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Abstract 
The human brain is a huge and complex network in which smaller structures communicate 

and process information at different scales of time and space. In recent years brain 

connectivity has become one of the main interests of many leading neuroscience centres 

all over the world, which investigate different aspects of brain connectivity, in particular 

the branch called functional connectivity, for many different purposes: from clinic 

applications in neurological diseases, to basic research both on humans and on 

experimental models. As a matter of fact, animal models allow the study of much simpler 

brain networks and structures compared to humans, and they open the possibility to 

exploit imaging or genetic tools which can’t be performed on humans for technical or 

ethical reasons. Yaksi lab, the laboratory within which this study has been carried out, is 

a research centre in the field of systems neuroscience, in which neuroscientists, physicists 

and engineers are interested in how behavioural tasks and sensory computation affect the 

neural circuits and pathways within the brain of zebrafish. These animal models allow 

two-photon calcium imaging, an imaging tool which records fluorescence signals related 

to the activation of single neurons. Two of the main brain areas the lab has been interested 

in are telencephalon, the homolog of mammalian amygdala and hippocampus, and 

habenula, which can be found also in mammals. The aim of this thesis is to investigate 

two aspects, related to spatial and temporal organization respectively, of functional 

connectivity in these two zebrafish brain regions, exploiting some graph-based algorithms 

that, as confirmed in literature, are particularly suitable for representing and visualizing 

brain networks. On one hand, a spectral clustering algorithm was implemented to cluster 

synchronous neurons during ongoing activity. A heuristic method was used to estimate 

the optimal number of clusters, but it resulted in a poor ability to recognize small clusters. 

On the other hand, the temporal development of neural activation and its changing 

between ongoing activity and odour stimulation were analysed, leading to clues on how 

different telencephalon and habenula are in terms of plasticity and learning behaviours. 
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1 Introduction 

1.1 Brain connectivity 
Starting with Camillo Golgi and Ramon y Cajal, the two fathers of neuroscience, 

countless studies were carried out to get a little closer to understanding the human brain: 

the most complex and perfect engine that has ever existed. This powerful organ is made 

up of about 100 billion (1011) neurons connected by about 100 trillion (1014) synapses, 

and this huge network is anatomically and functionally organized over different scales of 

time and space. For the time being we know very little about how this highly connected 

network could affect and be the driving force of every movement, thought, feeling and 

behaviour we as human beings are able to produce. 

1.1.1 Paradigms of systems neuroscience 
Systems neuroscience is the branch of neuroscience that actually investigates the structure 

and dynamics of neural circuits and systems, focusing on how sensory information and 

external world perception are analysed within the brain. It is widely accepted that the 

brain processes information throughout the two fundamental principles of integration and 

segregation [1], which means that all the stimuli coming from sensory organs must be 

combined and then used to plan the next action. Integration is the ability to combine and 

merge the incoming stimuli, while segregation allows the splitting of information towards 

separate modules, which perform specialized local computations. 

1.1.2 Types of brain connectivity 
One of the major focuses of the earliest years in systems neuroscience is of course brain 

connectivity, which studies links and interactions between distinct units within brain [2] 

trying to understand brain mechanisms and organizational features under the efficient 

brain information processing, not only in humans but also in animal models. Based on the 

scale of the unit and the nature of the link one is interested in, brain connectivity is divided 

into three different types of connectivity, as schematically depicted in Figure 1: 

- Structural or anatomical connectivity refers to synapses, the physical wirings 

between single neurons. These connections could link neighbour neurons as 

well as neurons physically placed in distant brain regions, and all together they 
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form white matter, which could be described by the connectome [3]. 

Anatomical connections are relatively stable within short time scales (seconds 

to minutes), but not for longer periods due to morphological change and 

synaptic plasticity. 

- Functional connectivity is operationally described as the temporal correlation 

between spatially remote neurophysiological events [4]. It refers to 

synchronism which characterizes the activation of distinct neurons or more 

generally of diverse brain areas also distant from each other. Change at this 

level of connectivity occur over the sub-second time scale.  

- Effective connectivity represents the influence one neural system exerts over 

another [4], and it directly reminds causal relationships existing between 

neurons or different brain areas. As functional connectivity effective 

connectivity varies rapidly over seconds or sub-seconds. 

 

 

 

 

Figure 1: Schematic of the types of brain connectivity. (A) Structural connectivity. (B) Functional connectivity. (C) 

Effective connectivity. 
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1.1.3 State of the art for the analysis of brain connectivity 
The study of brain connectivity is closely linked with the progress of neuroimaging 

techniques, both in vitro and in vivo. For example, in recent years new and promising 

results have been achieved in the field of structural connectivity thanks to diffusion tensor 

imaging (DTI), a non-invasive magnetic resonance imaging (MRI) method for visualizing 

location and orientation of fibres within the white matter [5][6]. It has to be mentioned 

that DTI suffers from very poor spatial resolution, but it could be a promising tool 

compared to other invasive axonal tract tracing method [7]. On the other hand, functional 

and effective connectivity refer to an abstract concept with no clear relation to physical 

connectivity, and so traditional imaging tools have been used combined with 

computational methods able to identify such temporal and causal relationships. 

Functional connectivity, in both healthy and diseased human brain, is probably the most 

studied aspect of brain connectivity, and it has been estimated from neuroimaging 

modalities like electroencephalogram (EEG) [8], magnetoencephalogram (MEG) [9], 

positron emission tomography (PET) [10], single-photon emission computed tomography 

(SPECT) [11] and functional magnetic resonance imaging (fMRI) [12][13]. fMRI is the 

predominant technique, and studies neural activation through the indirect blood-oxygen-

level-dependent (BOLD) signal [14]. On animal models, other optical imaging techniques 

are available, mainly exploiting fluorescence calcium indicators. It is the case of Cramer 

et al. [15] who performed in vivo widefield calcium imaging on mice, Mann et al. [16] 

who used drosophila, and Avitan et al. [17] and Diaz Verdugo et al.[18], the latter from 

Yaksi Lab, who carried out two-photon calcium imaging on zebrafish. Computational 

methods to quantify functional connectivity in literature are usually divided into 

knowledge-based, which require prior knowledge about brain areas involved in the 

activation and make usually use of correlation-based metrics like cross-correlation or 

statistical parametric mapping [19], and, more often, data-driven approaches which aim 

to analyse activation signals through decomposition or clustering techniques. The most 

popular decomposition methods are principal component analysis (PCA) [10], 

independent component analysis (ICA) [20] and singular value decomposition (SVD) 

[21], while as clustering tools researchers mostly apply hierarchical clustering [22], fuzzy 

clustering [23] and spectral clustering [24]. Effective connectivity is probably the most 

difficult aspect to investigate in the field of brain connectivity, as one can see it as the 
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union of both structural and functional connectivity. The most important feature is the 

causal relationship that characterizes it, whereby so far it has been investigated with the 

same imaging tools as functional connectivity but using computational methods that 

emphasize such causal links. According to Granger causality (GC) one time series causes 

another one if the information contained in the first helps to predict the second, while 

dynamic causal modelling (DCM) estimates the coupling among brain areas and how it 

is influenced by environmentally changes. Both techniques have been applied to fMRI 

[25][26] giving some clues on direct interactions between brain regions during 

behavioural and cognitive tasks. An approach which can be used to analyse and visualize 

brain connectivity, and that can be applied in parallel to all the other mentioned 

approaches, is graph theory. Intuitively graphs or networks are particularly suitable for 

representing or modelling brain connectivity, and many examples can be found in 

literature [27][28][29]. Moreover, there are many helpful tools one can borrow from 

graph theory for analysing and quantifying brain connectivity aspects. Some of these 

mathematical methods are indeed used in this thesis, so the reader can find a quite 

comprehensive introduction of graph theory with focus on the aspect of spectral graph 

theory in the following chapters. 

1.2 Zebrafish as a model in systems neuroscience 

1.2.1 Experimental models 
In all areas of experimental sciences “models are used to represent complex problems in 

simplified forms” [30], and they could be a powerful tool for investigating complex 

systems, at different level of complexity. There are three different types of models: 

- in vitro models include cultures of cells or biological molecules outside their 

normal biological environment  

- in silico models don’t require the use of biological material, and computers 

are developed to model experiments or processes typical of biological world 

- in vivo models are the ones performed on living organisms, usually animals, 

both humans and other animal species 

Based on the field of research and the investigation to perform each of these models has 

advantages and disadvantages, and in neuroscience all the three are extremely promising. 



5 
 

In particular, in systems neuroscience in vivo animal models are the most common ones, 

due to the difficulties to reproduce both in vitro and in silico such a complex and 

interconnected structure as the brain is, and because they allow for a direct observation 

of the animal behaviour in response to specific stimuli. Even though mice and rats are the 

most popular animals used in research, zebrafish have become increasingly used during 

the past 30 years [31]. 

1.2.2 Zebrafish identity card 
The zebrafish (Danio rerio) is a small tropical fish, belonging to the class of teleosts, the 

largest and most diverse group of vertebrates. His genome was sequenced in 2013 [32], 

and it was interestingly shown that approximately 70% of human genes have at least one 

zebrafish orthologue [32]. In their larval and juvenile stages zebrafish are transparent, 

which allows optical imaging techniques, and they are also suitable for a wide range of 

genetic approaches. Furthermore, they are small (up to 4 cm in length) and robust, cheaper 

to maintain than other vertebrate models, they produce an average clutch of 100-200 eggs 

per day and their generation time is short (3-4 months), which makes studies on their 

development easy to carry out. Indeed, all major organs develop already within 36 hours 

from fertilization, the hatching occurs on the third day and larvae show food seeking and 

avoidance behaviour already 2-3 days after hatching, i.e. around 5 days post fertilization 

(dpf) [33]. They also have the advantage to allow high-throughput approaches, much 

cheaper and faster compared to traditional techniques which is fundamental especially in 

the field of neuroscience [34]. Zebrafish are currently used for a wide range of research, 

but they are particularly interesting for behavioural studies which investigate the sensory 

and motor systems of the animals [35][36][37], as much as the ability to perform more 

complex tasks such as associative learning or active avoidance and fear conditioning 

[38][39][40]. 

1.2.3 Brain anatomy of zebrafish: telencephalon and habenula 
A representation of the adult zebrafish brain is shown in Figure 2. Anatomically 

mammals’ neurological structures are well-preserved in teleosts like zebrafish [41] and 

many similarities can be found, except for a big difference regarding the formation 

process of the ventricles: in mammals they arise from evagination, while in zebrafish 

from eversion [42]. Despite this, zebrafish telencephalon contains homologous of limbic 
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regions in mammals, as observed by Lal et al.[43]: the medial zone of dorsal 

telencephalon (Dm) is the homolog of the mammalian amygdala whereas the lateral part 

of dorsal telencephalon (Dl) is the functional equivalent of the hippocampus. Another 

interesting area which plays an important role in sensory information processing, learning 

behaviours and diseases like depression or addiction [44] is the habenula (Hb), an 

evolutionarily conserved diencephalic nucleus which can be found both in mammals and 

zebrafish [44]. It is divided in two principal subdomains which are zebrafish dorsal (dHb) 

and ventral habenula (vHb), the homologous to mammalian lateral and medial habenula, 

respectively. Habenula is a central hub connecting forebrain regions to midbrain units; it 

receives input from prefrontal cortex, thalamus and hypothalamus and has efferent 

connections towards interpeduncular nucleus and raphe nuclei [45], as depicted in Figure 

3. 
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Figure 2: Schematic representation of the adult zebrafish brain seen from dorsal (a), lateral (b), or transverse (c-e) 

views. Brain areas represented in different shades of grey, ventricles in blue and neurogenic zones un magenta.  

(c-e) Transverse sections related to the C-E indicated sections. R: right, L: left, D: dorsal, V: ventral. From N. Jurisch-

Yaksi at al. (2020) [46] 

 

 

 

 

Figure 3: Schematic overview of habenula’s afferent and efferent pathways. Sagittal view of the zebrafish brain. Green: 

afferent. Blue: efferent. Yellow: bidirectional connections. Hb: habenula. OB: olfactory bulb. Vv: ventral area of the 

subpallium. EN: enterpeduncular nucleus. PP: parapineal organ. PO: preoptic area. TH: thalamus. pHT/PT: posterior 

hypothalamus/posterior tuberculum. IPN: interpeduncular nucleus. R: raphe. From S. Fore et al. (2017) [44] 
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Aim of the work 
This thesis has been carried out in collaboration with the Yaksi lab, a Norwegian 

neuroscience laboratory that performs, among others, functional connectivity analysis on 

zebrafish brain. Researchers make daily use of well-established computational tools 

performing operations as clustering neurons, visualizing brain networks and neural 

activity. The aim of this work is to further investigate some aspects of functional 

connectivity still unexplored for the majority of the lab members, exploiting graph-based 

algorithms that are particularly suitable for brain connectivity analysis. The investigations 

took two main directions: 

- Spatial organization: neural assemblies during ongoing activity were 

examined through spectral clustering algorithm with the challenging goal of 

trying to provide a method for estimating the number of clusters, which is 

always a delicate aspect in most clustering algorithms. 

- Temporal organization: the diversity of neural activation switching between 

ongoing and odour stimulated activity was explored thanks to a change of 

prospective which helps to follow the network development during these two 

different cognitive tasks. 

1.3 Lab work 
Yaksi lab is an interdisciplinary laboratory within the Kavli Institute for Systems 

Neuroscience at NTNU in Trondheim, Norway. The Institute is a leading research centre 

in the field of systems neuroscience, and, within it, Yaksi lab focuses on how sensory 

information is encoded in the brain and how it is modulated by learning and by internal 

brain states. Researchers in the lab mainly use zebrafish as animal models and apply a 

combination of functional imaging, optogenetics, molecular genetics and 

electrophysiological recordings in order to understand fundamental principles underlying 

the function and development of animal neural circuits. The lab has three major research 

lines: one investigates sensory computation, another is interested in the role of cilia in 

brain development and function and the last one studies neural circuit mechanisms 

underlying neurological disease such as epilepsy. With regard to sensory computation, 

the branch this thesis focuses on, different brain areas and how they regulate behavioural 
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and sensory tasks are investigated: indeed, during the past years habenula has been one 

of the main focuses of the lab. Many papers have been published about this topic from 

authors from the lab, and one of these was the starting point for this thesis. [47] 

1.4 Our and my contribution 
Unfortunately, due to the Covid pandemic, it was not possible for me to go to Norway 

and to participate in experiments and lab life. For this reason, I was kindly provided with 

the material from past experiments by Emre Yaksi and Ewelina Bartoszek. The dataset 

consisted of neuronal fluorescence traces already extracted from two-photon calcium 

imaging recorded on habenula and telencephalon of three juvenile zebrafish during 

ongoing activity and odour stimulation. I was not able to participate in the experimental 

procedures of fish maintenance and two-photon microscope recordings, therefore 

Bartoszek and colleagues took care of the extraction of fluorescence traces from 

recordings applying well established methods for image alignment and cell detection, 

previously validated and published by the lab itself.  

I personally took care of all the analysis performed on the data. I made the decision on 

what kind of further investigations to perform on the provided dataset, with the constant 

supervision and suggestion of Professor Emre Yaksi. All the algorithms and the statistical 

tests were implemented in MATLAB®. 

1.5 Outline 
This first chapter provides a comprehensive introduction on what are brain and functional 

connectivity, on the animal models used for this study and on the objectives and the 

contributions of this thesis. The rest of this manuscript is organized as follows. In the 

second chapter, the materials and the methodologies used by scientists within the lab will 

be presented. The third chapter will focus on the mathematical aspects of the employed 

graph-based algorithms, the application of which will be explained in the fourth chapter 

together with the obtained results. In the fifth and last chapter, the results will be finally 

discussed and contextualized, and possible future studies will be presented. 
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2 Materials used in the lab 

2.1 Calcium imaging 
Calcium imaging is an optical microscopic technique widely used in many neuroscience 

laboratories in order to record neural activity both in vitro and in vivo. The fundamental 

assumption is that calcium is an indicator of cell activity, because of the Ca2+ ions flow 

entering the neuron during a depolarization event. So, if fluorophores calcium indicators 

are present within the cells the recorded fluorescence signals relate to the spiking 

electrical activity. There are two main classes of calcium indicators: chemical indicators, 

which are fluorescent dyes that bind and label calcium, and genetically encoded calcium 

indicators, which allow the creation of transgenic animal lines expressing the fluorescent 

protein. Yaksi lab makes use of two-photon excitation microscopy to record fluorescence 

signals on transgenic zebrafish lines, which express genes encoding a genetically encoded 

calcium indicator called GCaMP. The setup used in the lab allows the recording of neural 

activity with a resolution of single neurons in awake behaving animals. 

2.2 Two-photon excitation microscopy 
Single-photon and two-photon excitation microscopy are fluorescence imaging tools 

which exploit the ability of a fluorophore to absorb and emit photons. In single-photon 

excitation a fluorophore at a ground state 𝑆0 can absorb a single photon which excites the 

fluorophore to a higher energy state 𝑆1; then the fluorophore relaxes back to 𝑆0 resulting 

in the emission of a fluorescence photon of light. The excitation photon must have a 

wavelength 𝜆1𝑝 related to the energy gap between the two states: 

 𝐸𝑆1
− 𝐸𝑆0

=  
ℎ𝑐

𝜆1𝑝
 (1) 

 

where ℎ is the Plank constant and 𝑐 the speed of light. Two-photon excitation arises from 

the same physical principle but it requires the simultaneous absorption of two photons, 

each carrying half of the energy with respect to single-photon excitation. In this way the 

wavelength of the two exciting photons 𝜆2𝑝 must be twice that of single-photon excitation 

(𝜆2𝑝 = 2 𝜆1𝑝) to fill the same energy gap, and it typically results in an excitation laser  
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Figure 4: Physical principles of single-photon (left) and two-photon (right) excitation. From R. K. P. Benninger and 

D. W. Piston (2013) [48] 

 

beam within the infrared spectrum. A schematic of the two physical principles is shown 

in Figure 4, where it can be seen that emission spectrum is related only to the energy gap 

between the two states and not to the exciting beam wavelength. The enabling technology 

for the two photon microscopy is an extremely powerful laser which generates an ultra-

short pulsed laser beam, needed to ensure a photon flow high enough to increase the 

likelihood that two photons impact on the fluorophore at exactly the same time (within 

10−18 s). [48] In addition, the laser beam is focused through a high numerical aperture 

(NA) objective, which leads to the high density of photons in a specific region called focal 

plane. From the outside, it is negligible that two-photon absorption occurs and virtually 

no fluorescence is generated. Two-photon excitation microscopy allows the recording of 

either single plane or volumetric regions, the latter often with a lower acquisition rate. 

With respect to single-photon or confocal microscopy, two-photon excitation microscopy 

has three main advantages. On one hand, it achieves imaging of extremely thick sections 

focusing the laser beam precisely on the focal plane. On the other hand, the infrared light 

typical of the excitation laser suffers less scattering than the blue light usually used in 

conventional microscopy, and it ensures a wide degree of separation between excitation 

and emission wavelengths, minimizing the spectral overlap between excitation and 

emission beams. 

The recordings for the provided dataset were made with a two-photon microscope 

(Scientifica) equipped with a 16x water immersion objective (Nikon, NA 0.8, LWD 3.0, 
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plan). A mode-locked Ti:Sapphire laser (MaiTai Spectra Physics) tuned to 920 nm 

provided the pulsed (about 80 million pulses per second) laser beam for excitation, and 

recordings were performed as volumetric (5-7 planes with a Piezo (Physik Instrumente 

(PI)) with an acquisition rate of 2.64 Hz (average image size 1536 x 750 pixels). The 

microscope set up can be seen in Figure 5. 

 

 

 

 

Figure 5: Two-photon microscope set up from the Yaksi lab. 
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2.3 Transgenic zebrafish lines and maintenance 
Zebrafish used for this study were three juvenile animals (3 to 4 weeks old) and analysed 

irrespective of their gender. For two-photon calcium imaging in the lab 

Tg(elavl3:GCaMP5) [49], Tg(elavl3:GCaMP6s) and Tg(elavl3:GCaMP6s-nuclear) [50] 

zebrafish lines are used, which express panneuronally GCaMP5s, GCaMP6s and nuclear 

GCaMP6s respectively. GCaMP is a family of genetically encoder calcium indicators that 

when bound to Ca2+ fluorescence green approximately with a peak excitation wavelength 

of 480 nm and a peak emission wavelength of 510 nm [51]. For this reason, the excitation 

laser beam wavelength for two-photon excitation microscopy was tuned to 920 nm. 

NFSA (Norwegian Food Safety Authority) has approved the animal facility and fish 

maintenance. Fish within the lab were kept in 3,5 L tanks in a Tecniplast ZebTec 

Multilinking System with constant conditions (28.5 °C, pH 7.2, 700 mSiemens, 14:10 h 

light/dark cycle). Dry food (SDS 100 up to 14 dpf and SDS 400 for adult animals, Special 

Diets Services, Tecnilab BMI, the Netherlands) was given to fish twice a day, in addition 

to Artemia nauplii (Grade 0, Platinum Label, Argent Laboratories, Redmond, USA) once 

a day. From fertilization to 3 dpf larvae were kept in a Petri dish with egg water (1.2 g 

marine salt in 20 L reverse osmosis (RO) water, 1:1000 0.1% methylene blue) and 

between 3 and 5 dpf in artificial fish water (AFW: 1.2 g marine salt in 20 L RO water). 

2.4 Experimental procedure 
Recordings were performed during a period of approximately 13 minutes and include a 

first period of ongoing activity, three odour stimulations of 30 seconds each alternated 

with periods of no stimulation, and another period of ongoing activity, as schematically 

reported in Figure 6. 

For in vivo imaging, fish were embedded in 2 - 2.5 % low-melting-point agarose (LMP, 

Fisher Scientific) in a recording chamber (Fluorodish, World Precision Instruments). To 

ensure odour to reach the nostrils, the LMP agarose was removed carefully in front of the 

nose, after solidifying for 20 minutes. The constant perfusion of AFW bubbled with 

carbogen (95 % O2 and 5 % CO2) was maintained during the experiment.  The odour 

stimulations were performed with high performance liquid chromatography (HPLC) 

injection valve (Valco Instruments) controlled with Arduino Due. 
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Figure 6: Schematic of the experimental procedure. The three onsets are the odour stimulation onsets, the three green 

panels are the odour stimulation of 30 seconds each. 2P: two-photon microscope. Adapted from Bartoszek et al.(2021) 

[47] 

 

Before each experiment, a trial with fluorescein (10-4 M in AFW) was performed to 

determine precise onset of odour delivery. 

2.4.1 Odour preparation 
Odour panel used in the lab consists of food odour (1g/50ml dilution), skin extract 

(1g/50ml dilution), urea (10-4 M), bile-acid mixture (taurocholic acid, taurodeoxycholic 

acid at 5x10-4 M), amino acid mixture (Alanine, Phenylalanine, Methionine, Histidine, 

Cysteine, Arginine, Glutamic acid at 10-4 M), and ammonium chloride (10-4 M). All 

odorants were purchased from Sigma Aldrich. Food odour was prepared using 

commercially available fish food: 1 g of food particles was incubated in 50 ml of fish 

water (FW) for at least 1 h, filtered through filter paper, and diluted to 1:50. For skin 

extract [52] adult zebrafish were first euthanized in ice-cold water and decapitated, the 

skin was peeled off from the body. 1g of skin was incubated in 2 ml of AFW and was 

vortexed at 1300 rpm for 1 h at 4 °C. After, the skin extract was dissolved in 50 ml of 

AFW and filtered through the filter paper. All odours were prepared from the frozen 

stocks immediately before use. 
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2.5 Provided dataset extraction 
Two-photon microscopy extracted images were aligned using a well-established method 

described in [53][18]. Recordings were then visually inspected for remaining motion and 

vertical drifts, and the ones with motion artifacts were discarded. Regions of interest 

(ROIs) corresponding to neurons were automatically detected using a template matching 

algorithm [49][18] and visually confirmed. To calculate the time trace of each neuron, 

pixels belonging to each ROI were averaged over time. For each ROI, fractional change 

in fluorescence (Δ𝐹/𝐹) relative to baseline was calculated. 

Ultimately, the provided recordings come from telencephalon and habenula of three fish 

during approximately 13 min of ongoing activity with three odour stimulation periods. 

For each fish brain region, the dataset is made up of a data matrix with neurons along the 

rows, time samples along the columns and Δ𝐹/𝐹 as entries, the neurons spatial 

coordinates and the three odour onsets. 
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3 Basis of graph theory and spectral graph theory 
Graph theory is an extremely wide branch of modern mathematics and has become 

increasingly popular over the last decades. Here the foundations for the understanding of 

the mathematical methods applied in this thesis will be laid, which are only a small part 

of possible notions and definitions. They will cover basic definitions of a graph, how to 

construct a graph from data and some typical graph properties involving a special matrix 

called Laplacian, which are referred as spectral properties: a clustering tool and a method 

for drawing the graph. The two distance measures used to assess distance between nodes 

within a graph are then explained. 

3.1 Definition of a graph 
A graph 𝐺 is an intuitive mathematical structure which aims to represent the pairwise 

relation between objects within a typically 2D or 3D drawing. It consists of a set of 𝑛 

finite number of these objects, called vertices 𝑉 = {𝑣1, … , 𝑣𝑛} (or nodes), linked by a set 

of edges 𝐸 which represent the relations between vertices, and it is indicated by 𝐺 =

(𝑉, 𝐸). Within the drawing vertices are depicted by circular points, labelled often by 

numbers or letters, and edges by line connecting two vertices. The edges can be both 

unweighted and weighted, meaning that the strength of the relation can be modulated by 

a weight. In an unweighted graph all the edges are equally heavy, and conventionally 

weighted by ones.  

Based on the type of relation which can connect two vertices, graphs are divided into two 

big categories: undirected and directed graphs. In undirected graphs the relation doesn’t 

have a direction and the link between two vertices indicates a two-way relationship. In 

the drawing it results in a simple line between the two nodes. On the other hand, in 

directed graphs for each edge there are a starting vertex and an ending one. The relation 

is indeed directed one-way oriented and it is depicted by an arrow between the two nodes. 

So undirected graphs are useful for all the cases in which the relationship to be modelled 

is symmetric while directed graphs are mostly used for the application characterized by a 

causal relation or a temporal ordering. Another definition is based on the number of edges 

allowed between two nodes: if more than one edge can link two different nodes the 

resulting graph will be a multigraph. There is also the possibility for self-loops to exist. 
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A self-loop occurs when a single edge, which could be both directed and undirected, 

connects a node to itself so that the starting vertex is also the ending one. If a graph is not 

a multigraph and does not have self-loops it is referred as simple graph. In this work only 

undirected simple graph will be used. 

Ultimately the graph as the abstract and non-visual mathematical structure should not be 

confused with the drawing of the graph itself. There are infinite possible ways to visually 

represent the same graph because points and lines can be arranged in an infinite number 

of ways on a sheet of paper while the number of nodes and the structural connections 

between them remain exactly the same. Indeed, unless the coordinates of the nodes have 

a known geometric meaning, different layouts can be suitable for different purposes. 

Sometimes the axes of the graph do not even have much importance; often, as in the case 

of this work, the axes represent an arbitrary scale not directly related with any physical 

quantity, but which can be useful for defining some metrics or distances within the graph 

itself. The field of study interested in such layouts and representations is known as graph 

drawing. In this thesis, only one particular approach will be analysed in detail in the 

paragraph about spectral graph drawing. 

3.2 Similarity graph 
The idea of constructing a similarity graph with the elements of a dataset is widely used 

mainly with respect to clustering algorithms [54], but it could be a useful representation 

for many other different purposes. Given a set of 𝑛 data points 𝑥1, … , 𝑥𝑛 and a measure 

of pairwise similarity 𝑠𝑖𝑗 ≥ 0  between all pairs of points 𝑥𝑖 and 𝑥𝑗 it is always possible 

to arrange them in a form of similarity graph 𝐺 = (𝑉, 𝐸), in which vertices 𝑣 are the 𝑛 

data points, and edges 𝑒 between nodes exist and are weighted based on the pairwise 

similarity metric. In general, points 𝑥𝑖 could be defined in a space of any dimensionality 

𝑚 ℝ𝑚, as long as the non-negative similarity measure 𝑠𝑖𝑗 exists. Often 𝑠𝑖𝑗 is defined 

starting from some well-known measure of pairwise distance  𝑑𝑖𝑗 between 𝑥𝑖 and 𝑥𝑗, 

based on what data points actually represent such as Euclidean, Mahalanobis, Cosine or 

Correlation distance. 
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For the purposes of this thesis two distance measures are used in this context: 

- Correlation distance: 

 

𝑑𝑖𝑗
𝐶𝑂𝑅𝑅 = 1 −

(𝑥𝑖 − �̅�𝑖)(𝑥𝑗 − �̅�𝑗)′

√(𝑥𝑖 − �̅�𝑖)(𝑥𝑖 − �̅�𝑖)′ √(𝑥𝑗 − �̅�𝑗)(𝑥𝑗 − �̅�𝑗)′

 

                                              
                                                with   �̅�𝑠 =

1

𝑛
∑ 𝑥𝑠𝑡𝑡  

 

 
(2) 

- Cosine distance:  

 𝑑𝑖𝑗
𝐶𝑂𝑆 = 1 −

𝑥𝑖  𝑥𝑗′

√(𝑥𝑖 𝑥𝑖′)(𝑥𝑗 𝑥𝑗′) 

  
(3) 

 

It has been said that edges are related to similarities (or distances) but there could be 

different ways for modelling the local neighbourhood relations between data points. The 

most commonly used methods in literature to construct similarity graphs and assign edges 

are: 

-  ε-neighbourhood 

- 𝑘-nearest neighbour 

- fully connected graph 

In a ε-neighbourhood graph two nodes are connected if the pairwise distance between 

them is smaller than a fixed radius ε (or the similarity is bigger than a certain threshold). 

This method requires a priori knowledge about the distance range that can be found 

between data points in order to fix the parameter ε. Since all the edges have the same 

scale given by ε, weights do not add much information to the graph so that this kind of 

graph is usually unweighted. 𝑘-nearest neighbour method connects vertex 𝑣𝑖 to vertex 𝑣𝑗  

if 𝑣𝑗  belongs to the group made up by the first 𝑘 neighbours of 𝑣𝑖, in terms again of 

distance or similarity. However, in this way one should obtain a directed graph because 

the definition of neighbourhood is not symmetric. In order to make the graph undirected 

there are two possible solutions. One is to disregard the direction of the edges and to 

connect 𝑣𝑖 and 𝑣𝑗  if either 𝑣𝑗  is neighbour of 𝑣𝑖 or 𝑣𝑖 is neighbour of 𝑣𝑗 . In this way the 
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obtained graph is the so called complete 𝑘-nearest neighbour graph (often simply 

indicated as 𝑘-nearest neighbour graph). The second option, which leads to the mutual 𝑘-

nearest neighbour graph, is to connect 𝑣𝑖 and 𝑣𝑗  if both 𝑣𝑗  is neighbour of 𝑣𝑖 and 𝑣𝑖 is 

neighbour of 𝑣𝑗 . This choice is obviously stricter than the first one, and it results in a 

smaller number of edges and a way less connected graph. The parameter 𝑘 has to be fixed 

for both types of 𝑘-nearest neighbour graphs, and they are often reported with weighted 

edges because the scale is relative to the single vertex and more informative than in ε-

neighbourhood graph. In a fully connected graph, each vertex is connected to all the 

others, and edges can be weighted by their similarities. This kind of graph does not require 

parameters to be set, but it is often uninformative because it actually does not model any 

neighbourhood unless the similarity function itself models local characteristics. 

The question about what kind of similarity graph to use and how to construct it is not 

trivial, and it could depend on the application as well as on the type of dataset. The 

definition of the similarity function is fundamental, and it has to allow a good modelling 

of the local neighbourhood. A metric able to represent the short-range behaviour (between 

similar nodes) is recommended because often the long-range behaviour (between distant 

nodes) is not informative and useful for the local neighbourhood modelling. One possible 

definition of a pairwise similarity which cares about local similarities starting from 

pairwise distance is the Gaussian Similarity function 

 𝑠𝑖𝑗 = exp (− 
𝑑𝑖𝑗

2

2𝜎2
) (4) 

 

defined in terms of distance 𝑑𝑖𝑗 and the parameter 𝜎. Claims about how to select suitable 

values for the parameters are reported in [55] by Von Luxburg. The author advises to 

keep the Gaussian function simple setting 𝜎 equal to 1, and some rules of thumb for some 

typical parameters to assign when working with ε-neighbourhood and 𝑘-nearest 

neighbour graphs. In particular, for the first case he suggests choosing ε “as the length of 

the longest edge in a minimal spanning tree of the fully connected graph”, while for the 

complete 𝑘-nearest neighbour case a good starting point is to set 𝑘 equal to the natural 

logarithm of the number of nodes log (𝑛). He admits that for the mutual 𝑘-nearest 
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neighbour graph, such rule of thumb does not exist and he suggests to choose 𝑘 

significantly larger than for the complete 𝑘-nearest neighbour one. 

3.3 Graph notation 
Let be 𝐺 = (𝑉, 𝐸) an undirected, weighted graph made up of 𝑛 vertices. In the following, 

vertices will be indicated as 𝑣𝑖, while the edge between vertices 𝑣𝑖 and 𝑣𝑗  will be referred 

as 𝑒𝑖𝑗, with 𝑖, 𝑗 = 1, … , 𝑛. Since the graph is weighted, we can associate the weight 𝑤𝑖𝑗 ≥

0 to the edge 𝑒𝑖𝑗. If 𝑤𝑖𝑗 = 0 there is no edge connecting 𝑣𝑖 to 𝑣𝑗 . Furthermore, if the graph 

is unweighted all the following considerations remain valid with 𝑤𝑖𝑗 = 1 for each existing 

edge. Weights 𝑤𝑖𝑗 are the entries of the squared 𝑛 × 𝑛 adjacency matrix 𝐴 of the graph, 

so that single elements of 𝐴 will be: 

 𝐴𝑖𝑗 = 𝑤𝑖𝑗        𝑖, 𝑗 = 1, … , 𝑛 (5) 
 

For an undirected graph 𝐴 is symmetric because it must be 𝑤𝑖𝑗 = 𝑤𝑗𝑖. 

In the case of similarity graph a natural way to see pairwise similarity measure 𝑠𝑖𝑗 

between every pair of nodes is the so called similarity matrix 𝑆, simply defined as: 

 𝑆𝑖𝑗 = 𝑠𝑖𝑗        𝑖, 𝑗 = 1, … , 𝑛 (6) 
 

In this case the graph and so the adjacency matrix 𝐴 can be obtained from 𝑆 through one 

of the methods explained in the above subchapter 2.2, such that for example 𝐴 = 𝑆 for a 

fully connected graph. 

The degree of a vertex 𝑣𝑖 is a measure of how much it is connected, and it is defined as: 

 𝑑𝑖 = ∑ 𝑤𝑖𝑗

𝑛

𝑗=1

 (7) 
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It is possible to define a degree matrix 𝐷 as the 𝑛 × 𝑛 diagonal matrix with  𝑑1, … , 𝑑𝑛 on 

the principal diagonal, so that: 

 𝐷𝑖𝑗 = {
𝑑𝑖            𝑖 = 𝑗  

0           𝑖 ≠ 𝑗
          𝑖, 𝑗 = 1, … , 𝑛 (8) 

 

An example of an undirected, unweighted simple graph with its relating adjacency and 

degree matrices is shown in Figure 7. 

 

Figure 7: Adjacency matrix A and degree matrix D for an undirected, unweighted graph. 

 

 

 

Figure 8: Undirected graph made up of 3 connected components. 
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The last useful definition to include is about connected component. Given a subset of 

vertices 𝑄 ∈ 𝑉, its complement 𝑉\𝑄 it is denoted by �̅�. The subset 𝑄 is called a connected 

component if each vertex within 𝑄 has at least one edges and there are no connections 

between vertices in 𝑄 and  �̅� (Figure 8). 

3.4 Graph Laplacians and spectral graph theory 
Another important matrix for a graph is the graph Laplacian, which has an entire branch 

dedicated to the study of it, its eigenvalues and eigenvectors called spectral graph theory 

[56]. The name spectral comes simply from the fact that eigenvalues of a matrix are called 

its spectrum. Spectral decomposition (or eigendecomposition) of a diagonalizable matrix 

is a powerful algebraic tool for representing the matrix and some important related 

features; moreover, graph Laplacian can be seen as a sort of matrix representation of the 

discrete Laplacian algebraic operator, and because of this it brings along with it many 

interesting properties. The Laplacian matrix can also be used to construct low 

dimensional embeddings useful in a variety of applications. As expected, many authors 

have been extensively studying these topics, and a wide literature about graph Laplacian 

and its spectral properties can be found [56][57][58][59][60]. For the purposes of this 

thesis, only main definitions and few summarized major features of the graph Laplacian 

will be provided, so if the reader is interested in further insights about these topics the 

aforementioned literature will supply broad and detailed studies, from a purely 

mathematical and algebraic point of view. 

For the sake of clarity many different definitions of Laplacian matrices exist in literature, 

based on the definition the author gives. Here the more common definitions of 

unnormalized and normalized Laplacian will be reported and discussed. 

3.4.1 The unnormalized graph Laplacian 
The unnormalized Laplacian of a simple graph is the squared 𝑛 × 𝑛 matrix defined as: 

 𝐿 = 𝐷 − 𝐴 (9) 
 

where 𝐷 is the degree matrix and 𝐴 is the adjacency matrix. From this simple definition 

the entries of the Laplacian 𝐿 result in: 
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 𝐿𝑖𝑗 = {
𝑑𝑖             𝑖 = 𝑗  

−𝑤𝑖𝑗    𝑖 ≠ 𝑗           𝑖, 𝑗 = 1, … , 𝑛 (10) 

 

According to what has been said before, only some of the main features will be here 

reported: 

- 𝐿 is real and symmetric so its eigenvalues are real and eigenvectors orthogonal 

- 𝐿 is positive semi-definite and hence its eigenvalues are non-negative 

- 𝐿 has 𝑛 real non-negative eigenvalues 𝜆𝑖, such that 0 = 𝜆1 ≤ 𝜆2 ≤ ⋯ ≤ 𝜆𝑛 

- 0 is the smallest eigenvalue of 𝐿, and the corresponding eigenvector is the 

constant one vector 1𝑛 

- The multiplicity of the 0 eigenvalue is equal to the number of connected 

components of the graph 𝐺 

3.4.2 The normalized graph Laplacians 
The normalized graph Laplacian can be defined in two different ways which are often 

called the symmetric and the random walk Laplacian. Their definitions are, respectively: 

 
𝐿𝑠𝑦𝑚 = 𝐷−

1
2𝐿𝐷−

1
2 = 𝐼 − 𝐷−

1
2𝐴𝐷−

1
2 

 
𝐿𝑟𝑤 = 𝐷−1𝐿 = 𝐼 − 𝐷−1𝐴 

(11) 
 

(12) 
 

Both are squared 𝑛 × 𝑛, but only 𝐿𝑠𝑦𝑚 is symmetric and hence the name. The random 

walk Laplacian 𝐿𝑟𝑤 derived from its definition: 𝐷−1𝐴 is indeed the transition matrix of a 

random walker on the graph, and it is related with the likelihood for a random walker to 

be located on a certain vertex. 

Again, the main features of the two normalized Laplacian are summarized here: 

- 𝐿𝑠𝑦𝑚 and 𝐿𝑟𝑤 are positive semi-definite and they both have 𝑛 non-negative 

real eigenvalues 0 = 𝜆1 ≤ 𝜆2 ≤ ⋯ ≤ 𝜆𝑛 

- 𝜆 is an eigenvector of 𝐿𝑟𝑤 with eigenvector 𝑢 if and only if 𝜆 is an eigenvector 

of 𝐿𝑠𝑦𝑚 with eigenvector 𝑤 = 𝐷
1

2𝑢 
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- 0 is the smallest eigenvalue of both 𝐿𝑠𝑦𝑚 and 𝐿𝑟𝑤; for 𝐿𝑟𝑤 its corresponding 

eigenvector is the constant one vector 1𝑛, while for 𝐿𝑠𝑦𝑚 the corresponding 

eigenvector is the vector 𝐷
1

21𝑛 

- For both 𝐿𝑠𝑦𝑚 and 𝐿𝑟𝑤 the multiplicity of the 0 eigenvalue is equal to the 

number of connected components of the graph 𝐺 

- 𝜆 is an eigenvector of 𝐿𝑟𝑤 with eigenvector 𝑢 if and only if 𝜆 and 𝑢 solve the 

generalized eigen-problem 𝐿𝑢 = 𝜆𝐷𝑢 

It is important to highlight the last property about the generalized eigen-problem, which 

establishes the possibility to derive eigenvectors of 𝐿𝑟𝑤 just solving the generalized 

eigenvalue problem 𝐿𝑢 = 𝜆𝐷𝑢. 

3.5 Spectral clustering 
Intuitively clustering aims to group together similar objects while dividing dissimilar 

ones. Many different algorithms have been developed for this purpose, and they are 

widely used in a large variety of fields such as biology, marketing, computers science and 

many others. Conventionally clustering algorithms are divided in categories depending 

on the notion of clusters they use; the most popular types of clustering algorithms can be 

divided in the following classes: 

- Centroids-based clustering which includes the 𝑘-means algorithm 

- Connectivity-based clustering like hierarchical methods 

- Density-based clustering which discriminate dense region in the data space 

- Fuzzy or soft clustering which introduce a likelihood of belonging to a cluster 

As a matter of fact, these most popular classes don’t include a wide variety of algorithms 

such as all the graph-based models or the subspace models, which slightly manipulate the 

data before applying a clustering algorithm, and spectral clustering fall right into this 

category. 

Looking at the naïve definition of clustering given above referring to weighted similarity 

graph, one can easily translate clustering into partitioning the graph in such a way that 

edges between nodes belonging to the same cluster are heavier than edges connecting 
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nodes in different clusters. This is exactly what spectral clustering algorithms do, 

exploiting the possibility to arrange data within a graph and so the useful properties of 

the graph Laplacian, that can be both unnormalized and normalized. The most common 

spectral clustering algorithms mainly differ in what kind of Laplacian matrix they use, 

but they are substantially similar to each other. They exploit the change of representation 

of the information contained in the similarity graph allowed by the spectrum of the 

Laplacian, which can lead to a new reduced-dimensional representation that enhance the 

cluster-properties within the data. In this new space a simple 𝑘-means clustering 

algorithm can be applied in order to obtain indices for the final clusters. Because of the 

application of 𝑘-means algorithm, the number of clusters 𝑘 must be known a priori and it 

is the only input, together with the similarity matrix obtained from data, of every spectral 

clustering algorithm. 

Here a pseudocode for the three main spectral clustering algorithms will be reported, and 

a method which can be useful for estimating the number of clusters common to the three 

of them will be then explained. For the discussion of this topic reference is made to the 

milestone tutorial of von Luxburg [55], and the same notation introduced above will be 

adopted. From a dataset of 𝑛 points  𝑥1, … , 𝑥𝑛 to be clustered in 𝐶1, … , 𝐶𝑘 clusters, and a 

measure of pairwise similarity 𝑠𝑖𝑗, a similarity matrix 𝑆 ∈ ℝ𝑛×𝑛 can be computed. 𝑆 and 

the number of clusters 𝑘 will be the only inputs for all the three algorithms. In the 

following there will be no explanation of the 𝑘-means clustering algorithm which will be 

taken for granted.  

3.5.1 Unnormalized spectral clustering 
Input: similarity matrix 𝑆 ∈ ℝ𝑛×𝑛, number of clusters 𝑘 

- Construct a similarity graph by one of the algorithms described in 3.2. Let 𝐴 

be its weighted adjacency matrix 

- Compute the unnormalized Laplacian 𝐿 

- Compute the first 𝑘 eigenvectors 𝑢1, … , 𝑢𝑘 of 𝐿 

- Let 𝑈 ∈ ℝ𝑛×𝑘 be the matrix containing the vectors 𝑢1, … , 𝑢𝑘 as columns 

- For 𝑖 = 1, … , 𝑛, let 𝑦𝑖 ∈ ℝ𝑘 be the vector corresponding to the 𝑖-th row of 𝑈 



26 
 

- Cluster the points (𝑦𝑖)𝑖=1,…,𝑛 in ℝ𝑘 with the 𝑘-means algorithm into clusters 

𝐵1, … , 𝐵𝑘 

Output: clusters 𝐶1, … , 𝐶𝑘 with 𝐶𝑖 = {𝑥𝑖|𝑦𝑖 ∈ 𝐵𝑖} 

3.5.2 Normalized spectral clustering 
Based on which version of normalized Laplacian is used, two different normalized 

spectral clustering algorithms exist and are usually used in literature. 

According to Ng, Jordan and Weiss [61] who used symmetric normalized Laplacian the 

algorithm is made up of the following steps.  

Input: similarity matrix 𝑆 ∈ ℝ𝑛×𝑛, number of clusters 𝑘 

- Construct a similarity graph by one of the algorithms described in 3.2. Let 𝐴 

be its weighted adjacency matrix 

- Compute the symmetric normalized Laplacian 𝐿𝑠𝑦𝑚 

- Compute the first 𝑘 eigenvectors 𝑢1, … , 𝑢𝑘 of 𝐿𝑠𝑦𝑚 

- Let 𝑈 ∈ ℝ𝑛×𝑘 be the matrix containing the vectors 𝑢1, … , 𝑢𝑘 as columns 

- Form the matrix 𝑇 ∈ ℝ𝑛×𝑘 from 𝑈 by normalizing the rows to 1-norm, that is 

set 𝑡𝑖𝑗 = 𝑢𝑖𝑗 (∑ 𝑢𝑖𝑘
2

𝑘 )1/2⁄  

- For 𝑖 = 1, … , 𝑛, let 𝑦𝑖 ∈ ℝ𝑘 be the vector corresponding to the 𝑖-th row of 𝑈 

- Cluster the points (𝑦𝑖)𝑖=1,…,𝑛 in ℝ𝑘 with the 𝑘-means algorithm into clusters 

𝐵1, … , 𝐵𝑘 

Output: clusters 𝐶1, … , 𝐶𝑘 with 𝐶𝑖 = {𝑥𝑖|𝑦𝑖 ∈ 𝐵𝑖} 

On the other hand, Shi and Malik [62] implemented an algorithm in order to segment 

images, and the pseudocode of their algorithm is the following. 

Input: similarity matrix 𝑆 ∈ ℝ𝑛×𝑛, number of clusters 𝑘 

- Construct a similarity graph by one of the algorithms described in 3.2. Let 𝐴 

be its weighted adjacency matrix 

- Compute the unnormalized Laplacian 𝐿 
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- Compute the first 𝑘 generalized eigenvectors 𝑢1, … , 𝑢𝑘  of the generalized 

eigenproblem 𝐿𝑢 = 𝜆𝐷𝑢 

- Let 𝑈 ∈ ℝ𝑛×𝑘 be the matrix containing the vectors 𝑢1, … , 𝑢𝑘 as columns 

- For 𝑖 = 1, … , 𝑛, let 𝑦𝑖 ∈ ℝ𝑘 be the vector corresponding to the 𝑖-th row of 𝑈 

- Cluster the points (𝑦𝑖)𝑖=1,…,𝑛 in ℝ𝑘 with the 𝑘-means algorithm into clusters 

𝐵1, … , 𝐵𝑘 

Output: clusters 𝐶1, … , 𝐶𝑘 with 𝐶𝑖 = {𝑥𝑖|𝑦𝑖 ∈ 𝐵𝑖} 

This algorithm exploits the property about the generalized eigen-problem of 𝐿, so that the 

computed eigenvectors correspond to the eigenvectors of 𝐿𝑟𝑤. 

3.5.3 Estimation of the number of clusters 
Spectral clustering exploits the properties of the graph Laplacian which are related to 

some interesting features of the graph such as the number of connected components. It 

has already been mentioned that the multiplicity of the null eigenvalue of the graph 

Laplacian is equal to the number of connected components within the graph, and this 

property holds for both the unnormalized and the two normalized Laplacians. Even in the 

case the graph is made up of a single connected component there is a useful tool called 

eigengap heuristic which compares the magnitude of the first eigenvalues in order to 

choose the optimal number of clusters 𝑘. The aim is to choose a 𝑘 in such a way that the 

first 𝜆1, … , 𝜆𝑘 are small if compared to the relatively larger eigenvalue 𝜆𝑘+1. The first 

eigenvalue 𝜆1 will be 0 and all the eigenvectors will be sorted in ascending order because 

of the properties mentioned in 3.4, but this heuristic method looks for the first relatively 

important gap in the magnitude of the eigenvalues. For the justifications of this method 

reference is always made to [55], from which Figure 9 is shown as example of the 

application of this method. The application of this heuristic procedure is quite struggling 

when clusters within the data are noisy or overlapping, and finding a well-defined gap on 

the eigenvalues distribution can be tricky and not always possible. 
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Figure 9: Example of eigengap heuristic method. Three synthetic datasets represented as histogram of the sample 

(above), and the plot of the first 10 eigenvalues of 𝐿𝑟𝑤 (under). The number of clusters is always 4, but the noise and 

the overlap between clusters increase from left to right. From U. Von Luxburg  (2007) [55] 

 

 

3.6 Spectral graph drawing: the eigen-projection in HDE subspace 

method 
Graph drawing is the area of mathematics and graph theory focusing on the two-

dimensional (sometimes three-dimensional) representation of a network. There are many 

conventional layout methods commonly used in literature such as force-based, spectral, 

orthogonal and layered. The branch of spectral graph drawing, or spectral layout, exploits 

the eigenvectors of the graph Laplacian, often manipulated by some algorithm, for 

obtaining axes for the drawing of the graph [63]. In this thesis the algorithm presented by 

Koren in [64] was used. Author argues that this new algorithm requires a very low 

computational time compared to others spectral algorithms, and it results in “nice” and 

faithful representations of the inner structure of the graph. This algorithm is a 

modification of the so called eigen-projection method firstly proposed by Hall [65] and 

explained in [64], and it requires first the construction of a high-dimensional embedding 

(HDE) subspace, then the eigen-projection of the coordinates of the nodes exploiting the 

graph Laplacian, allowing the final 2D visualization of the graph. The main advantage of 

this method is that, compared to the standard eigen-projection method, it needs 

calculating the first few eigenvectors of a squared matrix made up of fixed, as low as 
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desired, dimensions based on the subspace dimensions, instead of calculating them for 

the huge graph Laplacian of a graph with a high number of nodes. 

The main two steps are here presented following the notation of [64] where 𝑛 is the 

number of vertices in the graph, but forcing the final graph layout to be a 2-dimensional 

layout (𝑝 = 2 in [64]), defined by 2 vectors 𝑥1, 𝑥2 ∈ ℝ𝑛 where 𝑥1(𝑖), 𝑥2(𝑖) are the two 

coordinates of the vertex 𝑣𝑖. This choice was made to improve readability and clarity of 

the following topics of which no mathematical proof will be given here. For further 

knowledge please see [64]. 

3.6.1 High-dimensional embedding (HDE) subspace 
The high-dimensional embedding (HDE) is a sort of 𝑚-dimensional layout of the graph, 

with the number of dimensions 𝑚 which can be chosen from the user, and it is made up 

of 𝑚 axes 𝜒1, … , 𝜒𝑚 ∈ ℝ𝑛. For the construction of such embedding, 𝑚 pivots vertices 

are selected by a heuristic for the k-centers problem, as explained in details in [64], so 

that they are uniformly distributed over the graph. Each 𝜒𝑖 is constructed by assigning to 

every 𝑗-th component, with 𝑗 = 1, … , 𝑛, graph-theoretical distance between vertices 𝑣𝑖 

and 𝑣𝑗 , which is defined as the length of the shortest path connecting the two nodes and 

is calculated using breadth-first-search (BFS) [66]. By construction, axis 𝜒𝑖 is related to 

the graph “point of view” of the 𝑖-th pivot vertex. The subspace obtained so far needs an 

orthonormalization process, achieved through a Gram-Schmidt procedure, leading the 

HDE subspace 𝜒1, … , 𝜒𝑚 to form a valid basis. Finally, vectors are arranged column-wise 

building the 𝑛 × 𝑚 matrix 𝜒. 

3.6.2 Eigen-projection 
This step is the one actually related to spectral properties of the graph Laplacian, and as 

general purpose it aims to project in a final space (in this case the 2D final drawing) graph 

nodes which are initially defined in a higher dimensional subspace exploiting the graph 

Laplacian. As many other graph drawing approaches also the eigen-projection can be seen 

as the solution of a constrained minimization problem, as shown in the reference by Koren 

[64]. In particular, the author manipulates the starting constrained minimization problem 

of the two vertex coordinates 𝑥1, 𝑥2 to the general form: 
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min
𝑥1,𝑥2

∑ (𝑥𝑘)𝑇𝐿𝑥𝑘
𝑘=1,2

∑ (𝑥𝑘)𝑇𝑥𝑘
𝑘=1,2

 (13) 

subject to: (𝑥𝑘)𝑇𝑥𝑙 = 𝛿𝑘𝑙 
(𝑥𝑘)𝑇 ∙ 1𝑛 = 0 

𝑘, 𝑙 = 1,2 
𝑘, 𝑙 = 1,2 

 

in which 𝐿 is the unnormalized graph Laplacian and 𝛿𝑘𝑙 is the Kronecker delta which is 

defined as 1 if 𝑘 = 𝑙 and 0 in all the other cases. 

Moreover, he translates this information in the case he wants to optimize 𝑥1, 𝑥2 within 

the HDE subspace, replacing them with 𝜒𝑦1, 𝜒𝑦2, in which 𝑦1, 𝑦2 ∈ ℝ𝑚 are the two 

lowest eigenvectors (brief for eigenvectors of the two lowest eigenvalues) of the 𝑚 × 𝑚 

matrix 𝜒𝑇𝐿𝜒. The new constrained minimization problem becomes the following: 

 
min
𝑦1,𝑦2

∑ (𝑦𝑘)𝑇𝜒𝑇𝐿𝜒𝑦𝑘
𝑘=1,2

∑ (𝑦𝑘)𝑇𝑦𝑘
𝑘=1,2

 (14) 

subject to: (𝑦𝑘)𝑇𝑦𝑙 = 𝛿𝑘𝑙 𝑘, 𝑙 = 1,2 
 

To briefly sum up the whole process, Koren achieves the two 𝑛-dimensional coordinates 

𝑥1, 𝑥2 of the 𝑛 graph vertices as following: 

- Choosing 𝑚 pivots vertices 

- Constructing the 𝑛 × 𝑚 orthogonal matrix 𝜒 whose columns span the HDE 

subspace 

- Computing 𝑦1, 𝑦2, the two lowest eigenvectors of the 𝑚 × 𝑚 matrix 𝜒𝑇𝐿𝜒 

where 𝐿 is the unnormalized Laplacian of the original graph 

- Finally extracting the coordinates as 𝑥1, 𝑥2 = 𝜒𝑦1, 𝜒𝑦2 

This method has always been applied with a 100-dimensional HDE, and in the following 

the two axes within which coordinates 𝑥1, 𝑥2 will be represented will be referred as 

arbitrary units (AU) and always indicated with a reference to this chapter, so that the 

reader can easily find out their mathematical meaning if interested. 
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3.7 Distance metrics between nodes 
Also in literature to give meaning to distance between nodes within a graph is often tricky 

and it strongly depends on what kind of network one is looking at and what nodes and 

edges actually represent. For this study two measures were considered and briefly 

explained hereafter. 

3.7.1 Shortest path distance 
Shortest path distance (or geodesic distance) is the mainly used and accepted distance 

metric when dealing with graphs. It can be seen as the path connecting two nodes with 

the minimum cost. This results in two different definitions of shortest path distance, each 

related to the kind of simple graph that could be both unweighted and weighted. For an 

unweighted simple graph the cost relates only to the number of edges between the two 

nodes, while for a weighted simple graph the shortest path is that for which the sum of 

the weights of its constituents edges is minimized. The distance is then the number of 

edges or the sum of their weights, respectively. This metric is independent from the layout 

of the graph because edges connecting nodes are the same regardless of the graph 

drawing. Its computation belongs to the field of shortest path problems, for which several 

mathematical methods have been proposed and compared during years [67], but for the 

purposes of this thesis the intuitive definition given is sufficient. 

3.7.2 Euclidean distance 
Euclidean distance is one of the most widely used distance metrics outside the world of 

graph theory. Indeed it requires that points between which to calculate the distance have 

assigned coordinates. It has been said that not always in graph theory nodes are drawn 

with meaningful coordinates, so this metric that strongly depends on the layout is often 

discarded. In the case of this study the graph layout is constructed through the eigen-

projection in HDE subspace method, which leads the nodes coordinates to be meaningful. 

They do not actually have a physical meaning, but the two dimensions expressed in 

arbitrary units used for the drawing relates to some special matrices as seen in 3.6. For 

these reasons the decision to use the Euclidean distance was made in order to have a 

measure which depends on the used graph layout, as opposed to the shortest path distance. 
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For the 2D case the mathematical definition of Euclidean distance between the points 𝑝 

and 𝑞 having coordinates (𝑝1, 𝑝2) and (𝑞1, 𝑞2) respectively, is: 

 𝑑𝐸(𝑝, 𝑞) = √(𝑞1 − 𝑝1)2 + (𝑞2 − 𝑝2)2 (15) 
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4 Applications and results 
The applications of the mathematical methods and the corresponding results will be 

divided in two sections. The first one will focus on spatial organization and neural 

assemblies which can be found applying spectral clustering on neurons. The second one 

will aim to investigate on temporal organization and network development and changes 

switching between ongoing and odour stimulated activity. 

4.1 Spatial organization and neural assemblies 
Neural assemblies are groups of neurons which activate synchronously, and they are a 

very interesting aspect of functional connectivity. Clustering algorithms are a natural tool 

for assessing them starting from neural activity traces recorded with some functional 

imaging technique. The main reason for the application of spectral clustering is the 

possible application of the eigengap heuristic method for estimating the optimal number 

of clusters, which is always a tricky aspect for clustering algorithms. 

In particular, in this work spectral clustering is applied to neural fluorescence signals 

recorded with two-photon excitation microscopy during ongoing activity in zebrafish 

both in the habenula, a region with relatively few neurons, and in the telencephalon, made 

up of many more neurons compared to habenula. For the three available fish the number 

of detected neurons in both habenula and telencephalon is shown in Table 1. 

Each fish brain region was analysed separately through all the following operations. The 

habenula of one fish will be taken as example for showing the applied methods, and 

finally also images obtained for the telencephalon of the same fish will be shown in order 

to highlight the differences. 

 

 Fish 1 Fish 2 Fish 3 
Habenula 696 976 858 

Telencephalon 5213 4389 7947 
 

Table 1: Number of detected neurons for habenula and telencephalon of the 3 fish. 
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4.1.1 Graph construction 
From the whole recorded activity only 3.8 minutes (the equivalent of 600 time-samples 

at a sampling frequency of 2.64 Hz, starting after the first 100 samples) of ongoing 

activity were isolated, as shown in Figure 10A and 10B, respectively. 

Then a similarity graph is constructed with these ongoing signals in which each node 

represents a neuron and edges are the most significant similarities between neural 

activations. More precisely Δ𝐹/𝐹 neural signals (the horizontal rows of the matrix shown 

in Figure 10B) are the 𝑛 data points and the similarity measure between all pairs of points 

is the Gaussian similarity function (4) computed with 𝜎 = 1 and the correlation distance 

(2). This distance metric measures the dependence of two vectors, emphasizing the 

synchronism of the activations. With the similarity matrix obtained so far, the complete 

𝑘-nearest neighbour similarity graph can be constructed, setting 𝑘 equal to log (𝑛). The 

obtained graph is a weighted, undirected simple graph, and it can be plotted with the two 

different layouts shown in Figure 11.  The drawing obtained using the three-dimensional 

coordinates of the neurons results in a layout that is as physically meaningful as it is 

confusing (Figure 11a), while with the eigen-projection within HDE subspace method 

the two-dimensional network seems better distributed and the clustering properties of the 

graph are actually enhanced (Figure 11b). The layout of the plotted graph does not affect 

the implementation of any of the following steps since the graph and its relating matrices 

remain the same.  
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Figure 10: Habenular activity. Fractional change in fluorescence (𝛥𝐹/𝐹) signals of the 696 detected neurons. 

A) Whole 13.8 minutes of recorded activity. The white region contains the selected 3.8 min of ongoing activity, 

and the dashed white lines indicate the 3 odour onsets. B) Magnification of the 3.8 min of ongoing activity. 

A) 

B) 
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Figure 11: Graph obtained from habenular ongoing activity. Each node represents each of the 696 detected neurons. 

A) 3D layout obtained with neurons coordinates. Axes are in μm. A: anterior, P: posterior, R: right, L: left, D: dorsal, 

V: ventral. B) 2D layout obtained with the eigen-projection in HDE subspace method. Axes are in arbitrary units (AU, 

see 3.6) 

R 

L 
P 

A 

D 

V 

A) 

B) 
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4.1.2 Eigengap heuristic method 
With the same similarity matrix and the same decisions on how to construct the similarity 

graph, the eigengap heuristic method can be applied using the random walk normalized 

Laplacian. In Figure 12 are shown the ascending distribution of the first 15 eigenvalues 

(Figure 12A) and the differential eigengap computed for the first 14 of them simply 

subtracting the magnitude of the latter (Figure 12B). It always happens that the largest 

eigengap corresponds to the first eigenvalue, suggesting that this method tends to see all 

the neurons belonging to the same unique big cluster, which actually means not clustering 

neurons at all. Therefore, it has been decided to select the predicted optimal number of 

cluster as the one corresponding to the second largest eigengap. For example, for the case 

shown in Figure 12B the optimal number of clusters is equal to 2. 

 

Figure 12: Eigengap heuristic method applied on graph obtained from habenular ongoing activity. A) Distribution of the first 15 

eigenvalues of the random walk normalized Laplacian. B) Bar plot of the eigengaps of the first 14 eigenvalues, computed subtracting 

the magnitude of the later eigenvalue from each of the first 14 eigenvalues. The optimal number of clusters is chosen as the eigenvalue 

corresponding to the second larger eigengap (a number of clusters equal to 1 is always discarded). 

A) B) 
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4.1.3 Spectral clustering 
With the fixed optimal number of clusters the random walk normalized spectral clustering 

algorithm can be run, again with the same similarity matrix and the same decisions on 

how to construct the similarity graph. The results of the clustering algorithm are shown 

in Figure 13 and Figure 14. The clustered graph (Figure 13) plotted with the eigen-

projection in HDE subspace method shows clearly separate clusters, which can be 

visualized also in the 3D physical representation of the neurons as in Figure 14A. In 

Figure 14B are shown the neural fluorescence traces of the neurons belonging to the two 

detected clusters. 

 

 

 

Figure 13: Spectral clustering algorithm applied on the graph obtained from habenular ongoing activity. Each node 

represents each of the 696 detected neurons. Nodes are coloured based on the belonging cluster (red cluster: 436 

neurons, green cluster: 260 neurons). 2D layout obtained with the eigen-projection in HDE subspace method. Axes 

are in arbitrary units (AU, see 3.6). 
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P 

A 

D 

V 

Figure 14: Spectral clustering algorithm results on neurons and fractional change in fluorescence (𝛥𝐹/𝐹) signals. 

A) Clustered neurons coloured based on the belonging cluster. Axes are in μm. A: anterior, P: posterior, R: right, L: left, 

D: dorsal, V: ventral. B) Clustered fractional change in fluorescence (𝛥𝐹/𝐹) signals of the 3.8 min of ongoing activity. 

Red cluster C1: 436 neurons, Green cluster C2: 260 neurons 

A) 

B) 
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4.1.4 Overall results 
As mentioned before, in the following pages (Figure 15 – Figure 19) are shown all the 

steps for one fish telencephalon. The main structural difference is the number of detected 

neurons and so the number of nodes in the graph, which is substantially larger in this case. 

This results in a visualization issue when looking at the graph, because nodes are not 

always well separated and often edges overlap making the drawing not very clear. 

However, the graphs are shown in order to allow a full comparison between habenula and 

telencephalon. 

Overall, for both brain regions of all fish the predicted number of clusters is shown in 

Table 2.  

 

 Fish 1 Fish 2 Fish 3 
Habenula 2 3 5 

Telencephalon 3 5 4 
 

Table 2: Number of clusters predicted with the eigengap heuristic method for habenula and telencephalon of the 3 fish. 
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A) 

B) 

Figure 15: Telencephalon activity. Fractional change in fluorescence (𝛥𝐹/𝐹) signals of the 5213 detected neurons. 

A) Whole 13.8 minutes of recorded activity. The white region contains the selected 3.8 min of ongoing activity, and 

the dashed white lines indicate the 3 odour onsets. B) Magnification of the 3.8 min of ongoing activity. 
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Figure 16: Graph obtained from telencephalon ongoing activity. Each node represents each of the 5213 detected 

neurons. 

A) 3D layout obtained with neurons coordinates. Axes are in μm. A: anterior, P: posterior, R: right, L: left, D: dorsal, 

V: ventral. B) 2D layout obtained with the eigen-projection in HDE subspace method. Axes are in arbitrary units (AU, 

see 3.6) 
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A) 

B) 
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Figure 18: Spectral clustering algorithm applied on the graph obtained from telencephalon ongoing activity. Each 

node represents each of the 5213 detected neurons. Nodes are coloured based on the belonging cluster (red cluster: 

1765 neurons, green cluster: 1767 neurons, blue cluster: 1681 neurons). 2D layout obtained with the eigen-projection 

in HDE subspace method. Axes are in arbitrary units (AU, see 3.6) 

A) B) 

Figure 17: Eigengap heuristic method applied on graph obtained from telencephalon ongoing activity. 

A) Distribution of the first 15 eigenvalues of the random walk normalized Laplacian. B) Bar plot of the eigengaps of the first 

14 eigenvalues, computed subtracting the magnitude of the later eigenvalue from each of the first 14 eigenvalues. The optimal 

number of clusters is chosen as the eigenvalue corresponding to the second larger eigengap (a number of clusters equal to 1 is 

always discarded). 
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Figure 19: Spectral clustering algorithm results on neurons and fractional change in fluorescence (𝛥𝐹/𝐹) signals. 

A) Clustered neurons coloured based on the belonging cluster. Axes are in μm. A: anterior, P: posterior, R: right, L: left, 

D: dorsal, V: ventral. B) Clustered fractional change in fluorescence (𝛥𝐹/𝐹) signals of the 3.8 min of ongoing activity. 

Red cluster C1: 1765 neurons, Green cluster C2: 1767 neurons, Blue cluster C3: 1681 neurons 

A) 

B) 
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4.2 Temporal organization and network development 
This second objective focuses on temporal development of the network, trying to assess 

the diversity of the types of neural activation during ongoing activity and odour stimulated 

activity. In order to evaluate temporal organization a change of prospective is needed. 

The main idea of looking at a graph made up of frames of coactive neurons, the so called 

activity patterns, is taken from the brilliant work of Avitan et al. [17]. Then the analytical 

methodologies for computing distances between nodes are specifically thought for the 

kind of investigations interesting and useful for the purposes of the lab. 

Each fish brain region was analysed separately throughout the following operations, 

which are shown using images obtained from one example fish telencephalon. As before, 

also images referring to the same steps for habenula are presented for comparison. Then 

the computed distances are examined together along fish, for telencephalon and habenula 

separately, in order to find a common trend. 

4.2.1 Binarization and activity patterns 
As before, the starting dataset is the neural activation matrix containing Δ𝐹/𝐹 signals 

(Figure 20A). A common operation performed in literature on this kind of matrix is to 

binarize it by isolating calcium events. As in [17] an event is detected for each neuron 

when Δ𝐹/𝐹 signal exceeds two standard deviations above the mean. The resulting 

binarized matrix contains 1 in those frames recognized as events and 0 otherwise (Figure 

20B). Only those frames with a relatively high number of coactive neurons are isolated. 

The threshold for the number of coactive neurons is selected by the following steps: first 

the binarized activity matrix is randomly shuffled 500 times along neurons, keeping the 

number of events per cell identical but changing their timing, then the threshold is set 

equal to the 95th percentile of the number of coactive neurons (at single frame resolution) 

within this shuffled dataset. These active frames are visually depicted as the “blackest 

columns” in Figure 20B, and they bring two different information: obviously they 

represent time samples in which neurons are more active and they allow a time tracking 

of the neural activation, but they also represent patterns of activation along neurons thanks 

to their neuron-depending entries. For this second reason they are referred to as activity 

patterns, and this feature is used for constructing the graph. 
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Figure 20: Telencephalon activity and binarized activity. Whole 13.8 minutes of recorded activity of 5213 detected neurons. 

A) Fractional change in fluorescence (𝛥𝐹/𝐹). The dashed white lines indicate the 3 odour onsets. B) Binarized activity. 

Black: calcium event. The dashed red lines indicate the 3 odour onsets. 

A) 

B) 
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4.2.2 Graph construction 
With the detected activity patterns a similarity graph is constructed; now the nodes are 

the activity patterns themselves and cannot be drawn with a geometrical or physical 

meaning. The Gaussian similarity function (4) with 𝜎 = 1 is again used for computing 

the similarity measure between all pairs of nodes, but in this case with the cosine distance 

(3) which is suitable for binary vectors [17]. Once obtained the similarity matrix, the 

graph is constructed with the 𝑘-nearest neighbour method (𝑘 equal to log (𝑛)) and results 

in a weighted, undirected simple graph (Figure 21). The information about the time 

tracking is color-coded by the colorbar expressed in minutes, in which the three black 

lines represent the three odour onsets. The graph is plotted through the eigen-projection 

in HDE subspace method, that leads to a drawing in which similar activity patterns are 

close together, and this information will be used when distance between nodes will be 

analysed. In this case the layout will be partly relevant. 

 

Figure 21: Graph obtained with the activity patterns of telencephalon activity. Each node is one of the 597 detected 

activity patterns. 2D layout obtained with the eigen-projection in HDE subspace method. Axes are in arbitrary units 

(AU, see 3.6). Colorbar is in minutes, the three black lines are the three odour onsets (from below: onset 1, onset 2 and 

onset 3). 
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4.2.3 Ongoin and odour periods detection 
The fish neural network during the experimental procedure is subject to a strong 

perturbation due to odour stimulation. The aim of this analysis is to visualize how the 

network behaves in response to that perturbation and whether it changes its internal 

dynamics comparing pre and post perturbation. In order to track and analyse the state of 

the network, the activity patterns belonging to three significant periods are selected and 

shown for the sake of clarity on the binary activity matrix (Figure 22A), each of an overall 

duration of 1.5 minutes: 

- Ongoing Pre: one minute and a half of ongoing activity starting after the first 

30 seconds of recorded activity (blue panel in Figure 22A). 

- Odour: the first 30 seconds after each of the three odour onsets (green panels 

in Figure 22A). 

- Ongoing Post: one minute and a half of ongoing activity, after the three odour 

deliveries, starting from the eleventh minute of recorded activity (red panel in 

Figure 22A). 

The nodes corresponding to the activity patterns belonging to these three different periods 

are highlighted with the same colours and shown within the graph in Figure 22B. 

The choice to select the ongoing activity period both before and after the odour 

stimulation aims to investigate whether the neural network returns to an ongoing activity 

similar to the one shown before the stimulation, or the stimulation introduces any 

significant changes switching back to ongoing activity. 

 

 

 



49 
 

 

 

Figure 22: Telencephalon periods detection. A) Binarized activity. The dashed red lines indicate the 3 odour onsets 

and the coloured panels the three periods. B) Graph obtained with the activity patterns of telencephalon activity. Each 

node is one of the 597 detected activity patterns. 2D layout obtained with the eigen-projection in HDE subspace method. 

Axes are in arbitrary units (AU, see 3.6). Nodes are highlighted with the same colour code indicated in the legend. 

(blue: ongoing pre, green: odour, red: ongoing post) 

A) 

B) 
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4.2.4 Distance assessments 
Once activity patterns belonging to different behavioural states have been identified, a 

way for quantifying similarities and differences between them is to analyse the 

distribution of nodes both intra and inter periods. This can ultimately lead to a comparison 

of network activity states and their alterations both in a single fish and across animals. 

Indeed, sparsity within the graph means that activity patterns differ from each other in 

terms of diversity of active neurons, while close nodes reflect similar activity patterns. 

For each brain region of each animal on the graph which highlights activity patterns 

belonging to the three different periods (Figure 22 for the example animal) two distance 

measures (Euclidean and shortest path distance) are computed both between nodes 

belonging to the same period, to assess the intra period sparsity, and between nodes 

belonging to different periods, for evaluating the inter periods differences. Shortest path 

distance is independent from the graph layout and it relates to the sum of the edges 

connecting two nodes. Euclidean distance (15) is indeed computed starting from the 

nodes coordinates obtained with the eigen-projection method in HDE subspace method, 

and so strongly layout-dependent. Both the distances are computed as: 

- pairwise distance between nodes belonging to the same periods (indicated as 

“same period” in the following figures) 

- pairwise distance between nodes belonging to one period versus nodes 

belonging to another one (indicated as “different periods” in the following 

figures) 

Then both the distances are normalized with respect to the maximum distance (Euclidean 

or shortest path, respectively) within the graph, so that the comparison across fish is 

allowed. Finally distances are plotted with a violin plot [68], an easy-to-read substitute of 

a box plot that adds information about the distribution of the data, in which the density 

trace is plotted symmetrically to the left and the right of the vertical box plot  

In Figure 23 are shown the four plots obtained from the graph from Figure 22. On the 

left (Figure 23A and 23B) are shown the two plots of Euclidean and shortest path 

distances between points within the same period, with the same colour code used before 

(blue: ongoing pre, green: odour, red: ongoing post). On the right (Figure 23C and 23D) 
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there are the plots for the inter periods case, in which colours are chosen based on the 

comparison they represent (green water: ongoing pre versus odour, purple: ongoing pre 

versus ongoing post, light brown: odour versus ongoing post).  

The typical wavelike shape of the two shortest path plots on the bottom (Figure 23B and 

23D) is due to the fact that, by construction, the edges of the graph have unlikely light 

weights, so the summation of each edge adds a relatively large value to the path, resulting 

in this uneven distribution. 

Wilcoxon ranksum test was used for paired comparisons for testing the hypothesis of 

equal median and p values are indicated in the caption of the figure as: * p<0.05, ** 

p<0.01, *** p<0.001. 

  

Figure 23: Violin plots of the intra and inter periods distances for telencephalon activity of the example fish. A) Euclidean 

distance between nodes belonging to the same period. B) Shortest path distance between nodes belonging to the same period. 

C) Euclidean distance between nodes belonging to different periods. D) Shortest path distance between nodes belonging to 

different periods. Colour code: blue: intra ongoing pre, green: intra odour, red: intra ongoing post, green water: inter ongoing 

pre versus odour, purple: inter ongoing pre versus ongoing post, light brown: inter odour versus ongoing post. Violin plot: 

white circle: median, end of the thick grey line: 25th (bottom) and 75th (top) percentiles, end of the thin grey line: lower (bottom) 

and upper (top) adjacent values not considered outliers. Wilcoxon ranksum test: * p<0.05, *** p<0.001 

B) 

A) C) 

D) 
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4.2.5 Overall results 
In the following (Figure 24 – Figure 27) the same results for the habenula of the same 

example fish are presented. 

The normalization of the distances with respect to the maximum for each fish brain region 

allow the comparison across fish. For this purpose, for telencephalon and habenula 

respectively, Euclidean and shortest path distances computed for the three available fish 

are grouped and plotted together keeping the intra and inter period meaningful partitions. 

This procedure leads to the overall plots shown for the telencephalon in Figure 28 and 

for the habenula in Figure 29. 
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Figure 25: Graph obtained with the activity patterns of habenular activity. Each node is one of the 371 detected activity 

patterns. 2D layout obtained with the eigen-projection in HDE subspace method. Axes are in arbitrary units (AU, see 

3.6). Colorbar is in minutes, the three black lines are the three odour onsets (from below: onset 1, onset 2 and onset 

3). 

Figure 24: Habenular activity and binarized activity. Whole 13.8 minutes of recorded activity of 696 detected neurons. 

A) Fractional change in fluorescence (𝛥𝐹/𝐹). The dashed white lines indicate the 3 odour onsets. B) Binarized activity. 

Black: calcium event. The dashed red lines indicate the 3 odour onsets. 

 

A) 

B) 
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Figure 26: Habenular periods detection. A) Binarized activity. The dashed red lines indicate the 3 odour onsets and 

the coloured panels the three periods. B) Graph obtained with the activity patterns of habenular activity. Each node is 

one of the 371 detected activity patterns. 2D layout obtained with the eigen-projection in HDE subspace method. Axes 

are in arbitrary units (AU, see 3.6). Nodes are highlighted with the same colour code indicated in the legend. (blue: 

ongoing pre, green: odour, red: ongoing post) 

A) 

B) 
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Figure 27: Violin plots of the intra and inter periods distances for habenular activity of the example fish. A) Euclidean distance 

between nodes belonging to the same period. B) Shortest path distance between nodes belonging to the same period. C) Euclidean 

distance between nodes belonging to different periods. D) Shortest path distance between nodes belonging to different periods. 

Colour code: blue: intra ongoing pre, green: intra odour, red: intra ongoing post, green water: inter ongoing pre versus odour, 

purple: inter ongoing pre versus ongoing post, light brown: inter odour versus ongoing post. Violin plot: white circle: median, 

end of the thick grey line: 25th (bottom) and 75th (top) percentiles, end of the thin grey line: lower (bottom) and upper (top) 

adjacent values not considered outliers. Wilcoxon ranksum test: * p<0.05, ** p<0.01, *** p<0.001 

A) 

B) 

C) 

D) 
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Figure 28: Violin plots of the intra and inter periods distances for telencephalon activity of the three fish. A) Euclidean distance 

between nodes belonging to the same period. B) Shortest path distance between nodes belonging to the same period. C) Euclidean 

distance between nodes belonging to different periods. D) Shortest path distance between nodes belonging to different periods. 

Colour code: blue: intra ongoing pre, green: intra odour, red: intra ongoing post, green water: inter ongoing pre versus odour, 

purple: inter ongoing pre versus ongoing post, light brown: inter odour versus ongoing post. Violin plot: white circle: median, 

end of the thick grey line: 25th (bottom) and 75th (top) percentiles, end of the thin grey line: lower (bottom) and upper (top) adjacent 

values not considered outliers. Wilcoxon ranksum test: * p<0.05, *** p<0.001 

B) 

C) 

D) 

A) 
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Figure 29: Violin plots of the intra and inter periods distances for habenular activity of the three fish. A) Euclidean distance between 

nodes belonging to the same period. B) Shortest path distance between nodes belonging to the same period. C) Euclidean distance 

between nodes belonging to different periods. D) Shortest path distance between nodes belonging to different periods. Colour code: 

blue: intra ongoing pre, green: intra odour, red: intra ongoing post, green water: inter ongoing pre versus odour, purple: inter 

ongoing pre versus ongoing post, light brown: inter odour versus ongoing post. Violin plot: white circle: median, end of the thick 

grey line: 25th (bottom) and 75th (top) percentiles, end of the thin grey line: lower (bottom) and upper (top) adjacent values not 

considered outliers. Wilcoxon ranksum test: * p<0.05, *** p<0.001 

D) 

C) 

B) 

A) 
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5 Discussion 
The two performed investigations aim to shed light on two different aspects of functional 

connectivity. On one hand, the analysis of spatial organization tries to find a helpful 

method for estimating the number of neural assemblies which synchronously activate 

during ongoing activity. On the other hand, the investigation about network development 

focuses on the differences between the neural activity patterns which arise during 

different cognitive tasks, in the case of this study ongoing activity and odour stimulation. 

One of the issues in the lab when dealing with clustering neural activity, especially during 

ongoing activity, is to predict the optimal number of clusters in which neurons naturally 

synchronize their activity. Many different methods have been proposed in literature 

[69][70] and among them in this work the easy-to-use eigengap heuristic method 

presented by Von Luxburg in [55] is implemented which exploits the properties related 

to the graph Laplacian. The Laplacian and its spectrum indeed reflect the structure of the 

graph as the number of connected component is equal to the number of the first null 

eigenvalues. Also in the case of a graph made up of just one connected component the 

magnitude of the eigenvalues can suggest the optimal number of clusters in which to 

divide the graph. In this work all the obtained graphs, both for habenula and 

telencephalon, are always comprised of a single connected component and the eigengap 

heuristic method properly applied as in [55] would always predict a single large cluster 

since the largest eigengap always corresponds to a number of clusters equal to one. For 

this reason it was decided to disregard the largest eigengap and to choose the final number 

of clusters as the one corresponding to the second largest eigengap. This slight 

modification was necessary and seems to suggest that the eigengap heuristic method 

results in a poor ability to recognize small clusters. Moreover the expected numbers of 

clusters, both for habenula and telencephalon listed in Table 2, have a range between two 

and five, when five is also the number of clusters selected by Bartoszek and colleagues 

in [47] for performing 𝑘-means on the same habenular fluorescence signals during 

ongoing activity based on the elbow test. This tendency to underestimate the number of 

clusters could be due to the high-dimensionality of the data and a sign of high level of 

overlapping that probably characterizes clusters within their original high-dimensional 

space. As a matter of fact these conditions could lead to a failure of the eigengap heuristic 
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method [71]. However, the spectral clustering algorithm was chosen not only for the 

possibile application of the eigengap heuristic method, but also because it allows the data 

to be represented in a dimensionality reduced space build through the graph Laplacian. 

This instead could be a very helpful feature when dealing with this kind of dataset because 

calcium data are naturally high-dimensional and noisy, and dimensionality reduction 

tools could be particularly suitable. Besides, clustering time series as ∆𝐹/𝐹 fluorescence 

traces could be tricky because observations size increases with sampling frequency and 

sample duration, and the possibility to reduce their dimensions and to visualize them 

could be preferred. 

The analysis on network development over time is a new and complementary approach 

with respect to the ones already used in the lab, and it reveals interesting results when 

comparing telencephalon and habenular behaviours. Looking at the graphs obtained with 

the activity patterns of telencephalon (the one in Figure 21 and 22B for the example fish) 

the network moves within the plot following a precise course: from an initial region where 

the first detected ongoing activity patterns concentrate, the network tends to travel to new 

regions in a sparser and often bimodal manner during the stimulation period, and it finally 

returns to the starting ongoing area. This clear trend is strongly followed by all 

telencephalon networks, but it is not visible for the habenular ones. For the latter (graph 

shown in Figure 25 and 26B for the example fish), it is more difficult to identify precise 

regions in which the similar activity patterns are concentrated, and it also occurs that 

activity patterns belonging to periods of ongoing activity pre and post stimulation are 

quite distant from each other within the plot. These different behaviours suggest on one 

hand that habenula presents a more varied activity also at a short time scale during a single 

cognitive task with respect to telencephalon, and on the other hand that telencephalon 

circuits are much more plastic than the habenular ones and capable to reorganize even 

after the perturbation occurs. 

These results could be better analysed and quantified looking at the violin plots of the 

computed distances. Starting from telencephalon (example fish in Figure 23 and three 

fish overall in Figure 28) both the two intra-period distances show that lengths within the 

odour period are larger than those within ongoing periods, pointing out the diversity and 

multi-modality typical of the activity patterns of the telencephalon. The inter-periods 
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distances are significantly lower when computed between ongoing pre and ongoing post 

periods with respect to both the two ongoing versus odour cases. This quantifies the visual 

detection of the abovementioned areas in the graph corresponding to ongoing (both pre 

and post) and odour periods respectively, and can be clues of the synaptic plasticity 

characteristic of the telencephalon and of the presence of learning behaviours. 

On the contrary, the habenula exhibits a different trend. From the plots of the example 

fish shown in Figure 27, it is immediately clear that the intra-period distances follow a 

different path compared to the telencephalon, and here activity patterns belonging to the 

odour period are not so well-separated within the drawing. In Figure 29 the trend 

observed is that the distance between activity patterns belonging to the odour period are 

lower than that of the two ongoing periods. Furthermore, the inter-periods distances 

shown on the right side of the figures reveal less pronounced similarity between the 

ongoing pre-stimulation period and the ongoing post-stimulation one as compared with 

the case of telencephalon: the Euclidean distance between ongoing pre and ongoing post 

periods has a median relative value of 0.4 (with respect to the 0.2 of the same comparison 

for the telencephalon) and the median of the shortest path distance between the same two 

periods is even significantly larger than the median of both the comparisons ongoing pre-

odour and odour-ongoing post. 

Together these data confirm the results of the visual inspection of the graphs meaning that 

behaviours as network plasticity (that could maybe be ultimately due to synaptic 

plasticity) and learning after a sensory perturbation are more likely to occur within 

telencephalon circuits, while the habenula internal state being more affected by odour 

experience and so less plastic. 

5.1 Outlook and future studies 
Both aspects of functional connectivity discussed in this thesis are current fields of 

interest of Yaksi lab and will be probably further investigated in the future. With regards 

to the analysis on the optimal number of clusters, it could be interesting to apply a 

technique which looks for the desired number already within a space of reduced 

dimensionality and not only perform the clustering in the new space. The dimensionality 

reduction tool could be one of many available ones in literature such as the principal 
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components analysis (PCA), t-distributed stochastic neighbour embedding (t-SNE), 

uniform manifold approximation and projection (UMAP) or some machine learning and 

deep learning algorithms. Regarding the study of network development, a first 

computational idea to improve the performance of the detection of activity patterns could 

affect the denoising and the binarization process of the ∆𝐹/𝐹 signals. For this purpose a 

deconvolution method was proposed by Friedric et al. [72] tailor-made for traces of 

whole-brain larval zebrafish and this advanced method of calcium events extraction could 

help for binarizing the neural signals and so detecting the activity patterns. A further 

implementation could be to look at the periods of ongoing activity between the odour 

stimulations which can be very interesting to analyse more in depth the plasticity and the 

learning behaviour of the neural circuits also at a short time scale, meaning that the animal 

during that period is no longer subjected to the stimulation, but has not yet had time to 

fully relax. Ultimately, there is the possibility to combine the two approaches of 

constructing the graph which represents activity patterns and network development and 

performing on it spectral clustering as in [17]. This leads to a new way to see neural 

assemblies because one neuron can belong to more than one cluster and therefore hub 

neurons could be identified, but for the application of this method some parameters need 

to be optimized and this could be a tricky operation. 

Lastly, all the graph-based algorithms used in this work do not depend on the type of 

brain region analysed or on the type of sensor stimulation performed because they only 

require fractional change in fluorescence signals easily obtained in the lab, so it could be 

interesting to apply them on data acquired on other parts of the fish brain and during 

diverse behavioural and cognitive tasks.  
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