific node.

92



Trust Monitor

Further details regarding the REST APIs exposed by the TM are described in appendix F.

7.3.2 Whitelists Web Service

The Whitelists Web Service is a new sub-component of the TM architecture, created with the
aim of realizing the logic concerning the management of the whitelists of hosts and containers
within a single entity, that interfaces with the other TM’s components through REST APIs. The
original implementation of the Whitelist Database relies on three sources:

❼ the Cassandra database, represented in figure 7.6 by the “NFVI node” DB, containing a
unified global whitelist related to the Linux distribution present in all the physical hosts of
the infrastructure;

❼ the KnownDigest table of the internal database, containing the digests of the proprietary
software running on the physical hosts;

❼ the vNSF Store containing the whitelists for the containers, accessed through the vNSF
Store Connector; once retrieved from the connector, the container whitelists are stored in a
Redis database for being used during attestation.

The presence of various sources of information, necessary for the realization of the whitelist of
hosts and containers, however, makes the core logic of the TM more complex; hence the idea of
adding a new component that would centralize this complexity in a single point, offering simplified
access to the whitelists of the various entities to be attested to the sub-components that need
them. The Whitelists Web Service offers the ability to create specific whitelists for each host in
the infrastructure, instead of having a single global whitelist for all hosts; this makes the whitelists
more consistent with the specific software configuration present on the host to be attested. This
service is also able to periodically update the contents of its database with respect to the software
updates published in the reference mirrors of the supported Linux distributions; the frequency
with which the update can be performed can be set through its configuration file. Moreover, while
the Cassandra database populating software provides whitelists only for the sha-1 algorithm, this
service provides whitelists for hosts and containers with various hash algorithms: sha1, sha256,
sha384, sha512.

The service exposes two sets of APIs for managing whitelists, one relating to physical hosts,
the other relating to containers. As for the first group, it provides three APIs:

❼ /hosts/{host_id} exposes the methods: PUT to create / update the whitelist relative to the
host with the identifier specified in the URI, created on the basis of the host configuration
(packages installed and platform architecture) and the selected hash algorithm; GET to
retrieve the host’s whitelist;

❼ /hosts/{host_id}/known_digest exposes the POST method to add in the whitelist of the
host, whose identifier is specified in the URI, a custom digest contained in the body of the
request;

❼ /packages/{package_name} exposes the methods: PUT to update / download a package,
whose name is specified in the URI, with version and platform architecture indicated in
the body of the request; GET to retrieve package information for all versions and platform
architectures currently contained in the database.

The API concerning the container whitelists are:

❼ /images/{image_id} exposes the methods: PUT to create / update the whitelist correspond-
ing to a container image, which can be ”pulled” or ”build” depending on what is specified
in the body of the request; GET to retrieve information relating to the whitelist of the image
and the layers of which it is made up;
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Figure 7.7. registerNode() workflow with DriverKeylime.

❼ /containers/{container_id} exposes the methods: PUT to create / update the whitelist
corresponding to a container whose identifier is indicated in the URI, based on the whitelist
of a container image and the selected hash algorithm; GET to retrieve the container’s
whitelist.

Further details on the REST APIs exposed by the Whitelists Web Service are illustrated in the
appendix E.

7.3.3 Keylime Attestation Driver

A TM Attestation Driver is a specific implementation of a generic integrity verification interface
which exports four methods:

❼ registerNode() for registering a new host in the attestation framework;

❼ pollHost() for checking the integrity state of a host through the attestation framework;

❼ getStatus() for getting the status of the attestation framework, that is, if it has been
configured and is active;

❼ deleteNode() for removing a host previously registered in the attestation framework.

In order to enable the TM to use Keylime, it was necessary to create a new Attestation Driver
which implements the four methods mentioned above, whose workflows are described in the fol-
lowing sections.

Registering a new host

The workflow for registering a new host with the Keylime Attestation Driver is represented in fig-
ure 7.7. (1) The process starts when the TM receives a POST request to the URI /register node/,
with body containing the host’s UUID, the IP address, the “distribution” (used for specifying the
host architecture and the list of installed packages), the name of the Attestation Driver (in this
case “Keylime”), the list of containers running on the host and a parameter that allows/does not
allow the presence, in the host, of other containers besides those listed. Each container is specified
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Figure 7.8. pollHost() work-flow with DriverKeylime.

through its container ID and its image ID, which identifies the whitelist associated to the con-
tainer image. (2) The TM core application invokes the registerNode() method of the Attestation
Driver specified in the POST request, in this case the DriverKeylime. (3) The DriverKeylime
asks the Whitelists Web Service to create the whitelist corresponding to the host, based on the
“distribution” parameter specified in the previous POST request, and the whitelists of each con-
tainer, based on its “image-ID”. (4) The DriverKeylime registers the new host inside the Keylime
framework by sending a POST request to the URI /v2/agents/{agent uuid} exposed by the
Keylime Tenant Webapp, specifying the URLs through which host and container whitelists can
be downloaded. (5) The Keylime Tenant Webapp downloads from the Whitelists Web Service the
whitelists for host and containers, (6) then it registers the new host in the Keylime Verifier and (7)
(8) the Three Party Bootstrap Key Derivation Protocol takes place, as described in section 5.2.2.
After registration, the Keylime Verifier begins the periodic attestation of the host system and the
registered containers, as described in 6.4.2 and 6.4.3 sections. (9) If the registration procedure in
the Keylime framework is successful, the TM core application registers the new host in its internal
database.

Checking the integrity state of host and containers

The workflow related to the integrity check of a host associated to the DriverKeylime is illustrated
in figure 7.8. (1) The TM core application receives a POST request to the URI /attest node/,
with body that contains a list of nodes to be attested, among which at least one has “Keylime”
as Attestation Driver. (2) For each of these, the TM invokes the pollHost() method of the
DriverKeylime, (3) which performs a GET request to the URI /v2/agents/{agent uuid} exposed
by the Keylime Tenant Webapp, in order to retrieve the current integrity status of the node. (4)
In turn, the Tenant Webapp performs a GET request to the URI /v2/agents/{agent uuid}
exposed by the Keylime Verifier, which sends back the integrity status of host and containers
as it results from the last remote attestation process performed for that host. (5) The Tenant
Webapp responds to the DriverKeylime with the information received by the Verifier; then, (6)
the DriverKeylime creates a JSON object which represent the attestation log and returns it to
the TM core application.
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Getting the status of the Keylime framework

The TM core application provides also the GET /status/ REST API for checking the status
of all the components inside the TM architecture, in particular the Attestation Drivers, the
Connectors and the Databases configured in it. Regarding the Attestation Drivers, the TM
invokes the getStatus() method on each of them. The response of this method is a JSON object
that specifies if the attestation framework has been configured and is active. In the DriverKeylime,
the getStatus() implementation checks if the IP address of the Keylime Tenant Webapp has been
configured in the TM’s setting file and if the Keylime framework is active by sending a request to
one of the REST APIs exposed by the Keylime Tenant Webapp.

Deleting a host from Keylime

When a node has to be removed from the cloud infrastructure, the TM receives a DELETE request
to the URI /register node/, which causes the node to be deleted from the TM internal database.
In order to propagate the host remotion to the attestation frameworks, a new method, deleteN-
ode(), has been added to the Attestation Driver’s interface. The implementation of deleteNode()
in DriverKeylime sends a DELETE request to the URI /v2/agents/{agent uuid}, exposed by
the Keylime Tenant Webapp which in turns sends the same request to the Keylime Verifier. This
stops the periodic remote attestation of the host and removes it from the Verifier database.
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Testing

The chapter presents the results of the tests performed on the Keylime framework, modified in
order to perform container attestation. In particular, functional tests were performed to verify the
correct behavior of the attestation process with the Trust Monitor and Keylime frameworks 8.2,
and performance tests were executed to evaluate the latency times and the resources consumption
in the attestation process 8.3.

8.1 Testbed

To evaluate the functioning and performance of the proposed solution, the testbed was set up as
follows:

❼ an attester machine having an Intel Core i5-5300U CPU (2 core, 4 threads), 16 GB of RAM
and a discrete Infineon TPM 2.0 chip, running Ubuntu Server 20.04 LTS with a custom Linux
kernel, based on version 5.12, containing the modification to the IMA module described in
6.3; Docker Consumer Edition version 20.10.8 and the Keylime Agent, modified as described
in 6.4.2, have been installed and are running on it;

❼ a verifier machine having an Intel Core i7-3520M CPU (2core, 4 threads) and 8 GB of RAM,
with Ubuntu Dsktop 20.04 LTS operative system on which Trust Monitor, Keylime Verifier,
Keylime Registrar, Keylime Tenant Webapp and Whitelists Web Service have been installed
and are running.

The appendix A describes in detail the installation and configuration of the testbed.

8.2 Functional tests

The purpose of functional tests is to verify whether the software implementation of the proposed
solution meets the requirements. Before proceeding with the exposition of the tests, let us recall
some assumptions used by the Keylime Verifier for attesting a physical host on which containers
are running:

❼ a physical host is considered trusted if it performed a trusted boot, so the PCRs related to
the boot phase match the reference values, and if the measurements of the files accessed at
runtime are present in the host’s whitelist, regardless of the state of the containers running on
it; the “allowUnknownContainers” flag associated with the host allows to evaluate differently
the case in which not-registered containers are detected on it: if it is “true”, their presence
does not affect the integrity state of the host, otherwise the host is considered untrusted ;
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❼ a container is considered trusted if the measurements of the files accessed after its instanti-
ation are present in the whitelist associated to it.

The Trust Monitor is currently tailored for the integrity evaluation of a NFV infrastructure,
which is the set of physical and virtual resources deployed in a network platform. It will evaluate
the NFVI platform trusted only if all its components, both physical and virtual, are trusted.

8.2.1 Tests with trusted platform

What we expect from this test is that, if we have the attesting system and all its containers with a
software configuration compliant with their whitelists, the Keylime Verifier will evaluate “trusted”
physical host and containers and consequently the TM will evaluate “trusted” the NFVI platform.

On the attesting system, the Keylime Agent has been configured with uuid “UUID1” and two
Docker containers have been deployed, one launched with base image ubuntu:

# docker run -it ubuntu /bin/bash

and the other launched with base image nginx:

# docker run -d -p 30000:80 nginx

Their container IDs are 237774a3deb4 and 4e2cacb35b8d respectively. The attesting system
has been registered with the TM by sending a POST request, with body represented below, at
https://<TM_IP_address>/register_node/:

{

"hostName": "UUID1",

"address": "192.168.1.50",

"distribution": "{
\"architecture\":\"amd64\",
\"hash algorithms\":\"sha256\",
\"packages list\":\"acl 2.2.53-6 amd64\n

adduser 3.118ubuntu2 all\n
..."

}",
"driver": "Keylime",

"containers": "4e2cacb35b8d nginx\n237774a3deb4 ubuntu",

"allowUnknownContainers": 0

}

See section 7.3.3 for a description of the registration work-flow. Completed the registration phase,
the Keylime Verifier begins the periodic attestation.

When the TM receives the request to attest “UUID1”, either through a GET request at
https://<TM_IP_address>/nfvi_pop_attestation_info/?node_id=UUID1 or via a POST re-
quest at https://<TM_IP_address>/attest_node/ with body as below:

{

"node_list": [ { "node": "UUID1" } ]

}

it sends back the following response:

{

"hosts": [

{

"node": "UUID1",

"status": 0,

"time": "2021-09-03 20:03:41.129083 +0000 UTC",

"remediation": {

"terminate": false,

"isolate": false

},
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"vnsfs": [

{

"container": "4e2cacb35b8d",

"vnsfr_id": "",

"vnsfd_id": "",

"remediation": {

"terminate": false,

"isolate": false

},

"trust": true,

"ns_id": ""

},

{

"container": "237774a3deb4",

"vnsfr_id": "",

"vnsfd_id": "",

"remediation": {

"terminate": false,

"isolate": false

},

"trust": true,

"ns_id": ""

}

],

"trust": true,

"driver": "Keylime",

"extra_info": { ... }

}

],

"sdn": [],

"trust": true,

"vtime": "2021-09-03 20:03:41.130289 +0000 UTC"

}

where:

❼ "hosts" contains the list of the attested compute nodes;

❼ "trust" indicates the trust level assigned by the TM to the NFVI infrastructure, based on
the attestation process executed by the Keylime Verifier on the platform components;

❼ "vtime" records the moment in which the attestation process was performed.

The parameters that describe the result of the attestation process for a host are:

❼ "node" is the uuid of the Keylime Agent;

❼ "status" indicates if the integrity process successfully completed;

❼ "time" is the time in which the attestation process took place;

❼ "remediation" specifies the actions to be performed on the node after the attestation
process;

❼ "vnsfs" contains the list of containers running on the host, each of them indicating the
container ID and the trust level;

❼ "trust" specifies how the Keylime Verifier evaluated the trustworthiness of the physical
platform;

❼ "driver" indicates the attestation driver used to attest the host;

❼ "extra_info" contains additional details which the current implementation of the Keylime
driver does not evaluate.
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Since this object was defined to describe an NFV platform, some fields (e.g., "sdn", "vnsfr_id",
"vnsfd_id") were not considered in the above list because they do not assume a meaningful value
for the context of this test.

As we can see form the TM response, the Keylime Verifier correctly evaluated the integrity
state of the host “UUID1” and its containers and the TM correctly assessed the trust level of the
entire platform, inferring that it is trusted in accordance with the fact that both the physical host
and the containers are trusted.

8.2.2 Tests with untrusted platform

Now, let us execute inside the “ubuntu” container a software that is not part of its base image,
so it is not present in its whitelist; since we executed this container in “interactive” mode, we can
download, from its shall, the “nano” text editor and create a new file with it, so that this new
software is executed and consequently a measurement related to it is added inside the IMA ML:

root@237774a3deb4:/# apt update

root@237774a3deb4:/# apt install nano

root@237774a3deb4:/# nano new_file.txt

What we expect is that:

❼ the Keylime Verifier evaluates the container 237774a3deb4 as “untrusted”, while the con-
tainer 4e2cacb35b8d and the physical host, whose software configurations have not been
tampered with, as “trusted”;

❼ the TM evaluates the entire platform as “untrusted” since one of its components is “un-
trusted”.

When we send an attestation request for the host “UUID1” to the TM, it sends back the following
response:

{

"hosts": [

{

"node": "UUID1",

"status": 0,

"time": "2021-09-04 13:36:59.009288 +0000 UTC",

"remediation": {

"terminate": false,

"isolate": false

},

"vnsfs": [

{

"container": "4e2cacb35b8d",

"vnsfr_id": "",

"vnsfd_id": "",

"remediation": {

"terminate": false,

"isolate": false

},

"trust": true,

"ns_id": ""

},

{

"container": "237774a3deb4",

"vnsfr_id": "",

"vnsfd_id": "",

"remediation": {

"terminate": true,

"isolate": true

},
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"trust": false,

"ns_id": ""

}

],

"trust": true,

"driver": "Keylime",

"extra_info": { ... }

}

],

"sdn": [],

"trust": false,

"vtime": "2021-09-04 13:36:59.010558 +0000 UTC"

}

As we can see from the JSON object, the Keylime Verifier and the TM correctly evaluated the
trust level of platform components.

Now, let us create, inside the /usr/bin/ directory of the host system, a simple “Hello World!”
script, assign execution privileges to it and run it. What we expect is that the Keylime Verifier
evaluates also the host system as “untrusted” and the TM evaluates the platform “untrusted” as
well. The attestation result provided by the TM is shown below:

{

"hosts": [

{

"node": "UUID1",

"status": 0,

"time": "2021-09-04 18:50:11.403360 +0000 UTC",

"remediation": {

"terminate": true,

"isolate": true

},

"vnsfs": [

{

"container": "4e2cacb35b8d",

"vnsfr_id": "",

"vnsfd_id": "",

"remediation": {

"terminate": false,

"isolate": false

},

"trust": true,

"ns_id": ""

},

{

"container": "237774a3deb4",

"vnsfr_id": "",

"vnsfd_id": "",

"remediation": {

"terminate": true,

"isolate": true

},

"trust": false,

"ns_id": ""

}

],

"trust": false,

"driver": "Keylime",

"extra_info": { ... }

}

],

"sdn": [],

"trust": false,

"vtime": "2021-09-04 18:50:11.404675 +0000 UTC"

}
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The JSON object shows that the trustworthiness assessment performed by Keylime Verifier and
TM is correct.

Finally, in order to test the correct detection by the Keylime Verifier of unregistered containers
running on the host, we have to reboot the attesting system in order to reset the IMA ML, then
we deploy two containers on it. Now we have to remove the host “UUID1” from the TM by
sending a DELETE request at https://<TM_IP_address>:443/register_node/ with body:

{

"hostName": "UUID1"

}

Finally, we have to register the host with the TM again, this time specifying in the request body
only one container. What we expect is that the Keylime Verifier detects the presence of an
“unauthorized” container and evaluates the host system as “untrusted”; the TM consequently
should evaluate the platform as “untrusted” as well. By sending an attestation request for the
host “UUID1”, the TM’s response is as follows:

{

"hosts": [

{

"node": "UUID1",

"status": 0,

"time": "2021-09-04 20:05:08.086768 +0000 UTC",

"remediation": {

"terminate": true,

"isolate": true

},

"vnsfs": [

{

"container": "37aba78dcc2b",

"vnsfr_id": "",

"vnsfd_id": "",

"remediation": {

"terminate": false,

"isolate": false

},

"trust": true,

"ns_id": ""

}

],

"trust": false,

"driver": "Keylime",

"extra_info": { ... }

}

],

"sdn": [],

"trust": false,

"vtime": "2021-09-04 20:05:08.088090 +0000 UTC"

}

As it appears from the JSON object, also in this case Keylime Verifier and TM correctly evaluated
the trust level of the attesting platform.

8.3 Performance tests

The performance evaluation of the proposed solution focused on three metrics: time taken by the
Keylime Verifier to perform an attestation cycle; CPU utilisation and RAM consumption on the
attesting platform, evaluated with and without the remote attestation process. The values relative
to these metrics have been acquired as the number of containers instantiated on the attesting
system increases, starting from 1 container up to a deployment scenario of 512 containers, all
having nginx as image. Performance beyond 512 containers was not evaluated due to the limits
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Figure 8.1. CPU consumption on the attester machine as the number of containers increases.

of the resources available on the attesting platform. CPU and RAM consumption were evaluated
over a time window of 10 minutes, while the attestation time was evaluated on the average of
300 attestations performed for each group of containers taken into consideration, in order to get
statistically meaningful results.

The figure 8.1 depicts the CPU utilisation in percentage on the attester, detected both when
the periodic remote attestation is active and in absence of it, in order to test the CPU consumption
penalty introduced by the Keylime Agent and the tpm2-tools used by it. The results show that
the attestation process leads to a 1% increase in CPU usage, which remains almost constant at
the increase of containers deployed on the attesting platform.

The figure 8.2 highlights that the presence of the attestation process has a negligible impact
on RAM consumption since the graphs obtained from the data acquired on the attesting plat-
form, with and without the attestation process, appear overlapping, regardless of the number of
containers deployed on the platform.

Finally, the figure 8.3 shows the time required for the Keylime Verifier to complete the at-
testation process. The different contributions to the overall attestation time are detailed in the
following equation:

TRA = tIR req + tquote + tML reading + tIR sending + tIR verification (8.1)

where:

❼ tIR req represents the time for sending and transferring an attestation request over the
network; this contribution can be considered negligible;

❼ tquote represents the time the TPM takes to create a quote;

❼ tML reading is the time needed for the Keylime Agent to read the IMA ML file in order to
insert it in the IR;

❼ tIR sending is the time needed for sending and transferring the IR over the network;

❼ tIR verification is the time the Keylime Verifier takes to authenticate the IR and verify the
integrity of both physical host and containers.

103



Testing

0,00%

5,00%

10,00%

15,00%

20,00%

25,00%

30,00%

35,00%

40,00%

45,00%

50,00%

1 2 4 8 16 32 64 128 256 512

R
A

M
 c

o
n

su
m

p
ti

o
n

 in
 p

e
rc

e
n

ta
ge

 

Number of containers 

RAM consumption without RA RAM consumption with RA

Figure 8.2. RAM consumption on the attester machine as the number of containers increases.
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Figure 8.3. Keylime Verifier attestation latency as the number of containers increases.

The last three time contributions depend on the length of the IMA ML file, which in turn depends
on the number of containers instantiated on the attesting system; consequently, the optimization
described in section 6.4.2, according to which the Verifier does not always ask the Agent for the
entire IMA ML but only for the part not yet attested, helps to keep these time contributions low.
Observing the figure it can be deduced that:

❼ the time TRA required for the entire remote attestation process remains constant at 1.4
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seconds up to a number of containers equal to 64, and slightly grows up to 1.6 seconds for
512 containers;

❼ tquote, approximately equal to 1.37 seconds, is the most relevant component of the attestation
time and remains constant as the number of containers grows, since it mainly depends on
the performance of the hardware TPM and the time required to execute the asymmetric
algorithm used for signing the PCRs;

❼ the time due to tML reading + tIR sending + tIR verification remains of the order of 10−2

seconds up to 32 containers and of the order of 10−1 seconds up to 512 containers.

From the data analysis it follows that the proposed solution to perform the integrity verifica-
tion of a host and the containers running on it is highly scalable, given that the latency of the
attestation process remains low and not significantly affected by the increase of the number of
containers.
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Chapter 9

Conclusions and future work

The specific objective of this thesis was to propose a scalable and efficient solution for periodically
monitoring the integrity state of applications deployed in containers, a lightweight virtualization
technique widely used in cloud environments and other emerging computational paradigms, such
as Fog Computing and Edge Computing. This goal was achieved by developing a new IMA
template which, by adding new fields to the entries of the IMA ML, allows a verifier to identify
the files accessed by a specific container. The implementation of the solution is based on Keylime,
a framework that performs periodic remote attestation of physical platforms and relies on TPM
2.0 as hardware RoT. The Keylime code was appropriately modified in order to make the verifier
able to interpret the new template and support attestation of individual containers. Moreover, it
was decided to exploit the algorithm agility introduced by TPM 2.0 for the integrity verification of
the IMAML: in this way, it is possible to use an IMA PCR belonging to any of the banks present in
the TPM, instead of relying exclusively on the SHA-1 bank, as it happens in the original Keylime
implementation. Then, in order to optimize the attestation times, it was decided to check, at each
attestation cycle, only the part of the IMA ML not yet attested. Finally, new REST APIs were
added to the Keylime components, and others were modified, in order to support the registration
of containers associated with a specific Cloud Agent.

It was then decided to integrate the extended Keylime framework in the architecture of TM, a
monitoring entity tailored for NFV environments, through the development of a new attestation
driver. This was necessary since the attestation frameworks previously used by the TM to attest
compute nodes either support TPM 2.0 but not attestation of containers, as Open Cloud Integrity
(OpenCIT), or support attestation of containers but not TPM 2.0, as Open Attestation (OAT)
extended with the DIVE technology. The work also involved the implementation of a new module,
the Whitelists Web Service, wihch is the attempt to unify in a single entity all the logic concerning
the creation and management of whitelists, both for physical hosts and containers, allowing the
other software components in the TM architecture to access them in a simple way through REST
APIs.

The work realized with this thesis provides another mode to perform remote attestation of
containers, which takes advantage of interesting properties added by TPM 2.0. As proved by the
performance tests carried out in laboratory, the developed solution is highly scalable, adapts to
different containerization technologies (e.g., Docker, containerd) and guarantees low attestation
latency as the number of deployed containers increases. From the comparison with the examined
solutions, it emerges that, for attesting one container, OAT with DIVE takes about 8 seconds,
OAT with Container-IMA takes about 2.22 seconds, Keylime with the proposed solution takes
about 1.42 seconds. As shown in section 8.3, the attestation time stays below 1.5 seconds up to
128 containers, reaching 1.64 seconds for the attestation of 512 containers. Moreover, it emerges
that approximately 93% of the attestation time is spent to create the TPM 2.0 quote; therefore,
in order to improve attestation timing, the performance of the TPM 2.0 chip should be improved,
or other technologies should be explored to be used as hardware RoT.

The proposed solution is a good starting point for realizing remote attestation of containers
with different containerization technologies, but it can be improved in the future by expanding
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the objectives to be pursued. The question of ensuring the privacy regarding the measures of
containers running in a multi-tenant environment still remains open, so this will be one of the
first goals to work on. It would be useful, then, to deepen the characteristics of Kubernetes
(K8s), currently the most popular container orchestrator in cloud environments, and also be able
to identify, during the remote attestation process, the container’s pod, which is the set of one
or multiple containers that share the same execution context and represents the smallest unit of
computing that can be created and managed in K8s. Moreover, the implementation of the new
attestation driver for the TM needs to be refined, as well as the implementation of the Whitelists
Web Service in order to get a complete whitelist for a physical host, add support for RPM-based
Linux distributions, as currently only Debian-based distributions are supported, and automate
whitelist updating when the software of the host system is updated. It would also be useful to
deepen the characteristics of the new TEE technologies, such as Intel SGX, ARM TrustZone and
AMD SEV, in order to use them as hardware RoT in the RA process. The work carried out in the
thesis, therefore, opens the perspective to multiple insights into the numerous scenarios currently
emerging in IT infrastructures.

107



Bibliography

[1] M. De Benedictis and A. Lioy, “Integrity verification of docker containers for a lightweight
cloud environment”, Future Generation Computer Systems, vol. 97, August 2019, pp. 236–
246, DOI 10.1016/j.future.2019.02.026

[2] W. Luo, Q. Shen, Y. Xia, and Z. Wu, “Container-ima: A privacy-preserving integrity mea-
surement architecture for containers”, 22nd International Symposium on Research in Attacks,
Intrusions and Defenses (RAID 2019), Chaoyang District, Beijing, September 23-25, 2019,
pp. 487–500

[3] P. S. Tasker, “Trusted computer systems”, 1981 IEEE Symposium on Security and Privacy,
Oakland (United States, CA), April 1981, DOI 10.1109/sp.1981.10020

[4] Department of Defense, “Department of defense trusted computer system evaluation criteria”,
The ‘Orange Book’ Series, pp. 1–129, Palgrave Macmillan UK, 1985, DOI 10.1007/978-1-349-
12020-8 1

[5] J. Teo, “Features and benefits of trusted computing”, 2009 Information Security Curriculum
Development Conference on - InfoSecCD ✬09, 2009, DOI 10.1145/1940976.1940990

[6] D. Challener, K. Yoder, R. Catherman, D. Safford, and L. V. Doom, “A practical guide to
trusted computing”, IBM Press, 2007

[7] W. Arthur and D. Challener, “A practical guide to tpm 2.0”, Apress open, 2015
[8] Trusted Computing Group TPM Main Part 1 Design Principles, TCG Published, March 1,

2011
[9] Trusted Computing Group Trusted Platform Module Library Part 1: Architecture, TCG

Published, November 8, 2019
[10] Trusted Computing Group TCG Algorithm Registry, TCG Published, June 25, 2020
[11] I. Pedone, D. Canavese, and A. Lioy, “Trusted computing technology and proposals for

resolving cloud computing security problems”, Cloud Computing Security: Foundations and
Challenges (J. R. Vacca, ed.), pp. 373–386, CRC Press, 2020, DOI 10.1201/9780429055126-31

[12] Trusted Platform Module (TPM) 2.0: A Brief Introduction, https://www.

trustedcomputinggroup.org/wp-content/uploads/TPM-2.0-A-Brief-Introduction.

pdf

[13] Trusted Computing Group Trusted Platform Module (TPM) 2.0: A Brief Introduction, TCG
Published, 2015

[14] IBM’s Software TPM 2.0, https://sourceforge.net/projects/ibmswtpm2/
[15] TPM 2.0 Simulator Extraction Script, https://github.com/stwagnr/tpm2simulator
[16] Trusted Computing Group, “Tss overview”, TCG TSS 2.0 Overview and Common Structures

Specification, pp. 9–12, TCG Published, October 2, 2019
[17] TCG TSS 2.0 Enhanced System API (ESAPI) Specification, https://

trustedcomputinggroup.org/wp-content/uploads/TSS_ESAPI_v1p0_r08_pub.pdf

[18] Trusted Computing Primary Use Cases, https://trustedcomputinggroup.org/

trusted-computing-primary-use-cases/

[19] TPM cryptography cracked, https://web.archive.org/web/20100212050338/https://

hackaday.com/2010/02/09/tpm-crytography-cracked/

[20] Schneier on Security, https://www.schneier.com/blog/archives/2015/03/can_the_nsa_
bre_1.html

[21] Millions of high-security crypto keys crippled by newly discov-
ered flaw, https://arstechnica.com/information-technology/2017/10/

crypto-failure-cripples-millions-of-high-security-keys-750k-estonian-ids/

108

https://doi.org/10.1016/j.future.2019.02.026
https://doi.org/10.1109/sp.1981.10020
https://doi.org/10.1007/978-1-349-12020-8_1
https://doi.org/10.1007/978-1-349-12020-8_1
https://doi.org/10.1145/1940976.1940990
https://doi.org/10.1201/9780429055126-31
https://www.trustedcomputinggroup.org/wp-content/uploads/TPM-2.0-A-Brief-Introduction.pdf
https://www.trustedcomputinggroup.org/wp-content/uploads/TPM-2.0-A-Brief-Introduction.pdf
https://www.trustedcomputinggroup.org/wp-content/uploads/TPM-2.0-A-Brief-Introduction.pdf
https://sourceforge.net/projects/ibmswtpm2/
https://github.com/stwagnr/tpm2simulator
https://trustedcomputinggroup.org/wp-content/uploads/TSS_ESAPI_v1p0_r08_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TSS_ESAPI_v1p0_r08_pub.pdf
https://trustedcomputinggroup.org/trusted-computing-primary-use-cases/
https://trustedcomputinggroup.org/trusted-computing-primary-use-cases/
https://web.archive.org/web/20100212050338/https://hackaday.com/2010/02/09/tpm-crytography-cracked/
https://web.archive.org/web/20100212050338/https://hackaday.com/2010/02/09/tpm-crytography-cracked/
https://www.schneier.com/blog/archives/2015/03/can_the_nsa_bre_1.html
https://www.schneier.com/blog/archives/2015/03/can_the_nsa_bre_1.html
https://arstechnica.com/information-technology/2017/10/crypto-failure-cripples-millions-of-high-security-keys-750k-estonian-ids/
https://arstechnica.com/information-technology/2017/10/crypto-failure-cripples-millions-of-high-security-keys-750k-estonian-ids/


Bibliography

[22] Information on TPM firmware update for Microsoft Windows systems as announced on Mi-
crosoft’s patchday on October 10th 2017, https://www.infineon.com/cms/en/product/
promopages/tpm-update/

[23] S. Han, W. Shin, J.-H. Park, and H. Kim, “A Bad Dream: Subverting Trusted Platform
Module While You Are Sleeping”, 27th USENIX Security Symposium (USENIX Security
18), Baltimore, MD, USA, August 15-17, 2018, pp. 1229–1246

[24] Reinventing the Cold Boot Attack: Modern Laptop Version, https://blog.f-secure.com/
podcast-reinventing-cold-boot-attack/

[25] D. Moghimi, B. Sunar, T. Eisenbarth, and N. Heninger, “TPM-FAIL: TPM meets Timing
and Lattice Attacks”, 29th USENIX Security Symposium (USENIX Security 20) (S. Capkun
and F. Roesner, eds.), Boston, MA, August 12-14, 2020, pp. 2057–2073

[26] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn, “Design and implementation of a tcg-based
integrity measurement architecture”, 13th USENIX Security Symposium (USENIX Security
04), San Diego, CA, USA, August 9-13, 2004

[27] D. D. Clark and D. R. Wilson, “A comparison of commercial and military computer security
policies”, 1987 IEEE Symposium on Security and Privacy, April 1987, pp. 184–184, DOI
10.1109/sp.1987.10001

[28] Integrity Measurement Architecture (IMA), https://sourceforge.net/p/linux-ima/

wiki/Home/

[29] IMA source code, https://elixir.bootlin.com/linux/latest/source/security/

integrity/ima

[30] M. Eder, “Hypervisor-vs . container-based virtualization”, Proceedings of the Seminars Fu-
ture Internet (FI) and Innovative Internet Technologies and Mobile Communications (IITM)
(G. Carle, D. Raumer, and L. Schwaighofer, eds.), Munich, Germany, 2016, pp. 1–7, DOI
10.2313/NET-2016-07-1 01

[31] M. Souppaya, J. Morello, and K. Scarfone, “Application container security guide”, NIST
Special Publication 800-190, September 2017, DOI 10.6028/NIST.SP.800-190

[32] Container in crescita, ma ancora tante le sfide da affrontare, https://www.cloudtalk.it/
container-in-crescita-ma-ancora-tante-le-sfide-da-affrontare/

[33] Linux manual pages: section 7, https://man7.org/linux/man-pages/dir_section_7.

html

[34] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott, B. Singh, T. Gazagnaire, S. Smith,
S. Hand, and J. Crowcroft, “Unikernels: library operating systems for the cloud”, SIGPLAN
notices, vol. 48, April 2013, pp. 461–472, DOI 10.1145/2499368.2451167

[35] Docker overview, https://docs.docker.com/get-started/overview/

[36] Application Container Security Guide, https://nvlpubs.nist.gov/nistpubs/

SpecialPublications/NIST.SP.800-190.pdf

[37] N. Schear, P. T. Cable, T. M. Moyer, B. Richard, and R. Rudd, “Bootstrapping and
maintaining trust in the cloud”, Proceedings of the 32nd Annual Conference on Com-
puter Security Applications, New York, NY, USA, December 5 - 8, 2016, pp. 65–77, DOI
10.1145/2991079.2991104

[38] P. A. Loscocco, P. W. Wilson, J. A. Pendergrass, and C. D. McDonell, “Linux kernel in-
tegrity measurement using contextual inspection”, Proceedings of the 2007 ACM Workshop
on Scalable Trusted Computing, New York, NY, USA, 2 November 2007, pp. 21–29, DOI
10.1145/1314354.1314362

[39] L. Davi, A.-R. Sadeghi, and M. Winandy, “Dynamic integrity measurement and attestation:
towards defense against return-oriented programming attacks”, Proceedings of the 2009 ACM
Workshop on Scalable Trusted Computing, New York, NY, USA, 13 November 2009, pp. 49–
54, DOI 10.1145/1655108.1655117

[40] Trusted Computing Group, “Attestation key identity certification”, Trusted PlatformModule
Library Part 1: Architecture, pp. 28–29, TCG Published, November 8, 2019

[41] Keylime, https://github.com/keylime/keylime

[42] S. Berger, R. Caceres, K. A. Goldman, R. Perez, R. Sailer, and L. Van Doorn, “vtpm:
Virtualizing the trusted platform module”, 15th USENIX Security Symposium (USENIX
Security 06), Vancouver, B.C. Canada, July 31 - August 4, 2006, pp. 305–320

[43] S. Hosseinzadeh, S. Laurén, and V. Leppänen, “Security in container-based virtualization

109

https://www.infineon.com/cms/en/product/promopages/tpm-update/
https://www.infineon.com/cms/en/product/promopages/tpm-update/
https://blog.f-secure.com/podcast-reinventing-cold-boot-attack/
https://blog.f-secure.com/podcast-reinventing-cold-boot-attack/
https://doi.org/10.1109/sp.1987.10001
https://sourceforge.net/p/linux-ima/wiki/Home/
https://sourceforge.net/p/linux-ima/wiki/Home/
https://elixir.bootlin.com/linux/latest/source/security/integrity/ima
https://elixir.bootlin.com/linux/latest/source/security/integrity/ima
https://doi.org/10.2313/NET-2016-07-1_01
https://doi.org/10.6028/NIST.SP.800-190
https://www.cloudtalk.it/container-in-crescita-ma-ancora-tante-le-sfide-da-affrontare/
https://www.cloudtalk.it/container-in-crescita-ma-ancora-tante-le-sfide-da-affrontare/
https://man7.org/linux/man-pages/dir_section_7.html
https://man7.org/linux/man-pages/dir_section_7.html
https://doi.org/10.1145/2499368.2451167
https://docs.docker.com/get-started/overview/
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-190.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-190.pdf
https://doi.org/10.1145/2991079.2991104
https://doi.org/10.1145/1314354.1314362
https://doi.org/10.1145/1655108.1655117
https://github.com/keylime/keylime


Bibliography

through vtpm”, 2016 IEEE/ACM 9th International Conference on Utility and Cloud Com-
puting (UCC), December 2016, pp. 214–219, DOI 10.1145/2996890.3009903

[44] Trusted Computing Group Virtualized Trusted Platform Architecture Specification, TCG
Published, September 27, 2011

[45] M. De Benedictis and A. Lioy, “A proposal for trust monitoring in a network functions
virtualisation infrastructure”, 2019 IEEE Conference on Network Softwarization (NetSoft),
Paris (France), June 24-28, 2019, pp. 1–9, DOI 10.1109/NETSOFT.2019.8806655

[46] N. E. I. S. G. (ISG), “Network Functions Virtualisation (NFV); Architectural Framework.”
ETSI GS NFV 002 v1.1.1, October 2013

[47] N. E. I. S. G. (ISG), “Network Functions Virtualisation (NFV); NFV Security; Problem
Statement.” ETSI GR NFV 001 v1.2.1, May 2017

[48] N. E. I. S. G. (ISG), “Network Functions Virtualisation (NFV); NFV Security; Security and
Trust Guidance .” ETSI GR NFV-SEC 003 v1.2.1, August 2016

[49] N. E. I. S. G. (ISG), “Network Functions Virtualisation (NFV);Use Cases.” ETSI GS NFV
002 v1.1.1, October 2013

[50] IMA policy source code, https://elixir.bootlin.com/linux/latest/source/security/
integrity/ima/ima_policy.c

110

https://doi.org/10.1145/2996890.3009903
https://doi.org/10.1109/NETSOFT.2019.8806655
https://elixir.bootlin.com/linux/latest/source/security/integrity/ima/ima_policy.c
https://elixir.bootlin.com/linux/latest/source/security/integrity/ima/ima_policy.c


Appendix A

User’s manual: Testbed

This appendix describes how to configure the environment used for testing the proposed solution.

A.1 Attester machine

In this section we are going to configure a host that will be used as attester in the remote
attestation process. The host has to be equipped with a hardware TPM 2.0. The operative
system used for testing the proposed solution is Ubuntu Server 20.04 LTS, with a custom Linux
kernel containing the IMA module modified as described in appendix C. Install Ubuntu Server
20.04 LTS on a machine (https://ubuntu.com/download/server), preferring the manual server
installation over other options.

A.1.1 Patching the Linux kernel

First of all, clone the git repository of the stable Linux kernel with the following command, which
will create a new directory named linux-stable and populate it with the kernel source code:

✩ git clone git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-stable.git

The stable repository has several branches starting from linux-2.6.11.y; choose the latest stable
release branch, which at the time of writing is linux-5.13.y:

✩ cd linux-stable

✩ git checkout linux-5.13.y

Then, apply the patches containing the modifications to the IMA module described in section 6.3
and provided with the thesis source code:

✩ git am --signoff < /path/to/patches/0001-ima_cgn_template.patch

✩ git am --signoff < /path/to/patches/0002-ima_mns_template.patch

✩ git am --signoff < /path/to/patches/0003-entry_hash_256_bit.patch

✩ git am --signoff < /path/to/patches/0004-ima_dep_cgn_template.patch

✩ git am --signoff < /path/to/patches/0005-ima_cache_clp_patch.patch

Now the kernel source code is ready to be compiled.

A.1.2 Compiling and installing the new kernel

Be sure to be in the linux-stable directory, then copy the current kernel configuration file into
it:

✩ cp /boot/config-✩(uname -r) ./.config
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Now, in order to customize the kernel configuration file, it is necessary to execute make menuconfig,
which requires the following libraries to be installed:

✩ sudo apt-get update

✩ sudo apt-get install dist-upgrade make gcc libncurses-dev flex bison

Then customize the kernel configuration file:

✩ make menuconfig

Select Security options ---> in the list that appears on the screen, then scroll down until you
reach the Integrity Measurement Architecture(IMA) section and select the following config-
urations:

[*] Integrity Measurement Architecture(IMA)

Default template (ima-dep-cgn) --->

Default integrity hash algorithm (SHA256) --->

Default template-hash algorithm (SHA256) --->

[*] IMA cache1 enabled

[*] IMA cache2 enabled

Save the modifications and exit. Once this step is complete, the compilation process can start;
install the following libraries:

✩ sudo apt-get install kernel-package libssl-dev

Then compile the kernel by running:

✩ sudo make-kpkg clean

✩ sudo fakeroot make-kpkg --initrd --append-to-version=-ima-dep-cgn \

kernel_image kernel_headers

When the kernel compilation is finished, install the new kernel:

✩ cd ..

✩ sudo dpkg -i linux*.deb

A.1.3 Booting the kernel

By default, the grub bootloader tries to boot the default kernel, which is the newly installed one.
If you want to choose the kernel to boot at startup, you need to increase the GRUB_TIMEOUT value
so that grub pauses in the boot menu long enough to choose the kernel. Edit the default grub
configuration file /etc/default/grub:

✩ sudo nano /etc/default/grub

Uncomment GRUB_TIMEOUT and set it to 10 seconds, then comment out GRUB_TIMEOUT_STYLE:

GRUB_TIMEOUT=10

#GRUB TIMEOUT STYLE=hidden

Run update-grub to update the grub configuration in /boot:

✩ sudo update-grub

Now it is time to restart the system; once the boot menu comes up, select the new kernel with
suffix “-ima-dep-cgn”. Verify that the IMA module is using the ima-dep-cgn template and the
other configurations you selected through make menuconfig by checking the IMA ML file:

✩ sudo cat /sys/kernel/security/ima/ascii_runtime_measurements

You should see a ML file with entries similar to those shown in figure 6.6.
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A.1.4 IMA Policy for testbed

An IMA policy [50] specifies which files will be measured by IMA and which components (IMA
Measurement, IMA Appraise and IMA Audit) will be involved in the file processing. IMA provides
standard policies for measuring and appraising the TCB of the system, extending the Trusted Boot
and the Secure Boot principles to the operating system. It is worth noticing that IMA has some
measurement gaps that are not closed yet, for example concerning the extended Berkeley Packet
Filter (eBPF) programs loaded into the kernel-space from user-space, file-like objects such as
stdin and interpreters. These builtin policies can be configured via the following kernel command
line parameters:

❼ ima_tcb (deprecated), that allows to set the ORIGINAL TCB policy; it was the first builtin
IMA policy, available since kernel version 2.6.30, for measuring all critical system files (pro-
grams, memory-mapped libraries and files opened by root for reading);

❼ ima_policy=, which can have one or more of the following values, separated by the pipe
character“|”: tcb, that allows to set the DEFAULT TCB policy; appraise_tcb, that en-
ables the local appraising of all files owned by root; secure_boot, that allows to appraise
firmware, kexec kernel image, kernel moduels and the IMA policy itself; critical_data;
fail_securely;

❼ ima_appraise_tcb, which is equivalent to add “appraise tcb” to the ima_policy= string.

It is also possible to specify a custom IMA policy by writing it inside the /etc/ima/ima-policy
file, saving the file and rebooting the machine. During the boot, the policy is copied in the policy
file located in the securityfs, typically mounted at /sys/kernel/security/ima [11]. Starting
from Linux version 4.13, if you do not specify a builtin or a custom IMA policy, the default is “no
policy”, that is, the accessed files are not processed by IMA.

You can set a custom IMA policy by specifying a set of rules written in a special IMA Policy
language. Each rule has the format action [condition ...], where:

1. the action specifies what to do if the file matches the rule, possible actions are:

❼ measure and dont_measure, which specify whether the file measurement has to be
added to the IMA ML or not;

❼ appraise and dont_appraise, which specify whether the file measurement has to be
compared with a trusted hash value contained in an extended attribute of the file or
not;

❼ audit, which specifies whether the file measurement has to be recorded in the system
audit log;

❼ hash and dont_hash, which specify whether the file needs digital signature or not;

2. a condition specifies a kind of “filter” for the action, stating which properties the file should
have for matching the rule; conditions can be of two types, base and lsm, with the possible
addition of options; if any of the possible conditions is omitted, it means it is irrilevant for
the rule to match, that is, the file may have any value concerning that condition.

The base conditions are:

❼ func=, that specifies the way in which the file has been accessed, hence the IMA Hook to
be invoked for the file; some of the possible IMA Hooks are:

– BPRM_CHECK for binary programs (“bprm” standing for “BinaryPRograM”);

– MMAP_CHECK or the equivalent FILE_MMAP, for memory-mapped files;

– FILE_CHECK or the equivalent PATH_CHECK, for files opened for reading/writing in the
traditional way;
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❼ mask= specifies permissions of the accessed file; it can have the following values: MAY_READ,
MAY_WRITE, MAY_APPEND, MAY_EXEC; if preceded by the character ^, these values specify the
“inverted” mask;

❼ fsmagic= specifies a filesystem format; it can be an hexadecimal number or the correspond-
ing identifier (such as SYSFS_MAGIC, SELINUX_MAGIC);

❼ fsname= specifies a filesystem name;

❼ fsuuid= specifies a file system UUID;

❼ uid=, uid>, uid< for identifying the user that accessed the file (0 identifies the root user);

❼ euid=, euid>, euid< for identifying the effective user that accessed the file (0 identifies the
root user);

❼ fowner=, fowner>, fowner< for specifying the id of the file owner;

The lsm conditions leverage file’s LSM metadata in order to create more fine graned policies for
limiting file measurements only to system sensitive data; for example, not all files opened by
root for reading are part of the TCB [28]. The LSM specific conditions can be the following six:
subj_user, subj_role, subj_type, obj_user, obj_role, obj_type.

The rules are matched in the order in which they are written in the policy file, so the more
fine grained rules must be specified before the more general ones.

The IMA policy used during testing is the following custom policy:

measure func=BPRM_CHECK mask=MAY_EXEC

measure func=FILE_MMAP mask=MAY_EXEC

A.1.5 Installing Docker Engine

Now you need to install Docker Engine on the attester machine in order to be able to create
and attest Docker containers running on it; for doing that, follow the instructions specified in
the reference documentation of the Docker official website https://docs.docker.com/engine/

install/ubuntu/.

After having correctly installed Docker Engine, run a container, for example nginx:

✩ sudo docker run -d -p 30000:80 nginx

The output of this command is the container full-ID; verify that the IMA module added entries
for this container in the ascii_runtime_measurements file by running the following command:

✩ sudo grep "<container full-ID>" /sys/kernel/security/ima/ascii_runtime_measurements

If all is correct, you should see a list of entries with the cgn field equal to the container full-ID.

A.1.6 Installing Keylime

Keylime requires libtss2 with version >= 2.4.0, while by default Ubuntu 20.04 has libtss2

version 2.3.2, so you need to manually build and install libtss2, tpm2-tools and tpm2-abrmd.
Before starting, install the following dependencies:

✩ sudo apt install libssl-dev swig python3-pip autoconf autoconf-archive \

libglib2.0-dev libtool pkg-config libjson-c-dev libcurl4-gnutls-dev
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TPM 2.0 requirements

1. Manually build and install libtss2 library:

✩ git clone https://github.com/tpm2-software/tpm2-tss.git

✩ cd tpm2-tss

✩ ./bootstrap

✩ ./configure --prefix=/usr

✩ make

✩ sudo make install

2. Manually build and install tpm2-tools:

✩ git clone https://github.com/tpm2-software/tpm2-tools.git

✩ cd tpm2-tools

✩ ./bootstrap

✩ ./configure --prefix=/usr/local

✩ make

✩ sudo make install

3. Manually build and install TPM 2.0 Resource Manager:

✩ git clone https://github.com/tpm2-software/tpm2-abrmd.git

✩ cd tpm2-abrmd

✩ ./bootstrap

✩ ./configure --with-dbuspolicydir=/etc/dbus-1/system.d \

--with-systemdsystemunitdir=/lib/systemd/system \

--with-systemdpresetdir=/lib/systemd/system-preset \

--datarootdir=/usr/share

✩ make

✩ sudo make install

✩ sudo ldconfig

✩ sudo pkill -HUP dbus-daemon

✩ sudo systemctl daemon-reload

Keylime manual installation

Move to the directory containing the version of Keylime provided with the thesis source code,
which is Keylime v6.0.0 with the modifications described in section 6.4, and install the python
scripts:

✩ cd keylime

✩ sudo pip3 install . -r requirements.txt

Copy the Keylime configuration file:

✩ sudo cp keylime.conf /etc/

Add TPM 2.0 Resource Manager user:

✩ sudo useradd --system --user-group tss

Configure TPM Command Transmission Interface (TCTI):

✩ export TPM2TOOLS_TCTI="tabrmd:bus_name=com.intel.tss2.Tabrmd"

Start TPM 2.0 Resource Manager service:

✩ sudo service tpm2-abrmd start
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A.1.7 Configuring Keylime Agent

Once you have correctly installed Keylime, open /etc/keylime.conf:

✩ sudo nano /etc/keylime.conf

In the [general] section, set the receive_revocation_ip parameter to the IP address of the
attester machine, for example:

receive_revocation_ip = 192.168.1.50

The other configuration parameters of the Keylime Agent are located after the [cloud_agent]

tag. Set cloudagent_ip to the IP address of the attester machine, for example:

cloudagent_ip = 192.168.1.50

Set registrar_ip to the IP address of the machine where the Keylime Registrar will run, for
example:

registrar_ip = 192.168.1.81

Set agent_uuid to the UUID of the attester machine, for example:

agent_uuid = UUID1

The tests were performed leaving the default values for the other parameters.

Now, install the Keylime Agent as a systemd service so that it can be managed by using
systemctl. The directory services located in the Keylime root directory contains systemd
service files for the Keylime Verifier, the Keylime Agent and the Keylime Registrar, while the
script services/installer.sh can be used for storing the service files in the systemd path and
enabling them at startup. Edit installer.sh by commenting out the lines related to the Verifier
and the Registrar, as shown below:

# prepare keylime service files and store them in systemd path

sed "s|KEYLIMEDIR|✩KEYLIMEDIR|g" ✩BASEDIR/keylime_agent.service.template > ✙

/etc/systemd/system/keylime_agent.service

#sed "s|KEYLIMEDIR|✩KEYLIMEDIR|g" ✩BASEDIR/keylime_registrar.service.template > ✙

/etc/systemd/system/keylime_registrar.service

#sed "s|KEYLIMEDIR|✩KEYLIMEDIR|g" ✩BASEDIR/keylime_verifier.service.template > ✙

/etc/systemd/system/keylime_verifier.service

# set permissions

chmod 664 /etc/systemd/system/keylime_agent.service

#chmod 664 /etc/systemd/system/keylime_registrar.service

#chmod 664 /etc/systemd/system/keylime_verifier.service

# enable at startup

systemctl enable keylime_agent.service

#systemctl enable keylime_registrar.service

#systemctl enable keylime_verifier.service

Then, move to the Keylime root directory and run the installer.sh script for installing the
keylime_agent.service:

✩ sudo ./services/installer.sh

Start keylime_agent.service:

✩ sudo systemctl start keylime_agent.service

Verify that the status of the keylime_agent.service is active:

✩ sudo systemctl status keylime_agent.service
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A.2 Keylime Verifier and Registrar installation

In this section we are going to configure another machine that will run the Keylime Verifier,
Keylime Registrar and Keylime Tenant components. The tests were performed by running these
three components on the same machine, although they may be installed and run on different
machines. The machine has to be equipped with a TPM 2.0 because these components use the
tpm2-tools for performing some operations; differently from the attester machine, which has
to have a hardware TPM, the TPM 2.0 installed on this machine may also be an emulator as
we only need the functionalities provided by the tpm2-tools. The operative system installed on
the “verifier machine” is Ubuntu Desktop 20.04 LTS (https://ubuntu.com/download/desktop).
Install Keylime by following the instructions described in subsection A.1.6, then customize the
Keylime configuration file as described in the sections below.

A.2.1 Configuring Keylime Registrar

All configuration parameters concerning Keylime Registrar are located after the [registrar] tag
in the /etc/keylime.conf file. Open the file and set the registrar_ip parameter with the IP
address of the host, for example:

registrar_ip = 192.168.1.81

The tests were performed leaving the default values for the other parameters.

A.2.2 Configuring Keylime Verifier

All the configuration parameters concerning Keylime Verifier are located after the [cloud_verifier]
tag in the /etc/keylime.conf file. Open this file and set cloudverifier_ip to the host IP ad-
dress, for example:

cloudverifier_ip = 192.168.1.81

Set registrar_ip to the IP address where the Registrar service will run:

registrar_ip = 192.168.1.81

Set revocation_notifier_ip to the host IP address, for example:

revocation_notifier_ip = 192.168.1.81

The following two parameters are not part of Keylime v6.0.0, they were added for supporting the
proposed solution. Set containers_dependency to the name of the software that launches a con-
tainer; if you installed Docker 20 on the “attester machine”, the dependency is /usr/bin/containerd-shim-runc-v2:

containers_dependency = /usr/bin/containerd-shim-runc-v2

Set containers_dependency_pos to the position (starting by zero) of the container dependency
in the process hierarchy; if you installed Docker 20 on the “attester machine”, the dependency
position is 2:

containers_dependency_pos = 2

The tests were performed leaving the other parameters of the [cloud_verifier] section to their
default values.
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A.2.3 Configuring Keylime Tenant

The configuration parameters related to Keylime Tenant are located after the [tenant] tag in
the /etc/keylime.conf file. Open the file and set cloudverifier_ip to the IP address of the
Verifier:

cloudverifier_ip = 192.168.1.81

Set registrar_ip to the IP address of the Registrar:

registrar_ip = 192.168.1.81

You can check the Trusted Boot of the “attester machine” via the tpm_policy parameter. Read
the current values of the PCRs on the “attester machine” by launching the following command
on it:

✩ tpm2_pcrread

Copy the values of the Trusted Boot PCRs, with indexes between 0 and 7, of the SHA256 bank
in a JSON object with the following format:

{

"0": ["23BD73EC5A35CB441D443DA4E3A234C484845A4E16C1CA3520D8BB8344CE77E3"],

"1": ["73D3A3D17547D7B057AB3FF522F964466640AD268B45730A8E841134A2966268"],

"2": ["B3BD342D6060FFE1EBDDD2C7A3D38EDF98CEBC95AC483F9AFEC19A51CA37AB30"],

... ...

"7": ["4736A834EB08C6C36BA74A2548037438AB9F21D4CAAF6A15CFCE3E3F9F81FD75"]

}

Assign this JSON object to the tpm_policy parameter, writing it in a single line:

tpm_policy = {"0": ["23B..."], "1":["73D..."], "2":["B3B..."], ..., "7":["473..."]}

The tests were performed leaving the other parameters of the [tenant] section to their default
values.

Keylime Tenant checks the validity of the EK certificate sent by the Agent, before sending
the encrypted payload and the U share to it. It performs this check by verifying that the EK
certificate was issued by a CA whose certificate is stored in the tpm_cert_store, a directory
containing the trusted issuers’ certificates. The location of this directory can be configured via the
tpm_cert_store parameter, which by default has value /var/lib/keylime/tpm_cert_store/.
Move to the Keylime root directory and copy the certificates contained in the tpm_cert_store

directory inside /var/lib/keylime/tpm_cert_store/:

✩ sudo mkdir /var/lib/keylime/tpm_cert_store

✩ sudo cp -R ./tpm_cert_store /var/lib/keylime/tpm_cert_store

A.2.4 Installing Verifier and Registrar as systemd services

Edit the file services/installer.sh, located in the Keylime root directory, and comment out
the lines related to the keylime agent.service, as shown below:

# prepare keylime service files and store them in systemd path

#sed "s|KEYLIMEDIR|✩KEYLIMEDIR|g" ✩BASEDIR/keylime_agent.service.template > ✙

/etc/systemd/system/keylime_agent.service

sed "s|KEYLIMEDIR|✩KEYLIMEDIR|g" ✩BASEDIR/keylime_registrar.service.template > ✙

/etc/systemd/system/keylime_registrar.service

sed "s|KEYLIMEDIR|✩KEYLIMEDIR|g" ✩BASEDIR/keylime_verifier.service.template > ✙

/etc/systemd/system/keylime_verifier.service

# set permissions

#chmod 664 /etc/systemd/system/keylime_agent.service

chmod 664 /etc/systemd/system/keylime_registrar.service
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chmod 664 /etc/systemd/system/keylime_verifier.service

# enable at startup

#systemctl enable keylime_agent.service

systemctl enable keylime_registrar.service

systemctl enable keylime_verifier.service

Install and enable keylime_registrar.service and keylime_verifier.service by running the
installer.sh script:

✩ sudo ./services/installer.sh

Start the services:

✩ sudo systemctl start keylime_registrar.service

✩ sudo systemctl start keylime_verifier.service

Verify that they are active:

✩ sudo systemctl status keylime_registrar.service

✩ sudo systemctl status keylime_verifier.service

A.2.5 Starting remote attestation with Keylime

Now you can verify that the Keylime framework is able to attest a host system and the contain-
ers running on it. However, in order to perform runtime attestation, you need to provide the
framework with the whitelists related to host system and containers.

Connect to the “attester machine” and launch a couple of containers, for example:

✩ sudo docker run -d -p 50000:80 nginx

✩ sudo docker run -it ubuntu /bin/bash

Let us suppose that the “nginx container” has ID bbe357c4901a and the “ubuntu container” has
ID 019f3a57bcff. We can create the containers’ whitelists by using the IMA ML; obviously,
whitelists generated in this way are only useful for debug purposes. Select all the entries related
to the “ubuntu container” inside the IMA ML through the following command:

✩ grep "019f3a57bcff" /sys/kernel/security/ima/ascii_runtime_measurements

Create a text file, named for example “allowlist ubuntu”; then, for each entry of the grep output
where the “019f3a57bcff” string is highlighted in the first twelve characters of the cgn field, copy
the file hash and the file path fields inside the “allowlist ubuntu” file with the following
format:

04a484f27a4b485b28451923605d9b528453d6c098a5a5112bec859fb5f2eea9 /usr/bin/bash

175a52497e658e138f7dce3fbb3ba7d794f302dc7be29f9c9ca79a8cb377554c /usr/bin/groups

e40a8566226636f49d034e6a8acd1b2ffea2c1038eb3d4cf7671a2702f23a139 /usr/bin/dircolors

...

Repeat the same procedure for the “nginx container”.

Then create a whitelist for the host system by using the program whitelist_generator.cpp,
provided with the thesis source code. This program generates the whitelist corresponding to a
specific path received as parameter. It creates, in the current directory, a file named “whitelist”
containing the sha256 hash of all the files found in the path specified as parameter. Compile the
program:

✩ g++ -std=c++17 -L/usr/lib/x86_64-linux-gnu/ \

-o whitelist_generator whitelist_generator.cpp -lssl -lcrypto

In order to create the whitelist corresponding to the path /usr/bin/, launch on the “attester
machine” the program as follows:
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✩ ./whitelist_generator /usr/bin/

Now you need to copy the whitelists of the host and the containers on the “verifier machine”.
In order to do that, launch on the “verifier machine” the following command:

✩ nc -l -p 1234 > ./whitelist

If you enabled a firewall, ensure that incoming connections on port 1234 are allowed. Supposing
that the “verifier machine” has IP address 192.168.1.81, launch on the “attester machine” the
command:

✩ nc -w 3 192.168.1.81 1234 < ./whitelist

Repeat the same procedure for the container whitelists, “allowlist ubuntu” and “allowlist nginx”.

You created for the host system a whitelist related only to the files contained in the path
/usr/bin, so you need to specify an exclude list in order to exclude all files located in paths other
than /usr/bin during the remote attestation. On the “verifier machine”, create a file named
“exclude host” and write inside it the following regular expression:

^(?!/usr/bin/).*✩

Then create a file, named for example “containers list”, that contains, in each row, the container
ID followed by the path to the container-specific whitelist:

019f3a57bcff /path/to/allowlist_ubuntu

bbe357c4901a /path/to/allowlist_nginx

Finally, create a file that will be sent to the agent after having been ciphered with a random key
Kb. For the current test, create an empty file named “payload”.

Now you can use the Keylime Tenant CLI, described in more detail in appendix B, for provi-
sioning the verifier with the new agent and starting the remote attestation process:

✩ sudo keylime_tenant -c add -u UUID1 -t 192.168.1.50 \

-f payload \

--allowlist whitelist \

--exclude exclude_host \

--cont_list containers_list

If all went well, you will see the message “Quote from 192.168.1.50 validated” as last output line:
this means that the remote attestation process started. You can check the Agent status via:

✩ sudo keylime_tenant -c status -u UUID1

Instead, if Keylime Tenant does not find the CA issuer certificate in the tpm_cert_store direc-
tory, you will see the message “TPM Quote from cloud agent is invalid for nonce: <nonce string>”
and the remote attestation process does not start because Keylime Tenant does not trust the TPM
of the “attester machine”. In this case, verify that the TPM of the “attester machine” has some
EK certificates in its NVRAM; the TPM of the machine used for testbeds has two certificates,
which can be saved in files by using the following command:

✩ tpm2_getekcertificate -o RSA_EK_cert.bin -o ECC_EK_cert.bin

You need to retrieve the certificates of the CA issuers of the EK certificates and store them in
the tpm_cert_store directory. Visualize the EK certificates in text format so that you can find
where the CA issuer certificates can be downloaded:

✩ openssl x509 -inform der -in RSA_EK_cert.bin -noout -text

...

Authority Information Access:

CA Issuers - URI:http://pki.infineon.com/OptigaRsaMfrCA004/OptigaRsaMfrCA004.crt

...
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On the “verifier machine”, download the CA Issuer certificate and save it in a file:

✩ curl http://pki.infineon.com/OptigaRsaMfrCA004/OptigaRsaMfrCA004.crt \

-o OptigaRsaMfrCA004.crt

Store the downloaded certificate, in PEM format, inside the /var/lib/keylime/tpm_cert_store
directory of the “verifier machine”:

✩ openssl x509 -inform der -in ./OptigaRsaMfrCA004.crt \

-outform pem -out /var/lib/keylime/tpm_cert_store/OptigaRsaMfrCA004.pem

Repeat the same procedure for the ECC_EK_cert.bin certificate. Now verify that the agent provi-
sioning is successfully completed by launching the following command on the “verifier machine”:

✩ sudo keylime_tenant -c update -u UUID1 -t 192.168.1.50 \

-f payload \

--allowlist whitelist \

--exclude exclude_host \

--cont_list containers_list

Check that the output message is “Quote from 192.168.1.50 validated”.

Testing Keylime behaviour

When the remote attestation process starts, if the boot and runtime of the host system are trusted,
the Agent will have status “Get Quote” and the attestation is periodically performed; if the
continers are trusted, they will have status “Trust”. The log files of the Verifier and the Registrar
are located at /var/log/keylime/cloudverifier.log and /var/log/keylime/registrar.log,
respectively, on the “verifier machine”; the log file of the Agent is available, on the “attester
machine”, at /var/log/keylime/cloudagent.log. You can check the log files of Verifier and
Agent to make sure that the Verifier periodically performs a new attestation of the Agent. Now
you can verify that the runtime integrity check is correctly performed for both the containers and
the host system. Launch a new command in the “ubuntu container”, for example create an empty
file:

✩ root@019f3a57bcff:/# touch prova.txt

Now verify that the status of the container “019f3a57bcff” became “Untrust”, but the status of
the Agent is still “Get Quote” and the periodic attestation is not stopped:

✩ sudo keylime_tenant -c status -u UUID1

You can also verify the correct runtime attestation of the host system by creating a simple script
on the “attester machine”, saving it in the path /usr/bin and launching it: you will see that
the status of the Agent will become “Invalid Quote” and the periodic attestation is stopped. Do
other tests for verifying the behaviour described in section 6.4.

A.3 Keylime Tenant Webapp installation

In addition to the Tenant CLI, Keylime provides also the Tenant Webapp, a web service that
provides the same functionalities of the Tenant CLI through REST APIs, useful when Keylime is
used via software tools like the Trust Monitor.

The parameters used by the Tenant Webapp are located in the [tenant] and [webapp]

sections of the /etc/keylime.conf file. On the “verifier machine”, open this file and configure
the parameters of the [tenant] section as described in A.2.3. Then, in the [webapp] section,
set the webapp_ip to the IP address of the “verifier machine” and, if you will install the Trust
Monitor on the same machine of the Tenant Webapp, set webapp_port to a port other than 443;
this is needeed because the reverseProxy of the Trust Monitor binds to port 443:
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webapp_ip = 192.168.1.81

webapp_port = 444

Then install the Keylime Tenant Webapp as systemd service; create, in the /etc/systemd/system
directory, a file named keylime_webapp.service:

✩ sudo nano /etc/systemd/system/keylime_webapp.service

Put inside this file the following content:

[Unit]

Description=The Keylime Tenant Webapp

After=network.target

[Service]

ExecStart=/usr/local/bin/keylime_webapp

[Install]

WantedBy=default.target

Reload the service files to include the new service:

✩ sudo systemctl daemon-reload

Enable the service on every reboot:

✩ sudo systemctl enable keylime_webapp.service

Start the service:

✩ sudo systemctl start keylime_webapp.service

Ensure that the status of the service is active:

✩ sudo systemctl status keylime_webapp.service

The log file of the Tenant Webapp is available at /var/log/keylime/tenant_webapp.log. The
Tenant Webapp provides also a web page at https://<webapp_ip>:<webapp_port>/webapp/

URI.

Now you can use the Keylime framework via the Tenant Webapp; install Postman on your
machine for sending REST requests to it; see appendix D for more information about Tenant
Webapp REST APIs. For example, if you previously registered the agent UUID1, you can remove
it with a DELETE request at https://<webapp_ip>:<webapp_port>/agents/UUID1 URI, with
Postman or with curl:

✩ curl -X -k DELETE https://192.168.1.81:444/agents/UUID1

You can register the agent again by sending a POST request at the same URI; since the agent
registration requires to send, in the request body, the host and containers whitelists, you can do
it more easily with a script like the following one, by customizing it at your needs:

#!/usr/bin/python3

# -*- coding: utf-8 -*-

import requests

import sys

import json

if __name__ == ’__main__’:

data = {

"agent_ip": "192.168.1.50",

"file_data": "",

"containers": {

"019f3a57bcff": {},

"bbe357c4901a": {}
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}

}

#read the host whitelist

with open(’whitelist’, ’r’) as f:

data["a_list_data"] = f.read().splitlines()

#read the host exclude list

with open(’exclude_host’, ’r’) as f:

data["e_list_data"] = f.read().splitlines()

#read the ubuntu container whitelist

with open(’allowlist_ubuntu’, ’r’) as f:

data["containers"]["019f3a57bcff"]["a_list_data"] = f.read().splitlines()

#read the nginx container whitelist

with open(’allowlist_nginx’, ’r’) as f:

data["containers"]["bbe357c4901a"]["a_list_data"] = f.read().splitlines()

json_body = json.dumps(data)

response = requests.post("https://192.168.1.81:444/agents/UUID1", \

data=json_body, verify=False)

print("response code: %d" % response.status_code)

sys.exit(0)

Verify that the remote attestation started by consulting the log file of the verifier.

A.4 Whitelists Web Service installation

Move to the directory containing the source code of the Whitelists Web Service and install it on
the “verifier machine”:

✩ cd ra-whitelists

✩ sudo pip3 install . -r requirements.txt

Copy the Whitelists Web Service configuration file in the /etc/ directory:

✩ sudo cp whitelists.conf /etc/

The Whitelists Web Service configuration parameters are located after the [web_service] tag in
the /etc/whitelists.conf file. Open this file and set the webservice_ip parameter to the IP
address of the “verifier machine”:

webservice_ip = 192.168.1.81

Set automatically_update to False so that the server does not populate the database at start
up, procedure which may take a long time:

automatically_update = False

Left the other parameters to their default values and save the file modification.

Copy the whitelists-packages-sources.list file in the /etc/ directory:

✩ sudo cp whitelists-packages-sources.list /etc/

This file contains a list of official repositories from which the Whitelists Web Service will download
system packages and has the same syntax as /etc/apt/sources.list; by default, it contains the
following repositories:
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deb [arch=amd64,ppc64el,arm64,s390x] https://download.docker.com/linux/ubuntu focal ✙

stable

deb [arch=amd64] http://archive.ubuntu.com/ubuntu/ focal main restricted universe ✙

multiverse

deb [arch=amd64] http://archive.ubuntu.com/ubuntu/ focal-security main restricted ✙

universe multiverse

deb [arch=amd64] http://archive.ubuntu.com/ubuntu/ focal-updates main restricted ✙

universe multiverse

deb [arch=amd64] http://archive.ubuntu.com/ubuntu/ focal-backports main restricted ✙

universe multiverse

You can exclude a repository by adding # at the beginning of its line; you can add other repositories
in this file if you need, making sure to add the [arch=...] option in each line.

Copy the whitelists-sources-names.txt file in the /etc/ directory:

✩ sudo cp whitelists-sources-names.txt /etc/

This file associates the origin and the name of the software to each repository specified in the
whitelists-packages-sources.list. The default content of this file is the following:

http://archive.ubuntu.com/ubuntu/ Ubuntu Operative System

https://download.docker.com/linux/ubuntu Ubuntu Docker

If you added new reposetories in the file whitelists-packages-sources.list, you have to spec-
ify the origin and the software name for each of them in the file whitelists-sources-names.txt.

Finally, copy the whitelists-container-images.txt file in the /etc/ directory:

✩ sudo cp whitelists-container-images.txt /etc/

This file specifies a list of Docker images you want to create a whitelist for, with the following
information:

1. the method used for retrieving the image, pull or build;

2. the image-name if the method is pull, the path or the URI related to the container source
code if the method is build;

3. the image-identifier that will be used for referring the image.

By default, this file has the following content:

pull ubuntu ubuntu

pull fedora fedora

pull nginx nginx

build https://github.com/keylime/keylime.git#:docker Keylime

When the server will start, it will create a whitelist for ubuntu, fedora, nginx and Keylime. You
can comment out lines in this file by adding # at the beginning of the line, or you can add images
to it.

Now install Docker Engine on the “verifier machine” (refer to the official web site https://

docs.docker.com/engine/install/). After installation, ensure that Docker Engine is configured
to use OverlayFS storage driver (refer to https://docs.docker.com/storage/storagedriver/

overlayfs-driver/).

Then install the Whitelists Web Service as systemd service; in the /etc/systemd/system

directory, create a file named whitelists_web_service.service:

✩ sudo nano /etc/systemd/system/whitelists_web_service.service

Put inside it the following content:
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[Unit]

Description=The Whitelists Web Service

After=network.target

[Service]

ExecStart=/usr/local/bin/whitelists_web_service

[Install]

WantedBy=default.target

Now reload the service files to include the new service:

✩ sudo systemctl daemon-reload

Enable the service on every reboot:

✩ sudo systemctl enable whitelists_web_service.service

Start the service:

✩ sudo systemctl start whitelists_web_service.service

Ensure that the status of the service is active:

✩ sudo systemctl status whitelists_web_service.service

Now you can send requests to the Whitelists Web Service by using the REST APIs described in
appendix E. The log files of the service are located in the /var/log/whitelists/ directory.

A.4.1 Using Whitelists Web Service with Keylime

Now we are going to use the Whitelists Web Service for creating the whitelists related to host
system and containers, in order to use them with Keylime. First of all, you need the list of all
packages installed on the “attester machine” in order to create a whitelsit for the host system.
For doing that, upgrade the installed packages on the “attester machine”:

✩ sudo apt update

✩ sudo apt upgrade

Then launch the script create_list_installed_packages.py, contained in the root directory
of the Whitelists Web Service source code, on the “attester machine”; this script creates a file
named packages_list.txt, each line of which refers to an installed package and has three fields:

1. the package name;

2. the package version;

3. the architecture;

For example:

accountsservice 0.6.55-0ubuntu12~20.04.4 amd64

adduser 3.118ubuntu2 all

alsa-topology-conf 1.2.2-1 all

alsa-ucm-conf 1.2.2-1ubuntu0.8 all

amd64-microcode 3.20191218.1ubuntu1 amd64

...

Now you have to create, on the Whitelists Web Service, the resources corresponding to the host
whitelist and to the container whitelists, so that Keylime can access them when you provision the
new agent. For creating the whitelist of the host UUID1, you have to send a PUT request at the
resource /hosts/UUID1 of the Whitelists Web Service; the body of the PUT request is a JSON
object like the following:
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{

"architecture": "amd64",

"hash_algorithms": "sha256",

"packages_list": "accountsservice 0.6.55-0ubuntu12~20.04.4 amd64\n

adduser 3.118ubuntu2 all\n

alsa-topology-conf 1.2.2-1 all\n

alsa-ucm-conf 1.2.2-1ubuntu0.8 all\n

amd64-microcode 3.20191218.1ubuntu1 amd64\n

..."

}

where:

❼ “architecture” corresponds to the architecture of the “attester machine”;

❼ “hash algorithms” specifies the hash algorithm for the digests contained in the whitelist;

❼ “packages list” is a string containing the list of packages installed on the “attester machine”,
with the format described above.

On the “attester machine” you already created an “ubuntu container” and an “nginx container”,
and the Whitelists Web Service already created a whitelist for these images; so you only need
to create the whitelist resources corresponding to the containers by sending a PUT request at
/containers/<container-ID> URI. Use the following Python script for creating host and con-
tainer whitelists, launching it in the same directory where the packages_list.txt file is located:

#!/usr/bin/python3

# -*- coding: utf-8 -*-

import requests

import sys

import json

if __name__ == ’__main__’:

data = {

"architecture": "amd64",

"hash_algorithms": "sha256"

}

with open(’packages_list.txt’, ’r’) as f:

data["packages_list"] = f.read()

json_body = json.dumps(data)

response = requests.put("http://192.168.1.81:8080/hosts/UUID1", data=json_body)

print("PUT /hosts/UUID1 response code: %d" % response.status_code)

data = {

"image_id": "ubuntu",

"hash_algorithms": "sha256"

}

json_body = json.dumps(data)

response = requests.put("http://192.168.1.81:8080/containers/019f3a57bcff", \

data=json_body)

print("PUT /containers/019f3a57bcff response code: %d" % response.status_code)

data = {

"image_id": "nginx",

"hash_algorithms": "sha256"

}

json_body = json.dumps(data)

response = requests.put("http://192.168.1.81:8080/containers/bbe357c4901a", \

data=json_body)

print("PUT /containers/bbe357c4901a response code: %d" % response.status_code)
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sys.exit(0)

The Whitelists Web Service takes a while for downloading all the packages specified in the request
for creating the host whitelist; when the script finishes, verify that the three whitelists have been
created and can be downloaded:

✩ curl http://192.168.1.81:8080/hosts/UUID1

✩ curl http://192.168.1.81:8080/containers/019f3a57bcff

✩ curl http://192.168.1.81:8080/containers/bbe357c4901a

Now you are ready to use Keylime with the Whitelists Web Service. On the “verifier machine”,
modify the containers_list file by substituting the path to the allowlist with the URI of the
container whitelists:

019f3a57bcff http://192.168.1.81:8080/containers/019f3a57bcff

bbe357c4901a http://192.168.1.81:8080/containers/bbe357c4901a

Finally, launch the following command for updating the agent UUID1 in Keylime:

✩ sudo keylime_tenant -c update -u UUID1 -t 192.168.1.50 \

-f payload \

--allowlist-url http://192.168.1.81:8080/hosts/UUID1

--cont_list ./containers_list

Verify that the attestation is being performed correctly.

A.5 Trust Monitor installation

The TM framework requires Docker Compose to run, so first of all install Docker Compose on the
“verifier machine” (refer to the official web site https://docs.docker.com/compose/install/).

When you register an host in the TM with the DriverKeylime, it is necessary that the Keylime
Verifier, Registrar, Tenant Webapp and the Whitelists Web Service are running, so you need to
install them on the “verifier machine”; follow the instructions described in sections A.2, A.3 and
A.4, respectively.

Then, you need to configure a key and a certificate in the ssl directory of the reverseProxy
application. Move to the TM root directory and launch the following command for creating a
new key and certificate:

✩ openssl req -newkey rsa:4096 \

-x509 \

-sha256 \

-days 3650 \

-nodes \

-out ./reverseProxy/ssl/certs/test.ra.trust.monitor.chain \

-keyout ./reverseProxy/ssl/private/test.ra.trust.monitor.key

If you create the key and certificate files with names other than test.ra.trust.monitor.chain

and test.ra.trust.monitor.key, respectively, you have to configure them inside the configura-
tion file ./reverseProxy/conf/conf.d/test.ra.trust.monitor.vhost.conf.

Now, open the file ./trustMonitor/trust_monitor_django/settings.py and modify the
following parameters with the IP address of the Whitelists Web Service and the Keylime Tenant
Webapp:

WHITELISTS_SERVICE_LOCATION = ’192.168.1.81’

KEYLIME_TENANT_LOCATION = ’192.168.1.81’

Then, from the TM root directory, launch the following command for deploying the TM:

✩ sudo docker-compose up --build
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At the end of the build process, run the following command from a different shall, still from the
TM root directory, for listing all the containers related to the TM:

✩ sudo docker-compose ps

A.5.1 Using TM with Keylime

If you followed the steps described in the previous sections, you have the agent UUID1 already
registered in the Keylime framework so, before registering it through the TM, you have to remove
it with the following command:

✩ sudo keylime_tenant -c delete -u UUID1

Now, register the agent UUID1 in TM and in Keylime by launching a script like the following
one, from a directory containing the packages_list.txt file, which is the file containing the list
of packages installed on the “attester machine”:

#!/usr/bin/python3

# -*- coding: utf-8 -*-

import requests

import sys

import json

if __name__ == ’__main__’:

#Send request to Trust Monitor

data = {

"architecture": "amd64",

"hash_algorithms": "sha256"

}

with open(’packages_list.txt’, ’r’) as f:

data["packages_list"] = f.read()

distribution = json.dumps(data)

data = {

"hostName": "UUID1",

"address": "192.168.1.50",

"distribution": distribution,

"driver": "Keylime",

"containers": "019f3a57bcff ubuntu\nbbe357c4901a nginx",

"allowUnknownContainers": 0

}

response = requests.post("https://192.168.1.81:443/register_node/", \

data=data, verify=False)

print("response code: %d" % response.status_code)

sys.exit(0)

When the agent registration completes, verify the agent status through the TM by sending, with
Postman, a POST request at https://192.168.1.81:443/attest_node/, with a JSON body
like the following one:

{

"node_list": [ { "node": "UUID1" } ]

}
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Keylime Tenant CLI

This appendix focuses on how to use the Keylime Tenant CLI, a utility that allows a user to
provision an agent to the Keylime framework. The options described below are those present
in Keylime v6.0.0 and those added with this work. Keylime Tenant CLI can be used via the
keylime_tenant command, which can receive several options. You can instruct keylime_tenant
about the particular operation you want to perform through -c, or --command, option which takes
one of the following values:

❼ -c add (default value), for registering a new agent in the CV;

❼ -c delete, for removing an agent from the CV;

❼ -c update, for updating an agent in the CV; it is a shortcut for removing and then register
again an agent with id <uuid>, so it is equivalent to perform:

✩ sudo keylime_tenant -c delete -u <uuid>

✩ sudo keylime_tenant -c add -u <uuid>...

❼ -c status, for retrieving the current status about an agent;

❼ -c list, for retrieving the list of all agents currently registered in the CV;

❼ -c reactivate, for restarting the periodic attestation of an agent which previously failed
the integrity check;

❼ -c reglist, for retrieving the list of all agents currently registered in the registrar;

❼ -c regdelete, for removing an agent from the registrar.

The following values are not part of Keylime v6.0.0 and were added for managing containers,
allowlists and exclude lists:

❼ -c allow_unknown_cont, for allowing the execution of unregistered containers on an agent;

❼ -c forbid_unknown_cont, for forbidding the execution of unregistered containers on an
agent;

❼ -c allowlist, for retrieving or updating the allowlist of hosts and containers;

❼ -c exclude, for retrieving or updating the exclude list of hosts and containers;

❼ -c containers, for managing the containers associated to an agent.

The value assigned to -c option determines the list of further parameters that can be passed to
the keylime_tenant command.
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B.1 Adding a new agent to the CV

The command keylime_tenant -c add can take the following paramenters:

❼ -u <agent_uuid> or --uuid <agent_uuid>, for specifying the UUID of the new agent; if
not specified, the default UUID is “D432FBB3-D2F1-4A97-9EF7-75BD81C00000”;

❼ -v <verifier_ip> or --cv <verifier_ip>, for specifying the IP address of the verifier;
if not specified, the default <verifier ip> is the one assigned to the cloudverifier_ip

parameter, in the [tenant] section of the /etc/keylime.conf file;

❼ -t <agent_ip> or --targethost <agent_ip>, it is the agent IP address and it is manda-
tory;

❼ -tp <agent_port> or --targetport <agent_port>, it is the port on which the agent’s
web service is listening; if not specified, the default agent port is the one assigned to the
cloudagent_port parameter, in the [cloud_agent] section of the /etc/keylime.conf file;

❼ --cv_targethost <agent_ip>, it is the agent IP address that will be sent to the CV; if not
specified, the agent IP address sent to the verifier is the one received through -t <agent_ip>

option;

❼ --allowlist /path/to/host_whitelist, it is the path to the file that contains the host
whitelist; if not specified, the whitelist considered will be the content of the file whose path is
assigned to the ima_allowlist parameter, in the [tenant] section of /etc/keylime.conf
file; if you do not need to perform runtime integrity check but you want to verify only the
trusted boot, assign an empty string to ima_allowlist and do not add the --allowlist

option; a whitelist file has to have the format shown below:

hash_file1 /path/to/file1

hash_file2 /path/to/file2

...

❼ --exclude /path/to/host_exclude_list, it is the path to the file that contains the host
exclude list; if not specified, the exclude list will be the content of the file whose path is as-
signed to the ima_excludelist parameter, in the [tenant] section of /etc/keylime.conf
file; if the file does not exist, the host exclude list will be empty; the format of the file is a
list of regular expressions that will be used to match the path of the files that do not need
to be attested, for example:

# enter regex to match file paths to exclude from IMA

/var/log/wtmp

/root/etc/fstab

/boot/grub/grubenv

/sys/fs/.*

❼ --sign_verification_key ["/path/to/key1", "/path/to/key2", ...], it is a list of
strings, each of them is the path to a file containing a public key that will be used for the in-
tegrity check of the files when the IMA template is “ima-sig”; in this case, the attestation can
be performed by using these public keys and the signature field of the “ima-sig” template,
without considering the whitelist; if not specified, a default empty list is considered;

❼ --tpm_policy {"<pcr_idx>": ["<hash1>", "<hash2>", ...], ...}, it is a JSON ob-
ject that specifies all the TPM PCRs that you want to check in the quote and the values that
you consider trusted for them, that is, it allows to specify a “whitelist” associated to each
PCR; if not specified, the default tpm_policy associated to the new agent will be the one
assigned to the tpm_policy parameter, in the [tenant] section of the /etc/keylime.conf
file; in the tpm_policy you can specify any PCR except the IMA PCR (by default PCR
10);
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❼ --vtpm_policy {"<vpcr_idx>": ["<hash1>", "<hash2>", ...], ...}, it is a JSON ob-
ject that specifies all the vTPM PCRs that you want to check in the agent’s deep-quote and
the values that you consider trusted for them; if not specified, the default value is the one
assigned to the vtpm_policy parameter, in the [tenant] section of the /etc/keylime.conf
file; though it is possible to specify this option, it has no effect since deep-quotes are not
supported starting from Keylime v6.0.0;

❼ --verify: this parameter does not need a value, just its presence specifies that you want
to check if the agent has correctly derived the bootstrap key Kb, which is the key used
to cypher the payload; this check is performed by sending a challenge to the agent, which
responds with the HMACKb

(challenge); if this option is not specified, the key derivation
check is not performed;

❼ --mb_refstate /path/to/refstate, it is the path to a file that contains a measured boot
reference state policy; if the value is “default”, the measured boot reference state policy
associated to the new agent will be the file whose path is assigned to the mb_refstate

parameter, in the [tenant] section of the /etc/keylime.conf file; this parameter can be
specified but is not used in Keylime v6.0.0, it is used starting from Keylime v6.1.0.

The following options concern the payload that the tenant will send to the agent; they are mutually
exclusive, so if one of them is specified the others are not admitted, but at least one of them is
mandatory:

❼ -f /path/to/file or --file /path/to/file, it is the path to a file that contains the
payload you want to deliver to the agent; the file content does not need to be ciphered, the
tenant will automatically cipher it with a random Kb;

❼ -k /path/to/Kb or --key /path/to/Kb, it is the path to a file that contains the bootstrap
key Kb together with its splits U and V, with the following format:

"Kb in base64"

"U in base64"

"V in base64"

-k option requires the presence of the option -p /path/to/ciphered_payload or --payload
/path/to/ciphered_payload, whose value is the path to a file containing the data to be
delivered to the agent, ciphered with the Kb specified through the -k option;

❼ --cert /path/to/ca_dir, it is the path to the CA directory for the agent certificate and
keys; if set to “default”, the used directory is /var/lib/keylime/ca;

– if the specified directory does not exist, or it does not contain a file named “cacert.crt”,
then a new CA directory is created at that path;

– if the diretory does not contain a file named “<agent uuid>-private.pem”, then a new
certificate is created for the agent;

– if the directory does not contain a file named “RevocationNotifier-private.pem”, then
a new certificate is created for the revocation notifier; the certificate will be sent to
the agent in order to allow it to check the validity of the revocation messages sent by
the revocation notifier, while the private key will be sent to the verifier for signing the
revocation messages;

the content of the CA directory is written in a zip file, together with the content of a directory
specified through the --include /path/to/payload_dir option, which is considered only
when the --cert option is present; this zip file is then cyphered with a Kb automatically
generated by the tenant and delivered to the agent.

Finally, the following options have been added with the thesis work:

❼ --cont_list /path/to/file allows to register containers associated with the new agent;
it is the path to a text file, whose format is as follows:
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019f3a57bcff ./allowlist_019f3a57bcff ./exclude

bbe357c4901a ./allowlist_bbe357c4901a ./exclude_bbe357c4901a

a75524bd319f http://allowlist_server:8080/allowlist_a75524bd319f

...

each line can contain three fields:

1. the container ID;

2. the path to the whitelist of the container or the URL from which to download the
whitelist;

3. the path to the exclude list of the container (optional);

if this parameter is not specified, the agent will have no associated container;

❼ --allow_unknown_containers, it does not require a value, just its presence specifies that
the agent is allowed to run unregistered containers without being considered untrusted by
the CV; if not specified, unregistered containers are not admitted for the agent;

❼ --allowlist-url <http://remote_server:port/allowlist>, it is the URL of a remote
allowlist; the response body of the HTTP GET performed to that URL has to be in the
format of the file specified via --allowlist; if this option is present, --allowlist can not
be specified.

Some agent provisioning examples are listed below.

1. The following command tells keylime to provision a new agent at 192.168.1.50 with id UUID1
and talk to a verifier whose IP is specified in the /etc/keylime.conf file. It uses the contents
of “allowlist host” and “exclude list” files as whitelist and exclude list associated with the
host system, respectively. Finally, it encrypts a file named payload and sends it to the new
agent:

✩ sudo keylime_tenant -c add -u UUID1 -t 192.168.1.50 \

-f payload \

--allowlist allowlist_host \

--exclude exclude_list

2. The following command, as the previous one, tells keylime to provision a new agent at
192.168.1.50 with id UUID1 and talk to a verifier whose IP is specified in the configuration
file. It uses the contents of “allowlist host” and “exclude host” files as whitelist and exclude
list associated with the host system, respectively. It associates with the new agent the list
of containers specified in the “containers list” file where, for each container, the ID, the
whitelist and the exclude list are specified. Finally, it encrypts and sends to the agent a .zip
file containing:

❼ the certificates and the private key contained in /var/lib/keylime/ca;

❼ all the files contained in the ./payload_dir directory.

✩ sudo keylime_tenant -c add -u UUID1 -t 192.168.1.50 \

--cert default --include ./payload_dir \

--allowlist allowlist_host \

--exclude exclude_host \

--cont_list containers_list

3. The following command tells keylime to provision a new agent at 192.168.1.50 with id
UUID1 and talk to a verifier at 192.168.1.81. It downloads the host whitelist from the URL
“http://192.168.1.81:8080/allowlist host” and uses the content of the “exclude host” file as
host exclude list. It associates with the new agent the list of containers specified in the
“containers list” file where, for each container, the ID, the whitelist and the exclude list are
specified. It admits unregistered containers on the host system. Moreover, it sends to the
agent the file payload ciphered with the Kb specified in the file keys:

132



User’s manual: Keylime Tenant CLI

✩ sudo keylime_tenant -c add -u UUID1 -t 192.168.1.50 -v 192.168.1.81 \

-k keys -p payload \

--allowlist-url http://192.168.1.81:8080/allowlist_host \

--exclude exclude_host \

--cont_list containers_list \

--allow_unknown_containers

B.2 Removing an agent from the CV

The command keylime_tenant -c delete can take the following options:

❼ -u <agent_uuid> or --uuid <agent_uuid>, it specifies the id of the agent to be cancelled;
if not specified, the default UUID “D432FBB3-D2F1-4A97-9EF7-75BD81C00000” is con-
sidered;

❼ -v <verifier_ip> or --cv <verifier_ip>, it specifies the IP address of the verifier where
the agent has to be cancelled; if not specified, the default <verifier ip> is the one assigned
to the cloudverifier_ip parameter, in the [tenant] section of the /etc/keylime.conf

file.

Some agent deletion examples are listed below.

1. The following command asks a verifier, whose IP is specified in the /etc/keylime.conf file,
to stop requesting attestations for the agent UUID1 and remove it from the database:

✩ sudo keylime_tenant -c delete -u UUID1

2. The following command asks a verifier at 192.168.1.81 to stop requesting attestations for
the agent UUID1 and remove it from the database:

✩ sudo keylime_tenant -c delete -u UUID1 -v 192.168.1.81

B.3 Updating an agent in the CV

The command keylime_tenant -c update takes the same options as the keylime_tenant -c

add command, since it internally performs the agent deletion followed by a new registration. See
section B.1 for a description of the available options for updating an agent.

B.4 Checking the current status of an agent

The command keylime_tenant -c status can take the following options:

❼ -u <agent_uuid> or --uuid <agent_uuid>, it specifies the UUID of the agent whose sta-
tus you want to check; if not specified, the default UUID “D432FBB3-D2F1-4A97-9EF7-
75BD81C00000” is considered;

❼ -v <verifier_ip> or --cv <verifier_ip>, it specifies the IP address of the verifier where
the agent is registered; if not specified, the default <verifier ip> is the one assigned to the
cloudverifier_ip parameter, in the [tenant] section of the /etc/keylime.conf file.

Some examples of checking the status of an agent are listed below.

1. The following command asks a verifier, whose IP is specified in the /etc/keylime.conf file,
about the current status of the agent UUID1:
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✩ sudo keylime_tenant -c status -u UUID1

2. The following command asks a verifier at 192.168.1.81 about the current status of the agent
UUID1:

✩ sudo keylime_tenant -c status -u UUID1 -v 192.168.1.81

B.5 Reactivating an agent

The command keylime_tenant -c reactivate can take the following options:

❼ -u <agent_uuid> or --uuid <agent_uuid>, it specifies the UUID of the agent whose at-
testation you want to be reactivated; if not specified, the default UUID “D432FBB3-D2F1-
4A97-9EF7-75BD81C00000” is considered;

❼ -v <verifier_ip> or --cv <verifier_ip>, it specifies the IP address of the verifier where
the agent is registered; if not specified, the default <verifier ip> is the one assigned to the
cloudverifier_ip parameter, in the [tenant] section of the /etc/keylime.conf file.

Some examples of reactivating the periodic attestation of an agent are listed below.

1. The following command asks a verifier, whose IP is specified in the /etc/keylime.conf file,
to reactivate periodic attestation of the agent UUID1:

✩ sudo keylime_tenant -c reactivate -u UUID1

2. The following command asks a verifier at 192.168.1.81 to reactivate periodic attestation of
the agent UUID1:

✩ sudo keylime_tenant -c reactivate -u UUID1 -v 192.168.1.81

B.6 Retrieving the list of agents registered in the CV

The command keylime_tenant -c list can take the following option:

❼ -v <verifier_ip> or --cv <verifier_ip>, it specifies the IP address of the verifier from
which you want to receive the list of registered agents; if not specified, the default<verifier ip>
is the one assigned to the cloudverifier_ip parameter, in the [tenant] section of the
/etc/keylime.conf file.

Some examples of listing registered agents are shown below.

1. The following command asks the list of all agents registered in a verifier whose IP is specified
in the /etc/keylime.conf file:

✩ sudo keylime_tenant -c list

2. The following command asks the list of all agents registered in a verifier at 192.168.1.81:

✩ sudo keylime_tenant -c list -v 192.168.1.81
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B.7 Retrieving the list of agents registered in the registrar

The command keylime_tenant -c reglist does not take additional options; it asks a registrar,
whose IP address and port are configured in the registrar_ip and registrar_port parameters
of the /etc/keylime.conf file, in the [Tenant] section, to list all the agents currently registered
in it:

✩ sudo keylime_tenant -c reglist

B.8 Removing an agent from the registrar

The command keylime_tenant -c regdelete can take the following option:

❼ -u <agent_uuid> or --uuid <agent_uuid>, it specifies the UUID of the agent you want
to remove from the registrar; if not specified, the default UUID “D432FBB3-D2F1-4A97-
9EF7-75BD81C00000” is considered.

The following command asks a registrar, whose IP address and port are configured in the registrar_ip
and registrar_port parameters of the /etc/keylime.conf file, in the [Tenant] section, to re-
move the agent UUID1:

✩ sudo keylime_tenant -c regdelete -u UUID1

B.9 Allowing/forbidding unknown containers in the agent

The command keylime_tenant -c allow_unknown_cont and its dual -c forbid_unknown_cont

can take the following options:

❼ -u <agent_uuid> or --uuid <agent_uuid>, it specifies the UUID of the agent for which
you want to turn on/off the option to run unregistered containers; if not specified, the
default UUID “D432FBB3-D2F1-4A97-9EF7-75BD81C00000” is considered;

❼ -v <verifier_ip> or --cv <verifier_ip>, it specifies the IP address of the verifier where
the agent is registered; if not specified, the default <verifier ip> is the one assigned to the
cloudverifier_ip parameter, in the [tenant] section of the /etc/keylime.conf file.

Some examples of turning on/off the flag for running unknown containers are listed below.

1. The following command turns on the flag for running unknown containers on an agent
UUID1, registered in a verifier whose IP is specified in the /etc/keylime.conf file:

✩ sudo keylime_tenant -c allow_unknown_cont -u UUID1

2. The following command turns off the flag for running unknown containers on an agent
UUID1, registered in a verifier at 192.168.1.81:

✩ sudo keylime_tenant -c forbid_unknown_cont -u UUID1 -v 192.168.1.81

B.10 Managing containers

The command keylime_tenant -c containers can take the following options:
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❼ -u <agent_uuid> or --uuid <agent_uuid>, it specifies the UUID of the agent whose con-
tainers you want to manage; if not specified, the default UUID “D432FBB3-D2F1-4A97-
9EF7-75BD81C00000” is considered;

❼ -v <verifier_ip> or --cv <verifier_ip>, it specifies the IP address of the verifier where
the agent is registered; if not specified, the default <verifier ip> is the one assigned to the
cloudverifier_ip parameter, in the [tenant] section of the /etc/keylime.conf file;

❼ --cont_id <container_id>, it specifies the ID of the container you want to manage; if this
option is specified, the options --cont_list and --replace_cont_list are not admitted;

❼ --allowlist /path/to/cont_allowlist, it is the path to a file containing the allowlist of
the container whose ID is specified through --cont_id; this option requires the --cont_id
option and is not admitted with --cont_list;

❼ --allowlist-url <http://remote_server:port/allowlist>, it is the URL of a remote
allowlist for the container whose ID is specified via --cont_id; this option requires the
--cont_id option and, if it is present, --allowlist can not be specified;

❼ --exclude /path/to/cont_exclude_list, it is the path to a file containing the exclude
list of the container whose ID is specified via --cont_id; this option requires the --cont_id
option and is not admitted with --cont_list;

❼ --cont_list /path/to/containers_list, it is the path to a file containing the list of
containers you want to add/replace in the agent; the format of this file was described in
section B.1;

❼ --replace_cont_list, it can be used with the option --cont_list and does not receive
a value, its presence implies the replacement of the list of containers currently registered in
the agent with the one provided through --cont_list.

Some examples of containers management are listed below.

1. The following command asks a verifier at 192.168.1.81 the list of all containers registered in
the agent UUID1:

✩ sudo keylime_tenant -c containers -u UUID1 -v 192.168.1.81

2. The following command asks a verifier at 192.168.1.81 the information (operational state, al-
lowlist, exclude list) related to the container “019f3a57bcff”, registered in the agent UUID1:

✩ sudo keylime_tenant -c containers -u UUID1 -v 192.168.1.81 \

--cont_id 019f3a57bcff

3. The following command asks a verifier at 192.168.1.81 to substitute the list of containers
currently registered in the agent UUID1 with the one specified with --cont_list:

✩ sudo keylime_tenant -c containers -u UUID1 -v 192.168.1.81 \

--cont_list containers_list --replace_cont_list

4. The following command asks a verifier at 192.168.1.81 to add the containers specified via
--cont_list to those already registered in the agent UUID1:

✩ sudo keylime_tenant -c containers -u UUID1 -v 192.168.1.81 \

--cont_list containers_list

5. The following command asks a verifier, whose IP is specified in the /etc/keylime.conf

file, to update the whitelist and exclude list associated of the container “019f3a57bcff”,
registered in the agent UUID1:

✩ sudo keylime_tenant -c containers -u UUID1 \

--cont_id 019f3a57bcff \

--allowlist allowlist_019f3a57bcff \

--exclude exclude_019f3a57bcff
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B.11 Managing the allowlist

The command keylime_tenant -c allowlist can take the following options:

❼ -u <agent_uuid> or --uuid <agent_uuid>, it specifies the UUID of the agent; if not spec-
ified, the default UUID “D432FBB3-D2F1-4A97-9EF7-75BD81C00000” is considered;

❼ -v <verifier_ip> or --cv <verifier_ip>, it specifies the IP address of the verifier where
the agent is registered; if not specified, the default <verifier ip> is the one assigned to the
cloudverifier_ip parameter, in the [tenant] section of the /etc/keylime.conf file;

❼ --allowlist /path/to/allowlist, it is the path to the file containing the allowlist that
will substitute the current one;

❼ --allowlist-url <http://remote_server:port/allowlist>, it is the URL of a remote
allowlist that will substitute the current one; if this option is present, --allowlist can not
be specified;

❼ --patch /path/to/patch_file, it is the path to a file that specifies how the allowlist has
to be patched; the format of the file is as follows:

#===================================

[delete]

#===================================

/path/to/file_to_be_removed_1

/path/to/file_to_be_removed_2

...

#===================================

[put]

#===================================

<hash_1> /path/to/file_1

<hash_2> /path/to/file_2

...

– after the [delete] tag you have to list the paths of the files you want to remove from
the allowlist;

– after the [put] tag you have to list the hash followed by the path of the files you want
to add or update in the allowlist;

❼ --cont_id <container_id>, it is the ID of the container whose allowlist you want to
manage.

Some examples of allowlist management are listed below.

1. The following command asks a verifier at 192.168.1.81 the host allowlist associated with the
agent UUID1:

✩ sudo keylime_tenant -c allowlist -u UUID1 -v 192.168.1.81

2. The following command asks a verifier at 192.168.1.81 to update the host allowlist associ-
ated with the agent UUID1, replacing the current one with the one contained in the file
“allowlist host”:

✩ sudo keylime_tenant -c allowlist -u UUID1 -v 192.168.1.81 \

--allowlist allowlist_host

3. The following command asks a verifier at 192.168.1.81 to update the host allowlist associated
with the agent UUID1, adding, updating or removing some entries as specified in the file
“patch file”:
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✩ sudo keylime_tenant -c allowlist -u UUID1 -v 192.168.1.81 --patch patch_file

4. The following command asks a verifier at 192.168.1.81 the allowlist of the container with ID
“019f3a57bcff”, associated with the agent UUID1:

✩ sudo keylime_tenant -c allowlist -u UUID1 -v 192.168.1.81 \

--cont_id 019f3a57bcff

5. The following command asks a verifier at 192.168.1.81 to update the allowlist of the container
“019f3a57bcff” associated with the agent UUID1, replacing the current one with the one
downloaded from “http://192.168.1.81:8080/containers/019f3a57bcff”:

✩ sudo keylime_tenant -c allowlist -u UUID1 -v 192.168.1.81 \

--cont_id 019f3a57bcff \

--allowlist-url http://192.168.1.81:8080/containers/019f3a57bcff

6. The following command asks a verifier, whose IP is specified in the /etc/keylime.conf

file, to update the allowlist of a container with ID “019f3a57bcff” associated with the agent
UUID1, adding, updating or removing some entries as specified in the file “patch file”:

✩ sudo keylime_tenant -c allowlist -u UUID1 --cont_id 019f3a57bcff \

--patch patch_file

B.12 Managing the exclude list

The command keylime_tenant -c exclude can take the following options:

❼ -u <agent_uuid> or --uuid <agent_uuid>, it specifies the UUID of the agent; if not spec-
ified, the default UUID “D432FBB3-D2F1-4A97-9EF7-75BD81C00000” is considered;

❼ -v <verifier_ip> or --cv <verifier_ip>, it specifies the IP address of the verifier where
the agent is registered; if not specified, the default <verifier ip> is the one assigned to the
cloudverifier_ip parameter, in the [tenant] section of the /etc/keylime.conf file;

❼ --exclude /path/to/exclude_list, it is the path to the file containing the exclude list
that will substitute the current one;

❼ --cont_id <container_id>, it is the ID of the container whose exclude list you want to
manage.

Some examples of exclude list management are listed below.

1. The following command asks a verifier at 192.168.1.81 the host exclude list associated with
the agent UUID1:

✩ sudo keylime_tenant -c exclude -u UUID1 -v 192.168.1.81

2. The following command asks a verifier at 192.168.1.81 to update the host exclude list asso-
ciated with the agent UUID1, replacing the current one with the one contained in the file
“exclude host”:

✩ sudo keylime_tenant -c exclude -u UUID1 -v 192.168.1.81 \

--exclude exclude_host

3. The following command asks a verifier, whose IP is specified in the /etc/keylime.conf file,
the exclude list of the container with ID “019f3a57bcff”, associated with the agent UUID1:

✩ sudo keylime_tenant -c exclude -u UUID1 --cont_id 019f3a57bcff
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4. The following command asks a verifier at 192.168.1.81 to update the exclude list of the
container “019f3a57bcff” associated with the agent UUID1, replacing the current one with
the one contained in the file “exclude 019f3a57bcff”:

✩ sudo keylime_tenant -c exclude -u UUID1 -v 192.168.1.81 \

--cont_id 019f3a57bcff --exclude exclude_019f3a57bcff
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This Appendix describes the implementation of the IMA patches created for the thesis work.

C.1 IMA Template Framework

The source code of the Linux kernel can be browsed at https://elixir.bootlin.com/linux/
latest/source. All the source files concerning the IMA module are located in the directory
/security/integrity/ima and, inside it, the files pertaining to the IMA template management
mechanism are the following three:

1. ima template.c containing the definitions of the functions used to initialize the IMA template
that has been selected;

2. ima template lib.c containing the definitions of the functions used to initialize the template
fields and to write them in the IMA Measurement Log (ML) files in binary and ASCII
formats;

3. ima template lib.h containing the declarations of the prototypes of the functions defined in
ima_template_lib.c.

IMA supports some builtin templates, defined in the source file ima template.c (listing C.1).

Listing C.1. Extract of ima template.c (lines 19-26)

static struct ima_template_desc builtin_templates[] = {

{.name = IMA_TEMPLATE_IMA_NAME, .fmt = IMA_TEMPLATE_IMA_FMT},

{.name = "ima-ng", .fmt = "d-ng|n-ng"},

{.name = "ima-sig", .fmt = "d-ng|n-ng|sig"},

{.name = "ima-buf", .fmt = "d-ng|n-ng|buf"},

{.name = "ima-modsig", .fmt = "d-ng|n-ng|sig|d-modsig|modsig"},

{.name = "", .fmt = ""}, /* placeholder for a custom format */

};

It is possible to specify the builtin template that the IMA module will use via the kernel boot pa-
rameter ima_template, giving it the name of the chosen template (i.e., ima_template=ima-sig).
If this parameter is not specified, by default IMA uses ima-ng. Each template is defined by its
format string fmt, which specifies the identifiers of the fields that a template entry will contain.
The fields supported by IMA are defined in the same source file (listing C.2).
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Listing C.2. Extract of ima template.c (lines 31-48)

static const struct ima_template_field supported_fields[] = {

{.field_id = "d", .field_init = ima_eventdigest_init,

.field_show = ima_show_template_digest},

{.field_id = "n", .field_init = ima_eventname_init,

.field_show = ima_show_template_string},

{.field_id = "d-ng", .field_init = ima_eventdigest_ng_init,

.field_show = ima_show_template_digest_ng},

{.field_id = "n-ng", .field_init = ima_eventname_ng_init,

.field_show = ima_show_template_string},

{.field_id = "sig", .field_init = ima_eventsig_init,

.field_show = ima_show_template_sig},

{.field_id = "buf", .field_init = ima_eventbuf_init,

.field_show = ima_show_template_buf},

{.field_id = "d-modsig", .field_init = ima_eventdigest_modsig_init,

.field_show = ima_show_template_digest_ng},

{.field_id = "modsig", .field_init = ima_eventmodsig_init,

.field_show = ima_show_template_sig},

};

❼ d: the digest of the event, computed with SHA-1 or MD5 algorithm (typically the digest of
a file’s contents);

❼ n: the name of the event with size up to 255 characters (typically the pathname of a file);

❼ d-ng: the digest of the event, computed with an arbitrary hash algorithm; the field format
is “<hash algo>:digest”, where the digest prefix is a string that specifies the used hash
algorithm, defined through the ima_hash kernel boot parameter;

❼ n-ng: the name of the event without size limitations;

❼ sig: the file signature, if present;

❼ buf: the buffer data used to generate the digest without size limitations;

❼ d-modsig: the digest of the event, computed without the appended file signature;

❼ modsig: the appended file signature.

If we want ML entries with a format other than the one defined by builtin templates, we can do
this through the kernel boot parameter ima_template_fmt=, giving it the desired format string,
with the constraint that the specified fields are among those supported by IMA. For example, we
could define a template format as d-ng|n-ng|buf|sig and specify it to the kernel via the boot
parameter ima_template_fmt=d-ng|n-ng|buf|sig. Instead, if we want the formatting string to
contain a field that IMA does not support, it is necessary to modify the kernel for defining the
desired field.

C.1.1 ima-cgn template implementation

As described in section 6.3.1, the ima-cgn template has a field containing the control group name
of the process that generated the current ME; this kind of field is not among those supported by
IMA, so we added it to the supported_fields array:

static const struct ima_template_field supported_fields[] = {

...

{.field_id = "cgn", .field_init = ima_eventcgn_init,

.field_show = ima_show_template_string},

};

where:
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1. "cgn" is the field identifier that has to be inserted in the template format string;

2. ima_eventcgn_init is the function that initializes the field value for a given ME and will
have to be properly defined;

3. ima_show_template_string is the function that writes the field value in the MLs, already
defined in the IMA module for "n" and "n-ng" fields (ima template lib.c, lines 147-151).

We defined a new builtin template with name "ima-cgn" and format string "cgn|d-ng|n-ng",
where ”d-ng” is the file digest and ”n-ng” is the file path:

static struct ima_template_desc builtin_templates[] = {

...

{.name = "ima-cgn", .fmt = "cgn|d-ng|n-ng"},

};

We added the prototype of the ima_eventcgn_init function in the ima_template_lib.h file:

int ima eventcgn init(struct ima_event_data *event_data,

struct ima_field_data *field_data);

and its definition in the ima_template_lib.c file (listing C.3).

Listing C.3. ima template lib.c

1 int ima eventcgn init(struct ima_event_data *event_data,

2 struct ima_field_data *field_data)

3 {

4 char *cgroup_name_str = NULL;

5 struct cgroup *cgroup = NULL;

6 int rc = 0;

7
8 cgroup_name_str = kmalloc(NAME_MAX, GFP_KERNEL);

9 if (!cgroup_name_str)

10 return -ENOMEM;

11
12 cgroup = task_cgroup(current, 1);

13 if (!cgroup)

14 goto out;

15 rc = cgroup_name(cgroup, cgroup_name_str, NAME_MAX);

16 if (!rc)

17 goto out;

18
19 rc = ima_write_template_field_data(cgroup_name_str, strlen(cgroup_name_str), ✙

DATA_FMT_STRING, field_data);

20
21 kfree(cgroup_name_str);

22
23 return rc;

24
25 out:

26 return ima_write_template_field_data("-", 1, DATA_FMT_STRING, field_data);

27 }

ima_eventcgn_init defines and initializes three local variables: cgroup_name_str (line 4) will
contain the name of the control group, cgroup (line 5) will refer to data structure that describes
the selected cgroup, rc (line 6) will contain the return code of function calls. It invokes kmalloc()
to allocate the memory needed to contain the cgroup name (line 8), taking as parameters:

❼ NAME_MAX, which specifies the number of bytes to be allocated; it is a #define contained in
the header file /include/uapi/linux/limits.h that corresponds to the number 255;

❼ GFP_KERNEL, typically used for kernel-internal allocations.
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After verifying that the allocation was successful, it invokes task_cgroup(current, 1) (line 12)
in order to retrieve the control group corresponding to hierarchy ID = 1 (the name=systemd

controller is associated to this hierarchy, as shown in figure 6.2) for the current task, which
can be accessed through current, defined in the file /include/asm-generic/current.h. current

refers to a data structure of type struct task_struct (/include/linux/sched.h) containing all
information regarding a Linux task. Then, it invokes cgroup_name() (line 15), which puts
the name of the cgroup previously retrieved in the cgroup_name_str buffer. Then it invokes
ima_write_template_field_data() (line 19) for writing the template value in the field_data

parameter, specifying that the data format is DATA_FMT_STRING. The ima template lib.c file
contains the definition of ima_write_template_field_data().

We added the ima-cgn template in the Kconfig file of the IMA module, so that it can be
configured as the default IMA template through the make menuconfig command before compiling
the kernel (listing C.4).

Listing C.4. Extract of Kconfig (lines 62-91)

choice

prompt "Default template"

default IMA_NG_TEMPLATE

depends on IMA

help

Select the default IMA measurement template.

...

config IMA_CGN_TEMPLATE

bool "ima-cgn"

endchoice

config IMA_DEFAULT_TEMPLATE

string

depends on IMA

...

default "ima-cgn" if IMA_CGN_TEMPLATE

C.1.2 ima-dep-cgn template implementation

This section describes the code for the ima-dep-cgn template, presented in section 6.3.2. This
template defines a new field, named "dep", containing the dependencies of the process that
generated the ME; it was added in the supported_fields array defined in the ima_template.c
source file (listing C.2):

static const struct ima_template_field supported_fields[] = {

...

{.field_id = "dep", .field_init = ima_eventdep_init,

.field_show = ima_show_template_string},

};

The "dep" field has ima_eventdep_init as initialization function, whose code is presented below,
and ima_show_template_string as function for writing the field in the MLs, used also for the
fields "n", "n-ng" and "cgn". A new template was added to the builtin templates (listing C.1),
with name "ima-dep-cgn" and format string "dep|cgn|d-ng|n-ng":

static struct ima_template_desc builtin_templates[] = {

...

{.name = "ima-dep-cgn", .fmt = "dep|cgn|d-ng|n-ng"},

};

We added the prototype of the ima_eventdep_init initialization function of the "dep" field in
the ima_template_lib.h header file:
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int ima eventdep init(struct ima_event_data *event_data,

struct ima_field_data *field_data);

and its definition in the ima_template_lib.c source file (listing C.5).

Listing C.5. ima template lib.c

1 int ima eventdep init(struct ima_event_data *event_data,

2 struct ima_field_data *field_data)

3 {

4 int count = 0, rc;

5 char *paths_buf = NULL, *pathbuf = NULL;

6 const char *pathname = NULL;

7 char filename[NAME_MAX];

8 struct task_struct *curr_task = NULL;

9 struct file *exe_file = NULL;

10 char comm[TASK_COMM_LEN];

11
12 //get number of ancestors for current task

13 for (curr_task = current; curr_task && curr_task->pid; curr_task = ✙

curr_task->real_parent)

14 count++;

15
16 if (curr_task)

17 count++;

18
19 paths_buf = kmalloc(PATH_MAX*count+count-1, GFP_KERNEL);

20 if (!paths_buf)

21 return -ENOMEM;

22
23 paths_buf[0] = ’\0’;

24 for (curr_task = current; curr_task && curr_task->pid; curr_task = ✙

curr_task->real_parent) {

25 exe_file = get_task_exe_file(curr_task);

26 if (!exe_file) {

27 get_task_comm(comm, curr_task);

28 strcat(paths_buf, comm);

29 strcat(paths_buf, ":");

30 continue;

31 }

32
33 pathname = ima_d_path(&exe_file->f_path, &pathbuf, filename);

34
35 strcat(paths_buf, pathname);

36 strcat(paths_buf, ":");

37 }

38 if (curr_task) {

39 exe_file = get_task_exe_file(curr_task);

40 if(!exe_file) {

41 get_task_comm(comm, curr_task);

42 strcat(paths_buf, comm);

43 } else {

44 pathname = ima_d_path(&exe_file->f_path, &pathbuf, filename);

45 strcat(paths_buf, pathname);

46 }

47 }

48
49 rc = ima_write_template_field_data(paths_buf, strlen(paths_buf), ✙

DATA_FMT_STRING, field_data);

50
51 kfree(paths_buf);

52
53 return rc;
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54 }

The ima_eventdep_init() function has the purpose to create a string containing the paths, colon
separated, of the executables of the process that generated the current ME and of all its ancestors
and to record this string in the template field. In order to do this, firstly it determines the number
of ancestors, stored in the count variable, of the current process (lines 13-14), starting from
current (that refers to a struct task_struct describing the current process) and retrieving
the ancestors via the real_parent field of the struct task_struct (/include/linux/sched.h,
line 863); in order to include also the init process, count is incremented by 1 out of the cycle
(lines 16-17). The control statement of the for cycle checks both the pointer and the PID since
normally real_parent never becomes NULL, so PID=0 (which corresponds to the init process)
is used to break the cycle. The function, after having allocated the memory (line 19), creates the
dependencies list (lines 24-47). The size of the allocated memory has to consider the number of
processes in the hierarchy (count), PATH_MAX (defined in include/uapi/linux/limits.h with value
4096 and used as the max length of Linux path) and count-1 separator characters. The for cycle
(lines 24-37) walks through the ancestors for getting the executable file (line 25). If exe_file is
NULL (as for kernel tasks), the executable name is substituted with the command name contained in
the task (the comm field of the struct task_struct, /include/linux/sched.h line 960), retrieved
through the get_task_comm() function (line 27), defined in /include/linux/sched.h; otherwise
the absolute path of the executable is retrieved by invoking the ima_d_path() function (line 33),
defined in /security/integrity/ima/ima api.c; the path is concatenated with the other paths in
the paths_buf variable (lines 35-36). The last task in the chain of ancestors is the init task,
which is managed out of the cycle (lines 38-47). The function stores the created dependencies list
in the field_data parameter by invoking ima_write_template_field_data() (line 49), then it
releases the buffer previously allocated for the string (line 51) and returns the control to the caller
(line 53).

As for ima-cgn template, we added ima-dep-cgn template to the IMA Kconfig file so that it
can be choosen as the default template via the make menuconfig command, before compiling the
kernel:

choice

...

config IMA_DEP_CGN_TEMPLATE

bool "ima-dep-cgn"

endchoice

config IMA_DEFAULT_TEMPLATE

...

default "ima-dep-cgn" if IMA_DEP_CGN_TEMPLATE

C.1.3 ima_template_hash= kernel boot parameter implementation

This section presents the code added to the IMA module in order to allow a user to choose
the template-hash written in the MLs. To this purpose, we defined a new kernel boot pa-
rameter, named ima_template_hash=, to which the user assigns the desired hash algorithm
for the template-hash. We added the function template_hash_setup() (listing C.6) to the
ima_main.c source file for initializing, on the basis of the boot parameter value, the global variable
ima_template_hash_algo that contains the identifier of the selected hash algorithm.

Listing C.6. ima main.c

1 int ima_template_hash_algo = HASH_ALGO_SHA1;

2 static int template_hash_setup_done;

3 ...

4 static int __init template hash setup(char *str)

5 {

6 int i;

7
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8 if (template_hash_setup_done)

9 return 1;

10
11 i = match_string(hash_algo_name, HASH_ALGO__LAST, str);

12 if (i < 0) {

13 pr_err("invalid template-hash algorithm \"%s\"", str);

14 return 1;

15 }

16
17 ima_template_hash_algo = i;

18
19 template_hash_setup_done = 1;

20 return 1;

21 }

22 __setup("ima_template_hash=", template_hash_setup);

We added the invocation to the template_hash_setup() in the init_ima() function, defined
in ima main.c file, in order to initialize the ima_template_hash_algo variable with the default
value specified in the IMA Kconfig file, in the case the user has not set the kernel boot parameter
ima_template_hash=.

Listing C.7. Extract from ima main.c

982 static int __init init ima(void)

983 {

984 ...

985 template_hash_setup(CONFIG_IMA_DEFAULT_TEMPLATE_HASH);

986 ...

987 if (error && strcmp(hash_algo_name[ima_template_hash_algo], ✙

CONFIG_IMA_DEFAULT_TEMPLATE_HASH) != 0) {

988 pr_info("Allocating %s failed, going to use default template-hash algorithm ✙

%s \n", hash_algo_name[ima_template_hash_algo], ✙

CONFIG\_IMA\_DEFAULT\_TEMPLATE\_HASH);

989 template_hash_setup_done = 0;

990 template_hash_setup(CONFIG_IMA_DEFAULT_TEMPLATE_HASH);

991 error = ima_init();

992 }

993 ...

994 }

In the file ima_crypto.c, we defined another global variable, ima_template_hash_algo_idx,
which specifies the index of the template-hash calculated with the selected hash algorithm inside
the array containing all the template-hashes computed for a given ML entry. We added some
code in the ima_init_crypto() function, defined in the ima crypto.c file, in order to initialize
ima_template_hash_algo_idx (listing C.8).

Listing C.8. Extract from ima crypto.c

65 int ima_template_hash_algo_idx __ro_after_init;

66 ...

115 int __init ima init crypto(void)

116 {

117 ...

118 ima_template_hash_algo_idx = -1;

119
120 for (i = 0; i < NR_BANKS(ima_tpm_chip); i++) {

121 algo = ima_tpm_chip->allocated_banks[i].crypto_id;

122 ...

123 if (algo == ima_template_hash_algo)

124 ima_template_hash_algo_idx = i;
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125 }

126
127 if (ima_sha1_idx < 0) {

128 ...

129 if (ima_template_hash_algo == HASH_ALGO_SHA1)

130 ima_template_hash_algo_idx = ima_sha1_idx;

131 }

132
133 if (ima_hash_algo_idx < 0) {

134 ...

135 if (ima_template_hash_algo == ima_hash_algo)

136 ima_template_hash_algo_idx = ima_hash_algo_idx;

137 }

138
139 if (ima_template_hash_algo_idx < 0)

140 ima_template_hash_algo_idx = NR_BANKS(ima_tpm_chip) + ima_extra_slots++;

141
142 ...

143
144 if (ima_template_hash_algo_idx >= NR_BANKS(ima_tpm_chip) && ✙

ima_template_hash_algo_idx != ima_sha1_idx && ima_template_hash_algo_idx != ✙

ima_hash_algo_idx) {

145 ima_algo_array[ima_template_hash_algo_idx].tfm = ✙

ima_alloc_tfm(ima_template_hash_algo);

146 if (IS_ERR(ima_algo_array[ima_template_hash_algo_idx].tfm)) {

147 rc = PTR_ERR(ima_algo_array[ima_template_hash_algo_idx].tfm);

148 goto out_array;

149 }

150 }

151 ...

The new global variables, ima_template_hash_algo and ima_template_hash_algo_idx, have
been declared as extern variables in the ima.h file, so that they can be accessed in other source
files that include ima.h:

/* set during initialization */

extern int ima_template_hash_algo;

extern int ima_template_hash_algo_idx __ro_after_init;

...

Then, we introduced some changes in the functions that write the IMA measurement list in
the MLs, ima_measurements_show() in binary format (defined in ima fs.c, lines 127-187) and
ima_ascii_measurements_show() in ASCII format (defined in ima fs.c, lines 217-253). In both
functions, ima_sha1_idx has been replaced with ima_template_hash_algo_idx in the statements
where they refer to the template-hash to be written in the ML; moreover, the name of the hash
algorithm has been added as prefix of the digest in the ima_ascii_measurements_show() function
(listing C.9).

Listing C.9. Extract from ima fs.c

/* print in ascii */

static int ima measurements show(struct seq_file *m, void *v)

{

...

u32 template_hash_len;

...

/* 2nd: template digest size */

template_hash_len = !ima_canonical_fmt ? ✙

hash_digest_size[ima_template_hash_algo] : ✙

cpu_to_le32(hash_digest_size[ima_template_hash_algo]);
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ima_putc(m, &template_hash_len, sizeof(template_hash_len));

/* 3rd: template digest */

ima_putc(m, e->digests[ima_template_hash_algo_idx].digest, ✙

hash_digest_size[ima_template_hash_algo]);

...

}

/* print in ascii */

static int ima ascii measurements show(struct seq_file *m, void *v)

{

...

/* 2nd: template hash */

seq_printf(m, "%s:", hash_algo_name[ima_template_hash_algo]);

ima_print_digest(m, e->digests[ima_template_hash_algo_idx].digest, ✙

hash_digest_size[ima_template_hash_algo]);

...

}

Then, we added the possibility to select the default template-hash algorithm in the IMA
Kconfig file, accessible in the IMA source code via the CONFIG_IMA_DEFAULT_TEMPLATE_HASH

parameter (listing C.10).

Listing C.10. Extract from Kconfig

choice

prompt "Default template-hash algorithm"

default IMA_DEFAULT_TEMPLATE_HASH_SHA1

depends on IMA

help

Select the default template-hash algorithm written in Measurement

Log entries. The compiled default template-hash algorithm can

be overwritten using the kernel command line ’ima template hash=’

option.

config IMA_DEFAULT_TEMPLATE_HASH_SHA1

bool "SHA1 (default)"

depends on CRYPTO_SHA1=y

config IMA_DEFAULT_TEMPLATE_HASH_SHA256

bool "SHA256"

depends on CRYPTO_SHA256=y

config IMA_DEFAULT_TEMPLATE_HASH_SHA512

bool "SHA512"

depends on CRYPTO_SHA512=y

endchoice

config IMA_DEFAULT_TEMPLATE_HASH

string

depends on IMA

default "sha1" if IMA_DEFAULT_TEMPLATE_HASH_SHA1

default "sha256" if IMA_DEFAULT_TEMPLATE_HASH_SHA256

default "sha512" if IMA_DEFAULT_TEMPLATE_HASH_SHA512
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This appendix describes the REST APIs exposed by the components of Keylime relative to version
v6.0.0 and those added with the work of the thesis. All changes made to the framework are
highlighted in the text by the character “*”. Keylime APIs only accept JSON format and respond
with a JSON object containing the following fields:

❼ code (int): the HTTP status code;

❼ status (string): textual explanation of the response status;

❼ results (JSON object): it contains specific data of the response and its format depends on
the invoked API.

D.1 Cloud Agent

GET /v2/keys/pubkey (Unencrypted connection)

Retrieve Cloud Agent’s NKpub key, public part of an ephemeral rsa key used by Tenant and CV
to encrypt U and V shares of the bootstrap key Kb.

Response JSON object

❼ pubkey (string): Cloud Agent’s NKpub key.

Example Response:

{

"code": 200,

"status": "Success",

"results": {

"pubkey": "-----BEGIN PUBLIC KEY---(...)---END PUBLIC KEY-----\n"
}

}

POST /v2/keys/vkey (Unencrypted connection)

API used by the CV for sending the V share of the bootstrap key Kb, encrypted with NKpub and
base64 encoded, to the Cloud Agent.

Request JSON object
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❼ encrypted_key (string): V share of Kb, encrypted with Cloud Agent’s NKpub and base64
encoded.

Example Request:

{

"encrypted_key": "MN/F33jjuLiIuRH8fF7 ... 5foAqZCyZ0AhQ0ONuWw==",

}

POST /v2/keys/ukey (Unencrypted connection)

API used by the Tenant to send the U share of the bootstrap key Kb, encrypted with NKpub and
base64 encoded, to the Cloud Agent, with optional payload encrypted with Kb.

Request JSON object

❼ auth_tag (string): it is the HMAC of Cloud Agent’s UUID calculated with the bootstrap
key Kb, used to by the Cloud Agent to check if Kb is correctly derived;

❼ encrypted_key (string): it is the U share ofKb, encrypted with NKpub and base64 encoded;

❼ payload (string) - optional : it contains the user data, encrypted with Kb and base64 en-
coded.

Example Request:

{

"auth_tag": "3876c08b30c ... 85de05c4c7cce",

"encrypted_key": "iAckMZgZc8r43pF0iW8i ... btLZBa9T+mmA==",

"payload": "WcXpUr4G9yfvVaojNx6K2XZuDYRkFoZQhHrvZB+TKZqsq41g"

}

GET /v2/keys/verify (Unencrypted connection)

API used by the Tenant to verify that the Cloud Agent correctly derived the bootstrap key Kb.

Query parameters

❼ challenge (string): random string made up of 20 alphanumerical characters [a-Z,0-9].

Example Request:

/v2/keys/verify?challenge=78wAQ3cGHjx6103dKpfJ

Response JSON object

❼ hmac (string): it is the HMACKb
(challenge); if the response is the correct one, the Tenant

knows that the Cloud Agent correctly recomposed Kb.

Example Response:

{

"code": 200,

"status": "Success",

"results": {

"hmac": "719d992fb7 ... dd7f9adee6c18"

}

}
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GET /v2/quotes/integrity (Unencrypted connection)

API used by the CV to get a new Integrity Report.

Query parameters

❼ nonce (string): random string made up of 20 alphanumerical characters [a-Z,0-9];

❼ mask (string): mask, expressed as hexadecimal number, used for specifying the PCRs to be
included in the TPM quote;

❼ vmask (string): mask, expressed as hexadecimal number, used for specifying the vPCRs
from the vTPM to be included in the deep-quote;

❼ partial (string): if set to ”0”, the NKpub is added to the response; if set to ”1”, the key is
not sent;

❼ ml_seek* (string) -optional : number representing the offset, in bytes, of the requested
contents of the IMA ML; if not set, the IMA ML is sent entirely.

Example Request:

/v2/quotes/integrity?nonce=5yrFGxXz2qQljgg73bNd&mask=0x408000&partial=0&ml_seek=3250

Response JSON object

❼ quote (string): TPM quote;

❼ hash_alg (string): hash algorithm used by the TPM;

❼ enc_alg (string): encryption algorithm used by TPM;

❼ sign_alg (string): signing algorithm used by the TPM;

❼ pubkey (string) - optional : NKpub key;

❼ ima_measurement_list (string) - optional : IMA ML contents starting from byte specified
via ml_seek; it is included only if the mask query parameter specifies the IMA PCR;

❼ mb_measurement_list (string) - optional : it is the content, base64 encoded, of the measured
boot event log; it is included only if the mask query parameter specifies PCR 0.

Example Response:

{

"code": 200,

"status": "Success",

"results": {

"quote": "reJz7H+Ls3i ...cGYRP+EwAUO3IUEAkA44Iwlw==",

"hash_alg": "sha256",

"enc_alg": "rsa",

"sign_alg": "rsassa",

"pubkey": "-----BEGIN PUBLIC KEY---(...)---END PUBLIC KEY-----\n",
"ima_measurement_list": "10 sha256:3afc3490[...] ima-dep-cgn ... ",

"mb_measurement_list": "fdrek73ggVtT48vXd..."

}

}
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GET /v2/quotes/identity (Unencrypted connection)

API used by the Tenant to get a TPM quote in order to verify the authenticity of the Cloud
Agent’s TPM. This quote is not used to verify the integrity state of the node, which is verified
by the CV through the GET /v2/quotes/integrity API, so it does not contain PCRs.

Query parameters

❼ nonce (string): random string made up of 20 alphanumerical characters [a-Z,0-9].

Example Request:

/v2/quotes/identity?nonce=fYx07fjrE981QqjgF903

Response JSON object

❼ quote (string): TPM quote;

❼ hash_alg (string): hash algorithm used by the TPM;

❼ enc_alg (string): encryption algorithm used by TPM;

❼ sign_alg (string): signing algorithm used by the TPM;

❼ pubkey (string) - optional : NKpub key.

Example Response:

{

"code": 200,

"status": "Success",

"results": {

"quote": "reJz7H+Ls3iDBoM...eN6OAWgAAgXUg0Q==",

"hash_alg": "sha256",

"enc_alg": "rsa",

"sign_alg": "rsassa",

"pubkey": "-----BEGIN PUBLIC KEY----- (...)-----END PUBLIC KEY-----\n"
}

}

D.2 Cloud Verifier

GET /v2/agents (Mutual TLS connection)

Retrieve the list of all currently registered Cloud Agent UUIDs.

Response JSON object

❼ uuids (list[string]): it is the list of all UUIDs currently registered.

Example Response:

{

"code": 200,

"status": "Success",

"results": {

"uuids": [ "uuid1", "uuid2", ... ]

}

}

152



Programmer’s manual: Keylime REST APIs

GET /v2/agents/{agent id:UUID} (Mutual TLS connection)

Retrieve the status of Cloud Agent agent id from CV.

Response JSON object

❼ operational_state (int): current state of the Cloud Agent in the CV; it can be one of the
following states:
REGISTERED=0, START=1, SAVED=2, GET QUOTE=3, GET QUOTE RETRY=4,
PROVIDE V=5, PROVIDE V RETRY=6, FAILED=7, TERMINATED=8,
INVALID QUOTE=9, TENANT FAILED=10, UNKNOWN CONTAINER*=11;

❼ v (string): V share of Kb for encrypted payload, base64 encoded (decoded length is 32
bytes);

❼ ip (string): Cloud Agent’s IP address for the CV;

❼ port (int): Cloud Agent’s port for the CV;

❼ tpm_policy (string): string-encoded JSON object containing the PCRs to be included in
the TPM quote, with their corresponding whitelists, and the PCR mask to be sent to the
Cloud Agent when a new Integrity Report is required;

❼ vtpm_policy (string): string-encoded JSON object specifying the vPCRs to be contained
in the deep-quote, with their corresponding whitelists, and the vPCR mask to be sent to
the Cloud Agent when a new Integrity Report is required;

❼ meta_data (string): metadata about the Cloud Agent; if the Cloud Agent has a certificate,
it contains certificate’s serial and subject; this object is sent by the Revocation Framework
when this Cloud Agent fails its integrity state;

❼ allowlist_len (int): number of entries in the physical host’s allowlist;

❼ mb_refstate_len (int): length of the measured boot reference state policy;

❼ accept_tpm_hash_algs (list[string]): accepted TPM hashing algorithms;

❼ accept_tpm_encryption_algs (list[string]): accepted TPM encryption algorithms;

❼ accept_tpm_signing_algs (list[string]): accepted TPM signing algorithms;

❼ hash_alg (string): used hashing algorithm;

❼ enc_alg (string): used encryption algorithm;

❼ sign_alg (string): used signing algorithm;

❼ containers* (JSON object): it specifies the containers associated to the Cloud Agent; each
container is identified in the JSON object through its identifier and is itself a JSON object
containing the following fields:

– operational_state (int): current state of the container; it can be one of the following
states: START=0 (it is waiting the first integrity check), TRUST=1, UNTRUST=2;

– allowlist (JSON object): the container’s allowlist which specifies, for each file-path,
the list of reference digests;

– exclude (list[string]): the container’s exclude list, specifying a list of regular expres-
sions for the file-paths that do not need to be attested;

– fnf (list[string]) - optional : the list of file-paths not contained in the container’s al-
lowlist, detected during the remote attestation process;

– filehash_err (list[string]) - optional : the list of file-paths whose hash did not match
to those in the container’s allowlist;
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❼ allow_unknown_containers* (int): it is 1 if unknown containers are allowed on the host
system, 0 otherwise;

❼ unknown_containers* (list[string]) - optional : the list of unknown containers’ identifiers
detected during the remote attestation process.

Example Response:

{

"code": 200,

"status": "Success",

"results": {

"operational_state": 11,

"v": "yyNnlWwFRz1ZUzSe2YEpz9A5urtv6oywgttTF7VbBP4=",

"ip": "127.0.0.1",

"port": 9002,

"tpm_policy": "{
\"0\": [\"23BD73EC5A35...8BB8344CE77E3\"],
\"1\": [\"73D3A3D17547...41134A2966268\"],
\"2\": [\"B3BD342D6060...19A51CA37AB30\"],
...

\"mask\":\"0x0007FF\"
}",

"vtpm_policy": "{
\"23\": [\"fffffffffffff...fffffffffffff\", ...],

\"15\": [\"0000000000000...0000000000000\", ...],

\"mask\":\"0x808000\"
}",

"meta_data": "{
\"cert serial\":7190667204669...9268666356441,
\"subject\":\"/C=US/ST=MA/...75BD81C00000\"

}",
"allowlist_len": 0,

"mb_refstate_len": 0,

"accept_tpm_hash_algs": [ "sha512", "sha384", "sha256", "sha1" ],

"accept_tpm_encryption_algs": [ "ecc", "rsa" ],

"accept_tpm_signing_algs": [ "ecschnorr", "rsassa" ],

"hash_alg": "sha256",

"enc_alg": "rsa",

"sign_alg": "rsassa",

"containers": {

"125eef87c423": {

"operational_state": 1,

"allowlist": {

"f_path1": ["hash1", "hash2", ...],

"f_path2": ["hash3", "hash4", ...],

...

},

"exclude": ["reg ex1", "reg ex2", ...],

"fnf": ["path1", "path2", ...],

"filehash_err": ["path3", "path4", ..]

},

...

}

"allow_unknown_containers": 0,

"unknown_containers": [ "5ffb2a71240c", "eafc6710be71" ]

}

}

POST /v2/agents/{agent id:UUID} (Mutual TLS connection)

Register a new Cloud Agent agent id in the CV.
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Request JSON object

❼ v (string): V share of Kb for encrypted payload, base64 encoded (decoded length is 32
bytes);

❼ cloudagent_ip (string): Cloud Agent’s IP address for the CV;

❼ cloudagent_port (string): Cloud Agent’s port for the CV;

❼ tpm_policy (string): (string): string-encoded JSON object containing the PCRs to be
included in the TPM quote, with their corresponding whitelists, and the PCR mask to be
sent to the Cloud Agent when a new Integrity Report is required;

❼ vtpm_policy (string): string-encoded JSON object specifying the vPCRs to be contained
in the deep-quote, with their corresponding whitelists, and the vPCR mask to be sent to
the Cloud Agent when a new Integrity Report is required;

❼ metadata (string): metadata about the Cloud Agent; if the Cloud Agent has a certificate, it
contains the certificate’s serial and subject; this object is sent by the Revocation Framework
when the Cloud Agent is evaluated untrusted;

❼ allowlist (string): string-encoded JSON object containing the physical host’s allowlist
and exclude list;

❼ mb_refstate (string): measured boot reference state policy;

❼ ima_sign_verification_keys (string): string-encoded list of IMA signature verification
public keys;

❼ revocation_key (string): rsa private Key which the CV has to use for signing the revocation
message of this Cloud Agent;

❼ accept_tpm_hash_algs (list[string]): accepted TPM hashing algorithms;

❼ accept_tpm_encryption_algs (list[string]): accepted TPM encryption algorithms;

❼ accept_tpm_signing_algs (list[string]): accepted TPM signing algorithms;

❼ containers* (JSON object) - optional : it specifies the containers associated to the Cloud
Agent; each container is identified in the JSON object through its identifier and is associated
to JSON object containing the following fields:

– allowlist (JSON object): the container’s allowlist which specifies, for each file-path,
the list of reference digests;

– exclude (list[string]): the container’s exclude list, which specifies a list of regular
expressions for the file-paths that do not need to be attested;

❼ allow_unknown_containers* (int) - optional : if it is set to 1, unknown containers will be
allowed on the agent’s host system; if it is set to 0, or the field is absent, unknown containers
will cause an integrity failure during attestation.

Example Request:

{

"v": "3HZMmIEc6yyjfoxdCwcOgPk/6X1GuNG+tlCmNgqBM/I=",

"cloudagent_ip": "127.0.0.1",

"cloudagent_port": 9002,

"tpm_policy": "{
\"0\": [\"23BD73EC5A35C...8BB8344CE77E3\"],
\"1\": [\"73D3A3D17547D...41134A2966268\"],
\"2\": [\"B3BD342D6060F...19A51CA37AB30\"],
...

\"mask\":\"0x0007FF\"
}",

155



Programmer’s manual: Keylime REST APIs

"vtpm_policy": "{
\"23\": [\"fffffffffffff...fffffffffffff\", ... ],

\"15\": [\"0000000000000...0000000000000\", ...],

\"mask\": \"0x808000\"
}",

"metadata": "{
\"cert serial\":7190667204669...0742724395900,
\"subject\": \"/C=US/ST=MA/...75BD81C00000\"

}",
"allowlist": "{

\"allowlist\":{
\"boot aggregate\":[\"hash1\", \"hash2\", ...],

\"file path1\":[\"hash3\", \"hash4\", ...],

\"file path2\":[\"hash5\", \"hash6\", ...],

...

},
\"exclude\":[\"reg ex1\", \"reg ex2\", ...]

}",
"mb_refstate": "null",

"ima_sign_verification_keys": "[]",

"revocation_key": "-----BEGIN PRIVATE KEY----- (...)-----END PRIVATE KEY-----\n",
"accept_tpm_hash_algs": [ "sha512", "sha384", "sha256", "sha1" ],

"accept_tpm_encryption_algs": [ "ecc", "rsa" ],

"accept_tpm_signing_algs": [ "ecschnorr", "rsassa" ],

"containers": {

"dc912aec76bd": {

"allowlist": {

"f_path1": ["hash1", "hash2", ...],

"f_path2": ["hash3", "hash4", ...],

...

},

"exclude": ["reg ex1", "reg ex2", ...]

},

"ffbec71a025c": {

"allowlist": {

"f_path1": ["hash1", "hash2", ...],

"f_path2": ["hash3", "hash4", ...],

...

},

"exclude": ["reg ex1", "reg ex2", ...]

},

...

},

"allow_unknown_containers": 0

}

Response JSON object

❼ not_accepted_contIDs* (list[string]) - optional : it is the list of the identifiers of those
containers that have not been registered in the CV; this happens one the exclude list of a
container is misformatted.

Example Responses:

{

"code": 200,

"status": "Success",

"results": {}

}

{

"code": 202,

"status": "Partially accepted",

"results": {
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"not_accepted_contIDs": [ "e47cbfe9120c", "9cd41cef871c", ... ]

}

}

DELETE /v2/agents/{agent id:UUID} (Mutual TLS connection)

Remove the Cloud Agent agent id from the CV database.

Response JSON object
Example Responses:

{

"code": 200,

"status": "Success",

"results": {}

}

Response 200 is returned when the Cloud Agent {agent id} has been removed from the CV’s
database; the deletion is successfully completed only if the agent’s operational_state is one of
the following: SAVED, FAILED, TERMINATED, TENANT FAILED, INVALID QUOTE.

{

"code": 202,

"status": "Accepted",

"results": {}

}

Response 202 is returned when the deletion request is sent for an agent whose operational_state
is GET QUOTE. Upon receiving the deletion request, the operational_state of the Cloud Agent
{agent id} is set to TERMINATED and it will be removed from the CV’s database when it will
be scheduled for the next remote attestation.

PUT /v2/agents/{agent id:UUID}/reactivate (Mutual TLS connection)

Restart the RA process for the Cloud Agent {agent id}.

Response JSON object
Example Responses:

{

"code": 200,

"status": "Success",

"results": {}

}

Response 200 means that the operational_state of the Cloud Agent {agent id} is set to START
and the agent is re-inserted in a ”loop” for periodic attestation.

* {

"code": 403,

"status": "Forbidden",

"results": {}

}

Response with code 403 has been added to the API and means that the Cloud Agent {agent id}
is already in an active state; this check has been added to prevent a node already inserted in the
queue of nodes to be attested from being inserted several times.
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PUT /v2/agents/{agent id:UUID}/stop (Mutual TLS connection)

Stop the RA process for the Cloud Agent {agent id}, but do not delete the agent from the CV
database. The operational_state of the Cloud Agent {agent id} is set to TENANT FAILED;
this will cause that the CV will not query new IRs to this agent until it is reactivated.

PUT /v2/agents/{agent id:UUID}/allow unknown containers *

(Mutual TLS connection)

Allow / disallow the execution of unknown containers on host system of the Cloud Agent {agent id}.

Request JSON object

❼ allow_unknown_containers (int): if set to 0, unknown containers running on the host
system will cause an integrity failure; if set to 1, unknown containers will be admitted.

Example Request:

{

"allow_unknown_containers": 1

}

GET /v2/agents/{agent id:UUID}/allowlist * (Mutual TLS connection)

Get the current host system’s allowlist associated to the Cloud Agent {agent id}.

Response JSON object

❼ allowlist (JSON object): host system allowlist.

Example Response:

{

"code": 200,

"status": "Success",

"results": {

"allowlist": {

"file_path1": ["hash1", "hash2", ...],

"file_path2": ["hash3", "hash4", ...],

...

}

}

}

PUT /v2/agents/{agent id:UUID}/allowlist * (Mutual TLS connection)

Substitute the host system’s allowlist associated to the Cloud Agent {agent id} with the one pro-
vided in the request body.

Request JSON object

❼ allowlist (JSON object): new host system’s allowlist.

Example Request:
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{

"allowlist": {

"boot_aggregate": ["hash1", "hash2", ...],

"file_path1": ["hash3", "hash4", ...],

"file_path2": ["hash5", "hash6", ...],

...

}

}

PATCH /v2/agents/{agent id:UUID}/allowlist * (Mutual TLS connection)

Patch the host system’s allowlist, associated to the Cloud Agent {agent id}.

Request JSON object

❼ delete_paths (list[string]) - optional field : list of file-paths that will be removed from the
host system’s allowlist;

❼ put_paths (JSON object) - optional field : file-paths that will be inserted or updated in the
host system’s allowlist.

Example Request:

{

"delete_paths": [ "file path1", "file path2", ... ],

"put_paths": {

"file_path3": [ "hash1", "hash2", ... ],

"file_path4": [ "hash3", "hash4", ... ],

...

}

}

Response JSON object

❼ allowlist: the entire host system’s allowlist newly updated.

{

"code": 200,

"status": "Success",

"results": {

"allowlist": {

"boot_aggregate": [ "hash1", "hash2", ... ],

"file_path1": [ "hash3", "hash4", ... ],

"file_path2": [ "hash5", "hash6", ... ],

...

}

}

}

GET /v2/agents/{agent id:UUID}/exclude * (Mutual TLS connection)

Get the current host system’s exclude list associated to the Cloud Agent {agent id}.

Response JSON object

❼ exclude (list[string]): host system’s exclude list.
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Example Response:

{

"code": 200,

"status": "Success",

"results": {

"exclude": [ "reg ex1", "reg ex2", ... ]

}

}

PUT /v2/agents/{agent id:UUID}/exclude * (Mutual TLS connection)

Substitute the host system’s exclude list associated to the Cloud Agent {agent id} with the one
provided in the request body. To reset the exclude list, provide an empty list in the request body.

Request JSON object

❼ exclude (list[string]): the new host system’s exclude list.

Example Request:

{

"exclude": [ "reg ex1", "reg ex2", ... ]

}

Response JSON object

❼ exclude (list[string]): the newly updated host system’s exclude list.

Example Responses:

{

"code": 200,

"status": "Success",

"results": {

"exclude": [ "reg ex1", "reg ex2", ... ]

}

}

{

"code": 400,

"status": " Exclude list regex is misformatted. Please correct the issue and try

again.",

"results": {}

}

Response code 400 can occur if some of the regular exception provided in the request body is not
valid.

GET /v2/agents/{agent id:UUID}/containers * (Mutual TLS connection)

Retrieve the list of all container identifiers currently registerd with the Cloud Agent {agent id}.

Response JSON object

❼ uuid (string): Cloud Agent’s UUID;

❼ cont_ids (list[string]): list of container identifiers registered in the Cloud Agent.
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Example Response:

{

"code": 200,

"status": "Success",

"results": {

"uuid": "UUID1",

"cont_ids": [ "a02ddec7129c", "23190cbdeefa", ... ]

}

}

POST /v2/agents/{agent id:UUID}/containers * (Mutual TLS connection)

Add the containers specified in the request body to the list of containers currently registerd with
the Cloud Agent {agent id}.

Request JSON object

The request body is a dictionary of container identifiers, each of which is associated to a JSON
object with the following fields:

❼ allowlist (JSON object) - optional : the container’s allowlist;

❼ exclude (list[string]) - optional : the container’s exclude list.

Example Request:

{

"67decf291bbe": {

"allowlist": {

"file_path1": [ "hash1", "hash2", ... ],

"file_path2": [ "hash3", "hash4", ... ],

...

},

"exclude": ["reg ex1", "reg ex2", ...]

},

"c29da875e2fb": {

"allowlist": {

"file_path1": [ "hash1", "hash2", ... ],

"file_path2": [ "hash3", "hash4", ... ],

...

},

"exclude": [ "reg ex1", "reg ex2", ... ]

},

...

}

Response JSON object

Example Responses:

{

"code": 200,

"status": "Success",

"results": {

"1172cd64feed": {

"operational_state": 2,

"allowlist": {

"f_path1": [ "hash1", "hash2", ... ],

"f_path2": [ "hash3", "hash4", ... ],

...
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},

"exclude": [ "reg ex1", "reg ex2", ... ],

"fnf": [ "fnf path1", "fnf path2", ... ],

"filehash_err": [ "path 1", "path 2", ... ]

},

"feca384f5412": { ... },

"67decf291bbe": { ... },

"c29da875e2fb": { ... }

}

}

When response code is 200, the response body contains the list of all containers registered in the
Cloud Agent {agent id}, newly updated with the containers provided in the request body.

{

"code": 400,

"status": "Expected non zero content length",

"results": {}

}

{

"code": 400,

"status": "Container ID " + contID + " - Invalid regex: " + regex err.msg + ".",

"results": {}

}

Response code 400 occurs when the request body is empyt or one of the containers specified in
the request body has an invalid regular expression in its ”exclude” list field.

{

"code": 409,

"status": "The container " + contID + " is already registered in agent " +

{agent id},
"results": {}

}

Response code 409 occurs when one of the containers listed in the request body is already regis-
tered in the Cloud Agent {agent id}.

PUT /v2/agents/{agent id:UUID}/containers * (Mutual TLS connection)

Substitute the list of containers registered in the Cloud Agent {agent id} with the one provided
in the request body. If some container has not valid information associated in the req. body, then
it will be ignored. In order to remove all containers registered in the Cloud Agent, send a request
body with no container identifier.

Request JSON object

The request body is a dictionary of container identifiers, each of which is associated to a JSON
object with the following fields:

❼ allowlist (JSON object) - optional : the container’s allowlist;

❼ exclude (list[string]) - optional : the container’s exclude list.

Example Request:

{

"fc2704decbf3": {

"allowlist": {

"file_path1": [ "hash1", "hash2", ...],
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"file_path2": [ "hash3", "hash4", ... ],

...

},

"exclude": [ "reg ex1", "reg ex2", ... ]

},

"ed62bf75aecb": { ... }

...

}

Response JSON object

Example Responses:

{

"code": 200,

"status": "Success",

"results": {

"fc2704decbf3": {

"operational_state": 0,

"allowlist": {

"f_path1": ["hash1", "hash2", ...],

"f_path2": ["hash3", "hash4", ...],

...

},

"exclude": ["reg ex1", "reg ex2", ...]

},

"ed62bf75aecb": { ... },

...

}

}

GET /v2/agents/{agent id:UUID}/containers/{container id} *

(Mutual TLS connection)

Retrieve information about the container {container id} associated to the Cloud Agent {agent id}.

Response JSON object

❼ container (JSON object): it contains the information related to the {container id}.

Example Response:

{

"code": 200,

"status": "Success",

"results": {

"container": {

"contID": "b9aef4312bcc",

"operational_state": 2,

"allowlist": {

"file_path1": [ "hash1", "hash2", ... ],

"file_path2": [ "hash3", "hash4", ... ],

...

},

"exclude": [ "reg ex1", "reg ex2", ... ],

"fnf": [ "path fnf1", "path fnf2", ... ],

"filehash_err": [ "path 1", "path 2", ... ]

}

}

}
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PUT /v2/agents/{agent id:UUID}/containers/{container id} *

(Mutual TLS connection)

Update the allowlist and exclude list of the {container id} associated to the Cloud Agent {agent id};
if the {container id} is not registered, add it to the list of containers associated to {agent id}.

Request JSON object

❼ allowlist (JSON object): the allowlist of the {container id};

❼ exclude (list[string]): the exclude list of the {container id};

Example Request:

{

"allowlist": {

"file_path1": [ "hash1", "hash2", ... ],

"file_path2": [ "hash3", "hash4", ... ],

...

},

"exclude": [ "reg ex1", "reg ex2", .... ]

}

Response JSON object

Example Response:

{

"code": 201,

"status": "Created",

"results": {

"contID": "c91e447a05cb",

"operational_state": 0,

"allowlist": {

"file_path1": [ "hash1", "hash2", ... ],

"file_path2": [ "hash3", "hash4", ... ],

...

},

"exclude": [ "reg ex1", "reg ex2", ... ]

}

}

If the {container id} has been added, the response code is 201 “Created”, if it has been updated,
the response code is 200 “Success”.

DELETE /v2/agents/{agent id:UUID}/containers/{container id} *

(Mutual TLS connection)

Remove the {container id} from the Cloud Agent {agent id}.

GET /v2/agents/{agent id:UUID}/containers/{container id}/allowlist *

(Mutual TLS connection)

Get the current allowlist of {container id}, registered in the CV and associated to the Cloud
Agent {agent id}.

Response JSON object
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❼ allowlist (JSON object): the current {container id}’s allowlist.

Example Response:

{

"code": 200,

"status": "Success",

"results": {

"allowlist": {

"file_path1": [ "hash1", "hash2", ... ],

"file_path2": [ "hash3", "hash4", ... ],

...

}

}

}

PUT /v2/agents/{agent id:UUID}/containers/{container id}/allowlist *

(Mutual TLS connection)

Substitute the allowlist of {container id}, associated to the Cloud Agent {agent id}, with the one
provided in the request body.

Request JSON object

❼ allowlist (JSON object): the new allowlist for {container id}.

Example Request:

{

"allowlist": {

"/path/to/file1": [ "hash1", "hash2", ... ],

"/path/to/file2": [ "hash3", "hash4", ... ],

...

}

}

PATCH /v2/agents/{agent id:UUID}/containers/{container id}/allowlist *

(Mutual TLS connection)

Patch the allowlist of {container id}, registered in the CV and associated to the Cloud Agent
{agent id}.

Request JSON object

❼ delete_paths (list[string]) -optional : the list of file paths to be removed from the {container id}
allowlist;

❼ put_paths (JSON object) -optional : the file paths to be added or updated in the {container id}
allowlist.

Example Request:

{

"delete_paths": [ "/path/to/file1", "/path/to/file2", ... ],

"put_paths": {

"/path/to/file3": [ "hash3", "hash4", ... ],

"/path/to/file4": [ "hash5", "hash6", ... ],

...

}

}
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Response JSON object

❼ allowlist (JSON object): the newly updated {container id} allowlist.

Example Responses:

{

"code": 200,

"status": "Success",

"results": {

"allowlist": {

"/path/to/file3": [ "hash3", "hash4", ... ],

"/path/to/file4": [ "hash5", "hash6", ... ],

...

}

}

}

{

"code": 400,

"status": "The request body does not have the fields \"delete paths\" or

\"put paths\"",
"results": {}

}

Response code 400 can occur if request body is empty or does not contain neither delete_paths
nor put_paths.

GET /v2/agents/{agent id:UUID}/containers/{container id}/exclude *

(Mutual TLS connection)

Get the current exclude list of {container id}, registered in the CV and associated to the Cloud
Agent {agent id}.

Response JSON object

❼ exclude (list[string]): the {container id}’s exclude list.

Example Response:

{

"code": 200,

"status": "Success",

"results": {

"exclude": [ "reg ex1", "reg ex2", ... ]

}

}

PUT /v2/agents/{agent id:UUID}/containers/{container id}/exclude *

(Mutual TLS connection)

Substitute the exclude list of {container id}, associated to the Cloud Agent {agent id}, with the
one provided in the request body.

Request JSON object

❼ exclude (list[string]): the new exclude list for the {container id}.
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Example Request:

{

"exclude": [ "reg ex1", "reg ex2", ... ]

}

Response JSON object

❼ exclude (list[string]): the newly updated exclude list of {container id}.

Example Responses:

{

"code": 200,

"status": "Success",

"results": {

"exclude": [ "reg ex1", "reg ex2", ... ]

}

}

{

"code": 400,

"status": "Invalid regex: " + regex err.msg + ".",

"results": {}

}

Response code 400 occurs when one of the regular expressions in the request body is not valid,
the request body is empty or does not contain the exclude field.

D.3 Registrar

GET /v2/agents (Mutual TLS connection)

Retrieve the list of all Cloud Agents currently registered.

Response JSON object

❼ uuids (list[string]): list of all Cloud Agent UUIDs currently registered.

Example Response:

{

"code": 200,

"status": "Success",

"results": {

"uuids": [ "uuid1", "uuid2", ... ]

}

}

GET /v2/agents/{agent id:UUID} (Mutual TLS connection)

API used by Tenant and CV to retrieve TPM credentials of Cloud Agent {agent id}, needed to
validate TPM quotes.

Response JSON object

❼ aik_tpm (string): base64 encoded AIKpub, with format TPM2B PUBLIC from tpm2-tss;
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❼ ek_tpm (string): base64 encoded EKpub; when the Cloud Agent runs directly on the physical
host, it will submit ekcert and ek_tpm will be the public key of that certificate;

❼ ekcert (string): base64 encoded EK certificate in DER format;

❼ regcount (int): counter of the number of registrations made by the same Cloud Agent;

❼ provider_keys (JSON object) -optional : this field is present only if the Cloud Agent runs
in a VM, in which case previous fields refer to Cloud Agent’s vTPM (ekcert is None or
“emulator” in this case), while fields inside provider_keys refer to the provider’s physical
TPM:

– aik (string): physical TPM’s AIKpub;

– ek (string): physical TPM’s EKpub;

– ekcert (string): physical TPM’s EK certificate;

– regcount (int): registration counter.

Example Responses:

{

"code": 200,

"status": "Success",

"results": {

"aik_tpm": "ARgAAQALAAUAcgAAABAAF...4FlbNOAW3APH8c+jZ3tgbt",

"ek_tpm": "AToAAQALAAMAsgAgg3GXZ...mJx63obCqx9z5BltV5YQ==",

"ekcert": "MIIEGTCCAoGgAwIBAgIBBTA...y2z8m7UHiLCbamSe6m7W",

"regcount": 1,

"provider_keys": {

"aik": "fdshiuOHF+...fjdsk670",

"ek": "FD94HOhjkd...4Jjkd8jd",

"ekcert": "dfslLJ897...JK83ijdJ",

"regcount": 1

}

}

}

{

"code": 404,

"status": "agent id not yet active",

"results": {}

}

Response code 404 can happen if the Cloud Agent {agent id} does not exist in the Registrar or
if it has not yet completed the registration procedure.

DELETE /v2/agents/{agent id:UUID} (Mutual TLS connection)

Remove the Cloud Agent {agent id} from Registrar’s database.

POST /v2/agents/{agent id:UUID} (Unencrypted connection)

API used by the Cloud Agent to post physical TPM’s credentials if it runs directly on the physical
host, vTPM’s credential if it runs in a VM.

Request JSON object

❼ ek_tpm (string) - optional : base64 encoded EKpub; this field is present only if ekcert is
None or “emulator”;
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❼ ekcert (string): base64 encoded EK certificate in DER format;

❼ aik_tpm (string): base64 encoded AIKpub, with format TPM2B PUBLIC from tpm2-tss;

Example Request:

{

"ekcert": "MIIEGTCCAoGgAw...2z8m7UHiLCbamSe6m7W",

"aik_tpm": "ARgAAQALAAUAc...9lZmMvregrFHKYc7CXChz"

}

Response JSON object

❼ blob (string): base64 encoded blob containing the aik_tpm name and a challenge Ke,
encrypted with EKpub, that is ek_tpm or the public key contained in ekcert.

Example Response:

{

"code": 200,

"status": "Success",

"results": {

"blob": "utzA3gAAAAEARAAgC/w9...NTByalxbulg8x1eGtZyuQF"

}

}

PUT /v2/agents/{agent id:UUID}/activate (Unencrypted connection)

API used by the Cloud Agent, when it runs on physical host, to respond to the challenge sent by
the Registrar and activate the registration.

Request JSON object

❼ auth_tag (string): HMAC of the {agent id} calculated with the challengeKe: HMACKe
(agent id).

Example Request:

{

"auth_tag": "7087ba88746886262de7...55ddb96e32efdd8745d0bdfef"

}

PUT /v2/agents/{agent id:UUID}/vactivate (Unencrypted connection)

API used by the Cloud Agent, when it runs in a VM, to respond to the challenge sent by the
Registrar and activate the registration.

Request JSON object

❼ deepquote (string): challenge response, consisting of a deep-quote signed with physical
AIKpriv and vAIKpriv and created with “nonce” equals to the hash of the challenge Ke; it
contains vPCR 16 with the extension of {agent id}, vAIKpub and vEKpub:

DeepQuoteAIK vAIK(H(Ke), v16 : H(agent id, vAIKpub, vEKpub))

Example Request:

{

"deepquote": "reJz7H+Ls3iD...O3IUEAkA44Iwlw=="

}
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D.4 Tenant Webapp

GET /v2/webapp/ (Server-authenticated TLS connection)

Get HTML web page.

GET /v2/logs/tenant (Server-authenticated TLS connection)

Get the Tenant log.

Query Parameter

❼ pos (int) - optional : it specifies the start-line in the log file to be sent.

Example Request:

/v2/logs/tenant?pos=20

Response JSON object

❼ log (list[string]): content of Tenant’s log file.

{

"code": 200,

"status": "Success",

"results": {

"log": [ "line pos", "line pos+1", "line pos+2", ... ]

}

}

GET /v2/agents/ (Server-authenticated TLS connection)

Get the ordered list of registerd Cloud Agents.

Response JSON object

❼ uuids (list[string]): UUIDs of Cloud Agents registered in Keylime, ordered on the basis of
the agent’s operational_state; the choosed operational_state ordering is the following
one:
1) TENANT FAILED, 2) INVALID QUOTE, 3) FAILED, 4) UNKNOWN CONTAINER,
5) GET QUOTE, 6) GET QUOTE RETRY, 7) PROVIDE V, 8) PROVIDE V RETRY, 9)
SAVED, 10) START, 11) TERMINATED, 12) REGISTERED.

{

"code": 200,

"status": "Success",

"results": {

"uuids": [ "uuid1", "uuid2", ... ]

}

}
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GET /v2/agents/{agent id:UUID} (Server-authenticated TLS connection)

Get details about Cloud Agent {agent id}.

Response JSON object

The response body has the same format as that returned by the API GET /v2/agents/{agent_id:UUID}

of the CV, already described above, with the addition of the field id containing the {agent id}.

PUT /v2/agents/{agent id:UUID} (Server-authenticated TLS connection)

Reactivate Cloud Agent {agent id}; it internally invokes the API, exposed by the CV, PUT
/v2/agents/{agent_id:UUID}/reactivate.

POST /v2/agents/{agent id:UUID} (Server-authenticated TLS connection)

Register a new Cloud Agent {agent id} in CV e provide an encrypted payload to the {agent id}.

Request JSON object

❼ agent_ip (string): Cloud Agent’s contact IP address;

❼ ptype (int) - optional : “payload type”, it can have one of the following values: 0 = FILE
(default), 1 = KEYFILE, 2 = CA DIR;

❼ file_data (string) - optional : it is the payload, base64 encoded, to be sent to the agent;
if ptype = FILE, it will be encrypted by the Tenant with a random bootstrap key Kb; if
ptype = KEYFILE, it is already encrypted with a Kb specified with keyfile_data;

❼ keyfile_data (string) - optional : ”base64 Kb\nbase64 U\nbase64 V”; this field is used
when ptype = KEYFILE and contains the bootstrap key Kb used to cipher file_data,
together with the U and V keys in which Kb has been splitted;

❼ include_dir_data (list[string]) - optional : [”data1 base64”, ”data2 base64”, ... ]; this field
is used when ptype = CA DIR and contains a list of data to be included in a zip file that
will be sent to the Cloud Agent; the zip file will include also the certificates contained
in the directory ca_dir, among which there is the RevocationNotifier-cert.crt used by the
Cloud Agent to check the authenticity of revocation messages, and will be sent to the agent
encrypted with a random bootstrap key Kb choosen by the Tenant;

❼ include_dir_name (list[string]) - optional : [”name1”, ”name2”, ...]; this field is used when
ptype = CA DIR, it is a list of names corresponding to the include_dir_data list; the
length of this list has to be equal to that of the include_dir_data list;

❼ ca_dir (string) - optional : this field is used when ptype = CA DIR and is the path of the
CA directory on the machine where the Tenant Webapp is running; if set to “default”, the
path used is /var/lib/keylime/ca;

❼ ca_dir_pw (string) - optional : this field is used when ptype = CA DIR and contains the
CA password;

❼ tpm_policy (JSON object) - optional : it specifies the PCRs to be requested in the TPM
quote and their whitelist, with the exception of IMA PCR, which is added to the PCR mask
if a_list_data, a_list_url or ima_sign_verification_keys are specified;
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❼ vtpm_policy (JSON object) - optional : it specifies the vPCRs to be requested in the deep-
quote and their whitelists, with the exception of IMA vPCR, which is added to the vPCR
mask if a_list_data, a_list_url or ima_sign_verification_keys are specified;

❼ a_list_data (list[string]) - optional : it is the whitelist for the host system;

❼ a_list_url* (string) - optional : it is the URL to download the host’s whitelist from; if this
field is specified, a_list_data can not be specified;

❼ e_list_data (list[string]) - optional : it is a list of regular expressions used to match files
that has to be excluded during host system attestation; empty strings or strings starting
with ”#” will be removed from the list;

❼ ima_sign_verification_keys (list[string]) - optional : it is the IMA public keyring;

❼ mb_refstate (list[string]) - optional : Measured Boot reference state policy;

❼ containers* (JSON object) - optional : it specifies the containers associated to the Cloud
Agent; each container is identified in the JSON object through its identifier and is associated
to JSON object containing the following fields:

– a_list_data (list[string]): it is the container’s whitelist, specified as a list of strings
in the format ”hash file-path”;

– a_list_url (string): it is the URL to download the container’s whitelist from; if this
field is specified, a_list_data can not be specified for that container;

– e_list_data (list[string]): it is the container’s exclude list, which specifies a list of
regular expressions for the file-paths that do not need to be attested;

❼ allow_unknown_containers* (int) - optional : if it is set to 1, unknown containers will be
allowed on the Cloud Agent’s host system; if it is set to 0, or the field is absent, unknown
containers will cause an integrity failure during attestation.

Example Request:

{

"agent_ip" : "127.0.0.1",

"ptype": 0,

"file_data" : "base64",

"tpm_policy": {

"0": ["23BD73EC5A35CB4...20D8BB8344CE77E3"],

"1": ["73D3A3D17547D7B...8E841134A2966268"],

"2": ["B3BD342D6060FFE...FEC19A51CA37AB30"],

...

},

"a_list_data": [

"hash0 sha256 boot aggregate",

"hash1 sha1 /path/to/file1",

"hash2 sha256 /path/to/file1",

"hash3 sha1 /path/to/file2",

"hash4 sha256 /path/to/file2",

...

],

"e_list_data": [ "/var/log/wtmp", "/root/etc/fstab", "/sys/fs/.*", ... ],

"allow_unknown_containers": 0,

"containers": {

"5cb9ae56bc24": {

"a_list_data": [

"hash1 sha1 /path/to/file1",

"hash2 sha256 /path/to/file1",

"hash3 sha1 /path/to/file2",

"hash4 sha256 /path/to/file2",

...

],
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"e_list_data": [ "reg ex1", "reg ex2", ... ]

},

"dc5710bc5eed": { ... }

}

}

DELETE /v2/agents/{agent id:UUID} (Server-authenticated TLS connection)

Remove the Cloud Agent {agent id} from the CV; the agent still remains registered in the Reg-
istrar.

PUT /v2/agents/{agent id:UUID}/allow unknown containers *

(Server-authenticated TLS connection)

Allow / disallow the execution of unknown containers on host system of the Cloud Agent {agent id}.
This API will internally invoke the corresponding API of the CV, presented above.

Request JSON object

❼ allow_unknown_containers (int): if set to 0, unknown containers running on the host
system will cause an integrity failure; if set to 1, unknown containers will be admitted.

Example Request:

{

"allow_unknown_containers": 1

}

GET /v2/agents/{agent id:UUID}/allowlist * (Server-authenticated TLS connection)

Get the current host system’s allowlist associated to the Cloud Agent {agent id}. It internally
invokes the corresponding API exposed by the CV.

Response JSON object

❼ allowlist (JSON object): host system allowlist.

Example Response:

{

"code": 200,

"status": "Success",

"results": {

"allowlist": {

"/path/to/file1": ["hash1", "hash2", ...],

"/path/to/file2": ["hash3", "hash4", ...],

...

}

}

}
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PUT /v2/agents/{agent id:UUID}/allowlist * (Server-authenticated TLS connection)

Substitute the host system’s allowlist associated to the Cloud Agent {agent id} with the one pro-
vided in the request body. This API will internally invoke the corresponding one exposed by the
CV.

Request JSON object

❼ allowlist (JSON object): new host system’s allowlist.

Example Request:

{

"a_list_data": [

"hash1 sha1 boot aggregate",

"hash2 sha256 boot aggregate",

"hash3 sha1 /path/to/file1",

"hash4 sha256 /path/to/file1",

"hash5 sha1 /path/to/file2",

"hash6 sha256 /path/to/file2",

...

]

}

PATCH /v2/agents/{agent id:UUID}/allowlist * (Server-authenticated TLS connection)

Patch the host system’s allowlist, associated to the Cloud Agent {agent id}; this API internally
invokes the corresponding one expose by the CV.

Request JSON object

❼ delete_paths (list[string]) - optional field : list of file-paths that will be removed from the
host system’s allowlist;

❼ put_paths (list[string]) - optional field : file-paths that will be inserted or updated in the
host system’s allowlist.

Example Request:

{

"delete_paths": [ "/path/to/file1", "/path/to/file2", ... ],

"put_paths": [

"hash3 sha1 /path/to/file3",

"hash4 sha256 /path/to/file3",

"hash5 sha1 /path/to/file4",

"hash6 sha256 /path/to/file4",

...

]

}

Response JSON object

❼ allowlist: the newly updated host system’s allowlist.

{

"code": 200,

"status": "Success",

"results": {
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"allowlist": {

"boot_aggregate": [ "hash1 sha1", "hash2 sha256" ],

"/path/to/file3": [ "hash3 sha1", "hash4 sha256" ],

"/path/to/file4": [ "hash5 sha1", "hash6 sha256" ],

...

}

}

}

GET /v2/agents/{agent id:UUID}/exclude * (Server-authenticated TLS connection)

Get the current host system’s exclude list associated to the Cloud Agent {agent id}. It internally
invokes the corresponding API exposed by the CV.

Response JSON object

❼ exclude (list[string]): host system’s exclude list.

Example Response:

{

"code": 200,

"status": "Success",

"results": {

"exclude": [ "reg ex1", "reg ex2", ... ]

}

}

PUT /v2/agents/{agent id:UUID}/exclude * (Server-authenticated TLS connection)

Substitute the host system’s exclude list associated to the Cloud Agent {agent id} with the one
provided in the request body. To reset the exclude list, provide an empty list in the request body.
This API internally invokes the corresponding one exposed by the CV.

Request JSON object

❼ e_list_data (list[string]): the new host system’s exclude list.

Example Request:

{

"e_list_data": [ "reg ex1", "reg ex2", ... ]

}

Response JSON object

❼ exclude (list[string]): the newly updated host system’s exclude list.

Example Responses:

{

"code": 200,

"status": "Success",

"results": {

"exclude": [ "reg ex1", "reg ex2", ... ]

}

}
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{

"code": 400,

"status": "Invalid regex: " + regex err.msg + ".",

"results": {}

}

Response code 400 can occur if some of the regular exception provided in the request body is not
valid.

GET /v2/agents/{agent id:UUID}/containers * (Server-authenticated TLS connection)

Get the list of all container identifiers currently registered in Cloud Agent {agent id}. This API
will internally invoke the corresponding one exposed by the CV.

Response JSON object

❼ agent_id (string): Cloud Agent’s UUID;

❼ cont_ids (list[string]): list of registered container identifiers.

Example Response:

{

"code": 200,

"status": "Success",

"results": {

"agent_id": "agent id",

"cont_ids": [ "contID1", "contID2", ... ]

}

}

POST /v2/agents/{agent id:UUID}/containers * (Server-authenticated TLS connection)

Add new containers to those already associated to the Cloud Agent {agent id}. If the identifier of
one of the containers in the request body is already registered in the CV, the request is rejected.
This API will internally invoke the corresponding one exposed by the CV.

Request JSON object

Each key in the request body is the ID of a new container to be registered; the JSON object
associated to it contains the following fields:

❼ a_list_data (list[string]): it is the allowlist associated to the container; each string inside
the list has the format “hash file-path”;

❼ e_list_data (list[string]): it is the exclude list associated to the container.

Example Request:

{

"c4e7bbd89a01": {

"a_list_data": [

"hash1 sha1 /path/to/file1",

"hash2 sha256 /path/to/file1",

"hash3 sha1 /path/to/file2",

"hash4 sha256 /path/to/file2",

...

],
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"e_list_data": [ "/var/log/*", "/root/etc/fstab", ... ]

},

"ef9cca80b16d": { ... }

}

Response JSON object

The response body contains information about all the containers currently associated to the
Cloud Agent {agent id}, each one represented by the following fields:

❼ operational_state (int): it is the container integrity state, which can be: 0 = START (it
is waiting the first integrity check), 1 = TRUST, 2 = UNTRUST;

❼ allowlist (JSON object): it is the container’s allowlist;

❼ exclude (list[string]): it is the container’s exclude list;

❼ fnf (list[string]) - optional : it is the list of file paths not found in the container’s allowlist
during remote attestation;

❼ filehash_err (list[string]) - optional : it is the list of file paths whose digest do not match
the ones contained in the container’s allowlist.

Example Response:

{

"code": 200,

"status": "Success",

"results": {

"017e5a179cba": {

"operational_state": 2,

"allowlist": {

"f_path1": ["hash1", "hash2", ...],

"f_path2": ["hash3", "hash4", ...],

...

},

"exclude": [ "reg ex1", "reg ex2", ... ],

"fnf": [ "path fnf1", "path fnf2", ... ],

"filehash_err": [ "path 1", "path 2", ... ]

},

"8ffae5cb4176": { ... },

"c4e7bbd89a01": { ... },

"ef9cca80b16d": { ... }

}

{

"code": 409,

"status": "The container " + container id + " is already registered in agent " +

agent id,

"results": {}

}

Response code 409 occur when one of the containers listed in the request body is already registered
in the agent. In order to update an already registered container, use PUT request instead.

PUT /v2/agents/{agent id:UUID}/containers * (Server-authenticated TLS connection)

Substitute the containers currently associated to the Cloud Agent {agent id} with those provided
in the request body. This API will internally invoke the corresponding API of the CV.

Request JSON object
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Each key in the request body is the ID of a container to be registered or updated; the JSON
object associated to it contains the following fields:

❼ a_list_data (list[string]): it is the allowlist associated to the container; each string inside
the list has the format “hash file-path”;

❼ e_list_data (list[string]): it is the exclude list associated to the container.

Example Request:

{

"67adbce018bd": {

"a_list_data": [

"hash1 sha1 /path/to/file1",

"hash2 sha256 /path/to/file1",

"hash3 sha1 /path/to/file2",

"hash4 sha256 /path/to/file2",

...

],

"e_list_data": [ "/var/log/*", "/root/etc/fstab", ... ]

},

"39fc5aeb20de": { ... },

...

}

GET /v2/agents/{agent id:UUID}/containers/{container id} *

(Server-authenticated TLS connection)

Retrieve information about the container {container id} associated to the Cloud Agent {agent id}.
This API will internally invoke the corresponding API of the CV.

Response JSON object

❼ container (JSON object): it contains the information related to the {container id}.

Example Response:

{

"code": 200,

"status": "Success",

"results": {

"container": {

"contID": "5ef8c19baead",

"operational_state": 2,

"allowlist": {

"f_path1": [ "hash1", "hash2", ... ],

"f_path2": [ "hash3", "hash4", ... ],

...

},

"exclude": [ "reg ex1", "reg ex2", ... ],

"fnf": [ "fnf1", "fnf2", ... ],

"filehash_err": [ "f err1", "f err2", ... ]

}

}

}
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PUT /v2/agents/{agent id:UUID}/containers/{container id} *

(Server-authenticated TLS connection)

Update the allowlist and exclude list of the {container id} associated to the Cloud Agent {agent id};
if the {container id} is not registered, add it to the list of containers associated to {agent id}.
This API will internally invoke the corresponding API of the CV

Request JSON object

❼ a_list_data (list[string]): the allowlist of the {container id}, each string in the list has the
format “digest file-path”;

❼ e_list_data (list[string]): the exclude list of the {container id};

Example Request:

{

"a_list_data": [

"hash1 sha1 /path/to/file1",

"hash2 sha256 /path/to/file1",

"hash3 sha1 /path/to/file2",

"hash4 sha256 /path/to/file2",

...

],

"e_list_data": [ "reg ex1", "reg ex2", .... ]

}

Response JSON object

Example Response:

{

"code": 201,

"status": "Created",

"results": {

"contID": "c91e447a05cb",

"operational_state": 0,

"allowlist": {

"/path/to/file1": [ "hash1", "hash2", ... ],

"/path/to/file2": [ "hash3", "hash4", ... ],

...

},

"exclude": [ "reg ex1", "reg ex2", ... ]

}

}

If the {container id} has been added, the response code is 201 “Created”, if it has been updated,
the response code is 200 “Success”.

DELETE /v2/agents/{agent id:UUID}/containers/{container ID} *

(Server-authenticated TLS connection)

Remove the {container id} from the Cloud Agent {agent id}. This API will invoke the corre-
sponding API exposed by the CV.
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GET /v2/agents/{agent id:UUID}/containers/{container id}/allowlist *

(Server-authenticated TLS connection)

Get the current allowlist of {container id}, registered in the CV and associated to the Cloud
Agent {agent id}. This API will invoke the corresponding API of the CV in order to retrieve the
required information.

Response JSON object

❼ allowlist (JSON object): the current {container id}’s allowlist.

Example Response:

{

"code": 200,

"status": "Success",

"results": {

"allowlist": {

"/path/to/file1": [ "hash1", "hash2", ... ],

"/path/to/file2": [ "hash3", "hash4", ... ],

...

}

}

}

PUT /v2/agents/{agent id:UUID}/containers/{container id}/allowlist *

(Server-authenticated TLS connection)

Substitute the allowlist of {container id}, associated to the Cloud Agent {agent id}, with the one
provided in the request body. This API will invoke the corresponding API of the CV for updating
the information in the CV’s database.

Request JSON object

❼ allowlist (list[string]): the new allowlist for {container id}; each string of the list has the
format “digest file-path”.

Example Request:

{

"a_list_data": [

"hash1 sha1 /path/to/file1",

"hash2 sha256 /path/to/file1",

"hash3 sha1 /path/to/file2",

"hash4 sha256 /path/to/file2",

...

]

}

PATCH /v2/agents/{agent id:UUID}/containers/{container id}/allowlist *

(Server-authenticated TLS connection)

Patch the allowlist of {container id}, registered in the CV and associated to the Cloud Agent
{agent id}. This API internally invokes the corresponding API of the CV to update the informa-
tion in the CV’s database.

Request JSON object
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❼ delete_paths (list[string]) -optional : the list of file paths to be removed from the {container id}
allowlist;

❼ put_paths (list[string]) -optional : the file paths to be added or updated in the {container id}
allowlist; each string in the list has the format “digest file-path”.

Example Request:

{

"delete_paths": [ "/path/to/file1", "/path/to/file2", ... ],

"put_paths": [

"hash1 sha1 /path/to/file3",

"hash2 sha256 /path/to/file3",

...

]

}

Response JSON object

❼ allowlist (JSON object): the newly updated {container id} allowlist.

Example Responses:

{

"code": 200,

"status": "Success",

"results": {

"allowlist": {

"/path/to/file1": [ "hash1", "hash2", ... ],

"/path/tp/file2": [ "hash3", "hash4", ... ],

...

}

}

}

{

"code": 400,

"status": "The request body does not contain the fields \"delete paths\" or

\"put paths\"",
"results": {}

}

Response code 400 can occur if request body is empty or does not contain neither delete_paths
nor put_paths.

GET /v2/agents/{agent id:UUID}/containers/{container id}/exclude *

(Server-authenticated TLS connection)

Get the current exclude list of {container id}, registered in the CV and associated to the Cloud
Agent {agent id}. This API internally invokes the corresponding CV’s APIs in order to retrieve
the required information.

Response JSON object

❼ exclude (list[string]): the {container id}’s exclude list.

Example Response:
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{

"code": 200,

"status": "Success",

"results": {

"exclude": [ "reg ex1", "reg ex2", ... ]

}

}

PUT /v2/agents/{agent id:UUID}/containers/{container id}/exclude *

(Server-authenticated TLS connection)

Substitute the exclude list of {container id}, associated to the Cloud Agent {agent id}, with the
one provided in the request body. This API will invoke the corresponding API of the CV to
update the information in the CV’s database.

Request JSON object

❼ e_list_data (list[string]): the new exclude list for the {container id}.

Example Request:

{

"e_list_data": [ "reg ex1", "reg ex2", ... ]

}

Response JSON object

❼ exclude (list[string]): the newly updated exclude list of {container id}.

Example Responses:

{

"code": 200,

"status": "Success",

"results": {

"exclude": [ "reg ex1", "reg ex2", ... ]

}

}

{

"code": 400,

"status": "Invalid regex: " + regex err.msg + ".",

"results": {}

}

Response code 400 occurs when one of the regular expressions in the request body is not valid,
the request body is empty or does not contain the e_list_data field.
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Programmer’s manual:
Whitelists Web Service REST
APIs

This appendix describes the REST APIs exposed by the Whitelists Web Service, a new subcom-
ponent of the TM developed with the thesis work. The Whitelists Web Service accepts only
JSON format and the responses provided by APIs are, for the most part, JSON objects with the
following format:

❼ code (int): the HTTP status code;

❼ status (string): textual explanation of the response status;

❼ results (JSON object): it contains specific data of the response and its format depends on
the invoked API.

The only APIs with a different response format are GET /containers/{container_id} and GET

/hosts/{host_id}, which return a string containing the whitelist of a container or a physical
host respectively, in the format expected by the Keylime framework.

GET /hosts/{host id} (Unencrypted connection)

Retrieve the whitelist for the host {host id}.

Response

The response is the {host id}’s whitelist expressed in the format that the Keylime framework
expects; each line of the string contains a “digest file-path” pair:

"7ca9503922742b2[...]1891c6d0b179f9bf7bcfd3d /usr/bin/dockerd\n

8d9ae560cc518a6[...]afc4f5d2134ceec77a87d2f /usr/bin/docker-init\n

640bfa79de72a16[...]f6d3be02f0c80561b8e9784 /usr/bin/docker-proxy\n

119eb7f82994502[...]77adf198d6ae170b044146f /usr/bin/getent\n

93e226f3876bb17[...]ca82941f4957d69f8e1a9bd /usr/bin/cut\n

331461536894ebf[...]dde380adfdfc4edd8a258d2 /usr/bin/md5sum\n

d10d2c03eb3aa9c[...]c7e3fced895329afc914d1d /usr/bin/head\n

..."
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PUT /hosts/{host id} (Unencrypted connection)

Create or update the whitelist for {host id}.

Request JSON object

❼ architecture (string): host system’s architecture, for example “amd64”, “i386”, “arm64”;

❼ hash_algorithms (string): a comma-separated list of hash algorithms that have to be
contained in the whitelist; the hash algorithms currently supported are: “sha1”, “sha256”,
“sha384”, “sha512”; not supported algorithms will be ignored;

❼ software_config (JSON object) -optional : if package_list is specified, this field is not
admitted; it specifies the software configuration of the host system; each object’s key repre-
sents a system’s software and should be declared in the whitelists-sources-names.txt

configuration file; the JSON objects describing the software components contain the follow-
ing fields:

– origin (string): the operative system’s name, for example “Ubuntu”;

– distributions (string): a comma separated list of distributions, for example “focal,
focal-security”;

– components (string): a comma separated list of distributions’ components, for example
“main, universe”;

❼ packages_list (string) -optional : if software_config is specified, this field is not admit-
ted; it is a list of rows containing the packages installed on the host system; each row has
the format “package-name package-version architecture\n”;

❼ known_digests (list[JSON object]) -optional : custom digests, related to proprietary soft-
ware, that have to be added to the host system’s whitelist; each known_digest is a JSON
object containing the following fields;

– hash (string): custom digest;

– path (string): file path to which the digest refers.

Example Request 1:

{

"architecture": "amd64",

"hash_algorithms": "sha1,sha256",

"software_config": {

"Operative System": {

"origin": "Ubuntu",

"distributions": "focal, focal-security,

focal-updates",

"components": "main, restricted,

universe, multiverse"

},

"Docker": {

"origin": "Ubuntu",

"distributions": "focal",

"components": "stable"

},

...

},

"known_digests": [

{

"hash": "56ad914cc[...]3401e",

"path": "/path/to/file"

},

...

]

}
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Example Request 2:

{

"architecture": "amd64",

"hash_algorithms": "sha512",

"packages_list": "accountsservice 0.6.55-0ubuntu12 20.04.4 amd64\n
adduser 3.118ubuntu2 all\n
alsa-topology-conf 1.2.2-1 all\n
alsa-ucm-conf 1.2.2-1ubuntu0.8 all\n
amd64-microcode 3.20191218.1ubuntu1 amd64\n
apparmor 2.13.3-7ubuntu5.1 amd64\n
apport 2.20.11-0ubuntu27.18 all\n
...",

"known_digests": [

{

"hash": "56ad914cc[...]3401e",

"path": "/path/to/file"

},

...

]

}

Response JSON object

❼ host_id (string): the host’s identifier;

❼ architecture (string): the host’s architecture;

❼ hash_algorithms (list[string]): the hash algorithms with which the whitelist was built;

❼ software_config (JSON object): the software configuration specified in the request body;

❼ packages_list (string): the installed packages specified in the request body;

❼ whitelist (string): the created or updated whitelist for the {host id}, available through
GET /hosts/{host id}.

Example Response 1:

{

"code": 201,

"status": "Created",

"results": {

"host_id": "D432FBB3-D2F1-4A97-9EF7-75BD81C00000",

"architecture": "amd64",

"hash_algorithms": ["sha1", "sha256"],

"software_config": {

"Operative System": {

"origin": "Ubuntu",

"distributions": "focal,

focal-security,

focal-updates",

"components": "main,

restricted,

universe,

multiverse"

},

"Docker": {

"origin": "Ubuntu",

"distributions": "focal",

"components": "stable"

},

...

},

"whitelist": "137dfa[...sha1...]a3563d /path/to/file1\n
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acbb3[...sha256...]99ea5 /path/to/file1\n
22ea1f[...sha1...]8abd1f /path/to/file2\n
1d76a[...sha256...]9ecae /path/to/file2\n
..."

}

}

Example Response 2:

{

"code": 200,

"status": "Success",

"results": {

"host_id": "FDFSE84-KSRFE900-39DJ74",

"architecture": "amd64",

"hash_algorithms": ["sha1", "sha256"],

"packages_list": "accountsservice 0.6.55-0ubuntu12 20.04.4 amd64\n
adduser 3.118ubuntu2 all\n
alsa-topology-conf 1.2.2-1 all\n
alsa-ucm-conf 1.2.2-1ubuntu0.8 all\n
amd64-microcode 3.20191218.1ubuntu1 amd64\n
apparmor 2.13.3-7ubuntu5.1 amd64\n
apport 2.20.11-0ubuntu27.18 all\n
...",

"whitelist": "137dfa[...sha1...]a3563d /path/to/file1\n
acbb3[...sha256...]99ea5 /path/to/file1\n
22ea1f[...sha1...]8abd1f /path/to/file2\n
1d76a[...sha256...]9ecae /path/to/file2\n
..."

}

}

The response code is 201 when the {host id}’s whitelist has been created, it is 200 when the
whitelist has been updated.

POST /hosts/{host id}/known digest (Unencrypted connection)

Add to the {host id}’s whitelist the custom digest specified in the request body. If the whitelist
resource has not yet been created, the request is rejected.

Request JSON object

❼ hash (string): custom digest;

❼ path (string): file path to which the digest refers.

Example Request:

{

"hash": "34edd[...]cd91a",

"path": "/path/to/file"

}

GET /packages/{package name} (Unencrypted connection)

Retrieve all the information for the {package name}.

Response JSON object
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❼ package_name (string): the required {package name};

❼ origin (string): the operative system on which the package can be installed;

❼ software_name (string): the “symbolic” name of the software to which the package belongs,
as defined in the configuration file whitelists-sources-names.txt;

❼ distribution (string): the operative system’s distribution on which the package can be
installed;

❼ component (string): the component to which the package belongs;

❼ architectures (JSON object): the architectures, present in the local database, on which
the package can be installed; each architecture is represented by a JSON obect containing
the package versions downloaded in the local database; each package version describes all
the features of the package, including its whitelist.

Example Response:

{

"code": 200,

"status": "Success",

"results": {

"package_name": "containerd.io",

"origin": "Ubuntu",

"software_name": "Docker",

"distribution": "focal",

"component": "stable",

"architectures": {

"amd64": {

"1.2.13-2": {

"Package": "containerd.io",

"Architecture": "amd64",

"Version": "1.2.13-2",

"Priority": "optional",

"Section": "devel",

"Maintainer": "Containerd team <help@containerd.io>",

"Installed-Size": "96972",

"Provides": "containerd, runc",

"Depends": "libc6 (>= 2.14), libseccomp2 (>= 2.4.1)",

"Conflicts": "containerd, runc",

"Replaces": "containerd, runc",

"Filename": "dists/focal/pool/stable/amd64

/containerd.io 1.2.13-2 amd64.deb",

"Size": "21420058",

"MD5sum": "82a480e21a52caba100623cf534532e2",

"SHA1": "18bce1e3a4a1cafeb5ef8eafa6766225be195125",

"SHA256": "96ad73534f896e1d[...]33de8183b571932939a4f740",

"SHA512": "ab86f4e14362b2ee[...]5a5275403c70b293da18ea86c23",

"Homepage": "https://containerd.io",

"Description": "An open and reliable container runtime",

"File_uri": "https://download.docker.com/linux/ubuntu

[...]/stable/amd64/containerd.io 1.2.13-2 amd64.deb",

"Is_security_update": false,

"Whitelist": {

"/etc/containerd/config.toml": {

"sha1": "b12dedffdab63138a0a1484dde9ed95c283aca23",

"sha256": "d66bdfd27e0817dd0c2702035[...]30096f46c",

"sha384": "e9b46c91a82fa4602e1cc[...]7d268e73d61f9",

"sha512": "3ccef5ce455db823d4[...]60a0b3898c05b1640"

},

...

}

},

"1.3.7-1": { ... },
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...

},

"i386": { ... }

}

}

}

PUT /packages/{package name} (Unencrypted connection)

Update or download the {package name} for the version and architecture specified in request body.

Request JSON object

❼ version (string): the requested version of {package name};

❼ architecture (string): the requested architecture.

Example Request for package “bash”:

{

"version": "5.0-6ubuntu1.1",

"architecture": "amd64"

}

Response JSON object

It contains all the information related to the downloaded or updated package, including its
whitelist.

Example Response:

{

"code": 200,

"status": "Success",

"results": {

"Package": "bash",

"Architecture": "amd64",

"Version": "5.0-6ubuntu1.1",

"Multi-Arch": "foreign",

"Priority": "required",

"Essential": "yes",

"Section": "shells",

"Origin": "Ubuntu",

"Maintainer": "Ubuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com>",

"Original-Maintainer": "Matthias Klose <doko@debian.org>",

"Bugs": "https://bugs.launchpad.net/ubuntu/+filebug",

"Installed-Size": "1656",

"Pre-Depends": "libc6 (>= 2.15), libtinfo6 (>= 6)",

"Depends": "base-files (>= 2.1.12), debianutils (>= 2.15)",

"Recommends": "bash-completion (>= 20060301-0)",

"Suggests": "bash-doc",

"Conflicts": "bash-completion (<< 20060301-0)",

"Replaces": "bash-completion (<< 20060301-0), bash-doc (<= 2.05-1)",

"Filename": "pool/main/b/bash/bash 5.0-6ubuntu1.1 amd64.deb",

"Size": "638312",

"MD5sum": "a8e68bda652adfc5173d683819426ee8",

"SHA1": "5d302f347e31fea7a7649188acf11841e68116b6",

"SHA256": "235fc2622fbc61f7f5548f2d80abda3[...]cba8e3442de7a69f3",

"SHA512": "87bdb291260da0838e5c8bd95a215[...]9eed05b3d897f8d8f090489",

"Homepage": "http://tiswww.case.edu/php/chet/bash/bashtop.html",

"Description": "GNU Bourne Again SHell",
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"Task": "minimal",

"Description-md5": "3522aa7b4374048d6450e348a5bb45d9",

"File_uri": "http://archive.ubuntu.com/[...]/bash 5.0-6ubuntu1.1 amd64.deb",

"Whitelist": {

"/bin/bash": {

"sha1": "41ba1bd49cb22466e422098d[...]ef9529e",

"sha256": "04a484f27a4b485b284519[...]9fb5f2eea9",

"sha384": "2c1c5d6474235f94bc500f4[...]a5ab60cb2d7",

"sha512": "b9bff09b39fbaa8db91d081[...]e8680f33306be1"

},

"/etc/bash.bashrc": {

"sha1": "cbd89fb1fa310fc4bc46866081[...]922cd2",

"sha256": "29128d49b590338131373e[...]17ac9a25",

"sha384": "907f5eb888047aa8197253[...]b19b7f3627",

"sha512": "747f3d9ba51c27852c4f2eb[...]8b88806cff95"

},

...

}

}

}

If {package name}, for the requested version and architecture, is not found in the remote reposi-
tories configured in the file whitelists-packages-sources.list, the response code is 404 “Not
Found”.

GET /images/{image id} (Unencrypted connection)

Retrieve information related to container image {image id}.

Response JSON object

❼ image_id (string): the identifier with which the image has been registered in the database;

❼ rootfs (string): the rootfs of the image;

❼ layers (JSON object): it contains the files divided by the layers of which the image is made
up;

❼ whitelist (JSON object): it contains the whitelist of the image; if the same file appears
on several levels, the digest considered is that of the highest level.

Example Response:

{

"code": 200,

"status": "Success",

"results": {

"image_id": "Keylime",

"rootfs": "quay.io/fedora/fedora:34-x86 64",

"layers": {

"0": {

"/path/to/file1": {

"sha1": "23dda[...]3cc",

"sha256": "c710dd2[...]fcb3",

"sha384": "445e[...]74fce",

"sha512": "9416c[...]d131"

},

"/path/to/file2": { ... },

...

},

"1": {
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"/path/to/file1": {...},

"/path/to/file3": {...},

...

},

"2": {

"/path/to/file2": {...},

"/path/to/file4": {...},

...

}

},

"whitelist": {

"/path/to/file1": {

"sha1": "55dea[...]abc1",

"sha256": "47aa2[...]01d2a",

"sha384": "6adcf4[...]33ed",

"sha512": "aac1e[...]4effb"

},

"/path/to/file2": {...},

"/path/to/file3": {...},

"/path/to/file4": {...},

...

}

}

}

PUT /images/{image id} (Unencrypted connection)

Create or update the whitelist for the container image specified in the request body and identified
as {image id}.

Request JSON object The two fields that can be specified in the request body are mutually
exclusive but at least one of them is required:

❼ image_to_pull (string) -optional : it specifies the name of the image to be pulled from the
configured Docker repository;

❼ image_to_build (string) -optional : it specifies the remote URI or the local path of the
image to be build.

Example Request 1:

{

"image_to_pull": "ubuntu"

}

Example Request 2:

{

"image_to_build": "https://github.com/keylime/keylime.git#:docker/ci"

}

The body of the response is the same as shown for the GET /images/{image_id} API; the image
resource has been created when the response code is 201, it has been updated when the response
code is 200.

GET /containers/{container id} (Unencrypted connection)

Retrieve {container id}’s whitelsit.
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Response

The response is the {container id}’s whitelist expressed in the format that the Keylime framework
expects; each line of the string contains a “digest file-path” pair:

"f1a9f328e6a0856[...]2ffc89e40baf23025a68829 /usr/local/sbin/unminimize\n

3222cd943a02ac5[...]f6a93ce8cc11fa7c2337fc2 /usr/sbin/grpck\n

1a07adb8bc0cf9f[...]415c400fb7dede623dd4fb9 /usr/sbin/rmt-tar\n

2ca2667bb07c833[...]d7f5ef41ca5ad5c0ca5b6fb /usr/sbin/pwck\n

533ccdf21c79a22[...]159cb1dec20811fbd723456 /usr/sbin/blkzone\n

adf87d9242cab10[...]a34144703a312c12aa14f9f /usr/sbin/ldattach\n

d20ed1c7d1e8fed[...]2f9839f4aaa51eed4dff0da /usr/sbin/switch_root\n

5298aac043b5b45[...]11a837c7aba5e904e788971 /usr/sbin/groupmems\n

dcfc43a37bf2680[...]8587435e290b2c1e0e856de /usr/sbin/isosize\n

982cca7d6a9afe0[...]88d253f6464bfc0a19730674 /usr/sbin/pam_getenv\n

..."

PUT /containers/{container id} (Unencrypted connection)

Create or update the {container id}’s whitelist.

Request JSON object

❼ image_id (string): it is the image identifier used for creating the image resource through
the PUT /images/{image_id} API;

❼ hash_algorithms (string): it is a comma separated list of hash algorithms to be used for
the creation of the whitelist; if a specified hash algorithm is not supported, it will be ignored;
the hash algorithm currently supported are: sha1, sha256, sha384, sha512.

Example Request:

{

"image_id": "Keylime",

"hash_algorithms": "sha256"

}

Response JSON object

❼ container_id (string): the {container id} specified in the URI;

❼ image_id (string): the image_id specified in the request body;

❼ hash_algorithms (list[string]): the list of hash algorithms of which the whitelist is com-
posed;

❼ whitelist (string): the {container id}’s whitelist.

Example Response to the PUT /containers/37aba78dcc2b request:

{

"code": 200,

"status": "Success",

"results": {

"container_id": "37aba78dcc2b",

"image_id": "ubuntu",

"hash_algorithms": [ "sha256" ],

"whitelist": "f1a9f328e6a0856[...]3025a68829 /usr/local/sbin/unminimize\n
3222cd943a02ac5[...]a7c2337fc2 /usr/sbin/grpck\n
1a07adb8bc0cf9fb[...]e623dd4fb9 /usr/sbin/rmt-tar\n
2ca2667bb07c833[...]d5c0ca5b6fb /usr/sbin/pwck\n
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533ccdf21c79a224[...]11fbd723456 /usr/sbin/blkzone\n
adf87d9242cab10f[...]12c12aa14f9f /usr/sbin/ldattach\n
d20ed1c7d1e8fed6[...]51eed4dff0da /usr/sbin/switch root\n
5298aac043b5b450[...]e904e788971 /usr/sbin/groupmems\n
dcfc43a37bf2680e7[...]2c1e0e856de /usr/sbin/isosize\n
982cca7d6a9afe07d[...]c0a19730674 /usr/sbin/pam getenv\n
2d66f8b37035b68bf[...]397969120e3 /usr/sbin/fdisk\n
..."

}

}
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This appendix describes the REST APIs exposed by the TM. The changes introduced to the APIs
with the thesis work are highlighted in the text with the character “*”.

GET /register node/ (Server-authenticated TLS connection)

Get the list of all physical hosts registered with the TM.

Response list of JSON objects

❼ id (int): host identifier in the TM’s database;

❼ hostName (string): host’s UUID;

❼ address (string): host’s IP address;

❼ pcr0 (string): it is the content of TPM’s PCR 0 register; it has a significant value only for
hosts registered with OAT attestation driver;

❼ distribution (string): it defines the host’s OS; for Keylime attestation driver, it is the
dump of a JSON object describing host’s software and hardware configuration, to be passed
to the Whitelists Web Service for creating the host whitelist;

❼ analysisType (string): it specifies the analysis type to be applied for attesting the node;

❼ driver (string): it is the attestation driver to be used for the node;

❼ containers* (string): it specifies the container ids registered with the node, with the
corresponding image identifiers;

❼ allowUnknownContainers* (int): it specifies whether unknown containers are allowed on
the host system.

Example Response:

[

{

"id": 1,

"hostName": "host1",

"address": "192.168.1.50",

"pcr0": "",
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"distribution": "{
\"architecture\":\"amd64\",
\"hash algorithms\":\"sha256\",
\"packages list\":\"acl 2.2.53-6 amd64\n

adduser 3.118ubuntu2 all\n
..."

}",
"analysisType": "load-time+cont-check,l req=l4 ima all ok|==,cont-list=",

"driver": "Keylime",

"containers": "f47a5af906cf ubuntu\n
39bf9c4591df fedora",

"allowUnknownContainers": 1

}

]

POST /register node/ (Server-authenticated TLS connection)

Register a new node inside the TM.

Request JSON object

❼ hostName (string): host’s UUID;

❼ address (string): host’s IP address;

❼ distribution (string): the host’s OS; if the attestation driver is “Keylime”, it is the host
software and hardware configuration to be passed to the Whitelists Web Service to create
the whitelist;

❼ driver (string): it is the attestation driver to be used for verifying the integrity state of the
node;

❼ pcr0 (string) -optional : it is the TPM PCR 0 value; this field is used only by OAT attestation
driver;

❼ containers* (string) -optional : it specifies the list of containers running on the host;
each line of the string indicates a container with the format “container-id image-id”, where
“image-id” is the identifier with which the container’s image is registered in the Whitelists
Web Service database;

❼ allowUnknownContainers* (int) -optional : it specifies if unknown containers are admitted
on the host.

Example Request:

{

"hostName": "host1",

"address": "192.168.1.50",

"distribution": "{
\"architecture\":\"amd64\",
\"hash algorithms\":\"sha256\",
\"packages list\":\"acl 2.2.53-6 amd64\n

adduser 3.118ubuntu2 all\n
..."

}",
"driver": "Keylime",

"containers": "f47a5af906cf ubuntu\n
39bf9c4591df fedora",

"allowUnknownContainers": 1

}
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Response JSON object

If an host with IP address specified in the request body already exists in the TM’s database,
the response code is 200 and no operation is performed. If the IP address is not present in the
database and all the fields in the request body have correct format, the response code is 201

“Created” and the response body has the following format (where id is the host’s identifier in
the TM’s database):

{

"id": 1,

"hostName": "host1",

"address": "192.168.1.50",

"pcr0": "",

"distribution": "{
\"architecture\":\"amd64\",
\"hash algorithms\":\"sha256\",
\"packages list\":\"acl 2.2.53-6 amd64\n

adduser 3.118ubuntu2 all\n
..."

}"
"analysisType": "load-time+cont-check,l req=l4 ima all ok|==,cont-list=",

"driver": "Keylime",

"containers":"f47a5af906cf ubuntu\n
39bf9c4591df fedora",

"allowUnknownContainers": 1

}

DELETE /register node/ (Server-authenticated TLS connection)

Remove the host specified in the request body from the TM.

Request JSON object

❼ hostName (string): host’s UUID.

Example Request:

{

"hostName": "host1"

}

Response JSON object

If a host with name specified in the request body does not exist, the response code is 403 “For-
bidden”; otherwise, if the host exists and the request body is correct, the response code is 200

“OK” and the response body has the following format:

{

"Host host1": "removed"

}

GET /status/ (Server-authenticated TLS connection)

Get the status of all subcomponents inside the TM architecture.

Response list of JSON objects

The response is a list of three JSON objects for describing the status of attestation drivers,
connectors and databases. The status of each subcomponent is defined by two fields:
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❼ active (bool): it specifies if the subcomponent is running;

❼ configuration (bool): it specifies if the subcomponent is correctly configured.

Example Response:

[

{

"drivers": [

{

"OAT": {

"active": false,

"configuration": false

}

},

{

"OpenCIT": {

"active": false,

"configuration": false

}

},

{

"HPESwitch": {

"active": false,

"configuration": true

}

},

{

"Keylime": {

"active": true,

"configuration": true

}

}

]

},

{

"connectors": [

{

"DARE": {

"active": false,

"configuration": true

}

},

{

"Dashboard": {

"active": true,

"configuration": true

}

},

{

"VNSFO": {

"active": false,

"configuration": true

}

},

{

"VIM-EMU": {

"active": false,

"configuration": true

}

},

{

"vNSF Store": {

"active": true,

"configuration": true
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}

}

]

},

{

"databases": [

{

"whitelist-db": {

"active": false,

"configuration": false

}

},

{

"known-digests": {

"active": true,

"configuration": true

}

}

]

}

]

POST /attest node/ (Server-authenticated TLS connection)

Check the integrity status of the nodes specified in the request body.

Request JSON object

❼ node_list (list[JSON object]): it specifies the nodes to be attested; each node of the list is
described by the following fields:

– node (string): the name of the host to be attested;

– vnfs (list[string]) -optional : the list of containers, running on the node, to be attested.

Example Request:

{

"node_list": [

{

"node": "host1",

"vnfs": [ "39bf9c4591df", "821b05ccef64", ... ]

},

{

"node": "host2"

}

]

}

Response JSON object

❼ hosts (list[JSON object]): it contains the list of computed nodes with the details of the
attestation process; in the case of the driver “Keylime”, the extra_info field does not yet
have significant values (this is left to future work);

❼ sdn (list[JSON object]): it is the list of attested SDN nodes;

❼ trust (bool): it is the trust level of the entire NFV / cloud platform;

❼ vtime (string): the time in which the attestation process was performed.

Example Response:
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{

"hosts": [

{

"node": "host1",

"status": 0,

"time": "2021-07-18 23:46:25.765066 +0000 UTC",

"remediation": {

"terminate": true,

"isolate": true

},

"vnsfs": [

{

"container": "39bf9c4591df",

"vnsfr_id": "",

"vnsfd_id": "",

"remediation": {

"terminate": false,

"isolate": false

},

"trust": true,

"ns_id": ""

},

...

],

"trust": false,

"driver": "Keylime",

"extra_info": {

"n_digests_valid": 0,

"n_packages_valid": 0,

"list_digests_fake_lib": null,

"n_packages_not_security": 0,

"n_packages_unknown": 0,

"n_packages_security": 0,

"list_digests_not_found": null,

"n_digests_not_found": 0,

"n_digests_fake_lib": 0

}

},

{

"node": "host2",

...

}

],

"sdn": [],

"trust": false,

"vtime": "2021-07-18 23:46:25.768358 +0000 UTC"

}

GET /nfvi attestation info/ (Server-authenticated TLS connection)

Attest all nodes registered with TM. This API does not receive any parameter and the response
body has the format shown for POST /attest_node/ API.

GET /nfvi pop attestation info/ (Server-authenticated TLS connection)

Attest one node registered with the TM.

Query parameter

❼ node_id: the name of the node to be attested.
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Example Request:

https://trust_monitor/nfvi_pop_attestation_info/?node_id=host1

The response body has the same format shown for POST /attest_node/ API but the hosts

list contains only the requested node.

GET /known digests/ (Server-authenticated TLS connection)

Retrieve the list of all known digest registered in the TM’s database.

Response list of JSON objects

Example Response:

[

{

"id": 1,

"pathFile": "/usr/bin/bash",

"digest": "04a484f27a4b485b28451923605d9b528453d6c0"

},

{

"id": 2,

"pathFile": "/usr/bin/find",

"digest": "92a2bade19a90a1bd81e4d2c2de646ddf971aba9"

},

...

]

POST /known digests/ (Server-authenticated TLS connection)

Add a known digest in the TM’s database.

Request JSON object

❼ pathFile (string): the file path on the compute node;

❼ digest (string): the SHA-1 digest of the file (the API has not yet been extended to support
other hash algorithms).

Example Request:

{

"pathFile": "/usr/bin/bash",

"digest": "04a484f27a4b485b28451923605d9b528453d6c0"

}

Response JSON object

❼ id (int): the id of the known digest in the TM’s database;

❼ pathFile (string): the added file path;

❼ digest (string): the added SHA-1 digest.

Example Response:

199



Programmer’s manual: Trust Monitor REST APIs

{

"id": 1,

"pathFile": "/usr/bin/bash",

"digest": "04a484f27a4b485b28451923605d9b528453d6c0"

}

DELETE /known digests/ (Server-authenticated TLS connection)

Delete a known digest from the TM’s database.

Request JSON object

❼ digest (string): the SHA-1 known digest to be removed from the database.

Example Request:

{

"digest": "92a2bade19a90a1bd81e4d2c2de646ddf971aba9"

}

Response JSON object

If the digest is found in the database, the response code is 200 “OK” and the digest is correctly
removed from the database:

{

"Digest 92a2bade19a90a1bd81e4d2c2de646ddf971aba9": "removed"

}

Otherwise, the response code is 403 “Forbidden” and the response body has the following format:

{

"Digest 14f2bade19a90a1bd81e4d2c2de646fdf951aba9": "not found in db"

}

POST /audit/ (Server-authenticated TLS connection)

Retrieve historical attestation information for the node specified in the request body. This API
internally gets attestation audit from DARE component, since audit functionality is not imple-
mented inside the TM currently.

Request JSON object

❼ node_id (string): the host name; if the request contains only this parameter, the response
will contain only the last attestation;

❼ from_date (string) -optional : the start date of the time interval to which the required
attestation information belongs;

❼ to_date (string) -optional : the end date of the time interval to which the required attesta-
tion information belongs.

Dates are specified as strings with the format: “%Y-%m-%d %H:%M:%S.%f”.
Example Request:

{

"node_id": "host1",

"from_date": "2021-09-01 00:00:00.0",

"to_date": "2021-09-02 00:00:00.0"

}
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