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Summary

Weyl semimetals are a recently discovered class of materials that present unique
topological properties. In the last years, they have been a topic of great interest
for research, but few applications have been proposed to exploit their unique
characteristics.

The transport properties of Weyl semimetals make them very promising for
applications in electronics, especially at low temperatures. This work is focused on
the interaction of these materials with an electric field, with the aim to study the
behavior of gated devices with a Weyl semimetal channel.

The first model studied was the one of a Klein tunneling transistor, a device
where the effect of the gate is to shift the energy bands of a portion of the channel,
creating an energy barrier that reflects some of the incoming carriers. This model
was improved by adding the screening effect of the potential applied by the gate
electrode inside the material, and showing that this effect is playing an important
role in the modulation of the current passing through the device.

The next step was studying more in detail the screening effect in Weyl semimetals,
to improve the accuracy of the previous model, as well as future models of field-effect
devices. A screening model was developed, taking into account the contribution of
both the bulk and surface states of the material. This model provides information
on the potential decay as we move deeper into the material, and on the excess
charges that are accumulated inside it.

Finally, the fabrication process that leads to the realization of test devices is
explained. The measurements obtained from these devices will be a way to test the
results of the presented models, providing insights on the properties of the materials
and on the next steps needed to realize transistors with good performances.
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Chapter 1

Introduction

1.1 Topological materials
Topology is a branch of mathematics that studies the properties of an object that
are not altered by continuous deformations. Such properties are called topological
properties, and can be used to classify the objects in a way that does not depend
on their exact shape.

The first people who used topology to describe the properties of a material
were David J. Thouless, F. Duncan M. Haldane and J. Michael Kosterlitz, who
studied the electronic and magnetic properties of thin layers of matter, that were
found to change as integer steps [1]. These studies attracted the interest of the
scientific community, and they were awarded the Nobel Prize in Physics in 2016.
Following their work, other studies have applied topology to explain the properties
of other kinds of materials, including three-dimensional solids. The materials whose
properties are well described by topology are called Topological materials.

The main examples of three dimensional topological materials are Topological
insulators, Weyl semimetals and Dirac semimetals [2].

1.1.1 Topological insulators
Topological insulators are materials with a gapped band structure, despite having
a gapless spectrum of states at their boundaries. The presence of these surface
states is a direct consequence of the non-trivial topology of the band structure. The
double-nature of this materials gives rise to the coexistence of both an insulating
bulk and a metal-like surface [3].

The surface states present a linear dispersion relation, and have the shape of
a bi-dimensional cone in momentum space, called Dirac cone. Moreover, they
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Introduction

are said to be topologically protected, meaning they are robust against any local
perturbation [3].

A scheme of the band structure of a Topological insulator is shown in Figure
1.1.

Figure 1.1: Qualitative scheme of the band structure of a Topological insulator.
Taken from [4].

Topological insulators can be observed in materials with a strong Spin Orbit
Coupling, which is the magnetic interaction between a particle’s spin and orbital
components as it travels in a potential. Its effect is to alter the energy levels of the
electrons depending on their spin orientation.

Examples of Topological insulators are Bi2Te3, Sb2Te3 and Bi2Se3 [5].

1.1.2 Weyl Semimetals
A semimetal is a material where the valence and conduction bands have a small
overlap, that produces a small density of states around the Fermi energy [6].

In a Weyl semimetal, the two bands touch in a set of discrete points of the
Brillouin zone, called Weyl nodes. These points are said to be topologically
protected, meaning that their presence is due to the intrinsic topology of the
Hamiltonian and, as a result, they cannot be removed by small perturbations [7].

The topological invariant associated to Weyl nodes is the so-called Berry curva-
ture, a quantity related to the Berry phase, which is the extra phase accumulated
by the evolution in time of an electronic wavefunction that is solution to a time-
dependent Hamiltonian [4]. The Berry curvature acts similarly to a magnetic field
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in momentum space, and it has been shown that Weyl nodes act as monopoles of
the Berry curvature that can have a positive or negative charge, called chirality [2].
The Weyl nodes always appear in pairs, where one node is a source and the other
a sink of Berry curvature, so that if we consider the entire Brillouin zone the total
chirality is zero [7].

Another peculiar characteristic of Weyl semimetal are their topologically pro-
tected surface states, called Fermi Arcs, which present an open Fermi surface that
connects the surface projections of the Weyl nodes [8]. A qualitative scheme of the
Weyl semimetal band structure is shown in Figure 1.2.

Figure 1.2: Scheme of the bands of a Weyl semimetal. Both the bulk bands in
the proximity of a couple of Weyl nodes of opposite chirality and the corresponding
Fermi Arc surface states are shown. Adapted from [9].

The presence of linear bands and the topological surface states provides Weyl
semimetals with extremely high values of conductivity and carrier mobility, espe-
cially at low temperatures [10, 11].

Some examples of Weyl semimetals are TaAs, NbP [12], Ag2S [13], MoTe2, WTe2
and WP2 [14]; some of these, like WP2 present a Weyl semimetal phase only in
one of their possible crystal structures.

The most important characteristics of Weyl semimetals will be further explained
in Section 1.2.
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1.1.3 Dirac Semimetals
A Dirac semimetal is very similar to a Weyl semimetal, and also has band touching
points that take the name of Dirac nodes. There are many ways a Dirac semimetal
can be obtained, which result in materials with slightly different properties [7]. In
some of these materials, the Dirac node can be seen as the superposition of two
degenerate Weyl nodes of opposite chirality. This means that its total chirality is
zero, and as a result it does not have the same topological protection as a Weyl
node. It has been shown that a Dirac node of this kind can be split into a couple
of Weyl nodes if a magnetic field is applied [15].

Similarly to Weyl semimetals, also some Dirac semimetals present conductive
surface states, and in some cases they can be topologically protected, like the Fermi
arcs [16].

Some examples of Dirac semimetals are Cd3As2 [17] and ZrSiS [18].

Figure 1.3: Band structure of Dirac and Weyl semimetals: (a) represents a Dirac
semimetal with no topological surface states, (b) a Weyl semimetal with a single
Fermi Arc, (c) a Dirac semimetal with two Fermi arcs, (d) a Weyl semimetal
with two Fermi arcs. The plus and minus signs represent the positive or negative
chirality of the bands. Taken from [16].
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1.2 Properties of Weyl semimetals

1.2.1 Weyl nodes and topological protection
A material is a Weyl semimetal if its bands are non-degenerate and they touch in a
set of few discrete points, called Weyl nodes. The conditions for band degeneracy
are determined by the symmetry of the system: in most cases the bands are doubly
degenerate, so to have bands that are typically non-degenerate instead, Spin orbit
coupling must be non negligible and one between Time Reversal and Inversion
symmetry must be broken1.

The topological protection of the Weyl nodes can be explained starting from
the fact that under these conditions the effective Hamiltonian of two energy states
can be written in the form [7]:

H(k) = f0(k)I + fx(k)σx + fy(k)σy + fz(k)σz (1.1)

where the terms fi are real functions and σx, σy and σz, are the three Pauli matrices.

σx =
C
0 1
1 0

D
, σy =

C
0 −i
i 0

D
, σz =

C
1 0
0 −1

D
, (1.2)

For the two states to touch we need fx = fy = fz = 0 while f0 only affects
the distance from the Fermi energy. The set of points where each of these three
functions are zero is a 2D surface in the momentum space, so the region where this
condition is satisfied will be the intersection of these three surfaces that is usually
a single point, representing our Weyl node. If this is the case for our material,
then when a perturbation is added to the Hamiltonian and some of the terms are
slightly modified, the result is that the intersection will be shifted in momentum
space, but it will still be formed by one single point.

This topological protection is a peculiar characteristic that distinguishes Weyl
semimetals from other materials with a similar band structure. One example
is Graphene, a two-dimensional material with a similar dispersion relation, that
however has not the same topological protection, as the Hamiltonian describing
it includes only two of the Pauli matrices. For this reason, a band gap can be
obtained if the Hamiltonian is perturbed [19].

Weyl semimetals take their name from the Weyl equation, which is a simplifica-
tion of the relativistic Dirac equation for the case of massless particles. In fact, the
Weyl equation well describes the quasi-particles formed by excited electrons with a
k vector close to the one of a Weyl node. We can get to it by Taylor expanding the

1Time Reversal symmetry and Inversion symmetry are the properties of the system to remain
invariant if the time and space coordinates are inverted.
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generic expression of the Hamiltonian provided by Equation 1.1, in the proximity
of the Weyl point that we assume to have position k = 0 in momentum space. We
can assume f0 to be negligible, in this case the energy of the Weyl node would
almost coincide with the Fermi energy. This is because our material has to be a
semimetal, meaning that the Weyl node must be located between the valence and
conduction bands. By doing so we get [7]:

H(k) Ä
Ø

a=x,y,z
∇kfa(k)|k=0 · k σa =

Ø
a=x,y,z

va · k σa (1.3)

where va are the effective velocities. In the case where va = vF â, meaning that we
have a constant Fermi velocity in all directions, the Weyl equation is obtained:

I
1
vF

∂ψ

∂t
+ σx

∂ψ

∂x
+ σy

∂ψ

∂y
+ σz

∂ψ

∂z
= 0 (1.4)

The solutions of the Weyl equation are called Weyl spinors, and are written in the
following form:

ψ(r, t) = χe
p·r−Et
i~ (1.5)

where p and r are the momentum and position operators, E is the eigenvalue of
the energy, t is the time and χ is a two-component spinor wavefunction.

The states described by the Weyl equation are called Weyl fermions and are
particles with no mass and a half-integer spin. Massless particles have a linear
dispersion relation, meaning that the Weyl equation well describes our material
only in the region of momentum space where the bands are linear and their shape
can be approximated to a cone.

The most important consequence of the linear dispersion relation of the bands,
close to the Fermi level, is the fact that the Fermi velocity of the carriers is
constant, and can have particularly high values [20], granting these materials very
good transport properties.

Because of the linear dispersion relation, the density of states of an ideal Weyl
cone with a non-tilted axis, is the following:

D(E) = E2

π2v3
F

(1.6)

This expression tends to zero as the value of the energy tends to zero, which
represents the energy of the Weyl node. For this reason, even if the valence and
conduction bands touch, there is an energy region where very few states are allowed,
making the material behave differently from a metal. It has been shown that the
density of states tends to zero at the Weyl nodes even in the presence of a weak
disorder in the crystal lattice [21].
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1.2.2 Type-I and type-II Weyl semimetals
In the first discovered Weyl semimetal, TaAs [22], the bands have the shape of
cones that are straight, with their main axis parallel to the energy axis. However,
in most materials, the cones may be tilted, meaning that the slope of the bands and
thus the Fermi velocity is not the same in all directions. As a result, materials with
tilted Weyl cones will be anisotropic. This small tilt does not alter the properties
of our material qualitatively, so all these materials can be grouped into the family
of type-I Weyl semimetals.

A significant change happens when the Weyl cones reach a critical tilt angle, so
that the outer surface of the cones crosses the vertical axis. In this case, the Fermi
level will cross both conduction and valence band, and thus the Fermi surfaces at
the energy of the Weyl nodes will no longer be a point but will open outwards
starting from the node. As a result, the material will have electron and hole pockets
in the proximity of the Weyl nodes. Materials that have this kind of property are
called type-II Weyl semimetals (MoTe2, WTe2 and WP2 belong to this class [14]).

Figure 1.4: Comparison between the band structure of a type-I Weyl semimetal,
shown in panel (a), and a type-II Weyl semimetal, in panel (b). The grey plane
represents the surface at constant energy that is the Fermi energy. Taken from [23].

1.2.3 Fermi arcs
All Weyl semimetals present a set of states on their surface, that take the name of
Fermi Arcs. The origin of the name comes from the fact that, differently from the
states found in ordinary materials, they have an open Fermi surface that describes
an arc in momentum space, connecting the surface projections of two Weyl nodes
with opposite chirality [8].
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Figure 1.5: Scheme of the bands of a Weyl semimetal. Both the bulk bands in
the proximity of a couple of Weyl nodes of opposite chirality and the corresponding
Fermi Arc surface states are shown. Taken from [22].

Fermi Arcs can be studied theoretically as states that reside at the interface
between the Weyl semimetal and a medium representing either vacuum or a trivial
insulator. It is possible to model this interface with a linear interpolation of the
Hamiltonian of the two materials [20]. This means writing a single parameter-
dependent Hamiltonian that describes both phases, and that contains one parameter
that varies as we move into space from one material to the other [24]. One example
of such Hamiltonian is the following, that can describe both a Weyl semimetal with
two Weyl nodes and a trivial insulator depending on the value of ∆ [20].

H =
A
k2
z

2m − ∆
B
σz + vF (kxσx + kyσy) (1.7)

In this equation vF is the Fermi velocity, andm = (κ+vF∆k0/2)/2v2
F is a parameter

that takes into account the curvature of the bands as we move away from the
Weyl nodes [20]. The space-dependent parameter ∆ assumes a fixed positive value
in the WSM phase and a negative one in the insulator; in the interface layer, ∆
changes linearly between those values. It has also been proven that the properties
of the surface states should not change even if the potential at the interface varies
differently or fluctuates [20]. The physical meaning of ∆ is both the position in
energy of the saddle point of the WSM bands, when it is positive, and the energy
gap of the insulating phase when it is negative (taken with positive sign). This
Hamiltonian can be solved in order to find the eigenfunctions that are bound to the

8



Introduction

surfaces of the WSM. We can make the assumption that the interface between the
two materials is abrupt, which means that the interpolating layer between them
has a thickness smaller than every other length in the system. The solution we
obtain in this case is [20]:

ψ =
ó

(∆k/2)2 − k2
z

mvF

A
0
1

B
e
k2
z−(∆k/2)2

2mvF
x (1.8)

where ∆k represents the distance between the Weyl nodes and kz ∈ [−∆k/2, ∆k/2].
The Fermi Arc wavefunction is confined at the interface, as its amplitude decreases
exponentially when we move away from its position (x = 0).

The dispersion relation of these states is ε(ky, kz) = vFky. We can see how the
energy depends only on the y component of the momentum, which means that in
this model the Fermi Arcs will be straight lines parallel to the z axis in momentum
space.

Although in this model Fermi Arcs have take the form of straight lines, their
shape and length greatly varies between the different materials: some of them like
TaAs and NbAs present short and curved Fermi Arcs, while in Ta3S2 they are long
and straight, and in HgTe they have a large circular shape [25]. For this reason it
is hard to find a unique description of them and of their properties.

The states bound to the opposite surface of the material have opposite values of
both spin and kz, meaning that they will propagate in the opposite direction [26].
We also know that the topological protection of these states tends to inhibit the
scattering processes, and that their main source of dissipation is the interaction
with the bulk states of the material [13].

Fermi Arc states have been observed by Angle-Resolved Photoemission Spec-
troscopy (ARPES), a characterization technique that exploits the photoelectric
effect to map the electronic band structure at the surface of a material [27]. This is
currently one of the most effective ways to verify if a material is a Weyl semimetal.
Figure 1.6 shows an example of the observation of Fermi Arc states using ARPES.
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Figure 1.6: (a) Photoemission plot showing the density of states at the surface of
the Weyl semimetal TaAs. (b) Theoretical computation of the Fermi Arc surfaces.
Taken from [27].

1.3 Overview and purpose of this thesis
In the last years topological semimetals have caught the attention of many re-
searchers and a lot of effort has been done to find which materials are part of this
class. In fact, as we have seen in this chapter, their properties are peculiar and not
completely understood, which makes them a very interesting topic of research.

However, up to now very few applications have been proposed to exploit their
unique properties. Therefore, one of the objectives of this thesis is to study
novel devices realized with this kind of materials. In particular, their transport
properties make them very promising for applications in electronics, especially at
low temperatures, as the high mobility typical of these materials could provide
better performances at high frequencies [11].

In this work, we will focus on the interaction of these materials with an electric
field, in order to model field-effect devices that exploit the properties of Weyl
semimetals. These devices use the potential applied on the gate electrode as a
mechanism to control the current passing through the channel. In Chapter 2 we will
show the concept of Klein tunneling transistor where this is achieved by creating a
potential barrier, able to reflect a portion of the carriers. We will then show the
importance of the screening effect on the performance of the device and we will
focus more in detail on the interaction between the material and the electric field,
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providing a more accurate description of the screening effect, which is particularly
useful in the realization of precise device models of field-effect transistors. Finally,
we will describe the work done towards the fabrication of such devices, which will
allow to test the models experimentally.

For our studies we will focus on the family of type-I Weyl semimetals, as their
reduced density of states close to the Weyl nodes is more suited for this application.
The results obtained could also be used to describe some Dirac semimetals, which
present similar properties [4].
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Chapter 2

Klein tunneling Weyl
semimetal transistor

In this section the concept of the Klein tunneling effect is described and it is shown
how it can be used to make a field-effect transistor, based on the information found
on the literature [28, 29, 30].

The concept device will have a Weyl semimetal channel and a metallic gate,
with an oxide layer in between them. The effect of the potential applied on the
gate is to locally shift the energy of the bands in the region underneath it, creating
a potential barrier for the carriers to overcome. The transmission of the carriers
through this barrier is described by the Klein tunneling effect, and determines the
properties of the device.

Then this model will be improved, to take into account the fact that the external
potential applied by the gate of the device is screened by the charges present in
the Weyl semimetal channel. This will allow us to see how this effect alters the
behavior of the device.

2.1 Klein Tunneling effect
The Klein paradox is a process in relativistic physics where an incoming electron
penetrates through an energy barrier that exceeds its energy. In this case the
transmission probability of the particle increases for higher barriers, and the barrier
tends to be perfectly transparent as its energy tends to infinity [31]. This result
is counter-intuitive, since in conventional quantum mechanics the transmission
probability should decrease exponentially as the energy of the barrier increases.

This difference can be explained by the fact that a very strong potential barrier
can generate positron states that are in the same energy range as the electrons
outside. In quantum electrodynamics, states with positive and negative energies

12
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such as electrons and positrons are described by the same wavefunction; hence, if the
electron and positron wavefunctions match each other, there can be transmission
trough the barrier [31]. In this sense the phenomenon described as Klein tunneling
is not a real tunneling effect, since inside the barrier there are some available states
for a particle to exist. This is significantly different from the tunneling effect, where
a particle has to cross a region with no available states at all. If the barrier is
thick enough so that the regular tunnel effect can be excluded, the number of
available states in the barrier region is what limits the transmission through it,
since a particle needs to find an available state in order to travel into the barrier.

A similar effect can happen in a solid if some of the electrons are within the
relativistic regime. In that case, holes take the place of positrons as particles
described by states occupying levels with negative energy. The main difference is
that in order to generate an electron-hole pair a much smaller energy is needed with
respect to the energy of a free electron. In materials with band-touching points,
like the topological materials we are interested in, the band gap is zero, and so the
electron-hole pairs have zero rest energy. For this reason, every potential barrier
has enough energy to hold hole states and the Klein effect manifests itself even
for barriers with a low height. If we want to make a device that makes use of a
potential barrier we need to take into account of the Klein tunneling and to study
its behavior. This does not happen in a regular semiconductor, where electrons
and holes are described by separate Schröedinger equations [31].

The Klein tunneling effect has already been observed in Graphene, which
presents a similar band structure to the one of topological semimetals, albeit in two
dimensions [32]. Some models of Klein tunneling transistor that employ a graphene
channel have also been proposed [30, 33], but to our knowledge none have been
realized yet, probably due to the difficulty of integrating a single sheet of graphene
in a three-dimensional device.

2.2 Field effect devices using Klein tunneling
The idea of the proposed device is to use the gate to produce a potential barrier
able to block the carriers, by creating a region where few states are available. Such
device could work well for materials where the Fermi level and the Weyl node
energy do not coincide, as they would already have many carriers intrinsically and
be highly conductive under normal conditions.

Electrons that travel from the source to the drain of the device encounter a
potential barrier and are subject to the Klein tunneling. For simplicity, we assume
that the barrier generated in this way is perfectly rectangular, but it is possible to
adapt the computation to take into account for a smooth energy step, which may
be needed to model a real device [34]. This situation is illustrated in Figure 2.1:
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Figure 2.1: Scheme showing the effect of the potential barrier produced by the
gate of the device on the band structure of a Weyl semimetal. A single Weyl cone
is depicted and the blue volumes represent the occupied states.

As we can see, the effect of the potential barrier is to shift the relative position
of the Fermi level with respect to the overall band structure of the material, thus
changing the density of available states close to the Fermi level. In Figure 2.1 the
available states in the central barrier region are less than in the surrounding ones,
so the barrier is able to block a portion of the incoming electrons.

2.2.1 Device geometry
Figure 2.2 shows a scheme of the studied device geometry. It is a fairly simple
configuration, formed by a slab of Weyl semimetal that acts as channel, to which
the terminals are connected. In our case we assume the bulk, which corresponds to
the back gate of the WSM slab, to be connected to ground and we focus on the
effect of the gate voltage.

14
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Metal Oxide WSM

x

n(x) 

0

WSM
channel

OxideGate

Source

Drain

Figure 2.2: Scheme of a Weyl semimetal field effect transistor. Below the device
is shown the expected charge concentration when a gate potential is applied. The
metal gate is modeled as a perfect conductor, so the charge present in it will be a
Dirac delta positioned at its surface, that in the Figure is represented by an arrow.
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2.2.2 Scattering against the barrier and critical angle
We can study which carriers are able to propagate their motion inside the barrier
region by taking into account the fact that the system is invariant by translation
in the two directions parallel to the barrier. Therefore, the parallel momentum
components of a particle passing through the barrier interface must be conserved
[35]; if this is not possible, the carrier cannot propagate through the interface
and is reflected. The following Figure allows to visualize this better, depicting
left interface of Figure 2.1, and showing only the range of allowed states with an
energy equal to the Fermi level: the states inside the depicted circumferences are
the ones that are allowed (the circles are full of states, because the material is
three-dimensional and the carriers also have a kz momentum component that is
not shown in the Figure).

kx

ky k
k 'x

k 'k 'y

kx

ky k k 'y

Figure 2.3: Scheme showing the transition of a carrier inside the barrier region.
On the left momentum component of the particle parallel to the barrier interface
is small enough to allow it to reach a state in the barrier region. On the right,
instead, the parallel component of the momentum is too large and the particle is
not able to pass trough.

The conservation of the parallel component of the momentum can be written as
a function of the incidence angle of the carriers; remembering the linear dispersion
relation we can then write the total momentum as a function of the energy, obtaining
the following equation, that resembles the Snell’s law [35]:

E sin (θ) = (E − Vg) sin (θÍ) (2.1)

where E is the energy of the incoming particle, θ is the angle of incidence, Vg is the
height of the barrier and θÍ is the refracted angle. We can define a critical angle
of incidence, which is the maximum incidence angle that allows the carrier to be
transmitted. It is the angle θ that we have when: sin (θÍ) = 1. Its expression is the
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following:
θc = sin−1

3
E − Vg
E

4
(2.2)

This result is displayed in Figure 2.4: the critical angle computed as a function of
the barrier height Vg delimits two regions, the inner one in red is characterized by
an incidence angle smaller than the critical angle, so the carrier can pass through
the interface, while in the white region the opposite situation happens and the
carriers are reflected.

Figure 2.4: Graph showing which carriers are transmitted or reflected at the
interface with a potential barrier, depending on their energy and incidence angle.

Considering that the free carriers of the material occupy states with all the
available values of the momentum and thus all the possible incidence angles, the
total current depends on the number of the carriers close to the Fermi energy that
the barrier is able to reflect.

We can also observe another typical characteristic of the Klein tunneling effect
that is not found in a regular tunneling process: the barrier is completely transparent
for a particle that impinges perpendicularly on it, regardless of the energy of
the particle [35]. This is clearly shown in Figure 2.4 and is explained by our
considerations on the parallel momentum conservation: a particle with a trajectory
that is perpendicular to the barrier has no parallel component of the momentum,
and thus will always find an available state inside the barrier, no matter how small
the maximum momentum allowed is.
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2.2.3 Transmission probability
A more complex model of the device should also take into account the fact that the
barrier has a finite length, which may allow some interference phenomena to appear
inside it. This situation must be solved by studying directly the wavefunction that
describe our carrier. The simplest wavefunction that solves the Weyl equation
describing a carrier in our semimetal is a two-component spinor written in the
following form [28]:

ψ =
è
ψ2
ψ1

é
=
è

eik·r

αei(k·r+θ)

é
(2.3)

where:
α = |E − V | sin (φ)

E − V + |E − V | cos (φ) (2.4)

E is the energy of the particle and V is the value of the potential in a certain
region and the angles θ and φ define a set of spherical coordinates; we note that to
maintain the consistency in our computation we have used z as the propagation
direction of the current instead of x, effectively rotating the Cartesian coordinates
while keeping the spherical ones in place. As a result, the conversion between the
coordinates is the following: 

x = −ρ cosφ
y = ρ sinφ sinφ
z = ρ sinφ cosφ

(2.5)

We note that the x and y components of the vector k are conserved, since they are
parallel to the potential barrier. The z component instead, is perpendicular to the
barrier and represents the direction along which the macroscopic current of the
device propagates. Its value is different in the barrier region with respect to the
outside one.

In our system, the particle is described by a linear combination of a forward and
a backwards propagating wavefunction of this form [28]. Moreover the value of the
potential changes in the middle region, so the parameters of the linear combination
must change between the regions, in order to ensure that the wavefunction is con-
tinuous. These coefficients represent the amplitude of the wavefunction components
inside and outside of the barrier and can provide us the information about the
transmission probability through the potential barrier. One way to obtain it is
via the transfer matrix approach; the obtained result is the following expression,
adapted from [28]:

T = 1
cos2(dkÍ

z) + sin2(dkÍ
z)
1
tan(θ) tan(θÍ) − α

2αÍ cos(θ) cos(θÍ) − αÍ

2α cos(θ) cos(θÍ)

2 (2.6)
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where d is the thickness of the energy barrier, and kÍ
z, θÍ, φÍ and αÍ denote the

values of these quantities inside of the potential barrier. These quantities can be
computed as usual, but by using the kÍ

z component inside the barrier, which is:

kÍ
z =

ñ
|kÍ|2 − k2

y − k2
x =

öõõô3E − V

~vF

42
− k2

y − k2
x (2.7)

The obtained transmission probability is plotted in Figure 2.5 as a function of
the carrier energy and of the incidence angle θ (φ was kept equal to π so that when
θ = 0 the particle impinges perpendicularly on the barrier).

Figure 2.5: Transmission probability of an incoming electron through the potential
barrier, as a function of the particle energy E and the incidence angle θ. The height
of the potential barrier is V = 0.5 eV. The red fencing represents the critical angle,
which delimits the region where the transmission probability can be greater than
zero.

The red "fencing" that was added on the graph represents some values of the
critical angle we computed previously as a function of the energy. As we can see,
it perfectly delimits our curve, meaning that this new description is in agreement
with the previous considerations.

It is worth noting that this analysis is not completely exhaustive yet, since for
now we have always considered states that are all part of the same Weyl cone.
Other effects should be taken into account like the scattering between carriers that
occupy states in different Weyl cones (the so-called inter-valley scattering) or with
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the Fermi Arc states present on the surface of a material. These additional effects
are expected to provide contributions to the transmission probability that are much
less relevant and can be ignored without committing significant inaccuracies [36].

2.2.4 Current through the potential barrier
The transmission probability can be used to compute the current passing trough
our potential barrier device. To do so, we assume that some carriers are impinging
on the barrier from the forward-propagating states of one electrode of the device,
and that the potential barrier reflects some of them. In this case the barrier is
the only thing affecting the trajectory of our carriers, so we are in the ballistic
transport condition.

Under this assumption, the current flowing in the device can be computed using
the Landauer formalism:

I = e vF g(E)T (µL − µR) (2.8)

where e is the elementary charge, vF is the Fermi velocity, which is the propagation
velocity of a carrier (it is a constant, since the dispersion relation is linear), g(E)
is the bulk density of states described in Equation 3.12, T is the transmission
probability through the energy barrier. In this formalism, µL and µR represent the
quasi-Fermi levels of the contacts placed at the sides of the barrier, their difference
is used to obtain which carriers can travel form left to right and find a free state
to occupy. If we are at a temperature greater than zero this last term should
be replaced by the difference of the Fermi-Dirac distributions that describe the
occupancy probability of the states in the two electrodes. It is also important to
consider the dependence of the transmission probability on the energy and angle
of the incoming particles, to keep that into account one must perform an integral
over all the possible values of these quantities. The resulting formula is [28]:

I = 2eLxLy
π~3v2

F

Ú ∞

−∞

Ú π/2

−π/2

Ú π

0
T [f(E − µL) − f(E − µR)]E2 cos (θ) sin (φ) dE dθ dφ

(2.9)
where we already substituted the expression for the bulk density of states of the
material. Lx and Ly represent the height and width of the Weyl semimetal channel.
Figure 2.6 shows the result of this computation as a function of the height of
the potential barrier Vg. In order to obtain this plot, Equation 2.9 was evaluated
numerically, as the complex expression of the transmission probability T did not
allow for an analytical solution of the integrals.
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Figure 2.6: Current passing through the potential barrier as a function of the
barrier height Vg. This result was obtained from Equation 2.9 using the following
parameters: Lx = 25 nm, Ly = 1 µm, VDS = µL − µR = 100 mV. The thickness of
the barrier is d = 100 nm.

As we expected from the Klein tunneling effect, the barrier is able to block a
significant portion of the current, but not all of it. Moreover, the barrier becomes
more and more transparent as its height increases. However, differently from what
we have seen before, even if its height reaches very high values, the barrier never
returns completely transparent. This is caused by the added oscillations of the
transmission probability, which can be seen as the consequence of the Fabry-Pérot
resonance of the carriers that find themselves inside the barrier region [37].

The minimum value of the current is obtained when the Weyl node in the barrier
region finds itself at the same energy as the incoming carriers, as this means that
the carriers reaching the barrier encounter a region where the density of available
states is close to zero.

2.3 Screening effect in a Klein tunneling
transistor

In the previous section we explained how the current passing through a Weyl
semimetal slab can be altered by a potential barrier, that has the effect of reflecting
a portion of them, depending on its height. The main aspect missing from this
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device model, is that when we try to obtain this effect with a gate electrode, the
potential we apply is screened by the material, so the resulting potential barrier
has a height that decreases as we move deeper into the the Weyl semimetal slab.
In this section we will take into account this effect in our model and study how it
influences the behavior of the device.

2.3.1 Voltage profile in the Weyl semimetal channel
As a first approximation, we can expect the applied potential to decay exponentially
as we move inside our channel. The rate of decaying is expressed by the screening
length which will be a property of the specific material used. However, based on the
information provided by the literature, we can estimate the value of the screening
length in a Weyl semimetal to be in the order of magnitude of ls Ä 5 nm [20]. This
is a fairly low value, meaning that the material screens well the external fields. The
cause for such a good screening is to be found in the fact that the conduction and
valence bands of the material touch, allowing it to have many carriers. Moreover,
as we have seen, the material presents also some states confined to the surface,
which will contribute to the screening.

We can express the height of the energy barrier as a function of the penetration
depth x in the following way:

V = V0 · e−x/ls (2.10)

where V0 will be the height of the barrier at the surface of the Weyl semimetal. We
can estimate the value of V0, starting from the computation of the electric field,
which is related to the derivative of the potential:

E = −∂V

∂x
= V0

ls
· e−x/ls (2.11)

We also know that the electric field in a capacitor is related to the charge density
per unit of surface on its plates. This allows us to compute the electric field in the
oxide layer as Eox = σ/εox. This field will be constant in all of the oxide layer since
there are no net charges inside it. This makes it trivial to compute the voltage
drop on the oxide:

Vox = Eox · tox = σ · tox/εox (2.12)
We can exploit the continuity of the dielectric displacement at the interface between
the oxide and the Weyl semimetal to compute the electric field at the surface of
the WSM layer:

E(0) = Eox · εox/εWSM = σ/εWSM (2.13)
This can be used together with Equation 2.11 to estimate V0:

V0 = σ · ls/εWSM (2.14)
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The value of V0 represents the voltage at the surface of the Weyl semimetal,
which coincides with the total voltage drop on that layer. The total applied voltage
Vg, will be the sum of the voltage dropping on the Weyl semimetal layer and
the one dropping on the oxide: Vg = V0 + Vox. It is worth noting that the Weyl
semimetal and the metal gate may have different work functions; the difference
between them would act as a built-in voltage that is present even when no voltage
is applied externally. We do not consider this effect in our computation, since it
would only shift the values of the input voltage; if a test device is realized a back
gate could be added, to offset this voltage difference. An important consequence of
this effect is that it could allow the realization of devices where the applied gate
voltage increases the current passing through the device instead of blocking it like
in our examples: this would happen if a potential barrier is already present in the
device due to the built-in voltage and the applied gate voltage has the effect of
reducing its height.

Putting together all the information we have, we can finally obtain the expression
of V0 as a function of the applied voltage Vg, which was needed to write our voltage
profile in the material. The final result is:

V = Vg · ls/εWSM

ls/εWSM + tox/εox
· e−x/ls (2.15)

We notice that if instead of our Weyl semimetal we had a perfect conductor, with
a vanishing screening length, all the voltage would drop on the oxide layer and we
would get to the known case of a parallel plate capacitor.

2.3.2 Current computation
In order to compute the current passing through the barrier, we now need to take
into account for this change in height that it experiences as a function of the depth
x. The barrier height influences the transmission probability therefore, when we
compute the current, we need to perform an additional integral to take into account
of this new dependence.

This computation becomes challenging for the computer to perform, since we are
now integrating four times over a function, the transmission probability, that has
some rapid oscillations and this computation has to be repeated for each point of
our graph. In order to reduce the computation time, we implemented an algorithm
that uses a lookup-table approach: the current is computed first and for all the
values of the barrier height that we need. This is similar to what we have done in
Figure 2.6, but this time we no longer multiply for the thickness of the channel
Lx: the current computed in this way can be seen as the current density of a
two-dimensional slice of the channel. Then, we can compute the total current as
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the sum of the currents densities of many slices, each of them multiplied by a
vanishing slice thickness.

The advantage of this method is that we were able to replace one integral
with a sum, which is much faster to compute. Moreover we can now perform the
computation of the integrals only once for each input value, store it in the memory
of our computer and use it when needed. Instead, with the four nested integrals
computation the internal integrals were instead solved many times with the same
inputs, causing a lot of redundancy.

The main disadvantage is that with this approach we have more possible sources
of error in our computation than with a regular integral, like the fact that the
barrier height must be present in the set of values we are pre-computing, and
the fact that the thickness of the slices can be small but not infinitesimal as it
should be in theory. Moreover the numerical integration methods in MATLAB
usually allow to set a maximum value of the computation error on the final result,
while this method does not. In order to check that the results obtained with this
approach are still correct, we tuned the parameters used, like the thickness of the
slices, until the results converged to a fixed value, and then we confronted them
with a previous computation made with the four nested integrals approach: in this
case the results were the same, but the computation time with the lookup table
approach was much faster.

Figure 2.7 shows an example of the results of this computation:
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Figure 2.7: Current passing through the device as a function of the applied gate
voltage Vg. To obtain it we used the following parameters: Lx = 25 nm, Ly = 1 µm,
VDS = µL − µR = 100 mV. The length of the barrier region encountered by the
carriers is d = 100 nm.

We notice that a good portion of the current is still able to pass through the
channel, even when the potential barrier is active. This is likely due to the fact
that the barrier is present only in the region of the channel that is closest to the
surface, while the rest of it remains unaffected.

We can see this in more detail by performing the same computation with different
values of the channel thickness, as shown in Figure 2.8:
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Figure 2.8: Current passing through the device as a function of the applied gate
voltage Vg, for different values of the channel thickness. For this computation we
used the same parameters as in the previous figure.

As we can see from this plot, as the gate thickness is increased, the total current
passing trough it increases, however the current modulation due to the effect of the
gate saturates, as all the curves except the lowest one have almost the same trend.
This confirms our description of the phenomenon, where the potential barrier is
created only close to the surface of the material, while the rest remains unaffected.

The fact that the current is not completely blocked in the off-state of the
transistor is not a big issue, since these devices target high-frequency applications,
where a constant current is easy to filter out. Instead, the fact that the screening
effect is limiting the modulation of the signal can be an issue, as it reduces the
overall gain. We can estimate the gain of a transistor as the derivative of the
output current with respect to the input gate voltage, this quantity is called
trans-conductance: gm = ∂I/∂Vg. Figure 2.9 shows the trans-conductance of the
transistor obtained from each of the previous curves:
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Figure 2.9: Trans-conductance of the device as a function of the applied voltage,
for different values of the channel thickness.

The gain of this kind of device tends to saturate as the applied potential increases.
Moreover, all of the curves except for the first one are exactly the same. This is in
agreement with our idea that the barrier is screened after a distance of the order
of three or four times ls, affecting only a small portion of the channel. As a result
the performance of the device is dominated by the screening effect and by the
thickness of the region coupled to the gate. We will now study what happens when
we change the value of the screening length, which in this model is the parameter
that tunes the decaying depth of the potential. The results are shown in Figure
2.10:
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Figure 2.10: Current in the transistor channel as a function of the applied voltage,
for different values of the screening length. The channel thickness used is 25 nm.

As we can see the modulation of the current is affected by the screening length
and, as a consequence, so is the gain. For this reason, the properties of the material,
and in particular its carrier density and its ability to screen the external fields are
of particular interest in the description of a field effect device.

In the next chapter we will study more deeply the screening effect in a type-I
Weyl semimetal, to better understand the extent of the region affected by the gate
of the device, and how it changes depending on the temperature and on some
material parameters. We already know, however, that a thin channel is preferred
for the device to work properly, as the regions of it that are far away from the
surface are difficult to control.

Further work is needed in order to make a complete model of the device, as
some additional effects may alter its behavior: some topological materials, when
deposited as a thin film, present a band structure with a small band-gap, which
is due to confinement effects [38, 39]. This phenomenon could be useful for the
device, as it would create an energy range with no available states, thus increasing
the reflectivity of the potential barrier. On the other side however, this would also
mean that the bands are no longer linear, so the mobility of the carriers could be
reduced. Moreover, the models about Klein tunneling in topological semimetals
available in the literature do not take into account the fact that the carriers in the
Fermi Arc surface states also provide a contribution to the channel current. This
contribution may become more relevant as the thickness of the film is reduced.
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Chapter 3

Screening in Weyl
semimetals

In this section we will study how an external potential is screened in a Weyl
semimetal, in order to improve our description of the field effect in this class of
materials. The goal is to make a better model of field effect devices that use a Weyl
semimetal channel, to estimate the modulation of the charge inside the channel in
response to the potential applied.

The literature on this subject was less comprehensive than on the Klein tunneling
effect studied previously, so the work had to start from the definition of the physical
problem we are considering, with the description of the material properties and
the geometry of the system. In this chapter, we start by describing the results
found in the literature, that we used as a base for our work, then we move to the
description of the problem and finally we solve it, showing the obtained results.

3.1 Previous works on screening
The most relevant studies on the screening effect found in literature cover the
effects of the bulk and surface densities of states of a Weyl semimetal, at zero
Kelvin and for materials where the Fermi level coincides with the energy of the
Weyl nodes. Under these conditions it is possible to directly integrate the density
of states in the bulk to obtain the following screening equation [40]:

U ÍÍ(x) = 4ge2

3π(~vF )3U
3(x) (3.1)

The solution to this equation is of the type U(x) ∝ 1/x. This result is unexpected,
as such a function would have a tail that decays much slower than the exponential
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function used in common screening models [41]. A similar approach was used with
respect to the Fermi Arc states, obtaining the following equation [20]:

U ÍÍ(s) = g
3Ú 1

−1
du(1 − u2)es(u2−1)

4
U(s) (3.2)

where s = x (∆k/2)2/mvF represents a re-scaling of the spacial coordinate x. In
this case the solution is similar to an exponential function, where the exponent
changes as a function of the position in space, due to the fact that the effect of
the surface states is reduced as we move far away from the surface. The solution
of this equation was compared to the previous one, showing that, always in the
case of T = 0 K and EF = 0 eV, the effect of the surface states is generally stronger
than the one of the bulk, except when particularly high fields are applied [20].

The work of this thesis tries to provide a more comprehensive study of the
screening effect, taking into account the contributions of both types of states
at the same time, as well as providing a more detailed theoretical basis for our
computation. The resulting model could be used to predict the behavior of a field
effect device under more realistic conditions.

3.2 Material model
For our model we consider an ideal type-I Weyl semimetal, in which the only bands
close to the Fermi level are the topological ones, that feature a couple of Weyl
nodes. The reason for this is that the presence of trivial bands near the Fermi level
will cause the material to have carriers that do not present the properties typical
of Weyl fermions. We also take into account the set of topological surface states
associated to our couple of Weyl nodes. To further simplify the computation we
assume our Weyl nodes not to be tilted, so that the Fermi velocity is the same
along the three spacial directions (vFx = vFy = vFz).

These limitations could be easily lifted in order to adapt the model to a specific
material. For example if a material had four degenerate Weyl nodes instead of two,
like the case of Ag2S [13], one could simply change the degeneracy factor by which
the density of states of a Weyl cone (Equation 1.6) is multiplied (this parameter
will be later called g). If the Weyl nodes of the material instead are at different
energies, one would need to consider the densities of states of the different bands
separately and consider the fact that a shift in energy must be added to take into
account for the different positions of the Weyl nodes. Figure 3.1 shows a simplified
scheme of the band structure used:
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Figure 3.1: Simplified scheme of a Weyl semimetal band structure used for the
screening model.

The bands used as a model for our computations are described by the Hamilto-
nian in Equation 1.7, using the following parameters, that are taken from [20].

∆k = 1 nm−1

m = 5 eV−1 nm−2

~vF = 0.25 eV nm

They refer to Na3Bi, a material that can present multiple topological phases,
including the type-I Weyl semimetal [42].

3.3 Physical approach
We can start our computation with the expression of the density of carriers present
in our material:

n =
Ú +∞

−∞

D(E)
1 + exp

î
E−µ
kBT

ï dE (3.3)

This formula is obtained by performing an integral over the energy of the density
of states D(E) of our material, weighted by the Fermi-Dirac distribution function,
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that expresses the probability of occupancy of each state depending on its energy.
In this equation µ represents the chemical potential inside the solid, its value will
in general depend on the temperature and on the Fermi energy of the material. If
the temperature is zero, the chemical potential will be by definition equal to the
Fermi energy.

The total electrical potential present in a certain point of our solid will alter the
density of carriers locally. This effect can be modeled as a shift in the value of the
energy of the carriers:

E(k)Í = E(k) − eU(r) = ~vF |k| − eU(r) (3.4)

This is correct only if the the potential varies slowly in space, so that an electron
feels the effect of a constant value of potential [41]. For this to happen, the
potential must vary slower than the scale of the space occupied by an electron,
which corresponds to the size of its wave packet. If instead the hypothesis is not
satisfied, the electrons will not be able to fully follow the potential variation, and
the charge density in one point will no longer depend only on the value of the
potential in that position.

Since the states we are considering are located in a small region centered in a
Weyl node of the material in momentum space, we can approximate the electronic
wave vector to the one of the Weyl node, which will be half the distance ∆k between
the two Weyl nodes of the same couple, or alternatively, half the length of a Fermi
Arc. With the material parameters used, we have 1/∆k Ä 1 nm. As we will see
in Section 3.7, the charge density tends to vary slower with respect to this length,
meaning that our hypothesis is reasonable.

We can then take into account the effect of the local potential in the expression
of the carrier density in the following way:

n(r) =
Ú +∞

−∞

D(E)
1 + exp

î
E−eU(r)−µ

kBT

ï dE (3.5)

From this equation the effect of the electrical potential can be also seen as a local
shift of the chemical potential of the material (µÍ(r) = µ+ eU(r)).

If we assume that the material is neutral at the equilibrium condition, we can
compute the charge density inside it by taking the difference between the carrier
density that we obtain with the potential applied and the one we would have at
equilibrium, all multiplied by the charge of the electron:

ρind(r) = −e [n (U(r)) − n(0)] (3.6)

This equation is at the basis of the Thomas-Fermi theory [41]. Because of the
neutrality assumption, the only charge imbalance present in our material will be
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due to the effect of the potential. We can then link this charge density to the
potential intensity by using the Poisson’s equation:

U ÍÍ(x) = −1
ε
ρind (x, U(x)) (3.7)

We write this equation only along the x axis, because the problem we are solving is
one-dimensional, as the potential difference that we will have in our structure will
be between the gate and the channel, thus always perpendicular to the interfaces
between the different materials. This differential equation is what we need to solve
to obtain our results.

An important parameter present in the Poisson equation is the relative permit-
tivity of the material. Its role is to take into account the fact that the electrons are
not in vacuum, and the ions of the crystal add an additional contribution to the
screening of the potential. This effect will be more significant the fewer free carriers
are present in the material, to the point where it becomes the only contribution if
the material is an ideal insulator.

For this reason we can write ε = ε0·εlattice where εlattice is the relative permittivity
of the ionic lattice.

3.3.1 Lattice permittivity
In order to provide a value for the relative permittivity of the crystal lattice we
use the information provided by [43], which presents a model that well describes
the behavior of oxides and other materials that do not experience conductive
mechanisms. In fact, we can imagine our crystal lattice to behave similarly to an
oxide if the conductance electrons are not taken into account.

Based on this model we can compute the dielectric polarizability of a compound
as the linear combination of the individual polarizabilities of the ions that compose
it:

α =
NØ
i=1

n(i)αD(i) (3.8)

where αD(i) is the polarizability of a certain ion, and n(i) is the number of times
that ion appears in the unit cell of the material. The ion polarizabilities were
obtained by fitting the values of total polarizability of some known materials [43].
The values we are interested in are αD(Na) = 1.8Å3 and αD(Bi) = 6.12Å3. From
them we obtain:

α(Na3Bi) = 3αD(Na) + αD(Bi) = 11.52Å3 (3.9)
We can then use the dielectric polarizability of the material to compute its

relative permittivity, by using the Clausius-Mosotti equation:

εlattice = 3Vm + 8πα
3Vm − 4πα (3.10)
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where Vm is the volume of an unit cell of the material. We can compute Vm by
taking the molar volume of the material [44] and diving it by the Avogadro number;
this results in Vm Ä 125Å3. Substituting into Equation 3.10 we finally obtain our
result:

εlattice Ä 3 (3.11)

3.4 Surface and bulk charge densities
In this Section we will compute the expression of the total charge density as a
function of the local potential, which is needed to solve the Poisson’s equation.
Since in our model we are considering two main types of states, the bulk Weyl
fermions and the Fermi Arcs, the charge density will be a sum of the contribution
of the two: ρ = ρbulk + ρsurface. We can compute them both starting from the
respective densities of states.

3.4.1 Bulk states
Knowing that the dispersion relation of a Weyl fermion is E = ~vFk, and that we
are in a three-dimensional system, we can easily obtain the density of states in the
bulk of our material:

D(E) bulk = g

π2v3
F

E2 (3.12)

where vF is the Fermi velocity and g is the number of degenerate Weyl nodes. As
we discussed in Section 3.2, this expression is an approximation valid only in the
proximity of the Weyl nodes, for a material where no trivial bands are present in
the considered energy interval.

We can use Equation 3.5 to compute the carrier density, but in our case, the
integral would diverge for E → −∞. This is due to the fact that the expression for
the density of states is defined only in a small energy interval, and does not possess
a lower bound. However, for our model we do not need to know the total number of
electrons in the solid, but only its variation from the equilibrium condition. We can
then consider as a reference the number of states with energy lower than the Weyl
node energy, which will correspond to the density of electrons present in an ideal
material at zero temperature. We can call this number nw. In a generic sample the
density of electrons will be obtained by adding to this number the number of states
occupied at a higher energy with respect to the Weyl node (which are analogous
to conductance electrons in a semiconductor) and subtracting the states that are
empty and at a lower energy (which are analogous to holes). This corresponds to
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the following computation:

n (U(x)) = nw + nÍ (U(x)) − pÍ (U(x))

nÍ (U(x)) = g

π2v3
F

Ú +∞

0

E2

1 + exp
1
E−µ−eU(x)

kBT

2 dE
pÍ (U(x)) = g

π2v3
F

Ú 0

−∞

E2

1 + exp
1
µ+eU(x)−E

kBT

2 dE
(3.13)

The charge density that is induced in the bulk by the effect of the applied
potential, will be proportional to the difference between the carrier density when
the potential is applied and the one we would have at equilibrium:

ρindbulk(x) = −e [n (U(x)) − n (0)] = −e [(nÍ(U(x)) − nÍ(0)) − (pÍ(U(x)) − pÍ(0))]
(3.14)

As expected the constant term nw that we defined has no impact on the computation
of this quantity.

At this point the expression of the charge density can be used to solve the
Poisson equation. One could perform a Taylor expansion of the functions n’(U)
and p’(U), in order to simplify the computation; in this case however, we decided
to keep them as they are, since the differential equation that we have to solve will
require a numerical solution in any case.

3.4.2 Chemical potential
In order to compute the obtained expressions, we still have to evaluate the chemical
potential in our solid. This can be done by imposing that the number of electrons
in our solid must be constant at all temperatures, and that the chemical potential
is equal to the Fermi energy when we are at zero Kelvin. This information allows
us to write:

nw − pÍ (µ(T,EF )) + nÍ (µ(T,EF )) = nw + g

π2v3
F

E3
F

3 (3.15)

where on the left side we computed the total number of electrons in the solid at a
finite temperature and on the right side we computed the same number at T = 0 K.
The solution of this equation allows us to compute the chemical potential for every
value of temperature and Fermi energy.

In the current computation we are only taking into account the bulk states,
since in a three-dimensional solid we can expect the number of states available in
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the bulk to be much greater than the one in the surface, so the effect of the surface
states should be negligible. Allowing electrons to migrate from the surface into the
bulk would also mean that our solid is no longer neutral as we assumed.

Since the top and bottom part of the Weyl cones in our model are symmetrical,
if the Fermi level is at zero energy, also the chemical potential will be, and it will
not move if the temperature is changed. Instead if the Fermi level is not zero, the
chemical potential will necessarily be located between it and the Weyl node.

3.4.3 Fermi Arc states
From the Fermi Arc wavefunction shown in Equation 1.8 we can compute the
density of states of the Fermi Arcs. The result is the following [20]:

D(E) surface = g/2
(2π)2vF

Ú ∆k/2

−∆k/2

(∆k/2)2 − k2
z

mvF
e
k2
z−(∆k/2)2
mvF

x
dkz (3.16)

This equation contains an integral over the z component of the momentum, which
is performed to include the contributions of all the states present in the Fermi
arc. This integral, however, does not have a closed form solution and this is the
reason why most of our computations are performed numerically. We can also
notice that this density of states is constant with the energy. This greatly simplifies
our computation as it can be taken out of the integral:

n (U(x)) = D(E) surface
Ú +∞

−∞

1
1 + exp

1
E−µ−eU(x)

kBT

2dE (3.17)

As a result the value of temperature and Fermi energy will have no effect on the
response of the electric charge on the potential intensity. We can better show this
by solving the integral and computing the expression of the charge density. In fact,
we notice that now we have to integrate the Fermi Dirac distribution alone, which
can be done analytically, allowing us to write:

n (U(x)) = D(E) surface
5
E − µ− eU(z) − kBT ln

3
1 + e

E−µ−eU(z)
kBT

46+∞

−∞
(3.18)

As before we can use Equation 3.6 to compute the charge induced at the surface of
the material:

ρindsurface (U(x)) = −e (n (U(x)) − n(0))

= D(E) surface

e2U(x) + ekBT ln

1 + e
E−µ−eU(x)

kBT

1 + e
E−µ
kBT




+∞

−∞

= D(E) surface
1
e2U(x) + 0

2
(3.19)
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As expected the term depending on temperature and Fermi energy of the material
cancels out. The charge density of the Fermi Arc states will then be:

ρindsurface(x) = e2D(E)surface U(x) (3.20)

The fact that the density of states of the Fermi Arcs is constant with the energy
is reasonable as many two-dimensional systems present this property. However in
this case it is likely to be the effect of the approximation of our model.

3.5 Boundary Conditions
In order to study the effect of the screening in our material, we would need to
solve the Poisson equation, which is a second order differential equation. To do
so two boundary conditions are needed; these can be obtained by studying the
geometry of our system. Since we are applying a known potential on a metal gate,
this potential will partially drop on the Weyl semimetal channel and partially on
the oxide layer that connects them. With this information, we are already able
to draw the qualitative behavior of the charge density, the electric field and the
electric potential in our system.

With this information, we can obtain the boundary conditions required to solve
our problem. We can start by imposing that the gate potential must be the sum
of the voltage drops on the oxide and on the WSM layers. We assumed to have a
reference ground connection on the other side of the WSM layer, so that the voltage
drop on the WSM will be equal to the electric potential found at the surface of
the WSM that is in contacts of the oxide. Using the same coordinate system as in
Figure 3.2, we can write this as U(0): this quantity is one of the initial conditions
necessary to find our solution.

In order to compute the voltage drop on the oxide, we can exploit the fact that
this layer contains no mobile charges and is overall neutral. This means that the
electric field inside it will be constant and, as a result, the electric potential can
simply be computed as:

Vox = Eox · tox (3.21)

where tox is the thickness of the oxide layer. We also know that the dielectric
displacement must be continuous at the interface between the oxide and the Weyl
semimetal, which yields the relation:

Eox = E(0−) = E(0+) · εlattice/εox (3.22)

For the WSM layer we used the lattice permittivity, since the screening due to the
conduction electrons is taken into account separately by considering the charge
induced in proximity of the interface.
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U(x)

WSMMetal Oxide x

Metal Oxide WSM x

E(x) = -U'(x)

Vg

0

0

tox

tox

Eox

E(0+)

U(0)=VWSM

Vox

Figure 3.2: Qualitative graphs of the electric potential U(x) and of the electric
field E(x) in the proposed device. The graphs display only the direction we are
interested in, which is along a section perpendicular to the interfaces that separate
the three materials.
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E(0+) represents the electric field at the surface of the WSM, and by its definition
we can write E(0+) = −U Í(0+) which explicitly shows the connection to the electric
potential. Since the electric potential is the solution of our differential equation, the
electric field that represents its derivative is also one of the quantities we need as
initial conditions to our problem. By substituting each equation into the previous
one, we obtain:

Vg = U(0) − U Í(0+) · tox · εlattice/εox (3.23)

A second condition that our solution must satisfy is that the potential must be
zero at the end of the WSM channel, as this position coincides with the ground
connection:

U(x = WSM thickness) = 0 (3.24)

Notice that the two conditions we found are specified in two different points of
space, that have the peculiarity of being the extremes of the interval where the
solution function is defined. This is called a Boundary Value Problem.

3.6 Solution of the Poisson equation
Differently from the regular Initial Value Problems, having two boundary conditions
does not guarantee that the solution exists or that it is unique. The fact that the
two boundary conditions are not set in the same point makes the solution of the
differential equation more challenging. We were able to overcome this issue first by
implementing an iterative algorithm that called a regular Initial Value Problem
solver many times, and afterwards by using the Boundary Value Problem solver
implemented in Matlab.

More information on how the two approaches work can be found in Appendix A.

3.7 Results
We can finally show the results of our computation; starting with the most ideal
conditions and then gradually moving away from them to study the effect of the
different physical parameters.

3.7.1 Ideal conditions
We start by studying the system at T = 0 K and EF = 0 eV. The Poisson differential
equation is solved numerically with an applied gate voltage of VG = 0.1 V.

For our computation we used the following device dimensions: the thickness
of the oxide layer is 100 nm and the thickness of the Weyl semimetal channel is
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200 nm. These dimensions should be fairly easy to obtain when trying to realize a
similar device. The area of the device is does not influence the computation.

The results are shown in Figure 3.3:
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Figure 3.3: Total potential profile as a function of the depth inside the material at
T = 0K and when the Fermi level coincides with the Weyl node energy (EF = 0 eV).
The voltage applied is VG = 0.1 V.

Note that in the graph only the region of the Weyl semimetal slab closer to
the oxide is shown, as in the rest of it the potential is negligible. We are however
imposing that the potential should be zero only at the end of the slab.

This graph provides us some preliminary information on the behaviour of the
studied material. From this, we already notice that the screening effect is quite
strong as the effect of the potential is greatly reduced just a few tens of nanometers
away from the surface. We also notice that most of the potential applied on the
gate is dropping on the oxide layer rather than on the Weyl semimetal. This can
be easily seen by the fact that the potential at the surface is a small portion of the
total one on the gate.

Once the potential profile is known, it can be used to compute the other quantities
used in our equations. In particular we are interested in the charge density that
is induced in our material. This can be done in two ways: either by using the
Poisson equation (Eq. 3.7) or with the definition of the charge density (Eq. 3.6).
The second way is the best, as it allows to separate the contributions of the bulk
and surface states. It is also worth noting that since a numerical computation was
performed, taking the second derivative of a function, as required by the Poisson
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equation, would mean to perform the finite differences of its points, which could
introduce noise and significantly degrade the result. Figure 3.4 shows the charge
density induced in the material in the same conditions used above:

Figure 3.4: Charge density as a function of the depth inside the material at
T = 0K and EF = 0 eV. The green and blue curve represent the surface and bulk
contributions respectively, while the red curve is the sum of the two. The voltage
applied is VG = 0.1 V.

Under these conditions most of the charge induced in the material resides in
the surface states, and their contribution to the screening is the dominant one.
The contribution of the bulk states becomes more and more relevant if the gate
potential is increased. An example of this is shown in Figure 3.5, obtained with
the same parameters as before, but with a gate voltage of VG = 0.3 V.
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Figure 3.5: Charge density as a function of the depth inside the material at
T = 0K and EF = 0 eV. The green and blue curve represent the surface and bulk
contributions respectively, while the red curve is the sum of the two. The voltage
applied is VG = 0.3 V.
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This is in agreement with the literature [20] and can be explained by the fact
that the response of the bulk states increases as the third power of the potential,
as shown by equation 3.1. We can also study the two contributions separately by
considering only one kind of state at a time. Figure 3.6 shows the decay of the
potential in a material under the same conditions as before but where only the
bulk states are present.

0 5 10 15 20 25 30 35 40 45 50

x (nm)

0

5

10

15

20

25

30

35

40

U
(x

) 
(m

V
)

Figure 3.6: Total potential profile as a function of the depth inside the material at
T = 0K and when the Fermi level coincides with the Weyl node energy (EF = 0 eV).
Only the effect of the bulk states is taken into account. The voltage applied is
VG = 0.1 V.

We notice that by removing the dominant contribution, which is the one of the
surface states, the screening effect is much weaker and, also a greater portion of the
applied potential drops on the Weyl semimetal layer. The potential profile in this
case can be well fitted with a function of the kind f(x) = a/(x + b) as expected
from the previous studies [40] (the values obtained are a = 0.26 and b = 6.77 and
the fit has a coefficient of determination R2 = 0.992, this means that the fit is
particularly good). The parameter a is related to the physical constants present
in the screening equation, while b does not have a direct physical meaning, but it
is necessary to avoid a vertical asymptote of the solution at the interface, which
would be non-physical, therefore allowed by the boundary conditions we have set.

This behavior of the potential profile is peculiar and is likely due to the fact
that there are currently no available states at the Fermi level. In particular this
means that the potential has a very long tail and lingers for a long distance inside
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the material. This effect is likely to be overcome by other contributions to the
screening, like we have seen when the effect of the surface states was considered.

3.7.2 Effect of the Fermi level
An important parameter in describing the electronic properties of the material is
the position of the Fermi level of the material with respect to the Weyl nodes. In
an ideal case they should be exactly at the same energy, however, the presence
of charged impurities in the crystal may change the position of the Fermi level
similarly to what happens in a semiconductor. It is also worth noting that some
Weyl semimetals like TaAs present multiple Weyl nodes that are located at different
energies [12], so they will intrinsically present some bands where the energy of the
Weyl node does not coincide with the Fermi level.

In this case, the Fermi level will find itself in a region of the bands where the
density of states is finite, so the results will be different than what we saw in the
previous section. As we showed in Section 3.4, only the bulk density of states will
be affected by this, as the Fermi Arc one is constant in our model.

In this analysis we use the energy shift between the Fermi level and the Weyl
nodes as an independent parameter. This property however, is not so easy to
tune when dealing with an actual material. In the case where the shift is due
only to atomic impurities, we can compute the Fermi level as a function of the
concentration of impurities by computing the number of electronic states that must
be occupied or freed in order to maintain charge neutrality:

ni = g

π2v3
F

E3
F

3 (3.25)

This computation allows to obtain the Fermi energy shift as a function of the
density of atom impurities ni.

We can start by considering the screening due to the bulk states only, and how
it is affected by the Fermi level position; the results obtained are shown in Figure
3.7. The Fermi level energy is expressed with respect to the one of the Weyl nodes,
the maximum energy difference considered is EF = 0.05 eV which corresponds to
the energy at which the two Weyl cones of our material will merge together, and
the bands will have a saddle point. If we move further away from the Weyl nodes
our description of the density of states will no longer be accurate.
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Figure 3.7: Total potential profile as a function of the depth inside the material
at T = 0K for various values of the Fermi level. Only the effect of the bulk states
is taken into account. The voltage applied is VG = 0.1 V.
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We can see that the screening of the external potential becomes significantly
stronger as a result of the shift in energy of the Fermi level. We also notice that
the potential curve changes shape from the 1/x we had before to an exponential
decay. This can be shown by performing a fit of the curves obtained: the one with
EF = 0 was performed in the previous section; if instead we fit the curve with the
highest value of the Fermi energy (EF = 50 meV) with an exponential function of
the form f(x) = a · eb·x we get a perfect fit (as shown in Figure 3.8).
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Figure 3.8: Fit of the last solution (green curve) of Figure 3.7 with an exponential
function. The whole thickness of the Weyl semimetal slab, where the function is
defined is shown. The resulting fit parameters are a Ä 1.5 · 102, b Ä −0.46 and
R2 = 0.9999).

This result can also be explained by the theory: if we tried to obtain something
similar to Equation 3.1 by integrating the bulk density of states where the energy
is shifted by the Fermi level (D(E) bulk = g/π2v3

F (E − EF )2) we would obtain an
equation of the following type:

U ÍÍ(x) = 4ge2

π(~vF )3

A
U3(x)

3 + U2(x)EF + U(x)E2
F

B
(3.26)

In this case if the Fermi level is large enough the term of the equation that is
linear would tend to dominate, and the resulting solution would be an exponential
function, as we experienced in the simulation.

After these considerations, we can reintroduce the effect of the surface states
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and use our model to study what would happen in the actual material. This can
be seen in Figure 3.9.
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Figure 3.9: Total potential profile as a function of the depth inside the material
at T = 0K for various values of the Fermi level. The voltage applied is VG = 0.1 V.

By confronting this plot with Figures 3.3 and 3.8 we can conclude that the
effect of the surface states remains always significant for the screening under the
conditions of our study, but that the bulk states acquire more and more importance
as the Fermi level is moved away from the position of the Weyl node, since the
number of free carriers in the bulk tends to increase.

3.7.3 Effect of the Temperature
We can now repeat our computation by changing the temperature of the system, in
order to study its effect. As before, we can expect the temperature to act only on
the bulk states and leave the surface unaffected, however it is harder to predict how
strong will this change be, as it manifests as a weighting of the density of states
that is integrated. In Figure 3.10 we show the total potential as a function of the
depth in the material for different values of the temperature, while keeping the
Fermi energy to zero. Our model also allows us to study what happens when both
the temperature and the Fermi level are different than zero, as shown in Figure
3.11.
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Figure 3.10: Total potential profile as a function of the depth inside the material
for different values of the Temperature. The Fermi level has been kept fixed to the
Weyl node energy. The voltage applied is VG = 0.1 V.
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Figure 3.11: Total potential profile as a function of the depth inside the material
for different values of the Temperature. The Fermi level has been kept fixed to
5meV. The voltage applied is VG = 0.1 V.
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It is worth noting that if the Fermi energy is different from zero, the temperature
will also have the effect of modifying the the chemical potential, bringing it closer
to the Weyl node. For this reason Figure 3.11 is different from the previous one
only in the curves obtained at low temperatures.

3.7.4 Effect of the distance between the Weyl nodes
Another important material parameter is the distance between two coupled Weyl
nodes ∆k. Its value can change when an external magnetic field is applied.

If ∆k is increased the length of the Fermi Arcs increases and, as a result, they
are able to host more states. In Figures 3.12 and 3.13 we show how this affects
the screening: as we can expect if the length of the Fermi Arcs is increased the
screening will be stronger. We are also able to see how the charge induced in the
material tends to reside more in the layer close to the surface and less in the bulk
of the material.
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Figure 3.12: Total potential profile as a function of the depth inside the material
for different values of the separation in momentum space between the Weyl nodes.
The voltage applied is VG = 0.1 V.
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Figure 3.13: Charge density as a function of the depth inside the material for
different values of the separation in momentum space between the Weyl nodes.
The voltage applied is VG = 0.1 V.

3.7.5 Gate capacitance computation
The information we obtained on the charge density can be used to compute the gate
capacitance of our structure. This can be achieved by simply using the definition
of capacitance:

C = ∂Q

∂V
(3.27)

Since we have not specified the area of the gate contact, it is easier to normalize
the capacitance per unit area. To perform our computation we then need to
compute the charge accumulated in our channel per unit area, which can be done
by integrating the charge density over the penetration depth: Q =

s Lx
0 ρ(x)dx. The

derivative with respect to the gate voltage can be computed numerically using the
finite differences method. The resulting computation is the following:

C = Q(VG + δVG) −Q(VG)
δVG

=
s Lx
0 ρ(x, VG + δVG) dx−

s Lx
0 ρ(x, VG) dx

δVG
(3.28)

The results are shown in Figure 3.14:
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Figure 3.14: Gate capacitance per unit area as a function of the voltage applied.
Obtained with EF = 0 eV and T = 10 K.

From this graph we see that the capacitance increases slightly with the applied
gate voltage. The obtained value of the capacitance per unit area is around
C Ä 0.0105 e2eV−1nm−2.

The gate capacitance can be modeled by two capacitors connected in series:
the capacitance due to the parallel plate capacitor (where the gate and the Weyl
semimetal are the plates) and a second component due to the finite density of
carriers present in the Weyl semimetal (called quantum capacitance). The role
of this component is to take into account that, due to the finite density of states,
not all the charge in the Weyl semimetal resides exactly at the interface. For this
reason the total capacitance is reduced, and this reduction is greater the fewer
carriers are available. If instead of the Weyl semimetal we had a perfect conductor,
the only relevant therm would be the parallel plates capacitor and the result in
that case would be:

Cparallel plates = ε0εox
tox

Ä 0.0138 e2

eV nm2 Ä 2.2 × 10−7 F/cm2 (3.29)

Which as expected is slightly above what we obtained with our computation.
We can then repeat the same computation with T = 300 K. Under these

conditions the material should have more free carriers than before, so the capacitance
should be higher, while still remaining lower than the parallel plate case. This is
exactly what happens, as we obtain C Ä 0.0118 e2eV−1nm−2.
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3.7.6 Applications of the screening model
The screening model described in this work allows us to better understand the
physical properties of Weyl semimetals and their interaction with electric fields. In
addition, it can be used to build a model of a device, and study its performance.
As an example, we can use it to provide a more accurate description of the Klein
tunneling transistor that we studied in the previous chapter. We can do so by
replacing the exponential profile of the potential we used before, with the one
computed by solving the Poisson differential equation. The results are shown in
Figures 3.15 and 3.16 where we computed the current and trans-conductance as a
function of the applied gate voltage for different values of the temperature of the
system.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
VG (V)

0

0.5

1

1.5

2

2.5

I D
 (m

A)

T = 5 K
T = 20 K
T = 50 K
T = 100 K
T = 150 K

Figure 3.15: Current passing through the Klein tunneling transistor as a function
of the gate voltage applied, for different values of the temperature. The following
parameters were used: VDS = 50 meV, channel thickness = 30 nm.
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Figure 3.16: Trans-conductance of the device, computed under the same condi-
tions as the current.

We notice that the simplified description of the screening we used in the previous
chapter was more or less accurate, but the temperature had little effect on it.
From this analysis we can see instead that the temperature has both the effect of
increasing the total current, as it increases the number of carriers available in the
material, and of reducing the gain, as the screening effect becomes stronger.

The same screening model could be also used to model a field effect transistor
that modulates the charge in the channel, like what happens for semiconductor
devices. In this case there is no potential barrier, and the gate covers the Weyl
semimetal slab completely, tuning the amount of carriers in the underlying regions.
Further work could be done towards the realization of such a model, in particular
to better understand the transport properties of the surface and bulk states of the
material, needed to describe the conductivity of the channel.
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Chapter 4

Fabrication of test devices

The best way to test the validity of the physical models made in this work, as well
as to further probe the properties of Weyl semimetals, is to compare the results of
the simulations with some measurements made on a real device. To this purpose,
in the last months of the thesis project, I assisted in the fabrication of a Weyl
semi-metal field-effect test device. In this section the fabrication process that was
used to realize this device is described.

4.1 Challenges in the fabrication of Weyl
semimetal crystalline layers

Weyl semimetals are a class of materials that was discovered recently and their
fabrication is still a challenging process. In particular, it is difficult to produce
crystalline materials with good properties and purity. For this reason we can not
yet use the regular deposition technique to depose a Weyl semimetal layer on our
devices, as the material realized in this way would not have the properties we
desire.

However, it is currently possible to fabricate single crystals of macroscopic
dimensions. As a result, the strategy we use to integrate these materials in a device
is to cut a small portion from a large Weyl semimetal crystal, and to lay it on top
of our device. The most suited instrument to perform this operation is the Focused
Ion Beam, which uses a beam of charged ions to cut a thin lamella out of a sample.
Using the same tool, the lamella can then be placed on a device, and some contacts
can be soldered to it, having both the function of connecting it electrically and of
keeping it in place.

This fabrication step is the most critical for our process, since operating the FIB
requires a lot of time and a skilled operator. Moreover, this fabrication step must
be repeated for each device we want to fabricate, meaning that it is feasible only
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to produce single test devices; if these devices will ever be employed in a circuit a
more standard fabrication process must be used. For these reasons it is best to
perform the Focused Ion Beam step towards the end of the fabrication process, so
that the single device produced is less likely to be damaged in the following steps.

With these considerations in mind, the fabrication process described in the
following section was implemented.

4.2 Description of the fabrication process
The test devices were realized in the following way: the final transistor is placed
upside-down on the wafer, with the channel on top and the electrodes below it,
this allowed for the Weyl semimetal channel to be placed at the end of the process,
when the rest of the device had already been completed.

We start with an oxide-capped wafer, where a thick silicon oxide layer covers
the silicon top surface. The role of this oxide is to provide a good insulation, as we
will depose the contacts of our device on it.

The first contact to be deposited is the gate contact; in order to pattern the
regions where it should be, a photoresist is first deposited on the oxide. The chosen
photoresist is positive, meaning that the region of the surface that is exposed is
the one that will be removed. It is also formed by two different layers, where
the bottom one is more sensitive than the top one, so that when it is etched, the
resulting cavity will be wider on the bottom than at the top.

The exposure is performed with a laser writer machine, which moves a laser
beam on the surface of the sample to expose the selected areas. This machine
does not use a mask, which makes it particularly suitable to fabricate single chips
and try new designs. The region of the photoresist that is exposed becomes more
soluble, and can be removed during the development step, leaving a cavity in the
desired region.

The next step consists in depositing the metal layer using a physical vapor
deposition technique: a crucible full of metal is heated, making some of it evaporate
on the sample. The evaporation process is performed first with titanium, to form
a thin layer, then with gold, to form the actual electrode and then again with
titanium to form another thin film. The thin titanium layers have the role of
favouring the adhesion of gold on silicon oxide and vice versa, while gold is used
for the electrode as it has a lower resistivity.

The metallic layer deposited in this way will be in contact with the oxide surface
only in the desired area, as the rest is still covered by the photoresist. Both metal
and photoresist are then removed from the unwanted areas by lift-off, a process that
consists in dissolving the remained photoresist and has the effect of also removing
the metal deposited on top of it.
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After the gate contact has been realized, a thin silicon oxide layer is deposited
on the whole surface of the device, in order to insulate the gate contact from the
Weyl semimetal slab that will be placed on top of it. A hole is then etched in the
silicon oxide in order to contact the gate buried under it. This can be obtained with
a lithography process similar to the one described before, with the difference that
the resist this time is placed on top of the oxide and has the function of protecting
it from the etching. Hence, the silicon oxide is removed only where the photoresist
has been exposed.

The fabrication steps described up to now are illustrated in Figure 4.1:

Photoresist Au
SiO2 capping

Si Substrate Si Substrate Si Substrate

SiO2 capping SiO2 capping

Si Substrate

Au
SiO2 capping

Si Substrate

SiO2 capping

Au

Si Substrate

SiO2 capping

Au
SiO2 insulating layer

Figure 4.1: Steps used for the realization of the gold gate contact: step 1 represents
the deposition of the photoresist, step 2 is the patterning with the laser writer
and the subsequent developing, in step 3 the gold layer is deposited, in step 4 the
remaining photoresist is stripped away, step 5 shows the deposition and patterning
of a new layer of photoresist and step 6 shows represents the etched cavity in the
oxide layer, used to electrically connect the gate contact.

The source and drain contacts are then deposed, using the same lift-off process
used for the gate contact. They are deposited on top of the silicon oxide layer,
since they need to be in contact with the channel. These contacts start from large
metal pads and converge towards a central zone where the Weyl semimetal will be
deposited. Some redundant contacts were added, in order to improve the likelihood
of making a working device (since this is a relatively new fabrication process) and
to allow the use of the sample for other kinds of measurements.

Now that the lithographic steps are complete the wafer is diced, separating one
chip from the other. Then, the chips are inspected at the microscope in order to
choose a good one, to carry on with the next step. In fact, the rest of the process is
performed using the Focused Ion Beam, that allows to work on only one device at a
time. We start with the preparation of a Weyl semimetal slab, which is cut from a
large crystal using the Focused Ion Beam. The tool produces a beam of accelerated
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Gallium ions that impinge on the surface of the sample, effectively cutting it. It is
also possible to use a beam of low-energy ions that instead deposit on the surface
of the sample. This technique allows to attach the Weyl semimetal slab cut from
the crystal to a manipulator and place it on the device. Using the same technique,
the slab is soldered to the existing source and drain contacts, in order to ensure
a good electrical connection and to permanently fix it to the substrate. The last
fabrication steps here described are shown in Figure 4.2:

Si Substrate

Au
SiO2 capping

SiO2 insulating layer

Photoresist

Si Substrate

Au
SiO2 capping

SiO2 insulating layer

Si Substrate

Au
SiO2 capping

SiO2 insulating layer
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SiO2 capping

SiO2 insulating layer

Si Substrate

Au
SiO2 capping

SiO2 insulating layer

WSMcrystal

Si Substrate

Au
SiO2 capping

SiO2 insulating layer

WSMcrystal

Photoresist Photoresist

Figure 4.2: Schematic representation of the final steps of the fabrication process:
steps 1 to 4 show the lithographic process used to make the source and drain
contacts of the device, in step 5 the Weyl semimetal slab has been placed on the
device, and in step 6 the slab is connected to the existing contacts. The cross
section shown in this picture is rotates by 90° with respect to Figure 4.1.

Once the device is complete, the chip is placed on a holder that allows it to be
connected to the measurement instrumentation. The electrical connection between
the device and the holder is done via wire bonding, between the contact pads that
we fabricated around the device and the holder pads. The final device, placed in
its holder is shown in Figure 4.3. The characterization of the completed device will
be carried out in the following months, and the results of such measurements will
be useful as a reference for the physical models described in this work.
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Figure 4.3: Photography of the final device ready to be tested.
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Chapter 5

Conclusions

Topological materials, and in particular Weyl semimetals, show many peculiar prop-
erties, some of which make them promising candidates for electronic applications,
especially in a cryogenic environment. For this reason, this work was oriented
towards the modeling of electronic devices that exploit these unique properties,
with the goal to study and realize novel field-effect transistors. We focused our
attention in particular on the class of type-I Weyl semimetals.

We started this work by illustrating the concept of a Klein tunneling transistor,
and our analysis pointed out that the strong screening of the electric field is an
important factor in determining the performance of such a device.

Then, we focused more on the screening effect, in order to obtain a more precise
description of the phenomenon, including both the external conditions and the
properties of the material. The result was a quantitative description of the screening
effect in Weyl semimetals together with the study of the effect of several physical
parameters on this phenomenon, like the temperature which increases the intensity
of the screening effect, the position of the Fermi level of the material and the length
of the Fermi arcs. We were also able to compute the charge density in the channel
as an effect of the potential applied, distinguishing between the contribution of
the bulk and surface states, and to provide an estimation of the resulting gate
capacitance.

This study provides us additional information on the properties of Weyl semimet-
als and shows that, although screening is a quite strong effect in Weyl semimetals,
it is possible in sufficiently scaled devices to use a gate as an effective control
mechanism.

The developed model can be used in the future as part of models of field-effect
transistors, in order to evaluate their performances. We provide an example of
its application by employing it to improve the description of the Klein tunneling
device presented previously, in place of the simplified description of screening that
was previously used.
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Conclusions

Finally, we described part of the ongoing work aimed at the realization of test
devices, that will allow to study experimentally the properties of Weyl semimetals.

The next step is the characterization of such devices, in order to compare the
results of the simulations with some experimental data. This will provide more
information on the accuracy of the models used, as well as additional insight on
the operation of the real devices, and on other effects that may influence their
behavior.
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Appendix A

Numerical methods used to
solve the Poisson differential
equation

In this appendix we will describe the methods used in order to solve the Poisson
equation. As said in the previous sections, because of the description we used for
the Fermi Arc states, we obtained an expression of the surface density of states
that does not have a closed form. The surface density of states appears in the
Poisson differential equation that describes the decay of the potential in the Weyl
semimetal layer, and for this reason, it was necessary to solve it numerically.

Furthermore, the boundary conditions we found are located at the two extremes
of the interval where the solution must be defined. These boundary conditions
define what is called a Boundary Value Problem, that is generally harder to solve
than the more common Initial Value Problem in which the boundary conditions
are defined in the same spot. It is also important to note that the presence of two
boundary conditions in this case does not guarantee that the solution exists or that
it is unique.

A.1 Solution as a series of Initial Value Problems
The first approach used to solve the differential equation was to employ an algorithm
for the solution of initial value problems used in an iterative way, until a solution
satisfying all the requirements was found. The advantage is that these algorithms
are relatively easy to implement, and some of them are already implemented in
MATLAB [45].

The boundary condition defined in Equation 3.23 does not allow to directly
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Numerical methods used to solve the Poisson differential equation

determine the value of either U(0) or U Í(0) but gives only the relationship between
the two. As a result, both the initial values must be guessed and later corrected to
get closer to the desired ones. We can start by guessing the value of U(0), since we
know that it will be necessarily smaller than the voltage Vg applied on the gate.
We can then use Equation 3.23 to compute the value of the derivative U Í(0) that
satisfies it, since this equation is linear there will be only one solution. Now we
have both initial conditions, and we can proceed to solve the differential equation
with our Initial Value Problem solver algorithm. The outputs will be the values of
the function U(x) and of its derivative in every point of the selected interval. We
then check if the other boundary condition (Equation 3.24) is satisfied; if it is not
the case, we need to try again with a different value of U(0).

The second boundary condition reads U(x = WSM thickness) = 0, where the
function U(x) depends on the value of U(0), we could then treat it like an unknown
function of which we are trying to find a zero: U(x = WSM thickness) = f (U(0)) =
0, this can be solved with a common root-finding algorithm. The simplest example
of such algorithm is the bisection method, which consists in probing the interval
where the zero is located, by checking the middle point of the interval and excluding
one of the two halves from the search. In fact, we know that the input value must
be in the interval Vg ≥ U(0) ≥ 0; if, as we expect there is a single solution located in
this interval when computing f (Vg) and f (0) we will get two values with opposite
sign. We can then check the sign of f (Vg/2) which is the middle point of the
interval, we know that the zero will be necessarily located between two points
of opposite signs. We can then repeat this procedure on subsequent intervals to
locate more and more precisely the position of the zero. Once we are satisfied
with the accuracy we have obtained our solution U(x) that satisfies both boundary
conditions.

Figure A.1 summarizes the main steps of the described algorithm:
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Differential
 equation

U(0)

U'(x)U(x)

U(x=WSM thickness) = 0 ?
no

U'(0) = (U(0) - Vg) *εox/(εWSM*tox)

Correct solution

yes

Start

Figure A.1: Scheme of the algorithm used to solve the Poisson differential
equation, by calling a regular ODE solver iteratively, until a solution that checks
both boundary conditions is found.
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The main drawback of this technique is that many iterations are needed to reach
the desired solution, so the overall algorithm is relatively slow. Another issue is
that, given the type of functions studied, a small imprecision on the values of U(0)
and U Í(0) leads to a large change in the values on the other side of the interval,
like U(x = WSM thickness) that we are using to check for the correct solution.
Therefore sometimes the algorithm is limited on the maximum number of digits
that can be used to describe the initial conditions, and might not be able to satisfy
small tolerances set on the check of the result.

For this reasons, although the results were acceptable, the presented solution
was later replaced by an alternative tool that is already implemented in MATLAB.
Its working principles are illustrated in the following section.

A.2 Direct solution of the Boundary Value
Problem

MATLAB already has an integrated Boundary Problem Solver called bvp4c. It is
based on a Runge-Kutta method, which belongs to the family of finite difference
methods [46]. These are algorithms where the derivative of a function in one point
is approximated with the finite difference of the values of the function in some
points close to it [47]. In fact, these algorithms estimate the solution only in a set
of discrete points along interval, that are called grid points or mesh points. Two
grid points are the extremes of the interval, and the value of the solution there
is given by the boundary conditions, in the other points between them the value
has to be computed. A simple finite difference formula is the centered difference
approximation, that allows to approximate the second derivative in the following
way:

D2[U(xj)] = U(xj+1) − 2U(xj) + U(xj−1)
h2 (A.1)

Where U(x) is the solution function, xj are the points of the grid and h is the
spacing between them. This allows to transform the Poisson differential equation
into an algebraic equation. If we apply this equation to each of the grid points
we obtain a system of equations, that can be solved to obtain an approximate
evaluation of the solution at the grid points. These values can be then interpolated
to evaluate the solution at any possible point.
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