
Politecnico di Torino

Master’s Degree Course in Computer Engineering

Master’s Degree Thesis

A formal model of security controls
implementing the IPsec and IKE protocols

Supervisors:
Prof. Cataldo Basile
Prof. Antonio Lioy

Candidate:
Andrea Avallone

Academic year 2020/2021
Torino

To my mum and my dad

“My parents gave me the greatest gift anyone

could give to another person: they believed in me.”

III

Table of Contents

List of Figures 7

1 Introduction 9

2 Basic concepts 15

2.1 Graphic representations . 15

2.1.1 UML . 15

2.1.2 Class diagram . 16

2.2 Data representation . 17

2.2.1 XML . 17

2.2.2 XML Schema Definition . 18

2.3 Information model vs Data model 19

2.4 Reusing code . 20

2.4.1 Design Patterns . 21

2.4.2 Structural patterns - Decorator pattern 22

2.5 Model driven development . 23

3 State of the art 25

3.1 Network Security Functions . 25

3.2 Interface to Network Security Functions 26

3.2.1 Use Cases I2NSF . 27

3.2.2 The I2NSF framework . 30

3.2.3 I2NSF Flow Security Policy Structure 31

3.3 Information Model of NSFs Capabilities 32

4 Solution design 35

4.1 Problem definition . 35

4.2 Generation of abstract languages 36

4.3 The main goal . 37

4.4 Design of the solution . 38

IV

5 Security Capabilities Model 43

5.1 Information Model . 43

5.2 Data Model . 46

5.3 LanguageGenerationDetails Class 48

5.4 CapabilityTranslationDetails Class 50

6 Analysis and validation on a concrete case: IPsec 53

6.1 Workflow . 53

6.2 IPsec analysis . 54

6.2.1 Study of capabilities . 56

6.2.2 Instantiate new Security Capabilities 57

6.2.3 Instantiate a new NSF and create references 58

6.2.4 Definition of CapabilityTranslationDetails and LanguageGen-

erationDetails for associated security capabilities 59

6.2.5 Language generation . 62

6.2.6 Creation of the policy . 62

6.2.7 Translation of the policy . 65

6.2.8 Implementation of the security policy 66

7 Conclusion 67

A User Manual 71

A.1 Transformation tool from XMI to XSD 71

A.1.1 Command line use . 71

A.1.2 Use as a JAVA library . 72

A.2 NSF language generation tool . 72

A.2.1 Command line use . 72

A.2.2 Use as a JAVA library . 73

A.3 NSF low-level language translation tool 74

A.3.1 Command line use . 74

A.3.2 Use as a JAVA library . 75

A.4 Validation tool . 76

A.4.1 Command line use . 77

A.4.2 Use as a JAVA library . 77

B Developer Manual 79

B.1 CapDM management using Modelio 79

B.2 XMI to XSD transformation tool 81

B.3 NSF language generation tool . 85

V

B.3.1 Tool architecture . 86

B.3.2 Possible changes . 95

B.4 NSF low-level language translation tool 95

B.5 Validation tool . 101

Bibliography 103

Acknowledgements 105

VI

List of Figures

2.1 Relationship between an Information Model and a Data Model . . . 20

2.2 Decorator pattern object diagram 22

3.1 Interaction between Entities . 29

3.2 I2NSF Reference Model . 30

3.3 Defining SecurityCapabilities of an NSF [13] 34

4.1 Solution Design . 40

5.1 CapIM . 44

5.2 6-Tupla . 47

5.3 LanguageGenerationDetails . 48

5.4 CapabilityTranslationDetails . 51

6.1 Workflow . 54

6.2 IPsec specific classes . 57

6.3 Security Capabilities instantiation example 57

6.4 NSF instantiation example . 59

6.5 ManualOperationActionCapability 60

6.6 DataAuthenticationActionCapability 61

6.7 Instance of rule in the language of the NSF. 63

6.8 NSF language rule instance for command line configurations. 65

B.1 Relationship between class diagrams 80

B.2 XMI to XSD Transformation tool Workflow 82

B.3 Design of the XMI to XSD Transformation Tool. 83

B.4 NSF Language Generation Tool Workflow. 86

B.5 NSF Language Generation Tool Architecture, first part. 87

B.6 NSF Language Generation Tool Architecture, second part. 87

B.7 Translation Tool Workflow . 96

B.8 Translation Tool Architecture . 97

VII

8

Chapter 1

Introduction

Virtualization is a technology that allows you to create services by exploiting

resources traditionally tied to hardware. It allows you to exploit all the capabilities

of a physical machine by distributing the functionality among multiple users or

environments.

The concept of virtualization is believed to have its origins in the late 1960s,

when IBM invested a lot of time and effort in developing robust resource sharing

solutions over time. Sharing of time resources refers to the shared use of computer

resources among a large group of users, with the aim of increasing the efficiency

of both users and the expensive computer resources they share. This model rep-

resented a major breakthrough in information technology: the cost of providing

computing capability has dropped considerably and it has become possible for or-

ganizations, and even people, to use a computer without actually owning one. Sim-

ilar reasons drive virtualization by industry standards: the capability in a single

server is so large that it is nearly impossible for most workloads to use it effectively.

The best way to optimize the use of resources and at the same time simplify data

center management is through virtualization. Today, data centers use virtualiza-

tion techniques to accomplish the abstraction of physical hardware, create large

aggregates of logical resources consisting of CPU, memory, disks, file storage, ap-

plications, networks, and offer these resources to users or customers in the form

of Agile, scalable and consolidated virtual machines. Although technology and use

cases have evolved, the main meaning of virtualization remains the same: allowing

a computing environment to run multiple independent systems at the same time.

Technologies that enabled virtualization, such as hypervisors, were developed in

order to provide multiple users with simultaneous access to computers. However,

initially, the problem of having multiple users on a single computer was addressed by

choosing solutions other than virtualization. Among these, temporal sharing, which

isolated users within operating systems and which inadvertently led to the birth of

9

Introduction

other operating systems, such as UNIX, up to Linux. All this, while virtualization

remained an underutilized niche technology. In the 1990s, most companies used

physical servers and IT stacks associated with a single vendor, which did not allow

existing applications to run on other vendors’ hardware. Companies began updat-

ing their IT environments with cheaper commodity servers, operating systems, and

applications from various vendors. However, they were tied to underused physical

hardware, as each server could only perform one task. At this point virtualization

began to spread. It was the natural solution to two problems: it allowed companies

to get partitions on their servers and run existing applications on multiple types

and versions of operating systems. The use of servers has been made more efficient,

in some cases abandoned, thus reducing the costs associated with purchase, config-

uration, cooling and maintenance. The broad applicability of virtualization helped

reduce vendor lockdown and laid the foundation for cloud computing. Today it

is used by many companies, and it is often necessary to have specific software for

virtualization management that allows you to monitor the environment.

Advances in cloud computing and Network Functions Virtualization technolo-

gies have made it possible to provide network services through virtual service func-

tions running on cloud servers. It is also possible to outsource these virtual service

functions to third party solution providers. This cloud-based service delivery model

offers numerous benefits such as cost savings and flexible and efficient use of re-

sources. This service model is particularly useful for providing users with network

security services. For example, in the scenario of a Distributed Denial of Service

(DDoS) attack, it is possible to quickly and flexibly respond to the intense traffic

of attacks by dynamically increasing the number of DDoS mitigation instances. In

addition, this cloud-based security service model facilitates the implementation of

various security features developed by multiple vendors. This is suited to meet

the growing needs of corporate network systems to integrate these security func-

tions to create more secure systems. The Network Security Functions developed by

different vendors have different interfaces for their configuration and management

because there is no industry standard of interfaces for NSF. This heterogeneity

introduces complexity to managing the NSFs of multiple suppliers, resulting in in-

creased management costs. Therefore, standardization is essential to successfully

implement NSF offered by various vendors. Recently, some standardization ac-

tivities have started a development process such as the Internet Engineering Task

Force Interface to Network Security Functions (IETF I2NSF) working group to

meet these needs.

The IETF I2NSF working group develops a series of information models and

standard data models that are the key to building the standard interfaces of the

10

Introduction

I2NSF architecture. On the basis of the models defined by I2NSF, this thesis has

as its starting point the realization of a generic model of the security capabilities of

a network. The model is created using the UML graphic representation and some

design patterns to optimize the expressive features of the model. The XML schema

representation for validating NSF configured according to arbitrary capacities is

obtained from the model. In fact, the primary objective of the thesis is to find a

method to represent, in a generic way, the features that are offered by the secu-

rity services. Having available the generic representation of the capabilities of the

devices, various essential activities can be carried out both in the field of research

and in the field of network security administration. For example, different security

devices can be compared in a formal and precise manner to verify if they have

characteristics in common for, for example, being able to apply the same security

policies. To verify the expressiveness of the model, tests will be carried out with

packet authentication and encryption devices through the use of network security

protocols such as IPSec.

The definition of a generic data model is similar to the definition of a natural

language. For example, a generic data model can define relationship types as a

“classification relationship”, being a binary relationship between a single element

and an element type (a class) and a “part-whole relationship”, being a relationship

binary between two elements, one with the role of the part, the other with the

role of the whole, regardless of the type of elements that are related. Given an

extensible list of classes, this allows you to classify each individual item and specify

relationships for each individual object. By standardizing an extensible list of rela-

tionship types, a generic data model allows the expression of an unlimited number

of data types and will approach the capabilities of natural languages. Conventional

data models, on the other hand, have a fixed and limited domain scope, since the

instance of this model only allows expressions of predefined data types in the model.

Generic data models are developed as an approach to address some shortcomings

of conventional data models. For example, different modelers usually produce dif-

ferent conventional data models of the same domain. This can lead to difficulties

in bringing together the models created by different people and is an obstacle to

the exchange and integration of data. This difference is attributable to different

levels of abstraction in the models and differences in the types of data that can be

instantiated. Modelers have to communicate and agree on some elements that need

to be rendered more concretely, in order to make the differences less significant.

Making a model generic, even in a specialist application area, can present diffi-

culties. The essential requirements of a generic description must be identified first

and an appropriate framework must be established to provide the flexibility needed

11

Introduction

to allow a more specific set of needs to satisfy that generic representation. It may

be necessary to represent a system at different levels of detail in the different phases

of a design project and this must also be possible with the generic approach. This

means that submodels may be required, which represent specific parts of the entire

physical system, at different levels of complexity, ranging from purely functional

forms in the initial phase to highly detailed and fully validated models in the sub-

sequent phases of the project. Ideally, the structures for the different levels of the

model will be directly related and the models at different resolutions will form an

integrated group. The relationship between the different levels of each sub-model

within the generic structure must be fully understood by users. The most impor-

tant benefit of the generic approach is probably a faster and cheaper development

process for new models than the traditional approach, which involves developing a

new model specific to each new design task on a one-time basis. Other advantages

are likely due to the development and application of a generic model that requires

a more systematic and rigorous approach to model validation problems, together

with better documentation. Having a generic model allows you to reason at a very

abstract level such that it makes its functions and relationships visible for each

element. The generic model provides information on the behavior of the system.

Based on these standard information and data models, the I2NSF architecture

is able to provide an efficient and flexible security service environment driven by

security policies. The Software-Defined Networking (SDN) paradigm enables dy-

namic and flexible changes in network behavior at code level by controlling and

managing the configurations of network resources, such as switches and routers.

This capability makes it possible to apply some packet filtering rules to switches

by checking their packet forwarding rules. In particular, the switches apply simple

packet filtering rules that can be translated into their packet forwarding rules, while

the NSFs apply security rules relating to the security capabilities available between

the NSFs. Therefore, if switches can make decisions about some received packets

based on their packet forwarding rules programmed by a switch controller, we can

avoid unnecessary latency for packets taken by an NSF for a time-consuming in-

spection task. Also, since all packets don’t necessarily go through an NSF, we can

reduce the possibility of congestion in an NSF.

I2NSF defines two types of interfaces at two different levels: a service level and a

capability level. The level of service specifies how a customer’s security policies can

be expressed to a security officer. The capability level specifies how to control and

monitor flow-based security functions at the functional implementation level. The

policies on the service level interface do not care which NSFs are used to enforce

the policies. There may be multiple NSFs to enforce a service level policy. The

12

Introduction

policies on the capability level interface are specific to NSF. To express flow-based

security policies, the event-condition-action (ECA) paradigm is used both on the

service level interface and on the capability level interface.

From analysis in the literature, confirmed during this thesis, it appears that the

languages made available by the suppliers of devices to express security policies

are heterogeneous, so there may be incompatibilities or misunderstandings in the

use of security control devices produced by different suppliers; therefore, to express

security policies to devices from different manufacturers, it is necessary to know

the details of the languages of each manufacturer of security features. For this

reason, during this thesis I worked on finding a method to express security policies

with a generic representation based on the security capabilities of the device that

was also independent of the technology and any characteristics determined by the

manufacturer. As a result, the problem arose of finding a system for translating

into the device-specific language.

Model transformations are used to automate design activities by allowing you

to move from an abstract, technology-independent model to a concrete, platform-

dependent one. This concept is expressed by the model driven transformation

paradigm. The work of this thesis develops a security policy conversion tool for

NSF from a generic model to a specific model. This allows a user not to have to

know the “specific language” with which each single rule will be expressed, since

he will be able to provide the rules in a “generic language” to a translator, which

will take care of translating the rules into the “specific language” of the NSF that

will apply them.

This thesis, following the principles set out above, leads to the following. An

NSF makes certain security capabilities available. The Capability Information

Model (CapIM) defines an NSF as an aggregate of security capabilities. So to

make the concept general, a generic NSF can be considered as a container of the

security capabilities that have been assigned to it. This creates a relationship be-

tween an NSF and a security capability. In order to manage and manipulate every

potential that makes up a security feature, an abstract representation of the se-

curity capabilities was created in a data model (CapDM), using the UML graphic

modeling language. In this model, a security capability is represented as a class

that makes attributes available. By defining the type of data that a capability can

handle, you can specify any restrictions or determine the values it can represent,

for example by using regular expressions or enumerations. Each security capability

has been grouped into subsets of competence, and inherits characteristics according

to the category in which it is located. The most abstract element of security capa-

bilities is a class called “SecurityCapability” that allows you to define attributes or

13

Introduction

features common to all the security capabilities that inherit from it.

Outlined the method for defining the security capabilities of a device or a se-

curity function, a system was designed for the generation of abstract languages

for security controls starting from an instance of the CapDM that describes the

device itself. This language allows you to express security policies using a generic

syntax, taking advantage of the semantics defined by the security capabilities of

the CapDM or any details specified during the allocation of capacities to the NSF.

For this purpose and for the development of the generic language, the XML lan-

guage was used. Security policies expressed in the general language of the NSF

cannot be applied by the devices because they are not expressed in their specific

language, consequently a method of translation from the generic language to the

concrete language of the NSF has been devised. This system uses a translation

mechanism based on the definition of syntax and semantics, specific to an NSF, at

the time of assigning each security capability. In this way the tool created during

the thesis work allows the generation of a configuration file containing the rules, in

the concrete language of the NSF, of the policy expressed in the generic language

of the same.

Chapter 2 presents the background relating to the topics addressed for the

design and development of the report, with insights into the most used features.

Chapter 3 introduces the technologies and related works that form the basis for

developing the model design work. Chapter 4 will define in more detail the prob-

lem to be addressed, the technologies and criteria used will be exposed and the

architecture designed for the solution will be made known. Chapter 5 shows the

information model of the capabilities and the model of the data produced. Chapter

6 analyzes a concrete case of authentication and encryption of a package applied to

the developed architecture and verifies that the proposed representation allows to

cover the functionality of the concrete case. Chapter 7 illustrates the conclusions

derived from this thesis work. Furthermore, the user and programmer manuals for

each tool developed as part of the thesis will be specified in the appendices.

14

Chapter 2

Basic concepts

This chapter describes the methods from which the thesis takes its cue and on

which certain choices are based instead of others.

2.1 Graphic representations

Graphical models are a class of statistical models which combine the rigour of

a probabilistic approach with the intuitive representation of relationships given by

graphs [1].

2.1.1 UML

The Unified Modelling Language (UML) is a universal language of modeling

standardized by Object Management Group (OMG) and International Organization

for Standardization (ISO).

The UML is a standard visual modeling language intended to be used for:

• modeling business and similar processes;

• analysis, design, and implementation of software-based systems.

UML is a common language for business analysts, software architects and de-

velopers used to describe, specify, design, and document existing or new business

processes, structure and behavior of artifacts of software systems. UML can be

applied to diverse application domains. It can be used with all major object and

component software development methods and for various implementation plat-

forms.

UML is a standard modeling language, not a software development process.1

1https://www.uml-diagrams.org/

15

Basic concepts

The UML language is characterised by diagrams. A UML diagram is a partial

graphical representation (view) of a model of a system under design, implementa-

tion, or already in existence. UML diagram contains graphical elements (symbols)

that represent elements in the UML model of the designed system.

The kind of the diagram is defined by the primary graphical symbols shown on

the diagram. For example, a diagram where the primary symbols in the contents

area are classes is class diagram. A diagram which shows use cases and actors is use

case diagram. A sequence diagram shows sequence of message exchanges between

lifelines. UML specification does not preclude mixing of different kinds of diagrams.

UML specification defines two major kinds of UML diagram:

• Structure diagrams show the static structure of the system and its parts on

different abstraction and implementation levels and how they are related to

each other. The elements in a structure diagram represent the meaningful

concepts of a system, and may include abstract, real world and implementa-

tion concepts.

• Behavior diagrams show the dynamic behavior of the objects in a system,

which can be described as a series of changes to the system over time.2

2.1.2 Class diagram

The class diagram is part of the group of Structure diagram. It is the most used

in the development of this thesis.

This type of diagram describes the structure of a system showing the classes and

the relationships between them. A class models a set of entities, called instances of

the class, that share the same characteristics, limitations, and semantics (the same

attributes, associations, and operations). The class is a type of classifier whose

purpose is to give a classification of objects and to indicate the characteristics that

describe their structure and behavior. A class is distinguished from other classes

by a name and a set of properties and operations. Properties represent the struc-

tural characteristics of a class and can be represented by attributes. An attribute

describes a property with a line of text, indicating the name and other optional

information such as visibility, type, multiplicity and default value. The definition

of an attribute is local to the class in which it is defined, in this way another class

can have an attribute with the same name but with a different definition.

Two class can have different types of relationship:

2https://www.uml-diagrams.org/uml-25-diagrams.html

16

2.2 – Data representation

• association: an association is a relationship between two or more classifiers

and also indicates a connection between their instances.

• aggregation: it is a particular type of association that expresses the concept

“is part of”. This type of relationship occurs when a whole is related to its

parts.

• composition: it is a particular case of aggregation in which the parts exist as

a function of the “whole”. In other words, the part can be included at most

in a whole and only the whole object can create and destroy its parts. If a

component is destroyed, normally all components are destroyed at the same

time.

• generalization: it is a relationship that connects a more generic element to a

more specific one, it is used to describe the inheritance relationship between

the various classes of a project

• association class: it is an element that possesses characteristics of both an

association and a class. It can be seen as an association with class properties

or as a class with association properties.

• class <<Enumeration>>: it is a particular type of class, it works as a container

of “enumeration literal”, well-defined and prefixed string elements for the

creation of the enumeration.

2.2 Data representation

2.2.1 XML

Extensible Markup Language, abbreviated XML, describes a class of data ob-

jects called XML documents and partially describes the behavior of computer pro-

grams which process them. XML documents are made up of storage units called

entities, which contain either parsed or unparsed data. Parsed data is made up of

characters, some of which form character data, and some of which form markup.

Markup encodes a description of the document’s storage layout and logical struc-

ture. XML provides a mechanism to impose constraints on the storage layout and

logical structure.3

XML is a W3C approved standard that provides a generic syntax used to mark

tagged documents, readable by both humans and machine. XML is a general

3https://www.w3.org/TR/xml/

17

Basic concepts

purpose specification for defining markup languages, therefore a language based on

a syntactic mechanism that allows you to define and control the meaning of the

elements contained in a text document. It is extensible because it allows you to

create new markup elements. This language is commonly used when sharing data.

The main purpose of XML is to simplify the sharing and distribution of information

between various independent systems.

XML has a number of advantages:

• redundancy: XML markup is very detailed. This allows the computer to

detect common errors such as incorrect nesting;

• self-descriptive: the readability of XML and the presence of element names

and attributes in XML means that people who look at an XML document

can often gain an advantage in understanding the format and facilitate the

identification of any errors;

• network effect and XML promise: any XML document can be read and pro-

cessed by any XML tool.

The information contained in XML files is easily usable by programming lan-

guages. There are APIs implemented specifically for handling this kind of data.

For example, for the JAVA language there is Java Architecture for XML Binding

(JAXB), which provides a set of APIs to simplify access and creation of documents

in XML format.

2.2.2 XML Schema Definition

The structure of an XML document can vary a lot and therefore there are many

different ways of expressing the same information. This may not be a problem

for people, but it may prevent proper communication between different computer

systems. Therefore it is a good idea to create a set of rules for the document that

defines which elements and attributes are allowed. This way both communicating

parties know what to anticipate and can prepare their application logic accordingly.

Document Type Definition (DTD) is the original modeling language for describ-

ing the tree structure of XML documents. Using DTDs, XML is able to create a

template for document markup so that the positioning of elements and their at-

tributes can be checked and validated. Since 2009 more suitable methods have been

introduced to create schema definitions.

The best known is the XML Schema Definition (XSD) language whose purpose

is to define the nature of the schema and their parts, provide an inventory of XML

markup constructs with which to represent the schema and define the application

of the schema to XML documents.

18

2.3 – Information model vs Data model

The purpose of an XSDschema is to define and describe a class of XML doc-

uments using schema components to constrain and document the meaning, use

and relationships of their constituent parts: data types, elements, their contents,

attributes and their values.

An XMLschema specifies the general structure of an XML document and the

constraints for the entities it contains. The following components of an XML doc-

ument are the main elements described by the schema [2]:

• element: each element used in the XML document is defined by a declaration

that includes the name, namespace and type of the element. The element

namespace does not have to be explicitly specified but can be derived from

its parent element. The element is of a simple or complex type;

• attribute: each attribute used within an XML element is defined by an at-

tribute declaration. The attribute has a target (derived) namespace and is

always of the simple type. Also, you can declare the fixed or default value;

• simple type: instances of this type (also called data types) are single values,

that is, in strings or general numbers. With the use of restrictions it is possible

to specify their format or possible values;

• complex type: a complex type describes the content of an element, that is,

which child elements are allowed, in what order and quantity. It also specifies

the attributes of the element. Complex types can be limited or extensive.

Using the XML Schema metalanguage we can characterize these elements,

attributes and types of an XML document.

2.3 Information model vs Data model

Information models (IM) are used to model conceptually managed objects, re-

gardless of any specific protocol used to transport the data. The degree of specificity

(or detail) of the abstractions defined in the IM depends on the modeling needs of

its designers. In order to make the overall design as clear as possible, an IM should

hide all protocol and implementation details. Another important characteristic of

an IM is that it defines relationships between managed objects.

IMs are primarily useful for designers to describe the managed environment,

for operators to understand the modeled objects, and for implementors as a guide

to the functionality that must be described and coded in the DMs. The terms

“conceptual models” and “abstract models”, which are often used in the literature,

relate to IMs. IMs can be implemented in different ways and mapped on different

protocols. They are protocol neutral.

19

Basic concepts

An important characteristic of IMs is that they can (and generally should)

specify relationships between objects. Organizations may use the contents of an

IM to delimit the functionality that can be included in a Data model (DM).

IMs can be defined using a formal language or a semi-formal structured lan-

guage. One of the possibilities to formally specify IMs is to use class diagrams

of the Unified Modeling Language (UML). An important advantage of UML class

diagrams is that they represent objects and the relationships between them in a

standard graphical way. Because of this graphical representation, designers and

operators may find it easier to understand the underlying management model[3].

Compared to IMs, DMs define managed objects at a lower level of abstraction.

They include implementation- and protocol-specific details. Data models are often

represented in formal data definition languages specific to the management protocol

used. Most of the standardized management models so far are DM and to express

the relationships between objects techniques such as UML and ER diagrams still

give the best results, because they are the easiest diagrams to understand.

Because conceptual models can be implemented in several ways, it is possible to

derive multiple data models from a single information model (Figure 2.1). Although

information models and data models serve different purposes, it is not always easy

to decide which details belong to an information model and which details belong to a

data model. Similarly, it is sometimes difficult to determine whether an abstraction

belongs to an information model or a data model.

Figure 2.1: Relationship between an Information Model and a Data Model

2.4 Reusing code

Code reuse is the practice of using existing code for a new function or software.

But in order to reuse code, that code needs to be high-quality. And that means it

should be safe, secure, and reliable.

20

2.4 – Reusing code

2.4.1 Design Patterns

Designing object-oriented software is hard, and designing reusable object ori-

ented software is even harder. You must find pertinent objects, factor them into

classes at the right granularity, define class interfaces and inheritance hierarchies,

and establish key relationships among them. Your design should be specific to the

problem at hand but also general enough to address future problems and require-

ments. You also want to avoid redesign, or at least minimize it.

Design patterns make it easier to reuse successful designs and architectures.

Christopher Alexander says, “Each pattern describes a problem which occurs over

and over again in our environment, and then describes the core of the solution to

that problem, in such a way that you can use this solution a million times over,

without ever doing it the same way twice”[4].

23 types of design patterns were defined in the book “Design Patterns: Elements

of Reusable Object-Oriented Software” by a group of four software designers (the

“Gang of Four”) in 1994 [5], thanks to which they began to study methods and

software designs by reusing previously tested architectural solutions. In particular,

the patterns were cataloged using a very precise formalism. In fact, each pattern

is presented by the name of the pattern, the problem to which it can be applied,

the solution (not in a particular case), the consequences of applying the pattern.

Gamma defined the term Design pattern as “a general reusable solution to the

problem commonly encountered in software design” [5]. A design model is a de-

scription for how to solve a problem that can be used in many different situations.

Design patterns improve software documentation, accelerate the development pro-

cess, enable large-scale reuse of software architectures, enable specialist knowledge,

create design trade-offs, and can help restructure systems.

With the design patterns it is possible to find help for the structuring of the

project, avoiding the possible creation of risky solutions with not very consistent

architectures or that do not respect the paradigms of object-oriented programming.

The categories defined by the “Gang of Four” into which the design patterns

can be divided are:

• creational patterns;

• structural patterns;

• behavioral patterns.

21

Basic concepts

2.4.2 Structural patterns - Decorator pattern

One of structural patterns is the Decorator pattern. In this section I will explain

why it is the most used for the realization of the models in this thesis.

Sometimes we want to add responsibilities to individual objects and not to an

entire class. One way to add responsibility is with inheritance. Inheriting properties

causes the characteristics of the parent to be added to all instances of the subclasses

(Figure 2.2). However, this is not flexible as the choice of additional properties is

done statically. A client cannot control how and when to apply new functionality

to the new component but can only rely on the creation of existing classes. A

more flexible approach is to enclose the component, to which you want to add

responsibilities, in another object that actually adds the desired feature. The object

it contains is called a decorator. The decorator conforms to the interface of the

component it decorates so that its presence is transparent to the component client.

The decorator forwards the requests to the component and can perform additional

actions before or after forwarding. Transparency allows decorators to be nested

recursively, thus allowing for an unlimited number of additional responsibilities.

Figure 2.2: Decorator pattern object diagram

The main elements of Pattern decorator are:

• component: interface for objects to which responsibilities can be added dy-

namically;

• concreteComponent: object to which responsibilities can be added;

• decorator: maintains a reference to the Component object and defines an

interface that conforms to the component interface;

22

2.5 – Model driven development

• concreteDecorator: classes that actually extend the functionality of the Com-

ponent to which they are attached.

2.5 Model driven development

Model-Driven Development (MDD) is an emerging paradigm which solves a

number of problems associated with the composition and integration of large-

scale systems while also leveraging the advances in software development, such

as component-based middleware. The focus of MDD is to elevate software devel-

opment to a higher level of abstraction than that provided by third generation

programming languages. The MDD approach relies on the use of models to repre-

sent the system elements of the domain and their relationships [6].

Models are widely used in software development, but in current practice they

are mainly used for communication between stakeholders, analyzing the problem,

and documenting the system, while detailed design is code-centric. Model-Driven

Engineering (MDE) is the term used for development processes that are model-

centric as opposed to code-centric. In MDE models are the prime artifacts and

developing high-quality systems depends on developing high-quality models and

performing transformations that preserve quality or even improve it [7].

Model Driven Architecture (MDA) is an approach to software design, devel-

opment and implementation spearheaded by the OMG. MDA provides guidelines

for structuring software specifications that are expressed as models. MDA sepa-

rates business and application logic from underlying platform technology. Platform-

independent models of an application or integrated system’s business functionality

and behavior, built using UML can be realized through the MDA on virtually any

platform, open or proprietary [8]. The MDA has three main objectives: interopera-

ble, reusable, portable software components. The fundamental element in MDA is

the model as the term Model Driven Architecture already underlines. Within the

MDA, a model refers to a representation of a part of the function, structure and /

or behavior of a system. To guide modeling, MDA provides two approaches to a

developer:

• model refinement: concept that provides the means to add more detailed

system information to an existing model;

• model transformation: model transformation will create new models based

on existing ones.

23

24

Chapter 3

State of the art

In this section some techniques and some projects relevant for the development

of the thesis are introduced and explained.

3.1 Network Security Functions

In the context of this thesis it deals with Network Security Functions (NSF). The

term NSF is defined by I2NSF in the work Interface to Network Security Functions

(I2NSF) as: “Software that provides a series of security related services”.

A NSF is a function used to ensure integrity, confidentiality, or availability of

network communications, to detect unwanted network activity, or to block or at

least mitigate the effects of unwanted activity. NSFs are provided and consumed in

increasingly diverse environments. Users could consume network security services

enforced by NSFs hosted by one or more providers, which may be their own enter-

prise, service providers, or a combination of both. Similarly, service providers may

offer their customers network security services that are enforced by multiple secu-

rity products, functions from different vendors, or open source technologies. NSFs

may be provided by physical and/or virtualized infrastructure. Without standard

interfaces to control and monitor the behavior of NSFs, it has become virtually im-

possible for providers of security services to automate service offerings that utilize

different security functions from multiple vendors [9].

Security features are also defined as functions responsible for the specific han-

dling of received packets. A network security function can act on various layers of

a protocol stack (for example, at the network layer or other OSI layers).

More sophisticated examples of NSF service can be:

• firewall;

• Intrusion Detection System (IDS) / Intrusion Prevention System (IPS);

25

State of the art

• Deep Packet Inspection (DPI);

• Application Visibility and Control (AVC);

• network virus and malware scanning;

• sandbox;

• Data Loss Prevention (DLP);

• Distributed Denial of Service (DDoS) mitigation;

• proxy TLS;

3.2 Interface to Network Security Functions

NSFs are being provided and used in increasingly diverse environments. Users

can use NSF-enforced network security services provided by one or more providers,

which can be their company, service providers, or a combination of both. Like-

wise, service providers may offer their customers network security services that are

applied by multiple products, functions from different vendors, or open source tech-

nologies. NSFs can be provided by physical and / or virtualized infrastructures.

Without standard interfaces to control and monitor NSF behavior, it has become

virtually impossible for security service providers to automate service offerings that

use different security features from multiple providers.

Not only business customers, but also residential and mobile customers are be-

coming increasingly aware of the need for network security, only to find that security

services are difficult to operate and become expensive in the case of reasonably so-

phisticated ones. This general trend has caused numerous security operators and

vendors to start leveraging cloud-based models to deliver security solutions. In

particular, methods related to Virtualization of Network Functions (NFV) are in-

tended to facilitate the elastic deployment of software images that provide network

services and require the management of various resources by customers, which may

not possess or physically host such networking features.

The goal of I2NSF is to define a set of software interfaces and data models for

controlling and monitoring aspects of physical and virtual NSFs, enabling clients

to specify rulesets [9].

The definition of such interfaces has several advantages. Operators could pro-

vide more flexible and customized security services for specific users and this would

provide more efficient and secure protection for each user.

I2NSF will specify interfaces at two functional levels for the control and moni-

toring of network security functions [9]:

26

3.2 – Interface to Network Security Functions

• The I2NSF Capability Layer: specifies how to control and monitor NSFs at

a functional implementation level. The term “Functional Implementation” is

used to emphasize that the rules (for control and monitor) of NSFs have to

be implementable by most NSFs. I2NSF will standardize a set of interfaces

by which a security controller can invoke, operate, and monitor NSFs[9];

• The I2NSF Service Layer: defines how clients’ security policies may be ex-

pressed to a security controller. The controller implements its policies ac-

cording to the various capabilities provided by the I2NSF Capability Layer.

The I2NSF Service Layer also allows the client to monitor the client specific

policies[9].

A client may leverage the I2NSF Service Layer interface to express security

policies to a security controller, which in turn interacts with one or more NSFs

through the I2NSF Capability Layer interface. Alternatively, a client may interact

with one or more NSFs directly through the I2NSF Capability Layer interface [9].

3.2.1 Use Cases I2NSF

The growing challenges and complexities of maintaining a secure infrastructure,

complying with regulatory requirements and controlling costs are leading companies

to use the network security features hosted by service providers. The hosted security

service is particularly attractive to small and medium-sized businesses that suffer

from a lack of security experts to continually monitor networks, acquire new skills,

and propose immediate mitigation measures to ever-increasing series of security

attacks.

The demand for hosted (or cloud-based) security services is growing. Small and

medium-sized enterprises (SMBs) are increasingly adopting cloud-based security

services to replace local security tools, while large enterprises are implementing a

mix of traditional and cloud-based security services [10].

To meet the demand, more and more service providers are providing hosted

security solutions to provide cost-effective security services to corporate customers.

Hosted security services are primarily aimed at enterprises (especially small and

medium sized ones) but could also be provided to any type of mass market customer.

As a result, network security functions (NSF) are provided and used in a wide

variety of environments. Users using NSF can use network security services hosted

by one or more providers, which can be their company, service providers, or a

combination of both.

There are many types of NSF. NSFs from different vendors may have different

functionalities and interfaces. NSFs can be deployed in multiple locations in a given

27

State of the art

network and can have different roles. Here are some examples of security functions

and locations or contexts in which they are often implemented:

• protection from intrusions and external attacks: examples of this function are

firewall / ACL, IPS, IDS;

• demilitarized zone (DMZ) security features: examples of this feature are fire-

wall / ACL, IDS / IPS, one or all AAA services, NAT, forwarding proxy and

application filtering;

• Centralized or Distributed Security Functions: Security functions could be

implemented centrally to facilitate network management and design or in a

distributed manner for scaling needs. Regardless of how a security function

is deployed, it is preferable to have the same interface for deploying security

policies; otherwise, the security administration task is more complex and

requires knowledge of the firewall and network design;

• internal security analysis and reports: examples of this function are security

logs, event correlation and forensic analysis;

• protection of data and internal content: examples of this function are en-

cryption, authorization and management of public / private keys for internal

databases.

Given the diversity of security functions, the contexts in which these functions

can be implemented, and the constant evolution of these functions, standardizing all

aspects of security functions is a challenge and probably not feasible. Fortunately, it

is not necessary to standardize all aspects. For example, from an I2NSF perspective,

there is no need to standardize how each firewall’s filter is created or applied. Some

filter functions from a specific vendor may be unique to the vendor’s product, so

there is no need to standardize these capabilities.

Standard interfaces for monitoring and controlling the behavior of NSFs are

essential building blocks for security service providers and enterprises to automate

the use of different NSFs from multiple vendors by their security management

entities [11].

Below are some use cases identified by I2NSF’s work:

• Basic Framework: sers request security services through specific clients and

the appropriate NSP network entity will invoke the (virtual) NSFs according

to the user service request. This network entity is denoted as the security

controller. The interaction between the entities discussed above is shown in

Figure 3.1.

Interface 1 is used for receiving security requirements from a client and trans-

lating them into commands that NSFs can understand and execute. The

28

3.2 – Interface to Network Security Functions

Figure 3.1: Interaction between Entities

security controller also passes back NSF security reports (e.g., statistics) to

the client that the security controller has gathered from NSFs. Interface 2 is

used for interacting with NSFs according to commands (e.g., enact/revoke a

security policy or distribute a policy) and collecting status information about

NSFs [11].

• Access Networks: This scenario describes use cases for users (residential user,

enterprise user, mobile user and management system) that request and man-

age security services hosted in the NSP infrastructure. Given that NSP cus-

tomers are essentially users of their access networks, the scenario is essentially

associated with their characteristics as well as with the use of vNSFs [11].

• Cloud Data Center: In a data center, network security mechanisms such as

firewalls may need to be dynamically added or removed for a number of rea-

sons. These changes may be explicitly requested by the user or triggered by a

pre-agreed-upon demand level in the Service Level Agreement (SLA) between

the user and the provider of the service. This capability expansion could re-

sult in adding new instances of firewalls on existing machines or provisioning

a completely new firewall instance in a different machine [11].

• Preventing DDoS, Malware, and Botnet Attacks: On the Internet, where

everything is connected, preventing unwanted traffic that may cause a DoS

attack or a DDoS attack has become a challenge. Similarly, a network could

be exposed to malware attacks and become an attack vector that may jeop-

ardize the operation of other networks, by means of remote commands for

example. In order for organizations to better secure their networks against

these kind of attacks, the I2NSF framework should provide a client- side in-

terface that is use case independent and technology agnostic. Technology

agnostic is defined to be generic, technology independent, and able to sup-

port multiple protocols and data models. Similarly, botnet attacks could be

easily prevented by provisioning security policies using the I2NSF client-side

interface that prevents access to botnet command and control servers [11].

29

State of the art

3.2.2 The I2NSF framework

The I2NSF framework allows the use of heterogeneous NSFs developed by var-

ious security solution providers in the NFV (Network Functions Virtualization)

environment using the capabilities of such NSFs via I2NSF interfaces.

I2NSF use cases require standard interfaces for users of an I2NSF system to

inform the system which functions should be applied to which traffic (or traffic

patterns). The I2NSF system realizes it as a set of security rules for monitoring

and controlling the behavior of different traffic. It also provides standard interfaces

for users to monitor flow-based security functions hosted and managed by different

administrative domains.

Figure 3.2 shows a reference model (including major functional components

and interfaces) for an I2NSF system. This figure is drawn from the point of view

of the Network Operator Management System; hence, this view does not assume

any particular management architecture for either the NSFs or how the NSFs are

managed (on the developer’s side) [12].

Figure 3.2: I2NSF Reference Model

When defining I2NSF Interfaces, this framework adheres to the following prin-

ciples:

• It is agnostic of network topology and NSF location in the network;

• It is agnostic of provider of the NSF;

• It is agnostic of any vendor-specific operational, administrative, and man-

agement implementation, hosting environment, and form factor (physical or

virtual);

• It is agnostic to NSF control-plane implementation;

• It is agnostic to NSF data-plane implementation.

30

3.2 – Interface to Network Security Functions

In general, all I2NSF Interfaces should require at least mutual authentication

and authorization for their use [12]. In the Figure 3.2 there are three interfaces:

• The I2NSF Consumer-Facing Interface: is used to enable different users of a

given I2NSF system to define, manage, and monitor security policies for spe-

cific flows within an administrative domain. The location and implementation

of I2NSF policies are irrelevant to the consumer of I2NSF policies.

• The I2NSF NSF-Facing Interface: is used to specify and monitor flow-based

security policies enforced by one or more NSFs. Note that the I2NSF Man-

agement System does not need to use all features of a given NSF, nor does

it need to use all available NSFs. Hence, this abstraction enables NSF fea-

tures to be treated as building blocks by an NSF system; thus, developers are

free to use the security functions defined by NSFs independent of vendor and

technology.

• The I2NSF Registration Interface: NSFs provided by different vendors may

have different capabilities. In order to automate the process of utilizing mul-

tiple types of security functions provided by different vendors, it is necessary

to have a dedicated interface for vendors to define the capabilities of (i.e., reg-

ister) their NSFs. This interface is called the I2NSF Registration Interface.

3.2.3 I2NSF Flow Security Policy Structure

Even though security functions come in a variety of form factors and have

different features, provisioning to flow-based NSFs can be standardized by using

policy rules.

In this version of I2NSF, policy rules are limited to imperative paradigms.

I2NSF is using an Event-Condition-Action (ECA) policy, where:

• An Event clause is used to trigger the evaluation of the Condition clause of

the I2NSF Policy Rule.

• A Condition clause is used to determine whether or not the set of Actions in

the I2NSF Policy Rule can be executed or not.

• An Action clause defines the type of operations that may be performed on

this packet or flow.

Each of the above three clauses are defined to be Boolean clauses. This means

that each is a logical statement that evaluates to either TRUE or FALSE.

31

State of the art

3.3 Information Model of NSFs Capabilities

NSFs produced by multiple security vendors provide various security capabilities

to customers. Multiple NSFs can be combined together to provide security services

over the given network traffic, regardless of whether the NSFs are implemented as

physical or virtual functions.

Security Capabilities describe the functions that Network Security Functions

(NSFs) are available to provide for security policy enforcement purposes. Security

Capabilities are independent of the actual security control mechanisms that will

implement them.

Every NSF should be described with the set of capabilities it offers. Security

Capabilities enable security functionality to be described in a vendor-neutral man-

ner. That is, it is not needed to refer to a specific product or technology when

designing the network; rather, the functions characterized by their capabilities are

considered. Security Capabilities are a market enabler, providing a way to define

customized security protection by unambiguously describing the security features

offered by a given NSF.

A Capability Information Model (CapIM) is a formalization of the functionality

that an NSF advertises. This enables the precise specification of what an NSF

can do in terms of security policy enforcement, so that computer-based tasks can

unambiguously refer to, use, configure, and manage NSFs. Capabilities MUST be

defined in a vendor- and technology-independent manner.

The CapIM is intended to clarify these ambiguities by providing a formal de-

scription of NSF functionality. The set of functions that are advertised MAY be

restricted according to the privileges of the user or application that is viewing those

functions. I2NSF Capabilities enable unambiguous specification of the security ca-

pabilities available in a (virtualized) networking environment, and their automatic

processing by means of computer-based techniques.

This includes enabling the security controller to properly identify and manage

NSFs, and allow NSFs to properly declare their functionality, so that they can be

used in the correct way 1 [13].

Some basic design principles for security capabilities and the systems that man-

age them are:

• Independence;

• Abstraction;

1https://datatracker.ietf.org/doc/html/draft-ietf-i2nsf-capability-05

32

3.3 – Information Model of NSFs Capabilities

• Advertisement;

• Execution;

• Automation;

• Scalability.

Based on the above principles, I2NSF defines a capability model that enables

an NSF to register (and hence advertise) its set of capabilities that other I2NSF

Components can use. These capabilities MAY have their access control restricted

by policy; this is out of scope for this document. The set of capabilities provided

by a given set of NSFs unambiguously define the security offered by the set of

NSFs used. The security controller can compare the requirements of users and

applications to the set of capabilities that are currently available in order to choose

which capabilities of which NSFs are needed to meet those requirements.

Furthermore, when an unknown threat (e.g., zero-day exploits and unknown

malware) is reported by an NSF, new capabilities may be created, and/or existing

capabilities may be updated. This results in enhancing the existing NSFs (and/or

creating new NSFs) to address the new threats. New capabilities may be sent

to and stored in a centralized repository, or stored separately in a vendor’s local

repository. In either case, a standard interface facilitates the update process1.

The “Event-Condition-Action” (ECA) policy model [12] is used as the basis for

the design of the capability model. The following three terms define the structure

and behavior of an I2NSF imperative policy rule:

• Event: is defined as any important occurrence in time of a change in the sys-

tem being managed, and/or in the environment of the system being managed.

• Condition: is defined as a set of attributes, features, and/or values that are to

be compared with a set of known attributes, features, and/or values in order

to determine whether or not the set of Actions in that (imperative) I2NSF

Policy Rule can be executed or not.

• Action: An action is used to control and monitor aspects of flow- based NSFs

when the event and condition clauses are satisfied. NSFs provide security

functions by executing various Actions.

An I2NSF Policy Rule is made up of three Boolean clauses: an Event clause,

a Condition clause, and an Action clause. This structure is also called an ECA

(Event-Condition-Action) Policy Rule. A Boolean clause is a logical statement

that evaluates to either TRUE or FALSE. It may be made up of one or more

terms; if more than one term is present, then each term in the Boolean clause is

combined using logical connectives (i.e., AND, OR, and NOT).

An I2NSF ECA Policy Rule has the following semantics:

33

State of the art

IF <event-clause> is TRUE

IF <condition-clause> is TRUE

THEN execute <action-clause> [constrained by metadata]

END-IF

END-IF

Since there can be many types of NSF that have many different types of

I2NSFSecurityCapabilities, the definition of a SecurityCapability must be done

using the context of an NSF. This is realized by an association class in UML.

HasSecurityCapabilityDetail is an association class Figure 3.3.

Figure 3.3: Defining SecurityCapabilities of an NSF [13]

This enables the HasSecurityCapabilityDetail association class to be the target

of a Policy Rule. That is, the HasSecurityCapabilityDetail class has attributes and

methods that define which I2NSFSecurityCapabilities of this NSF are visible and

can be used [13].

34

Chapter 4

Solution design

In this chapter I will deal specifically with the definition of the problem to which

I want to give a solution in this thesis, I will show some use cases on which I relied

to devise the solution and for the development of the tools. In addition, the concept

of abstract language for security controls will be introduced and the design of the

solution will be presented.

4.1 Problem definition

The goal of I2NSF is to define a set of software interfaces and data models for

the control and monitoring of aspects of NSF implemented in a physical and virtual

way, allowing customers to specify sets of rules from one or more management en-

tities. From this concept my thesis focuses on the problem of representing abstract

data models of network security features. The problem that arises the interest of

my thesis concerns the management of data models that represent network security

features. Data models based on Capability Information Model (CapIM) are expres-

sive enough to describe real NSFs. In fact, starting from the information model

created in the basic framework defined by I2NSF in Figure 3.3, the thesis proposes

the definition of the data model and an expansion of the expressive capability of

this model in order to cope with the problem of the generation of abstract NSF

languages and the subsequent translation of the policies. There is a need to define

a data model that represents, in a generic way, the security capabilities for network

security services, sufficiently expressive to be able to represent the potential of the

devices that offer security functions, and to be able to compare these devices to

verify whether they can express the same security policies. The CapDM includes

all the functionalities that can be used to assign capability to an NSF following the

decorator pattern paradigm.

35

Solution design

Now the problem of generating abstract languages for security controls arises to

allow the definition of abstract policies for NSF with network services. Obviously,

each NSF has its own language for applying a security policy. The language must

therefore be generic as it can be used by each NSF but specific based on the security

capabilities assigned to the NSF concerned. Since the maintenance of abstract lan-

guages associated with each NSF is difficult, cumbersome and time-consuming, the

problem arose of having to define an automatic procedure for deriving the abstract

configuration language of an NSF starting from the description of its network secu-

rity capabilities. We encountered the problem of having to associate an automatic

transformation mechanism based on the instances of the CapDM. This automatic

transformation requires support for the automatic refinement of abstract config-

urations written in the NSF-specific language model into concrete configuration

settings applicable by the NSF. Consequently, criteria or rules are needed to define

the semantics and syntax that allow the translation of the policies expressed in the

generic language of the NSF into the low-level language relating to the NSF itself.

4.2 Generation of abstract languages

Our goal is to generate a new high level language that allows us to express

concrete security concepts with a common syntax for another NSF.

This project is based on the work of N. Noceti in his thesis and improve the

ability to have more defined NSF to use the same language.

An abstract security control language should satisfy the following requirements:

• Abstraction: the language must contain abstract, vendor-independent secu-

rity configurations or product-specific representation and storage. The reason

for this requirement is that the configuration semantics are independent of

the actual representation. That is, the same configuration settings can be

represented and applied in different security controls;

• Diversity: must support description of configurations for a variety of security

functions. The configuration metamodel must also support the configuration

of these security capabilities, which follow different policies and concepts and

are applied to different types of security controls;

• Flexibility and extensibility: it must be flexible and extensible enough to

support the introduction of new security controls;

• Continuity: must ensure continuity of the policy chain, allowing translation

of security control settings. This is useful for keeping track of which policy is

actually applied in the policy.

36

4.3 – The main goal

A generic security control language is defined to abstract configuration lan-

guages with a vendor- and control-system-independent format organized by capa-

bilities. For example, one vendor’s firewall may implement packet filtering function-

ality in its capability set, while another vendor may implement packet inspection

capability in its firewall as well. Unfortunately, defining this abstraction is not triv-

ial because each security check has a specific syntax. Therefore the mapping can

be unmanageable in a generic syntax and the generic language must be organized

according to security features. A security feature is a basic functionality offered

by a security check. Therefore, a generic language for security checks is organized

according to a general model that defines the high-level concepts (policies, rules,

conditions, actions, etc.) and a set of submodels to acquire the specific concepts

of semantics such as attributes, types of conditions, methods, etc.. On the other

hand, a specific configuration language of the control depends on the formats and

functions available in the actual security control: each security function defines its

own configuration language according to its security. The generation of abstract

languages allows to standardize the method by which network security policies can

be expressed.

In this proposed solution, to define the generic format to express the abstract

language of NSF, the use of XML language was chosen, as there are numerous

advantages.

The first advantage is that the XML language is designed for the definition

of markup languages that can be defined as XMLSchema (XSD), this allows the

generation of languages according to the capabilities that have been attributed to

a specific NSF. Using the open source modelio framework for the graphical rep-

resentation of the Capability Information Model and the Capability Data Model,

the XML language is immediately compatible since in the modelio framework there

is a feature that allows you to export the model in the adaptable XMI format

through the use of a tool created specifically for translation to the XSD format. A

fundamental property for the generation of abstract languages for security checks

is the possibility of dynamically defining the semantic characteristics of the lan-

guage itself, using the XML language allows you to define, using special tools, a

fixed structure dependent on the semantic characteristics of the language itself.

Furthermore, the XML language is widely known in the IT field.

4.3 The main goal

One of the use cases showed in the I2NSF contest (page.27) is the aim of this

thesis: there is a need to insert a security policy into the network. We do not know

37

Solution design

the specific low-level language with which the various network security services can

express this policy, but we are able to recognize which are the necessary security

capabilities and assign them the required values. The thesis proposes a solution

that allows the possibility of using a generic language to express the necessary

policy and therefore to have a tool that translates it into the specific language of

the chosen NSF or of the set of NSFs needed to apply this policy.

A new file will be created in which all the security capabilities and the NSF are

declared. Each NSF will have an instance of the linked security capability, in this

way we know the requirements of the concerned NSF. This is an advantage as if you

find that the performance of a given NSF is not sufficient to enforce the required

standards, it is necessary with an instance of a better performing NSF. Using the

new NSF, the policy is translated into the configuration with the specific language

of the chosen NSF.

4.4 Design of the solution

In this paragraph the planning and the design of the solution to the previously

exposed problems are presented. In addition, the architecture that was conceived

and produced will be exhibited.

This discussion is based on the work carried out by N. Noceti in his thesis

[14], from which ideas and foundations are taken to carry out a work dedicated

to a different protocol. In the implementation of the latter, a different path had

to be chosen so that his work and the new one were compatible. This has led to

substantial changes in the design and development of the tools.

The main reason is given by the fact that with these changes the reuse of the

code and the addition of new NSFs is simpler and more immediate. However, this

denotes a significant increase in the complexity of the work carried out.

For the realization of an information model of security capabilities sufficiently

expressive to describe real NSFs, the Capability Information Model (CapIM) is used

(detailed in the Section 5.1). In order to describe generic NSFs, the thesis work

takes up the abstract NSF vision to which security capabilities are assigned ac-

cording to the desired security functionality. To achieve this, the decorator pattern

paradigm has been applied, which allows you to assign characteristics in a dynamic

way.

In order to describe the characteristics to be assigned to an NSF, the thesis work

refers to the representation of the security functions of the network services already

used in Noceti’s thesis. Depiction generates a security capabilities data model or

the Capability Data Model (CapDM), which will be detailed in Section 5.2.

38

4.4 – Design of the solution

The purpose of the CapDM is to represent in a generic way every single part that

makes up a security feature, called security capability, by specifying its implemen-

tation details in a generic way. The CapDM used groups the security capabilities

into sets defined according to the characteristics of the capabilities themselves.

The hierarchy used for the representation of security capabilities starts from the

division into the 6-tuple defined by I2NSF (Section 3.2), consisting of:

• event;

• condition;

• action;

• default action;

• resolution strategy;

• evaluation.

The attributes for each security capability were also represented in the same

model in order to define a unique and generic representation, thus allowing the

creation of a common generic language. Since these attributes are specified as

optional, they have been reused for my specific case.

For the graphic representation of CapIM and CapDM, multiple graphic environ-

ments were taken into consideration for the creation of the class diagram, the final

choice was to use the extensible modeling environment and open source modelio.

This environment allows the management of diagrams using the UML language in

a simple and intuitive way. Modelio is a standalone application based on Eclipse

RCP.

To address the problem of the representation of generic policies, the thesis pro-

poses a tool for the creation of the generic language of the NSF. The generic lan-

guage of NSF is the set of generic representations of its security capabilities, within

which there is the semantics useful for expressing any abstract policies. The pro-

posed NSF language is implemented using the specific security capabilities that

have been assigned to it.

To better express and make the language of the NSF generic, it is necessary

to use a metalanguage that allows the definition of further languages. The choice

fell on XML as it was already used for Noceti’s work and proved to be the best

choice, because it allows the definition of markup languages, that is a language

based on a syntactic mechanism that allows you to define and control the meaning

of elements contained in a document. It also allows the generation of a language

that is both human-readable and machine-readable, independent of the surrounding

technologies and with a high capability for expression. Consequently, one of the

39

Solution design

proposed tools allows the generation of a file containing the abstract language of

NSF in XSD format. This allows the generation of grammar-based policies without

context.

The tool proposed for the generation of the language is based on the represen-

tations of the CapIM and the CapDM, in fact it manages the generation of the

language according to the description of the assigned security capabilities and any

specific constraints defined on the capabilities, using a model driven approach.

Finally, the problem of translating the policies from the NSF generic language

to the specific low-level language of the same was addressed. Since in Noceti’s work

the problem of having multiple NSFs and therefore multiple different translations

for the same security capability was not addressed, the translation tool has been

changed and improved.

The proposed tools are made using the JAVA language. The advantages of

choosing the JAVA programming language are also related to the high compatibil-

ity in the management of files in XML format, in fact there are APIs that allow

optimized management of the latter, such as JAXB and JAXP.

A further reason that led to the choice of these technologies is that the export

functionality of the UML model in XMI format is integrated in the model devel-

opment environment. The first modified tool is used for the conversion from XMI

language to XML language developed by Noceti. The changes made were neces-

sary due to the fact that the CapIM was not considered as an input but only the

CapDM. This resulted in instances with NSF or the HasSecurityCapabilityDetails

not being translated.

Furthermore, a functional tool was used that allows the validation of an XML

file with respect to a reference schema.

The design of the solution and the connection between the elements are shown

in the Figure 4.1.

Figure 4.1: Solution Design

40

4.4 – Design of the solution

Every entity represent:

• CapIM: the Capability Information Model is the reference model for the de-

velopment of the solution, it represents the main entities that are involved

in the study of the thesis. This model is created with the aid of the chosen

model tool for modeling the classes in the relevant class diagram (Section

5.1);

• CapDM: the Capability Data Model is the reference model where the security

capabilities are hierarchically represented, created with the aid of the model

tool chosen for modeling the classes in the related class diagram (Section 5.2);

• Conversion tool from XMI to XSD: in order to use and validate a set of secu-

rity capabilities to be assigned to an NSF, a list of valid security capabilities

must be obtained. This tool allows the generation of a set of valid capabilities

in the XSD format on the basis of the capacities modeled in the CapDM with

references to the CapIM. In input we use the XMI file complete with name

definitivo.xmi as export from modelio;

• capability.xsd: the output of the previous tool in XSD format;

• NSFCatalogue: in the proposed solution this element represents the set of all

NSF instanced with the reference security capabilities;

• Language generation tool: this tool allows the generation of the abstract NSF

language, with NSFCatalogue and capability.xsd as input;

• language.xsd: entity containing the semantic characteristics that allow the

generation of security policies. It is the output of the previous tool in XSD

format;

• NSF rule: file in txt format where are listed security capabilities in generic

language to make a new policy;

• Policy translator tool: this tool allows the translation of a policy generated

with the language of the NSF into the low-level language of the NSF;

• NSF policy.txt: policy in the corresponding NSF language;

• Validation tool: tool that allows the validation of an XML file with respect

to its XMLSchema;

The realization of each tool has been designed and adapted for use from the

command line, from this you get the advantage of being able to automate its use.

This kind of character has not been changed.

41

42

Chapter 5

Security Capabilities Model

In this chapter we will show the modeling of the security capabilities and the

structure of the solution related to the information model and the data model.

5.1 Information Model

An information model allows to represent and model managed objects on a

conceptual level, independent of any circumstance and surrounding technology.

Information models focus on representing the abstract entities and functionalities

of an environment; they highlight the relationships between the objects involved

and the dynamics related to the entities. They can have different degrees of detail

of the abstractions defined according to the needs of the designers and hide the

implementation details and the realization of the represented entities.

I2NSF defines in the basic framework the information model for an NSF (Fig-

ure 3.3), where the following objects are defined:

• NSF: entity representing any NSF;

• SecurityCapability: entity representing any security capability;

• HasSecurityCapabilityDetail: Entity representing the details of the relation-

ship between a SecurityCapability and its NSF.

The following relationships are represented in this information model:

• HasSecurityCapability aggregation between NSF and SecurityCapability: re-

lationship indicating the belonging of zero or more security capabilities to

zero or more NSF;

• HasSecurityCapabilityDetail association class: relationship used to represent

the HasSecurityCapabilityDetail entity belonging to a SecurityCapability re-

lationship to an NSF.

43

Security Capabilities Model

Given the problems presented in the previous chapter, a solution was therefore

devised, based on the CapIM defined by I2NSF, the thesis proposes the CapIM

represented in Figure 5.1.

Figure 5.1: CapIM

The following objects are defined:

• NSF: entity representing any NSF;

• SecurityCapability: entity representing any security capability;

• HasSecurityCapabilityDetail: Entity representing the details of the relation-

ship between a SecurityCapability and its NSF;

• LanguageModelGenerator: entity representing the language generation of the

instantiated NSF;

• NSFTranslatorAdapter: entity representing the translation of the policy into

the low-level language of the instantiated NSF;

• Metadata: entity that represents any NSF metadata, for example the list of

protocol names and their associated number, known by the NSF;

44

5.1 – Information Model

• CapabilityTranslationDetails: entity that inherits from HasSecurityCapabili-

tyDetail, and represents, specific details given by the relationship of a security

capability to an NSF regarding the creation of the NSF language;

• LanguageGeneratorDetails: entity that inherits from HasSecurityCapability-

Detail, and represents, specific details given by the relationship of a security

capability to an NSF, concerning the translation of policies from the generic

language of the NSF to the low-level language of the same.

The following relationships are represented in the proposed information model:

• relationship +metadata: relationship that allows the NSF to possess meta-

data, with indefinite cardinality to allow the relationship of multiple metadata

corresponding to multiple NSFs;

• relationship +languageModelGenerator: generic relationship to the tool that

allows the generation of an abstract language of the NSF;

• relationship +nSFTranslatorAdapter: generic relationship to the tool that

allows the transformation of policies expressed in the generic language of the

NSF by producing a configuration file adapted to the characteristics of the

NSF;

• aggregation +securityCapability between NSF and SecurityCapability: rela-

tionship that indicates the belonging of a SecurityCapability instance to an

NSF instance;

• aggregation +securityCapability between NSFCatalogue and SecurityCapa-

bility: essential relationship to have a list of all the security capabilities in a

catalogue;

• aggregation +nSF between NSFCatalogue and NSF: essential relationship to

have a list of all the NSF instantiated in a catalogue;

• aggregation +capabilityTranslationDetails between NSFCatalogue and Capa-

bilityTranslationDetails: essential relationship to have a list of translations

to be carried out for each security capability in a catalogue;

• aggregation +languageGenerationDetails between NSFCatalogue and Lan-

guageGenerationDetails: essential relationship to have a list of translation

constraints to be carried out for a specific security capability in a catalogue;

• association +securityCapability between HasSecurityCapabilityDetails and

SecurityCapability: relationship that allows you to have a link between a

security capability and its details, so as to create an essential reference with

the specific instance;

45

Security Capabilities Model

• association +nSF between HasSecurityCapabilityDetails and NSF: relation-

ship that allows you to have a link between an NSF and its details, so as to

create an essential reference with the specific instance;

• generalization between NSF and SecurityCapability: relationship that allows,

together with aggregation +securityCapability, to apply the decorator pattern

and to have a inheritance from NSF to SecurityCapability;

• generalization between LanguageGenerationDetails and HasSecurityCapabil-

ityDetails: relation that allows LanguageGenerationDetails to be a child of

HasSecurityCapabilityDetails;

• generalization between capabilityTranslationDetails and HasSecurityCapabil-

ityDetails: relation that allows capabilityTranslationDetails to be a child of

HasSecurityCapabilityDetails;

The information model presented in the thesis focuses on the management of

NSF, in fact it represents the NSF as its main element, how it is related to security

capabilities and how it interacts with the assignment of policies. The model allows

to describe an NSF and to assign security features dynamically through decorator

patterns and associations with securityCapabilityDetails. This way when a new

NSF is instantiated it will be easy to instantiate a securityCapabilityDetail and

make a reference to the NSF and securityCapability name. From here we can define

the characteristics necessary for the management of the NSF language generation

and for the adaptation to the low-level language of the NSF instance. As part of

the thesis, the security capabilities are described in the proposed Capability Data

Model.

5.2 Data Model

Compared to Information Models, Data Models define managed objects at a

lower level of abstraction. Although information models and data models have dif-

ferent purposes, it is not always easy to decide which details belong to the former

and which belong to the latter. Similarly, it is sometimes difficult to determine

whether an abstraction belongs to an information model or a data model. They

are intended for implementers and include specific details relating to the imple-

mentation, such as rules that explain how to map managed objects on lower-level

constructs or define the structure of the various entities. Since information models

can be implemented in different ways, it is possible to derive multiple data models

from a single information model.

46

5.2 – Data Model

The data model proposed in the thesis is based on the work of N. Noceti in his

thesis [14]. His work uses the subdivision of the SecurityCapabilities into a 6-tuple

as defined by I2NSF:

• event: ability to recognize an event, the occurrence of a fact;

• condition: ability to assess whether the conditions are met;

• action: ability to carry out a command;

• default action: action used by default;

• resolution strategy: methodology according to which the rules are evaluated

with respect to the occurrence of an event;

• evaluation criterion: methodology according to which the parts of the rule

are correct.

The difference with respect to the definition of I2NSF, which can be seen in

Figure 5.2, is the presence of an aggregation relationship between the class cor-

responding to the default action (DefaultAction-Capability class) and the class

relating to actions (ActionCapability class). This relationship allows you to define

the ability to perform an action only once and to be able to use the same definition

for the predefined action. So the set of predefined actions can be equal to the set

of actions or a subset of it.

Figure 5.2: 6-Tupla

The proposed CapDM broadly develops the condition and action classes. Start-

ing from the 6-tuple and using UML inheritance, further subclass hierarchies have

been defined that allow to differentiate the scope of the security capability being

considered.

47

Security Capabilities Model

5.3 LanguageGenerationDetails Class

To address the problem of the generation of an abstract language of the NSF, the

thesis proposes a tool that exploits the mechanism of Model-driven transformation.

This transformation makes it possible to pass from the generic representation of

security capabilities, defined in the CapDM, to the specific definition of the abstract

language of the NSF, to which certain security capabilities have been assigned

with the possibility, if necessary, to apply details for customization. In fact, the

LanguageGenerationDetails class is proposed as a subclass of the association class

defined by I2NSF HasSecurityCapabilityDetail. This allows to make explicit the

capability to which it belongs and the context NSF.

The structure governing the generation of the language of NSF proposed by

the thesis is represented in Figure 5.3. Depending on the values specified in the

“LanguageGenerationDetails” class during the assignment of security capabilities,

the language generation tool interprets these values and generates the language

accordingly. This allows you to customize some aspects of the NSF semantics and

allows you to define non-standard semantics when assigning security capabilities to

the NSF.

Figure 5.3: LanguageGenerationDetails

Specifically, the goal of the “LanguageGenerationDetails” class is to allow the

customization of the values that can be assigned to certain parameters, such as

integer parameters or values belonging to enumerations.

The proposed class “LanguageGenerationDetails” is composed of the following

structure:

48

5.3 – LanguageGenerationDetails Class

• enumerationName: any name of the enumeration to be modified;

• newEnumeration: any parameter that allows the generation of its own enu-

meration; is composed by:

– newValue: value that must be assigned to the new enumeration, has

cardinality [0..n] in order to generate a list of new values;

• modifyDefault: parameter that allows you to modify the default values of an

attribute, also allows the restriction of integer values; is composed by:

– addNewValue: parameter that allows you to enter a new value to the de-

fault enumeration. This element is further composed of two parameters,

one of which is optional, to allow, if necessary, the matching between

string value and numeric value;

– renameValue: parameter that allows you to rename an existing value

in the default enumeration, this element is further composed of two

parameters to allow the new nomenclature with respect to the default

nomenclature;

– removeValue: parameter that allows you to remove existing values in the

default enumeration and to consider all the others valid. This parameter

cannot be used together with “addExistingValue”;

– addExistingValue: by specifying this element, you declare that you want

the past value in your enumeration that is already present in the default

enumeration. This parameter cannot be used together with “remove-

Value”;

– setNumericRange: parameter that allows you to indicate the range of

integer values that can be accepted in the instantiation of the capability

when defining a rule of a policy;

– generateIntegerMatching: parameter that, if true, generates the corre-

spondence between the string value of the enumeration and the integer

value of the corresponding parameter;

– complexTypeWithIntegerAttributeName: parameter that allows you to

indicate the name of the complex type declared in the CapDM to which

the change will be imposed;

– integerAttrobuteToBeRestricted: parameter that allows you to indicate

any list of parameters belonging to “complexTypeWithIntegerAttribute-

Name” on which to apply the restriction.

The main difference with the work of N. Noceti [14] (beyond the modification

of the class name) is that this “LanguageGenerationDetails” class is instantiated

49

Security Capabilities Model

in the NSF catalogue with reference to the NSF and the SecurityCapability we are

referring to. In this way it will not be an attribute of the SecurityCapability class

and can be independent from other instances.

5.4 CapabilityTranslationDetails Class

To address the problem of translating NSF’s generic language policy into its

low-level language, Noceti’s thesis [14] proposes a tool that interprets a syntax

expressed by the CapabilityTranslationDetails class at the time of assigning security

capabilities to the NSF.

The mechanism is to instantiate each time a languageGen class that has a

reference to the chosen NSF and SecurityCapability. In this way, in our catalogue,

we can have multiple translations of the same SecurityCapability but which differ

from the NSF we are referring to as obviously each has a different translation.

This work implies that every time we ask the tool for the translation, it is

necessary to indicate the NSF as it knows the abstract language of the same, so as

to generate the policy translated into the specific language.

The CapabilityTranslationDetails class is proposed as a subclass of the asso-

ciation class defined by I2NSF HasSecurityCapabilityDetail. This allows to make

explicit the security capability to which it belongs and the context NSF. The struc-

ture governing the translation into the specific language of NSF proposed by the

thesis is represented in Figure 5.4. Depending on the values specified in the Capa-

bilityTranslationDetails class during its instantiation, the language generation tool

interprets these values and translates the policy accordingly. Some parameters of

the CapabilityTranslationDetails class can influence the structure of the transla-

tion format of each security capability, this can affect the method of use of the file

produced by the translation.

Specifically, the goal of this class is to allow the customization of the semantics

and syntax concerning the low-level language of the NSF. This class is based on

the definition of the CapDM and allows you to customize the characteristics used

for the particular security capability to which it refers, in the context of the NSF.

The proposed class CapabilityTranslationDetails is composed of the following

structure, the names of the attributes to which reference will be made below are

those defined in the CapDM:

• commandName: parameter that allows you to specify the name of the com-

mand in the low-level language of the NSF. Since there can be several com-

mands related to a security capability, this parameter is composed of:

50

5.4 – CapabilityTranslationDetails Class

Figure 5.4: CapabilityTranslationDetails

– realCommandName: parameter that contains the actual name to be

used when the “commandNameCondition” is respected;

– commandNameCondition: parameter that allows you to form conditions

based on the value of specified attributes. This parameter consists of:

∗ attributeName: name of the attribute to consider to evaluate whether

to use the “realCommandName”;

∗ attributeValue: attribute value that must be compared to evaluate

whether to use the “realCommandName”.

• bodyConcatenator: parameter that allows to specify the separator of the

values that can be attributed to the relative command. Since there can be

several separators relating to the expressible attributes, this parameter is

composed of:

– realConcatenator: value of the separator to be used if the “concatena-

torCondition” is verified;

– concatenatorCondition: parameter that allows you to form conditions

based on the value of specified attributes. This parameter consists of:

∗ preVariable: name of the attribute to be considered whose value will

be found before the relative concatenator;

∗ postVariable: name of the attribute to be considered whose value

will be found after the relative concatenator;

• bodyValueRestriction: parameter that allows you to restrict the translation

range of parameters. Since there can be more types of restrictions, this pa-

rameter is composed of:

51

Security Capabilities Model

– attributeName: name of the attribute to which you want to give trans-

lation restrictions;

– regexValue: parameter that allows the declaration of a regex to restrict

the range of translatable values;

– integerRange: parameter that allows the restriction of integer values

that can be translated. This parameter consists of:

∗ from: starting value of the range;

∗ to: end of range value;

– transform: parameter that allows to make a transformation on the at-

tribute specified. For now we can have two types of transformation:

∗ removeTrailingNumbers;

∗ removeAESTrailingNumbers.

• dependency: parameter that allows you to express dependencies of the secu-

rity capability to which it is assigned with respect to other security capabilities

Since there can be multiple types of dependencies, this parameter is composed

of:

– presenceOfCapability: imposes the presence of a certain security capa-

bility;

– absenceOfCapability: imposes the absence of a certain security capabil-

ity;

– presenceOfValue: forces the presence of a certain value;

– absenceOfValue: forces the absence of a certain value;

– conditionalDependency: indicates whether there should be a dependency

based on the condition specified in the class:

∗ nextCapability: indicates that the presence of an immediately suc-

ceeding capability is required to verify this condition;

∗ separator: if the condition is true, insert this separator between the

two capabilities.

• internalClauseConcatenator: parameter that allows the definition of a value

that separates the name of the command and the value attributed to it;

• clauseConcatenator: parameter that allows the definition of a value that sepa-

rates the translated construct of the security capability to which it is assigned

from the next.

52

Chapter 6

Analysis and validation on a

concrete case: IPsec

In this chapter the workflow proposed by the thesis for the management of NSF

in the field of network security will be explained. Subsequently, a concrete case is

analyzed, IPsec, concretely showing the application of the workflow.

6.1 Workflow

The reference workflow, shown in Figure 6.1, is based on the information model

and the data model described in the previous chapter.

The phases described by the workflow develop as follows:

1. Instantiate a new NSF : decision to create a new NSF;

2. Instantiate new Security Capabilities : decision to create a new Security Ca-

pability;

3. Create references between the new NSF and the Security Capability : insert a

“re” field that defines the name of the security capability in the new language.

Insert this new security capability in the reference NSF in order to create a

link between them;

4. Definition of CapabilityTranslationDetails and LanguageGenerationDetails for

associated security capabilities : create an instance of these two classes for each

security capability by inserting a “ref” field to indicate the security capability

and the NSF we are referring to;

5. Language generation: use of the tool proposed in the thesis that allows the

generation of the language of the NSF;

53

Analysis and validation on a concrete case: IPsec

Figure 6.1: Workflow

6. Creation of the policy in the generic language: using the generic language of

the NSF, the policy can be defined using this language;

7. Translation of the policy into low-level language: use of the proposed tool

as part of the thesis that allows the translation of the policy expressed in

the generic language of the NSF into the policy expressed in the low-level

language and in the format necessary for the NSF;

8. Implementation of the security policy : use of the output file of the previous

phase to directly take advantage of the policy translated into the NSF low-

level language.

6.2 IPsec analysis

This section analyzes the previously described workflow with a concrete case of

NSF network security features: authentication and encryption the packets of data.

This type of secure communication between two hosts on an IP network is

guaranteed by IPsec.

IPsec (Internet Protocol Security) is a suite of protocols that provides secu-

rity to Internet communications at the IP layer. The most common current use

54

6.2 – IPsec analysis

of IPsec is to provide a Virtual Private Network (VPN), either between two lo-

cations (gateway-to-gateway) or between a remote user and an enterprise network

(host-to-gateway); it can also provide end-to-end, or host-to-host, security[15]. The

components required to provide security services at the IP layer are:

• SA (Security Association): a one-way (inbound or outbound) agreement be-

tween two communicating peers that specifies the IPsec protections to be

provided to their communications. This includes the specific security protec-

tions, cryptographic algorithms, and secret keys to be applied, as well as the

specific types of traffic to be protected[15];

• SPI (Security Parameters Index): a value that, together with the destination

address and security protocol (AH or ESP), uniquely identifies a single SA[15];

• SAD (Security Association Database): each peer’s SA repository. The RFC

describes how this database functions (SA lookup, etc.) and the types of

information it must contain to facilitate SA processing; it does not dictate the

format or layout of the database. SAs can be established in either transport

mode or tunnel mode[15];

• SPD (Security Policy Database): an ordered database that expresses the

security protections to be afforded to different types and classes of traffic. The

three general classes of traffic are traffic to be discarded, traffic that is allowed

without IPsec protection, and traffic that requires IPsec protection[15].

IPsec protections are provided by two special headers: the Encapsulating Se-

curity Payload (ESP) Header and the Authentication Header (AH). In IPv4, these

headers take the form of protocol headers; in IPv6, they are classified as extension

headers[15].

The Authentication Header (AH) provides integrity protection; it also provides

data-origin authentication, access control, and, optionally, replay protection. A

transport mode AH SA, used to protect peer-to-peer communications, protects

upper-layer data, as well as those portions of the IP header that do not vary un-

predictably during packet delivery. A tunnel mode AH SA can be used to pro-

tect gateway-to-gateway or host-to-gateway traffic; it can optionally be used for

host-to-host traffic. This class of AH SA protects the inner (original) header and

upper-layer data, as well as those portions of the outer (tunnel) header that do

not vary unpredictably during packet delivery. Because portions of the IP header

are not included in the AH calculations, AH processing is more complex than ESP

processing. AH also does not work in the presence of Network Address Translation

(NAT) [15].

55

Analysis and validation on a concrete case: IPsec

The IP Encapsulating Security Payload (ESP) provides confidentiality (encryp-

tion) and/or integrity protection; it also provides data-origin authentication, access

control, and, optionally, replay and/or traffic analysis protection. A transport mode

ESP SA protects the upper-layer data, but not the IP header. A tunnel mode ESP

SA protects the upper-layer data and the inner header, but not the outer header

[15].

IPsec can be implemented by the use of a framework for transforming packets

XFRM and by Strongswan. The most important feature that differentiates them:

• XFRM: manual key exchange;

• Strongswan: automatic key exchange by IKE.

These two frameworks are supported equally and both are fully compatible.

For simplicity, only the cases of XFRM will be treated within this thesis. For

Strongswan the approach does not change but we may have only some slightly

different capabilities due to the presence of an automatic key exchange by IKE.

The examples below can also be used for Strongswan but of course we will have a

different final output with a different language.

This paragraph reports in detail the most significant examples of the develop-

ment of the concrete case analyzed without fully reporting all the steps, details and

configuration files really necessary for the implementation carried out, in order not

to burden the reading of the report.

The assumption on which the following phases are based is to have generated the

file containing the CapIM, the CapDM and the “CapabilityTranslationDetails” and

“LanguageGenerationDetails” classes in XMLSchema format using the appropriate

tool with the command:

java − j a r newConverter . j a r d e f i n i t i v o . xmi

6.2.1 Study of capabilities

In the first phase, the functionalities offered by IPsec were studied in detail.

Since IPsec has some specific characteristics, a section dedicated to key exchange

(automatic and manual) and to packet exchange has been added to the model that

represents the behavior of the protocol in a generic way.

Some specific security capabilities mapped into the CapDM after studying IPsec

are shown in Figure 6.2.

These new security capabilities are all transformations, which is why they have

been categorized as children of the abstract “TransformPacketDecorator” class.

The latter is the decorator of the generic class “TransformPacketCapability” which

56

6.2 – IPsec analysis

Figure 6.2: IPsec specific classes

is identified as “ActionCapability”, a generic subclass of the 6-tuple in Figure 5.2.

They have also been made generic and any NSF can use them if they are assigned

to them.

6.2.2 Instantiate new Security Capabilities

After studying the security capabilities offered by the IPsec protocol, you can

proceed to drafting the list of them in a generic format compatible with the trans-

lation of the CapDM. Since the use of XML language has been defined in the

architecture as a generic support language, Figure 6.3 shows the assignment of

some internal security capabilities to the NSF configuration XML file. Each se-

curity capability once instantiated must have a new specific name to refer to the

6-tuple.

<s e c u r i t y C a p a b i l i t y id="IpSourceAddressConditionCapability"

x s i : t y p e="p:IpSourceAddressCapability"/>
<s e c u r i t y C a p a b i l i t y

id="IpDestinationAddressConditionCapability"

x s i : t y p e="p:IpDestinationAddressCapability"/>
<s e c u r i t y C a p a b i l i t y id="DataAuthenticationActionCapability"

x s i : t y p e="p:DataAuthenticationCapability"/>
<s e c u r i t y C a p a b i l i t y id="EncryptionActionCapability"

x s i : t y p e="p:EncryptionCapability"/>
<s e c u r i t y C a p a b i l i t y id="AEADActionCapability"

x s i : t y p e="p:AEADCapability"/>
<s e c u r i t y C a p a b i l i t y id="CompressionActionCapability"

x s i : t y p e="p:CompressionCapability"/>
<s e c u r i t y C a p a b i l i t y id="ManualOperationActionCapability"

x s i : t y p e="p:ManualOperationCapability"/>

Figure 6.3: Security Capabilities instantiation example

57

Analysis and validation on a concrete case: IPsec

The security capabilities chosen to show the example are:

• IpSourceAddressCapability: this generic security capability of the condition

type allows you to identify the source IP address of a packet;

• IpDestinationAddressCapability: this generic security capability of the con-

dition type allows you to identify the destination ip address of a packet;

• DataAuthenticationCapability: this IPsec specific security capability, but

made generic, of the action type, allows you to declare which authentication

algorithm I want to use for the specific packet;

• EncryptionCapability: this IPsec specific security capability, but made generic,

of the action type, allows you to declare which encryption algorithm I want

to use for the specific packet;

• AEADCapability: this IPsec specific security capability, but made generic, of

the action type, allows you to declare which encryption with authentication

algorithm and mode I want to use for the specific packet;

• CompressionCapability: this IPsec specific security capability, but made generic,

of the action type, allows you to declare with which algorithm you want to

perform compression on the specific packet;

• ManualOperationCapability: this specific IPsec security capability, but made

generic, of the action type, allows us to declare how we want to act on the

Security Association Database;

6.2.3 Instantiate a new NSF and create references

Now it is necessary instantiate a new NSF and create the references between

the security capabilities within the catalogue and the NSF itself. Precisely for this

reason each security capability has had a new name, useful to create the reference

with the NSF. As shown in Figure 6.4, instantiating a new NSF is done by declaring

the name of the same and then declaring the references to the security capabilities

through the name created.

Subsequently, the configuration file of the security capabilities to be assigned to

an NSF can be validated using the specific validation tool. Since the transcription

of the validation file for the verification of the security capabilities has been done

by hand, the validation avoids transcription errors or errors due to non-existent

security capabilities in the model. In this phase the security capabilities are used

in an abstract way and only according to the name, in fact it is not necessary to

define or specify the attributes of each security capability since they are defined in

the CapDM.

58

6.2 – IPsec analysis

<nSF id="XFRM">
<s e c u r i t y C a p a b i l i t y

r e f="IpSourceAddressConditionCapability"/>
<s e c u r i t y C a p a b i l i t y

r e f="IpDestinationAddressConditionCapability"/>
<s e c u r i t y C a p a b i l i t y

r e f="DataAuthenticationActionCapability"/>
<s e c u r i t y C a p a b i l i t y r e f="EncryptionActionCapability"/>
<s e c u r i t y C a p a b i l i t y r e f="AEADActionCapability"/>
<s e c u r i t y C a p a b i l i t y r e f="CompressionActionCapability"/>
<s e c u r i t y C a p a b i l i t y

r e f="ManualOperationActionCapability"/>
</nSF>

Figure 6.4: NSF instantiation example

6.2.4 Definition of CapabilityTranslationDetails and Lan-

guageGenerationDetails for associated security capa-

bilities

After studying the security capabilities offered by the IPsec protocol, we learned

its syntax and semantics, which allowed us to instantiate the CapabilityTranslation-

Details and LanguageGenerationDetails classes necessary for the tools for language

generation and policy translation. These classes allow you to specify details about

the security capability in the specific NSF system.

These two classes are instantiated separately to the NSF and the security ca-

pability. The connection with the latter is made as they inherit the association

towards them from the parent class “HasSecurityCapabilityDetail”. In this way, in

the instance of one of the two classes, it is necessary to specify the reference both

to the NSF and to the security capability. The LanguageGenerationDetails class

allows you to customize the generation of the NSF language relative to the single

security capability. The CapabilityTranslationDetails class, on the other hand, al-

lows you to specify the details of translation and dependencies of the single security

capability within the NSF. The definition of the details of the CapabilityTransla-

tionDetails class affects the semantics and the actual structure of the translation

of the security capabilities. Therefore, for the definition of the characteristics of

an CapabilityTranslationDetails, the purpose and use that will be made of the

translation of the policy must also be taken into account.

The following examples refer to some of the previously listed security capabili-

ties.

59

Analysis and validation on a concrete case: IPsec

In the context of IPsec, the command needed to work on SAD is expressed

as “state mode”. To allow this translation the Adapter class will be expressed

as shown in Figure 6.5. The main element of this Figure is the definition of the

“realCommandName” field, where the specific semantics of the NSF are expressed

to declare the security capability to which the CapabilityTranslationDetails class

is assigned. In addition to the declaration of the command, the dependence on the

fact that the “policy” command (used to operate on the Security Policy Database)

must be absent has been expressed. The names used to express dependencies are

those declared by the CapDM for security capabilities.

<c a p a b i l i t y T r a n s l a t i o n D e t a i l s>
<nSF r e f="XFRM"/>
<s e c u r i t y C a p a b i l i t y r e f="ManualOperationActionCapability"/>

<commandName>
<realCommandName>s t a t e</realCommandName>

</commandName>
<dependency>

<absenceOfValue>p o l i c y</ absenceOfValue>
</dependency>

</ c a p a b i l i t y T r a n s l a t i o n D e t a i l s>

Figure 6.5: ManualOperationActionCapability

To analyze a more complex case of CapabilityTranslationDetails, reference can

be made to the “DataAuthenticationActionCapability” security capability.

In the case of IPsec, this command is used to declare the algorithm, mode and

key to authenticate the packet. Furthermore, this command can also be used to

perform truncation by means of its command variant. In this case, the truncation

length must also be specified. This condition is expressed as “auth — auth-trunc

mode (algoHash) key [truncationLenght]”. In order to map this type of translation,

the CapabilityTranslationDetails is created in Figure 6.6. From this definition we

can see the presence of two “realCommandName”, which represent the translations

of the security capability in authentication and authentication with truncation. In

this way the tool is able to use both translations and will use the right one according

to the value of the “operation” parameter. Furthermore, a further difference with

respect to Figure 6.5 concerns the definition of the separator, in fact the command

allows you to define the algorithm between the round brackets after defining the

mode and define the key after defining the algorithm by means of a space. In this

way the separators between attributes can be expressed. To allow the identification

of which attributes are to be separated, special constructs have been specified, in

60

6.2 – IPsec analysis

which the values of the parameters to refer to are entered. These parameters are

expressed with the nomenclature defined in the CapDM.

<c a p a b i l i t y T r a n s l a t i o n D e t a i l s> <nSF r e f="XFRM"/> <s e c u r i t y C a p a b i l i t y
r e f="DataAuthenticationActionCapability"/>

<commandName> <realCommandName>auth</realCommandName>
</commandName>

<commandName> <realCommandName>auth−trunc</realCommandName>
<commandNameCondition>

<attributeName>opera t ion</ attributeName>
<at t r ibuteVa lue>NOT EQUAL TO</ at t r ibuteVa lue>

</commandNameCondition> </commandName>
<bodyConcatenator> <rea lConcatenator>(</ rea lConcatenator>

<concatenatorCondi t ion>
<preVar iab l e>mode</ preVar iab l e>
<pos tVar iab l e>algoHash</ pos tVar iab l e>

</ concatenatorCondi t ion>
<postConcatenator>)</ postConcatenator>
</ bodyConcatenator>

<bodyConcatenator> <rea lConcatenator> </ rea lConcatenator>
<concatenatorCondi t ion>

<preVar iab l e>algoHash</ preVar iab l e>
<pos tVar iab l e>key</ pos tVar iab l e>

</ concatenatorCondi t ion> </ bodyConcatenator>
<bodyConcatenator> <rea lConcatenator> </ rea lConcatenator>

<concatenatorCondi t ion>
<preVar iab l e>key</ preVar iab l e>
<pos tVar iab l e>truncat ionLenght</ pos tVar iab l e>

</ concatenatorCondit ion> </ bodyConcatenator>
<dependency>

<presenceOfCapab i l i ty>
IpProtoco lTypeCondit ionCapabi l i ty
</ presenceOfCapab i l i ty>
<presenceOfValue>ah</ presenceOfValue>

</dependency>
<dependency>

<presenceOfCapab i l i ty>
IpProtoco lTypeCondit ionCapabi l i ty
</ presenceOfCapab i l i ty>
<presenceOfValue>esp</ presenceOfValue>

</dependency>
</ c a p a b i l i t y T r a n s l a t i o n D e t a i l s>

Figure 6.6: DataAuthenticationActionCapability

The complete file is validated using the appropriate tool against the XSD file

containing the CapDM. This file will be used for the generation of the NSF language.

61

Analysis and validation on a concrete case: IPsec

6.2.5 Language generation

In the language generation phase, the tool proposed in the thesis project is

used, created by Noceti [14] but modified specifically for the purpose. In order

to use the language generation tool, the catalogue file generated (or modified) in

the previous step and the file containing the representation in XMLSchema format

of the CapDM are required. For example, in the case considered, the following

command can be used:

java − j a r newLanguage . j a r capab i l i t y da ta mode l . xsd

NSFCatalogue . xml XFRM

where the passed parameters correspond to:

• capability data model.xsd: represents the path to the file that contains the

complete list of security capabilities mapped in the CapDM and which con-

tains the definition of the “CapabilityTranslationDetails” and “LanguageGen-

erationDetails” classes;

• NSFCatalogue.xml: represents the path to the file created in the previous

paragraphs.

• XFRM: represents the name of the NSF for which we want the language

This command generates the specific language of the NSF with the standard

name “language XFRM.xsd”. The language is considered specific because it is gen-

erated mainly by modeling the security capabilities in the CapDM for the NSF con-

cerned. It is considered the specific language of the NSF because it is characterized

by the choice of the security capabilities it knows and by any further customization.

In this way only security capabilities instantiated for the specific NSF are inside

the new language. Furthermore, the language generation tool eventually generates

text files containing metadata regarding the associations of numerical values with

respect to alphabetic values of the enumerations that require such matching.

6.2.6 Creation of the policy

In the policy creation phase, the main information to keep in mind is the lan-

guage of the NSF to which you want to assign the policy. The Figure 6.7 shows a

valid rule of a possible policy in the example NSF language. Considering the case

of IPsec, the proposed rule is divided into the following parts:

• nsfName: you have to specify the name of the NSF we are referring to. In

this way, during the translation phase, the tool will search among the security

62

6.2 – IPsec analysis

<p o l i c y nsfName="XFRM"

xmlns :x s i="http://www.w3.org/2001/XMLSchema -instance"

xsi:noNamespaceSchemaLocation="language_XFRM.xsd">

<r u l e>
<r u l e D e s c r i p t i o n></ r u l e D e s c r i p t i o n>
<manualOperat ionActionCapabi l i ty>

<operationType>add</ operationType>
</ manualOperat ionActionCapabi l i ty>
<ipSourceAddressCondi t ionCapabi l i ty>

<ipAddress>
<address>1 9 2 . 1 6 8 . 1 . 1</ address>

</ ipAddress>
</ ipSourceAddressCondi t ionCapabi l i ty>
<i pDes t inat ionAddres sCond i t i onCapab i l i ty>

<ipAddress>
<address>1 9 2 . 1 6 8 . 1 . 2</ address>

</ ipAddress>
</ ipDes t inat ionAddres sCond i t i onCapab i l i ty>
<ipProtoco lTypeCondi t ionCapabi l i ty>

<protocolType>
<protocolTypeName>esp</protocolTypeName>

</ protocolType>
</ ipProtoco lTypeCondi t ionCapabi l i ty>
<po l i cySp iCond i t i onCapab i l i t y>

<s p i>0x100</ s p i>
</ po l i cySp iCond i t i onCapab i l i t y>
<encrypt ionAct ionCapab i l i ty>

<encAlgoMode>
<algoEnc>aes128</ algoEnc>

</encAlgoMode>
<key>0x00112233445566778899AABBCCDDEEFF</key>

</ encrypt ionAct ionCapab i l i ty>
</ r u l e>

</ p o l i c y>

Figure 6.7: Instance of rule in the language of the NSF.

capabilities connected to the reference NSF as each security capability can

have different translations based on the NSF;

• rule: parameter indicating the start of the rule. This is inserted for each rule

since in the file we can write more rules for the same NSF;

• ruleDescription: parameter that is used to enter a description for the following

rule. At the moment no function has been implemented on it, it has been

63

Analysis and validation on a concrete case: IPsec

included for future developments;

• manualOperationActionCapability: with this rule we indicate that we are re-

ferring to the indicated security capability. The “operationType” parameter

indicates what type of operation we want to perform on the Security As-

sociation Database (SAD). When we want to insert something between the

parameter, a list of possibilities will come out and in this case we choose the

“add” operation;

• ipSourceAddressConditionCapability: using this security capability you can

define on which source IP address you want to provide a condition, the address

referred to can be defined in the “address” attribute and possibly its mask in

the “mask” attribute. In this case, the IP address “192.168.1.1” was defined

without a mask;

• ipDestinationAddressConditionCapability: using this security capability you

can define on which destination IP address you want to provide a condition,

the address referred to can be defined in the “address” attribute and possibly

its mask in the “mask” attribute. In this case, the IP address “192.168.1.2”

was defined without a mask;

• ipProtocolTypeConditionCapability: using this security capability you can

define on which protocol you want to provide a condition, the protocol to

which reference is made is defined in the “protocolTypeName” attribute be-

cause it is expressed with a valid name with respect to the language. In this

case we want to carry out a transformation of the package to guarantee secu-

rity through encryption and authentication. To do this we choose the “esp”

protocol from the list of choices that is granted to us by the language itself;

• policySpiConditionCapability: with this parameter we insert the Security

Parameter Index (SPI). The latter is an identifier used in the IPsec protocol to

identify IPsec Security Associations. In this case, being manually established

as XFRM foresees, the identification number is entered in the “spi” field;

• encryptionActionCapability: using this security capability we indicate which

algorithm and which mode in the “encAlgoMode” field we want to use to

ensure security. While the key with which the packet is encrypted is entered

in the “key” field. In this case the “aes128” algorithm is chosen without

specifying the mode. The key, on the other hand, is expressed in hexadecimal.

64

6.2 – IPsec analysis

6.2.7 Translation of the policy

The translation phase of the policy is strictly dependent on how you want to

use the output file of the policy translation tool. In addition to the Capability-

TranslationDetails class, the translation tool was designed to allow output types of

different formats, the details of using the tool will be analyzed in more detail in

section A.3.

Since there may be different formats available through which an NSF can receive

the policies or rules to be implemented, it is necessary to study the various formats

also in order to decide which is more convenient to use. Depending on this, different

types of CapabilityTranslationDetails classes can be defined and the translation tool

can be used, in specific ways, to generate different translation structures.

In the example of IPsec that we are dealing with, we have analyzed the case in

which we want to be able to have more rules inside the output file so that we can

then use them on the command line Figure 6.8.

ip xfrm s t a t e add s r c IPSrc dst IPDst proto esp s p i 0x1000 enc
aes 0x00112233445566778899AABBCCDDEEFF

Figure 6.8: NSF language rule instance for command line configurations.

This format allows you to generate a file that contains a single autonomous

rule for each line. This file can be used to verify the possibility of entering each

rule directly from the command line. The keyword “ip xfrm” was passed to the

translation tool as one of the specific optional parameters made available by the

tool itself, used in the command line to start the rule. This parameter allows you

to generate an output containing this keyword as the starting element for each

translated rule.

To obtain this type of format using the information in the example, the trans-

lation tool was used with the following command:

java − j a r newTranslator . j a r language . xsd NSFCatalogue . xml

XFRM RuleInstance . xml "+sip xfrm "

where the passed parameters correspond to:

• newTranslator.jar: translation tool created specifically to translate from the

generic language into the specific language of the security protocol;

• language.xsd: represents the path to the file that contains the NSF language;

65

Analysis and validation on a concrete case: IPsec

• NSFCatalogue.xml: represents the path to the file created in 6.2.2, 6.2.3 and

6.2.4;

• XFRM RuleInstance.xml: represents the path to the file created in 6.2.6;

• “+sip xfrm ”: it allows you to insert the keyword “ip xfrm ” at the beginning

of each rule, the quotation marks have been put specifically to insert the space

character as well.

This command generates a text file with the standard name “policy ipxfrm.txt”

with the rule translated as in Figure 6.8.

6.2.8 Implementation of the security policy

In order to verify the actual compatibility with IPsec, two virtual machines with

Ubuntu operating system have been allocated. After that, an attempt was made

to exchange packets between them. Once the basic exchange has been carried out

successfully, we tried to use the IPsec protocol in the XFRM manual, giving security

to the exchanged packet, using the rules created in the previous paragraphs.

66

Chapter 7

Conclusion

The study examined the information model defined by the Interface To Network

Security Functions working group and defined a data model by analyzing certain

security capabilities for network services. Together with this, the initial information

model has been extended to allow the management of security policies for network

services, making this model compatible with a policy-based management approach,

that is an approach of network administration through policy-based management.

The study carried out has expanded a method already developed by the previous

graduate student to represent, in a generic way, the functions offered by the security

services. Using this method for the generic representation of the capabilities of the

devices, it was possible to carry out several essential activities both in the field of

research and in the field of network security administration. During the study, the

problem was faced that each element that applies security features uses its own

language, therefore an abstract language for security checks was used, which allows

to express security policies with a common syntax.

The language definition criterion is based on the security capabilities assigned

to the NSF specification, in this way an abstract and generic language is obtained,

but specific for each NSF present in a specific Catalogue, containing all the NSFs

with the relative security capabilities instantiated. This language allows you to

specify security policies with a generic syntax, but this would not have solved the

problem of being able to use that specific security protocol through this abstract

language. Because of this, it was necessary to translate the policy into the concrete

language of the security feature’s actuator. For this reason, a valid methodology

had to be used to avoid having to generate a specific translator for each low-level

language.

To allow the generation of an abstract language, a new tool (newLanguage.jar)

has been developed, improving the one previously used, which, starting from a

catalogue, could provide us with the desired language for the NSF specification.

67

Conclusion

Subsequently, a new tool (newTranslator.jar) was created that allowed translation

into the specific language.

Starting from the environment specified by I2NSF, using highly known tech-

niques and languages such as UML and XML and using specific patterns, it was

possible to obtain a generic, easily understandable and widely usable representation

of security capabilities, adding these specifications to the pre-existing one.

Taking into consideration the data of the previous graduate student, it was

decided to change the approach to adequately express the parameters of the asso-

ciation classes regarding the languageGenerationDetails and capabilityTranslation-

Details classes. Through these two classes, the proposed tools adapt the generation

of the abstract language of the NSF and the consequent translation into the specific

low-level language of the NSF. The main difficulty is encountered only during the

assignment of the aforementioned classes when they must be referred to a security

capability of the NSF. Once the configuration, present in the catalogue, has been

defined, the proposed tools adapt to the inputs, thanks to a Model-driven approach.

Another advantage brought by the definition of the abstract language dependent

on security capabilities is the portability of the policies defined in this language.

In fact, the translation of policy into the concrete language of the device depends

only on the characteristics of the capabilityTranslationDetails class: for two NSFs

to which the same policy is assigned, the abstract language allows the exchange of

the policy itself, since it is defined in the same way in the generic language of both

NSFs but from which a different translation is obtained.

Using the proposed CapDM, a description of the security capabilities that is

broad enough to cover the IPsec protocol work cases was obtained. The solution

used can theoretically be applied to any NSF that can map its security capabili-

ties to those expressed in the CapDM. Furthermore, the use of the Model-driven

approach offers the possibility to add, modify, remove security capabilities from

the CapDM allowing the direct applicability of the latter to characterize the NSF

instances, without having to change the code of the tools but only the model. In

the event that a new security capability is added to the CapDM, in order to use it,

it is sufficient to assign it to the NSF and define the classes that allow the transla-

tion and generation of the language related to the new capability, in this way the

proposed tools work without need to change the code.

During this thesis path, two NSFs were added to the CapDM proposed by

another graduate student previously. The tools have been modified and made

more efficient in order to have a generic situation with multiple NSFs present in

a catalogue. After that, a new way of retrieving translation and language details

was developed so that NSF and security capability could be referenced in XML,

68

Conclusion

without the possibility of making mistakes. Furthermore, the possibility of having

a tool that generates a specific language for the NSF passed as a parameter in the

request has been implemented (newLanguage.jar).

From the current situation of the tools, we can think that future developments

can be concentrated on adding new NSFs starting from the definition of new security

capabilities or referring to existing ones. Or you can place the proposed work in a

context of centralized management of network controls. A central controller can be

allowed to manage the insertion of new security capabilities in the CapDM to allow

an insertion method or a standardized modification method. This controller can

handle the possible known NSFs and the instances currently active in the network

it controls. The controller can also manage the tools proposed to allow centralized

control of their use to verify any permissions of use and the correct expression of

the commands to be used. We can think of introducing an automatic choice of NSF

based on the level of security or the purposes requested by the customer.

69

70

Appendix A

User Manual

This section shows how a user can use the proposed tools. The only fundamental

prerequisite for using these tools is to have JAVA installed with a minimum version

1.8, and possibly the concrete NSFs to which the generated configurations can be

assigned. Being executable in JAR format it is not necessary to install further

programs. The tools are used via the command line using the syntax:

java − j a r jar name

Otherwise JAR files can be included in JAVA projects in order to use their func-

tionality.

A.1 Transformation tool from XMI to XSD

This tool allows the transformation of an XMI file into an XMLSchema file

following the characteristics with which Modelio transforms a class diagram into

an XMI file. In the architecture of the thesis scope, this tool is used to allow

the generation of an XMLSchema file containing all the security capabilities and

related details, represented in the class diagram of the security capabilities data

model (CapDM) and the information model (CapIM) containing the aggregation

between NSF and security capabilities.

A.1.1 Command line use

To invoke the tool using the command line, the following syntax is used:

java − j a r newConverter . j a r input path [output path]

71

User Manual

Where the parameters have the following function:

• input path: path of the XMI file to convert;

• output path: path where to generate the output file. This parameter is op-

tional, if it is not expressed, the output file is created in the current directory

of the executable with the file name determined in a standard way.

The execution of the command can be successful or not.

When the execution is successful, an XMLSchema file is generated in the posi-

tion represented by “output path” if present with name capability data model.xsd

and the result is confirmed with a screen printout. During the generation of the

output file, the “xmlns” and “targetNamespace” fields of the file are set using the

values passed by “output path”, consequently to refer to this XMLSchema it is

necessary to use the “targetNamespace” and the path indicated.

When the execution is unsuccessful, the command generates a response con-

taining details on the relative type of error.

A.1.2 Use as a JAVA library

This implementation did not serve the purpose of the project but is easy to

apply for those who will need it in the future.

A.2 NSF language generation tool

This tool allows the generation of an XMLSchema file containing the language of

all NSFs. The output file is generated using an XML format file that is valid against

the XMLSchema file containing all the security capabilities that can be assigned

to its instantiated NSFs. In the thesis architecture, this tool is used every time a

new NSF is added or security capabilities have been assigned, removed or added to

an existing NSF. This tool can make use of files with metadata capabilities. The

folder containing such metadata must be called “metadata” and must be in the

same folder that contains the executable.

A.2.1 Command line use

To invoke the tool using the command line, the following syntax is used:

java − j a r newLanguage . j a r xsd path ns fCata logue path nsfName

[output path]

Where the parameters have the following function:

72

A.2 – NSF language generation tool

• xsd path: path to the reference XSD file, containing the complete list of

existing security capabilities (for example the file generated by the previous

command (capability data model.xsd));

• nsfCatalogue path: path of the XML catalogue file containing all the in-

stances of the desired security capabilities with the NSF instances and the

related instances of languageGenerationDetails and capabilityTranslationDe-

tails ;

• nsfName: name of the NSF;

• output path: path where to generate the output file. This parameter is op-

tional, if it is not expressed, the output file is created in the current directory

of the executable with the file name determined in a standard way.

The execution of the command can be successful or not.

When the execution is successful, an XMLSchema file is generated with name

language nsfName.xsd containing the language of the NSF, in the position repre-

sented by the relative parameter and the result is confirmed with a screen printout.

During the generation of the file, the XML file passed as parameter2 is used to get

the information of any languageGenerationDetails classes defined to specialize the

NSF language. This tool may eventually generate some metadata files as well. This

happens when a new enumeration is created in class languageGenerationDetails or

an existing one is modified. For this purpose, a new metadata file is generated

with the name of the reference NSF. Within these files you can find information

about the relationship between the numerical value and the alphabetic value of cer-

tain enumerations. Any metadata files will be in the same location as the output

XMLSchema file.

When the execution is unsuccessful, the command generates a response con-

taining details on the relative type of error in output, on the command line.

A.2.2 Use as a JAVA library

To use the tool as a JAVA library in a project, you can instantiate an object of

the “LanguageModelGenerator” class and call the “generateLanguage” function.

The definition of the “LanguageModelGenerator” function are as follows:

pub l i c LanguageModelGenerator (S t r ing xsd , S t r ing xml , S t r ing

nsfName , S t r ing outputName)

It allows to instantiate an object of type “LanguageModelGenerator” with pa-

rameters:

73

User Manual

• xsd: path to the XMLSchema file containing the complete list of security

capabilities;

• xml: path of the XML catalogue file containing all the instances of the de-

sired security capabilities with the NSF instances and the related instances

of languageGenerationDetails and capabilityTranslationDetails ;

• nsfName: name of the NSF for which we want to create the new language;

• outputName: path and name of the output file.

The definition of the “generateLanguage” function are as follows:

public boolean generateLanguage ()

implements the actual conversion of the files with which the instance was gener-

ated with a boolean return value indicating the success or failure of the execution.

A.3 NSF low-level language translation tool

This tool allows the generation of a text file containing the policy expressed in

the NSF low-level language. The output file is generated according to the security

capabilities present in the security policy expressed in the generic language of the

NSF. In the thesis architecture, this tool is used every time you want to translate

a policy for a specific NSF.

A.3.1 Command line use

To invoke the tool using the command line, the following syntax is used:

java − j a r newTranslator . j a r xsd path ns fCata logue path

ns fRule path [output path] [parameter5 [parameter6]

[parameter7] [parameter8] [parameter9]

Where the parameters have the following function:

• xsd path: path to the reference XSD file, containing the complete list of

existing security capabilities (for example the file generated by the previous

command (language nsfName.xsd));

• nsfCatalogue path: path of the XML catalogue file containing all the in-

stances of the desired security capabilities with the NSF instances and the

related instances of languageGenerationDetails and capabilityTranslationDe-

tails ;

74

A.3 – NSF low-level language translation tool

• nsfRule path: path of the XML file containing the instance of the policy to

translate;

• output path: path where to generate the output file. This parameter is op-

tional, if it is not expressed, the output file is created in the current directory

of the executable with the file name determined in a standard way.

• parameter5: optional parameter that allows you to add a static alphanumeric

part to the output at the beginning of each rule, this parameter must begin

with the sequence of characters “+s”;

• parameter6: optional parameter that allows you to add a static alphanumeric

part to the output at the end of each rule, this parameter must begin with

the sequence of characters “+e”;

• parameter7: optional parameter to force the generation of valid rules even if

some policy rules do not respect certain dependency criteria, it is expressed

as “-f”;

• parameter8: optional parameter that allows you to wrap after the initial

parameter of each rule (ie parameter5), this parameter must begin with the

sequence of characters “+crs”;

• parameter9: optional parameter that allows you to wrap before the final

parameter of each rule (ie parameter6), this parameter must begin with the

sequence of characters “+cre”.

The order in which the parameters are entered is only important for the first

three, the optional parameters can be entered in any order.

When the execution is successful, a text file is generated with the name “pol-

icy nameofNSF” containing the translation into the low-level language of the NSF

of the policy expressed in the generic language of the NSF. The file is generated in

the location as expressed by parameter4. The format of the content of the output

file is strongly influenced by the presence or absence of optional parameters passed

to the command.

When the execution is unsuccessful, the command generates a response con-

taining details on the relative type of error.

A.3.2 Use as a JAVA library

To use the tool as a JAVA library in a project, you can instantiate an object of

the “NSFTranslatorAdapter” class and call the “translate” function.

The definition of the “translate” function are as follows:

75

User Manual

public void t r a n s l a t e (S t r ing xsd , S t r ing xmlAdapter , S t r ing

xmlPolicy , S t r ing outputName , S t r ing s t a r t S t r i n g , S t r ing

endStr ing , S t r ing forced , boolean scr , boolean ec r)

Where the parameters have the following function:

• xsd: path to the reference XSD file, containing the complete list of existing

security capabilities;

• xmlAdapter: path of the XML catalogue file containing all the instances of the

desired security capabilities with the NSF instances and the related instances

of languageGenerationDetails and capabilityTranslationDetails ;

• xmlPolicy: path of the XML file containing the instance of the policy to

translate;

• outputName: path where to generate the output file. This parameter is op-

tional, if it is not expressed, the output file is created in the current directory

of the executable with the file name determined in a standard way.

• startString: optional parameter that allows you to add a static alphanumeric

part to the output at the beginning of each rule;

• endString: optional parameter that allows you to add a static alphanumeric

part to the output at the end of each rule;

• forced: optional parameter to force the generation of valid rules even if some

policy rules do not respect certain dependency criteria;

• scr: optional parameter that allows you to wrap after the initial parameter

of each rule (ie startString);

• ecr: optional parameter that allows you to wrap before the final parameter

of each rule (ie endString).

A.4 Validation tool

This tool allows the validation of an XML file against an XMLSchema file both

passed as parameters to the tool. In the architecture of the thesis, this tool is

used whenever an XML file necessary for one of the proposed tools needs to be

instantiated.

76

A.4 – Validation tool

A.4.1 Command line use

To invoke the tool using the command line, the following syntax is used:

java − j a r v a l i d a t e . j a r xsd path xml path

Where the parameters have the following function:

• xsd path: path to the referenced XML Schema file;

• xml path: path of the XML file to validate.

The execution of the command can be successful or not.

When the execution is successful, the string “true” is returned. Otherwise, in

case of failure, the command generates a response containing details on the relative

type of error in output, on the command line.

A.4.2 Use as a JAVA library

To use the tool as a JAVA library in a project, you can instantiate an object of

the “Validation” class and call the “validate” function.

The definition of the “validate” function are as follows:

public boolean v a l i d a t e (S t r ing xsd , S t r ing xml)

Where the parameters have the following function:

• xsd: path to the reference XSD file;

• xml: path of the XML file to validate;

Return value: Boolean value that indicates the success or failure of the function

execution.

77

78

Appendix B

Developer Manual

This section contains the specifications of the developer’s manual relating to the

capability model and to each tool, in particular the architectures of the tools and

the various functions that make up the code of each tool will be explained in detail.

The common feature of the tools is that they are all written in JAVA. The APIs

offered by Java API for XML Processing (JAXP) were used to manage XML files.

The added libraries belong to the “Apache Xerces Project” project, downloadable

directly from the project site1, the specific package used is “xerces-2 6 2” and the

libraries present in the projects are:

• resolver.jar;

• serializer.jar;

• xercesImpl.jar;

• xml-apis.jar.

B.1 CapDM management using Modelio

The proposed project for the modification of the CapDM is developed in a set

of diagrams of the classes related to each other. Starting from the definition of the

more generic element, namely the “SecurityCapability” class, the first hierarchy was

generated, that is the division into the tasks defined by the 6-tuple as in Figure 5.2.

Using the generalization relationship, further subdivision classes were generated,

up to “leaf” elements, which determine a concrete security capability. We started

from the CapDM generated by Noceti [14] in his thesis project, in order to improve

1http://xerces.apache.org/mirrors.cgi

79

Developer Manual

it and make it compatible with the additions that have been made within this thesis

and that can be made in the future.

The relationships between the multiple class diagrams are represented by Fig-

ure B.1, which also shows the fact that the Capability Information Model (CapIM,

Figure 5.1) uses the security capabilities defined in the Capability Data Model

(CapDM). To define the specific security capability, we start from the base in the

definition of the 6-tuple. Once the generic scope of the security capability is found,

it is assigned to that particular group. After that, you can think about creating

a more specific (abstract) subgroup before creating the actual capability. This is

defined as “Leaf Capability” as it is the last in the chain starting from the CapDM.

This ability can use the types that are defined in the class diagram specifically

defined for types.

Figure B.1: Relationship between class diagrams

Add a new capability

To add a new capability you can proceed with the following steps:

• identify which group this capability belongs to;

• identify the class diagram used for that capability group;

• create a new class in the class diagram of the identified group;

• define the new class with generic name;

• define any details about the attributes needed to manipulate the new capa-

bility.

80

B.2 – XMI to XSD transformation tool

If the attributes defined for the new class are not of generic type, such as string

or integer type, you can define a new generic type by proceeding with the following

steps:

• identify how to compose the new type;

• create a new class in the type class diagram;

• define the new class with generic name;

• define the details of the new attributes needed to manipulate the new capa-

bility;

• assign the type of the class just defined to the parameter of the new capability

created previously.

In this way, standard types can be defined that each new security capability can

use.

B.2 XMI to XSD transformation tool

This tool allows the transformation of an XMI file into an XML-Schema file

following the characteristics with which Modelio transforms a class diagram into

an XMI file. In the thesis architecture, this tool is used to allow the generation

of an XML-Schema file containing all the security capabilities and related details,

represented in the class diagram of the security capability data model (CapDM).

The tool previously developed by Noceti [14] has been modified and improved to

allow the transformation not only of the CapDM but also of the CapIM. The tool

develops the output following the workflow in Figure B.2.

The main steps in the operation of this tool are as follows:

• reading the input file;

• cycle for each element. The reference point of the tool is a tag called “pack-

agedElement” which contains all the classes generated in that folder, whose

type determines the type of element being analyzed;

• when a correct element is recognized, an element of type complexType is

generated to be inserted in the output file;

• each generic element can be made up of further elements, so each element is

explored to find the attributes useful for generating the complex type neces-

sary for the output file;

81

Developer Manual

Figure B.2: XMI to XSD Transformation tool Workflow

• once the translation of each element in the input file has been completed,

a concrete element is generated that functions as the root element of the

XML-Schema file;

• once the whole structure has been created, the “transform()” function takes

care of the concrete generation of the output file.

Tool architecture

The architecture of the proposed tool is structured in two main classes, repre-

sented in Figure B.3, and a support class for the creation of objects to be included

in the document; these classes are composed as explained below:

• Converter: class that deals with the management of the input file and rec-

ognizes the details useful for creating the elements for the output file. This

class does not define instance variables. This class consists of the following

functions:

– public Converter():

82

B.2 – XMI to XSD transformation tool

Figure B.3: Design of the XMI to XSD Transformation Tool.

constructor function that allows you to instantiate an object correspond-

ing to the “Converter” class. It takes care of reading the input file,

recognizing the elements useful for generating the output and interacts

with the other functions for the purpose of the tool;

– private String findNameOfPackagedElementByIdandType(NodeList nl,

String id , String classe) :

this function deals in detail with finding the name, in string format, of an

element belonging to the list of nodes passed as a parameter. To find the

correct name, the element that has the value “class” in the “xmi: type”

attribute and the “id” value in the “xmi: id” attribute is searched in the

list of nodes passed. If the search is not successful, “null” is returned.

• XSDgenerator: class that deals with the management of elements recognized

and converted with the XMLSchema format, also deals with the actual trans-

formation of the element generated when reading the input file and the actual

generation of the output file. It has a main element which forms the root of

the output file. This class defines the following instance variables:

– private final static String NS PREFIX = ‘‘xs:’’:

this field allows you to define with which prefix all the elements will be

generated;

– private Document doc:

this field contains the output document to which this instance refers;

– private Element schemaRoot:

this field contains the root element of the instance output document;

– private NameTypeElementMaker elMaker:

83

Developer Manual

this field contains the element that allows you to generate new elements

compatible with the output document.

This class consists of the following functions:

– public XSDgenerator():

constructor function that allows you to instantiate an object correspond-

ing to the “XSDgenerator” class and takes care of creating the main

objects of the class;

– public boolean transform(String outputName):

this function deals with the generation of the output relative to the new

XSD file using the “outputName” parameter as a reference for the name

and destination path of the output file;

– public Element newElement(String name):

this function generates a new element, the “name” parameter is used to

give the name to the element to be generated;

– public void addAttribute(Element element, String nameAttr, String

attrValue):

this function is responsible for adding to the element “element” an at-

tribute named “nameAttr” and the value “attrValue”;

– public void addNewElement(Element e):

this function adds a new element to the root of the schema to be gener-

ated;

• NameTypeElementMaker: support class for the “XSDgenerator” class that

provides two functions for managing objects in the desired document. This

class defines the following instance variables:

– private String nsPrefix:

this field allows you to define with which prefix all the elements will be

generated;

– private Document doc:

this field contains the output document to which this instance refers.

This class consists of the following functions:

– public NameTypeElementMaker(String nsPrefix, Document doc):

this constructor allows you to define which document the class refers to

and if a prefix string exists;

– public Element createElement(String elementName):

this function creates an element in the document assigned to the class

84

B.3 – NSF language generation tool

correctly, adding the prefix assigned to the class to the “elementName”

parameter;

– public void setAttribute(Element element, String nameAttr,

String attrValue):

this function is responsible for adding to the element “element” an at-

tribute named “nameAttr” and the value “attrValue”.

B.3 NSF language generation tool

This tool allows the generation of an XMLSchema file containing the language

of all the NSF instanced. The output file is generated according to the security

capabilities assigned to the NSF using a valid XML format file with respect to

the XMLSchema file containing all the assignable security capabilities. In the

architecture of the thesis, this tool is used every time we add, remove or modify

the security capabilities of a NSF or instantiate a new NSF, so as to have the new

language for the specific NSF always updated. This tool can make use of files

with metadata capabilities. The folder containing such metadata must be called

“metadata” and must be in the same folder that contains the tool or the tool source.

The metadata consists of the relationship between integer and string value of any

enumerations that require this relationship, and are structured so that for each row

there is first the numeric value and, separated by a space, the alphabetic value.

The proposed metadata files concern protocols and service ports.

The tool develops the output following the workflow below (Figure B.4).

The main steps in the operation of this tool are as follows:

• validation of input files;

• creation of the complex type “Policy” which will be used to instantiate the

policies in the rules generation file;

• cycle for each security capability present in the NSF configuration file. The

reference point of the tool is the tag called “securityCapability” which allows

to recognize each security capability defined;

• for each securityCapability element, the new element used as an identifier to

create the relationship between the NSF and the detail classes is generated;

• creation of the complex type “Rule” which will be used to indicate where

starts a new rule in the rules generation file;

• cycle for each security capability present in the NSF configuration file;

• creation of the complex type for each instantiated security capability;

85

Developer Manual

Figure B.4: NSF Language Generation Tool Workflow.

• creation of complex and simple types related to the TranslationDetails class;

• generation of the specific language;

• the “transform ()” function is used which allows the generation of the output.

B.3.1 Tool architecture

The architecture of the proposed tool is structured in two main classes, and

is represented in Figure B.5 and in Figure B.6. The architecture is divided into

several classes to allow the first class “LanguageModelGenerator” to manage the

interpretation of the input file, to manage the structure and all the elements that

will be used to generate the output itself, in the second class “XSDgenerator”

and a further class for managing the creation of the actual elements belonging

to the output document. Furthermore, the separate images allow to divide the

functions involved during the generation of the generic language (Figure B.5), and

the functions used during the management of the “LanguageConstraint” class of a

security capability (Figure B.6).

The architecture of the tool is characterized by a main function “genearateLan-

guage()” which uses all the other functions. The architecture is developed in the

following way:

• the “LanguageModelGenerator” class takes care of reading the input file and

86

B.3 – NSF language generation tool

Figure B.5: NSF Language Generation Tool Architecture, first part.

Figure B.6: NSF Language Generation Tool Architecture, second part.

managing the received structures.

This class defines the following instance variables:

– private String xsd;

field that contains the path of the reference XMLSchema file, file that

contains the XMLSchema representation of the CapDM;

– private String xml;

field that contains the path of the reference XML file, file that contains

the list of assigned security capabilities and any “languageGenerationDe-

tails” and “capabilityTranslationDetails” classes;

– private String outputName;

87

Developer Manual

field that contains the path where the output file will be generated and

therefore the name of the file itself.

– private List<String> imports;

field that contains the list of paths to the files that make up the CapDM;

– private List<NodeList> complexTypeNodeLists;

field that contains the list of complex nodes belonging to all the files

that make up the CapDM;

– private List<NodeList> simpleTypeNodeLists;

field that contains the list of simple nodes belonging to all the files that

make up the CapDM;

– private XSDgenerator gen;

field that contains the instance object of the “XSDgenerator” class;

– private List<String> metadataPath;

field that contains the list of paths referring to the metadata files gen-

erated during the generation of the language;

This class consists of the following functions:

– public LanguageModelGenerator(String xsd, String xml, String

outputName)

constructor function allows you to instantiate objects of the “Language-

ModelGenerator” class, instantiating the variables of the class itself, in-

cluding those referring to the parameters passed with the constructor;

– public boolean generateLanguage()

this function is in charge of generating the language of the NSF. It deals

with the generation of the elements necessary for the management of the

policy, then creates the “policy” element and the complex type “Policy”

derived from it, with the “nsfName” attribute to indicate the name of the

NSF we are creating the rules and the “rule” element to indicate the start

of a new rule. It also takes care of reading all the security capabilities

and the related “details” class in the input file and transforming them

into complex types to be inserted in the output file.

– private List<String> getAllImportPaths()

this function generates a list containing all the paths of the “xs: import”

elements present in the input file. This function is necessary in the event

that the CapDM translated as an XMLSchema file should be divided

into multiple XSD files, in this way it is sufficient that the main XSD

file contains the details of the paths necessary to reach all the further

XSD files;

88

B.3 – NSF language generation tool

– private List<NodeList> getAllNodelistFromImportsByTagName

(List<String> imports, String tag)

this function generates a list of nodeList elements containing the list of

nodes containing elements with that particular “tag” for each document

in the “imports” list;

– private static NodeList getNodelistOfElementFromDocumentByTagname

(Document d, String tagname)

this function returns the list of nodes containing the elements with that

specific “tagname” belonging to the document “d”;

– private static Document generateDocument (String path)

this function generates a “Document” type object based on the path

specified in the “path” variable;

– private static Element findOriginalComplexType (NodeList complextype,

String capa)

this function looks for an element that has as attribute “name” the

value contained in “capa” belonging to a list of “complextype” nodes

and returns this element of type “Element” or “null” if it has not been

found;

– private Element findParent (Element complextype)

this function recursively goes up the chain of elements from which the

“complextype” element derives, until it reaches the generic element “Se-

curityCapability”. At each iteration, the current element is added to the

elements necessary to use for the language, any elements already present

are not further inserted;

– private Element findExtensionElement (Element e)

this function searches if an “xs: extension” element exists in the various

nodes inside the element “e” passed, if it exists then it returns this

element, otherwise it returns “null”;

– private String nameSecurityCapability(Element item)

Function to receive the name of the referred security capability;

– private String idSecurityCapability(Element item)

Function to receive the ID of the security Capability referred to.

• the “LanguageModelGenerator” class also deals with the management of the

details defined in the “languageGenerationDetails” type elements of the in-

put file and the management of the received structures (Figure B.6). The

“LanguageModelGenerator” class is managed by the following functions:

89

Developer Manual

– private boolean generateCustomType(Element element, NodeList n)

this function allows the generation of the NSF language based on the

details exposed in the “LanguageConstraint” class. It is called only if

“language” tag elements have been recognized. It recognizes the ele-

ments contained in the “LanguageConstraint” class and manages them

using the appropriate functions;

– private boolean generateCustomizedEnumeration(String

enumerationName, Element modifyDefaultEnumeration, NodeList

modeledNL)

this function generates elements that respect the details defined in the

“language” elements encountered. This function is strictly based on the

structure of the “LanguageConstraint” class. The operations performed

by this function depend on the content of the “languageGenerationDe-

tails” element being analyzed. Also in this function are defined the

methods of using any metadata as in the case of protocol types or port

types. If you want to change the behavior of the tool towards the “Lan-

guageConstraint” class, this is the function from which you have to start;

– private boolean createEnumerationWithIntegerMapping(String

enumerationName, NodeList addNewValueNodeList, NodeList

renameValueNodeList, NodeList removeValueNodeList, NodeList

addExistingValueNodeList, Element defaultEnumeration, NodeList

setNumericRangeNodeList, NodeList generateIntegerMatching, String

metadata, List<String> capabilityAndAttributesToBeChanged)

this function is responsible for creating the enumeration with the pa-

rameters defined in the “language” element, any integer type and is

responsible for modifying the type of the affected attribute if any. It

also deals with the generation of any metadata due to the relationship

between the integer and the string value of the enumeration;

– private void generateMyMetadata(Map<String, Integer> nameValueMap,

String metadata)

this function actually takes care of generating the metadata output file.

The metadata is sorted in ascending numerical order;

– private static Map<String, Integer> sortByValue(Map<String, Integer>

unsortMap)

this function takes care of sorting a map according to its integer values;

– private Map<String, Integer> getDefaultMap(String metadata)

this function generates a default map built using the values contained in

90

B.3 – NSF language generation tool

the metadata file passed as a parameter;

– private boolean createEnumerationNonIntegerMapping(String name,

NodeList addNewValueNodeList, NodeList renameValueNodeList,

NodeList removeValueNodeList, NodeList addExistingValueNodeList,

Element defaultEnumeration)

this function generates the enumeration type without the relationship

between integer and string value. Initially it generates a list of string

values which is passed to another function belonging to the “XSDgener-

ator” class which will create the actual object suitable for the output;

– private Element getDefaultEnumeration(String name, NodeList

modeledNL)

this function searches a list of “modeledNL” nodes for the element with

the “name” attribute equivalent to the content of the “name” function

parameter;

– private boolean generateNewStringEnumeration(String name, NodeList

valueNL)

this function generates a new name enumeration the content of the

“name” parameter, if it is not yet in the list of elements already gen-

erated. This enumeration is generated exclusively on the basis of the

values contained in each node of the “valueNL” list;

• the “XSDgenerator” class deals with the management of elements recognized

and converted with the XMLSchema format, it also deals with the actual

transformation of the element generated when reading the input file and the

actual generation of the output file. It has a main element which forms the

root of the output file.

This class defines the following instance variables:

– private final static String NS\ PREFIX = ‘‘xs:’’;

this field allows you to define with which prefix all the elements will be

generated;

– private Document doc;

this field contains the output document to which this instance refers;

– private Element schemaRoot;

this field contains the root element of the instance output document;

– private NameTypeElementMaker elMaker;

this field contains the element that allows you to generate new elements

compatible with the output document;

91

Developer Manual

– private TreeSet<String> capability;

this field contains the list of the names of the security capabilities en-

countered;

– private List<String> type;

this field contains the list of the names of the complex or simple types

encountered;

This class consists of the following functions:

– public XSDgenerator()

this constructor allows you to instantiate an object corresponding to the

“XSDgenerator” class and takes care of creating the main objects of the

class;

– public boolean transform(String outputName)

this function is responsible for generating the output relating to the new

XSD file using the “outputName” parameter as a reference for the name

and destination path of the output file;

– public Element newElement(String name)

this function generates a new element, the “name” parameter is used to

give the name to the element to be generated;

– public void addAttribute(Element element, String nameAttr,

String attrValue)

this function is responsible for adding to the element “element” an at-

tribute named “nameAttr” and the value “attrValue”;

– public void addNewElement(Element e)

this function adds a new element to the root of the schema to be gener-

ated;

– public void addElement(Element e)

this function adds a new element to the root of the schema to be gener-

ated using a copy of the element passed as a parameter;

– private Element createElementRecursively(Element e)

this function recursively generates a copy of the element passed as a

parameter, therefore of all its internal characteristics. This function

avoids generating the classes or attributes relating to “languageGener-

ationDetails” or “capabilityTranslationDetails” elements, which are not

necessary in the NSF language;

– private void insertAllAttributes(Element fromElement, Element toElement)

this function adds all the attributes of one element, “fromElement”, to

92

B.3 – NSF language generation tool

another “toElement” element. Furthermore, if a “type” attribute is rec-

ognized then it is added to the list of types encountered, a list necessary

to generate the complex types of the NSF language;

– public void addCapaInList (String s)

this function inserts the name passed as a parameter in a list of strings

without duplicates;

– public boolean capabilityInListYet (String s)

this function evaluates if the value passed as parameter is already present

in the list. This function is used together with the list of capabilities

that have already been encountered during the translation;

– public void generateType(NodeList typeComplex)

this function uses the nodes belonging to the list of nodes passed as a

parameter to generate a new element that can be added to the root that

will generate the output. This function uses “addElement()” to generate

each recognized element;

– public void addEnumerationFromList (String name, List<String>

valueList)

this function creates the enumeration element with the XMLSchema

format, using the “name” parameter as the name of the enumeration and

entering all the values of the passed list as the “valueList” parameter;

– public void addNewSimpleTypeIntegerRestrictionFromNodeList(

List<String> capabilityAndAttributesToBeChanged, NodeList

setNumericRangeNodeList)

this function generates a new element using the values present in the

list of nodes “setNumericRangeNodeList”. The name is decided with

the first value of the “capabilityAndAttributesToBeChanged” list. This

list is composed of a first value that indicates the name of the class

containing the attributes to which you want to change the type, the

further values of the list are the names of the attributes to which you

want to change the type, these attributes must belong to the class whose

name is in position 0 of the list;

– private void changeElementTypeInExistingComplexType (List<String>

capabilityAndAttributesToBeChanged, String newTypeName)

this function looks for the element whose name is in the first element

of the “capabilityAndAttributesToBeChanged” parameter. Once this

element has been found, the function modifies the type of attributes

whose names are the next elements in the list by inserting the value of

93

Developer Manual

the “newTypeName” parameter.

– public void generateIntegerMatchingFromMatchingNumbers (List<String>

capabilityAndAttributesToBeChanged, Map<String, Integer>

nameValueMapSortedByIntegerValue)

this function generates a new integer type restriction using the values

contained in the “nameValueMapSortedByIntegerValue” map, the name

of the new type is generated with the value in the first position of the

“capabilityAndAttributesToBeChanged” list by adding the string “In-

tegerRestriction”. To complete the generation, this function calls the

“changeElementTypeInExistingComplexType” function to change the

type of the attributes involved;

– public void newIntegerRestrictedSimpleType(NodeList

setNumericRangeNodeList, List<String>

capabilityAndAttributesToBeChanged)

this function generates a new integer type restriction using the values

contained in the “capabilityAndAttributesToBeChanged” list, the name

of the new type is generated with the value in the first position of the

“capabilityAndAttributesToBeChanged” list by adding the string “In-

tegerRestriction”. To complete the generation, this function calls the

“changeElementTypeInExistingComplexType” function to change the

type of the attributes involved;

• the “NameTypeElementMaker” class is a helper class for generating elements

in a specific document. This class is used exclusively by functions belonging to

the “XSDgenerator” class, since they are responsible for creating the output

document.

This class defines the following instance variables:

– private String nsPrefix;

this field allows you to define with which prefix all elements will be

generated;

– private Document doc;

this field contains the output document to which this instance refers.

This class formed by the following functions:

– public NameTypeElementMaker(String nsPrefix, Document doc)

this constructor allows you to define which document refers to the class

and if a prefix string exists;

94

B.4 – NSF low-level language translation tool

– public Element createElement(String elementName)

this function creates an element in the document assigned to the class

correctly, adding the prefix assigned to the class to the “elementName”

parameter;

– public void setAttribute(Element element, String nameAttr,String

attrValue)

this function is responsible for adding an attribute named “nameAttr”

and the value “attrValue” to the “element” element. In this case, how-

ever, it is checked that the attribute names do not contain references to

other XMLSchema, in case only the real name of the attribute is used.

B.3.2 Possible changes

If you want to add functionality to the “LanguageConstraint” class, the func-

tions from “generateCustomType()” are involved following the figure of architec-

ture (Figure B.5). To manage a new parameter of the “LanguageConstraint” class,

the relative construct “getElementsByTagName()” must be added and then the

resolution procedure of the new parameter must be added by adding the relative

function.

B.4 NSF low-level language translation tool

This tool allows the generation of a text file containing the policy expressed in

the NSF low-level language. The output file is generated according to the security

capabilities present in the security policy expressed in the generic language of the

NSF. In the thesis scope architecture, this tool is used every time you want to

translate a policy for the NSF date. The tool develops the output following the

workflow in Figure B.7.

The main steps in the operation of this tool are as follows:

• input file validation;

• cycle for every rule in the file containing the policy;

• cycle for every security capability in the rule being considered;

• the element with the key tag “capabilityTranslationDetails” relating to the

security capability currently considered is taken from the file for assigning the

capabilities;

• once the security capabilities relating to a rule have been concluded, the

dependencies of each security capability used for the rule are checked;

95

Developer Manual

Figure B.7: Translation Tool Workflow

• if the rule is correct it is written to the output file.

Tool architecture

The architecture of the proposed tool is shown in Figure B.8, in this structure

the main function is “translate()” which deals with the translation at a macroscopic

level, but entrusts the translation of the detail to the “clauseConverter()” function,

the which deals in detail with each element that makes up the rule. To carry

out the translation, the “NSFTranslator” class uses the information contained in

Figure 5.4.

This class defines the following instance variables:

• private String xsdLanguage;

field that contains the path of the XMLSchema file that contains the repre-

sentation of the language of the NSF;

• private String xmlRule;

field that contains the path of the XML file that contains the policy, expressed

in the generic language, to be translated into the low-level language of the

NSFs;

• private String xmlCatalogue;

field that contains the path of the XML file that contains the catalogue of se-

curity capabilities assigned to the NSF and any “languageGenerationDetails”

and “capabilityTranslationDetails” classes;

• private String outputName;

96

B.4 – NSF low-level language translation tool

Figure B.8: Translation Tool Architecture

field that contains the path and name of the output file where the NSF low-

level policy will be generated;

• private String temporaryRule;

field used to insert the parts of the rule translated into string format. Some

parameters passed to the “translate ()” function act directly on this field.

Once the security capabilities related to this rule are over, this field will be

used to verify the correctness of the rule itself and in case of a positive result

the content will be written in the output file;

• private String temporaryCapabilityAndAttributes;

string field that contains the name of the currently considered security capa-

bility and a sequence of attribute names each followed by the value of that

attribute. Each component of this field is separated from the next by the

space character “ ”.

For example: “nameCapacity attribute1 value1 attribute2 value2”.

• private String temporaryCapability;

field containing the name of the currently managed security capability;

• private List<String> temporaryListCapabilityOfRule;

field that contains the list of the names of the security capabilities encountered

during the translation of the current rule;

• private NodeList translationNodes;

field that contains the list of the nodes of the security capabilities that contain

information about the “capabilityTranslationDetails” classes for each security

97

Developer Manual

capability;

• private String nsfName;

field that contains the name of the NSF whose policy we want to translate. It

is indicated as there can be multiple NSFs with the same security capability;

• private String nextCapabilityTemp;

temporary support string to check if the condition on which to perform the

cycle is verified

• private NodeList nodes;

List that contains all the rule nodes

• private Element nextCapabilityElement;

variable in which to save the next capability to perform checks on some de-

pendencies

• private Element myCapabilityTranslation;

field that contains the instance of the “capabilityTranslationDetails” class

relating to the security capacity currently analyzed.

This class consists of the following functions:

• public NSFTranslator()

constructor that allows you to instantiate an object corresponding to the

“NSFTranslator” class;

• public boolean translate(String xsd, String xmlCatalogue, StringxmlRule, String

outputName, String startString, String endString, String forced, boolean

scr , boolean ecr)

this function reads the input policy and manages each element using the cor-

rect “capabilityTranslationDetails” class instance. It takes care of writing the

output file every time a rule is translated using the customization parameters

that were passed when this function was called, it also calls the appropriate

function to check the correctness of each rule. The analysis of the policy

contained in the input file is based on the reference to the security capacity

inside the “capabilityTranslationDetails” class and in the considered NSF.

• private static Document generateDocument(String path)

this function generates a “Document” object based on the path specified in

the “path” variable;

• private static NodeList getNodelistOfElementFromDocumentByTagname(

Document d, String tagname)

98

B.4 – NSF low-level language translation tool

this function returns the list of nodes containing the elements with that spe-

cific “tagname” belonging to the document “d”;

• private void exploreElement(Element e)

function that checks if the security capability in parsing has any child nodes.

If the recursive method is called it has the print function;

• private void recursivesearch(Element e)

this recursive function parses within an element, node by node to look up the

node and attribute name. Being recursive, it analyzes up to the last child

and then saves all the nodes with their respective attributes;

• private String clauseConverter()

this function deals with the conversion of the single element of a rule. For the

management of the single element, the breakdown of this element into four

parts is proposed:

– pre: part that contains the portion of the string that indicates which

command is being used;

– mid: part that contains the concatenator between the pre and the body;

– body: part that contains the portion of the string that concretely indi-

cates the possible value of the command;

– post: part that contains the concatenator between the current rule por-

tion and the next.

Each of which parts is developed by a specific function. This function takes

care of returning a string where the 4 parts just described are concatenated;

• private String getPre()

this function considers the name of the security capability relative to the

current rule portion and the “capabilityTranslationDetails” class relative to

this security capability. From the conditions of the rule portion it is recognized

which command to use, defined in the “capabilityTranslationDetails” class;

• private String getMid()

this function looks for the “capabilityTranslationDetails” element relating to

the internal concatenation of the portion of the rule; if in the “capability-

TranslationDetails” class it has not been specified then a space is considered

as a predetermined concatenator;

• private String getBody()

this function considers the attributes of the security capability and their val-

ues relative to the current rule portion and the “capabilityTranslationDetails”

99

Developer Manual

class relative to the security capability considered. By evaluating the at-

tributes of the rule portion, the use cases of any concatenators to be applied,

defined in the “capabilityTranslationDetails” class, are recognized. This func-

tion also takes care of evaluating if correct values have been entered, in fact

it can evaluate these values by applying any regular expressions or explicit

numerical restrictions;

• private String getPost()

this function searches for the “capabilityTranslationDetails” element relating

to the concatenation between the current portion of the rule and the next;

if in the “capabilityTranslationDetails” class it has not been specified then a

space is considered as a predetermined concatenator;

• private Element findElementTranslationNodesByCapability()

this function looks for an element based on the name of the security capability

that is being considered at the moment, the name is contained in a variable

of the class. This function returns null if there should be no instance of the

relative “capabilityTranslationDetails” class.

• private String getTextContextFromGetElementByTagName(Element e, String s)

this function returns the textual value of the element with a name equivalent

to the content of the “s” parameter;

• private List<String> getAllClauseAttributesName()

this function is responsible for generating a list containing all the names of

the attributes of the security capability that is currently being considered.

The list is filled using the “createListAttributes()” function;

• private void createListAttributes (NodeList elementNL, List<String> ls,

Element e)

this function recursively creates a list that contains the attributes belonging

to the element “e”, if the element is a complex type then the same function

is called until all the names of the parameters are obtained;

• private String getAttributeDefaultRegex(String attributeName)

this function searches if the security capability being considered at the mo-

ment, in the attribute whose name corresponds to the value of the “attribute-

Name” parameter, has a preset regular expression;

• private Element getCapabilityElementFromNodeList(String capa, NodeList nl)

this function returns, if present, the element whose “name” attribute has the

same value as the content of the “capa” parameter;

100

B.5 – Validation tool

• private boolean checkRule()

this function checks whether the dependency rules contained in the instance

of each component of the rule are satisfied. To obtain this result, the function

uses the information contained in the “capabilityTranslationDetails” instance

of each security capability that makes up the rule. In particular, it considers

the instances of the “dependency” elements. Structures containing the capa-

bilities used by the rule and the rule already translated but not yet validated

are used to check dependencies;

• private List<String> getListOfTextValueOfElementByTagNameFromElement(

Element e, String tagName)

this function, given an “e” element, finds the “tagName” tag element and

generates a list of strings containing all the textual values belonging to these

elements;

• private boolean regexValidity(String value, String regex)

this function verifies the validity of the value contained in the “value” parame-

ter with respect to the regular expression contained in the “regex” parameter.

• private String transformAttribute(String value, String transform)

method that allows you to perform a transformation on the specified attribute

“value”. First a check is made if the value of “transform” is configured, then

if this transformation is implemented or not;

• private Element findExtensionElement (Element e)

it searches if in the various elements inside the element passed “e” exists that

“xs: extension” and in case it returns that.

B.5 Validation tool

This tool allows the validation of an XML file against an XMLSchema file both

passed as parameters to the tool. In the architecture of the thesis, this tool is

used whenever an XML file necessary for one of the proposed tools needs to be

instantiated.

The architecture of this tool consists of a single class. This class consists of the

following functions:

• public Validation()

constructor that allows you to instantiate an object corresponding to the

“Validation” class;

• public boolean validate(String xsd, String xml)

101

Developer Manual

this function allows you to validate the file defined in the path contained in

the “xml” parameter with respect to the file defined in the path contained in

the “xsd” parameter.

102

Bibliography

[1] Marco Scutari; JKorbinian Strimmer. Introduction to Graphical Modelling.

url: https://arxiv.org/pdf/1005.1036.pdf.

[2] World Wide Web Consortium. XML Schema: Formal Description. Septem-

ber 2001. url: https://www.w3.org/TR/2001/WD-xmlschema-formal-

20010925/.

[3] A. Pras; J. Schoenwaelder. On the Difference between Information Models

and Data Models. January 2003. url: https://www.rfc-editor.org/rfc/

rfc3444.txt.

[4] C.Alexander; S.Ishikawa; M.Silverstein. A Pattern Language. Oxford Univer-

sity Press, 1977.

[5] Gamma Erich; Helm Richard; Johnson Ralph; Vlissides John. Design Pat-

terns: Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[6] K. Balasubramanian; A. Gokhale; G. Karsai; J. Sztipanovits; S. Neema. De-

veloping Applications Using Model-drivenDesign Environments. 21 February

2006. url: https://ieeexplore.ieee.org/document/1597085.

[7] Parastoo Mohagheghi; Jan Aagedal. Evaluating Quality in Model-Driven En-

gineering. 21 February 2006. url: https://www.omg.org/ocsmp/MiSE2007-

QualityMDE.pdf.

[8] MDA - THE ARCHITECTURE OF CHOICE FOR A CHANGING WORLD.

url: https://www.omg.org/mda/.

[9] Interface to Network Security Functions (I2NSF). October 2014. url: https:

//datatracker.ietf.org/wg/i2nsf/about/.

[10] Ellen Messmer. Gartner: Cloud-based security as a service set to take off.

October 2013. url: https://www.networkworld.com/article/2171424/

gartner--cloud-based-security-as-a-service-set-to-take-off.

html.

103

https://arxiv.org/pdf/1005.1036.pdf
https://www.w3.org/TR/2001/WD-xmlschema-formal-20010925/
https://www.w3.org/TR/2001/WD-xmlschema-formal-20010925/
https://www.rfc-editor.org/rfc/rfc3444.txt
https://www.rfc-editor.org/rfc/rfc3444.txt
https://ieeexplore.ieee.org/document/1597085
https://www.omg.org/ocsmp/MiSE2007-QualityMDE.pdf
https://www.omg.org/ocsmp/MiSE2007-QualityMDE.pdf
https://www.omg.org/mda/
https://datatracker.ietf.org/wg/i2nsf/about/
https://datatracker.ietf.org/wg/i2nsf/about/
https://www.networkworld.com/article/2171424/gartner--cloud-based-security-as-a-service-set-to-take-off.html
https://www.networkworld.com/article/2171424/gartner--cloud-based-security-as-a-service-set-to-take-off.html
https://www.networkworld.com/article/2171424/gartner--cloud-based-security-as-a-service-set-to-take-off.html

BIBLIOGRAPHY

[11] S. Hares; D. Lopez; M. Zarny; C. Jacquenet; R. Kumar; J. Jeong. Interface

to Network Security Functions (I2NSF): Problem Statement and Use Cases.

July 2017. url: https://www.rfc-editor.org/rfc/rfc8192.txt.

[12] D. Lopez; E. Lopez; L. Dunbar; J. Strassner; R. Kumar. Framework for Inter-

face to Network Security Functions. February 2018. url: https://www.rfc-

editor.org/rfc/rfc8329.txt.

[13] L. Xia; J. Strassner; C. Basile; D. Lopez. Information Model of NSFs Capa-

bilities. April 2019. url: https://www.rfc-editor.org/rfc/rfc8329.txt.

[14] N. Noceti. Rappresentazione astratta delle funzionalità di controlli di sicurezza.

2019. url: https://webthesis.biblio.polito.it/13181/1/tesi.pdf.

[15] S. Frankel; S. Krishnan. IP Security (IPsec) and Internet Key Exchange

(IKE) Document Roadmap. February 2011. url: https://datatracker.

ietf.org/doc/html/rfc6071.

104

https://www.rfc-editor.org/rfc/rfc8192.txt
https://www.rfc-editor.org/rfc/rfc8329.txt
https://www.rfc-editor.org/rfc/rfc8329.txt
https://www.rfc-editor.org/rfc/rfc8329.txt
https://webthesis.biblio.polito.it/13181/1/tesi.pdf
https://datatracker.ietf.org/doc/html/rfc6071
https://datatracker.ietf.org/doc/html/rfc6071

Acknowledgements

Questo spazio lo dedico alle persone che, con il loro supporto, mi hanno aiu-

tato in questo meraviglioso percorso di approfondimento delle conoscenze acquisite

durante questi anni universitari.

Un ringraziamento particolare va al mio relatore Cataldo Basile che mi ha se-

guito, con la sua infinita disponibilità, in ogni passo della realizzazione del progetto,

fin dalla scelta dell’argomento.

Ringrazio i miei genitori che sono il pilastro della mia vita, le fondamenta dei

miei giorni. Questa tesi è per loro e a loro dedico la gioia che il tagliare il traguardo

della laurea accende nel mio cuore. Con gratitudine sconfinata. Senza il supporto

morale dei miei genitori, non sarei mai potuto arrivare fin qui. Grazie per esserci

sempre stati soprattutto nei momenti di sconforto.

A te che sei sempre stata con me, non mi hai mai lasciato solo e mi hai sempre

fatto sentire quanto tu credessi in me, ogni giorno, ogni minuto, dopo ogni caduta,

prima di ogni vittoria. Il tuo amore cos̀ı forte mi ha dato l’energia e l’entusiasmo

che mi hanno portato a raggiungere l’obiettivo. Oggi la mia laurea la condivido

con te, che ne sei artefice almeno quanto me perché senza di te nella mia vita nulla

di quello che ho vissuto sarebbe mai accaduto. Grazie Cristina ♥.

A un uomo ancor prima che a un Nonno. Ringrazio una persona speciale che non

ho mai smesso di amare dal giorno in cui è iniziato questo nuovo viaggio. Questo

traguardo lo dedico anche a te che per me sei stato una guida e non smetterai mai

di esserlo.

Grazie ai miei Nonni per l’amore che mi hanno saputo donare e per l’appoggio

che non mi hanno mai fatto mancare.

Un ringraziamento generale, ma non per questo meno importante, va a tutti i

miei parenti, zii, cugini che nel mio cuore hanno sempre un posto. Li ringrazio per

il loro interesse e per l’appoggio avuto nei miei confronti.

Ringrazio Gianluca che mi è sempre stato vicino, il mio migliore amico, e ti

voglio ringraziare per tutto quello che fai per me ogni giorno. Sei unico.. il migliore!

Ringrazio Giovanni che con le sue disavventure ha saputo rallegrare tutti i mo-

menti di questo percorso.

105

Acknowledgements

Ringrazio Roberto, il mio PT e nutrizionista, che mi ha sempre incoraggiato e

supportato per l’università e soprattutto sopportato con il mio mal di schiena.

Allargo i ringraziamenti a tutti i miei amici Dario, Giovanni, Davide, Ferdi-

nando, Giulio, Alessio e tanti altri che con i loro consigli, critiche, suggerimenti,

indicazioni e sostegno morale mi hanno aiutato in questo percorso.

Grazie a tutti i miei colleghi di corso Nino, Angelo, Miriam, Simone, Sabatino,

Gennaro e Giuseppe per avermi sempre incoraggiato, aiutato e consigliato fin

dall’inizio del percorso universitario.

106

	List of Figures
	Introduction
	Basic concepts
	Graphic representations
	UML
	Class diagram

	Data representation
	XML
	XML Schema Definition

	Information model vs Data model
	Reusing code
	Design Patterns
	Structural patterns - Decorator pattern

	Model driven development

	State of the art
	Network Security Functions
	Interface to Network Security Functions
	Use Cases I2NSF
	The I2NSF framework
	I2NSF Flow Security Policy Structure

	Information Model of NSFs Capabilities

	Solution design
	Problem definition
	Generation of abstract languages
	The main goal
	Design of the solution

	Security Capabilities Model
	Information Model
	Data Model
	LanguageGenerationDetails Class
	CapabilityTranslationDetails Class

	Analysis and validation on a concrete case: IPsec
	Workflow
	IPsec analysis
	Study of capabilities
	Instantiate new Security Capabilities
	Instantiate a new NSF and create references
	Definition of CapabilityTranslationDetails and LanguageGenerationDetails for associated security capabilities
	Language generation
	Creation of the policy
	Translation of the policy
	Implementation of the security policy

	Conclusion
	User Manual
	Transformation tool from XMI to XSD
	Command line use
	Use as a JAVA library

	NSF language generation tool
	Command line use
	Use as a JAVA library

	NSF low-level language translation tool
	Command line use
	Use as a JAVA library

	Validation tool
	Command line use
	Use as a JAVA library

	Developer Manual
	CapDM management using Modelio
	XMI to XSD transformation tool
	NSF language generation tool
	Tool architecture
	Possible changes

	NSF low-level language translation tool
	Validation tool

	Bibliography
	Acknowledgements

