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Abstract

Cardiac SPECT is a non-invasive tomographic nuclear medicine technique which
allows to perform a myocardial perfusion imaging (MPI). During this procedure, a
specifically designed radiotracer is administered to a patient and it concentrates in
the heart tissues. The 3D distribution of the radiopharmaceutical activity inside
the heart is reconstructed by collecting enough 2D projection images around the
patient.
This technique is a powerful tool for coronary artery disease (CAD) diagnosis.
Comparing two sets of images, one acquired after a stress test and another in a
rest state, a SPECT MPI study highlights possible perfusion defects, which may
result in a myocardial ischemia or a myocardial infarction.
D-SPECT is a cardiac-dedicated system which fits the left side of the patient’s
chest with its curved geometry.
This camera shows a much greater sensitivity, a higher reconstructed resolution
and an improved energy resolution, compared to the conventional systems.
The D-SPECT image quality may be degraded by several factors. Detector and
patient chair positions are not defined in advance, so that the patient-detector
configuration depends on the operator and on the patient characteristics. In addi-
tion, the cardiac region should be identified on the pre-scan in order to focus the
final acquisition on the heart. This procedure is strongly operator-dependent.
This work was carried out in collaboration with the company Tecnologie Avan-
zate (Turin, Italy) and it was aimed at developing artificial intelligence algorithms
which facilitate cardiac SPECT procedures, providing the operator with indica-
tions about the patient positioning and the heart location in the preliminary scan.
711 scans related to 158 different patients were collected, using a D-SPECT sys-
tem at the Nuclear Medicine Department of the San Giovanni Battista University
Hospital of Turin. A graphical user interface (GUI) was developed to allow experts
to select the heart position in the pre-scan and to indicate possible corrections to
the patient-detector configuration. Specifically, the technicians denoted the pre-
scans for which the head detector or the patient chair are not in the right position.
They also labelled the acquisitions which presented a great extra-cardiac activity,
suggesting the patient to drink cold water.
Support vector machine (SVM) models were trained by using the collected in-
formation. A classifier for detecting the heart position was developed, showing a
sensitivity up to 96%.
In order to assist the operator during the diagnostic test, two classifiers were de-
veloped. One has the aim to distinguish among three different pre-scan categories:



raise the chair, lower the chair or leave the chair as it is for the semi-upright po-
sition; move the detector head towards the patient’s feet, towards the patient’s
head or leave the detector head as it is for the supine configuration. The second
classifier is useful to discern between two other classes: make the patient drink or
not drink cold water, depending on the external activity. On average, these al-
gorithms achieved an accuracy of 71.8%. Even if these algorithms did not achieve
optimal results, they are surely a good starting point to make the diagnostic work
easier for the operators.
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Chapter 1

Introduction

Single-photon emission computed tomography (SPECT) belongs to tomographic
nuclear medicine techniques. This method allows to acquire medical images non-
invasively. A radiopharmaceutical is administered to the patient and it is specifi-
cally designed to spread in the organs whose metabolic activity is to be studied.
The radiotracer is able to emit gamma-rays which are collected by one or more
gamma-cameras, responsible for the conversion of the gamma-photons into images.
Acquiring several 2D projection of the radioactivity, it is possible to reconstruct
the 3D distribution of the radionuclide inside the region of interest.
The procedure just mentioned can be aimed at analyzing blood perfusion through
the myocardium and it is known as cardiac SPECT or SPECT-Myocardial Per-
fusion Imaging (MPI). This technique is among the most applied to diagnose a
coronary artery disease (CAD), which is the first cause of death in Western world
[55].
Conventional SPECT detectors are often characterized by a low sensitivity, since
almost all the emitted photons are absorbed by the collimator. New cardiac-
dedicated cameras, such as the D-SPECT, have been developed in order to improve
the image quality. In the D-SPECT system, the camera consists of 9 pixelated
CZT detector columns, arranged in a curved configuration that encloses the left
side of the patient’s chest. The final acquisition is always preceded by a short-
lasting pre-scan. The operator indicates the heart region on these preliminary
images, so that the detectors can focus the sampling on the patient’s heart. A
wide-angle collimator combined with a fast region-centric acquisition allows the
device to obtain a much higher sensitivity compared to the traditional systems.
Performing a diagnostic test using D-SPECT can present some issues, since several
factors may affect the quality of the produced images. The operator should choose
the correct position for the patient, in order to place the heart as close as possible
to the detector. Even if a good patient/detector configuration is found, the acqui-
sition may become critical in presence of particular patient characteristics, such
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as a high BMI or restricted mobility. As previously mentioned, the technician is
also responsible for selecting a ROI which encloses the heart activity in the pre-
scan images. High extra-cardiac activity can increase the complexity of this task;
artifacts may appear in the reconstructed images if a wrong ROI positioning is
performed.
The purpose of this work is to create a system that supports medical staff during
these procedures, by using artificial intelligence algorithms. The software should
provide possible corrections of the patient positioning and also detect the heart
location in the pre-scan images.
This manuscript is organized as follows. Chapter 2 contains the information about
the context within which this study is inserted, from the function and assessment
of the heart to the definition of a D-SPECT system. In Chapter 3 the methods
adopted for this work are described, whilst the obtained results are reported in
Chapter 4. These results are analyzed and discussed in Chapter 5 and, finally, the
conclusions of this work are reported in Chapter 6.
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Chapter 2

Background

2.1 Function and assessment of the heart

2.1.1 Anatomy of the heart

Figure 2.1.1: Cardiac anatomy [36].

The heart is a muscular, cone-shaped organ which consists of four hollow chambers:
the two upper chambers called atria and the two ventricles below (figure 2.1.1).
Heart muscle can be considered as a double pump, in which the left and right sides
work separately at different pressure levels [52].
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The concurrent pumping of both sides allows heart to perform its functions cor-
rectly. The top part of the heart is called base and it connects to the aorta, vena
cava, pulmonary arteries and veins. The apex corresponds to the bottom of the
heart [32].
The atria and the ventricles are separated by the annulus fibrosus (also called
atrio-ventricular ring), a layer of connective tissue which constitutes the cardiac
skeleton. The task of maintaining blood flow in the forward direction rests with
the valves, which form a part of the AV ring and open or close depending on the
pressure gradient. A muscular wall, named septum, vertically separates the two
parts of the heart: interatrial septum divides the two atria and the two ventricles
are split by interventricular septum [36].
The heart is characterized by a three-layer wall, composed by the pericardium,
the myocardium and the endocardium. The heart, the roots of the aorta and
pulmonary arterial trunk are enclosed by the pericardium. This is the external
layer of the cardiac wall and it in turn is formed by an outer fibrous layer and an
internal serous layer (also known as epicardium). The space between these two
layers is filled by a fluid, which decreases friction during myocardial contraction.
Cardiac muscle cells known as myocytes populate the thick middle layer of the
heart wall, the myocardium. Surrounded by connective tissue and a network of
capillaries, myocytes are responsible for the heart contraction. The endocardium
is the inner layer and is composed of a continuous layer of endothelial cells, which
facilitates blood flow through the heart chambers [36].

2.1.2 The cardiac cycle

The cardiac cycle is composed by two main stages: the phase of myocardial re-
laxation is called ventricular diastole, during which the ventricles dilate to enable
blood entering; on the other hand, during ventricular systole the ventricles con-
tract to force the blood out into the arteries. A rate of approximately 70-75 cycles
per minute is maintained at rest and it decreases during sleep [52].
Two circulatory cycles carry blood to and from the heart, the pulmonary and
systemic circulation. Right atrium (RA) and right ventricle (RV) are involved
in pulmonary circulation (figure 2.1.2). Deoxygenated blood from the body is
drained into the RA by the superior and inferior vena cava. Also the coronary
sinus, a large cardiac vein, enables the return of deoxygenated blood from the
myocardium to the RA. The valves that connect each atrium to the corresponding
ventricle are called atrioventricular valves. The right atrioventricular valve, also
known as tricuspid valve, opens to enable deoxygenated blood to enter the RV
and the ventricular diastole phase starts. The atrial kick indicates the additional
blood pressure obtained by the atrial contraction, which increases the end diastolic
volume (EDV) of the ventricles. Then, the systole period begins, during which the
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Figure 2.1.2: Systemic and pulmonary circulation. Deoxygenated blood is rep-
resented in the color blue and oxygenated blood in red. White arrows represents
the blood flow. Image adapted [46].

tricuspid valve is closed thanks to the three papillary muscles contraction. In this
way blood regurgitation into the RA is prevented. The pulmonary (semilunar)
valve opens only when RV pressure is higher than the pressure within the pul-
monary circulation. The blood flows into the pulmonary arterial trunk until a
new ventricular diastole starts, closing the pulmonary valve and enabling blood to
enter again the RV [36].
Within the alveoli and pulmonary capillaries gaseous exchange occurs: carbon
dioxide is released into the lungs and the blood is enriched with oxygen. Systemic
circulation involves left atrium (LA) and left ventricle (LV). Four pulmonary veins
carry oxygenated blood to the LA. The left atrioventricular valve, named bicuspid
or mitral valve, is forced to open by the pressure increase within the LA and the
blood starts entering the LV. According to Frank-Starling Law, if a larger volume
of blood flows into the ventricle during diastole period, ventricular myocites will be
more stretched, enabling an increase in the contraction force during systolic phase.
Also in this case, once systolic contraction begins, the mitral valve is closed by the
two papillary muscles contraction preventing regurgitation. The pressure within
the LV continues to increase until it exceeds the pressure in the aorta, causing the
aortic (semilunar) valve opening. The amount of blood that is pushed into the
systemic circulation, in order to reach all the tissues of the body, is named stroke
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volume. The ejection fraction of the LV (LVEF) is defined as the ratio between
stroke volume and the left ventricular EDV (LVEDV). Its range of values at rest
is approximately 60-70%. When systole ends and diastole starts again, a little
portion of blood in the aorta fall back towards the LV, enabling the aortic valve
closing and the coronary arteries perfusion [36].
Oxygenated blood and nutrients are transported to the heart tissues by coronary
arterial circulation (figure 2.1.3). The two main arteries of these circulation are
the left and right coronary arteries, which stem from the root of the aorta and
penetrate the myocardium. The coronary veins are responsible of the venous
return from the heart. These veins drain into the coronary sinus, which carries the
deoxygenated blood to the vena cava [57].

Figure 2.1.3: Coronary circulation [36].

2.1.3 Cardiac conduction system and the electrocardiogram
(ECG)

Within the myocardium specialised myocytes, which generate and transmit an
electrical impulse across the heart, constitute the cardiac conduction system (fig-
ure 2.1.4). The sino-atrial node, composed by special pacemaker cells, is located
on the posterior wall of the RA. These self-excitable cells are able to spontaneously
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Figure 2.1.4: Cardiac conduction system. SA: sino-atrial. AV: atrio-ventricular
[36].

depolarise without an external stimulus, determining the heart rate. The impulse
produced by the sino-atrial node is transferred to the surrounding atrial myocytes
by transition cells, provoking depolarisation and contraction in both atria. Once
the stimulus reaches the AV node, its direct transmission to the ventricles is im-
peded by the AV ring and the impulse is transmitted to His-Purkinje system. The
Bundle of His conducts the stimulus rapidly to two bundle branch systems. Con-
duction to the RV is provided by the right bundle branch. The left bundle branch
divide into two branches named fascicles: the stimulus reaches anterior and lateral
walls of the LV by the left anterior fascicle whilst the left posterior fascicle allows
to stimulate the posterior wall of the LV. All these branches are connected to a
network of Purkinje fibres, which transfer the impulse to the papillary muscles and
then very fast to the myocardial cells of the ventricles. It takes less than 200 ms
for the electrical impulse to travel from the sinus node to the myocardial cells in
the ventricles [36].
The propagation of the cardiac electrical activity can be recorded externally and
it is commonly called electrocardiogram (ECG), which is detected by electrodes
attached to the skin. The signal has a special shape that repeats with a certain
rate, imposed by the pacemaker cells. The repeated sequence is formed by the P
and T waves and the QRS complex. The P wave is produced by the depolarization
of the atria, the QRS complex corresponds to the ventricular depolarization and
during repolarization of the ventricles T wave is created. Since atrial repolarization
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is contemporary with depolarization of the ventricles, it is hidden by the QRS
complex which presents an higher amplitude [52]. Figure 2.1.5 shows how left
ventricular volume changes related to the ECG cycle.

Figure 2.1.5: LV volume related the ECG cycle. The red dashed line repre-
sents the LV volume-time curve and the blue track at the bottom corresponds to
an ECG cycle. Tsystole: time from the R-peak of the ECG to the end of the sys-
tole. Tdiastole: time from the end of the systole to the end of the diastole. ICT:
isovolumetric contraction time. LVET:left ventricular ejection time. IRT: isovol-
umetric relaxation time. EV: early volume increase. AV: late volume increase
due to atrial contraction (atrial kick). AoV: aortic valve. MV: mitralic valve.
Image adapted [31].

2.1.4 Coronary artery disease (CAD)

Coronary Artery Disease, also known as atherosclerotic heart disease or coronary
heart disease, is the most common cardiovascular disease [21]. Although the risk
of death from CAD decreased between 1980 and 2010 for a given age in developed
countries [40], this disease remains the first cause of death in Italy and in the
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Western world [55]. Smoking, diabetes, obesity, high blood pressure, alcohol abuse,
lack of exercise and high blood cholesterol are considered risk factors [39].
CAD occurs when coronary arteries fail to supply oxygen and nutrients (e.g. adeno-
sine triphosphate, ATP) to the heart muscle cells [35]. The blood flow is hindered
by the buildup of atheromatous plaques, which are made up of fat, cholesterol,
calcium, and other substances found in the blood [45]. Coronary artery steno-
sis refers to an abnormal narrowing of coronary arteries (figure 2.1.6) and it can
cause angina pectoris (i.e. chest pain, also named angina), myocardial infarction
and sudden cardiac death [58].

Figure 2.1.6: Plaque buildup in an artery. A normal artery allows a normal
blood flow, whilst the presence of a plaque hinders the blood flow, making the
artery narrower. Image adapted [50].

When myocardial metabolic need is not satisfied by the blood perfusion, ischemia
occurs. This condition can be followed by a cascade of events, from a pure
metabolic disturbance to cell death [43]. If the perfusion reduction persists, it
causes an impaired myocardial relaxation: energy is needed during relaxation
phase, so this is the first affected process when supply of ATP is reduced by is-
chemia [19]. This phenomenon can trigger diastolic dysfunction, which includes a
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severe increase in the filling pressure of the LV, perceived by the patient as breath-
lessness condition [3]. ATP insufficiency can cause alterations in depolarization
and repolarization processes, which can be observed as changes in the ECG [28].
Moreover, the accumulation of metabolites and adenosine causes the patient to
experience chest pain [53]. If the ischemic condition lasts enough, an irreversible
cell rupture and necrosis occurs, known as myocardial infarction. It is also possible
that an ischemic event occurs without cell death: in this case the heart presents a
normal perfusion at rest, so a physical stress testing is needed to identify ischemia
[28].

2.2 Nuclear Medicine: physical principles
Unless otherwise indicated, sections 2.2, 2.3, 2.4 refer to the contents of "Bioim-
magini" course held by Prof. Filippo Molinari at the Politecnico di Torino.
Single-photon emission computed tomography (SPECT) is a medical imaging pro-
cedure which, together with positron emission tomography (PET), belongs to to-
mographic nuclear medicine techniques. Whereas computed tomography (CT),
magnetic resonance tomography (MRT) and diagnostic ultrasound (US) allow to
obtain an anatomical description of the analyzed volume, the peculiarity of nu-
clear medicine methods lies in providing functional information, monitoring the
metabolic activity in the scanned region. This characteristic is obtained by an
emission imaging procedure, based on a radiation source located inside the pa-
tient’s body: a radiopharmaceutical, which consists of a specific ligand involved
in physiological processes labeled with a γ-emitting radionuclide, is administered
to the patient (by injection, inhalation or ingestion). A gamma camera (or Anger
camera) is used to collect γ-ray photons and it provides a two-dimensional projec-
tion image. Acquiring multiple projections at different views around the patient,
an estimate of the three-dimensional radiopharmaceutical distribution is obtained,
applying a tomographic reconstruction algorithm.

2.2.1 Basic physical principles
A radionuclide, or radioisotope, is an atom in an unstable state due to an excess of
protons or neutrons at the nucleus level. In this condition, the atom tries to return
to a stable state by carrying out a certain number of spontaneous disintegrations
of its own nucleus; this process is called radioactive decay and it involves emission
of radiation by the unstable nucleus with consequent loss of energy.
The activity in nuclear physics is the ability of a radioactive material to produce
radiation by means of a certain number of spontaneous nuclear disintegrations in
the unit of time. The becquerel (symbol: Bq) is the derived unit of activity for
the International System of Units (SI, abbreviated from the French translation).
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One becquerel is defined as the activity of a radioactive material in which one
nucleus decays per second (i.e. one nuclear disintegration per second). For nuclear
medicine applications, the becquerel is a small unit, so that the curie (Ci) is usually
preferred. The curie is an older, non-SI unit of radioactivity defined as the activity
of one gram of radium-226. One curie corresponds to 37 GBq.
The time necessary for the stabilization of a single radionuclide is stochastic. The
decay follows a statistical law which is based on a Poisson distribution. This means
that the decay rate can be studied on a macroscopic level: considering an object
composed by a single chemical element which contains N0 active radioisotopes at
the instant t0, the number of radioactive atomsN , which have not yet disintegrated
at the instant t, can be calculated by (2.2.1), in which λ is the decay constant of
the considered radionuclide.

N(t) = N0 · e−λ(t−t0) (2.2.1)

The time required for the number of radioactive atoms to reduce to half of its
initial value is called half-life (T1/2) and its formula is (2.2.2).

T1/2 =
ln 2

λ
(2.2.2)

2.2.2 Radioactive decay mechanisms

There are many different types of radioactive decay, depending on the radiation
emitted. Those most closely related to the field of nuclear medicine are listed here:

• In α-decay an heavy atomic nucleus emits an alpha particle, which consists
of two neutrons and two protons bound together. Since the number of pro-
tons changes, an atom of a different chemical element is created, with a mass
number reduced by four and an atomic number reduced by two. Alpha parti-
cles are absorbed by the surrounding matter because of their relatively large
mass and their electric charge of +2e (e stands for elementary charge). Hence
these particles are not used in imaging but they can have a therapeutic use.
For example, radium-226 decays in radon-222 with an α-decay:

226
88Ra→ 222

86Rn + α (2.2.3)

• In β-decay a beta particle (electron or positron) is emitted and it takes place
in two ways:

1. β−-decay is typical of neutron-rich nuclei. A neutron transforms in
a proton and the nucleus emits an electron (e−) and an antineutrino
(ν̄e). The atomic number increases by one but the mass number remains
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constant. The emitted electrons do not exit from the body because of
their low energy. Therefore also these particles are not useful for imaging
purposes. An example of this form of decay is given by molybdenum-99
which decays in technetium-99m:

99
42Mo→ 99m

43Tc + e− + ν̄e (2.2.4)

The production of technetium-99m is very important for nuclear medicine
as it is one of the most used radionuclides in SPECT imaging.

2. On the contrary, proton-rich nuclei usually undergo a β+-decay, in which
a proton transforms in a neutron and the nucleus emits a positron (e+)
and a neutrino (νe) in so-called positron emission. The atomic number
decreases by one but the mass number remains constant. This type of de-
cay occurs only when the energy difference between the decaying nucleus
(called parent radionuclide) and the produced nuclide (called daughter
radionuclide) is equal to 1022 keV. This is the case of gallium-68 which
becomes zinc-68:

68
31Ga→ 68

30Zn + e+ + νe (2.2.5)

β+-decay is at the basis of PET imaging. Emitted positron loses its
energy very rapidly because of the interactions with atomic electrons in
the tissue. Then it annihilates with an electron, producing an energy of
1022 keV, which is released in the form of two colinear γ photons, each
with an energy of 511 keV. These annihilation photons are so energetic
that they are likely to escape the human body and can be detected by
an external device.

• γ-decay normally follows other forms of decay, such as α-decay or β-decay:
after an alpha or a beta particle is emitted, the obtained nucleus is usually
left in an excited state and it can decay by emitting a γ-ray photon. An
example of γ-decay is the decay scheme of cobalt-60: first a β−-decay occurs
from cobalt-60 to excited nichel-60 and then excited nichel-60 decays to the
ground state by emitting gamma rays.

60
27Co→ 60

28Ni + e− + ν̄e + γ (2.2.6)

• electron capture occurs when a proton-rich nucleus absorbes an inner
atomic electron, causing the transformation of a proton into a neutron and
the emission of a neutrino. The mass number does not change but the atomic
number decreases by one. If the resulting daughter radionuclide is in an
excited state, then it returns to its ground state. Usually, a gamma ray is
emitted during this transition. Iodine-123 follows this decay mechanism:

123
53I + e+ → 123

52Te + νe + γ (2.2.7)
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• isomeric transition is similar to any gamma emission, but it involves the in-
termediate metastable excited state of the nuclei. Nuclides with equal atomic
number and equal mass number, but in a different energy state are known
as nuclear isomers. Atoms can show an excited nuclear state that follows
the emission of a β-particle or other type of excitation. In some cases, these
nuclei are able to stay in a metastable state for a long time (hours, days
and sometimes much longer) before undergoing γ-decay. These long-lived ex-
cited radionuclides are known as isomeric states (or isomers) and their decay
is termed isomeric transitions. An example is the decay of the isomer or
metastable state of technetium, named technetium-99m:

99m
43Tc→ 99

43Tc + γ (2.2.8)

SPECT, unlike PET, uses radionuclides emitting a single γ-photon at each
disintegration. These radioisotopes decay by electron capture or by isomeric
transition.

2.2.3 Gamma-photons interactions
Gamma-ray photons are the radiations that are imaged in both PET and SPECT.
These particles interact with matter (crystals, tissues, etc.) in different ways:

• Photoelectric effect: it consists in the emission of an electron (called pho-
toelectron) from an atom caused by an interaction with an incident γ-photon,
which gives all its energy to the photoelectron. This can happen if the pho-
ton has a characteristic energy (proportional to its frequency) higher than the
binding energy of the electron. This process consists in a total conversion of
the photon electromagnetic energy into the electron kinetic energy. Also, va-
cancy created by the emission of the photoelectron is filled by a more external
electron, with a lower energy. Therefore, the energy difference is emitted in
the form of a photon and this process is called scintillation.

• Compton scattering: a γ-photon interacts with an electron weakly bound
to the atom of the material, but in this case only a part of the photon’s
energy is used to emit the electron (here called Compton electron). The
remaining energy appears as a scattered photon (called Compton photon)
which propagates in a direction different from the incident photon’s one. A
photon can undergo Compton scattering several times and also terminate its
path by a photoelectric effect event.

• Pair production: it refers to a γ-photon creating an electron-positron pair
near a nucleus. This mechanism can caused only by photons with an energy
above the threshold of 1022 keV, corresponding to the energy of the two
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generated particles. Excess energy is converted into kinetic energy of the new
particles. Then, the produced positron annihilates with an atomic electron.

2.3 Gamma camera

Figure 2.3.1: Basic components of a gamma camera. The schematics include a
collimator, a scintillation crystal, a phomultiplier tubes array, analogue electron-
ics for position encoding, a pulse height analyzer and a monitor for image dis-
play. The patient’s black areas represent the source of activity. Image adapted
[26].

A gamma camera, also called Anger camera because it was developed by Hal Anger
in 1957, is the basis of the traditional SPECT and PET scanners and also modern
cameras still rely on the original Anger’s design. This detector system, as shown
in figure 2.3.1, consists of a collimator, a scintillation crystal (called scintillator),
an array of photomultiplier tubes (PMTs), an analogue electronics for position
encoding and a pulse height analyzer (PHA).

2.3.1 Collimator

The first piece of hardware met by the γ-rays is the collimator. As with all forms
of electromagnetic radiation, photons are emitted isotropically so, simply using a
detector, it would be impossible to determine the position from which the photon
started. The collimator, usually a slab of lead with several tens of thousands of
holes covering the scintillator surface, only allows the γ-rays from inside the field
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of view of the camera to reach the crystal. The lead walls between the holes,
called septa, absorb most photons and only the ones aligned with the collimator
will interact with the crystal. The geometry of the collimator ensures that the
position of the photon is well determined.
As shown in figure 2.3.2, from an area where the radiopharmaceutical is concen-
trated, the γ-photons emitted by the radionuclides can follow different paths:

a) a particularly dense tissue totally absorbs photon’s energy, preventing it from
reaching the detector;

b) a photon moves along a direction parallel to the collimator and it can reach
the scintillator;

c) a photon is aligned with the collimator but it is deflected by a Compton
scattering event and it is absorbed by the collimator due to its new direction;

d) a not-aligned photon is scattered and then it moves in a direction parallel to
the collimator, so that it can interact with the crystal;

e) a not-aligned photon, which is not scattered, is absorbed by the collimator.

A heavy price is paid for using the technique of collimation because the vast ma-
jority of emitted photons (tipically well over 99.95%) is wasted. Thus collimation,
although essential to image formation, severely limits the sensitivity of the device
(i.e. the probability of detecting a photon incident upon the detector, commonly
quantified as the number of detected counts per unit time per unit source activity
for a specified energy window).
The design of the collimator depends on the γ-ray energy and the trade-off be-
tween photon count sensitivity and spatial resolution. Indeed, an increase of the
collimator hole size and a decrease of the hole length cause a greater sensitivity
but also a loss of spatial resolution.
Another drawback introduced by the collimation is the influence of the distance be-
tween the photon source and the gamma camera on the spatial resolution. Figure
2.3.3 shows that if the radioactive source is located near the camera, the collima-
tor stops an higher percentage of photons; indeed, a steeper projected radiation
profile is obtained, because the collimator acts as a more selective spatial filter.
Therefore, positioning the patient as close as possible to the gamma-camera during
a nuclear medicine examination, a better spatial resolution is achieved.

There are different kinds of collimators depending on their field of view. They
can be parallel-hole, converging, diverging and pinhole collimators (figure 2.3.4).
Parallel-hole collimators are the most commonly used in nuclear medicine as it
gives a one-to-one projected image. Factors affecting their performances are shown
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Figure 2.3.2: Different possible paths of γ-photons from a radioactive area
(grey ellipses) to the collimator. Scintillation (small yellow ellipses) only oc-
curs when the photon reaches the NaI crystal. a) Photon energy is absorbed
by a dense tissue. b) Photon reaches the scintillator since its direction is par-
allel to the collimator. c) A Compton scattering event deflects the path of a pho-
ton aligned with the collimator, so the photon can not meet the scintillator. d)
A not-aligned photon is scattered and it can interact with the crystal because
its new direction is parallel to the collimator. e) The collimator absorbs a not-
aligned photon.

in table 2.3.1. Pinhole and converging collimators magnify the image, whilst di-
verging collimators scale it down.

Increased parameter Resolution Sensitivity

Number of holes No change Increases
Hole diameter Worsens Increases
Hole length Improves Decreases

Septal thickness No changes Decreases
Source-to-collimator distance Worsens No change

Table 2.3.1: Factors affecting the performance of a parallel-hole collimator.
[47]

The parallel-hole collimators can also be classified according to their sensitivity
and resolution: collimators with narrow holes are called high resolution collimators
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Figure 2.3.3: Line spread function (LSF) of a parallel-hole collimator as a
function of source-to-collimator distance. The full width at half maximum
(FWHM) of the LSF increases linearly with distance from the source to the col-
limator [9].

Figure 2.3.4: Types of collimator with different fields of view [10].

and ones with holes of larger size high-sensitivity collimators. Some examples are
low-energy high-resolution (LEHR), low-energy general purpose (LEGP), medium-
energy general purpose (MEGP), high-energy general purpose (HEGP) and low-
energy all-purpose (LEAP) collimators. The choice of a collimator depends on the
requests of the diagnostic test to be performed.
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2.3.2 Scintillation crystal and photomultiplier tubes

Selecting the gamma rays, the collimator forms a projected image of the gamma
distribution on the surface of the scintillation crystal, made of sodium iodide (NaI)
doped with thallium (Tl). When the gamma rays interact with the crystal, thou-
sands of photons with wavelength of visible light are emitted, as a consequence of
the photoelectric effect. Scintillator is usually supported by a glass window, a plate
which prevents deterioration due to humidity and provides mechanical support to
the salt crystal.

The scintillation events produce light pulses, whose yield is proportional to the en-
ergy absorbed by the scintillator from the incident photon. The visible light pho-
tons are then optically guided through an array of photomultiplier tubes (PMTs)
system. A PMT consists of a glass tube in which high vacuum is created. Fig-
ure 2.3.5 shows that the first PMT’s portion met by photons in the visible light
spectrum is the photocathode, a metal plate which converts the photons in a pho-
toelectron flow. A series of plates, called dynodes, with an increasing potential,
attracts electrons and accelerates them, leading to the production of a growing
number of electrons (called secondary electrons). At the end of this process, all
the electrons reach the anode, which presents the most positive potential. The
multiplication of the electrons allows to amplify the initial information given by
the photons, obtaining an electric signal which is sufficiently large to be used by
conventional electronic circuits.

Figure 2.3.5: A photomultiplier tube scheme with secondary electron emissions
[4].
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2.3.3 Position encoding and pulse height analyzer

In order to produce an image, the position where detected photons came from
must be identified. This is determined using the pulses that occur at the anodes
of the PMT array. The output of the PMTs is mapped by a network of electric
resistors, weighted according to the spatial position of the PMTs in the x-axis
and y-axis of the coordinate system of the array. There are four position signals,
labeled X+, X−, Y + and Y −, and one energy signal Z that indicates the energy of
the incident photon or pulse height. This helps to identify the position of an event
by applying a simple formula for each coordinate, based on the relative amount
of current received by each resistor. The position signal has to be normalized by
dividing it by the energy signal (equations 2.3.1 and 2.3.2).

X =
X+ −X−

Z
(2.3.1)

Y =
Y + − Y −

Z
(2.3.2)

The next step is the pulse height analyzer (PHA) that checks the amplitude of the
pulses, i.e. the signal Z, which is proportional to the gamma ray’s energy. The
amplitude of this output signal would always be the same if γ-photons always were
absorbed with their total emission energy. This does not happen because some
photons undergo Compton scattering along their path and lose part of their energy.
Since scattered-photons change their direction, it is impossible to locate where they
come from. In order to have a final image with a good spatial resolution, all the
registered events which do not correspond to the absorption by photoelectric effect
of gamma photons with the total emission energy are not counted. A typical energy
spectrum measured using a technetium-99m source is shown in figure 2.3.6.
An energy discrimination, performed by PHA, is important for imaging purposes
because it provides a mean to reject the gamma-rays which have lost their po-
sitional information. This is accomplished by defining an energy window which
includes the photopeak energy in the pulse height spectrum. For example γ-
photons emitted by technetium-99m present a typical energy of 140 keV. If the
signal Z amplitude falls within the energy window, the event is accepted. Usually
the lower and upper-level thresholds of this window are defined as a percentage
of the photopeak energy in the pulse height spectrum. Furthermore, more than
just one window can be used, if the radioisotope is characterized by more than one
gamma-ray emission.
In an ideal situation, the theoretical energy spectrum reaching the crystal should
be a line spectrum with the energy of the photopeak corresponding to γ-photons
emitted by the radioactive source. Actually the width of the photopeak is broader
and wider (figure 2.3.6) mainly due to statistical variations:
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Figure 2.3.6: Energy spectrum from a gamma camera measured using a point
source of 99mTc in air. A typical energy window (±7.5% of the 99mTc photopeak
energy, i.e. 140 keV) is shown superimposed on the spectrum [12].

• In the scintillator γ-photons with the same energy do not produce light pho-
tons with the same features.

• The light photons produced do not generate the same photoelectrons in the
PMT photocathode.

• The number of secondary electrons produced in each dynode is different for
each incident photon.

2.4 Single Photon Emission Computed Tomogra-
phy (SPECT)

2.4.1 Acquisition

SPECT data acquisition aims to collect a sufficient set of 2D projection data
provided by the gamma camera in order to reconstruct a 3D tomographic image
of the tracer activity distribution. In order to achieve this goal, the patient needs
to be positioned in the centre of the camera’s FOV, so that the system can rotate
around the patient, acquiring 2D images from multiple angles.
As regards SPECT acquisition mode, there are two different procedures. In step-
and-shoot acquisition mode the gantry rotates with a certain angular step, and
only in each step photons are collected. The disadvantage of this process is that it
takes time to move the detector between positions, thus resulting in dead time with
no recorded counts. An alternative method is the continuous acquisition mode:
data are acquired as the detectors continuously rotate around the patient with a
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constant speed. In this way dead time is deleted and more counts are recorded, but
spatial resolution decreases because of the detector motion during the acquisition.
For most SPECT procedures projection data are acquired over a full 360° arc.
The exception usually is SPECT-MPI which involves a 180° acquisition: since
projection views which are opposite to the heart detect significantly less myocardial
activity due to the attenuation through the patient’s thorax, a 180° acquisition can
improve resolution and contrast, but it causes some distortion problems [20].
The standard output matrix size of a SPECT system is 64x64 or 128x18 pixels,
resulting in pixel sizes ranging from 3 to 8 mm.
A SPECT detection system can have different configurations, regarding the num-
ber of gamma cameras that are incorporated: one, two, three or four detector
heads or multiple small-FOV scintillation detectors (figure 2.4.1). In the case of
a two camera system, cameras may be positioned orthogonal or opposite to each
other. The increased number of detector heads provides a greater system sensitiv-
ity, because the number of detected γ-photons increases; as a result, the acquisition
time is reduced.

Figure 2.4.1: SPECT system configurations. Schematics are shown for: a) sin-
gle head, b) orthogonal heads, c) opposed heads, d) three heads, e) four heads
and f) multiple small-FOV detectors [60].

2.4.2 Radionuclides in SPECT

Radioactive compounds participate in an organism’s physiological processes in the
same way as non radioactive materials. Consequently, radionuclides can be used to
track the distribution of specific substances in the body, thanks to their emission
of gamma-ray. The combination of a biological, non-radioactive substance with
a radioactive material is called radiopharmaceutical or radiotracer and it can be
designed to play the role of marker for a variety of compounds in different metabolic
pathways.
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The radionuclides suitable for SPECT imaging should have the following proper-
ties:

• The radionuclide has to be a γ-photons emitter and to decay by electron
capture or isomeric transition (see the definitions in 2.2.2).

• The half-life of the radioisotope has to be long enough to examine metabolic
processes but also short enough to minimize the radiation dose.

• The gamma emitter needs to have enough energy to pass through the patient’s
tissues and reach the detector. However, the γ-ray energy should be low
enough so that it can be absorbed easily by the detector: the upper limit
of γ-photons energy is about 300 keV and it decreases to 200 keV with the
low-energy collimators.

• The chemistry of the radioisotope should allow it to label a range of biolog-
ically active substances so that it concentrates in the tissues of the organ of
interest.

• The radionuclide should be easily available and have a reasonable cost.

The most important radionuclide in SPECT is technetium-99m, which presents
all the characteristics listed above. This nuclear isomer of technetium can bind
chemically to many biological active molecules making it suitable for many medical
exams. It is produced on site using a molybdenum-99 generator. The table 2.4.1
shows the properties of different radionuclides used in SPECT imaging.

Radionuclide Half-life (h) Gamma energy (keV) Mode of Generation Decay mode
99mTc 6.02 140 99Mo generator Isomeric transition

123I 13 159 Cyclotron Electron Capture
111In 67.2 172, 247 Cyclotron Electron Capture
201Tl 73 135, 167 Cyclotron Electron Capture
67Ga 78.1 95, 185, 300 Cyclotron Electron Capture

Table 2.4.1: Properties of commonly used SPECT radioisotopes [8].

2.4.3 Reconstruction
A gamma camera is only able to capture a planar image, which consists of a 2D
projection of the 3D radionuclide emission distribution. Therefore, this repre-
sentation lacks depth information and different 3D structures are overlapped and
indistinguishable. Indeed, photons emitted at different depths, but along the same
direction, are detected by the same detector’s portion, as shown in figure 2.4.2.
Otherwise stated, an infinite number of tracer distribution can yield the same pro-
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Figure 2.4.2: Projection profile of an acquisition by an idealized gamma cam-
era [12].

jection. This problem is solved by using Emission Computed Tomography (ECT)
technique, which allows to reconstruct a 3D spatial distribution by acquiring 2D
projections at different angles of view around the object of study. This process is
represented by figure 2.4.3: for drawing simplicity, here the rotation of the gamma
camera provides a set of 1D projection profiles for a 2D radioactive object. The
number of possible solutions (related to the distribution of the radiotracer) re-
duces as the number of angular positions of the detector increases. Hence ECT
provides important diagnostic information since it is capable of providing more ac-
curate quantification of activity at specific locations within the body. It is useful
to introduce a new coordinate system (r, s) which is jointed to the gamma camera
detector. This new system is rotated by an angle φ from the unrotated coordinate
system (x, y) but their origins are coincident. The (r, s) axes are, respectively,
perpendicular and parallel to the projection array and the new coordinates can be
calculated with the equations 2.4.1 and 2.4.2.

r = x · cosφ+ y · sinφ (2.4.1)

s = y · cosφ− x · sinφ (2.4.2)

In the figure 2.4.4 p(r, φ) represents the number of γ-photons detected at a location
r along the detector, with the detector head in an angular position φ. At the
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Figure 2.4.3: Different acquisitions around the object provides a set of 1D pro-
jection profiles for a 2D object. Then they are used to calculate an estimation of
the 2D distribution in the object [12].

same time, f(x, y) corresponds to the estimated number of photons emitted in
the position (x, y). The matrix p(r, φ) data are commonly displayed in the form
of a single plot called sinogram: its horiziontal axis indicates the projection bin
and its vertical axis refers to the projection angle. Figure 2.4.5 shows a sinogram
for a single point-source. Each row of the sinogram matrix represents an intensity
display across a single projection from a specific angular position. Moving from the
top to the bottom, the graph refers to successive projection angles. The resulting
plot has a sine wavelike shape. Each wave corresponds to a (x, y) location whose
distance from the centre of rotation determines the wave amplitude and whose
angular location defines the wave phase. This representation allows for easier
data processing, image reconstruction and correction techniques. These measured
projection data are used by reconstruction algorithms to generate a tomographic
image. The distribution of the detected counts (g) can be defined by the equation
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Figure 2.4.4: Geometric considerations for a tomographic acquisition. The
(r, s) coordinate system is rotated by projection angle φ with respect to the
(x, y) coordinate system [12].

2.4.3, in which f represents the distribution of the emitted counts in the FOV of
the camera and A means the projection operator.

g = A · f (2.4.3)

In the reconstruction process, the system of equations described in the equation
2.4.3 must be solved to find f , given the measured data g. Two main approaches
can be used to solve this system of equations, analytical and iterative reconstruc-
tion algorithms. Analytical methods typically consider the reconstruction process
as an inverse problem and they try to find the exact mathematical solution to
estimate the radionuclide distribution f . Thus, solutions can be computed very
quickly and efficiently. However, the resulting images may contain some artefacts
because attenuation and noise are not suitably accounted for. On the other hand,
iterative reconstruction methods rely on the selection of the best estimation of the
real image: an algorithm repetitively attempts to obtain this solution through suc-
cessive approximations. Usually this is accomplished by statistical methods and
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Figure 2.4.5: Wavelike pattern of a sinogram for a single point-source. Each
row of the plot corresponds to a projection profile acquired with a precise angu-
lar position [12].

probabilistic models. The advantage of iterative algorithms lies in the possibility
of modelling different degrading effects but they require more computational costs.

2.5 SPECT Myocardial Perfusion Imaging

SPECT myocardial perfusion imaging (MPI) is a non-invasive nuclear procedure
which has emerged not only as a diagnostic technique but also as a robust prog-
nostic tool: it is able to provide data about myocardial perfusion, ventricular
function and viability, performing a single test [44]. MPI is the stress imaging
procedure that is most widely used in the management of patients with CAD
(see the definition in 2.1.4) [48]. The sensitivity of stress SPECT MPI for detect-
ing angiographically-defined CAD is consistently above 70%, but in the better-
designed studies, it can reach the range of 85-90% [1].
In this type of imaging, after the images are acquired, they are reoriented into the
LV frame of reference, instead of the body’s referential. Three axis are defined,
which refer to three different views perpendicular to each other: the short axis
(SA), the vertical long axis (VLA), and the horizontal long axis (HLA) (figure
2.5.1). The long axis of the heart is considered to be the axis that aligns the base
of the heart and the apex, whilst the short axis is the plane perpendicular to the
long axis. SA images give a cross sectional view of the ventricles or of the atria,
HLA images cut the heart moving from the posterior wall to the anterior wall, and
VLA images cut the heart from the septal wall to the lateral wall [11].
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Figure 2.5.1: Standard views for a SPECT MPI study. SA, HLA and VLA are
the three axis of the LV frame of reference. Image adapted [54].

In an SPECT MPI study two sets of images are acquired, one after a stress test
and another in a rest state [22]. The comparison between stress and rest images
allows for the coronary flow assessment: stress images with a perfusion defect in
a region which appears normal on rest images (i.e. a reversible defect) suggest a
myocardial ischemia (figure 2.5.2 A); a perfusion defect which is present both on
stress images and on rest images (i.e. a fixed defect) is suggestive of either an
attenuation artifact or an area of myocardial infarction (figure 2.5.2 B) [13].

2.5.1 Stress modalities for MPI

Stress tests are needed to investigate the coronary flow reserve, which is defined as
the maximum increase in blood flow that coronary arteries can supply to satisfy
metabolic demand [7]. SPECT MPI allows to detect the cardiac sites where this
parameter is altered at rest and after a stress test. Indeed, if some coronary flow
alterations are present, the produced images will show an heterogeneous radio-
tracer distribution [29]. Significant coronary lesions appear as areas of decreased
myocardial tracer uptake [25]. Different stress modalities can be applied in nuclear
cardiology:

• Physical exercise: this is the most physiological test for detecting a myocardial
ischemia. The patient is asked to perform a physical effort on a treadmill
or a stationary bike. Through biochemical mechanisms exercise produces
coronary vasodilation to face the increased oxygen demand. When patients
are able to exercise adequately, this physical test is preferable over all the
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Figure 2.5.2: Examples of cardiac perfusion defect in a SPECT MPI study. A)
A large reversible cardiac perfusion defect is located on the anterior, septal, and
apical walls (arrows). B) A large fixed anteroseptal perfusion defect is indicated
by the arrows. This finding may indicate a myocardial infarction. Str: stress.
Rst: rest. SA: short axis. HLA (INF → ANT): horizontal long axis (inferior to
anterior). VLA (SEP → LAT): vertical long axis (septum to lateral wall). Image
adapted [13].

other stress modalities. Indeed, it provides more information such as total
exercise duration and development of symptoms (e.g. chest pain) [24].

• Pharmacologic stimulation: this modality is the alternative to physical ex-
ercise. Different pharmacologic stress agents are available and they simulate
the exercise-induced response in different ways. The vasodilators, such as
adenosine and dipyridamole, induce vasodilation, while dobutamine induces
an increase in heart rate and contractility [44]. When adenosine is injected
intravenously, it causes vasodilatation by direct activation of vascular A2
receptors. Dipyridamole also induces vasodilation with an increase of ex-
tracellular adenosine, but this is done indirectly: dipyridamole inhibits an
enzyme named adenosine deaminase, which degrades endogenously produced
adenosine, and stops the reuptake of adenosine by cells [51]. On the contrary,
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dobutamine is not a vasodilator but a beta adrenergic agonist drug which
promotes coronary hyperaemia through mechanisms similar to exercise [18].
Vasodilators are reserved for patients unable to exercise or with specific con-
ditions, such as left bundle branch block, cardiac pacemakers and alterations
in resting ECG. For these subjects an exercise-induced heart rate increase
could produce alterations in ECG and/or in myocardial perfusion which may
be misinterpreted as ischemia [34]. In most countries, vasodilators are pre-
ferred to dobutamine when they are available. Dobutamine stress modality
is recommended for patients with reactive airway disease (severe chronic ob-
structive pulmonary disease or asthma), who are unable to exercise and for
whom vasodilators are contraindicated, as adenosine and dipyridamole may
induce bronchospasm [24].

2.5.2 Radiopharmaceuticals and imaging protocols

In SPECT MPI the three widely available radiopharmaceuticals used are thal-
lous chloride (201TlCl), technetium-99m (99mTc)-sestamibi and 99mTc-tetrofosmin.
A considerably higher radiation dose is associated to imaging perfomed with
thallium-201 because it presents a much longer physical half-life (73 h) than
technetium-99m (6 h), exposing the patient to radiations for a longer time after
the examination [14]. Thallium-201 may be preferred when viability assessment
is the purpose of the study or if extracardiac uptake of technetium-99m altered
cardiac images in a previous study. Nevertheless, a technetium-99m based radio-
tracer should be chosen for most patients [24]. Therefore, the protocols described
below are performed with technetium-99m based radiopharmaceuticals.
When sestamibi and tetrofosmin are used, separate injections are performed to
assess stress and resting perfusion. With 6 h physical half-life of technetium-99m,
stress and rest injections should ideally be performed on separate days, in order
to enable the decay of the activity from the first injection activity (otherwise a
shine through of counts from the first to the second injection would occur). If
both injections are performed in a single day, the second injection should provide
at least 3-4 times as many counts as the the first injection to minimize the shine
through issue. In this case, it is therefore necessary to administer at least 3 times
greater activity for the second injection [24]. A two day protocol enables the
radiation dose to be minimized, since it requires no more radioactivity for the
second injection than for the first one. Using the same administered activity each
day, two day studies also facilitate comparison between stress and rest images.
Single day protocol can be preferred in some cases: it entails an advantage for the
patient, as they do not need to return to the nuclear laboratory on the second day
if the first images display some abnormalities.
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In a technetium-99m imaging protocol, stress imaging is usually performed first.
If the stress images are evaluated by a physician as completely normal (i.e. normal
perfusion, normal function, normal LV size, no regional wall motion abnormalities
and no increased RV tracer uptake), no rest imaging is performed. Stress-only
imaging was found to reduce radiation dose by 64% [37]. Therefore, stress-first
imaging should be preferred when there is a reasonable probability that the results
do not present abnormalities. In a single day protocol, resting study may be
performed first if the patient presents a known previous infarction. Indeed, rest
images could be useful to customize the next component of the study, choosing
between stress imaging or viability assessment [24].
The amount of technetium-99m administered should reflect patient weight and
habitus. Generally larger patients need more activity than smaller patients to
achieve good image quality. For example, thin patients without excessive breast
tissue should receive activities at the low end of the recommended range for a
given protocol, whilst study with obese patients benefit from the administration
of the highest possible amount of activity. If weight based dosing is used within a
laboratory, a significant correlation between patient weight and technetium activity
should be observed [24].

2.5.3 Gated SPECT MPI

SPECT MPI can be guided by the acquisition of an ECG, which enables to relate
the collected images to a precise phase of the cardiac cycle. A number of time bins
or frames is defined to divide the interval between two R-waves of the ECG; 8 or
16 frames are usually acquired [41]. When the acquisition is completed, the images
referred to the same time bin are collected in the same dataset, which represents the
radiotracer distribution during that time frame. This process enables the physician
to analyse the heart during contraction and expansion from diastole to systole.
Gated studies provide important data, such as post-stress and rest LVEF, LVEDV
(cf. the definitions in 2.1.2), wall motion, myocardial thickening, shortening and
contractility [44]. In patients without a regular heart rhythm (e.g. patients with
atrial fibrillation), gated SPECT volumes and ejection fraction may not be reliable.
For this reason, before starting the acquisition, it is recommended to check for a
correct ECG signal. The quality control page of the gated images usually displays
a beat histogram (as shown in figure 2.6.5). A widened peak or multiple peaks
would indicate variable heart rate, frequent arrhythmias or improper gating, so
that quantitative results about the ventricular function may be inaccurate [24].
Nevertheless, using a regular ECG signal, gated SPECT MPI has shown an high
prognostic value and sensitivity for critical stenosis [23].
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2.6 D-SPECT

2.6.1 Solid-state CZT technology

In a traditional gamma camera, a γ-photon hits a sodium iodide (NaI) scintillation
crystal, which transforms the photon energy into a flash of light; a PMT then
transforms the light photon into an electric charge, completing a two-step process.
With a solid-state detector, a γ-ray strikes a different type of crystal, such as
cadmium zinc telluride (CZT), which is a semiconductor that converts the photon
directly to a digital electronic signal, a one-step process.
With NaI detector, to pinpoint the origin of each event, a complex algorithm
compares the relative signal amplitude from all the PMTs. Because of this ana-
log position sensing, these systems present poor energy resolution and contrast
compared to solid-state detectors. Already in 1998 the solid-state systems were
characterized by greater portability, with a weight of only 135 kg, whilst traditional
gamma camera system weighed 1350 to 2250 kg [27].
In 2004 Wagenaar developed pixelated CZT detectors units, which allows it to
be used for medical imaging applications [56]. While other solid-state detector
materials, such as germanium, requires liquid nitrogen cooling to ensure proper
SNR, a CZT detector can operate in direct conversion mode at room temperature,
allowing for more compact and flexible designs [15].

2.6.2 D-SPECT system

A conventional SPECT system is able to collect only 0.02% of the photons emitted
during a cardiac imaging examination, because almost all photons are absorbed by
the collimator [16]. To improve this low sensitivity, new cardiac-dedicated SPECT
system have been developed, such as the D-SPECT [17].
Introduced for the first time at the 2005 RSNA meeting in Chicago by Spectrum
Dynamics Medical, D-SPECT system introduces a novel photon-collection and
scanning geometry, providing a good sensitivity combined with a fast acquisition
time.
The D-SPECT camera consists of 9 pixelated CZT detector columns, arranged
in a curved configuration that encloses the left side of the patient’s chest (figure
2.6.1). Figure 2.6.2 shows that each detector column is composed by 4 detector
modules, which are 16x16 CZT elements with a square geometry (2.46 x 2.46 mm)
and 5 mm of thickness [16].
The camera is equipped with tungsten parallel-hole collimators that are shorter
(21.7 mm) and have larger square holes (2.26 mm) compared to standard lead
parallel-hole LEHR collimators, which are 45 mm long and whose square holes
measure 1.6 mm. Furthermore, the stopping power of tungsten is greater than
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Figure 2.6.1: D-SPECT system. On the left, positioning of the patient and the
camera are shown. On the right, figure shows the configuration of the 9 detec-
tors around the heart region [16].

Figure 2.6.2: D-SPECT detection system. On the left, one detector formed by
4 square CZT modules is shown. On the right, figure shows the whole camera
and its 9 detectors positioned in a curved configuration [16].

that of lead [16], allowing for the use of thinner collimator septa, which provides
an increased useful detector area.
The D-SPECT is equipped with an effective acquisition system: the 9 detector
columns swivel up to 110° around their long axis and each detector is able to
rotate independently with a programmable angular orientation [2].
Before starting the acquisition, the patient is placed in a semi-upright position
with the left arm above the detector, or in a supine position with the left arm up
(figure 2.6.3). In both cases, the gantry is positioned parallel to the patient’s chest,
as close as possible to it (the reason is explained in 2.3.1). During the acquisition,
physiological markers as the R wave of the ECG are recorded if a gated imaging
is required. A pre-scan of 30-60 s is performed prior to the acquisition to verify
that the patient has been positioned correctly: this scan covers the whole FOV

32



Background

(sweep mode) and a preliminary image of the activity distribution is obtained to
check the subject’s heart is in the FOV; if the heart is in the wrong position, the
patient is re-positioned. After obtaining a pre-scan with a good patient placement,
a region of interest (ROI) that includes the heart is defined by the operator. This
ROI-positioning on the left ventricle (LV) allows the D-SPECT system to focus
the sampling on the heart of the patient, providing a so-called region-centric acqui-
sition. As shown in figure 2.6.4, during the actual acquisition, each detector will
spend more time collecting data from this specific ROI compared to the sampling
of the other regions in the FOV, maximizing the number of acquired counts from
this region [17]. Data are still collected from outside the pre-defined ROI in order
to avoid truncation effects.

Figure 2.6.3: Two possible configuration during a D-SPECT examination:
semi-upright (A) or supine (B) position [6].

When the acquisition is finished, sinogram (see the definition in 2.4.3) is displayed
to check the image quality. Furthermore, the counts from all detectors in each
position are summed and the total is displayed. Two sweeps of the detectors are
normally obtained with detectors slightly rotated to complete 180° acquisition,
creating a panogram and enabling motion detection (figure 2.6.5).
A built-in inclinometer indicates the angle of the chair and of the detector head
during each scan, allowing replication of images in exactly the same position. This
is needed to avoid mis-alignment between stress and rest datasets.
To conclude, the D-SPECT camera shows 8 to 10 times improvement in sensitivity
compared to conventional systems, due to the combined wide-angle collimator and
fast region-centric acquisition, as well as improved reconstructed resolution and
superior energy resolution [15]. Therefore, D-SPECT allows to obtain good quality
images with shorter scanning times or reduced radiation exposure by lowering the
dose of the radiotracer.
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Figure 2.6.4: Pre-scan and focused scan acquisition. A 30 s pre-scan of the
whole FOV is performed (A) to determine a region of interest that includes the
heart (B). A focused scan is performed, centered on the heart (C) with illustra-
tion of reconstructed data (D) [2].

2.6.3 Pitfalls and artifacts
Many factors can contribute to degrade SPECT image quality, resulting in recon-
structed images which do not represent the real radiotracer distribution. The most
frequent causes of imaging artifacts and pitfalls of D-SPECT system are listed
below (source: "Data QC and Image Quality Guide" of the D-SPECT Cardiac
Imaging System by Spectrum Dynamics Medical).

• Electrical and hardware issues

– Absent detector. In this case a disruption in the electronic signal af-
fects one of the detector modules. This may be due to either a hardware
component failure or a power supply interruption to the specific module.
If this issue arises, a blacked-out area will appear in the QC scan and a
jagged broken line will cut through the sinogram (figure 2.6.6 A). My-
ocardial perfusion datasets can suffer from this problem if the location of
the absent module overlaps the heart areas.

– Noisy module. If a detector module presents electronic noise, the ob-
tained images show a lack of homogeneity. A noisy module can appear
as a zone with decreased uptake during the acquisition and as an area
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Figure 2.6.5: Post-scan QC window. At the top sinogram (left), raw cine data
(center) and panogram sweeps (right) are displayed. At the bottom gating QC is
shown with indication of accepted and rejected beats [2].

of higher activity on the QC panogram and planar cine (figure 2.6.6 B).
The influence of this issue on the myocardial perfusion data depends on
the position of the affected detector.

• Patient-related artifacts

– Attenuation artifact. This is one of the most prevalent sources of ar-
tifacts on MPI and may reduce the imaging accuracy. As explained in
2.3.3, not all the γ-photons emitted by the radiopharmaceutical are col-
lected by the detectors, even if their path is parallel to the collimator.
These photons interact with the patient’s tissues mostly via Compton
scattering, losing part of their energy and changing their direction. Pho-
ton attenuation refers to interactions where the incident photon is com-
pletely absorbed or deflected [59]. Attenuated photons do not contribute
to the image reconstruction because their initial position is incalculable
after their deflection. A non-uniform image artifacts is obtained due to a
decrease of the available counts [30]. In cardiac studies, D-SPECT sys-
tem usually preserves image quality also in patients with an high BMI,
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Figure 2.6.6: Electrical and hardware problems in D-SPECT system. An ab-
sent detector issue creates a jagged broken line in the sinogram (A). If a noisy
module is present, an area of increased intensity can appear on the panogram
and raw QC data (B) [33].

but some specific cases should be considered properly: breast attenuation
may occur in women with large breasts while in obese men attenuation
is mainly due to the diaphragm. Figure 2.6.7 shows that supine and
upright configuration may be used in order to discern between soft tis-
sue attenuation artifacts and actual perfusion defects [5]. For example,
in case of breast attenuation artifact, it is preferable to lay the patient
down in a supine position, while upright configuration is better to limit
diaphragmatic attenuation.

– Motion artifact. One of the most recurrent sources of image degrada-
tion on SPECT MPI is related to patient motion. Motion artifacts can be
caused by gross motion or coughing with motion, whilst breathing is usu-
ally not a source of this type of artifact [2]. Sinogram and panogram in
data-QC highlight horizontal or vertical motion (figure 2.6.8). If a severe
and frequent motion occurs, it is reccomended to repeat the scanning,
ensuring the patient is in a comfortable position.

– Extra-cardiac activity. The radiopharmaceutical can concentrate
within the patient in tissues and organs other than the heart. The ac-
tivity from the areas adjacent to the heart may affect the myocardial
perfusion assessment. Liver and gut uptake are the main sources of
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Figure 2.6.7: Example of breast attenuation artifact. A sinogram is obtained
using an up-right configuration (A): the cold area in the middle of the sinogram
is generated by left breast attenuation. This may cause an inferior-apical de-
fect on the reconstructed images (B). To investigate the defect, the patient is
re-scanned in a supine position and the artifact disappears from the sinogram
(C) and from the reconstructed images (D) [33].

this type of artifact, producing an alteration in the activity distribution
recorded in the inferior heart wall. Extra-cardiac activity can add or
remove counts to the heart area, resulting in an apparent increased or
decreased inferior wall uptake. Also in this case, scanning both in upright
and supine position can help in carrying out a correct perfusion evalua-
tion, recognizing possible extra-cardiac artifacts (figure 2.6.9). If there is
a high uptake in the areas surrounding the heart, it may be necessary to
perform the scan again after a certain amount of time; furthermore, in
order to speed up the washout of gut uptake, it is suggested to make the
patient drink cold water or soda water [2].

• Operator-induced artifacts

– Incorrect ROI selection. Analyzing the images in the 3 views produced
by a short pre-scan, the operator has to define a ROI centered on the LV
in order to determine the correct detector scan pattern during the actual

37



Background

Figure 2.6.8: Example of motion artifact. Sinogram (A) and panogram (B)
show patient motion during the acquisition. By looking at the panogram, a clear
patient motion can be seen between the two sweeps [33].

Figure 2.6.9: Example of extra-cardiac activity artifact. On the left, pre-scan
front view image (top) and some reconstructed SA images (bottom) have been
acquired in an upright position; on the right, the corresponding images recorded
in a supine posture are shown. In this case the upright configuration demon-
strates a better image quality, due to anatomic position of the spleen and the
gut [33].

acquisition. In presence of high extra-cardiac activity or attenuation
artifact near the LV, choosing the correct ROI location and size can
become a difficult task. If the selected ROI is not on the right position
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or is too narrow, a corrupted image quality and artifacts will appear in
reconstructed images (figure 2.6.10).

Figure 2.6.10: Examples of incorrect ROI selection. On the pre-scan images a
wrong ROI position (A) and a too narrow ROI (B) have been chosen [33].

– Low count statistics. In order to improve image quality is important
to collect a sufficient number of photons from the LV, otherwise low
definition images are obtained (figure 2.6.11 A). With D-SPECT system,
the scan can be performed acquiring a pre-defined number of counts from
the LV. It has been suggested that 1 M LV counts produce an adequate
imaging, which allow for a quantitative analysis [42].

– Wrong detector head and patient positioning. During the acquisi-
tion, it is recommended to keep the patient’s chest as close as possible to
the detector head to achieve optimal image quality (as explained in 2.3.1).
Some tools are provided by D-SPECT system to assist the operator in
choosing the best detector head and patient positions, e.g. the already
mentioned inclinometers for the detector head and the patient chair. An-
other help consists of a gray dashed circular ROI which is displayed in
the top view image obtained after the pre-scan (figure 2.6.11 B). This
circle defines an area that provides good and relatively uniform resolu-
tion. Therefore, ideally the heart representation should occur within this
region to get better image quality, but this request is difficult to satisfy
when the patients present some characteristics, such as a high BMI or
restricted mobility. In these cases, the heart should be placed as close
as possible to this gray dashed ROI within the limits of the patient’s
anatomy.
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Figure 2.6.11: Examples of low count images and wrong positioning pre-scan.
The reconstructed images show relatively low counts (278k) in the LV (A). Pre-
scan top view image displays the heart far from the gray dashed ROI, which in-
dicates the area for obtaining the best resolution (B) [33].
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Chapter 3

Materials and methods

3.1 Data collection
The images and data used for this thesis were acquired during diagnostic tests
performed at the Nuclear Medicine Department of the San Giovanni Battista Uni-
versity Hospital (also known as Molinette Hospital) of Turin (Italy). The SPECT
MPI studies were performed with a D-SPECT system, born for cardiac imaging
(cf. 2.6.2) and 99mTc-tetrofosmin served as radiopharmaceutical.
In order to collect all the necessary data, a Graphical User Interface (GUI) was
developed using MATLAB App Designer. The information acquired during this
phase was used as a reference for training the artificial intelligence algorithms
developed in this thesis. After each pre-scan, the GUI showed three images of
detected activity distribution, representing the front view, the side view, and the
top view (figure 3.1.1). After each acquisition, the operator performed the following
three tasks:

• choosing the position and size of the ROI (red ellipse on figure 3.1.1) on which
to focus the definitive acquisition;

• indicating, if necessary, possible corrections to improve the centering on the
LV; the possible corrections are listed in the table 3.1.1 and some of them are
illustrated in figure 3.1.2;

• assigning an image quality rating (from 1 to 10) for the acquired pre-scan
and, after the definitive scan acquisition, an image quality rating also for this
focused scan.

For each pre-scan, the collected data include:

• three RGB images representing the three pre-scan views of the activity dis-
tribution;
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Figure 3.1.1: Example of the three views showed after each pre-scan. The red
ellipse is centered on the LV in order to focus the definitive scan.

Semi-upright position Supine position

1) Position the detector head close
to the left side of the patient’s body

1) Position the detector head close
to the left side of the patient’s body

2) Raise the chair 2) Move the detector head towards
the patient’s feet

3) Lower the chair 3) Move the detector head towards
the patient’s head

4) Position the detector head as close
as possible to the patient’s chest

4) Raise the table to position the de-
tector head as close as possible to the
patient’s chest

5) Make the patient drink cold water 5) Make the patient drink cold water
6) Modify the detector head inclina-
tion

−−−−−−−−−−−−

Table 3.1.1: Possible corrections to improve the heart centering of the pre-scan
in a semi-upright or supine configuration.

• patient information, such as sex, age, height, and weight;

• data relating to the performed cardiac study, such as collected counts, injected
activity, time of injection, semi-upright/supine configuration, and rest/stress
condition.

The data collection involved 158 different patients (105 males and 53 females).
Patient features are described in the table 3.1.2 and in the figures 3.1.3 and 3.1.4.

42



Materials and methods

Figure 3.1.2: Possible corrections of the patient-detector configuration to im-
prove heart centering during a D-SPECT examination. A) Semi-upright posi-
tion: 1. Position the detector head close to the left side of the patient’s body.
2. Raise the chair. 3. Lower the chair. 4. Position the detector head as close
as possible to the patient’s chest. 5. Modify the detector head inclination. B)
Supine position: 1. Position the detector head close to the left side of the pa-
tient’s body. 2. Move the detector head towards the patient’s feet. 3. Move the
detector head towards the patient’s head. 4. Raise the table to position the de-
tector head as close as possible to the patient’s chest. Image adapted [49] [6].

Features Mean ± Standard deviation

Age 71 ± 10
Height 168.27 ± 8.27 cm
Weight 76.54 ± 12.86 kg

Table 3.1.2: Details of the collected patient information.

Data from 711 scans were collected, including 490 scans (69%) performed in a
semi-upright position and 221 in a supine position (31%). Furthermore, 460 scans
(65%) were acquired after a stress test while 251 (35%) in a rest state. In figure
3.1.5 it is possible to observe a correlation between injected activity and patient
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Figure 3.1.3: Distribution of patient heights.

Figure 3.1.4: Distribution of patient weights.

weight, as expected when studies with weight based dosing are performed (cf.
2.5.2).

3.2 Construction of AI algorithms

The developed algorithms have two main goals:

• detect the position of the heart in the pre-scan images;

• check if the adopted configuration needs some of the corrections listed in the
table 3.1.1.
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Figure 3.1.5: Scatter plot of injected activity versus patient weight. Second in-
jection administered in the same day requires an higher dose to minimize shine
through issues. Trend lines show a correlation between the two variables, as ex-
pected for weight based dosing studies.

For both purposes, the algorithms were trained using the indications provided by
the operators during the data collection. All the algorithms were implemented
using MATLAB programming language.
Before performing the feature extraction from the pre-scan images, the latter were
subjected to the following pre-processing steps:

• Removal of the red ROI and other white or gray curves present in the images.
The center location of the ellipse and its semi-axis length were saved for the
next purposes.

• Pixel intensity for the removed areas were selected by interpolating the neigh-
boring pixels intensities with a cubic spline.

• A median filter (square kernel of side 10) was applied to remove white dashes
displayed by some images.

An example of pre-processing application is shown in figure 3.2.1.
Before starting the algorithm construction, the collected data was split in two
different dataset, a construction set and a validation set. The latter was not used
during the algorithm construction phase, but only during the validation process.
111 patients (about the 70% of the total) were selected randomly and their data
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Figure 3.2.1: Example of pre-processing application. The initial image presents
a red ROI and some curves and dashes (A), whilst they are absent in the pre-
processed image (B).

made up the construction set, whilst the data related to the remaining 47 patients
formed the validation set.

3.2.1 Classifier for heart position detection

In order to assess whether the patient positioning is correct, it is first necessary
to detect the heart position in the pre-scan images. This task can become tricky,
for example if the radiotracer is distributed in some areas other than the heart,
and it can be facilitated by using a classifier, an algorithm that assigns an element
in a specific class of membership by gaining information from its attributes, also
known as features [38].

Feature extraction

The radiotracer used for D-SPECT examinations can accumulate not only in the
heart tissues but also in other organs, such as gut and liver. For this reason,
the acquired images can present different high intensity areas, among which it
is necessary to identify the one relating to the heart. Therefore, features were
extracted from each pre-scan image by following these steps:

• As the areas with higher concentration of radiopharmaceutical are colored
in red, pixels with high intensity in the red layer need to be emphasized.
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A grayscale image was obtained by combining the three layer of the pre-
processed RGB image: the weights selected for the red layer, the blue layer
and the green layer are respectively 0.8, 0.1 and 0.1.

• The grayscale image was low pass filtered, averaging the values of a 5x5 kernel.
This step is important to remove any spourious peaks due to the background
noise.

• Regional maxima were detected in the obtained image. They were defined as a
connected component of pixels with a constant intensity value, surrounded by
pixels with a lower value (Matlab function: imregionalmax). Only the peaks
with an intensity greater than 50% of the highest maximum were considered.

• In some cases the heart region reports blue and not red pixels, so that the
peak relative to the heart would be difficult to identify by this algorithm
(figure 3.2.2). Therefore, if fewer than 5 peaks were selected in the previous
step, other regional maxima were identified in a new combination of the three
RGB image layers (weights 0.8, 0.1 and 0.1 for blue, green and red layers,
respectively). Also in this case only the peaks with intensity greater than
50% of the highest intensity were selected up to a maximum of 5 new peaks.

• Starting from each identified peak, a segmentation of the region to which this
maximum belongs was identified using the following steps:

– For each pixel of the grayscale filtered image, the absolute value of the
difference between the intensity of that pixel in the grayscale image and
the intensity of the considered peak was calculated. A matrix with the
same size of the image was created, entering for each element a value
inversely related to the difference previously calculated. In this way,
large values were attributed to pixels with an intensity close to the peak
value (Matlab function: graydiffweight).

– This matrix was used as input of a segmentation algorithm based on the
Fast Marching Method (the peak under consideration serves as a seed for
the algorithm and the segmentation threshold is 0.001). An example of
this algorithm application is showed in figure 3.2.3.

• All the obtained segmentations were used to extract the following features:
centroid coordinates, area, circularity, eccentricity, and orientation (i.e. the
angle between the direction of maximum extension of the region and the
horizontal axis).

Three different datasets were created, one for each image of the three pre-scan
views, containing the features of the peaks detected in the relative images. In
these datasets each peak is related to the following 8 features:
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Figure 3.2.2: Example of region related to the heart with blue pixels.

Figure 3.2.3: Example of segmentation algorithm application. The regional
peaks (green crosses) are detected on the pre-processed RGB image (A). The
obtained segmentations of the areas corresponding to the identified peaks are
indicated with different random colors.

• intensity and position (x-value and y-value) of the peak;

• euclidean distance between the peak and the centroid of the segmented area
related to the peak;

• area, circularity, eccentricity and orientation of the segmented region.
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These features were used as inputs for the classification between the class of the
peaks related to the heart and the class of the maxima not related to the heart,
which will be called class 1 and class 0, respectively. The peaks belonging to class
1 were identified as the closest to the red ROI center, provided by the operator
during the data collection. The three datasets were normalized with the min-max
scaling technique (saving maximum and minimum values) and used to develop
three different classifier, one for each view in the pre-scan.

Training Set Construction

The construction of the training set for each classifier was performed considering
the same number of elements for both classes, in order to obtain a balanced training
set. In particular, the amount of elements to select among those in the construction
set was set approximately equal to 50% of the elements belonging to the less
represented class (in this case, class 1). Unselected samples in the construction set
formed the test set.
The selection of the elements to insert in the training set was made through
three different methods: random sampling, dendrogram, and Self-Organizing Map
(SOM). The latter two are unsupervised machine learning technique which al-
lowed for clustering the elements of both classes. For each cluster of each class, an
amount of elements proportional to the cluster size was selected.
For the dendrogram technique, the maximum distance method was always used,
but three tests were performed, each with a different distance metric: euclidean,
cityblock, and chebychev. In order to choose the correct number of clusters, a
natural cut was used for the dendrograms.
Two tests were performed with the SOM technique, one using a 4x4 SOM and
another with a 5x5 SOM. Dendrograms with the maximum distance method and
euclidean distance metric was constructed for clustering the neurons of the SOMs.
The best test for both clustering techniques was chosen considering two variables:
the maximum intra-cluster variability and the minimum inter-cluster distance.
A good test should present a low maximum intra-cluster variability and a high
minimum inter-cluster distance.
In this way, for each classifier three different training and test set couples were
created, using a random sampling, dendrogram, and SOM.

Tuning of the classifier parameters

In order to solve the concerned classification problem, a Support Vector Machine
(SVM) classifier was employed. This is a supervised learning model which searches
for the hyper-surface that best separates two classes, but it can be chosen also for
a multi-class problem, using a combination of binary classifier [38].
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Different parameters of a SVM model can be optimized. In this study, different
values were assigned to the kernel scale and the box constraint level, in order to
find the combination of these parameters that best solve the classification problem.
Specifically, both parameters were set to the following values: 0.001, 0.01, 0.1, 1,
10, 100, 1000.
The classification error was calculated on both the training set and the test set
using all the possible combinations of the two parameters. Only one parameters
pair was chosen for each training and test set couples of each classifier.

Selection of the training and test set pair

After selecting the best combination of parameters, one training and test set cou-
ple was selected for each of the three classifiers (one for each pre-scan view). This
choice was based on the classification results obtained on training, test and vali-
dation sets.
Once the best model was identified for the three classifiers, this was applied for
detecting the heart position in the corresponding view of the pre-scan. Specifically,
the three constructed classifier were employed in this way:

• for each pre-scan image, peaks and relative segmentated areas were detected,
following the procedure already used for the feature extraction;

• after obtaining the features of the detected peaks, they were provided as
inputs to the constructed classifier, in order to assess which of the identified
maxima was that related to the heart;

• for each image, one and only one peak should be related to the heart; SVM
models can return a classification score which was used to assess the only
heart peak.

3.2.2 Classifiers for possible centering corrections
Once detected the regional maximum which is related to the heart for each image
of the pre-scan, features linked to this peak were extracted, in order to check if
any corrections were needed to improve the acquisition centering
Considering the information provided by the operators during the data collection,
the acquired pre-scans were split in 8 different categories for the ones obtained in
a semi-upright position and 7 categories for the scans in a supine configuration.
Indeed, two new categories were added to the possible corrections reported in the
table 3.1.1. These new categories refer to the acquisitions without any reported
corrections. One category was formed by the pre-scans with an image quality
rating greater than or equal to 6 (this was called "OK" category), and the other
was composed by the acquisitions with an image quality rating less than 6 (this
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was named "OK but low quality"). This distinction was made to ensure a good
quality for the images in the "OK" class.
The amount of the collected pre-scans for each category and in both upright and
supine position is showed in table 3.2.1.

Pre-scans numbers Category name
Class Upright Supine Upright Supine

1 14 13 Position the detector
head close to the left
side of the patient’s
body

Position the detector
head close to the left
side of the patient’s
body

2 134 51 Raise the chair Move the detector
head towards the
patient’s feet

3 74 34 Lower the chair Move the detector
head towards the
patient’s head

4 16 9 Position the detector
head as close as pos-
sible to the patient’s
chest

Raise the table to
position the detector
head as close as pos-
sible to the patient’s
chest

5 89 49 Make the patient
drink cold water

Make the patient
drink cold water

6 1 −−−− Modify the detector
head inclination

−−−−−−−−−−−−

7 190 89 OK OK
8 10 3 OK but low quality OK but low quality

Table 3.2.1: Number of the collected pre-scans for each category. The name
of the category is reported and the amount of pre-scans is indicated for both
upright and supine configuration.

The classes 1, 4, 6, and 8 showed a low number of elements compared to the
other categories. The work of this thesis was focused on the classification of the
elements belonging to the classes 2, 3, 5, and 7, in order to avoid the construction
of classifiers strongly unbalanced between the classes.
Some pre-scans were labeled with more than one category: 38 upright acquisitions
and 23 supine acquisitions. Therefore, the classification problem does not require
a single class to be assigned, but more than one correction may be required for the
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same pre-scan. Therefore, the classification problems was split in two sub-problems
described below.

Classifier for classes 2, 3, 7

The first analyzed question involved the classes 2, 3, and 7 previously described:
for the upright configuration, the goal was to check whether the chair was in
the right position or whether it was necessary to raise or lower it; for the supine
configuration, the issue concerned the assessment of the detector head position,
which could be moved towards the patient’s feet or towards the patient’s head.
On average, the first two images of the pre-scan (front and side views) showed the
activity region related to the heart at different y-axis values among these three
classes: for both upright and supine configurations, images belonging to class
2 presented the heart region in a lower position, while the acquisitions in class
3 reported an upper heart location; images in class 7, which did not need any
corrections, showed the heart region at an intermediate height compared to the
other two classes (figure 3.2.4).
For this reason, this classification problem was solved using the previously ex-
tracted peak features (peak coordinates and the information associated with the
segmented area), but considering only the peaks related to the heart region (de-
tected by the classifiers already constructed). 16 features were therefore attributed
to each pre-scan, 8 from the front view and 8 from the side view. This data were
normalized using the min-max scaling technique (saving the maxima and minima
value).
The construction of the training set was performed considering the same number
of elements (70% of the elements belonging to the less represented class) for all
the classes. The selection of the elements to insert in the training set was made
using the dendrogram technique. The maximum distance method was always used
and three tests were performed, each with a different distance metric: euclidean,
cityblock, and chebychev. In order to choose the correct number of clusters, a
natural cut was used for the dendrograms. The best test was chosen considering
the maximum intra-cluster variability and the minimum inter-cluster distance.
For this classifier a feature selection was performed. For this procedure a rank-
ing method was adopted, using a random forest classifier. Random forest is an
ensemble learning method, suitable for both classification and regression tasks.
This method builds multiple decision trees and merges them together to get a
more accurate and stable prediction. The ensemble classifier applies two sources
of randomness: the bagging method, which consists in training different trees on
different subsets of the original dataset and aggregating the outputs of learners;
the selection of a random subset of the predictors for each split in a tree (the deci-
sion at that node is based only on these selected predictors). Therefore, the main
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Figure 3.2.4: Mean of front and side view images of the pre-scans belonging
to class 2, 3, and 7. The red ellipses indicate the activity region related to the
heart.

parameters of a random forest classifier are the number of trees and the number
of predictors to select at each node. The observations, that each decision tree
does not use for its training, are called out-of-bag (OOB) samples. The accuracy
of the model on the training set can be estimated using the OOB error, that is
the classification error obtained by predicting each observation using the trees for
which that element was OOB. Furthermore, random forest uses a metric (e.g. Gini
index) for selecting the splitting criterion at each node and this measure can be
utilized to highlight the importance of each variable.
The feature selection procedure was based on the following steps:

• In order to find the best parameter combination for the random forest, differ-
ent values of number of trees and number of variables to sample were assigned.
Specifically, 20, 60, 100, 140, 180 trees were utilized and the number of vari-
ables to sample was set to 2, 4, 6, 8, 10. The best parameter pair was selected
considering the OOB error on the training set and the classification error on
the test set.
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• The optimized classifier provided a variable importance estimation based on
the Gini index. In order to perform the feature selection, the classification
error of the model on the test set was calculated adding the features one by
one, from the most important to the least important. The error trend as a
function of the number of selected variables was used to choose how many
features were needed to get sufficient performance.

Two SVM models were trained, one using all features and the other with only
the selected variables. Both models were optimized by assigning different values
of kernel scale and box constraint level. Specifically, both parameters were set to
the following values: 0.001, 0.01, 0.1, 1, 10, 100, 1000. The classification error
was calculated on both the training set and the test set using all the possible
combinations of the two SVM parameters. Considering the obtained error values,
the best parameters pair was selected for both models.
In order to identify the best classifier between the one with only the selected
features and the one trained with all features, classification performances of the
optimized SVM classifiers were calculated on training set, test set and validation
set.

Classifier for classes 5 and 7

The second sub-problem concerned the distinction between acquisitions which
present the need to "make the patient drink cold water" (class 5) and those that
do not require any corrections (class 7). It is suggested to make the patient drink
cold water if a high extra-cardiac activity is recorded, since this procedure can
speed up the washout of gut uptake (cf. 2.6.3). Indeed, images belonging to class
5 on average presented a lower distinction between the region related to the heart
and the other high intensity areas, especially in the front view and the top view.
This can be seen in figure 3.2.5, which shows the mean of the three images of the
pre-scan for class 5 and class 7.
In order to highlight this difference between the two classes, new segmented areas
were obtained for the regions related to the heart: fast marching method was used
with a segmentation threshold higher than the one previously adopted (0.05 instead
of 0.001). In this way, segmentations with a larger number of pixels were obtained,
including also the surrounding area which presented important characteristics for
the distinction between the two classes. An example of region related to the heart
segmented with the two thresholds is shown in figure 3.2.6.
Pixels of the pre-scan images (converted into grayscale images) which were included
in the new segmentations were used to extract 22 statistical variables:

• mean, standard deviation, skewness, kurtosis;
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Figure 3.2.5: Mean of three views of the pre-scans belonging to class 5 and
7. The red arrows indicate the activity distribution differences between the two
classes.

• texture variables (Gray-Level Co-occurence Matrix (GLCM)): energy, con-
trast, correlation, variance, inverse difference moment, sum average, sum
variance, sum entropy, entropy, difference variance, difference entropy, in-
formation measure of correlation, homogeneity, autocorrelation, dissimilarity,
cluster shade, cluster prominence, maximum probability.

These features were extracted for the three images of each pre-scan, but only those
obtained from the front view and the top view were used, as these two images
showed a greater difference between the two classes.
The training set for this classifier was constructed using the previously mentioned
procedure: the same number of elements (70% of the elements belonging to the
less represented class) was used for both classes and this selection was performed
with the dendrogram technique. The maximum distance method was always used
and three tests were performed, each with a different distance metric: euclidean,
cityblock, and chebychev. In order to choose the correct number of clusters, a
natural cut was used for the dendrograms. The best test was chosen considering
the maximum intra-cluster variability and the minimum inter-cluster distance.
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Figure 3.2.6: Example of segmentation of the region related to the heart with
two different threshold.

Even for this classifier a feature selection was performed, in order to reduce the
great amount of features (44 for each pre-scan). The selection procedure was
performed in the same way as for the classifier 2vs3vs7.
Two SVM models were trained, one using all features and the other with only the
selected variables. Both models were optimized by assigning different values of
kernel scale and box constraint level. The classification error was calculated on
both the training set and the test set using all the possible combinations of the
two SVM parameters. Considering the obtained error values, the best parameters
pair was selected for both models.
In order to identify the best classifier between the one with only the selected
features and the one trained with all features, classification performances of the
optimized SVM classifiers were calculated on training set, test set and validation
set.
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Chapter 4

Results

4.1 Classifier for heart position detection

Since each pre-scan is formed by three images (one for each view), three classifier
were constructed: classifier 1 for the front view, classifier 2 for the side view and
classifier 3 fort the top view. Three training and test set couples were selected for
each classifier. The three training sets of each classifier were created using random
sampling, dendrogram and SOM techniques.
The dendrograms obtained for the three classifier are shown in figures 4.1.1, 4.1.2,
4.1.3. Maximum intra-cluster variability (max-intra-var) and minimum inter-
cluster distance (min-inter-dist) of each test (with different distance metrics) for
the three classifier are reported in tables 4.1.1, 4.1.2, 4.1.3.

Classifier 1 - Dendrogram

Class 0 Class 1

Metric Max-
intra-var

Min-
inter-dist

Metric Max-
intra-var

Min-
inter-dist

euclidean 0.5268 0.3965 euclidean 0.4003 0.5308
cityblock 0.5339 0.4316 cityblock 0.4347 0.3664
chebychev 0.5534 0.3427 chebychev 0.3841 0.3434

Table 4.1.1: Max-intra-var and min-inter-dist values of the clusters formed by
dendrograms for classifier 1. Max-intra-var: maximum intra-cluster variability.
Min-inter-dist: minimum inter-cluster distance.

For the classifier 1, cityblock metric was preferred for class 0 and euclidean metric
was chosen for class 1 because they showed the highest min-inter-dist whilst their
max-intra-var presented an intermediate value compared to the others.
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Figure 4.1.1: Dendrograms with three different metrics for classifier 1.

Classifier 2 - Dendrogram

Class 0 Class 1

Metric Max-
intra-var

Min-
inter-dist

Metric Max-
intra-var

Min-
inter-dist

euclidean 0.5578 0.4630 euclidean 0.3542 0.4701
cityblock 0.6017 0.4637 cityblock 0.3473 0.4507
chebychev 0.6317 0.3621 chebychev 0.4375 0.2631

Table 4.1.2: Max-intra-var and min-inter-dist values of the clusters formed by
dendrograms for classifier 2. Max-intra-var: maximum intra-cluster variability.
Min-inter-dist: minimum inter-cluster distance.

For the classifier 2, euclidean metric was preferred for both class 0 and class 1 as
it showed the smallest max-intra-var in class 0 and the highest min-inter-dist in
class 1.
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Figure 4.1.2: Dendrograms with three different metrics for classifier 2.

Classifier 3 - Dendrogram

Class 0 Class 1

Metric Max-
intra-var

Min-
inter-dist

Metric Max-
intra-var

Min-
inter-dist

euclidean 0.5227 0.4376 euclidean 0.3202 0.3491
cityblock 0.5287 0.4499 cityblock 0.3936 0.5229
chebychev 0.5831 0.4607 chebychev 0.3703 0.4593

Table 4.1.3: Max-intra-var and min-inter-dist values of the clusters formed by
dendrograms for classifier 3. Max-intra-var: maximum intra-cluster variability.
Min-inter-dist: minimum inter-cluster distance.

For the classifier 3, cityblock metric was preferred for class 0 since it presented
a low max-intra-var and an intermediate value of min-inter-dist, while chebychev
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Figure 4.1.3: Dendrograms with three different metrics for classifier 3.

metric was chosen for class 1 because it showed max-intra-var and min-inter-dist
with intermediate values compared to the others.
As regards the tests conducted with the SOMs, the neuron clusters obtained for
the three classifier are shown in figures 4.1.4, 4.1.5, 4.1.6. Max-intra-var and min-
inter-dist values of each test (with different SOM sizes) for the three classifier are
reported in tables 4.1.4, 4.1.5, 4.1.6.
For the classifier 1, 5x5 SOM was selected for class 0 because it showed a smaller
max-intra-var, while for class 1 the 4x4 SOM presented the lowest max-intra-var.
For the classifier 2, 4x4 SOM was chosen for class 0 as it showed a much higher
min-inter-dist, whilst 5x5 SOM showed the highest min-inter-dist for class 1.
Finally, for the classifier 3, 5x5 SOM was preferred for class 0 as it showed a bigger
min-inter-dist, whilst 5x5 SOM presented a much smaller max-intra-var for class
1.
For each training and test couple of each classifier, the classification error was
calculated using all the possible combinations of kernel scale and box constraint
level values (figures 4.1.7, 4.1.8, 4.1.9).
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Classifier 1 - SOM

Class 0 Class 1

Size Max-intra-
var

Min-inter-
dist

Size Max-intra-
var

Min-inter-
dist

4x4 0.5651 0.5209 4x4 0.4141 0.4779
5x5 0.5018 0.5066 5x5 0.4461 0.4998

Table 4.1.4: Max-intra-var and min-inter-dist values of the neuron clusters
formed by SOMs for classifier 1. Max-intra-var: maximum intra-cluster variabil-
ity. Min-inter-dist: minimum inter-cluster distance.

Classifier 2 - SOM

Class 0 Class 1

Size Max-intra-
var

Min-inter-
dist

Size Max-intra-
var

Min-inter-
dist

4x4 0.5555 0.7569 4x4 0.3349 0.4724
5x5 0.4982 0.4987 5x5 0.3456 0.4875

Table 4.1.5: Max-intra-var and min-inter-dist values of the neuron clusters
formed by SOMs for classifier 2. Max-intra-var: maximum intra-cluster variabil-
ity. Min-inter-dist: minimum inter-cluster distance.

Starting from the classifier 1, for all the training and test set couples, low classifi-
cation errors were obtained using a kernel scale equal to 0.1 with all the possible
values of box constraint level. This value of kernel scale was chosen for all the
training and test set couples. Furthermore, considering the classification error on
the test set, the best box constraint value was 0.1 for random sampling and SOM,
and 0.01 for dendrogram.
As regards the classifier 2, following the same reasoning, the best [kernel scale;box
constraint level] combination was [0.1;1] for the random sampling and [0.1,0.1] for
dendrogram and SOM.
Also for the classifier 3, a kernel scale equal to 0.1 was preferred because it always
showed a small classification error. Considering the results obtained on the test set,
the box constraint level was set to 0.1 for all the training and test combinations.
The classification results obtained by the three tuned SVM models (trained on
the three different training set) on training set, test set and validation set are
represented in figures 4.1.10 and 4.1.11 for the classifier 1, 4.1.12 and 4.1.13 for
the classifier 2, and 4.1.14 and 4.1.15 for the classifier 3. The performances of
the classifiers are shown by using confusion matrices. Considering class 1 (i.e.
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Classifier 3 - SOM

Class 0 Class 1

Size Max-intra-
var

Min-inter-
dist

Size Max-intra-
var

Min-inter-
dist

4x4 0.5437 0.5748 4x4 0.4687 0.4446
5x5 0.5556 0.6232 5x5 0.3202 0.3958

Table 4.1.6: Max-intra-var and min-inter-dist values of the neuron clusters
formed by SOMs for classifier 3. Max-intra-var: maximum intra-cluster variabil-
ity. Min-inter-dist: minimum inter-cluster distance.

peaks relative to the heart) as the positive class, sensitivity was defined as the
ratio between the number of correctly classified elements in class 1 and the total
amount of elements really belonging to class 1. Similarly, specificity was defined as
the percentage of correctly classified elements for class 0. Sensitivity and specificity
were reported in the diagonal, next to each confusion matrix.
As regards the classifier 1, the random sampling showed excellent results on the
class 1 but it did not perform on the class 0 as well. Dendrogram and SOM reported
a better balance between the classification error of the two classes. Between these
two, SOM technique was preferred because it presented a better classification
performance on the validation set for both classes.
For the classifier 2, SVM model constructed using the dendrogram technique was
selected because it presented a greater ability to generalize: it showed the best
results on test set and validation set, even though a worse performance was ob-
tained on training set. SOM technique exceeded dendrogram performances only
for the class 1 in validation set; nevertheless, dendrogram showed a better balance
between the two classes.
Random sampling was selected as the best option for the classifier 3. Despite
dendrogram technique reported the best performances for class 0 on training set
and SOM method was the best for class 1 on test set, random sampling results for
both classes on validation set were not equaled by the others techniques.

4.2 Classifiers for possible centering corrections

4.2.1 Classifier for classes 2, 3, 7

The dendrograms obtained for the this classifier are shown in figure 4.2.1. Maxi-
mum intra-cluster variability (max-intra-var) and minimum inter-cluster distance
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(min-inter-dist) of each test (with different distance metrics) are reported in table
4.2.1,

Classifier 2vs3vs7 - Dendrogram

Class 2

Metric Max-intra-var Min-inter-dist

euclidean 0.6129 0.8939
cityblock 0.7016 0.9263
chebychev 1.1030 0.5183

Class 3

Metric Max-intra-var Min-inter-dist

euclidean 0.6333 0.7351
cityblock 0.6385 0.7265
chebychev 0.7053 0.5524

Class 7

Metric Max-intra-var Min-inter-dist

euclidean 0.5921 0.6302
cityblock 0.8461 0.6537
chebychev 0.6295 0.4854

Table 4.2.1: Max-intra-var and min-inter-dist values of the clusters formed by
dendrograms for classifier 2vs3vs7. Max-intra-var: maximum intra-cluster vari-
ability. Min-inter-dist: minimum inter-cluster distance.

Euclidean metric was chosen for class 2, since it showed the lowest value of max-
intra-var and a quite high value of min-inter-dist. Also for class 3 euclidean metric
was selected because it presented the highest min-inter-dist and the smallest max-
intra-var. Euclidean metric was preferred for class 7 too, as it reported the lowest
max-intra-var and its min-inter-dist was quite high.
Once the training set was constructed, random forest parameters (number of trees
and number of variables to sample) were tuned in order to perform the feature
selection. For each parameter pair, the OOB error on the training set and classi-
fication error on the test set were calculated (figure 4.2.2).
A number of trees equal to 180 showed the lowest classification error on the training
set with a number of variables to sample equal to 8. These parameter pair provided
a low classification error on test set, so this combination was selected.
The optimized random forest classifier provided an estimation of feature impor-
tance, which is reported in figure 4.2.3. The variable numbers refer to the feature
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list reported in 3.2.1 and the first eight variables resulted from the front view image
while the last eight from the side view image.
The trend of the classification error on test set as a function of the number of
selected variables is shown in figure 4.2.4.
From the observation of this graph, it is evident that the lowest error is obtained
with a number of selected variables equal to six. So the six most important vari-
ables were selected, three of which resulted from the front view image (peak x-
value, peak y-value, centroid-to-peak distance) and the remainign three were ex-
tracted from the side view image (peak intensity, peak y-value, segmented region
area).
Two SVM models were created, one using all features and the other with only the
selected variables. The classification error was calculated on training set and test
set, using all the possible combinations of kernel scale and box constraint level
values, for both models (figure 4.2.5).
For the classifier without feature selection, one of the lowest error on test set was
provided by a box constraint level of 0.1 and a kernel scale equal to 0.001. This
parameter combination allows for a very low classification error also on the training
set, so the mentioned values were chosen. As regards the SVM model with only the
selected features, different parameter pairs provided good results on both training
set and test set. The one selected for this classifier has both box constraint level
and kernel scale equal to 0.01.
Figure 4.2.6 shows the performance achieved by the two SVM models on training
set, test set and validation set. The percentages of correctly classified elements in
the three classes (calculated as the ratio between correctly classified elements and
the total of elements really belonging to that class) were reported in the diagonal,
next to each confusion matrix.
Even if the model without feature selection provided better results for the class
7 on test set and validation set, the classifier constructed using all features was
selected because it presented more balanced classification errors among the three
classes.

4.2.2 Classifier for classes 5 and 7

The dendrograms obtained for this classifier are shown in figure 4.2.7. Maximum
intra-cluster variability (max-intra-var) and minimum inter-cluster distance (min-
inter-dist) of each test (with different distance metrics) are reported in table 4.2.2,
For class 5, euclidean metric was selected because it reported the lowest max-
intra-var value and an intermediate value for min-inter-dist. Cityblock metric
was selected for class 7, as it showed the largest value of min-inter-dist and an
intermediate value of max-intra-var.
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Classifier 5vs7 - Dendrogram

Class 5

Metric Max-intra-var Min-inter-dist

euclidean 0.6792 0.8224
cityblock 0.7358 0.8137
chebychev 1.0331 1.5520

Class 7

Metric Max-intra-var Min-inter-dist

euclidean 0.8150 0.7732
cityblock 0.8516 0.9274
chebychev 1.3671 0.5443

Table 4.2.2: Max-intra-var and min-inter-dist values of the clusters formed by
dendrograms for classifier 5vs7. Max-intra-var: maximum intra-cluster variabil-
ity. Min-inter-dist: minimum inter-cluster distance.

Once the training set was constructed, random forest parameters (number of trees
and number of variables to sample) were tuned in order to perform the feature
selection. For each parameter pair, the OOB error on the training set and classi-
fication error on the test set were calculated (figure 4.2.8).
The lowest error on test set was obtained with 60 trees and 2 variables to sample,
but this combination did not provide good performance on training set. The second
best result on test set was reached with 100 trees and 4 variables to sample and
this parameter pair was chosen since it also showed a low OOB error on training
set.
The optimized random forest classifier provided an estimation of feature impor-
tance, which is reported in figure 4.2.9. The variable numbers refer to the feature
list reported in 3.2.2 and the first 22 variables resulted from the front view image
while the last 22 from the top view image.
The trend of the classification error on test set as a function of the number of
selected variables is shown in figure 4.2.10.
From the observation of this graph, it is possible to state that the error presented
a downward trend until the tenth feature in importance was employed, even if
some peaks were recorded before adding this variable. The nine most important
variables were selected, six of which were extracted from the front view image
(sum entropy, entropy, difference entropy, information measure of correlation, ho-
mogeneity, dissimilarity) and the remaining three features resulted from the top
view image (standard deviation, correlation, homogeneity).
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Two SVM models were created, one using all features and the other with only the
selected variables. The classification error was calculated on training set and test
set, using all the possible combinations of kernel scale and box constraint level
values, for both models (figure 4.2.11).
For the classifier without feature selection, the kernel scale was set to 1 and the box
constraint level was set to 10, in order to find a compromise between the results
reported on the two sets (training and test set). As regards the SVM model with
only the selected features, different parameter pairs provided good results on both
training set and test set. The one selected for this classifier has box constraint
level and kernel scale equal to 0.01.
Figure 4.2.12 shows the performance achieved by the two SVM models on training
set, test set and validation set. The percentages of correctly classified elements in
the two classes (calculated as the ratio between correctly classified elements and
the total of elements really belonging to that class) were reported in the diagonal,
next to each confusion matrix.
The classifier constructed using only the selected features was preferred because
it presented a greater ability to generalize: it showed better results for class 7
on validation set, even though a worse performance was obtained for class 5 on
training set.
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Figure 4.1.4: Dendrograms and clusters of neurons of SOM with two different
sizes for classifier 1.
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Figure 4.1.5: Dendrograms and clusters of neurons of SOM with two different
sizes for classifier 2.
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Figure 4.1.6: Dendrograms and clusters of neurons of SOM with two different
sizes for classifier 3.
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Figure 4.1.7: Classification error plots for the different parameters of the clas-
sifier 1. Random sampling, Dendrogram and SOM are the three different meth-
ods employed for the training set construction.
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Figure 4.1.8: Classification error plots for the different parameters of the clas-
sifier 2. Random sampling, Dendrogram and SOM are the three different meth-
ods employed for the training set construction.
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Figure 4.1.9: Classification error plots for the different parameters of the clas-
sifier 3. Random sampling, Dendrogram and SOM are the three different meth-
ods employed for the training set construction.
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Figure 4.1.10: Confusion matrices of training and test set for classifier 1. The
classification performances obtained with the three possible training and test set
pairs (random sampling, dendrogram, and SOM) were reported.
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Figure 4.1.11: Confusion matrices of validation set for classifier 1. The classifi-
cation performances obtained with the three possible training and test set pairs
(random sampling, dendrogram, and SOM) were reported.
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Figure 4.1.12: Confusion matrices of training and test set for classifier 2. The
classification performances obtained with the three possible training and test set
pairs (random sampling, dendrogram, and SOM) were reported.
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Figure 4.1.13: Confusion matrices of validation set for classifier 2. The classifi-
cation performances obtained with the three possible training and test set pairs
(random sampling, dendrogram, and SOM) were reported.
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Figure 4.1.14: Confusion matrices of training and test set for classifier 3. The
classification performances obtained with the three possible training and test set
pairs (random sampling, dendrogram, and SOM) were reported.
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Figure 4.1.15: Confusion matrices of validation set for classifier 3. The classifi-
cation performances obtained with the three possible training and test set pairs
(random sampling, dendrogram, and SOM) were reported.
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Figure 4.2.1: Dendrograms with three different metrics for classifier 2vs3vs7.

79



Results

Figure 4.2.2: Classification error plots with different random forest parameter.
This classifier was created to select the features for classifier 2vs3vs7. NumVar-
ToSample: number of variables to sample.
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Figure 4.2.3: Feature importance estimation for classifier 2vs3vs7 provided by
the optimized random forest classifier.
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Figure 4.2.4: Classification error trend on test set of the classifier 2vs3vs7, as a
function of the number of selected variables.
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Figure 4.2.5: Classification error plots with different SVM model parameters of
the classifier 2vs3vs7. Two SVM models were created, one using all features and
the other with only the selected variables.
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Figure 4.2.6: Classification performances of classifier 2vs3vs7 on training set,
test set and validation set. Two SVM models were created, one using all features
and the other with only the selected variables.
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Figure 4.2.7: Dendrograms with three different metrics for classifier 5vs7.
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Figure 4.2.8: Classification error plots with different random forest parame-
ter. This classifier was created to select the features for classifier 5vs7. NumVar-
ToSample: number of variables to sample.

Figure 4.2.9: Feature importance estimation for classifier 5vs7 provided by the
optimized random forest classifier.
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Figure 4.2.10: Classification error trend on test set of the classifier 5vs7, as a
function of the number of selected variables.
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Figure 4.2.11: Classification error plots with different SVM model parameters
of the classifier 5vs7. Two SVM models were created, one using all features and
the other with only the selected variables.
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Figure 4.2.12: Classification performances of classifier 5vs7 on training set,
test set and validation set. Two SVM models were created, one using all features
and the other with only the selected variables.
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Chapter 5

Discussions

5.1 Classifier for heart position detection

The different combinations of the SVM classifier parameters provided the classifi-
cation error plots for the three classifiers (figures 4.1.7, 4.1.8, 4.1.9), which show a
great similarity between the classification results obtained on the training set and
those obtained on the test set. This aspect suggests that, for all three classifiers,
the elements selected for the training set serve as good representatives for the items
in the test set, whatever the technique adopted for the training set construction.
Although all three classifiers obtained a high percentage of correctly classified ele-
ments, classifier 2 performed worse than the other two models on all three datasets
(figures 4.1.12, 4.1.13). The reason for this result can be sought by analyzing the
features of the data that were utilised for the construction of these models. In par-
ticular, figure 5.1.1 shows, for all 3 classifiers, the distribution of the x-values and
y-values of the peaks belonging to the validation set. Peaks relative to the heart
of the classifier 2 are more scattered than the heart peaks reported for the other
classifiers. This characteristic may have negatively affected the classifier 2 perfor-
mance, making it difficult to identify a hyper-surface which is able to separate the
two classes.

5.2 Classifiers for possible centering corrections

5.2.1 Classifier for classes 2, 3, 7

This classifier was created in order to assess if the patient/detector configuration
during the examination was correct or if it needed to be changed. In particular,
for the upright position, the goal was to check whether the patient chair was in
the right position (class 7) or if it was necessary to raise or lower it (class 2 and 3
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respectively). For the supine configuration, the issue concerned the assessment of
the detector head position, which could be moved towards the patient’s feet (class
2) or towards the patient’s head (class 3).
Previously it was underlined that on average:

• images belonging to class 2 showed the peak relative to the heart with a lower
y-value;

• pre-scans in class 3 reported the heart peak in a higher position;

• class 7 acquisitions presented the heart region at an intermediate height com-
pared to the other two classes.

These factors strongly influenced the classification of these elements. Indeed, the
feature importance estimation reported in figure 4.2.3 shows that peak y-values of
the front and side view images are the two most important variables.
The performances reported in figure 4.2.6 indicate that the developed classifier
failed to evaluate the right class for some elements. This result may be explained
considering the distribution of the peak y-values of pre-scans belonging to the
three different classes under consideration (figure 5.2.1). Although most of the
peaks show characteristics consistent with expectations, some elements present
values which do not fall within the range typical of their class.
To provide an example, the front view and side view images reported in figure
5.2.2 were labelled as belonging to class 2, even if the region related to the heart
is located in a high position, where class 3 peaks should be placed.
The classification of this kind of pre-scans certainly led to a deterioration in per-
formance, as the classifier was trained on elements which show different character-
istics.

5.2.2 Classifier for classes 5 and 7
This classifier was developed in order to discern between two other classes: acqui-
sitions with a too high extra-cardiac activity and images which do not need any
corrections (class 5 and 7, respectively). For class 5 elements, it is suggested to
make the patient drink cold water.
22 statistical features were extracted from the segmented area relative to the heart,
in order to identify possible differences between the two classes. These variables
were obtained from the front and top view images, since on average these views
showed less marked heart region boundaries for class 5 pre-scans. Some of these
features played a more prominent role in the classification problem, as indicated
by the feature importance estimation reported in figure 4.2.9. In particular, the
information measure of correlation and the homogeneity calculated from the heart
region in the front view image resulted the two most important features.
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Figure 4.2.6 shows that the constructed model reached good performance, even
if some elements were not predicted successfully by the classifier. In order to
understand the differences between correctly classified pre-scans and misclassified
ones, three scatter plots (one for each set) show information measure of correlation
(Inf) and homogeneity (Hom) values for both correct and incorrect predictions
(figure 5.2.3). Generally the classifier assigned the class 5 to the acquisitions with
a low Inf and a high Hom, whilst elements presenting large values for Inf and small
values for Hom were predicted as class 7. Indeed, in the scatter plots incorrect
predictions are positioned outside the value ranges just described. In the test set
the greatest percentage of misclassified acquisitions for class 7 is present: these
elements showed features similar to the class 5 pre-scans and so the constructed
model failed to classify them.
The two front view images reported in figure 5.2.4 shows very similar characteris-
tics, but the operators labelled the first as belonging to class 5 and the second as
class 7 element. Feature values extracted from these two pre-scans are almost equal
(first image: Inf=0.32 and Hom=0.87; second image: Inf=0.32 and Hom=0.85) and
classifier prediction was class 5 for both images. The choice to assign two different
classes to these two similar images could be motivated as follows: the assessments
performed were characterized by inter-operator and intra-operator variability.
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Figure 5.1.1: Scatter plots of the x and y values of the peaks relative to the
heart (class 1) and non-relative ones (class 0) for the three classifiers. Correct
and incorrect predictions of the three models were distinguished.
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Figure 5.2.1: Scatter plots of the peak y-values of the front and side view im-
ages for classifier 2vs3vs7. Correct and incorrect predictions on the three sets
were distinguished.
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Figure 5.2.2: Example of front and side view images labelled as class 2 but
reporting a heart peak with a high y-value, typical of class 3 elements. The red
ellipse indicates the region related to the heart.
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Figure 5.2.3: Scatter plots of information measure of correlation (Inf) and ho-
mogeneity (Hom) for classifier 5vs7. Correct and incorrect predictions on the
three sets were distinguished.

96



Discussions

Figure 5.2.4: Example of two front view images for classifier 5vs7. A) This
acquisition was labelled as class 5 and the classifier predicted correctly its class.
This image showed the following values: Inf=0.32 and Hom=0.87. B) The real
class of this acquisition was 7 while the predicted class was 5. It reported the
following values: Inf=0.32 and Hom=0.85. Green pixels indicate the boundaries
of the segmented region on which the feature calculations were performed. Inf:
information measure of correlation. Hom: homogeneity.
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Chapter 6

Conclusions

This work was aimed at developing artificial intelligence algorithms to facilitate
cardiac SPECT examination, providing the operator with indications about the
patient positioning and the heart location in the preliminary scan.
A graphical user interface (GUI) was developed in order to collect data: 711 scans
related to 158 different patients were acquired using a D-SPECT system. For each
preliminary scan, experts indicated the heart position and possible corrections to
the patient-detector configuration. Specifically, the technicians denoted the pre-
scans for which the head detector or the patient chair are not in the right position.
They also labelled the acquisitions which presented a great extra-cardiac activity,
suggesting the patient to drink cold water.
Support vector machine (SVM) models were trained by using the collected infor-
mation. To detect the heart position in the three pre-scan images, three classifiers
were developed. On the validation set sensitivity values from 89.3% to 96% were
obtained, while specificity ranged from 88.1% to 95.3%.
Two other classifiers were developed to support the operator in the positioning of
the patient and of the detector head. The first classifier had the goal of distin-
guishing among three different pre-scan categories: raise the chair, lower the chair
or leave the chair as it is for the semi-upright position; for the supine configura-
tion, move the detector head towards the patient’s feet, towards the patient’s head
or leave the detector head as it is. This model reached an accuracy of 70.4% on
the validation set. The second classifier was created to discern between two other
classes: make the patient drink or not drink cold water, depending on the external
activity. An accuracy of 73.2% was obtained by this algorithm.
Some aspects of this work could be improved by future developments. First of
all, the models constructed to indicate possible corrections during the cardiac
SPECT examination failed to classify some elements. This defect could be solved
by employing different procedures:
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• A data cleaning process may identify the elements which present characteris-
tics that are inconsistent with those of the membership class. Removing this
data could lead to improved performance of the classifiers.

• Feature selection should be performed with more accurate methods, which
can consider several feature combinations. A ranking method may exclude
some variables that are actually informative only when used in conjunction
with others.

• Classifier parameters could be optimized according to the selected features
by automatic techniques.

Furthermore, it was not possible to develop algorithms to provide some of the
possible corrections to the patient-detector configuration (such as suggesting to
change the detector head inclination) as not enough data was collected. In the fu-
ture new images could be acquired in order to obtain other representative elements
of these categories. Finally, the future perspective is to implement the optimized
classifiers within a software that assists the clinical activity during this diagnostic
test.
In conclusion, this was the first time for the company Tecnologie Avanzate that
artificial intelligence algorithms were employed to create a support system for
cardiac SPECT examinations. Even if the developed classifiers did not achieve
optimal results, they are surely a good starting point to make the diagnostic work
easier for the operators.
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