
POLITECNICO DI TORINO

Master Degree Thesis

Simulation and modeling of
Racetrack memories with
VCMA synchronization

Supervisors
prof. Marco Vacca
prof. Maurizio Zamboni
Ph.D. Fabrizio Riente

Candidates
Pietro Diona

matricola: 274426

Anno accademico 2020-2021



Summary

This master thesis will concern the study and the application of the Voltage
Controlled Magnetic Anisotropy (VCMA) effect on Racetrack Memory. The
VCMA allows to locally modify the anisotropy of the material through an
electric potential. This variation can be used to create potential barriers, or
potential holes to favor the nucleation of the domains and to synchronize the
movement of the bits, stored in form of domains, along the Racetrack. In
the specific case of a Racetrack, being able to control the potential barrier
through VCMA would allow to reduce the currents involved for the movement
of the Domain Walls. This technique is an alternative to the creation of
notches, which experimentally could be more difficult to realize. This thesis
focuses on the study and physical modeling of the VCMA effect applied
to Racetrack technology through the use of micromagnetic simulations and
analytical models that describe the phenomenon. The aim of the study is
to evaluate the benefits of the application of this phenomenon to Racetrack
memories, and both the timing and the energetic performance of the resulting
device.
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Chapter 1

Introduction

Matter behaves in different ways when it interacts with an external mag-
netic field. The physics of magnetism is the branch of physics which explains
magnetic phenomena, investigates the magnetic properties of matter and the
interactions related to it. To describe magnetism within matter, it is fun-
damental to introduce the concept of magnetization or also called magnetic
polarization. When an electric current passes through a coil it behaves like
a magnetic dipole. In a semi-classical model, assuming a planetary model of
the atom, electrons within matter orbit around the atomic nucleus generating
a magnetic field just like that of a coil. Each electron therefore constitutes
a microscopic coil which in the absence of external electromagnetic fields is
randomly oriented. The presence of a local magnetic field involves a collec-
tive polarization of the coils. Therefore the concept of magnetic moment is
born [1], and it can be conceptually represented as shown in Figure 1.1. The
modulus of a magnetic moment is expressed by equation 1.1.

µ = iS (1.1)
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1 – Introduction

Figure 1.1: Concept of magnetic moment [2]

The microscopic magnetization currents can be traced back to a macroscopic
quantity, in order to comprehensively describe the magnetic behavior of a
material thanks to the magnetization intensity vector, also called magnetic
polarization vector and denoted by ~M . The magnetization intensity vector
is defined as the average value of the proper magnetic moment of N particles
contained in an infinitesimal volume dV [3]:

~M =
∑dN
i=1 ~µi
dV

(1.2)

The unit of measure of the magnetization vector is A
m .

Once the concept of magnetization is known, it is possible to classify the
magnetic behavior of matter in the following way:

• Diamagnetism: property of matter which when subjected to the presence
of an external magnetic field exhibits an internal magnetization, which
has the opposite direction with respect to the external field;

• Paramagnetism: property of matter which when subjected to the pres-
ence of an external magnetic field exhibits an internal magnetization,
which has the same direction of the external field;

• Ferromagnetism: property of matter which becomes magnetized under
the action of an external magnetic field and which remains magnetized
for a long time when the field is canceled out. This property is main-
tained only below a certain temperature, called the Curie temperature,
above which the material behaves like a paramagnetic material;

• Antiferromagnetism: property of matter which is characterized by the
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1.1 – Ferromagnetism

fact that it has an apparent neutral behavior under the action of an ex-
ternal magnetic field, at least up to a certain critical temperature, called
Néel temperature, beyond which they exhibit a paramagnetic behavior;

• Ferrimagnetism: property of matter similar to antiferromagnetism with
the difference that the antiparallel alignment of the atomic magnetic mo-
ments is not perfect and the external field is not canceled out, producing
a behavior similar to that of ferromagnetism;

1.1 Ferromagnetism
As explained in the Introduction [1], the ferromagnetism is a property of
matter which becomes magnetized under the action of an external magnetic
field and which remains magnetized when the field is canceled out. A ferro-
magnetic material is characterized by an hysteresis loop as shown in Figure
1.2.

Figure 1.2: Magnetization ′m′ against magnetic field ′h′. Image extracted
from [4].

The hysteresis loop shows how the magnetization is not equal to zero when
the external magnetic field h is equal to zero.
In general, the magnetization varies (in direction, not in magnitude) across
a magnet, but in sufficiently small magnets, it does not. Larger magnets are
divided into regions called domains. Within each domain, the magnetization
is constant; and between domains there are relatively thin domain walls
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1 – Introduction

in which the direction of magnetization rotates from the direction of one
domain to another. If the magnetic field changes, the walls move, changing
the relative sizes of the domains. Because the domains are not magnetized
in the same direction, the magnetic moment per unit volume is smaller than
it would be in a single-domain magnet. The magnetization can also change
by addition or subtraction of domains (called nucleation and denucleation
respectively)[4]. The concept of domain wall, which is the main subject of
this thesis, its physical description and its motion in ferromagnetic material
will be studied in depth, starting from chapter 2.

1.2 Exchange interaction
The exchange interaction is a quantum mechanical effect that only occurs
between identical particles. The effect is due to the wave function of indis-
tinguishable particles being subjected to exchange symmetry, that is, either
remaining unchanged (symmetric) or changing sign (antisymmetric) when
two particles are exchanged. Both bosons and fermions can experience the
exchange interaction. For fermions, this interaction is sometimes called Pauli
repulsion and it is related to the Pauli exclusion principle. For bosons, the
exchange interaction takes the form of an effective attraction that causes iden-
tical particles to be found closer together, as in Bose–Einstein condensation.
The exchange interaction alters the expectation value of the distance when
the wave functions of two or more indistinguishable particles overlap. This
interaction increases (for fermions) or decreases (for bosons) the expectation
value of the distance between identical particles (compared to distinguishable
particles) [5]. The physical explanation which distinguishes a paramegnetic
material from a ferromagnetic one is closely related to the physical concept
of exchange interaction[6]:

• Paramagnetic material: The direct exchange interaction between the
electron spins is smaller with respect to the thermal energy of the elec-
trons involved. As a consequence the electron spins are not aligned and
the magnetization is canceled out when the external magnetic field is
switched off;

• Ferromagnetic material: The exchange interaction in ferromagnets is
greater with respect to the thermal energy, therefore the magnetization
is retained when the external magnetic field is switched off;

An analytical discussion of the magnetic field due to the exchange interaction
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will be carried out in section 2.7.2.

1.3 Antisymmetric exchange:
Dzyaloshinskii–Moriya interaction (DMI)

Antisymmetric exchange, also known as the Dzyaloshinskii–Moriya interac-
tion (DMI), is a contribution to the total magnetic exchange interaction
between two neighboring magnetic spins. Some antiferromagnetic materials
exhibit a non-zero magnetic moment at a temperature near absolute zero.
This effect is called spin canting, a phenomenon through which spins are
tilted by a small angle about their axis rather than being exactly co-parallel.
In magnetically ordered systems, DMI favors a spin canting of otherwise
(anti)parallel aligned magnetic moments and thus, is a source of weak ferro-
magnetic behavior in an antiferromagnetic material [7]. DMI only exists in
noncentrosymmetric systems. The most general equation of the modulus of
the magnetic field due to DMI effect is the following:

HDMI
i,j = ~Di,j · (~Si × ~Sj) (1.3)

An analytical discussion will be carried out in section 2.8.

1.4 Magnetocrystalline anisotropy
A ferromagnetic material is characterized by magnetocrystalline anisotropy
which is a phenomenon through which the ferromagnetic material itself takes
more energy to magnetize it in certain directions than in others. These di-
rections are usually related to the principal axes of its crystal lattice. The
spin-orbit interaction is the primary source of magnetocrystalline anisotropy.
Basically the orbital motion of the electrons, which couple with crystal elec-
tric field, gives rise to the first order contribution to magnetocrystalline
anisotropy. The second order arises due to the mutual interaction of the
magnetic dipoles [8]. Each crystal is characterized by a certain structural
symmetry. Based on the crystalline structure of a material, the term of mag-
netocrystalline anisotropy changes. The most common magnetocrystalline
anisotropies are the following:

• Uniaxial anisotropy: the crystal is characterized by a single axis of high
symmetry, the energy density in this simplest and most common case is
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1 – Introduction

expressed by the following formula:

ε = E

V
= Kusin

2(θ) (1.4)

where Ku has units of energy density and depends on composition and
temperature (it is a material constant), and θ is the angle in spherical
coordinate shown in Figure 2.1a;

• Cubic anisotropy: the magnetocrystalline anisotropy energy density is
described by a second order equation;

For more detail look at [8]. An analytical discussion of the uniaxial anisotropy
energy will be carried out in section 2.7.3

1.5 Demagnetizing Energy
When a ferromagnetic material is placed in an external magnetic field, it
develops a strong internal magnetization, therefore it behaves like a magnet.
The edges of the ferromagnetic material become like north and south poles,
and as a consequence a demagnetizing field is generated[9]. The demag-
netization field physically arises because the internal magnetic field of the
ferromagnetic material linked to the magnetization of the matter and the
external field in which the ferromagnetic material is immersed must connect
to the boundaries of the material itself. In other words, the magnetic field
by definition must be a continuous physical quantity, therefore discontinu-
ities cannot arise between the field inside the ferromagnet and the external
field. The demagnetization field therefore arises spontaneously to create this
condition of continuity:

~Hint = ~Hext + ~Hd = ~Hext − N̄ · ~M (1.5)

The demagnetizing field is expressed as the product between a tensor N̄
which is strictly related to the geometrical structure of the ferromagnetic
material, and the magnetization vector. The demagnetizing energy linked to
the demagnetizing field is equal to:

Edem = −1
2µ0 ~M · ~HdemV = −1

2µ0 ~M(−N̄ · ~M)V (1.6)

where V is the volume of the sample. An analytical discussion of the demag-
netizing will be carried out in section 2.7.4
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1.6 Voltage Controlled Magnetic Anisotropy
(VCMA)

The voltage controlled magnetic anisotropy is a physical phenomenon which
consists in a correlation between a voltage applied to a magnetic material and
its anisotropy. Assuming the uniaxial anisotropy property of a ferromagnetic
plane explained in section 1.4, the ferromagnetic material is characterized
by a certain anisotropy constant Ku. More exactly Ku is characterized by a
volume anisotropy contribution and by a surface anisotropy contribution:

Ku = Kvol + Ki

tFM
(1.7)

If the ferromagnetic layer is supposed to be extremely thin (like a plane), the
volume anisotropy could be completely ignored, and the only contribution
is related to the surface anisotropy. If a certain voltage is applied across a
ferromagnetic material, it is possible to locally modify the anisotropy of the
material which is characterized by a certain VCMA constant which correlates
the applied voltage with the anisotropic variation of the material:

Ku = Ku(0)− ζv
Vapp
tox

(1.8)

ζv is the VCMA constant, whose value depends on the ferromagnetic (FM)
layer, while tox is the thickness of the oxide layer, which covers the FM layer.
For a positive ζv value, when a positive voltage is applied, the interfacial
anisotropy is lowered. For more details about Voltage Controlled Magnetic
Anisotropy effect look at section 1.8.

1.7 Racetrack Memory
A Racetrack memory is a memory paradigm developed in 2008 by Stuart
Parkin, with the aim of replacing Hard-Disk Drive and Solid State Drive
[10][11][12]. The main idea upon which the concept of Racetrack Memory is
based, is the domain wall motion induced by an applied current density. A
Racetrack memory, simplistically, is nothing else than a "track" divided into
a specific number of ferromagnetic domains, which can be moved along the
track thanks to a certain current density or exploiting an external magnetic
field. Each ferromagnetic domain works as a shift register which store ’0’
or ’1’ depending on the direction of the magnetization of the domain. Each
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1 – Introduction

domain could be magnetized up or down in the case of "Perpendicular Mag-
netic Anisotropy" (PMA) of the layer, or it could be magnetized left or right
in the case of "Parallel Magnetization" of the layer. The phenomenon related
to the motion of a domain wall with a current density is called "Current
Driver Domain Wall Motion" and microscopically it is related to an interac-
tion between the electron spins of the layer and the current which applies a
specific torque moment on the spins. The domains are shifted along the track
with the aim of placing a specific domain in correspondence of the writing
element or in correspondence of the reading element. Each domain has a spe-
cific address, therefore a specific current must be injected into the track to
move a specific domain from its initial position to its final position. Different
geometrical structures of the track or different dispositions of the domains
along the track were proposed in the last years, but the three main elements
are still the "track" with its ferromagnetic domains, the "writing component"
through which it is possible to write ’0’ or ’1’ into a specific domain, and the
"reading component" through which it is possible to read the stored bits[13].
Figure [1.3] shows the Racetrack memory idea in an abstract way. The blue
and red zones are the domains of track and the two colors indicates the two
different states of the magnetization ("0" and "1").

Figure 1.3: Racetrack Memory Idea[14]

The two elements in the lower part of the figure [1.3] are the reading element
and the writing element. One of the methods that can be implemented
to write a bit in a Racetrack memory is to exploit the fringing field of a
domain wall. A domain wall naturally generates a magnetic field called
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1.7 – Racetrack Memory

"fringing field". This magnetic field located just close to a specific domain
of a Racetrack memory will switch the magnetization of the domain itself.
There are some descriptive analytical models of the fringing field of a domain
wall, for more information look at [15]. Concerning the writing element of
a Racetrack memory, a good choice would be to read the magnetization of
a domain using a magnetic tunnel junction (MTJ). For more details about
MTJ structure look at section 1.7.2.

1.7.1 Division of the Racetrack in ferromagnetic do-
mains

A Racetrack memory is "divided" into ferromagnetic domains, each one stor-
ing a bit information (’0’ or ’1’). Between two domains, there is a "wall" (a
transition region) called domain wall, in which the magnetization gradually
switches from "up" (or "right") state to "down" (or "left") state or viceversa.
There are several methods to stably magnetize a specific region with a specific
magnetization, and to create a stable domain wall in a specific site:

• Implementing different ferromagnetic domains;

• Using geometrical modification (notches); [16]

• Stepped nanowires for controlled pinning geometrical approach; [16]

• Local metal diffusion; [16]

• Ion implantation; [16]

• Tilted magnetization by exchange interaction; [16]

• Voltage Controlled Magnetic Anisotropy (VCMA) gate;

This thesis will concern the analysis of the VCMA gate approach. In other
words periodical gates are put along the ferromagnetic track. When a volt-
age is applied across a gate the local anisotropy is modified and the domain
wall could be blocked by the gate which behaves like a barrier when the
anisotropy increases or like a hole when the anisotropy decreases. The con-
cept is explained in more details in section 1.8.
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1 – Introduction

1.7.2 Magnetic Tunnel Junction (MTJ)
Reading the magnetization of a specific domain of a ferromagnetic material
(in other words reading a stored ’bit’ in the track) is one of the three fun-
damental operation of a Racetrack memory. To accomplish this, a magnetic
tunnel junction structure is exploited. The simplest model of a magnetic
tunnel junction is made of three layer, two ferromagnetic layers and one in-
sulating layer in the middle through which tunneling of electrons happens.
The resistance of the structure depends on the relative orientation of the
magnetization of the two ferromagnetic layers. The system is in high re-
sistance state when the magnetizations of the two ferromagnetic layers are
anti-parallel, while the system is in a low resistance state when the magneti-
zations are parallel as shown in Figure 1.4.

Figure 1.4: Picture of a Magnetic Tunnel Junction (MTJ)

Reading the resistance of the structure, composed by the ferromagnetic do-
main of the track, the insulating layer and the ferromagnetic layer of the
substrate, it is possible to establish if a specific domain of the track "stores"
a ’0’ or a ’1’. Electrons tunnel through the insulating barrier from the fixed
layer to the free layer or viceversa depending on the direction of the current.
Three basic methods were formulated to describe the tunneling phenomenon
in a magnetic tunnel junction:

• Free electron model;

• Julliere’s model;
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1.7 – Racetrack Memory

• Slonczewski’s model;

Free electron model

Starting from the Schrodinger equation, it is possible to develop a basic model
which describes the probability of electron tunneling through a potential
barrier, and therefore the electric current of the structure related to the
tunneling probability. From the electron current, it is simple to derive an
expression of the conductance of the potential barrier, which explains how
the resistance of the MTJ structure changes switching from the anti-parallel
configuration to the parallel configuration. The final conductance formula
evaluated with the free electron model is:

G = |e|I
(EFL − EFR) = 2e2M

h

∫
k//

16k2
1k

2
Be

2kBl

[kB(k1 + k2)(1 + e−2kBl)]2 + [(k2
B − k1k2)(1− e−2kBl)]2dk//

(1.9)

In the Appendix, section Free electron tunneling model, there is the complete
demonstration of the conductance formula.

Julliere’s model

In 1975 M. Julliere, with a phenomenological approach creates a basic model
for the description of the conductance in a MTJ structure [17]. The model
is based on the following assumptions [18]:

• The tunneling probability is proportional to the product of the Fermi
energy density of states in the electrodes on either side of the barrier;

• Relates conductance change to spin polarization ratio of the magnetic
layers;

• Tunneling conductance is independent from the tunneling junctions (there-
fore it is not a good model for amorphous barrier);

• Electrons that tunnel from the pinned layer to the free layer (or vicev-
ersa) are supposed to conserve their spin, so no spin-flip happens during
tunneling through the oxide barrier;

For more details related to the mathematical expression of the Tunnel Mag-
neto Resistance evaluated by Julliere, look at the Appendix, section Julliere’s
model.
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Slonczewski’s model

The model developed by Slonczewski was born as an extension of the Jul-
liere’s model which is the most basic model to analyze and describe tunneling
phenomenon in MTJ and conductance state in MTJ. Slonczewski combines
the simple free electron model, and the Julliere approach, understanding
the imperfection of the Julliere’s approach[19]. The model is based on the
following main hyphothesis:

• Evaluate free electron model at the Γ point (k|| = 0);

• Free electron model in the limit of “thick” tunnel junctions;

• Tunneling conductance in Slonczewski’s models depends on junction;

For more details look at the Appendix, section Slonczewski’s model.

1.8 Voltage Controlled Magnetic Anisotropy
(VCMA)

The main objectives related to the realization of a Racetrack memory are
the control of the current which goes through the ferromagnetic layer and
which "moves" the domains, and the power consumption involved during all
the processes. Some strategies could be theoretically adopted to optimize the
motion of the domain walls, for instance creating a gradient of anisotropy as
shown in the article published by the department of Wuhan [20]. This section
is dedicated to the analysis of the Voltage Controlled Magnetic Anisotropy
effect. Practically the idea is to cover the ferromagnetic layer subdivided
in different domains, with an oxide layer upon which a metallic layer is
deposited in specific zones. In other words there will be some areas char-
acterized by a metallic gate upon the ferromagnetic layer, through which it
is possible to apply a specific voltage across the layers. The anisotropy con-
stant of the ferromagnetic layer itself will change. The anisotropy constant
Ku = Kvol + Ki

tFM
is characterized by a volume contribution and a surface

contribution, but since the ferromagnetic layer is extremely thin, the volume
anisotropy could be completely ignored as explained in section 1.6. Ki varies
around its constant value, when a voltage across the ferromagnetic layer is
applied: higher is the applied voltage, higher will be the variation of the
interfacial anisotropy constant. When the anisotropy constant increases, the
gate behaves like a barrier through which the domain wall could pass or not.
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1.8 – Voltage Controlled Magnetic Anisotropy (VCMA)

When the anisotropy constant decreases, the gate behaves like a hole, there-
fore the domain wall usually enters inside the "hole" and then it could go out
from the hole, or it could remain inside it. The region of different anisotropy
is crossed when a specific value of the current is applied.
It is possible to synchronize the motion of the domain wall through a specific
design of the track: when a specific current goes through the ferromagnetic
layer a specific voltage value across the memory could block the domain walls.

1.8.1 VCMA constant
In this section, the most common values of the VCMA constant ζv are re-
ported. In general, ζv could vary from few dozens of fJ

V m , until few hundreds
of fJ

V m . A strong dependence of ζv from the temperature annealing of the
structure is shown in figure 1.5, and figure 1.6. Temperature annealing is an
important parameter that must be underlined to study the compatibility of
magnetic memories with CMOS processes. For instance the low-k dielectrics
used between interconnects in CMOS back-end-of-line processes, requires a
thermal budget over 400◦C, and a MTJ structure made of Ta/CoFeB/MgO
shows an unstable PMA and TMR with a temperature annealing of 400◦C
making it incompatible with CMOS processes. Therefore more materials,
more structures must be investigated to obtain a stable system, with good
properties, high ζv, and great compatibility with CMOS processes [21].

Mo/CoFeB/MgO

Mo/CoFeB/MgO structure shows discrete VCMA coefficient value and gen-
eral properties with an annealing temperature of more than 400◦C, therefore
good compatibility with CMOS processes. The thickness of Mo layer and
of MgO layer are equal to 5 nm. ζv constant and Ki interfacial anisotropy
constant of a Mo/CoFeB/MgO structure show a dependence from the tem-
perature annealing, while they are nearly independent from the thickness of
the ferromagnetic layer of CoFeB. The following graph shows how ζv and Ki

varies with CoFeB thickness [21]:
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Figure 1.5: ζv and Ki in function of CoFeB thickness [21]

Averaging over CoFeB thickness values and expressing ζv and Ki in function
of the temperature annealing:

Figure 1.6: ζv and Ki in function of annealing temperature [21]

The graph shows that ζv value is equal to 40 fJ
V m when the annealing tempera-

ture is higher than 400◦C. ChangingMo withW , the structureW/CoFeB/MgO
shows a ζv value of 40− 50 fJ

V m more or less similar to Mo structure.
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Volatility and Non-Volatility Depending on the nature of the underlayer
(UL) the VCMA behaviour will change between a volatile and a non-volatile
behaviour. With an Underlayer (UL) of Ta or Pt, the structure exhibits a
non volatile behaviour of VCMA, while with W the structure is character-
ized by a volatile VCMA[22]. The objective is to realize a volatile VCMA
behaviour in a Racetrack, in this way when the voltage is turned off the
interfacial anisotropy is recovered to the original one.

Double Oxide Structure

A strategy to improve the VCMA coefficient ζv is to realize a double oxide
structure consisting of two oxides deposited on the ferromagnetic layer.
An example is HM(2)/CoFeB(1.2)/MgO(2)/Ta(1)/SiO2(63) where HM
stays for heavy metal, the number in parenthesis indicates the thickness of
the layer, and where Ta layer is a separator layer deposited between the two
oxide [23]. Double oxide structure improves VCMA coefficient, but the trade-
off is that the structure is thicker with respect to the structure described in
the previous section. ζv values are:

• ζv for Ta(2)/CoFeB(1.2)/MgO(2)/Ta(1)/SiO2(63) is 163 fJ
V m ;

• ζv for Hf(2)/CoFeB(1.2)/(MgO(2)/Ta(1)/SiO2(63) is 174 fJ
V m ;

Thin Layer at CoFeB/MgO interface

A double oxide structure is not the only way to improve the value of the
VCMA coefficient ζv. Depositing a thin layer of pure metal between CoFeB
layer and MgO gives the possibility to increase the ζv value.
An example of this kind of structure is: Ta(5)/CoFeB(1)/Mg(0.2)/MgO(2.5)|Al2O3(5)
where again the number in parenthesis indicates the thickness of the respec-
tive layer [24]. Mg layer could be replaced by Pt or by Ta, and depending
on the metal deposited at the interface between CoFeB and MgO, differ-
ent values of saturation magnetization, interfacial anisotropy constant and
VCMA coefficient are observed [24]:
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1 – Introduction

Figure 1.7: ζv, Ki and µ0Ms in function of the insertion layer thickness [24]

With Mg as the insertion layer, and with a thickness of 0.2 nm, the optimal
value of ζv is obtained, equal to 100 fJ

V m about.
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Chapter 2

Analytical modeling of
domain Wall (DW)
motion due to an applied
current density and/or
external magnetic field

2.1 Newtonian Approach
In the current chapter 2, an analytical model of the Domain Wall motion
induced by Spin Transfer Torque (STT), by an external magnetic field and
by Spin Orbit Torque (SOT) is derived. Finally the presence of a "gate" of
different anisotropy along the ferromagnetic track, with the possible block-
ing of the Domain Wall due to this region of different anisotropy is analiti-
cally modeled in chapter 2.13. There are already analytical model, obtained
with a Lagrangian approach which allow to describe the motion of a do-
main wall along the ferromagnetic track. In order to allow readers who do
not know the Lagrangian concept, to fully understand how a domain wall
moves due to STT effect, SOT effect or due to the presence of an external
magnetic field, a purely mechanical Newtonian approach is adopted. The
descriptive analytical model will be a two-coordinates model, i.e. a system
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of two differential equations, one describing how the center of the domain
wall moves over time, the other one describing how magnetization precedes
around the perpendicular axis. In literature, models with two collective co-
ordinates obtained with a Lagrangian approach have already been proposed
[25][26][27][28]. Some modeling of pinning potentials have also been proposed
as reported in [29][30][31]. Through the Lagrangian approach it is possible
to obtain models with three collective coordinates, which is a system of three
differential variables: the center of the domain wall q̇, precession angle φ̇, and
tilting angle of the domain wall Γ̇, or instead of the latter the width of the
domain wall ∆̇. Therefore, there are two distinct three-coordinates models:
q̇ − φ̇ − Γ̇ model and q̇ − φ̇ − ∆̇ model, as reported in [32][33][34][35]. A
more complex model, obtained with the Lagrangian approach, would predict
the presence of a four-coordinates system: q̇ − φ̇− Γ̇− ∆̇ model as reported
in [36][32]. These two additional collective coordinates, ∆̇ − Γ̇, add little
precision to the results with respect to a two-collective coordinates because
the width of the domain wall remains practically constant over time, and
since the tilting profile of the domain wall usually stabilizes around a con-
stant value. In the Appendix, section Four-Collective Coordinates system,
the four-collective coordinates system is reported only for more details. The
Newtonian model takes into account the tilting of the domain wall in the two
differential equations. The tilting angle could be provided by code externally
in fact, it is possible to observe and measure the tilting angle of a domain wall
with a Moke microscope. Moreover the domain wall width, which depends
on the magnetic anisotropy, is considered as a piecewise function in the case
of the presence of gates that modify the local anisotropy during the solution
of the differential system with Matlab. Therefore the innovative points of
this thesis consist in the Newtonian approach, or in other words in deriv-
ing the differential system with two collective coordinates without using the
Langrangian method; but above all in deriving an equation that allows to
describe a pinning site due to the presence of a "gate" of different anisotropy
due to VCMA effect. In conclusion, the main goal will be to find a function
which at the same time is as close as possible to a profile of an anisotropic
barrier/hole and which can be integrated for the anisotropic energy evalua-
tion, and which can subsequently be differentiated with respect to the center
of the domain wall as shown in chapter 2.13 to obtain a final expression of
the effective pinning field. The validity of the equation which describes the
effective pinning field generated by the VCMA gate will be confirmed with
the analytical results of the two collective coordinates model.
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2.2 – Reference System

2.2 Reference System
Figure 2.1a shows the reference system with respect to which, the motion of
the domain wall and its possible crossing through the VCMA gate will be
modeled.

(a) Reference System

(b) Domain wall parameters: ∆ is the domain wall width, Γ is the tilting angle of the domain
wall, q is the center of the domain wall

Figure 2.1: Reference system and schematic of a domain wall

The tangent base vectors, trivially obtained from the derivative of the spher-
ical coordinates are defined as:


êr = (sin(θ)cos(φ); sin(θ)sin(φ); cos(θ))
êθ = (cos(θ)cos(φ); cos(θ)sin(φ);−sin(θ))
êφ = (−sin(φ); cos(φ); 0)

(2.1)
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2.3 Angle profile of the magnetization
The profile of the θ angle of the magnetization could be described by the
following function [37]:

θ(x, y) = 2arctan[e
(x−q)·cos(Γ)+y·sin(Γ)

∆ ] (2.2)

where Γ is the tilting angle of the domain wall in the ’xy’ plane.

2.4 Domain Wall Width
In the current section 2.4 the equation of the Domain Wall width is demon-
strated with a naive approach.
Neglecting the tilting profile of the domain wall, the θ function could be writ-
ten in a simpler way, from which it will be easier to evaluate the infinitesimal
angle variation:

θ(x) = 2arctan[e
x−q
∆ ] (2.3)

This function describes quite well the angle profile of the magnetization, and
the counterexample is that in the middle of the profile, when x = q its value
is perfectly π

2 which means that our magnetization lies in the ′xy′ plane.
Another reasoning why this function is a good choice is due to the fact that
the mathematical expression of the derivative could be rewritten in a easier
form as it will be shown later. Now, to demonstrate the infinitesimal angle
between two adjacent spins, the center of the domain wall profile is supposed
for simplicity to be perfectly at the origin of the axis, therefore q = 0.

θ(x) = 2arctan[e
x
∆ ] (2.4)

The series of spins could be imagined far "a" from each other, with "a" the
lattice parameter. The angle θ (which is the angle between the ’z’ axis and
’xy’ plane as illustrated in Figure 2.1a) varies really slow from 0° to +180°. In
the domain wall there is a great number of electrons (assumed as an infinite
number in the limit concept); it implies that the angle between one spin
and its successive is practically infinitesimal. To calculate this infinitesimal
variation of the angle, it could be simply defined as the difference between
the angle in the middle of the wall (π2 ) and the angle just one lattice space
after. In the concept of the limit, this is the mathematical expression of the
infinitesimal angle:

θinf = limx−>0[2arctan[e
x+∆x

∆ ]− 2arctan[e
x
∆ ]] = 2arctan[e

a
∆ ]− π

2 (2.5)
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With a naive approach, the width of the domain wall could be defined as
the product between the number of spins and the distance between each spin
defined as the lattice space "a":

∆ = N · a (2.6)

To evaluate the expression of the domain wall width, each energy quantity
involved in the domain wall must be calculated in function of the number
of spins N , and minimizing the total energy density with respect to N , the
optimal N value is found, and therefore the final domain wall width equation
is derived. In this basic model three energies are taken in consideration:

• Exchange energy;

• Uniaxial anisotropy energy;

• Demagnetizing energy;

Dzyaloshinskii–Moriya interaction (DMI) is not taken in consideration for
the domain wall width demonstration.
Starting from the exchange energy, it is defined as follow:

Eex = −2J12 · S1 · S2 = −2JS2 · cos(θ1 − θ2) (2.7)

The exchange interaction is supposed to happen only between adjacent elec-
trons. Since the angle difference between two successive spins is θinf just
calculated before, the energy penalty of each electron couple is [38]:

∆Eex = Eex−Eθ=0
ex = −2JS2 ·cos(θ1−θ2)+2JS2 = −2JS2 ·cos(θinf )+2JS2

(2.8)
Substituting ∆ = N · a, and in the limit of nearly infinite number of spins
involved into the domain wall:

limN−>∞[−2JS2 · cos(2arctan[e
1
N ]− π

2 ) + 2JS2] = 1− 1
2N2 (2.9)

Replacing the limit into the exchange energy equation [38]:

Eex ≈ −2JS2 · (1− 1
2N2 ) + 2JS2 = JS2

N2 (2.10)

The energy per unit area of an electron couple is expressed by the above
equation divided by a2, therefore considering that in this model there are
(N-1) couples, the total exchange energy density is [38]:

εex,tot = limN−>∞[ JS
2

N2a2 · (N − 1)] ≈ JS2

Na2 (2.11)
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The uniaxial anisotropy energy and the demagnetizing energy could be as-
similated both as anisotropy energy, both function of ∑N

i=1(sin(θi))2. The
total uniaxial anisotropy energy is:

Etot
a =

N∑
i=1

Ku · (sin(θi))2 (2.12)

where θi are the various, almost infinite, angles from 0° to 180° in step of θinf .
Concerning the demagnetizing energy, it is in general expressed as follow:

Edem = −1
2µ0 ~M · ~Hdem (2.13)

but through an easy calculation, it can be rewritten as:

Edem = µ0

2 ·(sin(θi))2 · [M2
sNx(cos(φ))2 +M2

sNy(sin(φ))2−M2
sNz]+

µ0M
2
s

2 Nz

(2.14)
To rewrite Edem, the definition of demagnetizing field ~Hdem = −←→N · ~M is used,
where←→N is the demagnetizing tensor. Joining the two energy quantities, the
uniaxial one and the demagnetizing one, the total energy per unit of volume
is:

Etot
anis = µ0M

2
s

2 Nz +Keff

N∑
i=1

(sin(θi))2 (2.15)

with

Keff = Ku + µ0M
2
s

2 (Nx(cos(φ))2 +Ny(sin(φ))2 −Nz) (2.16)

Now the objective is to solve the series of (sin(θi))2. Practically each θi is a
multiple of the infinitesimal angle θinf , from 0° to 180°:



1 · 2arctan[e a∆ ]− π
2

2 · 2arctan[e a∆ ]− π
2

3 · 2arctan[e a∆ ]− π
2

...

N · 2arctan[e a∆ ]− π
2

(2.17)

Since the increment between one term of the series and its successive is
practically infinitesimal, the series could be rewritten as an integral. We are
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in the case in which a summation almost coincides with the integral concept:

N∑
i=0

(sin(θi))2 =
N∑
i=0

(sin(i · (2arctan[e
a
∆ ]− π

2 )))2 (2.18)

N∑
i=0

(sin(θi))2 ≈
∫ N

0
(sin(N · (2arctan[e

a
∆ ]− π

2 )))2dN ≈ N

2 (2.19)

Replacing the result into the equation of the total anisotropy energy, and
rewriting the total energy per unit of surface instead of per unit of volume
[38]:

εtotanis = N

2 ·Keffa+ µ0M
2
s

2 Nza (2.20)

The total energy per unit of surface is a function of N as expected [38]:

εtot = JS2

Na2 + N

2 ·Keffa+ µ0M
2
s

2 Nza (2.21)

Now, as previously stated, minimizing the total energy in function of N [38]:

dεtot

dN
= 0 (2.22)

It is possible to obtain the equilibrium expression of N :

N =
√√√√ 2JS2

Keffa3 (2.23)

Replacing it into the equation of ∆ = N · a, the final width is equal to [38]:


∆ =
√

Abbc
Ki
t +µ0M2

s
2 (Nx(cos(φ))2+Ny(sin(φ))2−Nz)

Abcc = 2JS2

a

Ku = Ki

t +Kvol ≈ Ki

t

(2.24)

where Abcc is the exchange stiffness constant, which in the case of a body
centered cubic lattice is equal to Abbc = 2JS2

a [39].
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2.5 Landau-Lifshitz-Slonczewski equation &
Spin Orbit Torque

Landau and Lifshitz described the motion of the magnetization taking in
consideration its precession, Gilbert introduced the damping term of the
magnetization, and finally Slonczewski and Zhang-Li added the STT terms,
adiabatic and non-adiabatic one that are experimentally observed and for-
mulated. The LLGS equation is equal to [40][37]:

d ~M

dt
= γ ~Heff × ~M + α

Ms

~M × d ~M

dt
− u(ĵe · ∇) ~M + βu

Ms

~M × (ĵe · ∇) ~M (2.25)

where β is the phenomenological non-adiabatic spin transfer parameter, γ is
the gyromagnetic ratio and u has the following expression [40][37]:

u = gµBP

2eMs
Je (2.26)

u has the dimension of velocity and it is directly proportional to the electrical
current density.
The LLGS equation could be rewritten taking in consideration the Spin Or-
bit Torque (SOT) effect. Like the Spin Transfer Torque (STT) effect, the
Spin Orbit Torque (SOT) effect also exerts two twisting moments on the
magnetization, one of precession and one of damping. The authors of these
articles [36], [41], [42], [43], [44], [45] propose an analytical expression of the
Spin Orbit Torque effect; more exactly in [45], the analytical expression im-
plemented in Mumax3 is illustrated and explained. The analytical expression
of the SOT effect implemented in Mumax3 will be implemented in this thesis:

d ~M

dt
=γ ~Heff × ~M + α

Ms

~M × d ~M

dt
− u(ĵe · ∇) ~M + βu

Ms

~M × (ĵe · ∇) ~M

+ γMsaFL(m̂× σ̂) + γMsbDLm̂× (m̂× σ̂)
(2.27)

where aFL is the field like SOT constant, and bDL is the damping like SOT
constant: aFL = ~αh,FLJSOT

2eMstFM

bDL = ~αh,DLJSOT
2eMstFM

(2.28)
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Before dealing with the equation of the domain wall motion, the last step is
to remember the tangent base vector defined in the section 2.1a:


êr = (sin(θ)cos(φ); sin(θ)sin(φ); cos(θ))
êθ = (cos(θ)cos(φ); cos(θ)sin(φ);−sin(θ))
êφ = (−sin(φ); cos(φ); 0)

(2.29)

From the infinitesimal displacement of the magnetization in spherical coor-
dinate:

d ~M(r, θ, φ) = dMêr +Msdθêθ +Mssin(θ)dφêφ (2.30)

The time derivative of the magnetization, supposing that the modulus of
the magnetization does not change in time (it is a specific constant of the
material), is therefore:

d ~M(r, θ, φ)
dt

= dM

dt
êr +Ms

dθ

dt
êθ +Mssin(θ)dφ

dt
êφ = Ms

dθ

dt
êθ +Mssin(θ)dφ

dt
êφ

(2.31)
Exploiting the last result and exploiting the general kinetic momentum theorem[37]:


θ̇ = γ

Ms

~Γθêθ
φ̇sin(θ) = γ

Ms

~Γφêφ
γ = − e

2m

(2.32)

From the rewritten LLGS equation, it is easy to understand all the compo-
nents of torque, acting on the magnetization[37]:



~ΓHeff
= ~M × ~Heff

~ΓHα = ~M × ~Hα

~Γu = u
γ (ĵe · ∇) ~M

~Γβ = − βu
γMs

~M × (ĵe · ∇) ~M
~τSOT,FL = MsaFL(m̂× σ̂)
~τSOT,DL = MsbDLm̂× (m̂× σ̂)

(2.33)

All the torque components are expressed in CGS system, therefore µ0 = 1.
For each components, the approach consists to compute the vector products,
and the gradient in spherical coordinate and then through an easy scalar
product, translating or better projecting the result in the tangent base vector.
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Concerning the first torque component, it is related to the effective field. The
effective field is defined as follow:

~Heff = ~Hext + 2Aex
Ms
∇2m̂− 2Ku

Ms
mz ẑ − ~Hd −

2D0

Ms
((∇ · m̂)ẑ −∇m̂z) (2.34)

The field components of the effective fields are:

• The external applied field. For simplicity, the external field is supposed
to be applied only along the ẑ direction, but the demonstration could
be extended taking in consideration also the other directions;

• The exchange field due to the exchange interaction between each spin;

• The uniaxial anisotropy field;

• The demagnetizing field;

• The Dzyaloshinskii-Moriya field due to DMI;

The sum of the uniaxial anisotropy field and the demagnetizing field compo-
nent related to Nz are defined as the Effective Anisotropy Field. Exploit-
ing this definition the remaining part of the demagnetizing field associated
to Nx and Ny component of the demagnetizing field is called Transverse
Shape Anisotropy Field. In conclusion the sum of the uniaxial anisotropy
field with the demagnetizing field is equal to the sum of the effective field
with the transverse shape anisotropy field. Making it explicit the ~Heff could
be rewritten as:

~Heff = ~Hext + 2Aex
Ms
∇2m̂+ 2Keff

Ms
mz ẑ + 2Kd

Ms
myŷ −

2D0

Ms
((∇ · m̂)ẑ −∇m̂z)

(2.35)
where Keff = Ku − 1

2µ0M
2
s . Kd ≈ µ0NxM

2
s

2 because the structure of the
ferromagnetic layer is planar.

2.6 Mathematical Properties
The function of the angle profile of the magnetization describes quite well
the realistic angle profile of a domain wall. At the same time this function
has some properties that allow to write the function itself and its derivative
in a more simplistic way through algebraic manipulation. By exploiting this
specific profile function, it will be possible to obtain final equations, which
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describe the motion of the domain wall. The following equation shows an
alternative way to write the function sin(2arctan(x)):

sin[2 · arctan(x)] = 2 · sin[arctan(x)]cos[arctan(x)] (2.36)

sin[2 · arctan(x)] = 2 · x√
1 + x2 ·

1√
1 + x2 = 2x√

1 + x2 (2.37)

Substituting y with an exponential function:

sin[2 · arctan(exp(x))] = 2 · ex
1 + e2x = sech(x) (2.38)

Now, making the derivative of the angle profile and exploiting the last rela-
tionship:

d

dx
[2arctan[e

(x−q)cos(Γ)+ysin(Γ)
∆ ]] =

cos(Γ)sech( (x−q)cos(Γ)+ysin(Γ)
∆ )

∆ = cos(Γ)sin(θ(x))
∆
(2.39)

In conclusion:
dθ(x, y)
dx

= cos(Γ)
∆ sin(θ(x, y)) (2.40)

Another important property that will be exploited during the thesis is the
following:

cos(2arctan(ex)) = −tanh(x) (2.41)
To demonstrate the equality, just start with:

cos(2arctan(ex)) = 1− tan2(arctan(ex))
1 + tan2(arctan(ex)) = 1− e2x

1 + e2x = 1− e−(−2x)

1 + e−(−2x) (2.42)

cos(2arctan(ex)) = tanh(−x) = −tanh(x) (2.43)
therefore:

cos(θ(x, y)) = −tanh((x− q)cos(Γ) + ysin(Γ))
∆ ) (2.44)

2.7 Effective Field
In section 2.5 all the effective torque components acting on the magnetiza-
tion are expressed in the CGS system, therefore µ0 = 1. In the following
subsection, each effective torque component and all the parameters will be
expressed in the International System of Units (SI) for clarity.
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2.7.1 External Field
Supposing that the external field is applied only along the ẑ direction:

~Hext =


0
0
Hz

 ·

x̂
ŷ
ẑ

 (2.45)

The external torque is equal to:

~Γext = µ0 ~M × ~Hext =


Ms · sin(θ)cos(φ)
Ms · sin(θ)sin(φ)

Ms · cos(θ)

×


0
0

µ0Hz

 (2.46)

~Γext =


µ0Ms ·Hz · sin(θ) · sin(φ)
−µ0Ms ·Hz · sin(θ) · cos(φ)

0

 ·

x̂
ŷ
ẑ

 (2.47)

Now through the scalar product with the tangent base vector, the final ex-
pression for the external torque is: [37]:

~ΓHext =


0
0

−µ0 ·Ms ·Hz · sin(θ)

 ·

êr
êθ
êφ

 = −µ0Ms ·Hz · sin(θ)êφ (2.48)

2.7.2 Exchange Field
The exchange field is strictly related to the profile angle of the magnetization.
Its mathematical expression is:

~Hex = 2Aex
µ0Ms

∇2m̂ = 2Aex
µ0Ms

(∂
2m̂

∂x2 + ∂2m̂

∂y2 ) = 2Aex
µ0M2

s

(∂
2 ~M

∂x2 + ∂2 ~M

∂y2 ) (2.49)

To evaluate the exchange torque, the vectorial product between the magne-
tization and the exchange field must be evaluated:

~Γex = µ0
2Aex
µ0Ms

( ~M ×∇2~m) = 2Aex
Ms

( ~M × (∂
2~m

∂x2 + ∂2~m

∂y2 )) (2.50)

The profile model of the magnetization is a one dimensional function, there-
fore the ∇ operator could be written simply with a one dimensional deriva-
tive. The second derivative of ~m could be calculated deriving each spherical
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component:

∇2m̂ = ( ∂
2

∂x2 + ∂2

∂y2 )


cos(φ)sin(2atan(e

(x−q)cos(Γ)+ysin(Γ)
∆ ))

sin(φ)sin(2atan(e
(x−q)cos(Γ)+ysin(Γ)

∆ ))
cos(2atan(e

(x−q)cos(Γ)+ysin(Γ)
∆ ))

 (2.51)

∇2m̂ =


cos(φ)(∂

2sin(2atan(e
(x−q)cos(Γ)+ysin(Γ)

∆ ))
∂x2 + ∂2sin(2atan(e

(x−q)cos(Γ)+ysin(Γ)
∆ ))

∂y2

sin(φ)(∂
2sin(2atan(e

(x−q)cos(Γ)+ysin(Γ)
∆ ))

∂x2 + ∂2sin(2atan(e
(x−q)cos(Γ)+ysin(Γ)

∆ ))
∂y2 )

∂2cos(2atan(e
(x−q)cos(Γ)+ysin(Γ)

∆ ))
∂x2 + ∂2cos(2atan(e

(x−q)cos(Γ)+ysin(Γ)
∆ ))

∂y2


(2.52)

The second derivative of the sine function with respect to x could be rewritten
as:

∂2sin(2atan(e
(x−q)cos(Γ)+ysin(Γ)

∆ ))
∂x2 =

∂2sech( (x−q)cos(Γ)+ysin(Γ)
∆ )

∂x2 (2.53)

The result of the derivation is:
cos(Γ)2

∆2 [tanh2((x− q)cos(Γ) + ysin(Γ)
∆ )sech((x− q)cos(Γ) + ysin(Γ)

∆ )]+

− cos(Γ)2

∆2 [sech3((x− q)cos(Γ) + ysin(Γ)
∆ )]

(2.54)

Through several algebraic manipulation the final result could be rewritten
as:

∂2sin(θ(x, y))
∂x2 = cos2(Γ)

∆2 (sin(θ)− 2sin3(θ)) (2.55)

Similarly:
∂2sin(θ(x, y))

∂y2 = sin2(Γ)
∆2 (sin(θ)− 2sin3(θ)) (2.56)

Concerning the second derivative of the cosine function with respect to x:

∂2cos(2atan(e
(x−q)cos(Γ)+ysin(Γ)

∆ ))
∂x2 =

∂2tanh(− (x−q)cos(Γ)+ysin(Γ)
∆ )

∂x2 (2.57)

therefore:

∂2cos(2atan(e
(x−q)cos(Γ)+ysin(Γ)

∆ ))
∂x2 = −cos2(Γ)2cos(θ(x, y))sin2(θ(x, y))

∆2 (2.58)
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Similarly:
∂2cos(θ(x, y))

∂y2 = −cos2(Γ)2cos(θ(x, y))sin2(θ(x, y))
∆2 (2.59)

Therefore:

∇2~m = ∂2~m

∂x2 + ∂2~m

∂y2 =


cos(φ)(sin(θ)−2sin3(θ)

∆2 )
sin(φ)(sin(θ)−2sin3(θ)

∆2 )
−2cos(θ)sin2(θ)

∆2

 ·

x̂
ŷ
ẑ

 (2.60)

Knowing the mathematical expression of ∇2~m, the vectorial product must
be computed to obtain the final expression of the exchange torque:

~M ×∇2~m = Ms


−sin(θ)cos(θ)sin(φ)

∆2

−sin(θ)cos(θ)cos(φ)
∆2

0

 ·

x̂
ŷ
ẑ

 (2.61)

Now making the scalar product with the tangent base vector, it is possible
to obtain the final expression of the exchange torque in tangent base system:

~Γex = 2Aex
Ms

( ~M ×∇2m̂) =


0
0

2Aex sin(θ)cos(θ)
∆2

 ·

êr
êθ
êφ

 (2.62)

2.7.3 Uniaxial Anisotropy Field
The uniaxial anisotropy is defined as:

~Hani = − 2Ku

µ0Ms
mz ẑ =


0
0

−2Ku

Ms
· cos(θ)

 ·

x̂
ŷ
ẑ

 (2.63)

The anisotropy field exerts a torque moment on the magnetization defined
as:

~Γani = −µ0 ~M × ~Hani = −µ0


Ms · sin(θ)cos(φ)
Ms · sin(θ)sin(φ)

Ms · cos(θ)

×


0
0

2Ku

µ0Ms
· cos(θ)

 (2.64)

The result of the vectorial product is:

~Γani =


−2Kusin(θ)cos(θ)sin(φ)
2Kusin(θ)cos(θ)cos(φ)

0

 ·

x̂
ŷ
ẑ

 (2.65)
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Transposing in the tangent base vector:

~Γani =


0
0

2Kusin(θ)cos(θ)

 ·

êr
êθ
êφ

 (2.66)

2.7.4 Demagnetizing Field
The demagnetizing torque is defined as:

~ΓHd
= −µ0 ~M × ~Hd = −µ0 ~M × (−N̄ · ~M) (2.67)

~ΓHd
= µ0


Ms · sin(θ)cos(φ)
Ms · sin(θ)sin(φ)

Ms · cos(θ)

×

Ms ·Nxsin(θ)cos(φ)
Ms ·Nysin(θ)sin(φ)

Ms ·Nzcos(θ)

 ·

x̂
ŷ
ẑ

 (2.68)

Developing the vectorial product in the equation above:

~ΓHd
= −µ0M

2
s


(Ny −Nz) · sin(θ)cos(θ)sin(φ)
(Nz −Nx) · sin(θ)cos(θ)cos(φ)

(Nx −Ny) · (sin(θ))2sin(φ)cos(φ)

 ·

x̂
ŷ
ẑ

 (2.69)

Making the scalar product with the tangent base vector, the final expression
for the demagnetizing torque is:

~ΓHd
= −µ0M

2
s


0

(Ny −Nx) · sin(θ)sin(φ)cos(φ)
(Nz −Ny(sin(φ))2 −Nx(cos(φ))2) · (sin(θ))cos(θ))

 ·

êr
êθ
êφ


(2.70)

In the presence of a certain tilting profile, the torque must be accurately
modified. The approach is to change the coordinate system, supposing that
there is a certain tilting angle Γ, and in this way a general expression can
be found as done for the DMI torque. An easier method is to replace φ with
φ − Γ, because intuitively the in-plane angle φ changes a bit because of the
presence of the tilting angle Γ. In conclusion the demagnetizing torque is
equal to:

~ΓHd
= −µ0M

2
s


0

(Ny −Nx)sin(θ)sin(φ− Γ)cos(φ− Γ)
(Nz −Ny(sin(φ− Γ))2 −Nx(cos(φ− Γ))2)sin(θ)cos(θ)

·

êr
êθ
êφ


(2.71)
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2.7.5 Effective Anisotropy Field
The Effective Anisotropy Field as explained before is the sum of the uniaxial
anisotropy field with the Nz component of the Demagnetizing Field, therefore
neglecting Nx and Ny , and since Nz ≈ 1 the Effective Anisotropy Torque is
equal to:

~ΓKeff
= ~ΓHd

+ ~Γani,Nz =


0
0

2Kusin(θ)cos(θ)− µ0M
2
s sin(θ)cos(θ)

 ·

êr
êθ
êφ


(2.72)

Keff is defined as:
Keff = Ku −

1
2µ0M

2
s (2.73)

Therefore the final expression of ~ΓKeff
is:

~ΓKeff
= 2Keffsin(θ)cos(θ)êφ (2.74)

2.7.6 Transverse Shape Anisotropy
The transverse shape anisotropy energy is associated to the domain wall, and
it differentiates the energetic state of a Bloch domain wall with respect to
a Néel domain wall. The effective field due the transverse shape anisotropy
energy is [20]:

~HKd
= 2Kd

µ0Ms
mxx̂ (2.75)

The Kd parameter is equal to:

Kd = µ0NxM
2
s

2 (2.76)

Where Nx could be evaluated with the following formula [20]:

Nx = ln(2)tFM
π∆ (2.77)

where tFM is equal to the thickness of the ferromagnetic layer. The torque
associated to the effective field component ~Kd is:

~ΓKd
= 2Kdmx

µ0Ms

~M × x̂ = 2Kd

µ0
mxm̂× x̂ (2.78)
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where mx is equal to sin(θ)cos(φ). The torque m̂× x̂ is equal to:

m̂× x̂ =


sin(θ)cos(φ)
sin(θ)sin(φ)

cos(θ)

×


1
0
0

 =


0

cos(θ)
−sin(θ)sin(φ)

 ·

x̂
ŷ
ẑ

 (2.79)

Through the scalar product with the tangent base vector:

m̂× x̂ =


0

sin(φ)
cos(θ)cos(φ)

 ·

êr
êθ
êφ

 (2.80)

The final expression of the transverse anisotropic torque is:

~ΓKd
= 2Kd


0

sin(θ)sin(φ)cos(φ)
sin(θ)cos(θ)cos2(φ)

 ·

êr
êθ
êφ

 (2.81)

The expression of the transverse shape torque reported in equation 2.81 is
valid for a non tilted domain wall. In the presence of a certain tilting profile,
the torque must be accurately modified. The approach is to change the
coordinate system, supposing that there is a certain tilting angle Γ, and in
this way a general expression can be found as done for the DMI torque. An
easier method is to replace φ with φ − Γ, because intuitively the in-plane
angle φ changes because of the presence of the tilting angle Γ. In conclusion
the expression of the transverse shape anisotropy is:

~ΓKd
= 2Kd


0

sin(θ)sin(φ− Γ)cos(φ− Γ)
sin(θ)cos(θ)cos2(φ− Γ)

 ·

êr
êθ
êφ

 (2.82)

This final equation coincides with equation 2.70 supposing Ny equal to 0 and
Nx equal to ln(2)tFM

π∆ . The domain wall in the initial state can be in the Néel
configuration or in the Bloch configuration, and the sign of Kd determines
which of the two configurations is energetically preferred.

2.7.7 Final expression of the effective field torque
The effective field will be expressed in function of the sum of the effective
anisotropy field with the transverse shape anisotropy field instead of the
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sum of the uniaxial anisotropy field with the demagnetizing field. The final
expression of the effective field is therefore:

~ΓHeff
=− µ0Ms ∗Hz ∗ sin(θ)êφ + 2Aex

sin(θ)cos(θ)
∆2 êφ + 2Kusin(θ)cos(θ)êφ+

− µ0M
2
s sin(θ)cos(θ)êφ + 2Kdsin(θ)sin(φ− Γ)cos(φ− Γ)êθ+

+ 2Kdsin(θ)cos(θ)cos2(φ− Γ)êφ
(2.83)

2.8 DMI Field
Dzyaloshinskii–Moriya interaction field is equal to:

HDMI = − 2D0

µ0Ms
((∇ · m̂)ẑ −∇m̂z) (2.84)

The divergence of m̂ could be easily evaluated:

∇ · m̂ = ∂m̂x

∂x
+ ∂m̂y

∂y
+ ∂m̂z

∂z
= cos(φ)∂sin(θ(x, y))

∂x
+ sin(φ)∂sin(θ(x, y))

∂y
(2.85)

Evaluating firstly the derivative of the sine function:

∂sin(2atan(e
(x−q)cos(Γ)+ysin(Γ)

∆ ))
∂x

= −
cos(Γ)tanh( (x−q)cos(Γ)+ysin(Γ)

∆ )sech( (x−q)cos(Γ)+ysin(Γ)
∆ )

∆
(2.86)

∂sin(2atan(e
(x−q)cos(Γ)+ysin(Γ)

∆ ))
∂x

= cos(Γ)sin(θ)cos(θ)
∆ (2.87)

Similarly the derivative of the sine function with respect to y:

∂sin(2atan(e
(x−q)cos(Γ)+ysin(Γ)

∆ ))
∂y

= sin(Γ)sin(θ)cos(θ)
∆ (2.88)

Finally:

∇ · m̂ = [cos(Γ)cos(φ) + sin(Γ)sin(φ)
∆ ]sin(θ)cos(θ) (2.89)

For what concern the gradient of m̂z:

∇m̂z = ∂mz

∂x
x̂+ ∂mz

∂y
ŷ + ∂mz

∂z
ẑ = ∂cos(θ)

∂x
x̂+ ∂cos(θ)

∂y
ŷ (2.90)
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The derivative of the cosine function with respect to x is:

∂cos(2atan(e
(x−q)cos(Γ)+ysin(Γ)

∆ ))
∂x

= −cos(Γ)
sech2( (x−q)cos(Γ)+ysin(Γ)

∆ )
∆ (2.91)

∂cos(2atan(e
(x−q)cos(Γ)+ysin(Γ)

∆ ))
∂x

= −cos(Γ)sin2(θ)
∆ (2.92)

while similarly:

∂cos(2atan(e
(x−q)cos(Γ)+ysin(Γ)

∆ ))
∂y

= −sin(Γ)sin2(θ)
∆ (2.93)

The final expression of ∇m̂z is:

∇m̂z = −cos(Γ)sin2(θ)
∆ x̂− sin(Γ)sin2(θ)

∆ ŷ (2.94)

The DMI torque is equal to:

~ΓDMI = −µ0
2D0

µ0Ms

~M×((∇·m̂)ẑ−∇m̂z) = −2D0~m×((∇·m̂)ẑ−∇m̂z) (2.95)

therefore to evaluate the final expression of ~ΓDMI , the vectorial product must
be calculated:

~m× ((∇ · m̂)ẑ −∇m̂z) =

=


sin(θ)cos(φ)
sin(θ)sin(φ)

cos(θ)

×


cos(Γ)sin2(θ)
∆

sin(Γ)sin2(θ)
∆

cos(Γ)sin(θ)cos(θ)cos(φ)
∆ + sin(Γ)sin(θ)cos(θ)sin(φ)

∆

 ·

x̂
ŷ
ẑ


(2.96)

~m× ((∇ · m̂)ẑ −∇m̂z) =

=


cos(Γ)sin2(θ)cos(θ)sin(φ)cos(φ)

∆ − sin(Γ)sin2(θ)cos(θ)cos2(φ)
∆

cos(Γ)sin2(θ)cos(θ)
∆ − cos(Γ)sin2(θ)cos(θ)cos2(φ)

∆ − sin(Γ)sin2(θ)cos(θ)sin(φ)cos(φ)
∆

sin(Γ)sin3(θ)cos(φ)
∆ − cos(Γ)sin3(θ)sin(φ)

∆

 ·

x̂
ŷ
ẑ


(2.97)
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Now translating equation 2.97 in the tangent base vector:

~m× ((∇ · m̂)ẑ −∇m̂z) =


0

sin2(θ)
∆ (cos(Γ)sin(φ)− sin(Γ)cos(φ))

0

 ·

êr
êθ
êφ


(2.98)

Final DMI torque moment is:

~ΓDMI = −2D0
sin2(θ)

∆ (cos(Γ)sin(φ)− sin(Γ)cos(φ))êθ (2.99)

2.9 Damping Field
The explicit equation of the damping field was found by Gilbert, as stated
before [37]:

Hα = α

γMs

d ~M

dt
(2.100)

The damping torque is defined as:

~ΓHα = ~M × ( α

γMs

d ~M

dt
) = α

γMs
( ~M × d ~M

dt
) (2.101)

To evaluate the time derivative of the magnetization, it is sufficient to derive
over time each component of the magnetization vector as follow:

d ~M

dt
= d

dt


Ms · sin(θ(t))cos(φ(t))
Ms · sin(θ(t))sin(φ(t))

Ms · cos(θ(t))

 (2.102)

d ~M

dt
=


Ms(cos(θ(t))cos(φ(t)) ˙θ(t)− sin(θ(t))sin(φ(t)) ˙φ(t))
Ms(cos(θ(t))sin(φ(t)) ˙θ(t) + sin(θ(t))cos(φ(t)) ˙φ(t))

−Mssin(θ(t)) ˙θ(t)

 (2.103)

Performing the vectorial product ~M × d ~M
dt :

~ΓHα = αMs

γ


−sin(φ)θ̇ − sin(θ)cos(θ)cos(φ)φ̇
cos(φ)θ̇ − sin(θ)cos(θ)sin(φ)φ̇

sin(θ)2φ̇

 ·

x̂
ŷ
ẑ

 (2.104)
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Transposing ~Γα in the coordinate base system and dealing with all the cal-
culations, the result is [37]:

~ΓHα = αMs

γ


0

−φ̇sin(θ)
θ̇

 ·

êr
êθ
êφ

 (2.105)

2.10 Adiabatic Spin Transfer Torque (A-STT)
This is the mathematical expression of the adiabatic spin transfer torque
(STT) [37]:

~Γu = −u
γ

(ĵe · ∇) ~M (2.106)

There are two approaches to derive the expression of the adiabatic STT: the
first one is to calculate the gradient of the vector ~M which is a tensor, and
then evaluating the scalar product with ĵe, the second one is to calculate
the scalar product between the current vector ĵe and the ∇ operator. Avoid-
ing the tensor notation will simplify a bit the notation and the calculation.
Generalizing the direction of ĵe:

~Γu = −u
γ

((x̂+ ŷ + ẑ) · ( ∂
∂x
x̂+ ∂

∂y
ŷ + ∂

∂z
ẑ)) ~M (2.107)

Supposing that the current through the ferromagnetic layer is applied only
along the x̂ direction:

~Γu = −u
γ

((x̂) · ( ∂
∂x
x̂+ ∂

∂y
ŷ + ∂

∂z
ẑ)) ~M = −u

γ

∂

∂x
~M = −u

γ

∂ ~M

∂θ

∂θ

∂x
(2.108)

The derivative of ~M with respect to θ is equal to:

∂ ~M

∂θ
= Ms

∂

∂θ


sin(θ)cos(φ)
sin(θ)sin(φ)

cos(θ)

 = Ms


cos(θ)cos(φ)
cos(θ)sin(φ)
−sin(θ)

 = Msêθ (2.109)

The derivatives of the θ profile with respect to x and y directions are:
∂θ
∂x = cos(Γ)sin(θ)

∆
∂θ
∂y = sin(Γ)sin(θ)

∆
(2.110)
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The final expression of ~Γu is:

~Γu = −uMscos(Γ)
γ∆ sin(θ)êθ (2.111)

Using the second approach, it is possible to evaluate the general tensor as-
sociated to the gradient of the magnetization vector ~M . The gradient of a
field is defined as the gradient of each component:

∇ ~M =


∇sin(θ(x, y))cos(φ)
∇sin(θ(x, y))sin(φ)
∇cos(θ(x, y))

 =


cos(φ)∇sinh( (x−q)cos(Γ)+ysin(Γ))

∆
sin(φ)∇sinh( (x−q)cos(Γ)+ysin(Γ))

∆
−∇tanh( (x−q)cos(Γ)+ysin(Γ)

∆ )


(2.112)

Since ∇ ~M is a tensor each component of the gradient of the magnetization
is a vector:

∇ ~M =


cos(φ)(cos(Γ)sin(θ)cos(θ)

∆ x̂+ sin(Γ)sin(θ)cos(θ)
∆ ŷ + 0ẑ)

sin(φ)(cos(Γ)sin(θ)cos(θ)
∆ x̂+ sin(Γ)sin(θ)cos(θ)

∆ ŷ + 0ẑ)
−cos(Γ)sin2(θ)

∆ x̂− sin(Γ)sin2(θ)
∆ ŷ + 0ẑ

 (2.113)

Writing in tensor notation:

∇ ~M = D̄ =


cos(φ)cos(Γ)sin(θ)cos(θ)

∆ cos(φ)sin(Γ)sin(θ)cos(θ)
∆ 0

sin(φ)cos(Γ)sin(θ)cos(θ)
∆ sin(φ)sin(Γ)sin(θ)cos(θ)

∆ 0
−cos(Γ)sin2(θ)

∆ −sin(Γ)sin2(θ)
∆ 0

 (2.114)

Making the scalar product of each component with ĵe = x̂ the tensor be-
comes a vector and through the scalar product with the tangent base vector,
the same result of the adiabatic torque evaluated before is obtained. If the
current has also a component along ŷ direction ĵe = x̂ + ŷ, the final torque
expression will become:

~Γu = −uMs[cos(Γ) + sin(Γ)]
γ∆ sin(θ)êθ (2.115)

2.11 Non-Adiabatic Spin Transfer Torque (NA-
STT)

This is the mathematical expression of the non-adiabatic STT term [37]:

~Γβ = βu

γMs

~M × (ĵe · ∇ ~M) = βu

γMs

~M × (∂
~M

∂θ

∂θ

∂x
) (2.116)
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∂ ~M
∂θ

∂θ
∂x is calculated in the previous section A-STT, therefore only the vectorial

product and the scalar product with the tangent base vector must be made
explicit:

~M×∂
~M

∂θ

∂θ

∂x
= Ms


sin(θ)cos(φ)
sin(θ)sin(φ)

cos(θ)

×


0
Mscos(Γ)

∆ sin(θ)
0

 =


0
0

M2
s cos(Γ)sin(θ)

∆

·

êr
êθ
êφ


(2.117)

The final expression of the non-adiabatic STT torque is:

~Γβ = βuMscos(Γ)sin(θ)
γ∆ êφ (2.118)

2.12 Spin Orbit Torque
In section 2.5 the Spin Orbit Torque is expressed in the CGS system, there-
fore µ0 = 1. In the following subsection, it will be expressed in the Interna-
tional System of Units (SI) for clarity. The torque exerted on the domain
wall due to the spin orbit torque effect is therefore equal to:

~τSOT = µ0MsaFL(m̂× σ̂) + µ0MsbDLm̂× (m̂× σ̂) (2.119)

where σ̂ is:
σ̂ = ĴSOT × n̂ (2.120)

n̂ is the normal unit vector with respect to the ferromagnetic layer, while
ĴSOT is the direction of the current flowing through the heavy metal layer. σ̂
direction could be generalized as a combination of sine and cosine function,
but usually, especially in the case of thin layers, it is parallel to ŷ direction.
Therefore σ̂ = ŷ.

2.12.1 Field Like Torque
Field like torque component is expressed by the following equation:

~τFL = µ0MsaFL(m̂× σ̂) (2.121)

Starting with the vectorial product calculation:

m̂× σ̂ =


sin(θ)cos(φ)
sin(θ)sin(φ)

cos(θ)

×


0
1
0

 =


−cos(θ)

0
sin(θ)cos(φ)

 ·

x̂
ŷ
ẑ

 (2.122)
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projecting on the tangent base system:

m̂× σ̂ =


0

−cos(φ)
cos(θ)sin(φ)

 ·

êr
êθ
êφ

 (2.123)

Therefore:

~τFL = µ0MsaFL(m̂× σ̂) = −µ0MsaFL


0

cos(φ)
−cos(θ)sin(φ)

 ·

êr
êθ
êφ

 (2.124)

the parameter aFL in SI is equal to:

aFL = ~αh,FLJSOT
2µ0eMstFM

(2.125)

where ~ is the Planck constant divided by 2π, αh is a factor of intensity related
to the Damping Like Torque (it is the ratio between the Spin Current and
the Current that goes through the heavy metal), e is the electron charge, and
tFM is the thickness of the ferromagnetic layer.

2.12.2 Damping Like Torque
Slonczewski like torque or damping like torque component is expressed by
the following equation:

~τDL = µ0MsbDLm̂× (m̂× σ̂) (2.126)

m̂×σ̂ is calculated in the previous section, and it can be exploited to evaluate
m̂× (m̂× σ̂):

m̂× (m̂× σ̂) =


sin(θ)cos(φ)
sin(θ)sin(φ)

cos(θ)

×

−cos(θ)

0
sin(θ)cos(φ)

 (2.127)

m̂× (m̂× σ̂) =


sin2(θ)sin(φ)cos(φ)

−sin2(θ)cos2(φ)− cos2(θ)
sin(θ)cos(θ)sin(φ)

 ·

x̂
ŷ
ẑ

 (2.128)

Projecting on the tangent base system:

m̂× (m̂× σ̂) =


0

−cos(θ)sin(φ)
−cos(φ)

 ·

êr
êθ
êφ

 (2.129)
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The final expression of the Damping Like Torque is:

~τDL = µ0MsbDL


0

−cos(θ)sin(φ)
−cos(φ)

·

êr
êθ
êφ

 = −µ0MsbDL


0

cos(θ)sin(φ)
cos(φ)

·

êr
êθ
êφ


(2.130)

the expression of bDL in SI is:

bDL = ~αh,DLJSOT
2µ0eMstFM

(2.131)

where ~ is the Planck constant divided by 2π, αh is a factor of intensity
related to the Damping Like Torque (it is the ratio between the Spin Current
and the Current that goes through the heavy metal layer), e is the electron
charge, and tFM is the thickness of the ferromagnetic layer.
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2.13 Modelling of a Gate of different anisotropy
In this section an analytical description of a "Gate" of different anisotropy is
proposed. As previously explained the motion of the Domain Walls (DWs)
along the track can be synchronized thanks to the presence of periodical gates
through which a specific voltage is applied to locally change the anisotropy
value. Practically periodical potential barrier of anisotropy are created, and
in this way the DWs are blocked if the strength of the torque exerted on
the DWs themselves is not sufficiently high, in other words it is possible to
establish a threshold current, above which the DW crosses the gate. The
idea consists in modelling the presence of a gate as an effective field that
acts on the DW as an external field along the perpendicular direction ("z"
direction). To find an analytical expression of the effective field, we must
start by defining the energy density of a domain wall:

σDW (q) =
∫ +∞

−∞
A|∇m|2dx+

∫ +∞

−∞
D(mz∇~m− (~m · ∇)mz)dx+

+
∫ +∞

−∞
[Ku(x) + kdsin

2(φ− Γ)]sin2(θ(x))dx
(2.132)

Dealing with all the integrals:

σDW (q) = 2A
∆ [ 1

cos(Γ) + 2sin(Γ)] + πD

cos(Γ)cos(φ− Γ)+

+ 2∆
cos(Γ)kdsin

2(φ− Γ) +
∫ +∞

−∞
Ku(x)sin2(θ(x))dx

(2.133)

The objective is to find a function which describes the behaviour of an
anisotropy barrier profile, and which at the same time is integrable when
multiplied by sin2(θ(x)) with a final analytical expression. θ is supposed
to be only a function of ′x′, therefore the tilting profile of the domain wall
is not taken in consideration also because it is negligible for the integral
computation. The expression of θ is therefore:

θ = 2arctan(e
x−q
∆ ) (2.134)

The integral of the anisotropy energy density can be rewritten as follow:∫ +∞

−∞
Ku(x)sech2(x− q∆ )dx (2.135)

A function that describes in a very satisfactory way the anisotropic profile of
a VCMA gate and that can be integrated when multiplied by the sech2(x−q∆ )
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giving back a closed analytical form is the following:

Ku(x) = Ku + ∆Ku

2 [tanh(
x+ c+ w

2
δ

)− tanh(
x+ c− w

2
δ

)] (2.136)

In the above equation ∆Ku is the anisotropy variation of the gate with respect
to the anisotropy of the track, or in other words ∆Ku = Ku,gate−Ku,track, ′c′
is the center of the "Gate", ′w′ is the width of the gate, while δ is the param-
eter which establishes the sharpness of the anisotropy barrier profile. δ will
establish how abrupt is the rising and falling edges of the anisotropy bar-
rier, it is nothing else that a submultiple of the "gradient length" of the edge
profile. Since the edge profile of a tanh function behaves like an exponential
one, after more or less 2δ starting from the center ′c′ of the edge (which
corresponds to the 50% of the quote) the tanh function reaches more or less
the 90% of the quote of the barrier (approximately evaluated as ≈ (1−e−2)),
therefore starting from the 10% of the quote 4δ are necessary to reach the
90% of the quote. 4δ is therefore the value of the gradient length which
normally is evaluated as the abscissa difference between the two points asso-
ciated respectively to the 90% and to the 10% of the quote of the rising or
falling edge.
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2 – Analytical modeling of domain Wall (DW) motion due to an applied current density and/or external magnetic field

Figure 2.2: On the top side the plot of equation 2.136, on the lower side the
plot of a typical experimental profile of the Electric Field across the Gate
evaluated by COMSOL, as reported in [29]. The anisotropy profile and the
electric field profile can be compared indistinguishably because they differ
only by a multiplicative constant
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2.13 – Modelling of a Gate of different anisotropy

Whichever δ is chosen, the integral is solvable, but to obtain an easy final
analytical expression it is convenient to choose δ equal to the width of the
domain wall: δ = ∆.
This choice is very smart because in addition to simplify the final analytical
expression, it establishes a gradient length compatible with the most common
experimental gradient lengths. Usually the experimental gradient lengths are
in the range between few nanometers until 40-50 nm depending on the quality
of the oxide and on the width of the gate. Being ∆ equal to more or less 5 nm,
4∆ correspond to more or less 20 nm which is a very satisfactory value. The
analytical expression of the anisotropy profile could be rewritten as follow:

Ku(x) = Ku + ∆Ku

2 [tanh(
x+ c+ w

2
∆ )− tanh(

x+ c− w
2

∆ )] (2.137)

The integral of the anisotropy energy density is therefore equal to:

σDWKu
(q) =

∫ +∞

−∞
(Ku+

∆Ku

2 [tanh(
x+ c+ w

2
∆ )−tanh(

x+ c− w
2

∆ )])sech2(x− q∆ )dx
(2.138)

The integral can be splitted in the sum of two integrals:

σDWKu
(q) =

∫ +∞

−∞
Kusech

2(x− q∆ )+

+
∫ +∞

−∞

∆Ku

2 [tanh(
x+ c+ w

2
∆ )− tanh(

x+ c− w
2

∆ )]sech2(x− q∆ )dx
(2.139)

σDWKu
(q) = 2∆

cos(Γ)Ku+
∫ +∞

−∞

∆Ku

2 [tanh(
x+ c+ w

2
∆ )−tanh(

x+ c− w
2

∆ )]sech2(x− q∆ )dx

(2.140)
Now dealing with the integral:∫ +∞

−∞

∆Ku

2 [tanh(
x+ c+ w

2
∆ )− tanh(

x+ c− w
2

∆ )]sech2(x− q∆ )dx =

=
∫ +∞

−∞

∆Ku

2 tanh(
x+ c+ w

2
∆ )sech2(x− q∆ )dx+

−
∫ +∞

−∞

∆Ku

2 tanh(
x+ c− w

2
∆ )]sech2(x− q∆ )dx

(2.141)

The following parameters are defined to simplify the integral:
c′ := c+w

2
∆

c′′ := c−w2
∆

q′ := q
∆

(2.142)
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The general solution of the indefinite integral is:∫ ∆Ku

2 tanh( x∆ + c′)sech2( x∆ − q
′)dx−

∫ ∆Ku

2 tanh( x∆ + c′′)sech2( x∆ − q
′)dx =

= ∆[csch2(c′ + q′)(log(cosh(q′ − x

∆))− log(cosh(c′ + x

∆))]+

+ ∆[sech(q′)cotanh(c′ + q′)sinh( x∆)sech(q′ − x

∆)]+

−∆[csch2(c′′ + q′)(log(cosh(q′ − x

∆))− log(cosh(c′′ + x

∆))]+

−∆[sech(q′)cotanh(c′′ + q′)sinh( x∆)sech(q′ − x

∆)]
(2.143)

Studying the integral from −∞ to +∞:

σDWKu
(q) = ∆Ku

2 ∆[−2(c′ + q

∆)csch2(c′ + q

∆) + 2cotanh(c′ + q

∆)]+

− ∆Ku

2 ∆[−2(c′′ + q

∆)csch2(c′′ + q

∆) + 2cotanh(c′′ + q

∆)]
(2.144)

Therefore the final expression of the energy density of the domain wall in the
presence of an anisotropy barrier is:

σDW (q) = 2A
∆ [ 1

cos(Γ) + 2sin(Γ)] + πD

cos(Γ)cos(φ− Γ) + 2∆
cos(Γ)kdsin

2(φ− Γ)+

+ ∆Ku

2 ∆[−2(c′ + q

∆)csch2(c′ + q

∆) + 2cotanh(c′ + q

∆)]+

− ∆Ku

2 ∆[−2(c′′ + q

∆)csch2(c′′ + q

∆) + 2cotanh(c′′ + q

∆)]
(2.145)

The effective field associated to the anisotropy barrier is a pinning field. We
must start from the hypothesis that the depinning of the DW takes place as
soon as the energy barrier is canceled out by the Zeeman energy, therefore
by setting the following expression to zero it will be possible to obtain a final
analytical expression for the pinning field [29]:

d

dq
[σDW (q) + 2µ0MsHq] (2.146)

Therefore [29]:

Hpin =
− d
dqσDW

2µ0Ms
(2.147)
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2.13 – Modelling of a Gate of different anisotropy

The derivative of the energy density of the domain wall with respect to ′q′
(which is a function of time: q(t)) which is the position of the center of the
domain wall is equal to:

dσDW (q)
dq

= d

dq
(∆Ku

2 ∆[−2(c′ + q

∆)csch2(c′ + q

∆) + 2cotanh(c′ + q

∆)])+

− d

dq
(∆Ku

2 ∆[−2(c′′ + q

∆)csch2(c′′ + q

∆) + 2cotanh(c′′ + q

∆)]) =

∆Ku

2 [4csch2(c′ + q

∆)((c′ + q

∆)coth(c′ + q

∆)− 1)]+

− ∆Ku

2 [4csch2(c′′ + q

∆)((c′′ + q

∆)coth(c′′ + q

∆)− 1)]
(2.148)

The final expression of the pinning field is therefore:

Hpin = ∆Ku

2
4csch2(c′′ + q

∆)((c′′ + q
∆)coth(c′′ + q

∆)− 1)− 4csch2(c′ + q
∆)((c′ + q

∆)coth(c′ + q
∆)− 1)

2µ0Ms
(2.149)

with c′ = c+w
2

∆ and c′′ = c−w2
∆ .
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2.14 Final differential equation

Exploiting the Kinetic Theorem:


θ̇ = γ

Ms
Γθ

φ̇sin(θ) = γ
Ms

Γφ
γ = − e

2m

(2.150)

where e is the absolute value of the electron charge. These are all the torque
components evaluated in chapter 2:



~Γext = −µ0MsHextsin(θ)êφ
~Γex = 2Aex

∆2 sin(θ)cos(θ)êφ
~ΓDMI = −2D0

∆ sin2(θ)[cos(Γ)sin(φ)− sin(Γ)cos(φ)]êθ

~ΓKd
= 2Kd


0

sin(θ)sin(φ− Γ)cos(φ− Γ)
sin(θ)cos(θ)cos2(φ− Γ)

 ·

êr

êθ

êφ


~ΓKeff

=


0
0

2Kusin(θ)cos(θ)− µ0M
2
s sin(θ)cos(θ)

 ·

êr

êθ

êφ


~ΓHα = αMs

γ


0

−φ̇sin(θ)
θ̇

 ·

êr

êθ

êφ


~Γu = −uMscos(Γ)

γ∆ sin(θ)êθ
~Γβ = βuMscos(Γ)

γ∆ sin(θ)êφ

~τFL = −µ0MsaFL


0

cos(φ)
−cos(θ)sin(φ)

 ·

êr

êθ

êφ



~τDL = −µ0MsbDL


0

cos(θ)sin(φ)
cos(φ)

 ·

êr

êθ

êφ



(2.151)
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2.14 – Final differential equation

Dividing all the torque terms in êθ and êφ components:

Γθ =− 2D0

∆ sin2(θ)[cos(Γ)sin(φ)− sin(Γ)cos(φ)]+

+ 2Kdsin(θ)sin(φ− Γ)cos(φ− Γ)− αMs

γ
φ̇sin(θ)+

− uMscos(Γ)
γ∆ sin(θ)− µ0MsaFLcos(φ)− µ0MsbDLcos(θ)sin(φ)

Γφ =2Aex
∆2 sin(θ)cos(θ)− µ0MsHextsin(θ) + 2Kusin(θ)cos(θ)+

+ 2Kdsin(θ)cos(θ)cos2(φ− Γ)− µ0M
2
sNzsin(θ)cos(θ)+

+ αMs

γ
θ̇ + βuMscos(Γ)

γ∆ sin(θ) + µ0MsaFLcos(θ)sin(φ)− µ0MsbDLcos(φ)
(2.152)

Exploiting the general Kinetic Theorem (2.150), the differential equation
system becomes:

θ̇ =− 2γD0

Ms∆
sin2(θ)[cos(Γ)sin(φ)− sin(Γ)cos(φ)]+

+ 2γKd

Ms
sin(θ)sin(φ− Γ)cos(φ− Γ)+

− αφ̇sin(θ)− u · cos(Γ)
∆ sin(θ)− γµ0aFLcos(φ)− γµ0bDLcos(θ)sin(φ)

φ̇sin(θ) =2γAex
Ms∆2 sin(θ)cos(θ)− µ0γHextsin(θ) + 2γKeff

Ms
sin(θ)cos(θ)+

+ 2γKd

Ms
sin(θ)cos(θ)cos2(φ− Γ) + αθ̇+

+ βu · cos(Γ)
∆ sin(θ) + γµ0aFLcos(θ)sin(φ)− γµ0bDLcos(φ)

(2.153)
Then θ̇ is replaced with:

θ̇ = (−cos(Γ)
∆ q̇+(q − x)sin(Γ) + ycos(Γ)

∆ Γ̇−(x− q)cos(Γ) + ysin(Γ)
∆2 ∆̇)sin(θ)

(2.154)
θ̇ can be rewritten as follow:

θ̇ = (−cos(Γ)
∆ q̇ +

y −∆sin(Γ)ln(tan(θ2))
∆cos(Γ) Γ̇−

ln(tan(θ2))
∆ ∆̇)sin(θ) (2.155)

In the differential equation system the anisotropy constant Keff is equal to
Ku − 1

2µ0M
2
s as previously defined is section 2.7.5 and Ku is the sum of the
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volume and of the surface contribution:

Ku = Kvol + Ki

tFM
(2.156)

where tFM is the thickness of the ferromagnetic layer. Considering that the
thickness of the ferromagnetic layer is nanometric, the anisotropy constant
is dominated by the interfacial component. To solve the differential equation
system, the two differential equation must be integrated over θ and then over
y. Initially θ̇ must be replaced with equation 2.155:



−cos(Γ)
∆ q̇sin(θ) =−

y −∆sin(Γ)ln(tan(θ2))
∆cos(Γ) Γ̇sin(θ) +

ln(tan(θ2))
∆ ∆̇sin(θ)+

− 2γD0

Ms∆
sin2(θ)[cos(Γ)sin(φ)− sin(Γ)cos(φ)]+

+ γKd

Ms
sin(θ)sin(2(φ− Γ))− αφ̇sin(θ)+

− u · cos(Γ)
∆ sin(θ)− γµ0aFLcos(φ)− γµ0bDLcos(θ)sin(φ)

φ̇sin(θ) =2γAex
Ms∆2 sin(θ)cos(θ)− µ0γHextsin(θ) + 2γKeff

Ms
sin(θ)cos(θ)+

+ 2γKd

Ms
sin(θ)cos(θ)cos2(φ− Γ)+

+ α(−cos(Γ)
∆ q̇ +

y −∆sin(Γ)ln(tan(θ2))
∆cos(Γ) Γ̇−

ln(tan(θ2))
∆ ∆̇)sin(θ)+

+ βu · cos(Γ)
∆ sin(θ) + γµ0aFLcos(θ)sin(φ)− γµ0bDLcos(φ)

(2.157)
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2.14 – Final differential equation

Integrating both member of each differential equation with respect to θ:



−
∫ π

0

cos(Γ)
∆ q̇sin(θ) dθ =−

∫ π

0

y −∆sin(Γ)ln(tan(θ2))
∆cos(Γ) Γ̇sin(θ) dθ+

+
∫ π

0

ln(tan(θ2))
∆ ∆̇sin(θ) dθ+

−
∫ π

0

2γD0

Ms∆
sin2(θ)[cos(Γ)sin(φ)− sin(Γ)cos(φ)] dθ+

+
∫ π

0

γKd

Ms
sin(θ)sin(2(φ− Γ)) dθ+

−
∫ π

0
αφ̇sin(θ) dθ −

∫ π

0

u · cos(Γ)
∆ sin(θ) dθ+

−
∫ π

0
γµ0aFLcos(φ) dθ −

∫ π

0
γµ0bDLcos(θ)sin(φ) dθ∫ π

0
φ̇sin(θ) dθ =

∫ π

0

2γAex
Ms∆2 sin(θ)cos(θ) dθ −

∫ π

0
µ0γHextsin(θ) dθ+

+
∫ π

0

2γKeff

Ms
sin(θ)cos(θ) dθ+

+
∫ π

0

2γKd

Ms
sin(θ)cos(θ)cos2(φ− Γ) dθ+

+
∫ π

0
α(−cos(Γ)

∆ q̇ +
y −∆sin(Γ)ln(tan(θ2))

∆cos(Γ) Γ̇)sin(θ) dθ+

−
∫ π

0
α
ln(tan(θ2))

∆ sin(θ)∆̇ dθ +
∫ π

0

βu · cos(Γ)
∆ sin(θ) dθ+

+
∫ π

0
γµ0aFLcos(θ)sin(φ) dθ −

∫ π

0
γµ0bDLcos(φ) dθ

(2.158)
Exploiting the results of the following integrals:



∫ π
0 cos(θ) dθ = 0;∫ π
0 sin(θ) dθ = 2;∫ π
0 sin(θ)cos(θ) dθ = 0;∫ π
0 sin

2(θ) dθ = π;∫ π
0 ln(tan(θ2))sin(θ) dθ = 0;

(2.159)
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The differential equation system could be rewritten:



cos(Γ)
∆ q̇ = y

∆cos(Γ)Γ̇ + πγD0

2Ms∆
sin(φ− Γ)− γKd

Ms
sin(2(φ− Γ)) + αφ̇+

+ u · cos(Γ)
∆ + γ

π

2µ0aFLcos(φ)

φ̇ =− µ0γHext − α
cos(Γ)

∆ q̇ + α
y

∆cos(Γ)Γ̇ + βu · cos(Γ)
∆ − π

2γµ0bDLcos(φ)

(2.160)
To obtain the final differential system, the two differential equation must be
integrated along "y" direction:



∫ w

0

cos(Γ)
∆ q̇ dy =

∫ w

0

y

∆cos(Γ)Γ̇ dy +
∫ w

0

πγD0

2Ms∆
sin(φ− Γ) dy+

−
∫ w

0

γKd

Ms
sin(2(φ− Γ)) dy +

∫ w

0
αφ̇ dy +

∫ w

0

u · cos(Γ)
∆ dy+

+
∫ w

0
γ
π

2µ0aFLcos(φ) dy∫ w

0
φ̇ dy =−

∫ w

0
µ0γHext dy −

∫ w

0
α
cos(Γ)

∆ q̇ dy +
∫ w

0
α

y

∆cos(Γ)Γ̇ dy+

+
∫ w

0

βu · cos(Γ)
∆ dy −

∫ w

0
γ
π

2µ0bDLcos(φ) dy
(2.161)

Now replacing ∫w
0 dy = w and ∫w

0 y dy = w2

2 , and dividing both member by
w:



cos(Γ)
∆ q̇ = w

2∆cos(Γ)Γ̇ + πγD0

2Ms∆
sin(φ− Γ)− γKd

Ms
sin(2(φ− Γ)) + αφ̇+

+ u · cos(Γ)
∆ + γ

π

2µ0aFLcos(φ)

φ̇ =− µ0γHext − α
cos(Γ)

∆ q̇ + α
w

2∆cos(Γ)Γ̇ + βu · cos(Γ)
∆ − γπ2µ0bDLcos(φ)

(2.162)
The differential equation system is composed by two coupled differential
equations. Replacing the second differential equation inside the first one
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2.14 – Final differential equation

and viceversa:

q̇ =
w

2∆cos(Γ)(1 + α2)Γ̇ + πγD0
2Ms∆sin(φ− Γ)− γKd

Ms
sin(2(φ− Γ)) + u·cos(Γ)

∆
cos(Γ)

∆ (1 + α2)
+

+
γ π2µ0aFLcos(φ) + αβu

∆ cos(Γ)− αµ0γHext − αγ π2µ0bDLcos(φ)
cos(Γ)

∆ (1 + α2)

φ̇ =− µ0γHext + α
w

2∆cos(Γ)Γ̇ + βu · cos(Γ)
∆ − γπ2µ0bDLcos(φ)+

− αcos(Γ)
∆ [

w
2∆cos(Γ)(1 + α2)Γ̇ + πγD0

2Ms∆sin(φ− Γ)− γKd

Ms
sin(2(φ− Γ))

cos(Γ)
∆ (1 + α2)

+

+
u·cos(Γ)

∆ + γ π2µ0aFLcos(φ) + αβu
∆ cos(Γ)− αµ0γHext − αγ π2µ0bDLcos(φ)
cos(Γ)

∆ (1 + α2)
]

(2.163)
The value of ∆ is supposed to be equal to:

∆ =
√√√√ A

Ki

t + µ0M2
s

2 (Nx(cos(φ))2 +Ny(sin(φ))2 −Nz)
(2.164)
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2.15 Final differential equation with VCMA
pinning field

The aim of this section consists in the description of the pinning field due
to the presence of a region of different anisotropy created by the VCMA
effect. The pinning field is supposed to be applied along "z" direction like
the external one, already considered within the differential equation system,
therefore ~Hext must be substituted with ~H ′ext = ~Hext + ~Hpin:



q̇ =
w

2∆cos(Γ)(1 + α2)Γ̇ + πγD0
2Ms∆sin(φ− Γ)− γKd

Ms
sin(2(φ− Γ)) + u·cos(Γ)

∆
cos(Γ)

∆ (1 + α2)
+

+
γ π2µ0aFLcos(φ) + αβu

∆ cos(Γ)− αµ0γ(Hext +Hpin)− αγ π2µ0bDLcos(φ)
cos(Γ)

∆ (1 + α2)

φ̇ =− µ0γ(Hext +Hpin) + α
w

2∆cos(Γ)Γ̇ + βu · cos(Γ)
∆ − γπ2µ0bDLcos(φ)+

− αcos(Γ)
∆ [

w
2∆cos(Γ)(1 + α2)Γ̇ + πγD0

2Ms∆sin(φ− Γ)− γKd

Ms
sin(2(φ− Γ))

cos(Γ)
∆ (1 + α2)

+

+
u·cos(Γ)

∆ + γ π2µ0aFLcos(φ) + αβu
∆ cos(Γ)− αµ0γ(Hext +Hpin)− αγ π2µ0bDLcos(φ)

cos(Γ)
∆ (1 + α2)

]

(2.165)
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Substituting the analytical expression of Hpin:



q̇ =
w

2∆cos(Γ)(1 + α2)Γ̇ + πγD0
2Ms∆sin(φ− Γ)− γKd

Ms
sin(2(φ− Γ)) + u·cos(Γ)

∆
cos(Γ)

∆ (1 + α2)
+

+
γ π2µ0aFLcos(φ) + αβu

∆ cos(Γ)− αµ0γHext − αγ π2µ0bDLcos(φ)
cos(Γ)

∆ (1 + α2)
+

− αµ0γ

∆Ku
2

2µ0Ms
[4csch2(c′′ + q

∆)((c′′ + q
∆)coth(c′′ + q

∆)− 1)]
cos(Γ)

∆ (1 + α2)
+

+ αµ0γ

∆Ku
2

2µ0Ms
[4csch2(c′ + q

∆)((c′ + q
∆)coth(c′ + q

∆)− 1)]
cos(Γ)

∆ (1 + α2)

φ̇ =− µ0γHext + α
w

2∆cos(Γ)Γ̇ + βu · cos(Γ)
∆ − γπ2µ0bDLcos(φ)+

− µ0γ
∆Ku

2
2µ0Ms

[4csch2(c′′ + q

∆)((c′′ + q

∆)coth(c′′ + q

∆)− 1)]+

+ µ0γ
∆Ku

2
2µ0Ms

[4csch2(c′ + q

∆)((c′ + q

∆)coth(c′ + q

∆)− 1)]+

− αcos(Γ)
∆ [

w
2∆cos(Γ)(1 + α2)Γ̇ + πγD0

2Ms∆sin(φ− Γ)− γKd

Ms
sin(2(φ− Γ))

cos(Γ)
∆ (1 + α2)

+

+
u·cos(Γ)

∆ + γ π2µ0aFLcos(φ) + αβu
∆ cos(Γ)− αµ0γHext − αγ π2µ0bDLcos(φ)
cos(Γ)

∆ (1 + α2)
+

− αµ0γ

∆Ku
2

2µ0Ms
[4csch2(c′′ + q

∆)((c′′ + q
∆)coth(c′′ + q

∆)− 1)]
cos(Γ)

∆ (1 + α2)
+

+ αµ0γ

∆Ku
2

2µ0Ms
[4csch2(c′ + q

∆)((c′ + q
∆)coth(c′ + q

∆)− 1)]
cos(Γ)

∆ (1 + α2)
]

(2.166)

If the VCMA effect is exploited, the anisotropy constant varies by a specific
percentage proportional to the voltage applied across the structure:

Ku = Ku(0)− ζv
Vapp
tox

(2.167)

Therefore, if a certain voltage is applied across the structure, the anisotropy
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constant must be calculated and replaced inside ∆ equation:

∆ =
√√√√√ A

Ki(0)
tFM
− ζv Vapptox

+ µ0M2
s

2 (Nx(cos(φ))2 +Ny(sin(φ))2 −Nz)
(2.168)
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Chapter 3

Comparison of the
analytical model with the
micromagnetic
simulations

In this chapter, the analytical model expressed in equation 2.166 is com-
pared with the micromagnetic results of Mumax3. At first, the Spin Transfer
Torque (STT) effect will be compared, then the Spin Orbit Torque (SOT)
effect. Since the SOT effect is more efficient with respect to the STT effect
(to reach the same domain speed, a current of about one order of magnitude
lower is required exploiting SOT instead of STT as shown in Figures 3.1a
and 3.3) for the motion of a magnetic domain, it will be analyzed together
with VCMA technology. Therefore, the crossing of a domain wall through
a VCMA gate of higher or lower anisotropy due to the SOT effect will be
compared. The differential equation system 2.166 is solved with Runge-
Kutta(4,5) method implemented in MatLab. The result of such method, is
that the prediction error is of fifth order, and the total accumulated error is
of fourth order, from which the name 45 [46]. A micromagnetic simulator
like Mumax3 solves calculations with much more precision with respect to
Matlab with the ODE45 method. At the same time, however, the computa-
tional effort required by Mumax3 is very high because it calculates the LLG
equation 2.27 for each single magnetic moment into which the simulated
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3 – Comparison of the analytical model with the micromagnetic simulations

ferromagnetic material is divided. The tilting angle of the domain wall Γ
provided to the differential equation system 2.166 with Matlab is extracted
via magnetic simulation with Mumax3 with the command ext_dwtilt. It
is not necessary to provide the tilting angle of the domain wall, but it can
increase the accuracy of the result.

62



3.1 – Simulation Parameters

3.1 Simulation Parameters
In the following table all the simulation parameters are reported:

Table 3.1: Simulation Parameters

Parameter Value

Anisotropy Constant Ku 0.8 · 106 J
m3

Exchange Stiffness A 10−11 J
m

Saturation Magnetization Ms 106 A
m

µ0 4π · 10−7H
m

Heavy Metal (HM) thickness ′d′ 1nm
Damping Factor α 0.04

µb 9.274 · 10−24 J
T

Gyromagnetic Ratio γ −1.7595 · 1011 rad
s·T

DMI 0.6 · 10−3 J
m3

Landé Factor G 2
Current Polarization P 1
Non-Adiabatic STT β 0.2

Ferramagnetic Layer Width 128nm
Ferromagnetic Layer Thickness 1nm

αh,FL -0.30
αh,DL 0.15

VCMA Gate width 40nm, 60nm, 80nm
VCMA Gate Center −128nm

3.2 Spin Transfer Torque
This section concerns the comparison between the average speed of a domain
wall due to Spin Transfer Torque (STT) effect estimated by the analytical
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3 – Comparison of the analytical model with the micromagnetic simulations

model in equation 2.166 and by the micromagnetic simulator Mumax3, shown
in figure 3.1a. The parameters adopted for the comparison are reported
in Table 3.1. The DMI effect in this case is ignored. The percentage of
error for each current density value is shown in figure 3.1b. A lower error
is obtained when an average tilting angle is passed to Matlab. In general,
passing the angle instant by instant leads to divergences in Matlab due to
the angle vector estimated by Mumax3 which has continuous steps, therefore
an average tilting angle is evaluated. Since the angle is very small, there
is no tangible difference between the two cases. The average error is the
average of the error estimated point by point. The average error estimated
in the case in which an average angle is passed to the theoretical model with
Mumax3 is equal to ≈ −3.9%. If, on the other hand, the tilting angle and
its time derivative are both assumed to be zero, the average error is equal to
≈ −4.34%, therefore better precision is obtained when the tilting profile of
the domain wall is taken in consideration. For more details about Mumax3
code look at the Appendix, section STT code, while for more detail about
Matlab code, look at the Appendix, section Matlab Code.
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3.2 – Spin Transfer Torque

(a) Average Speed of the domain wall subjected to spin transfer
torque (STT) in function of the applied current density

(b) Percentage of error with STT effect in function of the ap-
plied current density

Figure 3.1: Average speed of the domain wall due to STT effect in function of
the applied current density. The average speed is evaluated by the analytical
model of equation 2.166 and by Mumax3 simulation
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3.3 Spin Orbit Torque
This section concerns the comparison between the speed of a domain wall due
to the Spin Orbit Torque (SOT) effect estimated by the analytical model in
equation 2.166 and by the micromagnetic simulator Mumax3. The param-
eters adopted for the comparison are reported in table 3.1. In figure 3.2
the initial state and the final state of Mumax3 simulation are shown. As ex-
pected the domain wall is tilted because of Dzyaloshinskii–Moriya interaction
(DMI).

(a) Initial state of the simulation

(b) Final state of the simulation after 8 ns with a DMI energy density
equal to 0.6 · 10−3 J

m3

Figure 3.2: Initial and final state of the domain wall subjected to Spin Or-
bit Torque. The white area symbolizes the up state of magnetization while
the black area symbolizes the down state of the magnetization.The domain
wall remains in the center of the simulation window because ext_dwpos,
ext_dwspeed and ext_dwtilt command are used as shown in the Mumax3
code in section SOT code. These three commands allow to evaluate respec-
tively the position, the speed and the tilting angle of the domain wall by
fixing the domain wall itself in the center of the simulation window. The
simulation window is ’moved’ while the domain wall is fixed, therefore speed,
position and tilting of the simulation window with respect to the domain
wall are evaluated. The parameters adopted in the simulation are reported
in table 3.1

In figure 3.3 the average speed of the domain wall subjected to spin orbit
torque evaluated by the analytical model is compared with Mumax3 results.
The analytical model of equation 2.166 is solved twice, in one case the tilting
angle is ignored, while in the other one an average angle of the angle profile
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3.3 – Spin Orbit Torque

is considered and passed to the analytical model directly by Mumax3 to
Matlab.

Figure 3.3: Average Speed of the domain wall subjected to Spin Orbit Torque
in function of the applied current density evaluated by the analytical model
and by Mumax3 simulation.

In Figure 3.4 the percentage of error of the analytical model with respect
to Mumax3 simulation is shown. The percentage of error is evaluated both
when the tilting angle of the domain wall is taken in consideration and when
it is ignored. The error is evaluated for each current density value, and it
can be noted that for higher current density values, the percentage of error
decreases.
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3 – Comparison of the analytical model with the micromagnetic simulations

Figure 3.4: Percentage of error with SOT effect in function of the applied
current density

A larger error is obtained when an average tilting angle is passed to Matlab.
The average error estimated in the case in which an average angle is passed
to the analytical model with Mumax3 is equal to ≈ 41.07%. If, on the
other hand, the tilting angle and its time derivative are both assumed to
be zero, the average error is equal to ≈ 32.3%, therefore ≈ 10% of better
accuracy is obtained if the tilting angle of the domain wall is not taken
in consideration. In the case of the presence of a VCMA gate, the tilting
angle of the domain wall (DW) becomes more pronounced, therefore it is
recommended to evaluate it. For more details about Mumax3 code, look at
the Appendix, section SOT code.

3.4 Spin Orbit Torque with VCMA effect
This section is dedicated to the comparision between the results of the an-
alytical model with Mumax3 results when a domain wall moves because of
SOT effect going across a region (" VCMA gate") of higher anisotropy. The
domain wall will cross the VCMA gate if the current is sufficiently high, oth-
erwise the domain wall will be blocked by the presence of the VCMA gate.
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3.4 – Spin Orbit Torque with VCMA effect

60 nm is chosen as the gate width, and -128 nm as the gate center, and the
anisotropy of the gate is varied from +5% until +20% in step of 5%. To
establish if the domain wall crosses the gate or not, the average speed of
the domain wall itself is evaluated: in a good approximation, if the average
speed of the domain wall is really low the domain wall does not cross the
gate, while if the average speed of the domain wall is sufficiently high the
domain wall will cross the gate in an acceptable time. In other words, if the
domain wall is blocked by the VCMA gate, its final velocity will be equal
to zero, therefore the average speed of the domain wall will be almost zero,
lower than 20ms . Therefore, the average speed of the domain wall, in the
case in which the domain wall itself is blocked by the gate, is more or less
an order of magnitude lower with respect to the average speed in the case in
which the domain wall crosses the gate. The average speed estimated with
the analytical model when the domain wall crosses the gate is a bit higher
with respect to the value calculated by Mumax. As reported in the previ-
ous section, the expectation value of the average speed of the Domain Wall
due to SOT effect in a 1D model is more or less 32% higher with respect
to Mumax3 prediction. Mumax3 implements a numerical approach, with a
more complex and more accurate algorithm which takes in consideration also
the 3D structure of the material. Furthermore the analytical model is based
on the assumption of a rigid domain wall, the transverse shape anisotropy
is approximated and the tilting angle of the domain wall is supposed to be
constant over time with an average value of tilting. These assumptions allow
to create a simple model from the point of view of numerical computation,
without excessive loss of precision, and with high processing speed. In fact,
the objective is not to estimate the average speed of the domain wall, in an
impeccable way, but rather its eventual passage through the VCMA gate,
therefore the crossing threshold current.
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3 – Comparison of the analytical model with the micromagnetic simulations

Figure 3.5: Average Speed of the Domain Wall in function of the applied
current in the presence of a gate anisotropy 5% higher with respect to the
anisotropy of the ferromagnetic layer

The analytical result fits with Mumax3 result, because the same threshold
current is evaluated: 0.5e11 A

m2 . In other words, if the current is higher than
0.5e11 A

m2 the domain wall crosses the VCMA gate.

70



3.4 – Spin Orbit Torque with VCMA effect

Figure 3.6: Average Speed of the Domain Wall in function of the applied
current in the presence of a gate anisotropy 10% higher with respect to the
anisotropy of the ferromagnetic layer

The analytical result fits with Mumax3 result, because the same threshold
current is evaluated: 1e11 A

m2 . In other words, if the current is higher than
1e11 A

m2 the domain wall crosses the VCMA gate.
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3 – Comparison of the analytical model with the micromagnetic simulations

Figure 3.7: Average Speed of the Domain Wall in function of the applied
current in the presence of a gate anisotropy 15% higher with respect to the
anisotropy of the ferromagnetic layer

The analytical result discreetly fits with Mumax3 result, because the thresh-
old current evaluated by the analytical model is more or less equal to 1.5e11 A

m2

while the threshold current evaluated by Mumax3 is a bit higher, more or
less equal to 2e11 A

m2 .
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3.4 – Spin Orbit Torque with VCMA effect

Figure 3.8: Average Speed of the Domain Wall in function of the applied
current in the presence of a gate anisotropy 20% higher with respect to the
anisotropy of the ferromagnetic layer

The analytical result is in agreement with Mumax3 result, because more or
less the same threshold current is evaluated: 2.5e11 A

m2 . In other words, if the
current is higher than 2.5e11 A

m2 the domain wall crosses the VCMA gate.
This last simulation will be chosen as a sample for the next section 3.4.1, in
which the current steps will be thickened in order to obtain a more precise
evaluation.

3.4.1 More accurate evaluation of the threshold cur-
rent
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3 – Comparison of the analytical model with the micromagnetic simulations

Figure 3.9: Average Speed of the domain wall in function of the applied
current in the presence of a gate anisotropy 20% higher with respect to the
anisotropy of the ferromagnetic layer

To be more precise in the evaluation of the threshold current, the simulation
is thickened in the interval between 2.5·10e11 A

m2 and 3·10e11 A
m2 , simulating in

steps of 0.1·10e11 A
m2 . The analytical model foresees a threshold current equal

to 2.7 · 10e11 A
m2 , in the same way Mumax3 foresees the same current beyond

which the domain wall crosses the VCMA gate. When the current is equal to
2.6 · 10e11 A

m2 the analytical model, however, provides for a complete locking
of the domain wall while Mumax3 provides for a passage of the domain
wall through the gate albeit very slow with a speed of about −55ms against
the −11ms estimated by Matlab. In conclusion it is possible to state that
the analytical predictions inherent to the threshold current above which the
domain wall crosses the VCMA gate, are in agreement with those of Mumax3
with very low error.
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Chapter 4

VCMA Gate Analysis

The parameters adopted in the Mumax3 simulation are reported in Table 3.1.
For more detail about Mumax3 code implemented for all the simulations look
at SOT code.

4.1 Choice of the VCMA constant
The two configurations of interest for the realization of the periodical gates
along the Racetrack are:

• Ta/CoFeB/MgO;

• W/CoFeB/MgO;

The VCMA constant for the Ta stack is more or less equal to 30 fJ
V m [21] in

the lowest case while the lowest VCMA constant for the W stack is equal
to 40 fJ

V m about [21]. These two values are chosen for the simulations. The
next pages concern the analysis of the passage of the domain wall through
the gate. The gate width is varied from a minimum of 40 nm to a maximum
of 80 nm while the anisotropy of the gate is varied from −20% up to +20%
with respect to the anisotropy of the ferromagnetic track in steps of 5%. The
following table shows the electric fields that must be applied across the gate
in order to obtain the desired anisotropic variations.
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4 – VCMA Gate Analysis

Table 4.1: VCMA constant for Ta and W stacks

Material Stack VCMA constant Anisotropy Variation Electric Field

Ta/CoFeB/MgO 30 fJ
V m ±20% ∓5.33GVm

Ta/CoFeB/MgO 30 fJ
V m ±15% ∓4GVm

Ta/CoFeB/MgO 30 fJ
V m ±10% ∓2.66GVm

Ta/CoFeB/MgO 30 fJ
V m ±5% ∓1.33GVm

W/CoFeB/MgO 40 fJ
V m ±20% ∓4GVm

W/CoFeB/MgO 40 fJ
V m ±15% ∓3GVm

W/CoFeB/MgO 40 fJ
V m ±10% ∓2GVm

W/CoFeB/MgO 40 fJ
V m ±5% ∓1GVm

4.2 Gate Width of 40nm
In Figure 4.1 the schematic of the ferromagnetic track is shown. The domain
wall is initially centered in ’0 nm’ in the middle of the simulation window.
The VCMA gate is centered in ’-128 nm’ and it is 40 nm wide.

Figure 4.1: Schematic of the ferromagnetic layer with the initial state of the
domain wall centered in ’0 nm’. The VCMA gate is centered in -128 nm, and
the gate width is equal to 40 nm. The magnetization in the left part of the
ferromagnetic track is oriented up, while in the right part it is oriented down.

In all the following figures where the domain wall displacement is plotted
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4.2 – Gate Width of 40nm

in function of time, the position of the VCMA gate will be indicated with
two straight lines, one indicating the starting line of the gate, the other one
indicating the ending line of the gate. Since the gate is centered in -128 nm
and since it is 40 nm wide, the gate starts at 108 nm while the end of the
gate is located at 148 nm. In the next pages the figures will show which is
the current required for the domain wall to cross the gate when the gate itself
is 40 nm wide and its anisotropy varies from −20% until +20% with respect
to the anisotropy of the ferromagnetic track.
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4 – VCMA Gate Analysis

(a) Domain Wall Position with a gate’s
anisotropy of 0.64e6 J

m3 and a variable
SOT Current

(b) Domain Wall Position with a gate’s
anisotropy of 0.68e6 J

m3 and a variable
SOT Current

(c) Domain Wall Position with a gate’s
anisotropy of 0.72e6 J

m3 and a variable
SOT Current

(d) Domain Wall Position with a gate’s
anisotropy of 0.76e6 J

m3 and a variable
SOT Current

Figure 4.2: Domain Wall Position with a gate centered in −128nm and a
gate’s anisotropy from 0.64e6 J

m3 until 0.76e6 J
m3 in step of 0.04e6 J

m3 and a vari-
able SOT Current. The gate’s width is equal to 40 nm while the anisotropy
of the ferromagnetic track is equal to 0.8e6 J

m3 . The other paramaters are
reported in Table 3.1

• If the gate anisotropy is equal to 0.64e6 J
m3 as shown in Figure 4.2a the

domain wall crosses the VCMA gate if the applied current through the
heavy metal layer is more or less equal to 4e11 A

m2 or higher. At this
current level, different oscillations of the position of the domain wall are
observable;
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• If the gate anisotropy is equal to 0.68e6 J
m3 as shown in Figure 4.2b the

domain wall crosses the VCMA gate if the applied current through the
heavy metal layer is more or less equal to 1.5e11 A

m2 or higher. When
the current is higher than 3.5e11 A

m2 the domain wall exhibits tangible
fluctuations;

• If the gate anisotropy is equal to 0.72e6 J
m3 as shown in Figure 4.2c the

domain wall crosses the VCMA gate if the applied current through the
heavy metal layer is more or less equal to 0.75e11 A

m2 or higher. When
the current is higher than 3.5e11 A

m2 the domain wall exhibits tangible
fluctuations;

• If the gate anisotropy is equal to 0.76e6 J
m3 as shown in Figure 4.2d the

domain wall crosses the VCMA gate if the applied current through the
heavy metal layer is more or less equal to 0.75e11 A

m2 or higher. When the
current is equal to 4e11 A

m2 the domain wall exhibits tangible fluctuations;
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(a) Domain Wall Position with a gate’s
anisotropy of 0.84e6 J

m3 and a variable
SOT Current

(b) Domain Wall Position with a gate’s
anisotropy of 0.88e6 J

m3 and a variable
SOT Current

(c) Domain Wall Position with a gate’s
anisotropy of 0.92e6 J

m3 and a variable
SOT Current

(d) Domain Wall Position with a gate’s
anisotropy of 0.96e6 J

m3 and a variable
SOT Current

Figure 4.3: Domain Wall Position with a gate centered in −128nm and a
gate’s anisotropy from 0.84e6 J

m3 until 0.96e6 J
m3 in step of 0.04e6 J

m3 and a vari-
able SOT Current. The gate’s width is equal to 40 nm while the anisotropy
of the ferromagnetic track is equal to 0.8e6 J

m3 . The other paramaters are
reported in Table 3.1

• If the gate anisotropy is equal to 0.84e6 J
m3 as shown in Figure 4.3a the

domain wall crosses the VCMA gate if the applied current through the
heavy metal layer is more or less equal to 0.75e11 A

m2 or higher. When the
current is equal to 4e11 A

m2 the domain wall exhibits tangible fluctuations;

• If the gate anisotropy is equal to 0.88e6 J
m3 as shown in Figure 4.3b the
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4.3 – Gate Width of 60nm

domain wall crosses the VCMA gate if the applied current through the
heavy metal layer is more or less equal to 2e11 A

m2 or higher. When the
current is equal to 4e11 A

m2 the domain wall exhibits tangible fluctuations;

• If the gate anisotropy is equal to 0.92e6 J
m3 as shown in Figure 4.3c the

domain wall crosses the VCMA gate if the applied current through the
heavy metal layer is more or less equal to 2e11 A

m2 or higher;

• If the gate anisotropy is equal to 0.96e6 J
m3 as shown in Figure 4.3d the

domain wall crosses the VCMA gate if the applied current through the
heavy metal layer is more or less equal to 2.5e11 A

m2 or higher. When the
current is equal to 2.5e11 A

m2 the domain wall exhibits tangible fluctua-
tions;

4.3 Gate Width of 60nm
In Figure 4.4 the schematic of the ferromagnetic track is shown. The domain
wall is initially centered in ’0 nm’ in the middle of the simulation window.
The VCMA gate is centered in ’-128 nm’ and it is 60 nm wide.

Figure 4.4: Schematic of the ferromagnetic layer with the initial state of the
domain wall centered in ’0 nm’. The VCMA gate is centered in -128 nm, and
the gate width is equal to 60 nm. The magnetization in the left part of the
ferromagnetic track is oriented up, while in the right part it is oriented up.

In all the following figures the position of the VCMA gate will be indicated
with two straight lines, one indicating the starting line of the gate, the other
one indicating the ending line of the gate. Since the gate is centered at -128
nm and since it is 60 nm wide, the starting line of the gate is located in 98
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4 – VCMA Gate Analysis

nm, while the ending line of the gate is located at 158 nm. The figures will
show which is the current required for the domain wall to cross the gate when
the gate itself is 60 nm wide.

(a) Domain Wall Position with a gate’s
anisotropy of 0.64e6 J

m3 and a variable
SOT Current

(b) Domain Wall Position with a gate’s
anisotropy of 0.68e6 J

m3 and a variable
SOT Current

(c) Domain Wall Position with a gate’s
anisotropy of 0.72e6 J

m3 and a variable
SOT Current

(d) Domain Wall Position with a gate’s
anisotropy of 0.76e6 J

m3 and a variable
SOT Current

Figure 4.5: Domain Wall Position with a gate centered in −128nm and a
gate’s anisotropy from 0.64e6 J

m3 until 0.76e6 J
m3 in step of 0.04e6 J

m3 and a vari-
able SOT Current. The gate’s width is equal to 60 nm while the anisotropy
of the ferromagnetic track is equal to 0.8e6 J

m3 . The other paramaters are
reported in Table 3.1

• If the gate anisotropy is equal to 0.64e6 J
m3 as shown in Figure 4.5a the

domain wall crosses the VCMA gate if the applied current through the
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heavy metal layer is more or less equal to 3e11 A
m2 or higher. When

the current is higher than 3e11 A
m2 the domain wall exhibits tangible

fluctuations;

• If the gate anisotropy is equal to 0.68e6 J
m3 as shown in Figure 4.5b the

domain wall crosses the VCMA gate if the applied current through the
heavy metal layer is more or less equal to 1.5e11 A

m2 or higher. When
the current is higher than 3e11 A

m2 the domain wall exhibits tangible
fluctuations;

• If the gate anisotropy is equal to 0.72e6 J
m3 as shown in Figure 4.5c the

domain wall crosses the VCMA gate if the applied current through the
heavy metal layer is more or less equal to 1e11 A

m2 or higher. When
the current is higher than 3.5e11 A

m2 the domain wall exhibits tangible
fluctuations;

• If the gate anisotropy is equal to 0.76e6 J
m3 as shown in Figure 4.5d the

domain wall crosses the VCMA gate if the applied current through the
heavy metal layer is more or less equal to 0.5e11 A

m2 or higher. When
the current is higher than 3.5e11 A

m2 the domain wall exhibits tangible
fluctuations;
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(a) Domain Wall Position with a gate’s
anisotropy of 0.84e6 J

m3 and a variable
SOT Current

(b) Domain Wall Position with a gate’s
anisotropy of 0.88e6 J

m3 and a variable
SOT Current

(c) Domain Wall Position with a gate’s
anisotropy of 0.92e6 J

m3 and a variable
SOT Current

(d) Domain Wall Position with a gate’s
anisotropy of 0.96e6 J

m3 and a variable
SOT Current

Figure 4.6: Domain Wall Position with a gate centered in −128nm and a
gate’s anisotropy from 0.84e6 J

m3 until 0.96e6 J
m3 in step of 0.04e6 J

m3 and a vari-
able SOT Current. The gate’s width is equal to 60 nm while the anisotropy
of the ferromagnetic track is equal to 0.8e6 J

m3 . The other paramaters are
reported in Table 3.1

• If the gate anisotropy is equal to 0.84e6 J
m3 as shown in Figure 4.6a the

domain wall crosses the VCMA gate if the applied current through the
heavy metal layer is more or less equal to 0.75e11 A

m2 or higher. When the
current is equal to 4e11 A

m2 the domain wall exhibits tangible fluctuations;

• If the gate anisotropy is equal to 0.88e6 J
m3 as shown in Figure 4.6b the

84



4.4 – Gate Width of 80nm

domain wall crosses the VCMA gate if the applied current through the
heavy metal layer is more or less equal to 2e11 A

m2 or higher. When the
current is equal to 1.5e11 A

m2 the domain wall exhibits tangible fluctua-
tions;

• If the gate anisotropy is equal to 0.92e6 J
m3 as shown in Figure 4.6c the

domain wall crosses the VCMA gate if the applied current through the
heavy metal layer is more or less equal to 2.5e11 A

m2 or higher;

• If the gate anisotropy is equal to 0.96e6 J
m3 as shown in Figure 4.6d the

domain wall crosses the VCMA gate if the applied current through the
heavy metal layer is more or less equal to 3e11 A

m2 or higher;

4.4 Gate Width of 80nm
In Figure 4.7 the schematic of the ferromagnetic track is shown. The domain
wall is initially centered in ’0 nm’ in the middle of the simulation window.
The VCMA gate is centered in ’-128 nm’ and it is 80 nm wide.

Figure 4.7: Schematic of the ferromagnetic layer with the initial state of the
domain wall centered in ’0 nm’. The VCMA gate is centered in -128 nm, and
the gate width is equal to 80 nm. The magnetization in the left part of the
ferromagnetic track is oriented up, while in the right part it is oriented up.

In all the following figures the position of the VCMA gate will be indicated
with two straight lines, one indicating the starting line of the gate, the other
one indicating the ending line of the gate. Since the gate is centered at -128
nm and since it is 80 nm wide, the starting line of the VCMA gate is located
at 88 nm while the ending line of the gate is located at 168 nm. The figures
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will show which is the current required for the domain wall to cross the gate
when the gate itself is 80 nm wide.

(a) Domain Wall Position with a gate’s
anisotropy of 0.64e6 J

m3 and a variable
SOT Current

(b) Domain Wall Position with a gate’s
anisotropy of 0.68e6 J

m3 and a variable
SOT Current

(c) Domain Wall Position with a gate’s
anisotropy of 0.72e6 J

m3 and a variable
SOT Current

(d) Domain Wall Position with a gate’s
anisotropy of 0.76e6 J

m3 and a variable
SOT Current

Figure 4.8: Domain Wall Position with a gate centered in −128nm and a
gate’s anisotropy from 0.64e6 J

m3 until 0.76e6 J
m3 in step of 0.04e6 J

m3 and a vari-
able SOT Current. The gate’s width is equal to 80 nm while the anisotropy
of the ferromagnetic track is equal to 0.8e6 J

m3 . The other paramaters are
reported in Table 3.1

• If the gate anisotropy is equal to 0.64e6 J
m3 as shown in Figure 4.8a the

domain wall crosses the VCMA gate if the applied current through the
heavy metal layer is more or less equal to 3.5e11 A

m2 or higher. When
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the current is higher than 3.5e11 A
m2 the domain wall exhibits tangible

fluctuations;

• If the gate anisotropy is equal to 0.68e6 J
m3 as shown in Figure 4.8b the

domain wall crosses the VCMA gate if the applied current through the
heavy metal layer is more or less equal to 2e11 A

m2 or higher. When
the current is higher than 3e11 A

m2 the domain wall exhibits tangible
fluctuations;

• If the gate anisotropy is equal to 0.72e6 J
m3 as shown in Figure 4.8c the

domain wall crosses the VCMA gate if the applied current through the
heavy metal layer is more or less equal to 1e11 A

m2 or higher. When
the current is higher than 3e11 A

m2 the domain wall exhibits tangible
fluctuations;

• If the gate anisotropy is equal to 0.76e6 J
m3 as shown in Figure 4.8d the

domain wall crosses the VCMA gate if the applied current through the
heavy metal layer is more or less equal to 0.5e11 A

m2 or higher. When
the current is higher than 3.5e11 A

m2 the domain wall exhibits tangible
fluctuations;
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(a) Domain Wall Position with a gate’s
anisotropy of 0.84e6 J

m3 and a variable
SOT Current

(b) Domain Wall Position with a gate’s
anisotropy of 0.88e6 J

m3 and a variable
SOT Current

(c) Domain Wall Position with a gate’s
anisotropy of 0.92e6 J

m3 and a variable
SOT Current

(d) Domain Wall Position with a gate’s
anisotropy of 0.96e6 J

m3 and a variable
SOT Current

Figure 4.9: Domain Wall Position with a gate centered in −128nm and a
gate’s anisotropy from 0.84e6 J

m3 until 0.96e6 J
m3 in step of 0.04e6 J

m3 and a vari-
able SOT Current. The gate’s width is equal to 80 nm while the anisotropy
of the ferromagnetic track is equal to 0.8e6 J

m3 . The other paramaters are
reported in Table 3.1

• If the gate anisotropy is equal to 0.84e6 J
m3 as shown in Figure 4.9a the

domain wall crosses the VCMA gate if the applied current through the
heavy metal layer is more or less equal to 0.75e11 A

m2 or higher. When the
current is equal to 4e11 A

m2 the domain wall exhibits tangible fluctuations;

• If the gate anisotropy is equal to 0.88e6 J
m3 as shown in Figure 4.9b the
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domain wall crosses the VCMA gate if the applied current through the
heavy metal layer is more or less equal to 1.50e11 A

m2 or higher;

• If the gate anisotropy is equal to 0.92e6 J
m3 as shown in Figure 4.9c the

domain wall crosses the VCMA gate if the applied current through the
heavy metal layer is more or less equal to 2.5e11 A

m2 or higher;

• If the gate anisotropy is equal to 0.96e6 J
m3 as shown in Figure 4.9d the

domain wall crosses the VCMA gate if the applied current through the
heavy metal layer is more or less equal to 3e11 A

m2 or higher;

4.5 Threshold Current
All the current threshold values shown in the sections 4.2, 4.3, 4.4 can be
summarized with a single graph:

Figure 4.10: Threshold Current with different anisotropy levels of the VCMA
gate, and with different gate width

For more details of the threshold current values, look at table A.1 in the
Appendix, section A.
In figure 4.10 it can be observed that the threshold current as a function of
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the anisotropic level of the gate maintains the same behaviour by varying
the width of the gate. For anisotropic values of the VCMA gate lower with
respect to that of the ferromagnetic track, the threshold current increases
with a greater slope than for positive gate anisotropy values.

4.6 Memory optimization and evaluations of
current, and speed

4.6.1 Functionality of a Racetrack Memory
The functionality of synchronization of a Racetrack memory with VCMA
gates can be tested by comparing the time to reach the desired voltage across
a VCMA gate, with the time required for a domain wall to travel from one
gate to its successive. In other words, if the time to reach a certain "blocking"
voltage at the gate is too long, the domain wall would escape the gate and it
would not be possible to block the domain wall at the desired point. There-
fore, if the time of reaching the desired voltage across the gate is compatible
(lower) with the speed of the domain wall divided by the distance between
two successive gates, it would be possible to block a domain wall just before
a successive gate, so as to be able to scroll domain by domain along the
ferromagnetic track.

4.6.2 Schematic of the VCMA gate structure and list
of parameters

In Figure 4.11 a schematic of the VCMA gate structure is represented. The
Aluminum layer is the top plate of the capacitor, the MgO layer is the
oxide layer which determines the dielectric constant of the gate. CoFeB
layer is the ferromagnetic layer of the track while the Ta layer is the heavy
metal layer through which is possible to exploit the SOT effect, and which
works as the other plate of the capacitor. The CoFeB layer should "shield"
almost completely the other metal layers and the accumulation should take
place practically all in the CoFeB. As a consequence only the MgO layer
determines the dielectric constant of the gate and its thickness.
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Figure 4.11: Schematic of the VCMA gate

In the table all the parameters of the structure are reported:

Table 4.2: VCMA gate parameters

Parameter Value

ρAl 2.7 · 10−8Ω ·m
εr,MgO 9[47]

Length MgO 128 nm
Thickness Al 250 nm

Thickness MgO 1 nm
Width MgO (40 nm, 60 nm, 80nm)
Width Al (40 nm, 60 nm, 80nm)
Length Al Variable [128 nm, 10 cm]

4.6.3 Charging/discharging time of a capacitor
When a voltage is applied across a VCMA gate, there is a charging period of
the gate, which is nothing more than a capacitor. Likewise when the voltage
is turned off, there will be a discharge phase of the VCMA gate. Therefore
it is essential to evaluate the charging and discharging time of the gate. The
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charging phase of a capacitor is described by the well-known equation:

V (t) = V0(1− e−
t
τ ) (4.1)

while the discharging phase by:

V (t) = V0e
− t
τ (4.2)

Mathematically the desired voltage is reached in an infinite time, since the
behaviour of the voltage is described by an exponential law, but in a good
physical approximation, the voltage level is reached after a time equal to
≈ 5τ . τ is the defined in fact as the time constant and it is equal to:

τ = RC (4.3)

where R is the resistance of the circuit while C is the capacitance of the
structure. Now it is fundamental to evaluate both the resistance and the
capacitance of the gate, in order to determine the charging (discharging)
time of the VCMA gate. Concerning the resistance of the gate, in good
approximation, it is possible to equal the resistance of the structure only
with the resistance of the Aluminum layer. To determine the resistance of
the Aluminum layer, the resistivity formula must be exploited:

Rgate ≈ RAl = ρAl
LAl

WAltAl
(4.4)

where LAl is a variable, while the other parameters are well-known and they
are reported in table 4.2. Concerning the capacitance of the structure, only
the MgO layer is taken in consideration for the dielectric constant, and the
well-known equation of a capacitor is exploited:

Cgate ≈ εMgO
LMgOWMgO

tMgO
(4.5)

Thus, the charging/discharging time of the gate is equal to:

tg ≈ 5τ = 5RAlCgate (4.6)

Making explicit the equation:

tg(LAl) ≈ 5ρAlεMgO
LAl

WAltAl

LMgOWMgO

tMgO
(4.7)
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tg is a function of the Aluminum length. If the length of the Aluminum layer
is increased, the charging/discharging time increases.
Obviously the width of the Al layer coincides with the width of the MgO
layer, therefore:

tg(LAl) ≈ 5ρAlεr,MgOε0
LAlLMgO

tAltMgO
(4.8)

As just explained before, all the parameters of the equation 4.8 are well-
known, and they are reported in table 4.2. The charging/discharging time of
the VCMA gate is independent from the width of the gate itself.
In Figure 4.12 the charging time tg of the gate in function of the Aluminum
length is shown.

Figure 4.12: Charging time in function of the Aluminum layer length, Eq.4.8

The charging time of the gate in the worst case of long interconnection of
Aluminum (equal to 10 cm) is equal to ≈ 0.55ns. In the next subsection
4.6.4, the best combination of current and gate width is chosen, in order to
reach the highest velocity with the thinnest gate.

4.6.4 Current Density and Gate Width
Looking at Figure 3.3 it is possible to notice that as the current increases the
speed of the domain wall increases up to a value of 3.5e11 A

m2 . For current
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values higher than 3.5e11 A
m2 , the speed of the domain wall tends to oscillate

around a more or less constant value. Consequently, it is advisable to choose
a gate width that blocks the highest current density, so that the Racetrack
memory can run at higher speed. Suppose to choose a barrier configuration
of the gate to block the passage of a domain wall, therefore suppose to choose
values of anisotropy of the gate higher than those of the track. Looking at
table A.1 and looking at positive percentage increment of the gate anisotropy
with respect to the track’s anisotropy, 60 nm of gate width is the best choice.
For instance for +20% of gate anisotropy increasing, for a gate width of 40
nm the maximum current blocked by the gate is ≈ 2e11 A

m2 , for a gate width
of 60 nm the maximum current blocked by the gate is ≈ 2.6e11 A

m2 , and more
or less the same value is estimated for a gate width of 80 nm (≈ 2.5e11 A

m2 ).
In conclusion for higher gate anisotropy values with respect to the track, the
most reasonable choice as gate width for a faster memory with a thinner
gate is 60 nm. Having a wider gate would imply having a wider domain so
that successive gates are sufficiently distant, and at the same time a wider
gate would require longer times of aluminum deposition, and therefore also
greater area and more parassitic effect.
Looking again at Table A.1 for lower anisotropy value of the gate with re-
spect to the track ("hole" anisotropy configuration) the best choice is a gate
width of 40 nm. For instance when the anisotropy decreases of −20% or of
−5% in the gate region with respect to the ferromagnetic track, the thresh-
old current is higher when the gate width is equal to 40 nm. For values
of the gate anisotropy equal to −10% or −15% with respect to the track
anisotropy, the highest threshold current is obtained for a gate width of 80
nm, but taking into account the trade off between the speed of the domain
wall and the gate size, the most reasonable choice for a gate configuration
with lower anisotropy than the track is undoubtedly 40 nm as gate width.
When the anisotropy of the gate is lowered by 20% and when the gate width
is equal to 40 nm the highest current blocked by the gate is reached, equal
to ≈ 3.5e11 A

m2 .
In conclusion to have the maximum velocity and at the same time the
thinnest gate, the best choices are:
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Table 4.3: Best choices of the VCMA gate

Gate width Anisotropy Max. Current Domain Wall average speed

60 nm +20% ≈ 2.6e11 A
m2 ≈ −139ms

40 nm −20% ≈ 3.5e11 A
m2 ≈ −145ms

The average velocity of the domain wall as a function of the applied current
is obtained from Figure 3.3.

4.6.5 Final verification of the functionality
The distance between two successive gates is equal to the width of a do-
main. The width of a domain could be assumed between 100 nm and 400
nm. Therefore it is sufficient to divide the distance that the domain wall
would travel before being blocked by the next gate, by the average speed of
the domain wall, to obtain the time taken by the domain wall to reach the
subsequent gate. Thus, this time must be greater (or equal) than the time
required to load the successive gate shown in Figure 4.12.
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Figure 4.13: Time spent for a domain wall to travel from one gate to its
successive in function of domain width

In the worst case of thinnest domain, the time spent for a domain wall to
travel from one gate to its successive is equal to ≈ 0.69ns.
The choice of the parameters of the structure, and therefore of the gate, the
choice of the current density through the heavy metal and therefore of the
speed of the domain wall match perfectly, or in other words, once a domain
wall has been allowed to pass through a gate, it is possible to block it at the
next gate since the "blocking" time is lower in the worst case than the time
the domain wall itself takes to reach the next gate. In fact the worst time of
gate charging is equal to 0.55ns, which is lower with respect to 0.69ns which
is the time spent for a domain wall to travel from one gate to its successive.
In conclusion with these parameters, it is possible to obtain the best perfor-
mance of the Racetrack Memory in terms of speed, and thinnest gate width.
Obviously by choosing intermediate combinations of gate anisotropy
(±5%,±10%,±15%), lower current values must be applied through the heavy
metal (Ta) so that the domain wall is blocked by the gate as shown in Table
A.1. Consequently, for lower values of current, lower speed values of the do-
main wall would be obtained, and therefore even longer times for a domain
wall to travel from one gate to the next one, therefore still compatible with
the charging time of the gate. In conclusion, the VCMA gate synchronization

96



4.6 – Memory optimization and evaluations of current, and speed

technology along the track would be compatible with Racetrack memories,
and therefore a valid alternative to notches, or to geometric modifications
1.7.1 for blocking domain walls.

4.6.6 Energy Consumption
To charge a capacitor to a specific voltage it is necessary to have a battery
that supplies an energy equal to E = CV 2. Half of the total energy is stored
on the capacitor, while the other half is lost to heat, or to electromagnetic en-
ergy. In this section the energy required to charge a VCMA gate is evaluated.
The gate capacitance is equal to:

Cgate ≈ εMgO
LMgOWMgO

tMgO
(4.9)

Depending on the material stack implemented for the VCMA gate, different
voltages are needed to reach the desired anisotropy value of the gate. In Table
4.1 all the electric fields are reported. The voltages are equal to the product
between the electric fields reported in Table 4.1 and the MgO thickness
reported in table 4.2. In the following graph the energy consumption is
plotted in function of the applied voltage for the three different values of
gate width reported in Table 4.2:
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Figure 4.14: Energy Consumption in function of the applied voltage across
the VCMA gate, evaluated for the three different values of gate width

The maximum consumption for an applied voltage of 6V in the case of wider
gate (80nm), is equal to ≈ 30fJ . Depending on the chosen stack (looking at
table 4.1) the applied voltages needed to reach the desired anisotropy level
of the gate change.
Looking at Table 4.3 the energy consumption for the 60 nm wide gate are
equal to:

• ≈ 17.4fJ if a Ta/CoFeB/MgO stack is chosen;

• ≈ 9.8fJ if a W/CoFeB/MgO stack is chosen;

Looking at Table 4.3 the energy consumption for the 40 nm wide gate are
equal to:

• ≈ 11.6fJ if a Ta/CoFeB/MgO stack is chosen;

• ≈ 6.5fJ if a W/CoFeB/MgO stack is chosen;
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Therefore taking in consideration both the trade-off between the gate width
and average velocity of the domain wall, and the lowest energy consumption,
the best choice is to choose a 40nm wide gate, with W/CoFeB/MgO stack
with a VCMA gate anisotropy of 20% lower with respect to the anisotropy
of the CoFeB track.
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Chapter 5

Conclusions

In summary, the thesis is aimed at demonstrating that the Voltage Con-
trolled Magnetic Anisotropy (VCMA) technology is potentially applicable to
a Racetrack memory because the time to reach a specific voltage level of a
VCMA gate for blocking a domain wall is shorter than the time required for
a domain wall to travel from one gate to its successive (deepen explanation
in chapter 4.6). In addition to the compatibility of the operating times, also
the relative consumption of the VCMA technology applied to a Racetrack
memory is evaluated (look at section 4.6.6).
This analysis relating to the VCMA technology is carried out with the micro-
magnetic simulator Mumax3. At the same time, a two coordinates analytical
model is developed, which allows to estimate the passage of a domain wall
through a VCMA gate without the need to perform a micromagnetic study
on the structure. In fact the two-coordinates analytical model reported in
the equation 2.163 has been expanded with the addition of a pinning field
related to the VCMA gate described by the equation 2.149 giving rise to the
final differential system reported in equation 2.166. The analytical model
predicts with a good approximation the current thresholds of the VCMA
induced barriers.
For future works an improvement of the analytical model developed in the
thesis would certainly consist in considering the effect of the external temper-
ature, and of any grains present in the ferromagnetic material. In addition,
possible defects in the material or in the track could also be taken in con-
sideration. In the specific case of defects, they could be modeled as effective
potentials, similarly to how a VCMA gate or a pinning site is modeled. There
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are already some effective fields that allow to model these phenomena ana-
lytically but they have not been taken in consideration during the analysis
carried out in the thesis. Moreover more materials could be analyzed, with
different VCMA constants, or a more in-depth analysis could be done, vary-
ing as many parameters as possible during the timing analysis and during
the energetic consumption evaluation. It would be interesting to study more
complex systems, for instance an entire Racetrack memory: thus simulating
several domains, and making an evaluation in terms of writing and reading
times and consumption.
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Appendix

Free electron tunneling model
The first theoretical approach to describe the behaviour of tunneling electron
is a free electron model. Supposing that the potential barrier does not depend
on time, and it is only a one-dimensional function of ’z’:

−~2

2m ∇
2ψ(x, y, z, t) + V (z)ψ(x, y, z, t) = i~

∂ψ(x, y, z, t)
∂t

(A.1)

Since V (z) is a function of space and not a function of time, it can be made the
assumption of factorizing the wave function separating the space component
from the time component:
−~2

2m ∇
2(φ(x, y, z)χ(t)) + V (z)φ(x, y, z)χ(t) = i~

∂(φ(x, y, z)χ(t))
∂t

(A.2)

−~2

2m χ(t)∇2φ(x, y, z) + V (z)φ(x, y, z)χ(t) = i~φ(x, y, z)∂χ(t)
∂t

(A.3)

Dividing both member of the equation by χ(t) · φ(x, y, z):
−~2

2mφ(x, y, z)∇
2φ(x, y, z) + V (z) = i~

χ(t)
∂χ(t)
∂t

(A.4)

The left side is a function of "z" while the right side is a function of time, so
to be equal they must be equal to a constant:

i~
χ(t)

∂χ(t)
∂t = E

−~2

2mφ(x,y,z)∇
2φ(x, y, z) + V (z) = E

(A.5)
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Neglecting the time equation and focusing on the spatial part:

−~2

2m ∇
2φ(x, y, z) + V (z)φ(x, y, z) = Eφ(x, y, z) (A.6)

Being the potential only a function of "z" the spatial wave function could be
factorized again:

−~2

2m ∇
2(Φ(x, y)θ(z)) + V (z)Φ(x, y)θ(z) = EΦ(x, y)θ(z) (A.7)

Making explicit ∇ and dividing both members by Φ(x, y)θ(z):

−~2

2mΦ(x, y)( ∂
2

∂x2 + ∂2

∂y2 )Φ(x, y)− ~2

2mθ(z)
∂2θ(z)
∂z2 + V (z) = E (A.8)

In order to be equal to a constant, the two terms of the equation, one de-
pending on x,y and one depending on z, must be equal to a constant:

−~2

2mΦ(x,y)(
∂2

∂x2 + ∂2

∂y2 )Φ(x, y) = Ex,y

− ~2

2mθ(z)
∂2θ(z)
∂z2 + V (z) = Ez

(A.9)

from the first equation, it is easy to derive that:

k// =
√

2mEx,y
~2 (A.10)

Replacing in the three dimensional Schrodinger equation, it is trivial to ob-
tain:

∂2θ(z)
∂z2 + (2mEz

~2 − 2mV (z)
~2 − k2

//)θ(z) = 0 (A.11)

Since V (z) is defined as follow:
V1 z < 0
VB0 < z < l

V2 z > l

(A.12)

As a consequence it is possible to define:
k1 =

√
2m
~2 (Ez − V1)− k//

kB =
√

2m
~2 (VB − Ez)− k//

k2 =
√

2m
~2 (Ez − V2)− k//

(A.13)
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Solutions of the Schrodinger equations are:
θ1(z) = A · eik1z +B · e−ik1z z < 0
θB(z) = F · e−kBz +G · ekBz0 < z < l

θ2(z) = C · eik2z +Dė−ik2z

(A.14)

Applying the boundary conditions:


θ1(0) = θB(0)
θ
′

1(0) = θ
′

B(0)
θB(l) = θ2(l)
θ
′

B(l) = θ
′

2(l)

(A.15)

The system below is obtained:


A+B = F +G

A−B = − kB
ik1

(F −G)
F · e−kBl +G · ekBl = C · eik2l

F · e−kBl −G · ekBl = − ik2
kB
· eik2l

(A.16)

Summing and subtracting the third and the fourth equation of the system
above it is possible to obtain F and G, that could be replaced in the first and
in the second equation, and subtracting and summing again it is possible to
obtain a final expression for A and B:A = C

2 ė
ik2l[(1 + k2

k1
cosh(kBl) + i(kBk1

− k2
kB

)sinh(kBl)]
B = C

2 e
ik2l[(1− k2

k1
)cosh(kBl)− i(kBk1

+ k2
kB

)sinh(kBl)]
(A.17)

Now, exploiting the definition of transmission probability:

T := |C
A
|2 = 1

1
4(1 + k2

k1
)2cosh(kBl)2 + 1

4(k
2
B−k1k2
k1kB

)2sinh(kBl)2
(A.18)

Replacing cosh(kBl) = ekBl+e−kBl
2 and sinh(kBl) = ekBl−e−kBl

2 , and after some
trivial algebraic manipulation [48]:

T = 16k2
1k

2
Be

2kBl

[kB(k1 + k2)(1 + e2kBl)]2 + [(k2
B − k1k2)(1− e2kBl)]2 (A.19)
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Landauer Formula
To analyze the conduction of electrons moving from one ferromagnetic to the
other through the tunneling barrier, the Landauer model is exploited. Under
Landaur hypothesis the current corresponding to the k+ states in one of the
two ferromagnetic layer and for one 1D channel is given by [49]:

I+
n = −e

∫ +∞

0

D(E)1Dv+(E)
2 f+(E)dE (A.20)

For simplicity ′x′ and ′y′ directions are neglected and taking in consideration
only the ′z′ direction[49].


v(E) =

√
2(E−En
m∗

D(E) = 1
π~

√
2m∗
E−En

f+(E) = f(E − EFL)
(A.21)

Replacing inside the equation of the current I+[49]:

I+
n = − e

π~

∫ +∞

En
f(E − EFL)dE (A.22)

if En is higher than EFL the conduction will not happen because the sub-band
is empty. Defining a step function µn(E − En)[49]:0E < En

1E > En
(A.23)

Summing the contribution of all the sub-bands[49]:

I+ =
∑
n
I+
n = − e

π~

∫ +∞

0
f(E − EFL)µn(E − En)dE (A.24)

I+ = − e

π~

∫ +∞

0
f(E−EFL)

∑
n
µn(E−En)dE = − e

π~

∫ +∞

0
f(E−EFL)M(E)dE

(A.25)
In the same way I− could be defined[49]:

I− = e

π~

∫ +∞

0
f(E − EFR)M(E)dE (A.26)
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Summing the two current contributions, taking in consideration that at the
oxide barrier there is a certain probability of reflection and a certain proba-
bility of tunneling, and supposing that the difference between the two Fermi
distributions is unitary in the approximation of Fermi function as a step
function (0K):

I = 2e
h
M(EFL − EFR)Tz = 2e

h
M(EFL − EFR)

∫
k//
T (k//)dk// (A.27)

Where M is an integer number depending on the function M(E).
The conductance is defined as [49]:

G = |e|I
(EFL − EFR) = 2e2M

h

∫
k//
T (k//)dk// (A.28)

where T (k//) is the function calculated with the free electron tunneling
model.

G = |e|I
(EFL − EFR) = 2e2M

h

∫
k//

16k2
1k

2
Be

2kBl

[kB(k1 + k2)(1 + e−2kBl)]2 + [(k2
B − k1k2)(1− e−2kBl)]2dk//

(A.29)

remembering that k1, k2, kB are function of k//.

Julliere’s model
It is a two current model based on the first assumption that the conductance
is proportional to the product of the Fermi energy density of states in the
electrodes on either side of the barrier:GP = G↑↑ +G↓↓

GAP = G↑↓ +G↓↑
(A.30)

where 

G↑↑ ∝ N↑LN
↑
R

G↓↓ ∝ N↓LN
↓
R

G↑↓ ∝ N↑LN
↓
R

G↓↑ ∝ N↓LN
↑
R

(A.31)
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The tunnel magneto resistance is defined as follow:

TMR ≡ GP −GAP

GAP
= N↑LN

↑
R +N↓LN

↓
R −N

↑
LN
↓
R −N

↓
LN
↑
R

N↑N↓ +N↓LN
↑
R

= (N↑L −N
↓
L) · (N↑R −N

↓
R)

N↑LN
↓
R +N↓LN

↑
R

(A.32)

TMR ≡ ∆NL∆NR

N↑LN
↓
R +N↓LN

↑
R

(A.33)

The denominator of the fraction can be rewritten as follow, with a trivial
algebraic manipulation:

TMR ≡ ∆NL∆NR
1
2(NLNR −∆NL∆NR) =

2∆NR∆NL
NLNR

1− ∆NR∆NL
NLNR

(A.34)

Exploiting the definition of the polarization of the ferromagnetic layers (elec-
trodes of the structure):

PL,R ≡
N↑L,R −N

↓
L,R

N↑L,R +N↓L,R
= ∆NL,R

NL,R
(A.35)

Substituting inside the expression of the TMR:

TMR ≡ 2PLPR
1− PLPR

(A.36)

Slonczewski’s model
Slonczewski started from the simplest free electron model. Combining the
latter with the Julliere’s result, he was able to find an effective polarization of
the layer and to obtain a more exact equation for the TMR. The Hamiltonian
of the free electron model is a bit modified, and then exploiting the charge
current density, which is conserved throughout the junction, it is possible to
obtain the Slonczewski’s formula. The potential barrier is supposed to be a
function of "x": H = ~2k2

⊥
2m −

1
2
~∆ · ~σ x < 0 ∪ x > l

H = ~2k2
⊥

2m∗ + U(x) 0 ≤ x ≤ l
(A.37)

”m” is the effective mass inside the ferromagnetic layers while ”m∗”is the
effective mass inside the oxide barrier. ~∆ is the exchange field while ~σ are
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the Pauli matrices. Taking in consideration that the magnetization of the free
layer is rotated for a certain angle θ, it is trivial to write the wave functions
and the relative ”k” in the three regions respectively [19]. Then exploiting
the definition of the charge current density:

Je = e~
2m∗i [(ψ↑

∗ ψ∗↓) ·
dψ↑

dx
dψ↓
dx

− (ψ↑ ψ↓) ·
dψ∗↑

dx
dψ∗↓
dx

] (A.38)

and solving the equation for the leading order in e−Eb(d) [19], the Slonczewski
equation is obtained:

Je(E) = J0(1 + P 2cos(θ)) (A.39)

where "P " is the "effective polarization" which differs from the Julliere’s polar-
ization because this time it takes in consideration also the coupling between
the spacer and the ferromagnetic contact.

Pi =
k↑i − k↓i
k↑i + k↓i

 ·
k2

B − k
↑
i k
↓
i

k2
B + k↑i k

↓
i

 (A.40)

Defining the polarization in this new way, Slonczewski was able to define the
Tunnel Magneto Resistance (TMR) with the same mathematical formulation
of Julliere:

TMR ≡ IP − IAP
IAP

∝ 2PLPR
1− PLPR

(A.41)

with Pi the "new effective polarization" defined just above.

Four-Collective Coordinates system

In this section, just to add more detail to the thesis, the Four-Collective
Coordinates system obtained through the Lagrangian approach is reported
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[36]:

cos(Γ)
∆ q̇ = w

2∆cos(Γ)Γ̇ + πγD0

2Ms∆
sin(φ− Γ)− γKd

Ms
sin(2(φ− Γ)) + αφ̇+

+ u · cos(Γ)
∆ + γ

π

2aFLcos(φ)

φ̇ =− µ0γHext − α
cos(Γ)

∆ q̇ + α
w

2∆cos(Γ)Γ̇ + βu · cos(Γ)
∆ − γπ2 bDLcos(φ)

απ
2

12 [ ∆̇
∆ −

Γ̇
cos(Γ) ] = γ

Ms
[ A∆2 (1 + sin(2Γ))−Ku − kdsin2(φ− Γ)]− π

2γaFLsin(φ)

α
π2

12[∆̇∆ −
Γ̇
Γ(( w

π∆)2 + sin2(Γ)
2 )] = γ

Ms
[ A∆2 (2cos3(Γ) + sin(Γ))+

+ sin(Γ)(Ku + kdsin
2(φ− Γ))+

− cos(Γ)kdsin(2(φ− Γ))]+

+ πD0γ

2∆Ms
sin(φ)− π

2γsin(Γ)aFLsin(φ)
(A.42)

Implementing this differential equation system, the domain wall motion could
be described more accurately with respect to the differential system 2.162.
To make the system 2.162 more accurate, the domain wall width is considered
as a piecewise function in the case of the presence of gates that modify the
local anisotropy during the resolution of the differential system with Matlab.
At the same time the average of the tilting angle is evaluated using Mumax3
as explained in the section 2.1. For more details about the four coordinate
model, its limitations and its innovativeness look at [36].

Threshold Current
In the following table all the threshold current values, for different anisotropy
levels of the VCMA gate, and for different gate width are reported:
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Table A.1: Threshold Current

Gate width Anisotropy Variation Threshold Current

40 nm −20% ≈ 4e11 A
m2

40 nm −15% ≈ 1.5e11 A
m2

40 nm −10% ≈ 0.75e11 A
m2

40 nm −5% ≈ 0.75e11 A
m2

40 nm +5% ≈ 0.75e11 A
m2

40 nm +10% ≈ 2e11 A
m2

40 nm +15% ≈ 2e11 A
m2

40 nm +20% ≈ 2.5e11 A
m2

60 nm −20% ≈ 3e11 A
m2

60 nm −15% ≈ 1.5e11 A
m2

60 nm −10% ≈ 1e11 A
m2

60 nm −5% ≈ 0.5e11 A
m2

60 nm +5% ≈ 0.75e11 A
m2

60 nm +10% ≈ 2e11 A
m2

60 nm +15% ≈ 2.5e11 A
m2

60 nm +20% ≈ 3e11 A
m2

80 nm −20% ≈ 3.5e11 A
m2

80 nm −15% ≈ 2e11 A
m2

80 nm −10% ≈ 1e11 A
m2

80 nm −5% ≈ 0.5e11 A
m2

80 nm +5% ≈ 0.75e11 A
m2

80 nm +10% ≈ 1.5e11 A
m2

80 nm +15% ≈ 2.5e11 A
m2

80 nm +20% ≈ 3e11 A
m2
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Mumax3 Code

STT code

//Dimension of the material and its discretization
Nx := 768
Ny := 128
Nz := 1
setGridSize(Nx, Ny, Nz)
setCellSize(1e-9, 1e-9, 1e-9)
//Period Boundary Condition (PBC). PBC must be canceled out to evaluate
the position, the speed, and the tilting angle of the Domain Wall through
ext_dwpos, ext_dwspeed, ext_dwtilt respectively
//setPBC(4,0,0)

//Tilting angle of anisotropy vector
angle := 0.05 //between 0.01 and 1
py := sin(angle * pi/180)
pz := cos(angle * pi/180)

//Parameters
Msat = 1e6 //Saturation Magnetization
Aex = 10e-12 // Exchange stiffness interaction
anisU = vector(0, py, pz) //Anisotropy Vector
Ku1 = 0.8e6 //Anisotropy constant
alpha = 0.04 //max = 0.04 min = 0.015, Damping factor
Xi = 0.2 //Non-adiabatic parameter
pol = 1 //Current Polarization
//Dind = 0.6e-3 //DMI interaction J

m3

w := 60e-9 //VCMA gate width
n := 1 //Number of Domain Walls in the piece of material
p :=-Nx*1e-9/2+Nx*1e-9/(2*n) //Parameter necessary for the evaluation of
the magnetization domains and for the VCMA gate position

//Magnetization Domain Definition
for i := n; i>0; i-=1
defregion(i, rect(Nx*1e-9/n,Ny).transl(p+(n-i)*(Nx*1e-9/n),0,0)) m.setRegion(i,
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twoDomain(0,0,-pow(-1,i), 0,1,0, 0,0, pow(-1,i)).transl(p+(n-i)*(Nx*1e-9/n),0,0))

minimize() //Energy Minimization

//Region of different anisotropy definition
for k := n; k>0; k-=1 {
defregion(n+k, rect(w,Ny).transl(p+(n-k)*(Nx*1e-9/n)+64e-9,0,0)) Ku1.setRegion(n+k,
1.1*Ku1.GetRegion(0)) }

ext_centerWall(2)//Centering of the simulation window to evaluate posi-
tion, speed and tilting angle of the DW

// Schedule output
autosave(m, 10e-12) //Magnetization autosave
tableadd(ext_dwpos) //Domain Wall Position
tableadd(ext_dwspeed) //Domain Wall Speed
tableadd(ext_dwtilt) //Domain Wall Tilting Angle
tableautosave(10e-16) //Really dense autosaving to have good fitting of the
DW Tilting Angle

j = vector(0.75e12, 0, 0) //STT Current in ’x’ direction
// Run for 8ns with current through the sample
run(8e-9)

SOT code
//Dimension of the material and its discretization
Nx := 768
Ny := 128
Nz := 1
setGridSize(Nx, Ny, Nz)
setCellSize(1e-9, 1e-9, 1e-9)
//Period Boundary Condition (PBC). PBC must be canceled out to evaluate
the position, the speed, and the tilting angle of the Domain Wall through
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ext_dwpos, ext_dwspeed, ext_dwtilt respectively
//setPBC(4,0,0)

//Tilting angle of anisotropy vector angle := 0.05 //between 0.01 and 1
rad
py := sin(angle * pi/180)
pz := cos(angle * pi/180)

//Parameters
Msat = 1e6 //Saturation Magnetization
Aex = 10e-12 // Exchange stiffness interaction
anisU = vector(0, py, pz) //Anisotropy Vector
Ku1 = 0.8e6 //Anisotropy constant
alpha = 0.04 //max = 0.04 min = 0.015, Damping factor
Xi = 0.2 //Non-adiabatic parameter
pol = 1 //Current Polarization
Dind = 0.6e-3 //DMI interaction J

m3

w := 60e-9 //VCMA gate width
n := 1 //Number of Domain Walls in the piece of material
p :=-Nx*1e-9/2+Nx*1e-9/(2*n) //Parameter necessary for the evaluation of
the magnetization domains and for the VCMA gate position

//Magnetization Domain Definition
for i := n; i>0; i-=1 {
defregion(i, rect(Nx*1e-9/n,Ny).transl(p+(n-i)*(Nx*1e-9/n),0,0)) m.setRegion(i,
twoDomain(0,0,-pow(-1,i), pow(-1,i),0,0, 0,0, pow(-1,i)).transl(p+(n-i)*(Nx*1e-
9/n),0,0)) }

minimize() //Energy Minimization

//Define constants for SOT
AlphaH := 0.15 //Parameter of the Damping like SOT
e := 1.6021766e-19 //Electron charge
d := 1e-9 //oxide thickness
Ms := 1e6 //Saturation Magnetization
hbar := 1.0545718e-34 //Reduced Planck constant
zi := ConstVector(0, 1, 0) //Direction Perpendicular to the Spin Current
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and to the Underlayer Current
SOTxi := -2.0 //Ratio between Field Like SOT and Damping SOT
J_SOT := abs(-0.5e11) //Underlayer Current

//Define Damping Like SOT and Field Like SOT prefactors
aj := Const(J_SOT*(hbar/2.*alphaH/e/d/Ms)) //Damping Like factor
bj := Mul(aj,Const(SOTxi)) //Field Like Factor

//Add damping-like SOT term
dampinglike := Mul(aj, Cross(m,zi))
AddFieldTerm(dampinglike)
AddEdensTerm(Mul(Const(-0.5),Dot(dampinglike,M_full)))

//Add field-like SOT term
fieldlike := Mul(bj,zi)
AddFieldTerm(fieldlike)
AddEdensTerm(Mul(Const(-0.5),Dot(fieldlike,M_full)))

//Region of different anisotropy definition
for k := n; k>0; k-=1 {
defregion(n+k, rect(w,Ny).transl(p+(n-k)*(Nx*1e-9/n)-128e-9,0,0)) Ku1.setRegion(n+k,
1*Ku1.GetRegion(0))
}

ext_centerWall(2) //Centering of the simulation window to evaluate posi-
tion, speed and tilting angle of the DW

// Schedule output
autosave(m, 10e-12) //Magnetization autosave
tableadd(ext_dwpos) //Domain Wall Position
tableadd(ext_dwspeed) //Domain Wall Speed
tableadd(ext_dwtilt) //Domain Wall Tilting Angle
tableautosave(10e-16) //Really dense autosaving to have good fitting of the
DW Tilting Angle
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// Run for 8ns with current through the sample
run(8e-9)

Descriptive images of the code
In order to better understand the following piece of the code: for i := n; i>0;
i-=1 {
defregion(i, rect(Nx*1e-9/n,Ny).transl(p+(n-i)*(Nx*1e-9/n),0,0)) m.setRegion(i,
twoDomain(0,0,-pow(-1,i), pow(-1,i),0,0, 0,0, pow(-1,i)).transl(p+(n-i)*(Nx*1e-
9/n),0,0)) }
the following images are reported:

Figure A.1: Four Domain Walls (DWs) n = 4

Figure A.2: Eight Domain Walls (DWs) n = 8

Figure A.3: Sixteen Domain Walls (DWs) n = 16
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Matlab Code

clear all
clc

%Mumax_section
load tiltMumax.txt %Mumax3 simulation file
mum = tiltMumax(:,:);

angle_mum = mum (:,7); %tilting angle vector of the Domain Wall
velocity = mum (:,6); %velocity vector of the Domain Wall
pos = mum (:,5); %position vector of the Domain Wall
t = mum(:,1); %time vector of Mumax3 simulation
time = 0:8e-9/(length(angle_mum)-1):8e-9;
M = length(time);

%polynomial approximation of the tilting angle of the Domain Wall
[p, S, mu] = polyfit(t, angle_mum, 35);
%polynomial approximation of the tilting angle of the Domain Wall
[angle, delta_p] = polyval(p,t,S,mu);
%time derivative of the tilting angle polynomial function of the Domain Wall
dangle = zeros(1,length(angle));

%average tilting angle of the Domain Wall
sum_angle = 0;
for i = 1:length(angle)

sum_angle = sum_angle + angle_mum(i);
end
%average tilting angle of the Domain Wall
angle_average = sum_angle/length(angle);

%Parameters
A = 10*10^-12; %Exchange stiffness [j/m]
M_s = 10^6; %Saturation magnetization [A/m]
N_x = 0; %Demagnetizing Tensor
N_y = 0; %Demagnetizing Tensor
N_z = 1; %Demagentizing Tensor
mu_0 = 4*pi*10^-7; %Magnetic permeability [Henry/m]
t_FM = 10^-9; %ferromagnetic layer thickness
H = 0; %external field along 'z' axis
alpha = 0.04; %damping factor
Q = -1.602176634*10^-19; %electron charge
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m = 9.109*10^-31; %electron mass [kg]
gamma = -1.7595e11; %gyromagnetic ratio [rad/(s*T)]
hbar = 1.0545718*10^-34; %reduced Planck constant
J_SOT = 1.5*10^11; %SOT current density [A/m^2]
mu_b = 9.274*10^-24; %Bohr Magneton [J/tesla]
tau_fl = hbar*J_SOT*0.3/(2*Q*t_FM*M_s*mu_0); %SOT Field-like
tau_dl = -hbar*J_SOT*0.15/(2*Q*t_FM*M_s*mu_0); %SOT Damping-like
D_dmi = 0.6e-3; %Dzyaloshinskii–Moriya interaction
G = 2; %Landé Factor
P = 1; %Polarization of the STT current density
J = 1*10^12; %STT current density [A/m^2]
beta = 0.2; %Non-Adiabaticity STT factor
u = G*mu_b*P*J/(2*Q*M_s*(1+beta^2)); %Adiabaticity STT factor
w = 128e-9; %width of the ferromagnetic material
k_u = 0.8e6; %anisotropy constant of the ferromagnetic layer
delta = sqrt((A)/(k_u+0.5*mu_0*M_s^2*(-N_z))); %Initial Domain Wall width
%Sharpness of the anisotropy profile of the VCMA gate
delta_1 = sqrt((A)/(k_u+0.5*mu_0*M_s^2*(-N_z)));
k_d = (d*log(2)/(pi*delta))*mu_0*M_s*M_s/2; %Transverse Shape Anisotropy

%VCMA Gate Parameters
anisotropy_var = 0.16e6; %Anisotropy variation of the VCMA Gate
%'c' = position of the center of the VCMA gate
%positive value of 'c' implies a shifting of the gate to the left
%with respect to center of the track ('0' position)
c = 128e-9; %[m]
w_gate = 60e-9; %width of the VCMA Gate [m]

%Initialization vector
phi = zeros(length(dangle),1);
q = 0*ones(1,length(time));

for i = 1:length(dangle)
%First alternative for the evaluation of the tilting profile
% of the Domain Wall: this approach could create instability
%of the results due to non-precise polynomial approximations.
%The tilting angle of the Domain Wall is given to the differential system
%point by point
tilt = angle_mum(i);
%the time derivative of the tilting angle of the Domain Wall
%is given to the differential system point by point
dtilt = dangle(i);
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%Second alternative for the evaluation of the tilting profile
%of the Domain Wall: this approach gives stable results,
%and it is still valid because usually the Domain Wall after a while
%reaches an almost constant tilting angle
tilt = angle_average(i);
dtilt = 0;

%Diffential equation system

%'fq' = time derivative of 'q' which is the center of the Domain Wall

fq{i} = @(t, q, phi, delta, k_d) (dtilt.*w.*(1+alpha.^2)./(cos(tilt).*2.*delta)
- gamma.*k_d.*sin(2.*(phi-tilt))./M_s
+ pi.*D_dmi.*gamma.*sin(phi-tilt)./(2.*delta.*M_s) + u.*cos(tilt)./delta
+ mu_0.*gamma.*pi.*tau_fl.*cos(phi)./2 + alpha.*beta.*u.*cos(tilt)./(delta)
-alpha.*gamma.*(anisotropy_var./2).*(4.*(csch((c-w_gate./2+q)./delta_1)).^2
.*(coth((c-w_gate./2+q)./delta_1).*((c-w_gate./2+q)./delta_1)-1)
- 4.*(csch((c+w_gate./2+q)./delta_1)).^2.*(coth((c+w_gate./2+q)./delta_1)
.*((c+w_gate./2+q)./delta_1)-1))./(2.*M_s) - alpha.*mu_0.*gamma.*H
- alpha.*mu_0.*gamma.*tau_dl.*cos(phi).*pi./2)./(cos(tilt).*(1+alpha.^2)./delta);

%'fphi' = time derivative of 'phi' which is the precession angle of the
%magnetization of the Domain Wall

fphi{i} = @(t, q, phi, delta, k_d) - gamma.*(anisotropy_var./2)
.*(4.*(csch((c-w_gate./2+q)./delta_1)).^2.*(coth((c-w_gate./2+q)./delta_1)
.*((c-w_gate./2+q)./delta_1)-1) - 4.*(csch((c+w_gate./2+q)./delta_1)).^2
.*(coth((c+w_gate./2+q)./delta_1).*((c+w_gate./2+q)./delta_1)-1))./(2.*M_s)
+ alpha.*dtilt.*w./(cos(tilt).*2.*delta) + beta.*u.*cos(tilt)./(delta)
- mu_0.*gamma.*H - mu_0.*gamma.*tau_dl.*cos(phi).*pi./2
- alpha.*(cos(tilt)./(delta)).*(dtilt.*w.*(1+alpha.^2)./(cos(tilt).*2.*delta)
- gamma.*k_d.*sin(2.*(phi-tilt))./M_s +
pi.*D_dmi.*gamma.*sin(phi-tilt)./(2.*delta.*M_s) + u.*cos(tilt)./delta
+ mu_0.*gamma.*pi.*tau_fl.*cos(phi)./2 + alpha.*beta.*u.*cos(tilt)./(delta)
- alpha.*gamma.*(anisotropy_var./2).*(4.*(csch((c-w_gate./2+q)./delta_1)).^2
.*(coth((c-w_gate./2+q)./delta_1).*((c-w_gate./2+q)./delta_1)-1)
- 4.*(csch((c+w_gate./2+q)./delta_1)).^2.*(coth((c+w_gate./2+q)./delta_1)
.*((c+w_gate./2+q)./delta_1)-1))./(2.*M_s) - alpha.*mu_0.*gamma.*H
- alpha.*mu_0.*gamma.*tau_dl.*cos(phi).*pi./2)./(cos(tilt).*(1+alpha.^2)./delta);

end
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%Initial conditions
t(1) = 0;
q(1) = 0;
phi(1) = pi/2;
%If phi(1) = n*pi/2 with 'n' an integer, the Domain Wall starting profile
%is a Bloch Domain Wall configuration
%If phi(1) = n*pi with 'n' an integer, the Domain Wall starting profile
%is a Néel Domain Wall configuration

%Step size
tfinal = 8e-9; %Duration of the simulation
N = length(dangle);
h = tfinal/N;

%update loop
for i=1:N
%Update time
t(i+1) = t(i) + h;

%Update q, phi

k1q = fq{i}(t(i),q(i),phi(i), delta, k_d);
k1phi = fphi{i}(t(i),q(i),phi(i), delta, k_d);

k2q = fq{i}(t(i)+h/2,q(i)+h/2*k1q,phi(i)+h/2*k1phi, delta, k_d);
k2phi = fphi{i}(t(i)+h/2,q(i)+h/2*k1q,phi(i)+h/2*k1phi, delta, k_d);

k3q = fq{i}(t(i)+h/2,q(i)+h/2*k2q,phi(i)+h/2*k2phi, delta, k_d);
k3phi = fphi{i}(t(i)+h/2,q(i)+h/2*k2q,phi(i)+h/2*k2phi, delta, k_d);

k4q = fq{i}(t(i)+h/2,q(i)+h*k3q,phi(i)+h*k3phi, delta, k_d);
k4phi = fphi{i}(t(i)+h/2,q(i)+h*k3q,phi(i)+h*k3phi, delta, k_d);

q(i+1) = q(i)+h/6*(k1q + 2*k2q + 2*k3q + k4q);
phi(i+1) = phi(i)+h/6*(k1phi + 2*k2phi + 2*k3phi + k4phi);

%If there is a VCMA gate, the local anisotropy constant changes at the gate,
%therefore the Domain Wall width 'delta' changes

if ((c-w_gate/2) <= abs(q(i))) & (abs(q(i)) < (c+w_gate/2))
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k_u = 0.8e6 + anisotropy_var; %VCMA Gate region
delta = sqrt((A)/(k_u+0.5*mu_0*M_s^2*(-N_z)));

end

if (0 < abs(q(i))) & (abs(q(i)) < (c-w_gate/2))
k_u = 0.8e6;
delta = sqrt((A)/(k_u+0.5*mu_0*M_s^2*(-N_z)));

end
if (c+w_gate/2) <= abs(q(i))

k_u = 0.8e6;
delta = sqrt((A)/(k_u+0.5*mu_0*M_s^2*(-N_z)));

end

end

%Velocity of the Domain Wall
speed = 0*ones(1,length(time));
for i = 2:N

speed(i) = fq{i}(t(i),q(i),phi(i), delta, k_d);
end

%Comparison of the average speed of the Domain Wall
%evaluated by Mumax3 and by the Analytical model
sum_th = 0;
sum_mu = 0;

for i = 1:length(speed)
sum_th = sum_th + speed(i);
sum_mu = sum_mu + velocity(i);

end

%Average speed of the the Domain Wall evaluate by the Analytical model
speed_theory_av = sum_th/(length(speed));
%Average speed of the the Domain Wall evaluate by Mumax3
speed_mumax_av = sum_mu/(length(speed));

%Plots
%Plot of the Domain Wall's position evaluated by Mumax3
%and by the Analytical model
hold on
xlabel ('time')
ylabel ('DW position')
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plot(time,q(1:end-1))
plot(time, pos)
hold off
figure
%Plot of the Domain Wall's average speed evaluated by Mumax3
%and by the Analytical model
hold on
xlabel ('time')
ylabel ('DW speed')
plot(time,speed)
plot(time, velocity)
hold off
figure
%Plot of the tilting angle of the Domain Wall evaluated
%by Mumax3 and its polynomial approximation
hold on
plot(time, angle_mum)
plot(time, angle)
hold off
figure
%Plot of the time derivative of the tilting angle of the Domain Wall
plot(time, dangle)
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