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1 Introduction

This works combines neural ODEs and graph networks for circuit forward modeling. The purpose is to model circuits
as graphs and learn to predict the evolution of a circuit state (currents, unkown voltages, as well as graph-level attributes
such as power consumption).

We first present the possible graph representations of a circuit that are explored in this work. We then present a modified
interaction network (IN) framework that is used to learn the dynamics of circuits. In order to replicate the continuous
nature of physical interactions occurring in circuits, we combine the IN framework with neural ODEs. We detail the
combinations of implicit layers with an IN that we experimented. We list the experiments performed and describe their
process. We finally analyse and compare the performances of our model.

1.1 Circuit forward modeling & Motivation

Dynamics of circuits are predicted using traditional simulators (spectre, ngspice, Hspice, etc). However this does not
allow optimisation as the predicting function of a traditional simulator is not differentiable. A circuit forward model
allows optimisation via reinforcement learning and gradient descent, since it is fully differentiable, and facilitates
tasks that are not well automatized such as transistor sizing, component choice, transfer function fitting for filters and
amplifiers or power consumption optimisation. Additionally, a neural network could speed up classical simulators.

Circuits are defined by voltages, currents, device internal charges and structure, omitting the influence of external
factors as they are out of the scope of this work. A circuit dynamics is mainly defined by the interaction between devices
via the nets connecting them. Relational reasoning is required to learn theses interactions. Thus we model circuits as
graphs and use the graph structure to reason about the relation between nets. The interaction network framework [1] is
designed for learning physical interactions between objects. Relational reasoning is at the heart of this framework as
messages, in the sense of a message-passing network, are computed solely on the basis of objects states and the type
of physical interaction between them. Messages are then applied to the receiver objects to update their states. In the
context of circuit forward modeling, different interpretations and correspondences can be established between circuit
elements and the physical objects of the IN framework. We explore two models for graph representation of circuits.

1.2 Graph neural networks

Figure 1: Illustration of IN and relational reasoning coupled to object reasoning for object state update, from Battaglia
et al. [1]

Since 2009 graph neural networks (GNN) have seen an increase in interest to represent objects and their relationships in
machine learning. A graph structure contains information on relations between objects that allows relational reasoning
and inductive biases. Graph convolutional networks and other frameworks can handle different structures of information
with varying richness (features). Graph neural networks have been introduced in 2005 [9] and 2009 [17].

In 2013 a clear separation between between spatial and spectral (or laplacian) based methods appeared with [3]. This
work focuses mainly on spatial based methods here as our purpose is a physical simulation.

In 2016 graph neural networks frameworks have been developed and experimented to represent physical objects and
learn their interactions to predict evolution of their physical states [16] as well as to control them [14]. The concept of
relational inductive biases in 2018 [2] details different frameworks and generalize to a full graph network for learning
relations between objects and relations between objects and their environment. Multi-dimensional edge features
networks were introduced as message-passing networks in 2016 with interaction networks [1]. Other message-passing
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networks use multi-dimensional edge features and have been introduced in 2017 [7] and later. IN have many advantages
compared to other convolutional GNNs. First, they can readily handle multi-graphs. Second, message passing functions
can be diverse, in opposition to matrix operations of other convolutional layers. For circuit forward modeling, we
choose the interaction network implementation [1].

More recently there has been a focus on edge features to exploit the rich information about relations that they contain[4]
[8] and to help compute messages [22] [19].

Recent reviews of graph network research show the fast development and adaptation to problems of very different
natures with richer architectures [10] [23], including physics engine, which is similar to the focus of this work, circuit
forward modeling.

1.3 Neural ODE

Figure 2: Illustration of adaptive step in ODE solvers, from Chen et al. [5]

Neural ordinary differential equations, or implicit layers, were formulated in 2017 (Weinan) and experimented in
2019[5] [11]. Neural ODE is the continuous version of residual networks in the sense that residual networks are defined
by the equation:

ht+1 = ht + f(ht, θt) or ht+1 − ht = f(ht, θt) (1)

and ODE networks are defined by the equation:

ḣt = f(ht, θ) (2)

or rather, Residual networks result from Euler’s method with a fixed step size.

In neural ODEs, the step size is adaptive and managed by the ODE solver. Intermediate values within a chosen
integration time are calculated by the ODE solver, depending on the derivative computed and the tolerance given to the
solver. This supplementary computation usually causes an increased computation cost compared to residual networks.
However ODE networks use the same parameters to compute derivatives at every solver call. This implies a reduced
memory use compared to residual networks that usually have different parameters for every layer.

GNNs and implicit layers were combined in 2019[15] and 2020[13] [22]. Implicit layers can be used in the message-
passing function (ODE in GNN) or the interaction network can be the function describing the ordinary differential
equation of the implicit layer (GNN in ODE). A combination of both is possible as well.

In addition this work proposes an extension of interaction networks to hyperedges in order to model transistors, whose
edges are interdependent. The proposition differs significantly from the usual hypergraph neural network framework[6].

2 Approach and Formulation

This section establishes the equations that describes behaviors of the device in the case of an RLC circuit and shows
how neural ODEs has the potential to improve performance when combined to an IN.
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2.1 Learning inductors and capacitors

The current-voltage relation of a capacitor is given by the equation:

I = C
dV

dt
or V =

1

C

Z t

0

i (3)

The analogous equation for an inductor is:

V = L
dI

dt
or I =

1

L

Z t

0

v (4)

For a transistor the equation is:

V = R× I (5)

Or in the integral form:

V =
1

C

Z t

t0

i+ V0, (6)

I =
1

L

Z t

t0

v + I0 (7)

and

V = R× I (8)

The goal of learning a forward model is now to learn these device functions as well as responses of the circuits built
from a composition of these elements from observations. Given the inputs and all internal voltages and current at time t
at training, the model should learn to predict the evolution of the circuit given internal voltages and currents at time t0
as well as inputs at time t. This work compares the performance of an IN using different fr functions (MLP, implicit
layer) and update mechanisms for this task, as well as exploring the use of a GNN to model the dynamics (i.e. placing a
GNN inside the ODE solver). Since the device laws for capacitors and inductors are in fact ODEs (equations 6 and 7),1
our hypothesis is that using a neural ODE or NODE for fr will imbue the network with the inductive bias towards a
state being modified according to some natural dynamics and benefit training, while using a GNN-in-ODE allows the
mixing of information between nodes for the calculation of each residual.

G

Voltage
Source

R L

C

Figure 3: Serial RLC circuit

1as well as the resistor, although the dynamics in this case are trivial and an ODE form isn’t required
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2.2 Interaction Network

This section details the functioning of IN (figure 4) in the context of physical interactions between objects. However, in
the case of circuit forward modeling, the IN is trimmed down to an IN without graph-features influence (i.e., using only
ephemeral edge features and node states). For this reason, we omit external influences on node states to simplify the
presentation. The inputs are the following:

1. O ∈ RDs×No the objects represented as nodes with Ds the dimension of a node embedding, No the number
of nodes in the graph

2. Ra ∈ RDr×Nr the features of the edges with Dr the dimension of an edge embedding, Nr the number of
edges in the graph

3. Rs ∈ RNo×Nr and Rr ∈ RNo,Nr the sender and receiver nodes for every edges, respectively, and one-hot
encoded.

First, the matrix B = [ORr,ORs,Ra] is computed, which is a vertical concatenation of the matrix products ORs,
ORr and device features Ra. This matrix contains all device features and the voltages at its ports.
Second, the effects E = fr(B) where fr is typically an MLP.
Third, Ē = ERr and concatenate vertically with O to obtain the matrix C = [O, Ē].
Finally, C is input to fo, another MLP, to obtain the new net voltages fo(C). In parallel fi(E) computes new currents
for all edges.

2.3 Describing device as edge

The first model we explore represents circuit nets as nodes and circuit devices as edges. The graph describing the circuit
at time t is composed of [Ot, Rr,Rs,Rat] with Rat the edge features containing device type, magnitude and current
flowing through and Ot the net voltages. Device internal charges are not expected to be explicitly stored, but only
deduced from edge features and voltage. Current output from fi is used to update Rat into Rat+1. A column in Rat is
typically:


R
L
C
G
i

 (9)

(10)

with one of the first four components being non-zero and the last one being the current. G is for voltage source. Other
types of device can be one-hot encoded as well and the edge dimension extended.

Edge dimensions are expanded via an MLP:

eij,k = fexpand(θinit,


R
L
C
G
i

 (11)

at initialization.

It is uncertain whether this expansion improves performance. The idea is to help the network compute device state
(charge, joule effect heating, varying port parasitic capacitance, etc) and work with higher level features.

2.4 Edge-featured model

This section introduces the implementation of an IN in the context of circuit modeling with devices described as edges.
The classical IN framework restricts components to 2-ports devices. The circuit is modeled as an edge-featured graph
G = [O,R] with R = (Rs,Rr,Ra) where :

1. O ∈ RDs×No is the nets of the circuits represented as nodes with Ds the dimension of a node embedding, No
the number of nodes in the graph
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Figure 4: Interaction network visualization
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Figure 5: Edge-featured graph representation of serial RLC circuit

2. Ra ∈ RDr×Nr is the features of devices of the circuits represented as edges and currents flowing through with
Dr the dimension of an edge embedding, Nr the number of edges in the graph

3. Rs ∈ RNo×Nr and Rr ∈ RNo,Nr are the sender and receiver nodes for every edges, respectively, and one-hot
encoded.

For edge-featured model O contains only net voltages and is one-dimensional.

Additionally, we can extend the classical IN framework to interdependent relations between three objects. In the context
of circuit modeling, these are 3-port devices. Effects are computed with B0 = [ORr0, ORs0, Ra0] with Rr0, Rs0 the
one-hot encoded receiver and sender nodes. Every edge here has 2 sender nodes and one receiver node, as the effects
computed require one node to be applied to, but depend on three nodes (two sender nodes). Ra0 contains edge features
of three edges (receiver to first sender, receiver to second sender and sender one to sender two) stacked vertically.
Effects E0 = f 0r(B0) are concatenated horizontally to E and Rr0 is concatenated horizontally with Rr in order to
compute Ē0. Some preliminary results are available in the annex. Deeper and further experiments are left for future
works.

The interaction network for circuit forward modeling is then composed of the functions:

1. fr(B,Θr) to compute the effects of edges and voltages
2. fo(C,Θo) to compute new voltage for every node
3. fi(E,Θi) to compute new current for every edge
4. fp(E,Θp) to compute instantaneous power consumption as a global feature
5. ff (O,Θf ) to extract voltages from node states (for tripartite only)

2.5 Tripartite model

This approach differs from the standard interaction network as it uses featureless edges. With this model, devices,
device ports and nets are modeled as nodes (tripartite). This implies that devices and nets can be connected only to
ports and ports cannot be connected directly to other ports.

The interaction network, compared to described previously, is adapted in the following way:

G = (O,Rs,Rr), B = [ORr,ORs] (12)

The graph describing the circuit at time t is composed of [Ot, Rr,Rs] where port nodes contain currents, net ports
contain voltages and device nodes contain device state such as internal charges. Here fi is only used to explicitly extract
currents but is not used to update the circuit as new currents (in ports) should be contained in Ot+1. Similarly an MLP
function fo extracts voltages from the hidden states of the nodes representing nets.
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Figure 6: Tripartite graph representation of serial RLC circuit

2.6 Architectures

IN is essentially defined by fr and fo as other operations (matrix concatenations or transpositions) are fixed by design
(fi can be modified but is not part of the original IN framework). The most basic implementation consists in a simple
IN. Experiments evaluate whether the IN can learn the electronic dynamics in a discrete way with a fixed time step.
In this case fr and fo are MLPs. A function fp is also an MLP and evaluates power consumption. A variation with
an additional implicit layer to the basic implementation to compute effects E (ODE in GNN) is experimented and
compared. This means that fr is composed of an MLP and an implicit layer (INODE). In both cases the update rule is
given by equation 13.

Additionally, a residual network (ResNet) version of these architectures (equation 14) is explored, which should be
relevant as explained in the section 2.1 Learning inductors and capacitors. The ResNet version of IN is named RESIN.
The ResNet version of INODE is named RESINODE.

The last architectures consists in a basic IN architecture inside an implicit layer (GNN in ODE). IN is then computing
the voltage derivatives. fr and fo are MLPs, the difference between this architecture and the original IN resides in the
graph update method from equation 15. This architecture is named GODEIN.

Currents and power consumption can be predicted based on matrix E or matrix B. Once new voltages and currents have
been computed the graph can be updated, following equation 16 for edge-featured model and equation 17 for tripartite
model.

The classical IN framework uses static edges (constant edge features). However currents in edges vary over time. In the
case of GODEIN models edges need to be updated. Nodes also require an update strategy.

Node states can be static for every solver call of the implicit layer. This implies that the derivatives will be constant and
the architecture becomes similar to RESIN. Node states are used to compute node derivatives forB andC matrices. This
work experiments a "static" model (where gradient computation is always based on the initial nodes states of the first
solver call, GODEIN-STATIC). However the implicit layer should be leveraged as much as possible to compute the most
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accurate gradients with dynamic edges (updated at every solver call). The "static" version is named GODEIN-STATIC
and provides a reference for comparison with more dynamic GODEIN architectures.

Edge states have varying currents that need to be updated for every solver call to fully leverage implicit layer dynamics.
A first approach consists in keeping currents constant (values of the original call) while computing gradients based
on updated nodes states for every solver call. This network is named GODEIN. This model might actually approach
simulation results as single time step predictions might be based on constant current approximation with ngspice. For a
potentially more accurate approach a variation with edge currents update for every solver call is also experimented.
Similar to node updates, currents are updated by the MLP fi that computes the current derivatives that are then integrated
by the ODE solver.

Different strategies to compute node and edge states over multiple time steps are possible. The first one consists in
calling the forward function multiple times while always integrating from 0 to 1 (GODEIN-ITER). The second one
consists in integrating from 0 to the number of time steps requested (GODEIN-TIME). The GODEIN model, which
gives the best results on a single time step, is used for multiple step prediction. Preliminary results for voltage prediction
on multiple steps can be found in annex.

Ot+1, It+1 = IN(Gt,Θ) (13)

Ot+1, It+1 = IN(Gt,Θ) +Ot, It (14)

Ot+1, It+1 =

Z t0+1

t0

IN(Gt,Θ) +Ot, It (15)

Gt+1 = (Ot+1, Rr,Rs,Rat+1) (16)

Gt+1 = (Ot+1, Rr,Rs) (17)

With Ot+1 = Vt+1 for edge-featured model (one-dimensional hidden state).

3 Experiments

A serial RLC circuit is our first choice because of the dynamic it offers and the independence of 2-port devices (when
represented as edges) that makes the IN implementation trivial. The diversity of components in the circuit is important
as well to verify that IN can handle different devices (edge types for edge-featured model, node types for tripartite
model) and their behaviors. Given an RLC circuit topology, the circuit state at time t is defined by:

1. R, L and C the resistor, inductor and capacitor values respectively

2. Vr, Vl, Vc and Vin the device voltages (or equivalently the voltage of every node with respect to the ground)

3. Device currents I in every edge.

To evaluate the performance of the different models on learning the dynamics of an RLC circuit they are trained to
predict the next node and edge states or evaluate a global graph feature in 3 separate experiments:

1. Predict VR(t+ δt), VL(t+ δt), VC(t+ δt) using MSE on the values as a loss

2. Predict I(t+ δt) using MSE on I(t+ δt), which is a dimension of the devices edge features. Although the
current is equal in all devices of a serial circuit, an IN cannot learn that as it reasons only on interaction
between two objects. So MSE loss is applied on every device current.

3. Evaluate instantaneous power consumption P (t) using MSE on P (t) and representing P as a graph level
property

8
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ResNets and GODEIN models are expected to outperform other models, since a circuit state at time t+ δt is strongly
correlated to the circuit state at time t. GODEIN and DYN-GODEIN models are expected to outperform GODEIN-
STATIC model as well as other models. The ability to update nodes multiple times within a single time step to compute
more accurate predictions is expected to surpass other mechanisms. INODE and RESINODE are expected to perform
better than their MLP equivalents but it is unclear whether an implicit layer can actually replicate the circuit dynamics
from matrix E, without updating nodes within a time step.

3.1 Dataset preparation

Using Pyspice as a python interface with ngspice, a circuit is described element by element and a graph describing the
circuit is constructed in parallel. Current probes to all 2-port devices are added to store edge currents at every time step.

Ngspice simulates an RLC circuit powered by a square voltage source. The amplitude of the voltage source varies from
2 to 14V with an interval of 4, resistors from 100 to 2100Ω with an interval of 500, inductors of 1 to 21 mH with an
interval of 5 and capacitors of 1 to 21µF with an interval of 5. The simulation time is 40ms for every circuit with
two square pulses of 10ms and simulation time steps are 10us. The dataset contains 500 simulations of 4000 states
(voltages and currents) each.

Simulation of the circuit returns voltages for every net over time, which are saved in an hdf5 file. All currents are
probed for every device at every time step and stored in the dgl graph as edge features. Static edge features (device
type) are saved separately in the dgl graph as edge features as well.

Following the same method, circuit dynamics of a single transistor amplifier with RLC filter is collected (figure 7.
The base of the transistor is powered by a sinusoidal voltage source centered at 0V. The emitter is connected to the
serial RLC filter. The collector is connected to a resistance connected to a constant voltage source of 10V. The R (both
resistors), L, and C values vary with the same values as in the first RLC circuit. Sine voltage source has an amplitude
between 1 and 5V with a step of 1V. Simulation time and time steps are the same as for the first RLC circuit. This
amount to a dataset of 700 simulations of 4000 circuit states each.

R

R R

L

C

Sinusoidal 
voltage source

G

Constant
voltage 
source

NPN bipolar
junction transistor

Figure 7: Single transistor amplifier with RLC filter
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Figure 8: Schematic representation of chua’s circuit. Leftmost is the high level schematic consisting of inductor,
capacitors, resistors and an element called "Chua’s diode", which can be implemented using OpAmps, OTAs or in
this case, CFOAs following [20], using two CFOAs as shown in the middle schematic. Rightmost is the CMOS level
implementation of a CFOA. Image from Tlelo-Cuautle et al. [20]

Figure 9: Sample dynamics of chua’s circuit, left are the sate variables over time, right is the phase plot of the state
variables showing chaotic behaviour. Taken from [21].

Finally, a Chua’s circuit [20] is generated following the same methodology (figure 8). This circuit offers a rich and
chaotic dynamic that is expected to be more challenging to learn for all networks. Figure 9 shows the hysteresis behavior
of the circuit. This hysteresis allows to evaluate the interpretation of a circuit state for every model, which might be an
indicator of generalization power.

Circuit Model # nodes # edges # inputs # outputs
RLC edge-featured 4 8 108 12

Transistor amplifier edge-featured 8 17 433 25
RLC tripartite 16 16 752 12

Transistor amplifier tripartite 33 34 3036 26
Table 1: Graph representation summary of RLC and transistor amplifier for edge-featured tripartite model.

3.2 Training

Networks are trained on the collected RLC dataset. For the first experiment, networks are trained on 10000 iterations
using ADAM or ADAM with weight regularization optimizers with an MSE loss. Learning rates between 10−3 and
10−6 have been experimented without improvement on final loss. A slower learning rate only resulted in a slower
loss decrease before reaching a stable loss. Decaying rates have been tested between 0.9 and 0.5 and between 0.999
and 0.5 on GODEIN and DYN-GODEIN for b1 and b2, respectively. Loss decrease appeared faster before stabilizing
during preliminary tests. Further experiments are required to establish whether learning parameters in this range could
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significantly change final average loss. RESIN, GODEIN and DYN-GODEIN are trained with slower learning rates as
they quickly reach smaller loss values than other networks (around 10−1 within the first 100 iterations). A time step
corresponds to a simulation time step of 10µs as stated in Dataset preparation

For the second experiment we use the same training methods. For edge-featured model currents are computed from
an "augmented" B matrix containing edge features, node voltages at initial time step t0 (ORst0 and ORrt0) and,
additionally, nodes voltages at the next time step t0 + 1 (ORst0+1 and ORrt0+1). This matrix is passed to the MLP
defining the function fi.

Experiment 3) uses the same method as experiment 2) with a regular B matrix as described in the IN framework
presentation.

For the single transistor amplifier circuit, inputs are composed of all net voltages and port currents at time t0 and the
networks are trained to predict their values at time t0 + δt with δt being a fixed time step. The difference with an
RLC circuit is mainly in the interdependence of transistor edges, which require an extension of the IN framework as
described above. This work focuses on voltage prediction only and leave current prediction for a future work. The
preliminary results are available in annex.

Jax library is used for matrix operations and differentiation. Jax also offers a one-hot encoding function that is used in
this work for edge encoding during the dataset collection. Using optax allows to implement optimizers such as adam.
Haiku library is used to generate MLPs as pure functions for differentiation. Avoiding the use of graph neural network
libraries offers great flexibility and a wide variety of implementations. Avoiding the use of pytorch-geometric or jraph
makes implementations of variations easier as every matrix of the IN computation flow can be adapted to the needs of
circuit forward modeling. A typical example is testing different B matrices to compute effects E. The IN framework
combines matrix concatenation and MLP functions alternatively. Additionally, most models use implicit layers in
different combinations or have residual network update mechanisms. Jax offers full control over gradient computation
stochastic gradient descent algorithms, which is essential given the diversity of operations and variations required.

Architecture Model Optimizer Learning rate b1 b2
IN Edge ADAM 1e-3 0.9 0.999

RESIN Edge ADAM 1e-5 0.9 0.999
INODE Edge ADAM 1e-3 0.9 0.999

RESINODE Edge ADAM 1e-3 0.9 0.999
GODEIN-STATIC Edge ADAM 1e-3 0.9 0.999

GODEIN Edge ADAMW 5e-6 0.5 0.5
DYN-GODEIN Edge ADAMW 1e-5 0.5 0.5

IN Tri ADAM 1e-3 0.9 0.999
RESIN Tri ADAM 1e-3 0.9 0.999

Table 2: Training hyperparameters for every model

4 Results

Architecture Model Current loss Constant loss Voltage loss Constant loss Power loss Constant loss

IN Edge 8.9e-5 2.24e-8 4.06e-2 1.49e-2 3.34e-2 7.72e-3
RESIN Edge 6.35e-06 2.93e-8 1.44e-3 1.435e-3 2.3e-2 1.58e-2
INODE Edge 1.26e-4 1.02e-7 5.32e-2 2.41e-2 7.91e-2 7.69e-3

RESINODE Edge 1.04e-5 2.2e-7 1.11e-2 1.05e-2 2.68e-2 8.5e-3
GODEIN-STATIC Edge - - 1.98e-2 1.96e-2 - -

GODEIN Edge 1.91e-6 1.17e-7 9.59e-4 9.7e-4 - -
DYN-GODEIN Edge 7.19e-7 3.36e-8 3.41e-3 3.44e-3 - -

IN Tri 8.4e-5 1.03e-8 1.8e-2 1.07e-3 1.79e-2 3.17e-3
RESIN Tri 1.46e-4 3.4e-8 4.15e-2 5.34e-3 4.87e-2 8.84e-3

Table 3: Average MSE losses for voltages, currents and power for every model on the 1000 last training iterations and
comparison with constant function performances

A comparison of model losses evolution (figure 10 and 11 shows significantly improved performance for ResNets and
GODEIN architectures.
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Figure 10: Comparison of average training voltage losses on 2000 iterations

Figure 11: Comparison of average training current losses on 2000 iterations
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Figure 12: Voltage loss for constant function and for IN model with edge features
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Figure 13: Voltage loss difference between constant function and IN model with edge features
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Figure 14: Voltage loss for RESINODE model with edge features

0 20 40 60 80 100
Training iterations x100

10 2

10 3

10 4

10 5

10 6

10 7

10 8010 8

10 7

10 6

M
SE

 L
os

s d
iff

er
en

ce

ode_edge_feat_resnet
V

Figure 15: Voltage loss difference between constant function and RESINODE model with edge features
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Figure 16: Voltage loss for constant function and GODEIN model with edge features
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Figure 17: Voltage loss difference between constant function and GODEIN model with edge features
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Architecture Model I Constant/Model loss ratio V Constant/Model loss ratio P Constant/Model loss ratio

IN Edge 2.52e-4 3.67e-1 2.31e-1
RESIN Edge 4.61e-3 9.97e-1 6.87e-1
INODE Edge 8.1e-4 4.53e-1 9.72e-2

RESINODE Edge 2.12e-2 9.46e-1 3.17e-1
GODEIN-STATIC Edge - 9.9e-1 -

GODEIN Edge 6.13e-2 1.01 -
DYN-GODEIN Edge 4.67e-2 1.01 -

IN Tri 1.226e-4 5.94e-2 1.77e-1
RESIN Tri 2.33e-4 1.29e-1 1.82e-1

Table 4: Constant/Model loss ratio for voltages, currents and power for every model on the 1000 last training iterations

Voltage and current plots compare MSE losses of the models to the MSE loss when returning the input voltages or
currents to verify that the networks outperform a "constant" function (loss when returning input voltages or loss when
returning input currents). Only a sample of model performances on voltage prediction is shown in this section to
facilitate reading. The selected graphs shows the main performance tendencies. Omitted graphs can be found in annex.
Power plots compare power consumption evaluation to a zero function to check that it outperforms a constant function
as well.

For GODEIN-ITER and GODEIN-TIME voltages are predicted over multiple steps with both methods described above.
Models are trained to predict voltages after a random number of time steps. The limit of the number of time steps is
increased progressively during the first 2000 iterations and then maintained at a maximum of 50 steps. They are omitted
here as only preliminary voltage results are available. They can be found in annex. This experiments, as well as other
similar

Losses difference between model and constant function are also represented for better visualization and comparison.
An increase in difference (increasing series) means that the model is improving. A negative difference means that the
model is surpassed by the constant function. A positive difference means that the model predicts more accurately than a
constant function

Power loss plots are omitted here because results do now show significant differences between models. RESIN tripartite
plots are also omitted because they show little difference compared to IN tripartite. Omitted plots can be found in annex.

Training on other circuits such as single transistor amplifier or chua’s circuit and on combinations of circuits are in
process and will be available for the presentation. The dataset preparation scripts have been recently updated to handle
a wide diversity of circuits and training scripts are partially ready to run on diverse circuits as well.

Another experiment, consisting in an n-stop loss across a roll-out and predicting multiple steps ahead after training in
order to account for accumulating error, has been planned and is still in process. This experiment is similar to what is
done in [12].

An ablation over batch size experiment with a comparison between models has been planned as well but we did not end
up having time for it. It will be done for the presentation.

5 Analysis

Voltage losses show that the residual nature of a network improves performance significantly, whether using update
mechanism of equation 14 (RESIN, RESINODE) or 15 (GODEIN models) of residual network models and IN in
ODE models respectively. In contrast, MLP models cannot outperform or approach the performance of a constant
function. The main hypothesis to explain the large result difference is that the B matrix does not contain all information
required to effectively calculate next voltages. This could by improved by adding information such as previous voltages,
possibly allowing the network to deduce voltage and current discrete derivatives. This could result in computing more
meaningful effects E. Furthermore, as detailed above from equation 6 and 7, the residual (or continuous) nature of
voltage dynamics gives residual models a significant advantage by design.

Similar results are observed for ode models, as the power of an implicit layer may not be exploited if the B matrix is
insufficient. Additionally, ODE-in-GNN architectures do not see their depth increased by the their implicit layers as
columns of the E matrix are updated independently with each solver call. No information from other interactions or
effects can be used to correct trajectories with every call. Increasing IN depth with an ODE layer requires updating
voltage nodes on every solver call (as IN reasons only between two objects), which is actually the GNN-in-ODE
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Figure 18: Model performances against constant function

variation. Furthermore, an implicit layer for effect computation might not be able to show improved results on a single
step compared to MLP as the simulator used (ngspice) might use constant current and voltage to compute next step
voltages.

IN in ODE models showed mixed results. As expected, GODEIN-STATIC gives the same performance as RESIN as it
is essentially integrating a constant derivative over a fixed time and adding it to input voltages. GODEIN is the only
model outperforming a constant function. This is probably due to the ability to adjust inaccurate messages (effects E) to
find a stable output. This does not necessarily invalidate the hypothesis of a faulty B matrix as B could contain enough
information for some device (but not all) that could compensate over solver calls for insufficient B on other device.

The performance difference between ODE models and GODEIN models highlights the importance of implicit layer
proper integration in the architecture.

Another challenge consists computing messages (effects) in the transient regime. The equations 6 and 7 are not strictly
respected in transient regime and it is not always possible to tell if device current or device voltage (or both) is going to
change when considering a single device (edge) in the way of an IN. In other words, relational reasoning cannot take
into consideration limitations or forced increase in current imposed by other devices in series. For this reason MLP
function fe might compute inaccurate messages. For this reason putting the IN in an implicit layer might be required to
compensate through multiple solver calls the eventual faulty messages. Indeed implicit layers increase depth of graph
convolution as nodes are actually updated on every solver call, allowing to take into account messages computed by
some other device.

Performance in predicting next currents is overall worse than performance in voltage computation as no model was
able to perform better than a constant function. However IN in ODE models require more training to correctly evaluate
performance. Equivalent to the first voltage prediction hypothesis, the hypothesis of an insufficient B matrix is plausible
once again for other models. The B matrix might not contain all required values and an augmented B matrix containing
voltages at time t0 and t−1 as well as currents might unlock better performance. In opposition, GODEIN models might
manage to compute accurate predictions with further training and with limited information in the B matrix. This might
be possible considering the increased network depth offered by the implicit layer with GNN-IN-ODE architectures.
Overall, the analysis of voltage prediction performances holds for currents as well. Current and voltage prediction
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performances are correlated. However, current training is more delicate due to numerical instability as the loss to
achieve to surpass contant function performance is around 10−8.

Power consumption is also not well evaluated. However the constant function here is a zero function and model loss is
highly correlated with the zero function loss. This result is observed for all models and requires further investigation to
be well understood.

6 Conclusion

In this work we developed nine different interaction networks with two different graph representations of a circuit. We
constructed 3 datasets using Pyspice. We set up an environment to generate a wide diversity of circuits and compose a
rich dataset containing different circuits. Most architectures can handle 3-port devices and all presented architectures
will be completed and experimented for the presentation. We evaluated the architectures on 3 different experiments,
testing the ability to predict node level and graph level properties varying over time.

Some experiments described in section 3 are left for the presentation due to lack of time. Even after adding these, this
thesis is an initial exploration of this combination of architectures on only a few handcrafted datasets ans should be
taken as proof of concepts, not a solid evaluation. Both the architecture and the optimisation procedure can surely be
further improved.

A lot of time was spent on attempting to elaborate a graph network framework and explore possible implementation
with Pytorch-geometric and Dgl. Otherwise all results of planned experiments would have been presented in this thesis.

Before this thesis, I had no knowledge in graph neural networks or implicit layers. My machine learning background
was very limited and my experience non-existent. In fact I wrote my first lines of code in python in october 2020. I
had only followed Professor Cevher’s course Maths Data: from theory to computation. This is what motivated me to
address the challenge of a thesis in machine learning. During the literature review I have learnt about graph neural
networks and neural ODEs, from the first publications introducing the concepts to the most recent advances from the
beginning of this year. During the second phase I experimented different machine learning libraries, especially those
oriented towards graph networks. Finally I put into practice this newly acquired knowledge and propose a solution to
circuit forward modeling with different models. More details about the time spent for this work can be found in annex.

I now intend to expand my knowledge by learning about different machine learning areas than the ones I have explored
and solidify my fundamental knowledge in the domain. I would be glad to continue working on circuit forward
modeling, as many ideas remain to be explored. Comparing performances with different B matrices and new circuits or
comparing model trajectories on multiples steps are the next experiments to perform.
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A Time spent & Lessons learned

I started this thesis by a literature review that compiled around 70 publications and articles focusing on graph networks
and neural ODE. In parallel I learned about the basics of graph neural networks, reinforcement learning and implicit
layers. Diversifying learning supports helped me to understand publications and the development on graphs in machine
learning during the past ten years and implicit layers more recently. At this point I have read the publication [1] but did
not realise that the IN framework was what I will need.

After about three weeks I began to explore different machine learning python libraries (pytorch, pytorch-geometric,
torchdiffeq, torchdyn, jax, optax, haiku, dgl, sacred, jraph) and tested some of them to evaluate their flexibility, focusing
on pytorch-geometric. At this point the modeling approach of circuits was not clear so I could not decide which library
to choose based on a specific and already implemented convolutional layer.

I tested some graph networks from the examples of torch libraries that could resemble what I was actually going to
use for circuits. I focused on convolutional layers that use edge features such as relational GCN [18] and checked
the publications associated to these layers. This is how I found the publication [22]. In parallel I programmed my
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first experiment, which was a combination of an example code for RGCN from the pytorch-geometric library with an
implicit layer from the torchdyn library.

At the same time we discussed the possible graph representations of a circuit. We came up with the two models
presented in the thesis: edge-featured and tripartite. I also wrote the first script generating a dataset of RLC simulations.
It would build a dgl graph representing the circuit following the edge-featured model and store simulation results.
Another three weeks have passed.

Then I spent about two weeks to improve the dataset script and thinking about handling multigraphs for edge-featured
representation. This is required for elements in parallel in a circuit and oriented my search towards an "edge-focused"
convolution. I tested dgl for message passing and update function but it was not satisfying. We decided to move to jax
library. I performed a couple of simple tests with jax and jraph to become familiar with the new approach to graph
networks and backpropagation methods. Indeed, graph networks in pytorch-geometric and in jax are totally different.
However, programming at a lower level of abstraction, handling all matrix operations, simplifies IN implementation and
experimenting variations.

Next, I read again physics-focused graph networks publications and found again [1]. I thought about using [4] but this
does not handle multi-graphs as easily as IN. I learnt about haiku and optax and wrote the script of the first model
for voltage prediction, edge-featured IN. I then added an implicit layer in the first model, which becomes INODE
and GODEIN (voltage only). In three weeks I decided to model circuits as IN and wrote a first version of all models
presented and added current prediction and power computation, as well as tripartite models.

I then spent about ten days trying to improve the GODEIN models. The main idea was to combine current and voltage
predictions such that edge features (containing current) would be updated at every solver call of the implicit layer that
predicts voltage. This gave the DYN-GODEIN model. I plan to keep working on this model as I believe it has the
highest potential.

During this last month I prepared scripts to obtain preliminary results for the report and experimented a first version of
an IN model that can handle 3-port devices with interdependent edges. This includes a new dataset with a transistor
and an RLC filter and an extension of the IN framework. All scripts have been improved for better encapsulation
with different abstraction levels. Working on 7 models and additional variations multiplies the time spent for every
modification and the chances of encountering time-consuming bugs. I have spent a total of two weeks in this last month
preparing scripts to handle a large variety of datasets and automating a part of the workflow, from circuit simulation to
learning. Handling an end-to-end experiment, from dataset preparation to training results, with new architectures has
been challenging given the limited amount of time after learning and reviewing the literature.

B The code

B.1 Dataset

Using ngspice we simulate a serial RLC circuit with a square voltage source and generate all net voltages and device
currents. We use Pyspice for a python interface with the simulator. For the edge-featured models we model graphs using
the DGL library to store simulation results (circuit states) as graphs with node and edge features. We have the choice
between storing all circuit states as DGL graphs or storing only static components of the circuit states in DGL graphs.
In the first option every node feature and edge feature is an array containing node and edge states at all time, respectively.
Using the second approach edge and node features are single vectors and the dynamic part is concatenated during
learning to form the complete edge state (the most typical example is the current component of edge features).
Furthermore, only edge features are stored for edge-featured model, as the one-dimensional node features are purely
dynamic. Tripartite model however requires node features only as it does not use edge features.

We choose to save static edge features and edge currents for all time steps as separate edge features. We store node
voltage independently in an hdf5 file. This is close to the first possibility described above. We concatenate edge features
(current and device) during learning.

For tripartite models we construct nodes depending on the type of the node. Nets take voltages, ports take currents and
devices take component features.

B.2 Training

The first training step consists in generating haiku MLPs. We construct dummy matrices as entries to generate all MLPS
and initialize random parameters. From this step we get MLPs and their parameters.
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The second step consists in initializing optax optimizer states (and choosing the optimizer we want) and jax loss
gradients with respect to every MLP’s parameters.

Then starts the training loops:

We choose a random simulation and a random time step. We compute edge features Ra from the graph and chosen time
step. We compute as well Rs and Rr from the dgl graph. We want an "undirected" graph to compute messages for both
device ports so we concatenate horizontally Rr to Rs and Rs to Rr and concatenate Ra to Ra. Both nodes of every
device is now sender and receiver node, for two different edges. We compute ORs,ORr. We now have edge features,
node features and graph topology.

The forward function has all required elements to compute predictions. We can now compute loss gradients with respect
to all parameters and backpropagate using apply updates using optax.

We repeat these last operations as many times as needed and observe the loss. We compare the loss to the loss of a
constant function.

C Results
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Figure 19: Voltage loss for constant function and RESIN model with tripartite representation
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Figure 20: Voltage loss difference between constant function and RESIN model with tripartite representation
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Figure 21: Voltage loss for constant function and GODEIN-static model with edge features
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Figure 22: Voltage loss difference between constant function and GODEIN-static model with edge features
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Figure 23: Voltage loss for GODEIN-ITER model with edge features
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Figure 24: Voltage loss for GODEIN-TIME model with edge features
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Figure 25: Current loss for constant function and RESIN model with tripartite representation
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Figure 26: Current loss difference between constant function and RESIN model with tripartite representation
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Figure 27: Power loss for constant function and for IN model with edge features
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Figure 28: Power loss difference between constant function and IN model with edge features
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Figure 29: Power loss for RESIN model with edge features
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Figure 30: Power loss difference between constant function and RESIN model with edge features
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Figure 31: Power loss for constant function and INODE model with edge features
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Figure 32: Power loss difference between constant function and INODE model with edge features
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Figure 33: Power loss for RESINODE model with edge features
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Figure 34: Power loss difference between constant function and RESINODE model with edge features
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Figure 35: Power loss for IN model with tripartite representation
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Figure 36: Power loss difference between constant function and IN model with tripartite representation
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Figure 37: Power loss for constant function and RESIN model with tripartite representation
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Figure 38: Power loss difference between constant function and RESIN model with tripartite representation
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D Transistor and 3-ports device

We present here preliminary results of IN and RESIN models with edge features applied to hypergraph neural networks
for 3-port device.

Results will be added here for the presentation.

E Plots
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Figure 39: Voltage loss for RESIN model with edge features
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Figure 40: Voltage loss difference between constant function and RESIN model with edge features
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Figure 41: Voltage loss for constant function and INODE model with edge features
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Figure 42: Voltage loss difference between constant function and INODE model with edge features
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Figure 43: Voltage loss for IN model with tripartite representation

0 20 40 60 80 100
Training iterations x100

101

100

10 1

10 2

M
SE

 L
os

s d
iff

er
en

ce

mlp_tripartite
V

Figure 44: Voltage loss difference between constant function and IN model with tripartite representation
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Figure 45: Voltage loss for constant function and GODEIN-DYN model with edge features
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Figure 46: Voltage loss difference between constant function and GODEIN-DYN model with edge features
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Figure 47: Current loss for constant function and for IN model with edge features
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Figure 48: Current loss difference between constant function and IN model with edge features
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Figure 49: Current loss for RESIN model with edge features
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Figure 50: Current loss difference between constant function and RESIN model with edge features
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Figure 51: Current loss for constant function and INODE model with edge features
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Figure 52: Current loss difference between constant function and INODE model with edge features

39



Circuit forward Modeling Via GNNs A PREPRINT. WORK IN PROGRESS

0 20 40 60 80 100
Training iterations x100

10 9

10 8

10 7

10 6

10 5

10 4

10 3

M
SE

 L
os

s
ode_edge_feat_resnet

Current Loss
Constant Current Loss

Figure 53: Current loss for RESINODE model with edge features
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Figure 54: Current loss difference between constant function and RESINODE model with edge features
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Figure 55: Current loss for IN model with tripartite representation
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Figure 56: Current loss difference between constant function and IN model with tripartite representation
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Figure 57: Current loss for constant function and GODEIN model with edge features
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Figure 58: Current loss difference between constant function and GODEIN model with edge features
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Figure 59: Current loss for constant function and GODEIN-DYN model with edge features
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Figure 60: Current loss difference between constant function and GODEIN-DYN model with edge features
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