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Abstract

Photoacoustic imaging (PA) is an emerging biomedical modality consisting in the

emission of pulsed laser light, which, when absorbed by the tissue components, gener-

ates ultrasound waves. After reception, the PA signals are used to provide an image by

a reconstruction algorithm. In the vast field of biomedical imaging, this modality is ex-

tremely promising, as it permits to image tissue optical properties at greater depths than

other optical imaging modalities, such as optical coherence tomography, with interesting

resolution and can provide images of optical absorption with specific molecular contrast

which can be enhanced by spectroscopy. In particular, the omnipresence of hemoglobin in

living tissues allows the imaging of microvasculature without employing any exogenous

contrast agent, which is one of the most important uses of photoacoustic imaging.

However, conventional PA imaging systems are limited by low contrast and visibility arte-

facts that arise from coherence of PA waves and characteristics of the detection system,

such as geometry (limited-view) and frequency bandwidth. Limited bandwidth artefacts

occur when the central part of the reconstructed object is not visible because ultrasound de-

tectors filter out low-frequency components of PA waves emitted by large absorbers (large

as compared to the detection wavelength range). Limited-view artefacts occur when the

coherent acoustic waves that are directional cannot be measured if they don’t reach the

probe.

A first dynamic technique to solve these visibility problems is the photoacoustic fluctua-

tion imaging that exploits the natural fluctuation of the blood flow to reconstruct the total

visibility of the vessels. It was shown on a 2D imaging system that the reconstruction

quality could be also enhanced thanks to a deep learning algorithm trained on simulated

and experimental data. This approach permits to correct artefacts from a single acquisi-

tion, responding to the limit of the fluctuation imaging: the acquisition time. The main

objective of this thesis is to transfer these results to a 3D environment by elaborating a



neural network able to process 3D volumes.

In the first part of this project, we focus on programming a user-friendly and reliable real-

time visualization and acquisition system to collect time signals from a chicken embryo

model. Its chorioallantoic membrane is, in fact, an optimal in vivo model to study blood

vessels thanks to its visibility, accessibility and rapid developmental growth. From ac-

quired radio-frequency signals, we aim at developing a procedure consisting in the delay

and sum beamforming method followed by the singular value decomposition method to

create an experimental data-set (1500 volumes per acquisition).

Our deep learning approach, using a convolution network based on the UNET architec-

ture, includes the pre-training the network with simulated data and a subsequent training

with the experimental data to find a model that permits, from inputs never trained and not

known by the network, to predict an output free of artefacts. Noisy, corrupted by artifacts

and altered volumes of the chicken embryo vasculature are eliminated to get a final data-

set composed by 105 examples: 90 for the training-set, 10 for the validation-set and 5 for

the test-set. Among all the conventional PA volumes, just one of them is chosen as input,

while the respective PA fluctuation volume (computed on 1500 conventional volumes, free

of its average to eliminate the background noise) is used as ground truth.

The correctness and the robustness of this prediction is finally verified by a correlation

measure. By testing our model on the training-set, we find a high index of correlation

(greater than 84%): the model learns to correct the artifacts and to extrapolate some struc-

tures not visible in conventional PA images. On the other hand, the predictions on the

test-set present a lower correlation value, some artefacts, like not existent structures that

appear on the output and a poorly defined microvasculature that was well resolved in the

fluctuation image. Despite this, the network is able to completely eliminate the noise of

the conventional image, to greatly increase the contrast and to reconstruct the volume of

the vessels.
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1. INTRODUCTION

1.1 History of photoacoustic effect

The original photoacoustic effect was observed for the first time in 1880 when Alexander

Bell and his assistant Charles Sumner Tainter, transmitted an acoustic signal for 213 meters

through a device that they called “Photophone”. The most successful apparatus consisted

of a transmitter, which was a thin silvered glass disk mounted on a frame with a flexible

rubber hose whose free end comprised the mouthpiece. Sunlight was focused on the mirror

and the associated optics so arranged that the reflected light could be collected by the

remotely placed receiver—a parabolic mirror at whose focus a selenium cell incorporated

into a conventional telephone circuit was arranged (Fig.1.1). [1]

Speech articulated into the mouthpiece caused the mirror to vibrate, producing fluctu-

ations in the intensity of light collected at the receiver. The voice-modulated intensity of

light available at the receiver as a modulated battery current was converted into sound in

the telephone circuit. The selenium-cell photophone can be considered the first practical

implementation of wireless telephony or, in fact, the first optical communication device.

In addition to this innovative concept, there was a further important outcome of this inves-

tigation by Bell, and that was his discovery that illumination of different solid substances

with a rapidly interrupted beam of light energy resulted in the emission of acoustic energy

at the same frequency as the modulation frequency. Bell’s results were revolutionary for

that period and they caused great excitement in the scientific community; many scientists

began to be interested in both experimental and theoretical study of photoacoustic effect.

• Lord Rayleigh concluded in 1881 [2] that the explanation for the sounds was a

vibration due to an unequal heating of the diaphragms or plates when illuminated

with intermittent light.

• Mercadier and Preece [3] studied the effect in a variety of materials and postulated
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Figure 1.1: Photophone designed and built by Alexander G. Bell and Charles S. Tainter [1]

that the cause of the sounds was not the vibration of the disk, but rather the expansion

and contraction of air in contact with the intermittently heated disk.

• Röntgen [4] and Tyndall [5] independently also shared the view that periodic heat-

ing and cooling of air in thermal contact with the disk caused the sound production.

They also showed that the phenomenon was not restricted to solid bodies, and stud-

ied the effect in absorbing gases and vapors.

After the initial flurry of excitement and activity, the radiophonic effect was set aside, prin-

cipally because experiments were difficult to quantify, as they depended largely on human

hearing for signal detection. [1] It waited for five decades before making a re-emergence

with the work of Veingerov [7], who used state-of-the art charged capacitive microphone

diaphragms and a Nernst glower as an intense blackbody infrared source, to be able to

detect CO2 concentrations in N2 with a sensibility of 0.2 vol.%. A year later, Pfund [8]

reported on a similar system in use at the Johns Hopkins Hospital for detection of CO and

CO2 gases. Instead of observing pressure changes, this system directly measured the cor-

responding changes of gas temperature using a thermopile shielded from direct radiation,

2



avoiding the requirement for acoustic noise isolation. In 1938 Luft introduced a commer-

cial infrared gas analyzer based on microphone detectors. A theoretical foundation was

developed for the optico-acoustic effect, and various implementations soon followed. In

addition to gas concentration analysis, the method was also used in the investigation of

vibrational relaxation rates and molecular energy transfer in gases. [9] With the devel-

opment of the laser in 1960, there was yet another revival in gas analysis, thanks to its

important advantages as light source came from the high degree of spectral purity, high

stability, and reproducibility.

First approaches to biomedical applications

Allan Rosencwaig coined the term “Photoacoustic” and showed photoacoustic spectra

from various solid materials and biological materials such as cytochrome and hemoglobin.

The first “in vivo” application was conducted in 1964 by Amar et al. [10] on the eyes of

a living rabbit. The authors used a ruby laser that produced on average 50 mJ pulses of a

very short duration in order to detect the response in the form of acoustic wave. In 80’s

Olsen obtained the first 2D image of a muscle phantom with a radar transmitter to irradiate

with pulsed 5.655 GHz energy, and used a hydrophone to record the acoustic responses.

The acoustic waves were found to have pulse durations corresponding to the measured

penetration depth of the microwave energy. Bowen in 1981 [11] was among the first to

propose imaging of soft tissues using this method. All the cited discoveries, laser’s devel-

opment and subsequent applications summarized in Fig.1.2 permitted an improvement in

photoacoustic imaging and its effective, promising and innovative usage in different cases

of diagnostics and medical researches.
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Figure 1.2: Time-line of various significant events in the history of photoacoustics from 1880

toward the modern times. Red arrows indicate the low frequency intensity modulated variant; blue

arrows indicate the short pulsed variant. [1]

4



1.2 Description of the photoacoustic effect

1.2.1 Photoacoustic generation and physical description

In the photoacoustic effect, ultrasound waves are generated by a light-absorbing material

following the absorption of modulated light, usually pulsed laser light on a nanosecond

timescale. The absorbed light energy causes localized heating, which in turn produces

a temperature rise. This increment gives rise to an initial pressure increase due to rapid

thermal expansion, which is followed by relaxation, generating broadband low-amplitude

ultrasound waves. The photoacoustic imaging is made possible thanks to detection of these

ultrasound signals using an ultrasound transducer. This sequence of events is summarized

in Fig.1.3.

Figure 1.3: The basic principle of photoacoustic imaging.

If impulsive heating is assumed, and in practice, this requires that the acoustic propa-

gation time is small compared with the length scale of the heated volume, then by thermo-

dynamic considerations it can be shown that p0 at a point r is proportional to the absorbed

5



optical energy H(r).

p0(r) = ΓH(r), (1.1)

where:

• Γ = βc2/Cp is the Grüneisen coefficient, a dimensionless thermodynamic constant

that gives a measure of the conversion efficiency of heat energy to pressure with:

– β : volume thermal expansivity

– c : speed of sound

– Cp : specific heat capacity at constant pressure

• H(r) is the absorbed energy distribution equal to the product of the local absorption

coefficient µa(r) and the optical fluence Φ(r,µa,µs,g) with:

– µa and µs are the absorption and scattering coefficients over the illuminated

tissue volume

– g is the anisotropy factor.

From the explicit equation:

p0(r) = Γµa(r)Φ(r,µa,µs,g) (1.2)

we can note that p0 depends on mechanical, thermodynamic and optical parameters.

1.2.2 Photoacoustic imaging

In PA imaging we consider the weak mechanical and thermodynamic variations between

different tissues and we assume that the contrast of the image is dominated by optical ab-

sorption. The components of the tissue, such as water, lipids, collagen, hemoglobin and

others, act like biological absorbers and they can be targeted by irradiating tissue at the

corresponding dominant absorption wavelength. As such, using tunable lasers, the pho-

toacoustic spectroscopy technique makes it possible to specifically identify chromophores
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and quantify their concentration, in order to obtain tissue composition based on endoge-

nous contrast. Figure 1.4 shows how the absorption changes depending on the wavelength.

Figure 1.4: Spectrum of the absorption coefficient for different components of the tissue. [12]

In particular, the omnipresence of hemoglobin in living tissues allows the imaging of

the microvasculature, which is one of the most important uses of photoacoustic imaging.

In addition to visualizing anatomical structures, blood oxygenation measurement is possi-

ble by using wavelengths around 650 and 950 nm, around the isobestic point of oxygenated

and deoxygenated hemoglobin.

Spatial resolution and penetration depth

All of photoacoustic applications can be achieved over a wide range of length scales from

micrometres to centimetres with scalable spatial resolution. The resolution depends on

ultrasounds system and on frequency characteristics of generated acoustic waves. The

frequency of PA signals typically ranges from 1 to 100 MHz [12]. Thus, by varying the

duration and energy of the pulses it is possible to obtain different acoustic frequencies,

influencing the final spatial resolution. In addition, the depth to lighting has a great impact
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on acoustic waves because of tissue attenuation, limiting the maximum frequency of the

photoacoustic waves and therefore giving an upper limit to the spatial resolution obtain-

able. Therefore, a higher ultrasound frequency of the photoacoustic signal results in better

spatial resolution because the relative value decreases. The maximum penetration depth

simultaneously decreases as well, because higher ultrasonic frequencies are more attenu-

ated than lower frequencies. Thus, there is a trade-off between resolution and penetration

depth, described by the following relationship:

Relative Spatial Resolution =
Penetration Depth

Resolution

In practice, it is found that the ratio between the imaging depth and the corresponding

acoustic resolution is of the order of 200 (at 2 cm depth, the resolution of photoacoustic

imaging is thus of the order of 100 µm [12].

1.3 Visibility problems

1.3.1 Origin of visibility problems

In biomedical imaging, randomly distributed subresolution sources or scatterers usually

result in speckle artifacts. Improving visibility in photoacoustic imaging using dynamic

speckle illumination [13]. Acoustic speckle has a great importance, in ultrasound imag-

ing, to characterise soft tissues and to visualise large or complex-shaped structures. In

contrast, photoacoustic imaging is known to be mostly speckle-free because of the emis-

sion of strongly coherent acoustic waves interfering constructively in some directions and

destructively in others. The absence of speckles in PA imaging is often presented as an

advantage of this technique. In fact, the developed speckle is formed by the interference

of coherent waves with completely randomized phases but waves from particles close to

the boundaries have approximately equal phase delays. As a result, as the initial photoa-

coustic pressure rises are always positive, these waves add constructively to manifest the

boundaries.
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On the other hands, the absence of speckle can create some reconstruction artefacts, at-

tributed to the strong initial phase-and-amplitude correlation among the ultrasound waves

generated by the individual absorbing molecules or particles after quasi-instantaneous op-

tical excitation. For imaging blood vessels, resulting of the absence of low speckle contri-

bution due to red blood cells, the PA signal is dominated by the shape of the blood vessels

and the acoustic wavelength at the mean frequency corresponds to the diameter of the

vessel. As figure 1.5 shows, we have two related effects:

1. Limited bandwidth: central part of the reconstructed object are not visible because

ultrasound detectors filter out low-frequency components of PA waves emitted by

large absorbers (large as compared to the detection wavelength range). For instance,

for large blood vessels, only the vessel boundaries may be visible in PA images.

2. Limited view: elongated structures in some directions are not visible on the recon-

structed object because the field of view of the probe does not cover all the angles

and consequently PA waves escape detection. In other words, the limited view is

due to the coherent acoustic waves being directional which can not be measured if

they don’t reach the probe.

1.3.2 State of the art

Different approaches were proposed in order to solve the problem of PA imaging artefacts

with finite-aperture detectors over the course of the time. They are divided into:

• Methods based on detected acoustic waves emitted in all possible directions.

One of them consists in enhancing the detection aperture by performing multiple

PA acquisitions at different angles. This is possible by rotating a linear transducer

around the object [14] or by rotating the imaged object itself[15]. Another technique

consists in augmenting the size of detection aperture through additional transducers

[16] or acoustic reflectors placed at edges of the imaging zone [17]. Alternatively,
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Figure 1.5: The two types of visibility artefacts.We can note that in the reconstructed object we

lost (a) the vertical part of the blood vessel because of the limited view, (b) the central part of the

body vessel because of the limited bandwidth.
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the imaged object and the ultrasound probe can be placed inside a reverberating

cavity[18]. In all these cases, it’s possible to detect acoustic waves emitted in all

possible directions even with a single-element probe but it is required that the whole

range of imaging angles is accessible, that is not always achievable in a real clinical

environment. Besides, the acquisition time is increased by mechanical scanning of

the detectors and the temporal resolution is degraded.

• Methods based on sparsely distributed absorbers that act individually as isotropic

PA sources.

Dean-Ben et al. demonstrated that reduction of limited-view artefact can be pos-

sible by the localization approach [19] or by using a nonlinear combination of to-

mographic reconstructions representing sparsely distributed moving particles [20].

However, the need for sparsely distributed absorbers requires the use of contrast

agents that extends considerably the acquisition time.

• Methods based on generation of artificial PA sources inside the imaged object.

For example, one approach consists in heating tissue locally with a focused ultra-

sound beam and thus generating artificial PA sources via the temperature depen-

dence of the Gruneisen coefficient [21]. By scanning the focused ultrasound beam

across the sample and accumulating the resulting PA images, the whole object is

reconstructed but this approach is also time-consuming and not completely safe in

medical use.

• Methods based on fluctuations of optical absorbers.

An approach based on multiple-speckle illumination was proposed by Gateau et

al. [22]. In this work, a random intensity distribution of speckle patterns, which

changed from pulse to pulse, induced fluctuations in each pixel of the correspond-

ing series of PA images. It was demonstrated experimentally that a second-order

fluctuation image provided a representation of the absorbing distribution free of

limited-view and limited-bandwidth artefacts. However, speckle illumination is also
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limited. The PA signal at each image pixel is the sum of PA signals from a large

number of speckles fluctuating within the acoustic PSF (Point Spread Function) : in

the case of a diffuse regime, that means typically a depth of 1 mm in the tissues,

there are 106 speckles. There are, therefore, too many speckles to see a fluctuation

in the real application case. Moreover, the work by Gateau et al. [22] provided no

clear theoretical explanation for the visibility enhancement in fluctuation imaging

with multiple-speckle illumination. Since that work, there have been other studies

based on PA signal fluctuations. In particular, fluctuations were deployed to obtain

super resolution in PA imaging [23]. Most generally, PA fluctuation imaging uti-

lizes some randomness in PA generation to provide enhanced images as compared

to conventional PA imaging. More details are presented in the following chapter.
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2. PHOTOACOUSTIC FLUCTUATION IMAGING

In the previous chapter we have discussed about the photoaocustic imaging and its vis-

ibility problems. Here, we turn our attention on the photoacoustic fluctuation imaging,

the technique used to correct these problems by exploiting the natural fluctuation of the

blood flow. We detail the entire methodology to acquire the data, the algorithms used to

post-process them to obtain the PA images, the principles of the fluctuation approach and,

finally, a set of results to validate its correctness.

2.1 Methodology

2.1.1 Experimental device - Hardware components

The experimental results presented in this report were obtained from the following set-up:

Figure 2.1: Experimental Set-Up

In general, as explained in chapter 1.2.1, a PA acquisition is made from a laser pulse

that illuminates a sample coupled to the imaging probe. At each laser pulse, the waves

generated are detected by the probe and the signals recorded by the ultrasonic acquisi-
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tion system (AS, Verasonics Vantage System). Eventually, the data is transferred to the

computer. The laser fluence is recorded by a photodiode (PD). For US acquisitions, the

same probe is used in transmission/reception. Here we examine in detail the different

components of our setup.

Laser (SpitLight Innolas, Germany)

The light beam is emitted by a Nd-YAG crystal laser pumped by a diode that emits at 1064

nm and that has a second harmonic generator to emit equally at 532 nm. The maximum

repetition frequency (PRF) is 100 Hz. The Spitlight laser has an optical parametric os-

cillator that allows to generate wavelength beams ranging from 680 nm to 980 nm and to

change the emission wavelength between these values at the PRF of the laser. For each

laser emission, a signal (FL Trig) is transmitted at the ”Trig in” input of the Verasonics,

which waits for the maximum energy to trigger the Pockels cell (PC, Trig out + Pockels

Trig) laser, a sort of optical port that opens during about 5 ns and that allows to release a

short light pulse.

Optical fiber (Cereamoptec, Germany)

A fused-silica custom fiber bundle is coupled to the laser and its output is tight to the

center of the probe and allows the light to be brought to the center of the field of view and

to move the probe without adjusting the beam trajectory.

Probe (Imasonic)

The ultrasound probe is a custom spherical array detector (Imasonic, France) with central

frequency f0 = 8MHz and focal distance = 35mm. It consists of 256 elements distributed

over a spherical shell in the form of a Fermat spiral. The imaging area is centered on the

center of the 35mm radius sphere and measures about 8x8x8 mm. An 8mm diameter hole

was created to insert the optical fiber and to bring light to the imaging area.
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Figure 2.2: 3D imaging probe.

Two connectors are connected to the Verasonics acquisition system and allow the 256

elements to be used simultaneously. For our in vivo experiences, a coupling cone was

used, allowing to fill the gap between the transducer elements and the sample by degassed

deionized water. The contact with the sample was insured by a latex membrane and it was

therefore possible to modify the depth of the sample surface by a few mm, inflating or

deflacting the latex membrane, without losing acoustic contact.

Photodiode and Boxcar

Within the framework of future quantitative experiments, it is necessary to know the laser

fluence at the surface of the sample to obtain the optical absorption, as explained in the

theory of photoacoustic imaging (Eq. 1.2.2). So, the laser output fluence was measured

from a rapid photodiode. The signal of the photodiode was integrated by a gated integrator

(Boxcar, Standford Research System, SR 25) on a time window centered on the pulse,

whose size was determined by the use of an oscilloscope and digitized by the DAQ, the

Verasonics integrated acquisition card. This stage of integration of the PD signal allows

to quantify the energy of each impulse, because the length of the impulse and therefore

of the signal to be sampled produced by the photodiode is about 20ns, and a consequent
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sampling rate of at least 4 times lower than 1/20ns is required. The integrated signal for

a dozen pulses is visible in Fig.2.3, where we can see the variation of energy produced by

the laser between the shots.

Figure 2.3: Signals mesured with oscillator. a : Photodiode signal for a shot (green) and gated

integrator (blue). b : Result of integration for about ten impulses. This signal is then converted by

the DAQ.

It is the Trig D (in Fig.2.1) supplied by the generator and triggered by the Verasonics

acquisition system (Trig Out) that allows the DAQ to start converting the PD signal. In

order to validate the synchronisation of the photodiode and the laser, before each series of

measurements we made a visual comparison between the signal coming from the photodi-

ode and the signal coming from a quantitative calibrated pyroelectric detector that allows

to quantify the energy of each pulse (Gentec QE50, France), located in the imaging area.

The synchronization verification is shown in Fig.2.4. The photodiode doesn’t give the

fluence in mJ, so the pyroelectric detector is used for a calibration.
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Figure 2.4: Plot of the normalized signals coming from the PD (in blue) and the pyroelectric

detector (in orange). The zoom on the plot at each of the six wavelengths (x-axis: 300 laser pulses

for [700 730 760 790 820 850] nm) allows to compare them and validate the synchronisation.

2.1.2 Vasculature model

The imaged sample was a chicken embryo whose chorioallantoic membrane (CAM) is

an optimal in vivo model to study blood vessels thanks to its visibility, accessibility and

rapid developmental growth for experimental manipulation. The CAM consists of two

epithelial sheets that limit a thin layer of stroma. It is within the stroma that the blood

vasculature and lymphatics reside. It is important not to mistake the CAM with the yolk

sac membrane (YSM), which is also highly vascularized, but it’s associated with the yolk

and it has distinct properties. Fig. 2.5 shows the difference of the two membranes at day 4

post-fertilization: we can clearly distinguish the vascularized CAM that expands from the

hind-gut and YSM in the background. By contrast, in an older embryo, their difference

is not so noticeable because the CAM exceeds the area covered by the yolk. The yolk is

associated with the YSM that is always present but under the embryo [24].
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Figure 2.5: Chicken embryo and associated structures. a) At day 4 post-fertilization CAM and

YSM are highly vascularized but distinguishable (YSM is in the background). b) At day 12 post-

fertilization in a petri dish: YSM is under the embryo and it is only associated with the yolk.

[24]

For our experiments, we stored the non-fertilized eggs obtained from a local farm in a

cellar at 13◦C and we moved them to an incubator at 37◦C and 66% of humidity in order

to image them after 9-10 days, when they are sufficiently developed as shown in Fig.2.6

and as seen during our optimization tests.

Figure 2.6: Embryo vasculature at day 10 after incubation.

After making a small hole through the shell using a scalpel, 1.5 mL of egg white

was removed with a syringe, and the top part of the shell was cut with scissors. Warm

phosphate-buffered saline (PBS) solution was poured into the shell to ensure acoustic

18



contact with the latex membrane. The sample was placed in a plastic container with a

central hole containing water maintained at 37◦C using a hot plate (Fig.2.7).

Figure 2.7: Imaged embryo placed in a plastic container with a central hole containing water. The

container was filled with water maintained at 37◦C thanks to a hot plate.
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2.1.3 Software

The software is included in the acquisition system Verasonics Vantage 256. The Verason-

ics Vantage Research Systems is a a programmable electronic platform for transmitting,

receiving and processing ultrasound information. Essentially all aspects of this ultrasound

system are able to be controlled by the user, and it is possible to create new and novel

methods of acquisition and processing. The System is provided with a folder with scripts

that can be modified according to the user’s needs. The scripts supplied to program the

system are written in the MatlabT M language, which provides an environment for defining

the various programming objects contained in a sequence of events. The scripts define the

order of actions to be carried out in the Vantage unit, as well as actions that take place

in the software environment of the host computer. In our case, we have developed an

interface that allows to manage in a simple and effective way the various stages of the

acquisition (Fig.2.8).

Our system consisted of two modes of use:

• Live Mode: it allowed the display of the volume in the three planes XY,XZ,YZ and

the adjustment of different parameters in real time; that enables the movement on

the sample to image, in order to find the most interesting structures.

• Save Mode: it allowed to save a desired number of RF (Radio-Frequency) data.

Before focusing on each of the two modes, we describe in detail the part of the code com-

mon to both. First of all, the code allowed to load the positions of the probe transducers

used (as in chapter 2.1.1), the number of flash angles to use and to set some specific param-

eters of the system, like the number of transmit and receive channels, the speed of sound

and the transducer connectors to use (both of them in our case). It was also necessary to

increase the gain of the amplification stages located downstream of the active elements of

the receiver.

• Pgagain: amplifier output buffer placed before the A/D converter (en dB).

20



Figure 2.8: Main interface of our acquisition software where the buttons LiveMode, DisplayRF,

USorUSHR,MIPPA, MIPUS,Save, DispPD and the sliders XZ,YZ,XY and LenscorrPA represent

the custom functions that we added.
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• Lnagain: low noise input amplifier stage (en dB).

Now we can describe in detail the codes corresponding to the two modalities.

Live Mode

As said before, the ’Live mode’ allowed, in real time, the visualization of the volume

imaged through its projection on the three planes XY, XZ and YZ. Thanks to the button

”USHR/US” we could switch from the image USHR (ultrasound, high resolution) to the

US (ultrasound) reconstruction, while the other three projections always corresponded to

the PA (photoacoustic) reconstruction. We firstly needed to define some storage space for

the RF data that we wanted to acquire. This required defining a Receive Buffer in the

host computer (the Receive Buffer is the only buffer that can receive RF data transferred

from the Vantage local memory on the acquisition modules). It is a Matlab cell array

RcvData{n}(i, j,k), where n is the buffer number, i is the row index, j is the column

index, and k is the frame number. In LiveMode, we used a first buffer composed as follows:

Figure 2.9: ReceiveBuffer composition for LiveMode. M is equal to the number of samples for US

and USHR acquisitions and P is equal to the number of samples for PA acquisition. na and na2 are

the numbers of flash angles for USHR and US acquisitions respectively.
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The number of row for each frame were set according to the number of samples of RF

data per channel that will be acquired. Its calculation was based on the depth of the acqui-

sition, the sample rate and the number of acquisitions per frame. In this case, the number

of acquisition per frame was set to 1 because in this part we just needed to reconstruct

and show the volume, not save it. na and na2 are the the number of emissions used for

reconstructions for USHR and US acquisition respectively. The number of columns per

frame was set equivalent to the number of receive channels available in the system. When

data are transferred from the Vantage Unit’s local memories to the host, the data from all

receive channels are transferred together, with each channel transferred to its correspond-

ing column of the Receive Buffer.

The TX object definition

The TX structure was defined for each unique transmit action in our sequence. It is im-

portant to specify that, in order to deactivate the ultrasonographic probe in the case of

photoacoustic acquisition, the vector ’Apod’ was placed at 0 (mode reception only).

The TGC object definition

The TGC is the time gain control function. It allows to have a time-varying gain during

RF data processing: it increases through time to compensate acoustic attenuation. In this

code, the TGC for the photoacoustic signal was set to the maximum value (1023).

The Receive object definition

Receive operations specify other attributes of the input signal processing. The Receive

structure specifies many parameters, including how long the receive period should run,

how the received data are to be sampled and filtered, which receive channels are active,

and where to store the RF data.
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Reconstruction Objects

They describe the reconstruction methods required to form pixel information from the ac-

quired receive data, and together with the ReconInfo objects, specified all the attributes

needed to reconstruct a full frame. Normally, the reconstruction software automatically

calculated Look-Up-Tables to specify the reconstruction processing. We decided to spec-

ify custom LUTs for reconstruction in our setup script to solve an internal problem of

Verasonics system that did not allow a receive only reconstruction and to be able to tune

the origin of time used in the reconstruction which is due to the laser latency of 400ns after

trigger.

Sequence Control Objects and Event object definition

After the choice of the sequence Control objects, used to associate special function

actions with a sequence event, we modified the event list in order to guide the acquisition

process. As written previously, in LiveMode we gave the possibility to:

• Display the three projections on the axes XZ, XY and YZ of the reconstructed im-

age;

Figure 2.10: Real time reconstruction of the imaged object.
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• Activate volumic reconstructions and display the MIPs (maximum intensity projec-

tions) by clicking on ”MIPPA” or ”MIPUS” buttons;

Figure 2.11: Interface of the volumic reconstruction in Live Mode. The red circle underlines the

button used to display the MIPs.

• Display the RF signals before saving to control signal intensity and avoid saturation;

Figure 2.12: Interface of radio-frequency signals control. The button DisplayRF permits to show

the max. of RF signals to avoid saturation. In can be decrease by modifying the TGC value.
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• Switch from USHR reconstruction to US reconstruction through the ”USorUSHR”

button;

• Set independently several parameters such as voltage, t0 and TGC. Being able to

change the TGC values in real time was useful to avoid saturation problems. The t0

is a value that can be varied for the improvement of the reconstruction; it is set to

account for the laser latency after trigger (400 ns) and also the potential travel time

in the protective layer between water and the transducer.

All of these possibilities were implemented thanks to the process objects called during

the events and the reload of the events sequence. In LiveMode version, the sequence of

events provided, in order, the acquisition of USHR, PA and US signals. For the PA sig-

nals, in particular, the Seqcontrol of the event required the sending of a TriggerOut, which

triggered the laser to emit at the wavelength defined at 730 nm. Below, we have inserted a

Verasonics function to transfer acquired data to the host buffer. Finally, we had the signal

reconstruction events and its display. The Livemode acquisition was concluded with a

”JUMP” event that allowed, in the absence of other orders, to return to the first event of

the succession in order to continue to obtain images of the sample in real time.

Save Mode

Once we found the desired position on the sample, we saved the data thanks to the ’Save

mode’, by pressing on the SaveMode button. Knowing that the laser worked at a PRFPA

(maximum repetion frequency) equal to 100 Hz and having placed the PRFUS at 200 Hz,

the diagram of our acquisition system was:
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Figure 2.13: Sequence of an acquisition US-PA with Mλ = 6 wavelengths, PRFUS = 200 Hz, PRFPA

= 100 Hz and na2 = 10 (number of emissions to form an US image.

Compared to the LiveMode case, each frame had a number of acquisitions other than

1. In particular, the second buffer was then composed as follows:

Figure 2.14: ReceiveBuffer composition for SaveMode. M is equal to the number of samples for

US and USHR acquisitions and P is equal to the number of samples for PA acquisition. na and na2

are the numbers of flash angles for USHR and US acquisitions respectively. nPA and nUS are the

number of acquisitions for PA and US (nPA = 50, nUS = 100). The number of frames used was 30.
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In this case, the number of frames used was automatically calculated based on the

number of PA images desired. In our experiments, we chose to acquire 1500 PA images at

a time, so the number of frames per save was 30, each containing the 50 PA acquisitions

to reconstruct.

The event sequence in SaveMode started with a number of acquisition not saved in

order to warmup the laser. Compared to the LiveMode, after PA acquisition we added an

event called “readAI” which, thanks to a Verasonics function, was capable to command

the DAQ to read the photodiode signal and store it in its own buffer memory. This signal is

displayed at the end of saving after it got transmitted on the host RAM memory, as showed

in Fig.2.15 and the system is automatically freezed.

Figure 2.15: Display of photodiode signal trend after acquisition.

At that point, we had two choices:

• Return to LiveMode to change the position;

• Change the laser wavelength and make an acquisition at a different wavelength or in

multi- wavelength mode to obtain a spectroscopy image by changing laser settings.
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We also implemented another feature to make our system as safe and practical as possible:

an automatic resolution of memory problems. Using the values of Fig.2.14 for US and

USHR images, we found ourselves able to save up to a maximum of 1200 PA images

at any position we wanted to image, without running into memory problems. Therefore,

in our code, if the number of PA images to save was greater than 1200, our software

automatically saved the US images for the half of the total number of frames and did not

allow them to be saved in the other half part. In our case, with 1500 desired images, we

finally acquired 15 frames with Buffer2 dimension and 15 frames with Buffer3 dimension.

The third buffer was composed as follows:

Figure 2.16: ReceiveBuffer composition for SaveMode withouth US storage.

Finally, our software allowed in post processing, thanks to the Timetags function of

Verasonics, to keep track of the time t to which each frame was beginning to be acquired,

to validate the continuity of the acquisition. From a graphical point of view, we calculated

the time difference ti+1 - ti, with the number of frames from 1 to the total number of frames

and if there were no delays we had a constant output equal to the frame acquisition time.
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2.2 Photoacoustic image reconstruction

The output of the acquisition machine as a result of a PA acquisition with a multi-element

array is a radio-frequency (RF) signal. In this project, we used the algorithm called ”Delay

and sum beamforming” to provide images from a set of PA signals.

Figure 2.17: Summary of the different steps to obtain the final photoacoustic image.

2.2.1 Delay and sum beamforming

In this section, the beamforming algorithm is described in detail. We used it to demonstrate

the results of standard photoacoustic (PA) reconstruction. The idea is very simple: add a

delay to each signal point such that the signals from a particular location are aligned before

they are summed.

In fact, the signals captured by the transducer are similar in wave form, but show dif-

ferent delays and phases. The time of flights are are proportional to the covered distances.

The signal of each element is shifted by a corresponding time of flight difference depend-

ing on the reconstructed point. As a result, all the signals received from the transducers

are aligned in time. The signals of all elements are summed up. Fig.2.18 shows a typical

radio-frequency (RF) frame that is available at the output of the acquisition machine as a

result of PA acquisition with a multielement array. Each cell of this frame contains the
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signal S(ti,k) which is equal to the quantized value of voltage on transducer element k

registered at time ti. The interval between successive time values ti and t(i+1) is equal to

∆ts = 1/ fs, where fs is the sampling frequency of the acquisition machine.

Figure 2.18: A typical radio-frequency (RF) frame available at the output of the acquisition ma-

chine as a result of PA acquisition with multielement linear array. [25]

In delay-and-sum beamforming each point of the reconstruction image A(x,y,z) is

obtained with the following equation:

A(x,y,z) =
Nel

∑
k=i

S(t(k,x,y,z),k), (2.1)

where:

• Nel is the total number of transducer elements;

• S(t(k,x,y,z),k) is the signal on element k at the time moment t(k,x,y,z);

• t(k,x,y,z) corresponds to the arrival of the signal from the source placed at x,y,z on

the element k.

If we assumed that PA waves propagate in a homogeneous isotropic medium, the arrival

time t(k,x,y,z) is given by

t(k,x,y,z) =
1
vs

q
(xk− x)2 +(yk− y)2 +(zk− z)2 (2.2)
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where:

• vs is the speed of sound in the medium;

• xk, yk and zk are the coordinates of the transducer element k.

In our project, we used RF data acquired through the ”Save Mode” functionality explained

in section 2.1.3.

Figure 2.19: Delay-and-sum beamforming applied to a N=50 RF data to obtain the conventional

PA image (displayed as MIPs).

2.3 Photoacoustic fluctuation imaging

While it has been successfully demonstrated experimentally for super-resolution imaging

(induced either from multiple-speckle illumination [26] or from random distributions of

absorbing particles [27]) and for visibility enhancement (with multiple-speckle illumina-

tion). S. Vilov et al. [25] proposed a theoretical framework relevant to both fluctuations

induced by random illumination patterns and fluctuations induced by random distributions

of absorbing particles. They provided a physical insight into why visibility artefacts are

absent from second-order fluctuation images and they demonstrated experimentally that

harnessing randomness induced by the flow of red blood cells produce photoacoustic fluc-

tuation images free of visibility artefacts. In fact, red blood cells have a bigger size than

speckles and there are around 10−3 of them within the acoustic PSF, so it’s possible to see

the fluctuation due to the blood flow.
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2.3.1 Principles and theory

S. Vilov et al. [25] demonstrated that if we assume that we want to image vessels in the

f (~r) support, where f (~r) represents the vessels, the absorption at each point of the medium

depends on the presence or not of an optical absorber:

µk(~r) = µ0gk(~r) f (~r) (2.3)

where gk(~r) is a fluctuating function which represents the presence or not of a red blood

cell. Its average value < Ak(r) >= η is the volume fraction of red blood cells. With a

single photoacoustic image the obtained formula is:

Ak = Γµ0F0gk(r) f (r)∗h(r) (2.4)

and its module in order to remove the oscillations:

|Ak|= Γµ0F0η | f (r)∗h(r)| (2.5)

In the formula (2.5), | f (r) ∗ h(r)| is the convolution between the imaged object and the

PSF of the system and it is important to note that there is a coherent summation. When we

represent the PSF with the oscillations (just the real part of the PSF), there are the oscil-

lations at the center frequency of the transducer (along Z) and after the Fourier transform

of the PSF the central part of the spectrum is lost. Therefore, the convolution between the

PSF and the vessel in the form of ”C”, vertical structures in the image are lost too.

Finally, as expressed in 1.3, conventional photoacoustic imaging based on the acoustic

coherence of received signals is limited. By contrast, with several images, it is feasible to

calculate the variance:

σ
2[A](r) = Γ

2
µ

2
0 F2

0 σ
2
gVg f 2(r)∗ |h(r)|2 (2.6)

based on a incoherent summation since the modulus of the PSF is calculated before the

convolution with the object. The equation (2.6) is valid for both speckle illumination

imaging and fluctuation imaging due to red blood cell flow.
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2.3.2 Noise sensitivity

However, in the real application, the noise is added to the calculation of variances: on the

fluctuation image, the fluctuation is increased by the noise level.

Figure 2.20: In the left section (RF signals domain) a peak P of the interface at the entrance and

exit of the vessel and a fluctuation level F can be defined. When a noise n is added, it affects the

entire signal, so the fluctuation F must be extrapolated from
√

F2 +n2. In the right part of the

figure (Image domain), on the average image there are no fluctuations while the fluctuation image

present the level of fluctuation increased by the noise level. [29]

For which fluctuation to noise ratio is it possible to form a fluctuation image? It has

been demonstrated by the team that with a sufficient number of acquired images it can be

obtained a good image even with a small ratio (Fig. 2.21). Consequently, the number of

acquired images must be bigger than 500.
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Figure 2.21: The upper section of the figure was obtained thanks to a simulation set. The first

line shows a fluctuation to noise ratio (FNR) equal to 0.2 (noise louder than the fluctuation). With

enough images, a good reconstructed image is obtained. When the FNR increases, fewer images

needed to obtain a comparable image quality. In experience a FNR of 0.8 has been founded. [29]

2.3.3 Parasitic fluctuations and SVD

In addition to the noise problem, there is also a problem due to the existence of parasitic

fluctuations, especially of the laser, whose energy fluctuates from pulse to pulse affecting

the variance calculation.

In Fig.2.22 we can note that the fluctuation image σ [A](r) is dominated by the average

image |< Ak(r)> |.

The proposed theory to solve this problem is the SVD (Singular Value Decomposition)

filtering [28], which is based on the following steps:

• The data are represented under the form of a variable a(x,y,z, t) of size (nx,ny,nz,nt).

Its sampling is rearranged into a 2D space-time Casorati matrix A of dimension

(nx×ny×nz, nt).
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Figure 2.22: Fluctuation image σ [A](r) dominated by the average image | < Ak(r) > |, before

SVD.

• The Casorati matrix A is decomposed in three matrices:

A =U∆V ∗ (2.7)

Where V is a non-square (nx× nz,nt) diagonal matrix, U and V are orthonormal

matrices with respective dimensions (nx× nz,nx× nz) and (nt,nt) and * stands for

the conjugate transpose. Columns of U and V matrices correspond respectively to

the spatial and temporal singular vectors of A. The singular value decomposition

(SVD) can be thought of as decomposing a matrix S into a weighted, ordered sum

of separable matrices Ai. By separable, we mean that the matrix A can be written

as an outer product of two vectors Ai = Ui ∗Vi. Specifically, the matrix A can be

decomposed as:

A = ∑
i

SiAi = ∑
i

SiUi ∗Vi (2.8)

Thus, the SVD can be used to find the decomposition of an ultrafast ultrasonic

dataset into separable space and time filters. Here Ui and Vi are the ith columns

of the corresponding SVD matrices and Si are the ordered singular values.

• The limits A and B are chosen to complete the filtering by SVD:

Asvd =
b

∑
i=a

SiAi =
b

∑
i=a

SiUi ∗Vi (2.9)
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The advantage of SVD is that the singular vectors are ordered from the most energetic

to the least energetic. The most energetic one is the average object because by definition it

has a nonzero temporal average and therefore a strong energy. It has been shown that the

time trace of |U1(~r)|matches exactly the laser fluctuation, while on the others Ui the mean

is zero and the fluctuations describe the fluctuations due to blood flow. The choice of the

limits a and b serves to eliminate a certain range of singular values that correspond to the

average fluctuating object with the parasitic sources, in order to keep only the fluctuating

object due to the blood flow. As result, we theoretically have the correct recostruction of

the vessel:

Figure 2.23: Fluctuation image after SVD, free of artefacts.
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2.4 Results

In this section, we show the results obtained in post-processing. These results will form

the data-set used in our deep-learning approach, that we will explain in the next chapter.

We imaged around 40 embryos to get a data-set of 140 conventional images with their

respective fluctuation PA images. In each example, the three plots at the top of the graph

represent the MIPs of the conventional PA image, affected by visibility problems. The

plots in the lower part represent the MIPs of the fluctuation PA image, the corrected one,

obtained thanks to SVD. If we focus on the visibility problems described in section 1.3,

Fig.2.25 and Fig.2.26 show that the ”Limited bandwidth” problem has been properly cor-

rected. The ”Limited view” problem has been corrected too, as in Fig.2.27 and Fig.2.28. In

addition, we also found some error in our processing. In fact, we had sometimes some ab-

sorbing structures that disappeared in fluctuation PA image (Fig.2.29). A reason could be

the presence of haemorrhages (where there is blood but no fluctuation of red blood cells)

or the presence of pieces of eggshell egg shell, provoked by the cutting of the shell itself

during the egg opening. We also noted on the final image the presence of bright points

that absorbed more than the other structures (Fig.2.30). Although we tried to well manage

the acquisition, in some acquisitions there were probably some pieces of eggshell, bubbles

on the probe surface (chapter 2.1.1), on the latex membrane or on the embryo chorioal-

lantoic membrane (chapter 2.1.2). For the last example, the 3D reconstruction is showed.

(Fig.2.27 and 2.27).
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Figure 2.24: Result 1. The fluctuation PA image points out a big vertical vessel and a really

complex vascular net that were absolutely not visible in the conventional PA image.

Figure 2.25: Result 2. The ”Limited bandwidth” problem has been properly corrected. Blue flashes

reveal a vessel whose just upper and lower edges are reconstructed, while green flashes show the

vessel successfully reconstructed in its inner part.
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Figure 2.26: Result 3. As in Fig.2.25, the internal part of the object is well reconstructed.

Figure 2.27: Result 4. The ”Limited view” problem has been solved too. Blues flashes point the

absent vertical structure which became visible and well defined after SVD.
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Figure 2.28: Result 5. As in Fig.2.27, green flashes show the correction of the visibility problem

that did not allowed to see the entire structure.

Figure 2.29: Result 6. Error in reconstruction: absorbing structure pointed by the blue flash that

disappeared in fluctuation PA image.
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Figure 2.30: Result 7. Presence of bright point that absorb more than the other important structures

and do not allow to have a good visibility of them.

42



Figure 2.31: Result 8. 3D Visualisation
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3. DEEP LEARNING APPROACH

3.1 Introduction

In the previous chapter we showed the first approach used to correct artifacts of visibility,

namely photoacoustic fluctuation imaging. Here, we present the second approach used,

which responds to the limit of the fluctuation imaging : the acquisition time. As shown,

in fact, it needs a large number of images to obtain a correct variance estimator which

forcibly limits the temporal resolution. On the contrary, the deep learning approach al-

lows to correct artefacts from a single acquisition. First of all, machine learning is the

use and development of computer systems to simulate human learning activities and to

continuously improve the performance by studying self-improvement methods to obtain

new knowledge. Deep learning is a type of machine learning based on artificial neural

networks in which multiple layers of processing are used to extract progressively higher

level features from data. The basic unit of a neural network is the neuron and the simplest

type of neural network, composed by a single layer is the perceptron. It consists of four

main parts including input values, weights, sum, and an activation function.The process

begins by taking all the input values and multiplying them by their weights. Then, all

of these multiplied values are added together to create the weighted sum. The weighted

sum is then applied to the activation function, producing the perceptron’s output. As a

simplified form of a neural network, perceptrons allows to model only linear phenomena,

playing an important role in binary classification.
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Figure 3.1: Perceptron architecture and process. X is the input vector, the W values represent the

weights. An integration and a linear activate function are applied on the product between X and W

to obtain the output value.

A succession of neurons bound together in series and parallel through their inputs and

their outputs create a neural network. For example, in a neural network of three layers we

see that the neurons of the second layer are connected to those of the first layer, that is,

the inputs of the neurons of the second layer correspond to the outputs of the neurons of

the first layer. Provided that we use non-linear activation functions (such as a sigmoid) we

are able to model all nonlinear phenomena. The goal of the training is to determine the

weights W to obtain the final output (Yf inal). In our case, we use the so-called ”supervised

learning”, where we have a reference data (Ytrue). The training is divided into two phases:

• Forward propagation: with each iteration of the training we provide the input data

that propagate in the network and we get Yf inal .

• Backward propagation: the error realized by the network (difference between the

output obtained Yf inal and the desired output Ytrue, called ”cost function”) is calcu-

lated. The purpose of this training phase is to calculate how this error varies accord-

ing to network parameters. A gradient chain is then calculated and from these and
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the parameters W are update to minimize the cost function, thanks to the following

gradient descent formula:

W =W −α
∂Error

∂W
(3.1)

The whole procedure is shown in Fig.3.2 and 3.3.

Figure 3.2: Forward propagation process.

Figure 3.3: Backward propagation process.
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This process is repeated as many times as necessary until the network converges to the

desired output. Once the network converges, the training phase is over. The next one is the

test phase during whose goal is to test the network with data that was not provided during

the training.

3.1.1 State of the art - 2D results

With regard to the use of deep learning in photoacoustics, the first publication dates back

to 2017 and most of the studies were done on a simulation dataset and then tested on exper-

imental data. In general, there was no ground truth present so it was impossible to know

whether the network reconstructed the image well or not. In 2020, Guillaume Godefroy

et all. [29] proposed a concrete experimental demonstration of the deep learning approach

to the 2D case, starting from an in vitro dataset for a perfectly known object and showing

the uncertainty of prediction with an approach called Monte Carlo dropout. Skeletons of

tree leaves whose capillaries were filled with black ink and limbo removed with a chem-

ical treatment, were imaged with a linear probe. As in our 3D study, the images were

reconstructed with the delay-and-sum beamforming algorithm and a photograph of the

leaves was used as ground truth. Thus, the training set consisted of the conventional PA

image (input) and the photograph (ground truth). Using a convolution network based on

the UNET architecture, it was found that the deep learning approach provided a strongly

improved image, with reconstructed vertical structures and correct vessel thicknesses, as

opposed to the conventional image. To give an idea of this improvement, a similarity index

was calculated on the whole of the test data: the deep learning approach increased by a fac-

tor of 2 such similarity, even if errors remained, such as invented or poorly reconstructed

structures.
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3.2 Methodology

3.2.1 Network architecture

In image processing, the type of network normally used is the Convolutional neural net-

work (CNN). The inputs are the pixels of the image and instead of vectoring the image

and then multiplying each pixel by the parameter W, the idea is to use a convolution, pre-

serving the spatial dependencies between the pixels that we would have lost by vectoring.

Each neuron of the CNN corresponds to a convolution operation. Feature detectors or

filters help to identify different features present in an image like edges, vertical lines, hor-

izontal lines, bends, etc.such as the edges of the image, a variation in coloring etc. These

feature maps will be the input data of the neuron of the next layer. Pooling is then applied

over the feature maps: the features are divided into sub-zones of 2x2 pixels and in general

the pixel with the maximum value is kept to decrease the number of data and accelerate

the calculations and extract the most important information.

Figure 3.4: Max pooling operation applied on feature maps to decrease the number of data and

accelerate the computation time. [30]

Among the types of CNN networks, the architecture that we used was a slightly mod-

ified Unet, a well known network architecture first developed for segmentation tasks. It is
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a convolutional neural network composed of two paths:

• The contracting path, called the the encoder, a traditional stack of convolutional and

pooling layers where the network extracts more and more complex features.

• The expanding path, called the the decoder, a symmetric expanding path where

pooling operations are replaced by upsampling operators to recover at the output the

resolution of the input.

Dropout layers are added to this architecture. Dropout is a regularization technique to limit

overfitting, implemented by randomly disabling some neurons of the network at each train-

ing step. This prevents units from co-adapting too much and forces the network to learn

more robust features. [32] Similarly as dropout, batch normalization [31] normalizes the

output of the previous activation layer by subtracting the batch mean and dividing by the

batch standard deviation. It helps to speed up the learning and also reduces overfitting by

adding noise. The last layer contained only one filter instead of two in the original version,

as the expected output is a single image. The last activation function was also suppressed

as the prediction is no longer a binary image. The cost function was the classical mean

squared error, and an Adam optimizer was used with a learning rate of and momentum of

8 [33] with batch sizes of 8 images. An early stopping approach based on the validation

loss was chosen to limit under- and over-fitting [34].

3.2.2 Network training

The training phase of our neural network was carried out thanks to the dataset of 140

acquisitions that includes, for each of them:

• conventional single shot PA image obtained by delay-and-sum beamforming algo-

rithm from time signals (RF data) of chicken embryos;

• the post-SVD fluctuation image, used as ground-truth.
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The total dataset was subsequently reduced to 105 examples (90 for the training-set, 10

for the validation-set and 5 for the test-set), eliminating those where the images were too

noisy, corrupted by artifacts such as bubbles and other bright spots or where hemorrhages

were evident that altered the correctness of the fluctuation image, as in the case of the

examples in Fig. 2.29 and 2.30. Before the training, the average of the fluctuation image

was subtracted to eliminate the background noise and it was chosen to use the real part of

the conventional single shot image, which gave better results than the absolute value.

While at first the network was only trained on experimental data, at a later time it has

been trained using a network already trained on simulated data (about 400 examples in

input) that could help to decrease the size of the training set and the time of the same

training of the network.

Figure 3.5: Example of deep learning application on simulated data: the first column represent the

MIPs of the conventional image are showed, the second column the MIPs of the simulated ground

truth and the third one shows the results of the accurate deep learning prediction. [G.Godefroy]
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3.3 Network performances - Results

First of all, results obtained with the pretraining of the neural network with the simulation

data made the process faster and the metric score value (similarity between output and

desired output, normalized value) greater, as shown in the following table:

Training Number of epochs Metric Score

Without pre-training 300 0.69

With pre-training 215 0.81

After training the network under these conditions, to evaluate the accuracy of a trained

neural network, a normalized cross-correlation (NCC) was computed between each out-

put and the ground truth. It uses local sum to normalize the cross-correlation for feature

matching. At first, we focused on the training part, to make sure that the network could

really learn the information passed in input and could well predict the output from the

conventional image that enormously differed from the fluctuation image given in input as

ground truth in some cases.

Testing on the training-set

Below, there are four examples of output predicted by testing the network on some

already trained inputs. We can see in all of them that we found a very high index of

correlation (greater than 80%); the model learned to correct the artifacts and to extrapolate

some structures not visible in conventional PA images. In addition, the predicted images

present good contrast and total lack of noise.
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Figure 3.6: Result 1. MIPs of the input, ground truth et output on the three axes. Correlation

between ground truth and output: 86%.

Figure 3.7: Result 2. Correlation between ground truth and output: 89%.
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Figure 3.8: Result 3. Correlation between ground truth and output: 87%.

Figure 3.9: Result 4. Correlation between ground truth and output: 84 %.
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Testing on the test-set

Subsequently, network performances were evaluated by testing data that were not part

of the training set, therefore totally new. The test-set was composed by 5 examples. In

this case, it is evident that the network is able to completely eliminate the noise of the

conventional image, to greatly increase the contrast and to reconstruct the volume of the

vessels despite the obvious errors, as explained in detail in the following results.

Figure 3.10: Result 1. Prediction of the network tested on an example not known (out of the training

set). We note a contrast enhancement and a good reconstruction of the internal part of the vessel

(blues fleshes in fluctuation image and green fleshes in predicted image). Therefore, compared to

the ground truth, there are some not existent structures that appear on the output (surrounded by

the yellow circle).

54



Figure 3.11: Result 2. As in the previous example, vessels are well reconstructed (blue and green

fleshes) but the predicted image presents a poorly defined microvasculature that was well resolved

in the fluctuation image (yellow circle).
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4. CONCLUSIONS AND FUTURE EXPERIMENTS

The possibility of removing visibility artefacts with a neural network has been demon-

strated in experiments on a class of complex 3D objects. Vertical parts of objects and the

inside of large structures, missing on conventional reconstruction approaches, are recov-

ered. However, some errors are still present in reconstructed images, such as invented or

poorly reconstructed structures as well as missing structures. To avoid these problems, we

have multiple ideas to test in the future. First of all, it might be useful to improve the qual-

ity of fluctuation image to get an optimized ground truth. In fact, the fluctuation image of

the chicken embryo, being experimental compared to the 2D case where a photograph was

used, presents some artefacts and a background noise that make the learning more diffi-

cult. It will be even harder having a good quality of the ground truth in the case of more

complex in-vivo structures. For example, in the last part of the project, we experimented

our acquisition system and processing on a mouse brain. The mouse was anesthetized and

deposited on a hot plate, its snout inserted into a tube connected to the gas, and a rectal

thermometer was used to monitor its temperature. Ultrasound gel was deposited on the

area to be imaged, then contact with the probe was performed. In that case, because of

tissue attenuation and movement artefacts, structures in fluctuation image had a lower in-

tensity and the noise did not permit to have a clear reconstruction to use as input in our

network. An idea could be, for example, to make an estimation of the noise value to elim-

inate from the image. By contrast, in our tests, only its average was removed. Another

improvement could be to increase the number of simulated and experimental data, as well

as to implement network architectures other than CNN.

However, with all necessary improvements, this project lays the bases for the joint use

of PAFI (Photoacoustic fluctuation imaging) and deep learning algorithms for in-vivo 3D

quantitative imaging of vasculature and blood oxygenation.
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