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Summary

Gliomas are primary brain tumors with a high rate of malignancy: they account for 28%
of all brain tumors and 80% of malignant brain tumors. Maximal tumor resection during
surgery is one of the main goals in the treatment of these cancers as it improves the quality of
life of the patients and their survival rate. In order to achieve maximal resection, glioma-
infiltrated tumor margins must be correctly detected by a system that works in real time. To
fulfill this purpose, traditional Magnetic Resonance Imaging (MRI) presents several limits, like
elevated costs and a bulky device, and the development of in situ, fast segmentation algorithm
is necessary.

The use of Optical Coherence Tomography (OCT) is spreading to a larger range of
applications other than ophthalmology and dermatology, due to its non-invasiveness, high
resolution, and imaging speed. These characteristics have led this technique to be often
associated with segmentation tools in the diagnosis and investigation of several pathologies,
even brain cancer.

In this Thesis work, an Artificial Neural Network (ANN) for the detection of human
Glioma infiltration in OCT images is presented. The algorithm is trained on acquisitions
performed on human tissue-simulating phantoms made of silicone, that can mimic both healthy
brain tissue and glioma-infiltrated tissue, and then tested on real tissue acquisitions obtained
from brain biopsies. Tissue phantoms are widely used in both clinic and research as they
provide a powerful tool for device testing and performances evaluation, without the need of
real tissue samples, and they can be easily reproduced. The training and validation phases are
carried out on a large dataset of approximately 2 million samples (A-lines) for an extensive
amount of time (~500 epochs). Unlabeled OCT images from 4 biopsies of High-grade Gliomas
have been used as test set to establish the detection performances: overall results have
demonstrated a sensitivity of ~94% and a specificity of ~85%, but higher values can be
achieved considering that most of errors come from small defects within the tissue sample that
are not present in an intraoperative situation.

This algorithm can be an efficient and useful instrument as OCT-guided surgical tool,
providing to the surgeon a 3D representation and classification of the tissue. Further
developments will include the reduction of software’s computational time, possibly with the
use of a dedicated GPU, and a tuning of the algorithm for different wavelengths of the OCT,
to create a more general system that can be interfaced to machines with different characteristics.
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Chapter 1

The Glioma

Gliomas are defined as malignant neoplasms, which are primary brain tumors
deriving from glial cells. They constitute approximately the 80% of malignant adult
brain tumors but in rare cases they can also affect the spinal cord. Despite their origin
is not confirmed with certainty, it is thought to derive from genetic mutations within
neuroglial stem or progenitor cells and so, with the hypothesis that specific patterns of
genetic alterations shape the clinical features of brain tumors, the use of these patterns
for classification and diagnostic purposes rapidly increased in the last years [1]. Gliomas
also exhibit characteristics such as uncontrolled cellular proliferation, diffuse
infiltration, resistance to apoptosis, and genomic instability. Furthermore, intratumoral
heterogeneity and their resistance to chemo- and radiotherapy leads to poor prognosis
of glioma patients.

1.1 Classification

For the past century, the classification of brain tumors has been based mainly on
the concept that tumors can be classified according to their microscopic similarities with
different cells of origin and presumed levels of differentiation. The characterization of
such histological similarities has been primarily dependent on light microscopic
features in hematoxylin and eosin-stained sections, immunohistochemical expression
of lineage-associated proteins and ultrastructural characterization [1]. This approach
was therefore based only on microscopy exams and did not take into account the genetic
basis of tumorigenesis.

In 2016 the World Health Organization has proposed a new classification of
tumors affecting the Central Nervous System (CNS) by introducing molecular
parameters related to genetic characteristics. The use of both histology and molecular
features has improved the classification, helping to recognize new neoplasm entities,
relocate some groups and delete others that do not fit the requirements. Before going in

13



details about gliomas typologies, it is important to have a general look to the brain tumor
category and collocate gliomas in this wide range of pathologies.

The above-mentioned categorization is well represented in Figure 1.1, where a
clear distinction between Glioma and non-Glioma is made.

Brain cancer
|
T 1
Glioma Non-glioma
Astrocytic
Stage |
Pilocytic (0.34) — — Craniopharyngioma (0.18)
Ependymoma (0.4) —|
Stage i

Oligodendroglioma _ |
Well-diff. low grade (0.53)—] {0.25) | | s
Medulloblastoma 9 é

{0.71)

Stage Il
Anaplastic (0.38)  —| Mixed gliomas  —
Anaplastic il = Schwannoma
Stage IV ganglioglioma
Glioblastoma Choroid plexus |
multiforme (3.20) ~ papilloma (0.05) - Lvohas g Atl

Pineal parenchymal tumor of intermediate
differentiation

Figure 1.1: Classification of brain tumors as reported from the Central Brain Tumor
Registry of the United States (Ostrom et al., 2016). Numbers in parentheses indicates
incidence or cases per 100,000 individuals and are age-adjusted to the 2000 United
States population [22].

Of course, the branch of interest from Figure 1.1 is the left one. The most common type
of glioma is the astrocytoma, which cells show morphological similarities with
astrocytes, and this classification principle is adopted for all other types (e.g.,
oligodendrogliomas with Oligodendrocyte and ependymoma with Ependymal cells).
Astrocytoma presents itself four sub-categories basing on WHO malignancy grade,
ranging from low malignancy for grade I to high malignant tumor for grade IV. The
absence or presence of anaplastic features (such as high mitotic activity, microvascular
proliferation, necrosis, etc.) is the criterion adopted to assign the malignancy grade [2].
This evaluation involves not only astrocytomas but all kinds of tumor.

It is important to perform this grading since it can also be used as a marker for
one of the main properties of these tumors: infiltration. This phenomenon describes
the aggressive behavior of glioma cells which exhibit diffuse invasion of the
surrounding tissue, complicating the surgical resection and the targeting of the
infiltrated area. Whereas other specimens of tumor use the lymphatic and circulatory
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system to metastasize into organs, it was shown that the recurrence pattern of gliomas
is mainly local and metastases are barely observed.

Further classification can occur considering other aspects, such as:

e Location of the cancer: within the brain it can arise in different positions, like in
the pons, in the frontal area or the optic nerve, etc.

o Differentiation patterns (like pilocytic or myxopapillary).

e High-grade and Low-grade: classification that consider the severity of the
lesion and its extension, other than the infiltration grade. Only 10% are low-
grade gliomas and they are mainly labeled as grade I and II; the remaining are
considered high-grade gliomas and belong to WHO grade IIl (anaplastic
astrocytoma, anaplastic oligodendroglioma, and anaplastic ependymoma) and
grade IV (glioblastoma multiforme). The last one cited, glioblastoma or simply
GBM, is the most common and malignant primary brain tumor. 90% of these
tumors have demonstrated to relapse in close proximity (1-2 cm) to the primary
tumor while only a small portion have been observed to relapse at more distant
sites [3].

e Age of the patient: generally, gliomas are diagnosed after the 40 years of age.
GBM have the tendency to occur even later, but low-grade astrocytomas (like
pilocytic astrocytoma) and diffuse midline gliomas have higher incidence on
children.

These aspects, however, are not considered by the WHO classification and as already
mentioned, only histological and molecular findings are exploited. Table 1.1
summarizes the classification strategies presented in this paragraph.

1.1.1 Genetic features

Within the wide range of genetic parameters that can be useful to classify brain
tumors, the two most relevant have been evaluated by WHO: the mutation of the IDH
enzyme and 1p/19q co-deletion. The basic classification algorithm is reported in Figure
1.2.

Isocitrate dehydrogenase (IDH, also known as NAD") is an oxidoreductase
class enzyme that is involved in Krebs’ cycle. Its mutation is a key concept to
understand molecular pathogenesis of gliomas and is much more common in WHO
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grade IT and III gliomas (60—-80%) than in glioblastomas (5-10%), but in young patients
there are more episodes of GBM that exhibit a mutated IDH. Distinction is made
between two cases denoted ad IDH mutant (where the molecule has undergone
mutation) and IDH wild-type (unmutated). Although IDH-mutant and wild-type
gliomas cannot be discriminated under the microscope, they represent very different
tumor entities in terms of molecular pathogenesis and potential therapeutic targets and
are used for diagnostic purposes. The most common mutation is IDH1, but IDH2
mutation is also considered.

1p/19q co-deletion (deletion of chromosomal arms 1p and 19q) has considerable
importance not only because of its association with oligodendroglioma histology and
diagnostic value but also because of its clinical use as a predictive biomarker in case of
genotoxic therapies. Co-deletion can be demonstrated with fluorescent in situ
hybridization (FISH).

Histology Astrocytoma Oligoastrocytoma Oligodendroglioma Glioblastoma

IDH status

1DH mutant 1DH wild-type 10H mutant 1DH wild-type

1p/19q and

ATRX loss®
other genetic s

TP53 mutation® [ Glioblastoma, IOH wild-type I

parameters l
| Diffuse astrocytoma, (DH mutant | l ““““““““““““

I Oligodendroglioma, /{DH mutant and 1p/19q codeleted Genetic testing not done
or inconclusive

1p/19q codelation

|
1
I
1
I
1
I
I | Glioblastoma, IDH mutant |
[}
1
]
]
i
I
I
i

v

After exclusion of other entities:
Diffuse astrocytoma, IDH wild-type
Oligodendroglioma, NOS

-

Diffuse astrocytoma, NOS
Oligedendroglioma, NOS
Oligoastrocytoma, NOS

* =characteristic but not :
Glioblastoma, NOS

required for diagnosis

Figure 1.2: Simplified classification algorithm of gliomas. The diagnostic “flow”
does not necessarily always proceed from histology first to molecular genetic
features next, since molecular signatures can sometimes outweigh histological
characteristics in achieving the diagnosis [1].

Other glioma-related molecular factors that can be studied are TERT promoter
mutation, TP53 mutation and the loss of nuclear expression of ATRX. The content of
this paragraph are summarized in Table 1.1.
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Tumour type WHQO Median Survival Survival Common molecular lesions® Standard of care®

grade ageat rate at rate at
diagnosis® 2 years* 10 years*®
(years) (%; 95% Cl)  (%; 95% CI)
Pilocytic | 13 06.6 0919 MAPK activation, most commonly due  Observation or
astrocytoma (95.9-97.2) (90.5-93.0) to BRAF fusion or mutation carboplatin-based or
vincristin-based chematherapy
ifresection is not feasible
Diffuse ] 48 bl.1 370 # |DH1 or IDH2 mutation Observation or radiotherapy or
astrocytoma (59.9-62.4) (35.4-38.6) = TP53 mutation alkylating agent chemotherapy
= ATRX mutation
Oligodendroglioma 1l 43 89.6 62.8 * IDH1 or IDH2 mutation Observation or radiotherapy or
(88.5-90.7) (60.5-65.1) # TERT promoter mutation alkylating agent chemotherapy
* CIC mutation or both
* 1p/19q co-deletion
Anaplastic 1] 53 43.3 19.0 * IDH1 or IDH2 mutation Radiotherapy or alkylating
astrocytoma (41.6-45.0) (17.3-20.7) * TF53 mutation agent chemaotherapy or both
* ATRX mutation
Anaplastic 1] 49 68.6 39.3 * IDH1 or IDH2 mutation Radiotherapy or alkylating
oligodendroglioma (65.9-71.2) (35.7-42.8) * TERT promoter mutation agent chemotherapy ar both
* CIC mutation
* 1p/19q co-deletion
Glighlastoma I 64 14.8 16(2.3-29) = EGFR amplification Radiotherapy plus
(14.3-15.2) * +7q/-10q genotype concomitant and maintenance
= PTEN mutation termozolomide
* EGFRvll expression
Ependymoma 1=l 44 89.7 79.2 * RELA-C11orf95 or YAP1 fusions Radiotherapy
(88.4-90.9) [76.8-81.3) {supratentaorial)

= g-CIMP (posterior fossa)
= NF2 mutation (spinal intramedullary)

Table 1.1: Clinical and biological features of gliomas [2].

1.2 Diagnosis

The clinical approach to a suspicious brain tumor is commonly based on the
occurrence of neurological deficits over a period of weeks to months or the new
manifestation of seizures in a previously healthy individual. These symptoms demand
a neurological work-up that includes a neuroimaging assessment. The imaging method
of choice to detect a brain tumor is MRI, with and without contrast enhancement, while
CT is less frequently used. The diagnostic value of other imaging techniques, such as
magnetic resonance spectroscopy or PET, remains to be established. PET in particular,
using amino acid tracers, seems to be of value in tumor grading and can aid surgical
planning [2].

This first disease screening step is always followed by a histological exam made
on tumor resections, preferred to biopsies because it is not limited by small tissue
portions and it has a lower risk of grade underestimation. However, as explained in the
previous section, these exams are carried out together with molecular markers
determination. Molecular features can be investigated on biopsy sample, with the
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additional possibility to study silent markers. Biopsies are preferred in patients with
extensive or multifocal disease.

1.3 Therapies

The standard approach to treat this class of cancer is a combination of resection
surgery with chemo- and radiotherapy. The serious prognosis of glioma demand that
patients with are managed in specialized centers according to institutional standard
operating procedures and national and international guidelines. Neurosurgeons are in
charge of selecting the appropriate procedure and treatment strategy for every single
patient, since there is not a generic approach for a determined typology of glioma. Last
column of Table 1.1 denotes some of the most diffused care strategies for the listed
tumor types.

Chemotherapy is less used than Radiotherapy. This because, during the
perioperative period, the patient is undergoing pharmacotherapy and the effect of drug-
drug interactions are still unknown for a lot of chemicals. Some drugs can manifest
arising of adverse effects like system effects and cognitive impairment. Usually,
pharmacotherapy involves the administration of steroids to control tumor associated
brain oedema and anticonvulsant drugs if the subject experience seizures during the
course of the disease.

1.3.1 Radiotherapy and radiation resistance

Ionizing radiation is one of the gold standards in cancer treatment and it offers a
clear survival benefit for most cancer types. Most-established treatment modality for
patients with WHO grade II and III gliomas is irradiation of the involved part of the
brain, which is commonly applied at 50.4Gy in 1.8Gy fractions for WHO grade 11
gliomas or 54-60Gy in 1.8-2.0Gy fractions for anaplastic gliomas (WHO grade III).
However, it has been demonstrated that the currently applied radiation treatment, using
low linear energy transfer (LET) photon irradiation, might favor invasion and migration
of gliomas, especially considering glioblastoma multiforme. At today findings are still
diverging, since other studies have proven the opposite, but this could be due to
differences in the experimental setup such as timing and radiation dose.
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Radiation resistance could have two possible reasons: first, the tumor cells only
receive sublethal doses; second, the cells utilize their repair mechanisms very
efficiently. Glioma cells are supposed to be intrinsically radioresistant and their
characteristics of rapid proliferation ad infiltration can enhance this behavior. Figure
1.3 shows the survival fraction of three types of glioma cell lines at different radiation
doses, averaged over three considered patients. The response is different for each cell
line, in accord with the hypothesis that radiosensitivity is an intrinsic property of the
cells.
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Figure 1.3: Survival fraction of three patient-derived glioma cell lines. T76:
glioblastoma stem cell enriched culture; H9: Embryonic stem cells line; HI19:
Hippocampal fibroblast. Curves are fitted with a linear-quadratic model after low
linear energy transfer (LET) irradiation [3].

Two indices that connect radiation dose to the survival rate are considered: D50 and
D10 that represent, respectively, the dose at which the 50% and the 10% of cells survive.
All three measured cell lines show different D50 and D10 values after low LET
irradiation, confirming what previously said (Table 1.2).

Cell line D50 (Gy) D10 (Gy)
T76 3.2 7.1
H9 2.9 5.8
H19 3.9 8.0

Table 1.2: D50 and D10 values for the three considered cell lines.
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1.3.2 Resection surgery approaches

The goal in brain cancer surgery is to achieve maximal tumor resection. Several
imaging techniques are currently being evaluated or already adopted as image-guided
surgical tools to assist with brain cancer resection. Magnetic resonance imaging (MRI)
provides excellent visualization of soft tissue, but due to its low space resolution it is
impossible to detect small defects at tumor margin and intraoperative MRI is
cumbersome and expensive. Intraoperative computed tomography (iCT) allows the
evaluation for residual cancer but again is limited by a low sensitivity at the tumor
periphery. Moreover, these methods are time-consuming, expensive and do not provide
continuous real-time intraoperative guidance. Other imaging modalities have been
developed lately such as ultrasonography (US), which enables real-time imaging, but
has limited contrast and spatial resolution for the detection of brain cancer and can often
interrupt the surgery procedure.

A new approach that has become quite popular in recent years is the use of
intraoperative fluorescence as wide-field imaging technologies and biomarkers. Within
the spectrum of molecular marker adopted nowadays, exogenous fluorescent
biomarkers such as 5-aminolevulinic acid (5-ALA) is one of the most successful,
especially for its sensitivity towards high-grade gliomas like GBM; however, its
performances with low-grade tumors are still limited and controversial [4].

To allow subcellular resolution and label-free imaging capabilities, Raman
spectroscopy have been broadly applied for brain tissue biochemical differentiation and
glioma infiltration detection, despite its capability of discriminate cancer-infiltrated
tissue intraoperatively has not been fully demonstrated yet. Unfortunately, several
limitations are associated to this technique, including the intrinsic weakness of the
Raman signal, limited imaging depth and field of view (FOV) and slow imaging speed.
More recently, coherent Raman Scattering (CRS) and Stimulated Raman Scattering
microscopy (SRS) have been explored for brain tumor margin differentiation; however,
a definite intraoperative Computer-Aided Diagnosis system for human brain tissue
differentiation has not been reported. Therefore, computer-aided diagnosis tools
capable of providing continuous, intraoperative and accurate labeling of brain cancer
infiltration resection surgery are needed.

1.4 OCT as intraoperative detection tool
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To overcome the issues presented at the end of Section 1.3.2, OCT has been
evaluated as an image-guided tool for brain tumor resection surgery due to its high
resolution and imaging depth (1.5 — 3 mm) similar to the resection depth of cancer
infiltrated brain regions [5]. Optical coherence tomography (OCT) is a label-free, non-
invasive medical imaging technique capable of continuous, high-resolution, 2D and 3D
imaging of biological tissues (see Chapter 2). During an operation, acquisition and data
processing speed are of major importance as these kinds of devices work in real time:
OCT satisfies the first requirement (fast acquisition, a few seconds maximum) but to
accomplish the second goal it must be integrated with a proper classification algorithm
able to process and give the results in a brief time interval.

Previous computational methods for OCT-based detection of glioma-infiltrated
brain tissue rely on estimating the tissue optical attenuation coefficient from the OCT
signal, which performs averaging on multiple A-lines to reduce noise and thus
sacrificing spatial resolution. The approach proposed in this thesis work is based on an
Artificial Neural Network (ANN) trained on real tissue-mimicking phantoms, capable
of making a fast classification of the considered tissue. This Al-aided procedure can
distinguish, with high resolution, between healthy tissue and glioma infiltration, giving
to the surgeon a helpful tool to maximize tumor resection and hence improving overall
survival and quality of life of the patient.
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Chapter 2

Optical Coherence Tomography

In the medical environment, Optical Coherence Tomography (OCT) belongs to
the non-invasive diagnostic class of techniques. It is mainly employed in fields such as
ophthalmology and dermatology but in recent times its use expanded to many more. As
other optical techniques, OCT arises from the concepts of light diffraction and
scattering, events that occur when a wave encounters an obstacle on its path determining
a change of its properties (direction, amplitude, wavelength and/or phase).

More in details OCT is based on the principle of interference, which describes
the phenomenon of two or more waves superposing with each other and generating a
new one. The result of this summation is between two limit cases:

o Constructive interference: generated by waves in phase.
e Destructive interference: generated by waves in counterphase.

constructive interference

\‘\‘\.-'-" x"{ \1\‘_.._.» f \ Y, \
! f il ‘.
! k\ /II A4 ~\_ -"j ._/ \. / hY / J -\ /

....................

Sum of bath waves

Figure 2.1: Representation of interference between two waves. From the top:
constructive, partially destructive and destructive interference.
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The working principle of Optical Coherence Tomography exploit interferometry
to obtain the reflectivity of the tissue as a function of depth. Since this information is
mono-dimensional, the surface under exam is scanned with a raster-scanning technique
in order to have 3-dimensional data as output (tomogram). The core of the system is a
Michelson interferometer, which performs the measure of light interference [6].

The second key concept is coherence. It is related to interference and can be
assumed as a measure of similarity between different waves. In fact, two waves are
perfectly coherent if their frequency and waveform are identical and their phase
difference is constant. This is an ideal assumption, because in a real case two waves
remain coherent with each other only for a determined interval of both time and space,
respectively defined as ‘coherence time’ and ‘coherence length’.

2.1 OCT System

As cited above, the OCT system is based on the Michelson interferometer but
the acquisition strongly depends from the light source of the device, which must be a
low-coherence source. In the following paragraphs the different parts of a standard OCT
set-up will be described.

2.1.1 Michelson interferometer

This basic scheme of this device is reported in Figure 1.1 and, as it is possible to
notice, it consists of the following components:

e Light source
(Discussed in paragraph 1.1.2)

e Beam splitter
Optical device that splits the light coming from the source into two separate
beams, one transmitted and the other reflected. For this application they are
called reference beam (light beam that hits the reference mirror) and sample
beam (light beam that hits the sample). The backscattered lights of the two beams
recombine with each other in the beam splitter site and this new beam (detector
beam) is then directed to the detector.
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Reference mirror

Mirror which reflects the light of the reference beam. It is placed at an opportune
distance from the source, and it can be fixed or movable depending on the
acquisition technique. All the parts of the system that interact with the reference
beam go under the name of ‘reference arm’.

Sample
Tissue or object that must be imaged. It reflects the incident light of the sample
beam depending on its properties, mainly the refractive index.

Detector

Device that detects the interference information carried by the detector beam.
The most employed are photodiodes, which signal is measured as a current
because of its better performance in terms of linearity, offset, and bandwidth
compared to voltage measurement. The produced photocurrent is proportional to
the incident light power and is then converted to voltage.

OCT
Depth | =1 [ s
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Reference
Beam
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Figure 2.2: OCT scheme based on a Michelson interferometer [6]. V(t) is the
analytic signal, h(x,t) is the sample response, Ig(X, z) is the signal intensity at the
interferometer exit.
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What is measured is the echo time delay of both sample and reference beam, which are
then compared to obtain an interference estimation. The sample is scanned in depth (z
axis of Figure 1.2) and laterally with different strategies depending on the acquisition
technique. As it will be explained in Paragraph 2.2, it is preferable to adopt techniques
that do not rely on mechanical movements of parts of the system since it can be a huge
source of noise added to the output signal.

2.1.2 Light source

The correct choice of the light source is fundamental to produce a good quality
tomogram of the tissue under investigation. Its properties basically rule all the major
aspects regarding an OCT acquisition, from the resolution to the penetration depth
inside the sample. To be able to obtain a high resolution depth profile, a low-coherence
light source must be used [7]; this can be easily explained by studying the formula of
the coherence length parameter:

- 2In2 A2 (2.1)
T A

In the hypothesis of a Gaussian shape spectrum, Ao is the central wavelength and AL is
the spectral bandwidth. A perfectly coherent light has AA—0 (ideally) which consist in
a large value of /.. Since the coherence length determines the lowest distance at which
we can resolve two different points, a wide bandwidth is necessary to obtain a small
coherence length and therefore a higher resolution. Equally important is the central
wavelength because, for the same bandwidth, the resolution exhibits quadratically
decrease with Ao. The central wavelength is involved not only in depth resolution, but
also in lateral resolution and penetration depth, as both parameters increase linearly with
Ao (see section 2.3). For OCT, commonly used wavelength are located between 600nm
and 1600nm.

Particular focus must be putted even to the source power, which is involved in
the determination of Sensitivity and Signal-to-Noise Ratio (SNR). High power lead to
high SNR and Sensitivity but it can cause damages to the tissue, that’s why a
compromise must be found between these parameters and tissue tolerance. Generally
the most diffused light sources for OCT produce a power of a few tens of mW, but a
large spectrum of solutions are present in literature in the 1-400mW range of power.
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Last fundamental property for a light source regards the Point Spread Function
(PSF) which describes the response of an imaging system to a point source or point
object. The source must have a PSF with a narrow half-width and no satellites, which
means that the source power spectrum must have a smooth shape.

In Table 2.1 are reported some low-coherence light sources employed in OCT.
The most diffused are Superluminescent Diodes (SLD), since they span the
wavelength range from about 675 to 1600 nm, have output powers up to SOmW and
spectral widths up to 70 nm [1], but a lot of alternatives are present from Light Emitting
Diodes (LED) to akinetic swept sources.

Al le Coherent
Light source A (nm) {pm) power
SLD 675 nm 10 20 40 mW
20 nm 20 13 S mW
B2 nm A0 G GmW
030 nm 70 i I mW
13inm 35 21 [ mW
1550 nm 0 15 Amw
Kem lens
Ti:sapphire laser 081 pm 260 1.5 (M mW
Cr: torsterite 1280mm 120 i [ mW
LED 1240 nm 4 17 L1 mW
1 30H nim
ASE fibre sources 1300 nm 40 L] Al W
1550nm B0 13 40 mW
Supertfluorascence
Yh-doped fibre [Gdnm 30 17 40 mW
Er-doped fibre 1550nm  B0-100 16 | (W m W
Tm-doped [B(Mimm B0 I T mw
Photonic crystal fibee 13 pgm 370 25 f W
T25nm 370 0.75
Thermal tungsten H80nm 320 1.1 (L2 W

halogen

Table 2.1: Examples of low-coherence light sources used in OCT [6].
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2.2 OCT acquisition techniques

OCT offers a series of possibilities in terms of acquisition, which belong to two
major classes: Time-Domain (TD-OCT) and Fourier Domain (FD-OCT). TD-OCT is
the very first technique adopted in OCT while FD-OCT has been developed later to
make up for the shortcomings and limits of standard Time-Domain techniques [6].
Before going in details about these two approaches, some mathematical considerations
about signal processing and conditioning must be made.

First of all, let’s consider the signal at the interferometer exit Ig:

I (6 At) = I5(t) + Ix(t) + Gsr(AY) (2.2)

As noticeable, Ik is the sum of three different contributes. I is the intensity of the sample
beam, I is the intensity of the reference beam while Ggy is the interference term
(interferogram), the one of interest. It is equal to twice the real part of the cross-
correlation of the analytic signals of sample and reference beam, also called coherence
function. Since the cross-correlation of analytic functions is also an analytic function,
it can be expressed as follows:

Isg(At) = %G(At) + %HT{G(At)} (2.3)

where At is the echo time delay between the two beams and HT{ } means Hilbert
transform. What are we interested about is the cross-spectral density function of the
beams, which can be obtained by Fourier transforming Ip:

Wsg(v) = FT{Isr(At)} (2.4)

where v represents the optical frequency. By repeating this last operation for all the
terms of Eq. 2.2 it is possible to formulate the spectral interference law, which is non
other that the spectral domain version of Eq. 2.1:
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S, At) = Sg(v) + Sgp(v) + 2Re{Wsr(v)}cos(2mvAt) (2.5)

Following this reasoning it is clear that the key term of an OCT signal is the
cross-correlation term Igp. To extract it from the detector’s output ig(t), which is a
photocurrent as already mentioned, the wavefronts of the interfering beams at the
interferometer exit are considered to be coplanar with the photodetector’s surface; this
allows to state that the interferometer’s output signal Gy 1s proportional to iG(t):

io(t) = 2] G0 2.6)
i
Gsp(T,t) = Ggp(t) « ig(t), (2.7)

qe 1s the electronic charge, n the quantum efficiency of the detector, h the Planck’s
constant, U the mean optical frequency, and Ar(r) the sensitive detector area. Amplitude
and phase of the real envelope of the coherence function can then be calculated,
respectively, as:

1
Ar() = S+/(Gs())? + (HT{Gsr(O)D? (28)
O(t) = arctan [% (29)
and its final expression is:
I—:S'R (t) = A[‘(t) eiq’F(t) (210)
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2.2.1 Time-domain OCT

This technique allows to acquire a tomogram from a sample by performing two
mechanical movements: one to obtain the depth profile (z axis of Figure 2.2) and the
second to laterally scan the sample. As mentioned, interference is maximum when the
pathway of sample and reference backscattered light coincide. To guarantee this, the
reference mirror moves along the beam direction in order to change the length of the
optical pathway of the reference beam and get the depth information. Lateral scan can
be obtained in different ways; the most common method is to employ a rotating mirror
that deflects the light hitting the sample.

TD-OCT 1is the simplest acquisition technique but has different limits. First,
mechanical movements of the system’s parts can lead to additive noise that corrupts the
output signal, mainly due to the presence of actuators and other electronic components.
This is why 1s recommended to perform lateral scanning without moving the sample,
because the electric noise carried by the components would be higher than just rotate a
small mirror. Second, since Time-domain OCT operates point-like this technique results
time consuming because for every point a depth scan is necessary.

2.2.1 Fourier-domain OCT

The main advantage of FD-OCT is that only lateral scan is necessary. Depth-
scan information is provided by an inverse Fourier Transform of the spectrum of the
backscattered light, so this approach results faster and noise sources are limited. These
techniques are based on the treatment of the backscattered field amplitude A4(K) and
differ from each other by the method used to obtain it. As written, A is calculated in
the K-space, where K is equal to twice the wavenumber k:

K = 2k (2.11)

In this section, two techniques (the most relevant) are presented: Spectral-
domain OCT (SD-OCT) and Swept-source OCT (SS-OCT).
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2.2.1.1 Spectral-domain OCT

For this technique the signal A;(K) is obtained by using a spectrometer as a
detector, consisting of a grating that separates the wavelengths of the hitting light beam
and photodetector linear array: signal interference is measured for all the wavelengths
present in the collected light (Figure 2.3). Since the interferogram and the cross-spectral
intensity Wsz(v) (Eq. 2.4) are FTs of each other , the inverse FT of the spectral
interferogram intensity at the spectrometer exit gives the same signal as obtained by
low coherence interferometry. SD-OCT is therefore based on the following equation:

Fy(2) = FT{A;(K)} (2.12)

where F;(z) is the scattering potential as a function of depth. The spectral intensity at
the interferometer exit is:

Isr(K) = Is(K) + Ig(K) + 24/Is(K) Ig(K) Re{u(K)e*st)=?r(K} (2.13)

Is(K) and Iz (K) are, respectively, the power spectrum of sample and reference beam
while @4(K) and @i (K) are the spectral phase term of the respective beams. p(K) is
the spectral degree of coherence (=1, if monochromatic light sources are used). The
power spectrum of the sample beam is equal to the squared module of the backscattered
field amplitude (Is(K) =|As(K)}?), which complex amplitude is defined as:

Ag(K) = ag(K)et®stO (2.14)

From these relationships, the Fourier components Ag(K) of the scattering
potential F;(z) cannot be obtained in a straightforward manner. There are two main
approaches to overcome this problem:

e Correlation technique
This method implicates to directly Fourier transform the spectral intensity at the
interferometer exit, obtaining a function proportional to the autocorrelation
function of the total backscattering potential F(z), described as:
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ACFp(Z) = ACFr(Z) + VR Fi(zg — Z) + VR - Fs(zg + Z) + R-6(Z)  (2.15)

with R = reflectance of the reference mirror, and zi = reference mirror position.
The third term is the one of interest, which is a true representation of the sample’s
structure (besides a constant factor VR). To avoid overlapping of the
reconstructed terms, the reference mirror must be put at a position twice the
sample depth apart from the next sample interface.

A specific disadvantage of the correlation technique is that the width of
the autocorrelation of the object structure in object space equals twice the width
of the object structure itself. Therefore, in object space, a range equal to twice
the object depth is not available for representing the object structure and a
considerable part of the bandwidth of the signal processing system is wasted.

Phase-shifting technique

Adopted to avoid autocorrelation terms overlapping, it allows to exploit the
whole object depth offered by the detector array. Summarily, it consists in the
acquisition of two spectral interferograms in phase opposition and then to
subtract the second record from the first. The result is an interferogram cleaned
from the disturbing autocorrelation terms of the sample. The main drawback is
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Figure 2.3: Spectral interferometry. FT = signal processor performing
the FT. I = spectral intensity; F = scattering potential [6].



that more than one acquisition is necessary, leading to an increase of both
working time and collected data.

2.2.1.2 Swept-source OCT

SS-OCT can be interpreted as an evolution of Spectral-domain OCT. With this
technique it is possible to gain better resolution in the spectral domain, to have a shorter
total acquisition time and to have deeper penetration [8]. The computation is the same
as seen for SD-OCT, what changes is the light source and the detector. In fact, this
technique’s name is given by the introduction of a frequency swept tunable laser as
source, which sweeps a narrow linewidth laser through a broad optical bandwidth
(Figure 2.4). Modern lasers offer a high sweep speed that can reach a few MHz with a
wide range of selectable wavelengths; widely accepted values for these quantities are
some hundreds of kHz for the swept rate and 20-100nm for the bandwidth.

Tunable laser I

1- Beam splither

Wavelength: 1050nm l Sample

—
| Detoctor

D Fourier transfarm
[N
i S -

A miode
Figure 2.4: Schematic drawing of the swept source optical coherence
tomography (SS-OCT) device. The light source is a tunable laser /23].

A

The other difference is the use of a single photodetector instead of a
spectrometer. This also improves speed because the integration at the detector’s level is
much faster with this device than with an array.
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2.3 System properties

In this section, some fundamental properties and parameters of the OCT system
will be discussed. Of course, the internal structure and the material of the sample affect
the measurement so it’s important to take into account all these aspects in evaluating
signal quality and its characteristics.

2.3.1 Parameters

Axial resolution

Axial or depth resolution (Az) of course is one of the most important properties
of these kind of systems. It is equal to the coherence length of the light source,
proportional to its bandwidth which is the FWHM of the source spectrum. Some
considerations about light source properties have already been made in Section 2.1.2 .

_ lrwnm _ 2In2 Ao? (2.16)
2 T AA

Dispersion too is involved in determining axial resolution; this phenomenon
affects the phase of the sample beam wave by introducing a frequency dependence that
shifts the signal’s phase. It is a property of the tissue which refractive index tends to
slow down certain optical frequencies to a greater extent than others. Usually, this
phase-shift is corrected via software by using the dispersion compensation technique
[9], but it can also be done via hardware (for example, inserting variable-thickness,
BK7, and fused silica prisms in the reference arm can balance dispersion).

The dispersion compensation technique applies a phase correction that is
computed as:

D(w) = —a(w — wp) ? — az(w — wy) * (2.17)
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where w, is the mean frequency, a, is a coefficient that compensates for the group
velocity dispersion imbalance and a; compensates for the third-order dispersion
imbalance. In most cases, dispersion up to the third order is sufficient assuming that the
interferometer arms were approximately dispersion matched initially.

Lateral resolution

Lateral or transversal resolution (Ax) defines the minimum distance at which two
points can be distinguished as two separate entities. It is affected by the central
wavelength of the source bandwidth and by the numerical aperture (NA) of the objective
lens, employed to focus the light beam on a point of the sample. Therefore, in order to
reach a high value of lateral resolution, it is important to properly design the optic
system of the sample arm. Ax is denoted by Abbe’s criteria as:

A (2.18)
Ax = 0.61=2
x NA

Probing depth

It is defined as the depth at which double scattered photons start to dominate on
single backscattered photons and it is related to both sample reflectivity and geometrical
characteristics of the sample lens. This phenomenon must be limited since multiple
scattered light creates a disturbing background and do not contribute to the object’s
Fourier spectrum [6]. Of course, it is preferable to have a high probing depth if one is
interested to investigate the sample more in deep; this can be obtained by working on
the numerical aperture of the sample lens:

Ao (2.19)

= 2
d nNAZ

where 7 is the sample refractive index.

It is necessary to find the proper compromise when considering the NA
parameter. In fact, a low value of NA leads to a higher depth of focus but it worsens the
lateral resolution and vice versa.
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Penetration depth

This parameter is particularly sensible to scattering and absorption properties of
the tissue as well as the central wavelength of the light source. Also, in this case a trade-
off between penetration depth and axial resolution must be found since higher imaging
depths are obtained by using higher wavelengths.

Basing on the acquisition technique, the penetration depth is defined in different
ways. In TD-OCT it is given by the reference arm travel range while in FD-OCT it
depends on the spectral resolution, defined as Adgy,;;/N (AAsy,,= total bandwidth of the

source; N=number of spectral data points), and it can be calculated using the formula:

A2 N 220)
Fmax = 4n AAfull

Signal-to-Noise Ratio (SNR)

The SNR of an OCT system, in its extended form, is given by the following
equation [2]:

P 2.21
SNR = 101c)g<77 5) (221)

E, B

where P is the power at the detector backscattered from a single interface in the sample
arm, which is proportional to the A-scan peak height, B is the bandwidth of electronic
detection, 1 is the photodetector efficiency, and E,=hvy is the energy of the photon
associated with the center frequency vo. More simply, SNR can be defined as the ratio
between mean signal power and noise power therefore it is possible to increase this ratio
by increasing the power of the source (directly related to the power of the signal) or by
reducing the noise power, which also depends on source power. Noise can have various
origins, from detector’s electronics (usually specified by the manufacturer) to
photocurrent variance.

Sensitivity

Conventionally defined as the inverse minimal sample reflectivity which leads
to an SNR equal to 1:
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oo 1 (2.22)

= 7
Sminlgyp=1

It is directly proportional to the source power and inversely proportional to the
electronic bandwidth (B). Usually, with the same bandwidth B and a number of spectral
data points equal or greater than 1024, FD OCT systems have 20 to 30 dB of sensitivity
advantage over a TD OCT system [8].

2.3.2 Output Data format

As announced before, the final output of an OCT acquisition is a tomogram of
the considered portion of tissue, which means that the data is three-dimensional. The
punctual depth information is collected over the whole surface of interest by moving
the incident beam with a raster-scanning technique (Figure 2.5a).

1
BEAR
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A-scan
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Figure 2.5: a) raster-scanning technique; b) output data format (the cube represents a
C-scan).

The acquisition pipeline starts with a single depth scan (A-scan or A-line) along
the z-direction; after acquiring the first A-line the beam is deflected laterally of a fixed
quantity and the operation is repeated until all the depth scans on the x-direction are
obtained, which result is an image in the x-z plane called B-scan. The beam is moved
again on the x-y plane and the entire process continues until the whole volume, named
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C-scan, is acquired. The output data, denoted in Figure 2.5b, is therefore a tomogram
(C-scan) composed of several images (B-scans) in turn formed by 1-D lines of depth
data point (A-scans). The final volume can pe explored in different ways other than
looking at a single B-scan or the total tomogram, for example the En-face configuration
1s a representation of all the data point at a certain depth (information on the x-y plane).
Another important visualization method is the Cross-section, which is an image in the
y-z plane and so perpendicular to the direction of a B-scan.

2.4 Characteristics of the employed OCT system

In this section will be given some information about the OCT system of the
Center for Medical Physics and Biomedical Engineering at the Medical University of
Vienna used to obtain the data for this project.

The acquisition technique is in the SS-OCT category of devices and so, the light
source is a swept source laser (SS-OCT-1310, Insight Photonic Solutions, Inc, U.S.)
which characteristics are listed in Table 2.2.

Central wavelength 1310 nm
Bandwidth 29 nm
Swept frequency 222.22 kHz
Power 70 mW
Duty cycle 100%

Table 2.2: Swept source laser parameters.

More than 50% of the source power does not reach the sample because most of it is
dispersed in the pathway made by the emitted light before hitting the target.
Approximately, it can be stated that the remaining power on the tissue is below 20mW.
A second consideration is about the duty cycle: since the laser works continuously
(DC=100%) there is no rest interval between two consecutive sweeping processes
which means that there is no time for the system to switch from a position to the
subsequent. To overcome this problem, it has been chosen to skip one sweeping step
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after each acquisition and to use that time to pass to the next sample point. Other
solutions can be adopted but with this approach no point of the spectrum is wasted.

The interferometer set-up is the same as the one described in Section 2.1.1 with
some additions and variations; the system’s scheme is represented in Figure 2.6. Light
is delivered and carried through the use of optic fibers, which must be periodically
checked and cleaned to maintain the system in its optimal conditions. The source beam
1s directed to a fiber coupler, with a ratio of 75:25, that fulfills the function of the beam
splitter. This component separates the light in the two well-known beams: 75% of the
power is conveyed to the sample arm while the remaining 25% goes to the reference
arm.
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Figure 2.6: OCT system scheme. cr: circulator; P: polarization controllers;
CL: collimator; L: objective lens; M: reference mirror; DBD: dual balanced
photodetector. The two squares with ratios inside are fiber couplers. Figure
adapted from /25].

The reflected beam from the reference mirror makes the same path but in reverse
and a second coupler combines it with the beam coming from the sample arm. This
signal is then detected by the DBD and passed to the acquisition device (DAQ). In the
sample arm, scan on the x-z plane is performed by a galvanometer scanner which is
combined to two moving mirrors (one for each axis). It is possible to change the
inclination of the sample beam manually by rotating the support on which the objective
lens 1s assembled (Figure 2.8b).
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SNR of the system was calculated after acquiring the signal with the sample in
position / (for this measure, a simple mirror was used as sample) and the background
signal B (additive noise), obtained by physically blocking the sample beam.
Formulation and resulting value are the following:

max(I) (2.23)

std(B)

SNR = 10log [(

2
)] — 105.3dB

A o L o [ ] [ ] [ ] - - - - it e e s
Figure 2.7: board on which are mounted some components of the system. Blue =

reference arm (A: fiber coupler; B: collimator; C: polarization controllers). Green =
sample arm (not all components are present, A: polarization controllers). Red =
general components (A: photodetector; B: power regulator).
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Figure 2.8: Terminal part of the sample arm. Blue
= sample lens; Red arrows: system rotation (for
beam inclination).

To correctly display the acquired images, axial and lateral image resolution must
be calculated. Lateral and axial pixelsize have been calculated in air by using,
respectively, a Imm dot-target (thin glass with highly reflective dots incorporated) and
a 1lmm thick glass as samples. Obtained values are:

e Lateral pixelsize = 19.5um
e Axial pixelsize = 13.7um

Axial pixelsize has to be divided by the refractive index (RI) of the tissue to get the
correct value for the sample under imaging. For example, considering that brain tissue
has an RI of 1.40, axial image resolution for this tissue is:

13.7um 2.24
AXpos = 14 - 9.8um ( )
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Chapter 3

Tissue mimicking phantom development

Tissue-simulating phantoms are of primary importance for the validation of new
methods and applications and in both medicine and bioengineering are used for
numerous purposes, including: initial system design testing, routine quality control,
comparing performances between systems and optimizing specific system properties
[10]. To date, several options are available basing on tissue characteristics that we want
to simulate such as mechanical, optical and structural properties; in OCT, of course,
optical features are the one of interest. Depending on the use, there is another
fundamental property to consider, which is durability. Lifetime of a phantom relies
principally on the selected base material and its origin, which can be natural or
synthetic.

Since the focus is on phantom optical properties, the design is not limited by the
material physic state (liquid/solid). Liquid phantoms are easier to produce and
characterize but suffer of lower durability and high chance of contamination, plus, they
must be manipulated very carefully. Solid phantoms suit better for OCT applications
because are able to maintain their features for a longer time and offer more possibilities
in terms of properties modulation [11]. Before going into details about the materials
used to make OCT phantoms, some information about the optical properties of both
healthy and cancerous brain tissue will be given.

3.1 Optical characteristics of real tissue

OCT signal is mainly affected by the sample refractive index (for brain tissue
n~1.40) and other two characteristics of the tissue under imaging: scattering and
absorption. They describe the response of the photons when a narrow light beam passes
through a medium and loses energy, and they are related with each other by a third
property, which is attenuation (y;). These data can be obtained from the tissue by
determining specific wavelength dependent coefficients:

41



Absorption coefficient (1,): it is a measure of how quickly the beam
would lose intensity due to the absorption alone. This phenomenon occurs
when photons are not scattered or reflected, and they disperse their energy
inside the tissue.

Scattering coefficient (| ): this parameter is a measure of the ability of a
medium to deflect (scatter) photons out of a beam of light. In OCT only
single-scattered photons are considered, while multiple-scattering
contributes to the background noise. The sum of scattering and absorption
coefficients is equal to the attenuation coefficient p;:

He = Ha T Hs (3.1)

Anisotropy factor (g): in optics, anisotropy is a measure of the amount
of forward direction retained by an incident photon after a single
scattering event. For a material in general, the parameter g is expressed
by the mean cosine of the scattering angle of all photons considered, and
its value is between 0 and 1. The formula to calculate the anisotropy factor
is:

g = fnp(ﬁ) cos(9) 2w sin(9) d9 = (cos(¥)) (3-2)
0

where U is the deflection angle and p (1) is the scattering pattern, which
i1s measured by a detector that moves circularly around the target while
always facing it.

Reduced scattering coefficient (p5): it is a variant of the scattering
coefficient which takes into account the anisotropy factor. The purpose of
W is to describe the diffusion of photons in a random walk of step size of
1/u;, also defined as scattering length, and it can be obtained in the
following way:

s = us(1—g) (3.3)
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Ug, Us and p unit of measure is mm™! (or cm™) while g is a dimensionless
coefficient. These parameters are determined from a measurement of the diffuse
reflectance and transmittance of light by the tissue sample. To obtain those quantities,
the most common procedure consists in an integrating spheres measurement followed
by an inverse Monte Carlo (IMC) model to obtain the coefficients from the collected
raw data. Figure 3.1 shows the configuration of an integrating spheres system and the
flow chart of the IMC analysis.
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Figure 3.1: a) Integrating spheres measuring system; b) example of a basic flowchart
of the IMC method (Rq: diffuse reflectance, T total transmittance; Tc: collimated
transmittance). Adapted from [13].

Briefly, the device in Figure 3.1a is composed by two spheres with a totally
reflecting internal surface, a light source and two detectors (one for diffuse reflectance
measuring and a second for diffuse transmittance); baffles are inserted in the spheres to
avoid that the light from the source-port directly reaches the detector-port, since this
light will have non-uniform distribution. The collected data are than manipulated by
using the inverse adding-doubling (IAD) method to obtain more accurate initial
approximations of the parameters [12], which will be processed in a iterative way in the
IMC model. This procedure continues until the measured and calculated values are
matching with a pre-determined accuracy.

Within the numerous articles and experiments that can be found in literature,
considering the different approaches used to calculate the parameters and the results
obtained, the study reported by Genina et al. [13] has been chosen as reference for the
values of y,, U, Us and g, due to: its recent publication (compared to other similar
works), the definition of the coefficients for both healthy tissue and glioma, and the
wide range of wavelengths explored (350-1800nm). In fact, most of the papers involve
experiments that do not comprehend wavelengths above 1000nm; considering that the
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system in use has a central wavelength of 1310nm, using those results could have been
an issue. Reported values from [13] are shown in Figure 3.2.

12 . . . 600 = e —
. 1 (A)=9.267510° 1™ 424678547
=& Healthy brain tissue 500- ]
101 =e—T7-day C6-glioma | 1 ,u (A)=241 mn PRI R R
10-day CE-glioma 1
g B == 30-day C6-glioma i 400+ 4
= ¢ 5 300 I—l IS
“m E : T J
=1 n 15
4. £ 200+ ]
1004 -
2_ 4
0- yu}zz.zwsxmr +ALTIA
4 500 1000 1500 2000 500 1000 1500 2000
X, nm A, nm
a b
175 v : —r 1.0 ; . :
1 i (2)=3.328x10° A7 4+ 604" R
150" \ 1 W—
1254 \T ] 0.8. e
1 A AR T i
A)=382x10° A" + 251,221
5 100- HolAl K
" ?5-: @ 08 lg|,{'|_-_1l.i“h+r11'=iil|—¢9q’i i"-‘ﬁlﬁ*nﬁ'-l_]
504 128855
25 04] L )= 051440371 1- Lm'-%mlﬁ__ |
D: U i)} 744910 AT +185.0564 1 £ A =0571+0255) 1—exp] - ";r:'f;}’ .
500 1000 1500 2000 500 1000 1500 2000
A, nm A, nm
C d

Figure 3.2: Wavelength dependence of the four parameters. a) adsorption coefficient;
b) scattering coefficient; ¢) reduced scattering coefficient; d) scattering anisotropy
factor. Formulas reported in (b-d) have been used to obtain approximations of
experimental data [13].

The experiment consisted in monitoring the variations of the four mentioned
parameters after the implant of C6-glioma cells (morphologically similar to human
GBM) in healthy rats. Optical properties have been measured before implantation and
at different stages of the tumor, for a large spectrum of wavelengths. From the above
graphs it can be seen that scattering and adsorption show similar responses in time after
tumor implantation, as the first initially decrease, than increase and finally decreases
again after 30 days, while adsorption have an opposite behavior. The peaks at ~1450nm
correspond to the adsorption band of water. Extrapolated values at ~1310nm are
reported in Table 3.1.
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Coefficient HEALTHY (mm™) TUMOR at 30-days (mm™)

g 0.05 0.29
I 31.55 10.83
W 3.62 1.24
g 0.885 0.827

Table 3.1: Adopted values of adsorption, scattering, reduced scattering coefficients
and anisotropy factor.

3.2 Tested materials

Three types of phantoms with different characteristics have been produced, one
in liquid form and two at the solid state.

3.2.1 Intralipid

Intralipid is an emulsion made of Soybean oil and egg Lecithin, diluted in water.
It is commonly used for optical measurements due to its constant adsorption properties
and easily tunable scattering properties; in fact, the original scattering coefficient of the
substance can be reduced by just modifying the dilution rate [14].
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Figure 3.3: Intralipid optical responses at different concentrations for two
wavelengths, 1300nm and 1600nm. a) scattering coefficient; b) imaging
depth. The black line is the one of interest. Adapted from /[74].
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The original solution (produced by Fresenius-Kabi) has a concentration of 20
w./v.% (20g/100mL) but is useful to express it in volume fraction, which is 22.7 vol.%.

Following the results obtained in previous measurements, shown in Figure 3.3,
Intralipid has been tested in seven different concentrations (expressed in vol.%): 0.45%,
0.90%, 2.00%, 4.00%, 6.00%, 8.00% and 10.00%. After the preparation, the solutions
have been imaged and comparisons with real tissue have been performed (Section 3.3).

Imaging sessions outcomes are reported in Figure 3.4 for the most relevant
dilution rates (from 2 to 10%) since concentrations of 0.45% and 0.90% are too far from
the real case. The refractive index of the material is considered to be equal to the one of
soybean oil, which is n=1.47.

mm mm

mm

Figure 3.4: OCT images of Intralipid ad five different concentrations (expressed in
vol.%). a) 2.00%; b) 4.00%; ¢) 6.00%; d) 8.00%; d) 10.00%.

3.2.2 PDMS
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Solid phantoms can be subdivided in two main groups, depending on how the
scattering properties are obtained: phantoms that rely on additives (micro- and
nanoparticles) that induce scattering, and those who possess intrinsic scattering
properties [10]. Polydimethylsiloxane (PDMS) is a silicone elastomeric polymer with a
refractive index of 1.43, and is included in the first group of materials, since it does not
have intrinsic optical properties, as it results transparent during OCT imaging for the
considered wavelengths. Many options of additives are available, in this work the
choices have been Titanium dioxide (TiO:) nanoparticles as scattering medium and
black pigment as adsorbing agent. The manufacturing process main steps are reported
in Figure 3.5 and all the production has been made in the labs of the Center for Medical
Physics and Biomedical Engineering of the Medical University of Wien.

Bulk PDMS and curing agent are mixed at a ratio of 10:1, following the
instructions provided by the manufacturer, and their quantities are respectively 40mL
and 4mL to make a ~44mL phantom. TiO; nanoparticles are initially mixed with the
curing agent and then the solution is putted in an ultrasound bath for 15 minutes; this is
done to limit the presence of Titanium dioxide aggregates in the final product: the curing
agent has lower viscosity than PDMS, so it is easier to disrupt those aggregates during
a US bath [11]. Bulk PDMS is mixed with black pigment and then mixed again with
the curing agent + Ti0O> solution with regular and gentle movements to avoid large air
inclusions. The air bubbles that remained trapped into the material are removed by
placing the phantom in a vacuum chamber for 15 to 20 minutes. At this point, the
product will need to cure for 48 hours at room temperature, but the process can be
accelerated by keeping the phantom in an oven (with a temperature of 100°C the
phantom can cure in 1 hour).

US bath
15min

Uncured Vacuum
Phantom Chamber
{mix 10min) ~ 15min

Final
Phantom

Figure 3.5: PDMS phantom fabrication process. Blue blocks: materials and
phantoms; Green blocks: actions/procedures.
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To establish the correct quantities of the two additives, a relationship between
reduced scattering and adsorption coefficients with the concentrations of TiO2 and black
ink must be found. From similar approaches present in literature ( [15], [16]) and, in
accord with Mie scattering theory, after producing a series of phantoms with different
volumes of additives, two values for each agent have been selected, one for healthy
brain tissue mimicking and one for glioma infiltration:

e Healthy tissue phantom: 8mg/mL of TiO: nanoparticles and 0.2%
vol./vol. (40uL) of black pigment.

¢ Glioma infiltration phantom: 4mg/mL of TiO> nanoparticles and 0.1%
vol./vol. (20uL) of black pigment.

Figure 3.6: OCT images of the two tissue-simulating PDMS phantoms produced.
The bright spots are titanium dioxide aggregates. a) healthy tissue simulating
phantom; b) glioma infiltration simulating phantom.
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3.2.3 Silicone

These phantoms are made of commercially available silicone rubber (Dragon
Skin, n=1.40) which can be easily produced by mixing the two constituent parts (A and
B) at a ratio of 1:1. The scattering and adsorbing agents added to the base material, and
their respective concentrations, are identical to the ones mentioned for PDMS phantoms
(titanium dioxide nanoparticles and black pigment). The fabrication process involves a
first step where TiO> is mixed with the precursor A (20mL), which is then placed in a
US bath for 15-20 minutes, and the black pigment is mixed with the precursor B (20
mL), to obtain a final phantom volume of 40mL. In a second step, the two solutions are
mixed together for ~10 minutes and the compound is putted in a vacuum chamber for
10 minutes to extract air inclusions and impurities. The phantom must cure for at least
7 hours but, as well as PDMS, the process can be accelerated by providing heat.

Figure 3.7: Silicone phantom that mimics both healthy (light grey) and infiltrated
tissue (dark grey); in this case, the two Silicone phantoms solutions are poured in
the same container. a) phantom with flat surface and b) OCT image of the
phantom; ¢) phantom with rough surface and d) OCT image of the phantom. In
b) and d), the region that exhibits lower penetration depth simulates the healthy
tissue, the bright spots are TiO; aggregates.
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Significant differences with polydimethylsiloxane are the faster curing time of
silicone and its higher viscosity at the uncured state. These characteristics make this
material suitable for the creation of phantoms with a rough surface (Figure 3.7a) instead
of flat; this can be achieved by taking the phantom to a ‘partially cured’ state (heating
at low temperature; e.g., 50°C for 5 minutes), where the material has a high viscosity
and can be manipulated without losing its shape.

3.3 Materials comparison

To establish which of the produced phantoms will be used to train the detection
algorithm, several criteria have been exploited. In this work, intrinsic characteristics of
the materials such as durability, degradation and manufacturing have been considered,
as well as an ‘envelope analyses’ of the A-scans to determine how good the tissue
simulating phantom acquisitions can mimic images taken from real tissue.

3.3.1 Intrinsic characteristics

All the three tested materials have optical properties that match, or get close, to
the ones of real tissue. Despite the easy production process and its homogenous optical
properties, Intralipid has been discarded due to the poor durability (1 to 2 weeks) of
such properties in time, while PDMS and Silicone have shown the capability to maintain
their optical characteristics for 45 days [16], even 2 months for Silicone. Moreover,
manipulating a liquid is more challenging than doing the same with a solid phantom, so
silicone derived phantoms are preferred.

Furthermore, as already mentioned, Silicone gives the possibility to create
phantoms with a rough surface, useful to simulate a real intraoperative situation since
the tissue under investigation will never have a complete flat surface. With Intralipid it
is impossible to obtain this feature, and with PDMS is more difficult due to its low
viscosity at the uncured state. Another great advantage of Silicone phantoms over other
materials is the simple and easily replicable manufacturing process.

3.3.2 A-scan envelope analysis
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The comparison between the phantoms A-scan envelopes and real tissue
envelopes is the main criterion to determine the quality of the produced phantoms. The
envelopes of healthy tissue and glioma infiltrated tissue have been extracted from the
imaged biopsies, after [0-1] normalization of the B-scans, and confronted with the
values reported in literature [17], confirming those results (Figure 3.8). Normalized
envelopes were then obtained from phantom images and the signal has been rescaled
between the maximum and minimum of the real tissue signal; this operation is
performed to have a standard yardstick for all images, since values from literature and
from this Thesis work could have different image processing steps.

Sample cancer-free A-line modeling 07 Sample glioma-infiltrated A-line modeling
" i - ;
Measured N Measurad
0.8 -5 - = = Modal fit - 0.8 N A A - } = = = Model fit
e ! B = [ LImE
= b = 05 %L
B 06 %, B - ¥
= A > 04 )
= 41 E : "\r -
& 04 ™ - A
< . 3 03 d Un L
5 e, < i
g 02 a74 e 0.2 nii
o . 0.1 :
0 200 400 600 BOO ] 200 400 600 800
Depth Depth

Figure 3.8: Healthy (cancer-free) tissue and glioma-infiltrated tissue envelopes
after [0-1] normalization. Adapted from /77].
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Figure 3.9: Envelope analysis on the tested materials. From a) to f), in the left
graph the obtained signal is unscaled, while in the right graph values are scaled
between maximum and minimum of the real tissue envelope. a) Intralipid 2%
vol./vol. (at this concentration, Intralipid can simulate glioma-infiltrated tissue); b)
Intralipid 10% vol./vol. (at this concentration, Intralipid can simulate healthy
tissue; ¢) PDMS healthy tissue simulating phantom; d) PDMS glioma-infiltrated
tissue simulating phantom; e) Silicone healthy tissue simulating phantom; f)
Silicone glioma-infiltrated tissue simulating phantom.

As reported in Figure 3.9, all the selected materials can reach a good similarity
with the real case. For Intralipid, the concentrations of interest to mimic the two types
of tissue are 2% vol./vol. for glioma-infiltrated tissue and 10% vol./vol. for healthy
tissue. For the solid phantoms, this analysis was helpful not only to determine the
quality of the work, but also to find the correct concentration of scattering and adsorbing
agents. An important detail is the depth range of pixels considered to produce the
different graphs, since A-lines are cut at a certain depth before performing the
comparison. While Intralipid and Silicone have the same number of pixels for both
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healthy and infiltration case, PDMS requires two different cropping height for the two
simulated tissues, and this can be problematic since the Neural Network requires the
same level of cropping for all the images. For PDMS healthy tissue phantoms the cutting
level is too deep (250 pixels considered = 2.4mm in depth), which suggest that additives
concentrations could be wrong.

For these reasons, and after the considerations made in the previous paragraph,
Silicone phantom acquisitions have been selected to train the Neural Network.
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Chapter 4

Data processing and preparation

Raw signals obtained after the acquisition procedure must be correctly
manipulated before displaying tomogram images. The general processing steps are
independent from the system set-up and the field of view (FOV) adopted during
imaging. In this work, a FOV of 10x10mm has been chosen, the length of the A-scans
is 2048 points and each B-scan contains 1024 A-lines. The number of B-scans in one
tomogram is 1024, so output data dimensions are 1024x1024x2048 (xxyxz). All the
processing has been carried out using Matlab R2020b.

Before proceeding with an acquisition session, it is necessary to perform a fast
calibration of the swept source laser in which the valid data points are determined. This
step 1s fundamental because the swept wavelengths, during the interferogram recording,
present intervals of both valid and invalid data sections. After the calibration procedure,
a ‘data valid vector’ (DVV) text file is generated, containing the indices of the valid
points of the interferogram.

4.1 General processing

Each acquisition consists in 16 packages of B-scans (binary files, data format:
16 bits integers), for a total of 64 B-scans per file. Initially, the DVV file is opened (data
format: base 10 integers) and the valid data points are loaded, then the program can
close the file; once obtained these values the B-scans packages are processed one at
time, sequentially, with a little-endian reading bytes order. Data extracted from the
package under processing is reshaped into a 2048x65536 matrix, where each column
represents an A-scan, which is basically a matrix containing the 64 B-scans
concatenated. Only data points written in the DVV must be considered, so the rows that
correspond to the values that are not present in that list are canceled. At this point, the
data matrix is ready for processing.

Packages are processed in batches of four B-scans at time and every batch
undergoes the following steps:
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1) DC removal: the mean (OHz component) is subtracted from the signal
since it just represents an off-set value added to the signal itself. It can be
performed in two ways:

e Batch mean value calculation and subtraction to all data points.

e Fourier transform of the batch (performed on the columns), force
to zero the first row of the transformed batch (continuous
component position) and then inverse Fourier transform the batch
to get the initial batch without the OHz component; this is the
strategy adopted in this work.

2) Off-set removal: the A/D waveform digitizer card (AlazarTech) mounted
on the used OCT system automatically shifts the data 32752 units up to
prevent the presence of negative values inside the dataset; in this way all
the data can be represented as unsigned integers. During processing, this
off-set is removed from the signal.

3) Background subtraction: noisy background must be removed to
improve SNR and the quality of the data. This operation can be executed
by simply acquiring the background (acquisition with the sample arm
blocked) and subtract it from each data point. In alternative, if background
is not available, the A-scans of the considered batch are averaged, and the
obtained vector is subtracted to all the A-scans of the batch.

4) Zero padding: a vector of zeros, long half the number of samples
contained in one A-scan, is inserted before and after the A-scan itself,
which now has a length that is doubled; this, of course, is done for A-lines
contained in the batch. Zero padding is necessary for having a Fourier
transform of the signal (step nr. 6) with a high resolution.

5) Windowing: a window of samples, with the same length of the A-lines,
1s multiplied to each A-scan. This step is described in Paragraph 4.1.1,
and its effects depend on the type of window.

6) Fast Fourier Transform: the batch can finally be Fourier transformed by
columns and the spectral copy is then removed; since the Fast Fourier
transform produces complex values, the modules are calculated and stored
in their respective positions into a pre-allocated matrix with the
dimensions of the final tomogram.
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When all the batches are processed, the final tomogram is saved. Before performing the
above steps, the operator can choose a region of interest (ROI) along the A-scans, to
reduce output data dimensions and collect only the considered points.

4.1.1 Windowing of the signal

The correct choice of the window to apply at the signal is fundamental because
the properties of the window will determine the characteristics of the output signal, such
as resolution and the presence of artifacts. Generally, the windowing procedure
introduces the benefit of limiting the presence of surface reflection artifacts, with the
drawback of reducing image resolution.

Within the further processing steps (Section 4.2) there is an operation of surface
edge detection of the sample: the algorithm that performs this action is strongly affected
by reflection artifacts, therefore the application of a window is necessary to enhance its
performances. Furthermore, it has been demonstrated that, for this work, despite the
window introduces a certain decay of resolution, Neural Network outcomes remain
unchanged.

Different types of windows can be applied. The processing code allows the user
to select between:

e Hann window

e Hamming window
e Gaussian window

e Chebyshev window
e No window applied

Figure 4.1: Effects of gaussian windowing on an OCT image (B-scan). a) B-scan with
no window applied; b) B-scan with gaussian window applied. Low reflection artifacts
are removed, and intense reflections are limited.
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After several trials and performances evaluations, the Gaussian window was
chosen, as it gives the best compromise between reflection artifacts reduction and
resolution (Figure 4.1).

4.2 Specific processing

Before entering the Neural Network, data must be prepared with other processing
steps that are specific for this purpose. Initially, images are converted in logarithmic
scale and then normalized between O and 1. Color properties are then changed to
emphasize the tissue in respect to the background, enhance contrast and reduce surface
reflection artifacts. To do this, image pixel intensities that are equal or lower than a
certain value (0.65 in this Thesis work) are forced to 0, and all the pixels values are than
rescaled again between 0 and 1.

At this point, three different operations are performed in sequence: surface edge
detection, surface warping and image cropping.

4.2.1 Surface edge detection

Sample surface edge is detected from each B-scan. The process involves first the
binarization of the image to create a binary mask containing the tissue pixels, then the
upper part of the mask, which carries the edge information, undergoes a few steps of

Figure 4.2: Surface edge detection algorithm outcomes. a) B-scan of brain
tissue before detection; b) B-scan after detection algorithm (the red line is the
detected edge).
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erosion and dilatation. These manipulations have the effect of limiting surface reflection
artifacts that generate ‘spikes’ on the surface (see Paragraph 4.1.1) and optimize surface
detection. Sample’s upper edge is then extracted from the modified binary mask of the
considered B-scan with the Canny Edge Detection algorithm, already implemented in
Matlab.

Considering that during the general processing a gaussian window has been
applied to the data, surface sparks are completely removed by the erosion/dilatation
process, exception made for reflection artifacts with particularly high intensity, and the
surface edge is detected with great accuracy (Figure 4.2).

4.2.2 Warping

The ANN developed is designed to work only on the tissue, therefore all the parts
above the sample must be removed to avoid misclassifications. This can be easily done
exploiting the detected edge information, by keeping trace of the edge points
coordinates. Each A-scan is shifted up of a value equal to the row index of the
corresponding edge point of that A-scan, so the pixels corresponding to the upper edge
of the tissue will be positioned on the first row of the image (Figure 4.3).

Figure 4.3: Image warping processing step outcome. a) Original B-scan with the
detected edge (superimposed in red); b) B-scan after warping (it is possible to
notice that the pixels that where above the edge are translated at the bottom of the
image).

4.2.3 Cropping

Final phase of the specific processing is image cropping. As specified in
Paragraph 3.3.2, it is fundamental to find the correct depth at which the B-scan must be
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cut, since the same value must be applied for both phantom and tissue samples images.
After A-scan envelope analysis and considering the Neural Network performances on
images with different cutting levels, the determined cropping depth is 1.5mm.
Evaluated depth ranges were in the 1-2mm interval, and 1.5mm is the value that
guarantees the lowest percentage of misclassifications (Figure 4.4).
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Figure 4.4: Neural Network classification error at different
cropping depth values. A depth of 1.5mm (error = 12.798%)
1s the one that gives the best results in terms of accuracy.
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Chapter 5

Artificial Neural Network

Artificial Neural Networks (ANN) are a subset of machine learning algorithms
that became popular in the early 2000s for their capability of handling large volumes of
data. Their structure is inspired by human brain and the core idea is to simulate neurons
interconnections and interaction with the use of ‘nodes’ (artificial neurons) that are
grouped in layers. Each node is associated to an activation function, which determines
if data can pass to the subsequent layer, and a weight. The algorithm is trained for a
certain time, or until the desired accuracy is matched, in which it learns to classify the
different input data by updating neuron weights [18]. The approach used in this work is
called supervised learning since, during the training phase, the network receives both
the sample data and its correct classification output (gold standard), so that the
algorithm can learn by confronting the predicted label with the provided label.
Confronts are made by using a loss-function, which determines the overall
classification error.

The developed Neural Network is a multi-layer perceptron network (or deep
neural network) that operates in a feedforward manner, with backpropagation from the

training_count

Validation

-

Figure 5.1: Data structure organization. Blue squares: data matrixes
or sub-structures; green squares: parameters (integers).



output layer to adjust the weights of the hidden layers. Input data and their parameters
are organized in a structure (Figure 5.1) before entering the network, so all the
information regarding those data are grouped together.

In details, the data structure includes:

e Training sub-structure: here are stored the dataset that will be used to train the
network (training set) and its pre-determined output or gold standard.

e Test sub-structure: it contains the test data (not the ones used for performances
evaluation, but the data to evaluate the training phase) and the relative gold
standard.

e Validation sub-structure: as well as Training and Test sub-structures, it contains
the data matrix for training validation and the respective gold standard.

e training_count: number of samples of the training set (in this case, the number
of A-scans).

e input_count: number of points for each sample (A-scan length in pixels).

e test_count: number of samples of the test and validation set (the validation set
has the same dimensions of the test set in this work).

e output_count: number of output classes, 2 in this case (healthy or glioma-
infiltrated tissue).

Since the cropping procedure is based on a value expressed in mm (cutting point
at 1.5mm), materials with different refractive indexes will have a different final length
of'the A-scans, in respect to the pixelsize-image resolution conversion. Considering that
brain tissue and Silicone refractive indexes are assumed to be equal (n=1.40), the two
samples have the same image resolution, and therefore, they will have the same A-scan
length after cropping, which is 153 data points.

However, to make the ANN more robust and suitable for various materials, the
possibility of having diverse number of pixels after cropping has been taken into
account. For all the data entering the network a standard length of 400 points have been
chosen, so datasets that have been prepared for neural network processing are all
resampled to this value. This means that, for Silicone and brain tissue, 153-points long
A-scans are resampled to a 400-points length vector.
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5.1 Architecture

General structure

The design of the network presents five layers: an input layer of 400 points (A-
scan) followed by three hidden layers with a decreasing number of neurons, which are
512, 256 and 128 respectively, and an output layer formed by two neurons. Sizes of the
hidden layers were determined considering the length of the input layer, and then chose
the smallest power of two greater than that value for the first input layer; for the
subsequent layers the number of neurons is half the size of the previous layer, exception
made for the output layer. This approach has been chosen to optimize computational
speed and algorithm performances [5].

To define the final network structure, the performances of different architectures
have been tested, with the number of hidden layers ranging from 2 to 4, over a 50-epoch
training. Networks with 2 and 3 hidden layers showed similar results in terms of
accuracy after the training phase (~94.6%), while performances lower of almost the
10% when networks with 4 hidden layers are considered. A structure with just two
hidden layers would be simpler and faster of course, but it could have generalization
problems if large datasets, like in this work, are fed to the neural network; for all these
reasons, the selected number of layers is three.

Activation functions

Regarding the activation functions, the algorithm gives to the user the possibility
of choosing between five options:

e Hyperbolic tangent (tanh)

e Rectified linear unit (ReLU)

e Leaky rectified linear unit (leakyReLU)
e Sigmoid

e Softmax

For this application, the ReLLU function (Figure 5.2a) has been adopted for the hidden
layer neurons, given its non-saturating property and the speed improvement that can
give to the training process in respect to other functions, and the Sigmoid activation
function (Figure 5.2b) was selected for the output neurons, due to the binary nature of
the classification [5].
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Figure 5.2: Artificial Neural Network selected activation functions
expressions and graphic representations. a) Rectified linear unit
(ReLU); b) Sigmoid. Adapted from /26].

Loss-function

Similar considerations can be made about the loss-function, in fact, three pre-
implemented functions are present inside the network: Root Mean Squared error
(RMSE), Cross-entropy and Binary cross-entropy. RMSE is one of the most common
error functions for neural networks, but its non-convex nature can be a problem if the
user is interested in inserting an optimization method. Binary cross-entropy (Eq. 5.1)
was therefore chosen, also because of its faster convergence [19].

Ly, yp) = ylog(y) + (1 —y)log(1 —yp) (5.1

In the above expression, y is the true label (taken from the gold standard) and y, is the
predicted label. The loss-function introduces a minimization problem, which means that
the optimal set of parameters (wights and biases) can minimize the loss-function value,
but since the error is computed for all the samples (A-lines) of a given training set, in
this work the attempt is to minimize the average of all computed loss-functions.

Optimizer

Optimizers are algorithms that are allowed to modify some network parameters,
such as weights and learning rate, in order to reduce classification errors and improve
network convergence. Within the large field of optimizing methods, the most
commonly used are Gradient Descent (implemented inside the neural network) and
Stochastic Gradient Descent (SGD), which is a variant of the first . Even in this case,
the user can select the opportune algorithm:

e No optimizer
e Gradient Descent
e Adaptive Moment estimation (Adam)
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e Nestorov accelerated gradient

In the developed ANN, the Adam optimizer has been used. It is an extension of
the Stochastic gradient descent method, but while SGD keeps the learning rate constant
during training, Adam introduces an adaptive learning rate for each network weight
exploiting momentums of first and second order (mean and uncentered variance,
respectively). In details, the algorithm calculates an exponential moving average of the
gradient and the squared gradient, and the decay rates of those averages are controlled
by two parameters (Equation 5.2) [20].

U (5.2)

Wip1p = W — —/———m

_ m; 5.3
T 1- Bt Y
Y (5.4)
T T p

where w; is the weight at the #-th iteration; m , and U, are the first and second order
momentums; f3;, B, and € are numerical parameters ($,=0.9, ,=0.99 and £=1-10"%) and
7n is the learning rate. Despite the computational cost introduced by this method, it
provides rapid convergence and it possess the advantage of rectifying vanishing
learning rates [21].

Regularization and minimization problem

The introduction of a regularization method is important to avoid overfitting. In
a first moment, network performances were evaluated by using the dropout method with
different rates, but results showed no significant improvements in classification. The
attention moved then towards simpler and well-known strategies like L1 and L2 norms,
which introduce a regularization term in the minimization problem. In the resented
ANN, a L2 norm was used and so, the error minimization problem equation became:
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where W are the weights that minimize the argument in round brackets, A is the
regularization coefficient set at 107, |w|3 is the L2 norm (defined as |w|3 = X" w;?)
and N the number of samples inside the training set. The function to minimize is
composed by two terms: the first is the regularization term introduced by the L2 norm,
while the second is the mean value of the loss-functions calculated for all samples.
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Figure 5.3: Final architecture of the Artificial Neural Network implemented
for this study.

5.1.1 Learning rate and batch size tuning

After the definition of the network’s architecture, several learning rates and batch
sizes were explored, and the respective performances were compared. As a matter of
fact, the implemented ANN operates on small batches of samples at the time, not on all
the provided dataset, so find the optimal dimensions of that batch is fundamental.

65



The learning rate (LR or 1) is a parameter that expresses the speed at which the
algorithm can reach the convergence of the learning function, defined as the minimum
of the minimization process. As reported in Figure 5.4, the choice of the correct learning
rate is crucial since high values allow a fast movement towards the minimum, but they
add the risk of never reaching it or, furthermore, inducing a divergent behavior, while
small values enlarge too much the training times.

Too low Just right Too high
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A small learning rate The optimal learning
requires many updates rate swiftly reaches the
before reaching the minimum point
minimum point

Too large of a learning rate
causes drastic updates
which lead to divergent
behaviors

Figure 5.4: Effects of different learning rates on neural network
convergence [24].

Together with 1, as already mentioned, the tuning procedure is also carried out
on the batch size (Bs). Evaluated values of these two parameters are:

e n=[110°;510%;1-107;5-10]
e Batch size =[512 ; 1024]

A 60-epoch training is performed, during which all learning rates are tested for each
batch size, then the classification results are compared to determine which pair of
parameters is the best. First, the comparison was made in terms of labeling accuracy
(Figure 5.5a) and the main outcome is that accuracy does not depend from the batch
size since there is no significant difference between the reported values, while better
classification results were obtained by incresing the learning rate, despite the difference
remained low, reaching accuracy values of more than 99%; n values greater than 5-10
> did not show any improvement and are not displayed in the graphs.

In a second phase, the features used to validate the overall performances, (see
paragraph 5.4.1) has been employed to evaluate the tuning of the parameters in a more
specific way (Figure 5.5b-c). Interesting results were obtained: the pair of values
n=5-10" and Bs=1024 is the only one in which specificity and Positive Predicted Value
(PPV) are above 99%, while the other couples report lower values. Specificity and PPV
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Figure 5.5: Results of the parameters tuning process: a) performances
comparison in terms of classification accuracy; b) comparison in terms of
Specificity and Sensitivity; ¢) comparison in terms of Positive Predicted
Value (PPV) and Negative Predicted Value (NPV).

are measures of how good the network can recognize the glioma-infiltrated tissue, so it
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is extremely important to have the highest value possible of these two features, and that
is why the selected learning rate and batch size are: §=5-10" and Bs=1024.

5.2 Training

After the definition of the final structure of the Artificial Neural Network, it is
possible to proceed with training the algorithm. During this phase, the data structure
presented in the introduction of this chapter is fed to the network, from which it is
possible to extract all the information necessary for the task. A-scans are arranged on
the rows of the input data, therefore the datasets are transposed before creating the data
structure, with final dimensions of nxm where n is the number of samples in each
dataset and m the number of data points for each sample (m=400). The first dimension
(n) of test and validation sets is different from the same size of the training set; the
choice was to assign to these two datasets a number of samples equal to 1/10 of the
corresponding value adopted for the training set.

The dataset from which the three subsets are extracted is composed by the union
of two phantom acquisitions, which means that the total number of samples (A-lines)
1s: Sn = (1024%1024) - 2 = (1048576) - 2 = 2097152 A-scans. This value is in accord
with what reported in similar studies found in literature ( [17], [5]) and it guarantees
good classification performances with a very low risk of overfitting. Subsets final
dimensions are:

e Training set: 1747620x400
o Testset: 174762x400
e Validation set: 174762x400

Training is performed for a total amount of time of 500 epochs (an epoch is the time
required for processing all the datasets one time) with a target accuracy of 99%: this
high value has been chosen on purpose, considering that the network will never reach
this level of accuracy due to the variability between samples and the large amount of
samples, so it is sure that the training phase will last until reaching the maximum
number of epochs (extensive training). Each batch entering the network is normalized
between 0 and 1, and the loss-function is then computed as previously discussed. The
algorithm keeps trace of the overall accuracy on training, test and validation sets and
displays the results at the end of each epoch. Training results are showed in Figure 5.6
in terms of classification error, with a final accuracy after 500 epochs of 98.24%.
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Figure 5.6: Training evaluation over 500 epochs. Final accuracy = 98.24%.

As previously announced, the data on which training is performed is taken from
Silicone phantom acquisitions. Within several phantoms made for this task, the selected
one is a Silicone phantom with rough surface, formed by two regions with different
properties, that mimic both healthy brain tissue and glioma-infiltrated tissue. The rough
surface is adopted to simulate an intraoperative imaging situation that is as close as
possible with the real case and is less subjected to reflection artifacts. The acquisitions
of interest are done on two different areas of the same phantom, to assure no variability
of the material properties that can merge by using acquisitions taken from different
phantoms.

5.2.1 Gold standard creation

Together with the datasets, the neural network must also take as input the
respective gold standards. Since it is not possible to directly label each A-scan as healthy
or infiltrated, due to the absence of a correct ‘map’ of the two tissue simulating regions,
this information is provided manually from an en-face image of the phantom. The en-
face is displayed on the screen and the user can draw, with the cursor, the area
corresponding to the infiltration simulating region and create a binary mask of that
region (Figure 5.7). Eventually, in case the boundary between healthy and infiltration
simulating tissue is not clearly distinguishable, it is possible to remove the border region
within the materials to reduce the risk of misclassifying those elements and to improve
the classification performances; it has been proved that this dimension reduction, if
limited to the 15% of the total number of A-scans, does not influence overall accuracy.
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(b)

Figure 5.7: Silicone phantom Gold standard creation process. An en-face
image (a) at a certain depth (here is set at 2/3 of the total depth) is used to
manually create the infiltration region mask (b) that will be used to create the
Gold standard.

Samples type of labeling carried out by this network is represented by a binary
number:

e (01 — Glioma-infiltrated brain tissue
e 10 — Healthy brain tissue

The two output neurons return both a numerical value between 0 and 1, then, to obtain
the above codification of the solution, the highest of the two outputs is set to 1 and the
other is set to 0. Therefore, the designed gold standard is manipulated to obtain a sort
of double layer mask, where the first layer represents the labels of the first output neuron
(equal to the infiltration binary mask), while the second layer (which is the inverted
version of the same mask) represents the labels of the second output neuron. Since the
implemented network works by rows, the gold standard matrix is reshaped and
transposed just like the previous datasets.

Initially, a threshold was applied to the neuron output values to get the 01-10
codification, but in rare cases (below the 2% of the global classification) outputs equal
to 00 or 11 were observed, so this method was discarded in favor of the majority
criterion explained above.
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5.3 Test phase

5.3.1 Brain biopsies characterization

Fresh samples of brain tumor tissue were collected from 10 patients that
underwent brain biopsy at the department of neurosurgery of the University Hospital of
Vienna (AKH Wien). The samples were maintained immersed in a saline solution,
inside an environment with controlled temperature, and taken out from the liquid only
during acquisition sessions. Imaging has been performed in two modalities: one in
which the tissue is placed on a transparent glass slide with the light hitting the bare
surface of the sample (Figure 5.8a), and a second where the tissue was kept in a small
3D-printed box (inner volume: 1mm?®) containing the same saline solution in which the
biopsy is stored or deionized water (Figure 5.8b). The latter method allows the sample
to have a more natural shape during imaging, as it is semi-suspended inside the liquid,
but it has the drawback of introducing several artifacts like:

e Saline solution surface artifacts and reflections

e Solution induced artifacts (it is possible to observe the merging of high
intensity dots or areas generated by particles floating inside the liquid)

e High reflection artifacts when the upper surface of the liquid is in contact
with the sample

These artifacts can be limited by using a gaussian window during post-processing, but
in general better performances are obtained when the sample is simply putted on a glass
as it makes easier the surface edge detection.

The histopathological analysis results were obtained after all tissue samples
were acquired and are presented in Table 5.1. From a first look, it is clear that not all
biopsies are of our interest because only a few are labeled as gliomas (High Grade
Glioma in this case) with infiltration characteristics. The useful acquisitions are
therefore three,
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Patient Age Gender Location Group Type
B-Cell

1 78 w intra-axial, right frontal INF
Lymphom

2 46 w left, front paramedian HGG INF
3 65 m central right HGG INF
4 35 w intra-axial, frontal

5 54 w intra-axial, right frontal MET INF
6 68 w cerebellar, left MNG TUM
7 57 m extra-axial, medial sphenoid MNG TUM

bone

8 66 m extra-axial, temporal MNG TUM
9 70 m intra-axial HSG, right MNG TUM
10 74 w left, temporal HGG INF

Table 5.1: Histopathology analysis results for the 10 biopsies. HGG: High Grade
Glioma; MET: Metastasis; MNG: Meningioma; TUM: Tumor core tissue; INF:
infiltrative tissue.

which are the ones classified as HGG and INF (infiltration tissue), and they correspond
to biopsies taken from patients 2, 3 and 10. In details:

e Patient 2: Glioblastoma multiforme of grade IV (GBM 1V); diffuse and
recurrent infiltration of the Central Nervous System, IDH-mutant.

e Patient 3: Glioblastoma multiforme of grade IV (GBM 1IV); infiltration with
moderate cell density, IDH wild-type.

e Patient 10: Glioblastoma multiforme of grade IV (GBM 1V); moderately dense
glial tumor tissue, moderately dense infiltration, IDH wild-type.

Since the above analysis does not provide a punctual information about the
sample, as it is entirely labeled as INF or TUM, in accord with the Department of
Neuroscience that performed the exam it has been made the hypothesis that no healthy
tissue is present within the samples. This is a major drawback because the absence of
one of the two tissues investigated in this work does not allow to assess the algorithm
performances with the adopted metrics. However, after a careful examination that
comprehended A-scan envelope analysis, and a visual evaluation of the samples, it has
been demonstrated the presence of a small piece of healthy brain tissue inside the biopsy
taken from patient number 10. With this new hypothesis it is possible to calculate the
validation features.
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Figure 5.8: Brain tumor bipsies imaging modalities. a) Sample on a glass; b) sample
inside a small 3D printed box filled with saline solution or deionized water (box made
of VeroClear).

5.3.2 Validation features

Four metrics have been chosen for validation purposes and all of them can be
obtained from a confusion matrix computed during the performance evaluation phase.
The confusion matrix is a 2x2 table that collects the classification results for the two
types of tissue under investigation, by keeping trace of the correct predictions and the
misclassifications. From Figure 5.9, it is possible to notice that the term ‘Positive’ is
associated to the presence of glioma-infiltrated tissue, while the term ‘Negative’ is
referred to its absence, so the presence of healthy brain tissue.

GOLD STANDARD

Infiltration Healthy
a £ P2 FP
- g
g
o
&
£z
:  FN TN

Figure 5.9: Confusion matrix created during the
performance evaluation phase.
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The selected features can quantify the detection accuracy of the algorithm by
comparing the predicted class with the gold standard. All four metrics are expressed by
dimensionless numbers in the 0-1 range, which are then converted to percentage values.
The features are:

e Sensitivity

It measures the capability of the network to identify the true positives, which in
this case means how well it can detect the infiltration. Sensitivity can be
calculated from the ratio between the number of true positives (infiltrated tissue
labeled as infiltration) and the number of samples that are actually glioma-
infiltrated:

TP (5.6)

Sensitivity = TP-l‘—FN

e Specificity

It defines how well the network can detect the true negatives, represented here
by healthy tissue samples. Its computation is the ratio between true negatives
(healthy tissue labeled as healthy) and the samples that are actually healthy brain
tissue:

TN (5.7)

SPGCifiCity = m

e Positive Predictive Value (PPV or Precision)

PPV expresses the probability that a sample labeled as glioma-infiltrated tissue
is truly and infiltration sample. It can be calculated by the ratio between true
positives and the number of samples labeled as infiltrated tissue:

_ TP (5.8)

e Negative Predictive Value (NPV)
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NPV follows the same concept of PPV but for healthy tissue. It represents a
measure of how precise the network is in detecting healthy tissue A-scans, equal
to the probability that a given A-line classified as healthy is actually a healthy
tissue A-line:

__ TN (5.9)

5.3.3 Performance evaluation

When everything is set, brain sample images can be fed to the network. It can
happen that some acquisitions include in their respective tomograms some parts of
volume which are not part of the sample, this because the field of view of the system is
larger than the biopsy dimensions. In that case, it is necessary to delete from the dataset
those A-scans that do not carry any information about the tissue, and this is done by
looking at the surface en-face image of the already processed acquisition and,

eventually, cut out from the image those border sections where the sample is not present
(Figure 5.10).

(a) (b)

Figure 5.10: Sample volume cropping. a) Original en-face at 0-depth
of the sample with the cropping area in red; b) cropped volume.

To evaluate the performances, the algorithm must know the correct labeling of
the tissue, and so the gold standard: it can be obtained with the same method adopted
for the creation of the phantom gold standard (Paragraph 5.2.1), taking into account that
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the designed masks will not be perfectly matching the two regions because, even if
limited, there is always a small difference between the contours of the drawn region and
the actual tissue area. Considered this aspect, the network performs the classification
and the predictions are confronted with the gold standard, resulting in the generation of
the confusion matrix. Once the classification is over, the validation features are
computed from the values reported in the matrix, along with the total error parameter
which expresses the number of misclassifications, and results are displayed on the
screen (Eq. 5.10).

TP + TN (5.10)
TP + FP + FN + TN

Error = 1— Accuracy = 1 —

Together with these metrics, the algorithm displays at video two images in the
same figure box: the first is an en-face image (at Omm depth, which can be assumed as
a picture of the sample surface) of the input volume, while the second is the same image
to which the classification results are superimposed with a color codification.

The final output is a 3D plot of the sample surface that shows the neural network
outcomes on the input volume. Surface information are taken from the surface edge
detection procedure performed during the specific processing of the data, which have
been saved, and are combined with the color-coded map of Figure 5.11a to generate the
three-dimensional rendering of the results.

5.4 Optimization

Overall network performances can be enhanced by a further processing of the
computed output. This optimization step arises from two statements:

1. It is unlikely to find small regions of infiltration, as well as healthy tissue,
surrounded by A-scans labeled as the opposite class. For example, a few neighboring
A-scans classified as infiltration tissue positioned in the middle of an area
completely labeled as healthy brain tissue, will be treated like misclassifications and
so, the predicted class of those samples will be changed; this reasoning is valid also
in the opposite case.
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2. Misclassifications mostly occur for A-lines belonging to the B-scans that show
severe surface reflection artifacts, where the high-intensity reflections have the
power to attenuate the other pixels of the image.

Following these hypothesis, two types of corrections have to be carried out to
improve network performances. To satisfy the first statement, the optimization
algorithm works the color-coded map of the results, from which are extracted two
binary masks, one for each class of tissue. For both masks, the algorithm searches for
areas under 0.05mm? (approximately 208 pixels) and, in the results map, converts the
label of those pixels to the opposite one. As will be presented in Chapter 6, this step
improves the quality of the classification by reducing the errors of almost 3%.

Fulfilling the second assertion is more complicated, since it is due to a
phenomenon that is unpredictable for location and intensity and does not depend on the
characteristics of the algorithm. High intensity surface reflections have a consistent
impact over the other parts of the B-scan already in the acquisition phase: the pixels
where the reflection occurs have a value, after normalization, that is equal or close to 1,
while the rest of pixel intensities are heavily downscaled, resulting in a B-scan of low
quality and deprived of its depth information content (Figure 5.11). This is a well-
known problem in OCT and it is easily solvable by just adjusting the angulation of the
light beam on the sample. Unfortunately, the irregular surface of the sample makes it
very difficult to find the perfect beam direction that suppresses these artifacts, since it

Figure 5.11: High intensity reflection artifacts corruption in Patient
10 acquisition. a) B-scan showing a point with high intensity, with
other pikels downscaled; b) same B-scan after all processing steps; ¢)
en-face of the tested volume (red arrows indicate the B-scan presented

in (a-b)).
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is likely probable that there is at least one point of the surface that shows perfect
reflection (the light hits the sample perpendicularly).

Considering the possible intraoperative application of this algorithm, the surgeon
can prevent this occurrence by rotating the probe beam or changing its position: the
network will recompute the classification and those errors will be eliminated.
Otherwise, if the problem is limited to a few B-scans, a correction via software can be
applied by replacing those images with an average of the adjacent B-scans. This type of
approach is not valid for a large amount of consecutive corrupted B-scans, since the
area of real tissue substituted with interpolated images could hide and
infiltrative/healthy region that would be lost with the averaging procedure, therefore it
has been implemented only for maximum 5 consecutive B-scans.
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Chapter 6

Results

6.1 En-face map of results

When the network has finished processing the volume, the algorithm first
displays on the screen four images: the en-face image at zero-level (Omm depth) of the
input data, the gold standard, a color-coded map with the classification results and the
same map after optimization. The codification is simple:

e Green: healthy brain tissue
e Red: glioma-infiltrated brain tissue

Figures 6.1, 6.2 and 6.3 show the results for the three biopsies selected for the
performances evaluation phase, which belong, respectively, to patients 2, 3 and 10.

The dimensions of these images, expressed in mm, refer to the effective measures
of the test volumes after cropping the borders of the tissue samples. For each sample,
the total area of 10x10mm has been reduced using the following values:

e Patient 2:
x-direction range (columns) = 2,842mm — §,644mm
y-direction range (rows) = 1,166mm — 9,653mm

e Patient 3:
x-direction range (columns) = 2,845mm — 9,927mm
y-direction range (rows) = 1,040mm — 7,593mm

e Patient 10:
x-direction range (columns) = 2,000mm — 8,000mm
y-direction range (rows) = 2,000mm — 8,000mm

As expected, the misclassified areas that are still present after the optimization
procedure, belong to parts of the samples that have inner defects (like holes) or show
the corruption of pixel intensities due to several reasons, for example, reflection
artifacts.
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(©) (d)

Figure 6.1: Final results of the classification algorithm for the sample of Patient 2
(red = infiltration, green = healthy tissue). For this patient, the sample includes only
glioma-infiltrated tissue. a) En-face image a 0-depth of the test volume; b) Gold
standard of the test volume (the sample of patient 2 includes only glioma-infiltrated

tissue); ¢) color-coded map of the results before optimization; d) map of the results
after optimization.
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Figure 6.2: Final results of the classification algorithm for the sample of
Patient 3 (red = infiltration, green = healthy tissue). For this patient, the sample
includes only glioma-infiltrated tissue. a) En-face image a 0-depth of the test
volume; b) Gold standard of the test volume; ¢) color-coded map of the results
before optimization; d) map of the results after optimization.
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(©) (d)

Figure 6.3: Final results of the classification algorithm for the sample of Patient
10 (red = infiltration, green = healthy tissue). This is the only sample that
includes both glioma-infiltrated and healthy brain tissue. a) En-face image a 0-
depth of the test volume; b) Gold standard of the test volume; ¢) color-coded
map of the results before optimization; d) map of the results after optimization.
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6.2 3D representation

Classification results, after optimization, are finally displayed in a three-
dimensional fashion. The surface of the input sample is represented in 3D with the same
codification showed in the previous Section. This is the real output of this algorithm,
because it provides to the surgeon a tool for locating in space the network output, by
knowing exactly the position of the labeled tissues.

In some cases, infiltrated regions of the sample that are located more in depth, and so
out of focus, can be classified as healthy because of their reduced number of useful
points along the A-scans. Figures 6.4, 6.5 and 6.6 show the 3D representation of the
results for the three patients.

Figure 6.4: 3D representation of the classification output for Patient 2.
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Figure 6.5: 3D representation of the classification output for Patient 3.

Figure 6.6: 3D representation of the classification output for Patient 10.
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6.3 Validation

Validation is carried out to evaluate and quantify the performances of the
algorithm. The features used for this purpose, as reported in Paragraph 5.3.2, are:

e Sensitivity

e Specificity

e Positive Predictive Value (PPV)
e Negative Predictive Value (NPV)
e Total Error

The analysis has been made for all the three tissue samples before and after output
optimization, to evaluate the improvements introduced by this procedure. Since biopsies
taken from patients 2 and 3 do not include healthy brain tissue in their gold standards,
the number of ‘true negatives’ (TN) and ‘false positives’ (FP) is 0 for both of them,
making impossible to calculate Specificity and NPV.

Another consideration to make is about the B-scans corrupted by high-intensity
surface reflection artifacts: the averaging method applied to perform the correction, has
been executed only on the tomogram of Patient 10, since the other two samples do not
show the same grade of corruption, and so, the correction was not necessary.

From the graphs displayed in Figures 6.7 and 6.8, it is clear that the optimization
process improves the classification results, especially for the samples of patients 2 and
3. Overall performances (Figure 6.9) have been estimated by summing the three
confusion matrices, one for each sample, and computing again the validation features
and the total classification error. Once these metrics have been calculated, it is possible
to assess the final performances of the algorithm:

Specificity Sensitivity PPV NPV Error
(%) (%) (%) (%) (%)
86.48 96.02 99.66 34.23 4.20

Table 6.1: Overall performances of the classification algorithm.
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Figure 6.7: Validation results for the sample of Patient 2 (a) and the sample of Patient
3 (b). The four features, along with the total classification error, are computed for two
cases: classification without optimization (blue) and classification after optimization
(red). For these two samples, the correction of the corrupted B-scans was not
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Figure 6.8: Validation results for the sample of Patient 10. The four features, along
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optimization (blue), classification after surface artifacts corrected with the averaging
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Figure 6.9: Global validation results. The low value of the NPV feature is related to the
recognition of small healthy tissue areas where they are not present, but since the real
healthy tissue region is highly reduced in size, in respect to the infiltration region, NPV
can’t reach a high value.

6.3.1 Confront with an alternative classifier

The quality and the robustness of the implemented MLP-Neural Network have
been compared with a second classifier, created for validation purposes only, that
operates on the same test volumes used to evaluate the network. This new algorithm
performs the classification task by confronting the envelope of each A-scan with the
references found in literature for the two types of tissue. More specifically, for each
reference, the classifier calculates the average point-to-point distance and the lowest
of the two obtained values determines the output label for the A-scan under
investigation. Envelopes are obtained by low-pass filtering the trend of the A-line
(Figure 6.10), which are then rescaled between the maximum and minimum of the
reference envelopes to make a more accurate comparison and normalize the
computation. Average distances are then elaborated for the two cases and the output
label is set basing on the lower value (Figure 6.11).
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Figure 6.10: A-scan envelope extraction. A low-pass filter of the
30th order is used to obtain the envelope, with cut-off frequency
of 0.05 Hz.

The methods used to evaluate the classification outcomes are exactly the same
as the ones described in the previous sections of this Chapter, exception made for the
3D representation which, due to the poor quality of the segmentation, has not been
carried out. Figure 6.12 shows the overall validation results for this classifier (weak
performances in terms of Sensitivity, NPV and classification error) which were then
compared to the ones of the Artificial Neural Network (Figure 6.13), demonstrating the
higher quality and accuracy of this approach over the new method. As it can be seen,
the optimization process worsens the results of the new classifier, since there are large
regions of sample that are labeled as ‘healthy tissue’ but in reality it is all glioma-
infiltrated tissue (Figure 6.11).
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Figure 6.11: En-face map of the results for the alternative classifier. a) Results for
Patient 2; b) results for Patient 10; ¢) results for Patient 3. For each of the three cases:
up-left = en-face of test volume; up-right = Gold standard; down-left: classification
before optimization; down-right = classification after optimization.
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Figure 6.12: Classification method of the alternative algorithm. Y; and V), are the

average displacements of glioma-infiltrated and healthy tissue, respectively,
while y,, is the predicted class.
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Figure 6.13: Overall validation results of the alternative classifier before
and after optimization.

91



VALIDATION RESULTS

1o T T T ]
r I Alternative classifier | ]
e _— o502 99.88  09.66 CCIMLP-Neural Network
s 86.48 E
8o F =
70 -
__ 6o 57.36 3
?.\O. 24 X
50 - =
a0 -]
r 34.23 ]
30 =
20 f ]
105 ]

r 3.62 4.20

ol
Specificity Sensitivity PRV NPV Error

Figure 6.14: Comparison of the performances between the two classifiers.

The alternative algorithm seems to be highly specific in detecting healthy brain
tissue, but this is only due to the fact that it recognizes all the healthy tissue, but also
classifies as such many other areas that do not belong to this class; this consideration
also explains why the Sensitivity is so low. From a general point of view, the new
classifier cannot compete with the performances of the developed MLP-Neural
Network.
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Chapter 7

Conclusions

The Multilayer perceptron Neural Network implemented in this Thesis work
exhibits good accuracy in the classification between glioma-infiltrated and healthy brain
tissue. Overall performances demonstrate that this algorithm is highly sensitive towards
tumor infiltration, despite his specificity is undermined by both surface reflection
artifacts and inner defects of the sample under imaging. Further developments are
required to overcome these problems and improve the final segmentation.

Silicone phantoms show encouraging results in mimicking the tissues under
exam and are suitable to train the network, avoiding the use of real tissue for this specific
task. More tests must be carried out to establish the optimal concentrations of Titanium
dioxide nanoparticles and Black pigment, but the ones used in this project are indeed a
good starting point for the production of simple and replicable tools with homogeneous
optical properties.

Summarily, the proposed approach can lead to the development of an
intraoperative device which supports the surgeon in distinguishing between the two
investigated tissues, helping him in achieving the goal of maximal tumor resection.

Future developments can include:
e Increase of healthy brain tissue samples to enlarge the test dataset and

produce more general and reliable validation results.

e The total processing pipeline requires ~30 minutes to be performed, despite
network output can be available in maximum a few seconds; the use of a
dedicated GPU can lead to real time results.

e Phantoms and brain samples can be imaged with different OCT systems to
compare and normalize the performances.
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