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Summary

Human activity recognition (HAR) is a key research area in Human Computer Interaction (HCI)
that is grown and spread enormously in recent years thanks to the widesprade usage of portable
and wearable devices, as smartphones. The mainly aim of HAR is to identify a variety of daily
activities (ADLs) performing by an individual at a given moment, to maintain healthy lifestyle,
help patient rehabilitation and to detect and diagnose automatically precocious illnesses, such
as the Parkinson’s disease. HAR relies on two approaches: vision-based HAR and sensor-based
HAR. The approach used in the current work was sensor-based HAR, that enables to collect
data extracted from two type of wearable sensors, namely accelerometer and gyroscope, which
are embedded into a smartphone.
Inertial sensors data was acquired by three public available datasets: UCI HAR, HAPT and
RealWorld HAR dataset, containing kinematic data of human subjects that perform some
dinamic (walking, sit-to-stand, stand-to-sit) and postural activities (sitting, standing) following
a specific protocol. Each dataset was splitted into training set (80% of the total data) and a
test set (20% of the total data). Then, the Hold out technique was applied on the training set,
in order to divide the training set into the train set (80% of the training set) and the validation
set (20% of the training set). In addition, Leave-One-Subject-Out (LOSO) was applied in
RealWorld HAR to improve generalization and avoid over-fitting. In this work, the proposed
model to make prediction and identify classes for new data was the Convolutional Neural
Network (CNN), that is a Deep Learning Network that learns directly from data, eliminating the
need to manually extract features. The model was built using the Keras deep learning library
and developed on five different architectures having different combinations of Convolutional
layers and Max-pooling layers.
The model was optimized by tuning two hyper-parameters, that are the number of filters and
the number of filter size in order to observe their effects on the performances. Finally, the best
model configuration was selected for each database.
The optimized model was trained on the training set, evaluated on the validation set and used to
make prediction on the test set of each database. In addition, cross-corpus HAR was performed
to improve generalization: the CNN model with the five architectures was tested on new test
data of two databases using labeled training data of the other dataset.
For each architecture of each dataset, different performance evaluation metrics were computed:
accuracy, specificity, precision, sensitivity and f1-score. The model trained on the train set and
tested on the own test set led good performances: 98.5% of accuracy in HAPT dataset, 89.3%
of accuracy in UCI HAR dataset and 84.9% of accuracy in RealWorld HAR dataset.
On the other hand, performances obtained from cross-corpus test led worst performances.
The performance obtained by the CNN model confirm the ability of the CNN model to make
correct prediction on test set of each database and suggest how the model is not reliable to
make prediction on new test data using labeled training data.
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Chapter 1

Introduction

In the last decade, sensor technology has developed considerably and has had a socio-cultural
impact in everyday people’s life. The advancement has concerned multiple points of views,
including power, size, manufacturing costs, portability, storage capability and power of sensing.
These improvements have enabled a wide range of sensors to be integrated into portable and
wearable smart devices in order to create them more useful for people’s health.
The rapid spread of portable and wearable devices led Human Activity Recognition (HAR)
to grow enormously in recent years in a variety of applications of different knowledge areas,
including healthcare, Internet of Things (IoT), security, homecare, communication, environ-
mental monitoring, transportation, sports[1], [2].
HAR is a key research area in Human Computer Interaction (HCI) which enables continuous
monitoring of human behaviour, support on patients rehabilitation, surveillance in smart-home
environments, precocious diagnose of illnesses [25], not only in ambient assisted living (AAL),
but also in uncontrolled settings.
HAR typically relies on two approaches: vision-based HAR and sensor-based HAR [1]. Vision-
based HAR data analyzes images or videos through optical sensors. Though video cameras
are widely used by researchers, collecting video data presents several issues concerning privacy
limitations and high computational resources [4],[44]. In addition this approach relies on im-
age resolution, illuminations change and other factors that can influence image quality [28].
Sensor-based HAR is the most common approach used in real world applications to collect raw
data extracted from sensors embedded into smartphones or other wearable devices. Nowadays,
smartphones are considered one of the most important part of sensor-based HAR systems and
contain a wide set of embedded sensors, such as location, motion and direction indicators, that
collect, process raw data and monitor continuously activities of daily living (ADLs) in the area
of AAL [16].
Sensor-based HAR can be intended as a classification issue [53], that analyzes data acquired
from various types of sensing devices and identifies a variety of daily activities performing by
an individual at a given moment, to maintain healthy lifestyle.
The human activities are defined as a set of repeated actions over time and can be divided into
two distinguishable sets: simple activities and complex activities. Sample activities include all
those activities which are repeated daily, as walking, sitting, standing, running, jumping, while
complex activities include activities as eating, sleeping, driving, smoking [5]. The most common
sensors types used in sensor-based HAR are accelerometer, gyroscope and magnetometer [44].
The accelerometer detects acceleration (m/s2) and tilt to determine movement and exact ori-
entation along the three axes, while the gyroscope provides orientation, direction and rotation
details and records angular velocity (rad/s).
These two wearable sensors offer many advantages. In more detail, advantages of accelerometers
include high sensitivity, high impedance, high frequency response. In addition accelerometers
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Introduction

Figure 1.1: Set of steps used by machine learning algorithms in HAR applications.

are cheap and durable over time, while gyroscopes are fast and have an higher resolution.
However, these sensors show also some drawbacks, concerning accelerometer’s efficiency which
tends to decrease over time and the gyroscope’ s dependence on the rotation of the earth [1].
In terms of algorithmic implementation, HAR is mainly based on Machine Learning (ML) and
Deep Learning (DL) algorithms. Some of the most common ML algorithms are Naïve Bayes
(NB), k-Means Clustering, Support Vector Machine (SVM), Linear Regression, while some of
the most common DL algorithms are Convolutional Neural Network (CNN), Recurrent Neural
Networks (RNNs), Long Short-Term Memory Networks (LSTMs). The differences between the
two approaches concern especially the way in which the features are extracted, manually in
ML and automatically in DL algorithms. Feature extraction is a crucial step tp determine
performances on activity recognition systems.

ML algorithms present many drawbacks on HAR applications: they require many pre-
processing data steps, that consist of segmentation, in which data is divided into overlapping
or non-overlapping windows and feature extraction; they haven’t universal procedures for se-
lecting appropriate features, but extract manually the features via a heuristic way [32] based
on human experience and knowledge, that may not be able to select the optimal set of features.
Additionally, feature extraction takes a long time and it may be necessary to apply some meth-
ods to reduce the dimensionality of the data, such as Principal Component analysis (PCA) [25],
in order to remove irrelevant features and improve the accuracy of the models.
Only superficial characteristics can be learned with ML algorithms and this renders such meth-
ods unable to recognize complex activities.
In addition, ML approaches require a large amount of labeled data to train the model, but most
of the activity data are unlabeled in real applications [32]. Another disadvantage of traditional
methods is that data from the same person is present in both the training set and the testing
set [48] and therefore the methods may not be able to generalize new activities and users.
Figure 1.1 summarizes the set of steps used by the ML algorithms. First, raw data sig-
nals are collected by smartphones or other wearable devices integrated with inertial sensors,
as accelerometer, gyroscope, magnetometer, GPS, which record inertial signals at a constant
frequency rate, The smartphone can be placed in different positions on the user’s body, such as
chest, waist, ankle, wrists. Choosing the best smartphone location is important in determining
data quality and [53] classification performance. Furthermore, the orientation of the smart-
phone must be chosen carefully, as it could affect the accuracy of the classification models.
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The second step is data preprocessing, including noise removal and segmentation.
Signal preprocessing tends to reduce noise by applying a series of filters. The most commonly
used filters are the low pass filters [18] Butterworth [19], Kalman [20] and Moving Average [21].
Segmentation is meant to separate the data into segments of equal length to analyze them sepa-
rately and sequentially. The most common technique used for segmentation is Sliding Window
[27]. The third step relates to feature extraction and feature selection. In ML algorithms the
characteristics are extracted manually and are mainly based on two main characteristics of the
domain: time domain and frequency domain [6]. The time domain extracts statistical informa-
tion from the signals, such as minimum, maximum, peak amplitude of the signals, while the
frequency domain obtains functions based on the frequency spectrum of a certain time win-
dow, such as energy, power, entropy and represent the relative characteristics the periodicity of
the human activities. After the data processing, segmentation, and feature extraction stages,
the next stage is learning and classification, where the ML models are trained on the train
set and evaluated on the test set in terms of recognition metrics. activities. Commonly used
assessment metrics in smartphone-based HAR literature are: accuracy, sensitivity, specificity,
precision, recall and f-measure [27].
To solve the limitations of the ML algorithms described above, DL methods are the most com-
mon methods used in HAR applications, as they do not require signal preprocessing and the
feature extraction occurs automatically during the training process of classification models in
the raw data, as shown in the Figure 1.2.
The next step consists in the construction of models (CNN, RRN ..) used for the classification
of human activities. Deep learning and recognition of human activities have been progressive
areas and a good number of surveys and reviews have been published in recent years, as re-
ported in the 2 chapter. The main contribution of this work is to show how DL methods and
in particular the CNN model can be used for the recognition of human activities through data
collected by inertial sensors embedded in a smartphone.
The remainder of this work is organized as follows: in the Chapter 2 some recent works for
HAR applications are presented. The Chapter 3 describes the datasets employed, the data
pre-processing, the classification model and the description of the performance evaluation met-
rics used in this study. The Chapter 4 presents and analyzes results obtained from the training
process and model evaluation. The results obtained are discussed in the Chapter 5. Finally
in the Chapter 6, conclusions are drawn and further improvements are proposed.

Figure 1.2: Set of steps used by deep learning algorithms in HAR applications.
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Chapter 2

Related works

Several studies focusing on Human Activity Recognition Analysis (HAR) have been published
in recent years, including sensor-based HAR and video-based HAR.
Although video cameras have been widely used in HAR applications, video data collection
has many privacy issues [1], their elaboration requires high computing resources [3] and their
performance depends on lighting, visual angle and other factors [28]. For this reason, studies
frequently rely on the use of wearable sensors, in particular on the use of the smartphone as
an acquisition device for the recognition of daily activities (ADL) [4], [5], [? ]. Nowadays, the
smartphone is very popular and can be considered the perfect tool for the analysis of human
activities due to its ability to collect and process data, transmit and receive data and connect
with other wearable sensors [24]. It also reduces costs and overcomes the problem of learning
another type of device [4]. Choosing the location of the smartphone is crucial, as different
locations produce different signals and require different analyzes to recognize the same activity.
Many studies have shown that the waist is the best position for recognizing simple activities
[12],[13],[14],[15],[17],[18],[22].
Generally, the smartphone is integrated with inertial measurement units (IMU) which contain
accelerometer, gyroscope, magnetometer, GPS. The accelerometer and gyroscope combination
has been used primarily for HAR [29]applications and has shown excellent results in human
motion analysis and activity monitoring [25].
For a long time, Machine Learning (ML) algorithms have been applied in HAR applications
achieving remarkable performance [1]. In fact, several works have been based on the traditional
methodology [33],[34], [35], [36],[37],[38], using algorithms such as: Naïve Bayes (NB), Support
Vector Machine (SVM), Linear Regression, Logistic Regression, Random Forests (RF), Deci-
sion Trees (DT) and k-Nearest Neighbors (k-NN).
However, conventional methods require many preprocessing steps, including noise removal, seg-
mentation, normalization, and manual features extraction [32], which relies on human experi-
ence and knowledge. Studies have shown that it is very difficult to measure efficient performance
of manually engineered features across different applications. Plus the selection of handcrafted
features takes time [31], dimensionality reduction and is often arbitrary [25]. Furthermore,
conventional approaches often require a large amount of well-labeled data to train the model
and most of the activity data remains unlabeled in real applications [32].
On the other hand, the last decade has seen significant growth in deep learning (DL) algorithms,
thanks to their superior performance in several real-world problems. Unlike the traditional ML
methodology, the DL methods have modified in particular the procedures used for the extrac-
tion and selection phases of the characteristics. Starting from raw input data, DL algorithms
have the advantage of being able to automatically extract the optimal characteristics, without
any human intervention. For this reason, several studies in recent years have relied on the deep
learning approach in different real-world applications, such as security and health surveillance,
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Related works

smart-home [1] and HAR applications [39],[40],[41],[42],[43]. In addition, DL algorithms work
well with large datasets, which can be also unstructured datasets [1].
There are several DL methods used for real world applications, such as image processing or
object detection. In the context of smartphone HAR, only five methods have been identified:
Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), Long Short-Term
Memory (LSTM), Deeply-connected network (DFN), Stacked Autoencoder (SAE) , and Re-
stricted Boltzmann Machine (RBM) [24].
CNN is the most used DL model, which has been shown to achieve excellent results [46],[47],
[11],[48], [57], [56].
In preparation for the neural network model, HAR sensor data must be pre-processed through
a few steps, including normalization and segmentation. In the literature the most common
methods for normalization are Min-Max and Z-score [3],[38], [49]. Regarding segmentation,
the most common approach used in HAR tasks is the Sliding Window technique, in which the
choice of window size is a crucial step in the HAR process.
Existing works have confirmed that small windows are used for simple activity detection. Con-
versely, large windows are normally used to capture the high variability of motion found in
complex activities [50].
For the recognition of activity on motion sensors, window sizes are measured based on the time
interval and frequency rate of data collection. Most datasets are sampled at 50 Hz, including
the MHEALTH (Mobile Health) dataset [52] and the UCI HAR dataset [53], which are the most
commonly used databases available in HAR fields. Considering a frequency of 50 Hz, studies
have shown that the 1–2 s interval provides the best compromise between recognition speed
and accuracy [51]. Studies generally consider time segments of size 128, which correspond to
a duration of 2.56 s [53], [11], [54], [55]. Gholamiangonabadi et al [48] explored the impact of
window size on accuracy. This work demonstrated that increasing the window size does not
necessarily lead to an increase in accuracy. A large window, in fact, can lead to a decrease
in accuracy. In this work, two Feed Forward Neural Network (FFNN) architectures and the
CNN model were proposed and the MHEALTH dataset was selected. The sensors used were
accelerometer, gyroscope and magnetometer, which were located on various parts of the body,
such as chest, right wrist and left ankle. The first FFNN architecture consisted of 4 hidden
layers, with 128 neurons in each hidden layer, while the second architecture consisted of 6
hidden layers. On the other hand, the first CNN architecture was composed of a convolution
layer with 64 feature maps, a max-pooling layer and a fully connected layer with 32 neurons,
two max-pooling layers and two fully connected layers with 64 and 32 neurons, respectively.
Model evaluation was performed using Leave-One-Subject-Out Cross-Validation (LOSOCV)
and 10-Fold Cross-Validation techniques. Experiments demonstrated that LOSOCV is a useful
technique for estimating model performance, while k-fold cross-validation can lead to overes-
timation of accuracy. The CNN model with two convolutional layers and 1D filters achieved
the highest accuracy of 99.85 % with traditional 10-fold cross-validation and of 85.1% with
LOSOCV evaluation.
Ignatov et al [11] proposed a CNN model architecture, performed on WISDM [58] and UCI
[53] dataset, containing accelerometer time series data obtained from smartphones. Data was
collected from 36 and 30 different subjects while performing six activities: walking, jogging,
climbing stairs, sitting, lying down, and standing. The CNN model was composed by a convolu-
tional layer with 196 convolutional filters, followed by the ReLU function. Then a max-pooling
layer was applied to reduce feature representation by 4 times. Then features passed to a fully-
connected layer that consists of 1024 neurons and a dropout layer was applied with a dropout
rate of 0.05 Finally, the outputs of the fully-connected layer passed to a softmax layer that com-
putes probability distribution over six activity classes. In order to analyze how CNN structural
parameters can influence classification results, the number and size of convolutional filters and
the dropout rate were varied. Experiments demonstrated that smaller numbers of convolutional
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filters do not give great results and n = 32 or n = 64 feature maps allow for similar accuracy
of about 96 %. As for the filter size, the best accuracy was obtained with a filter size of 16,
which allows to reach an accuracy of 96.67 %. A dropout rate between 0.04 and 0.1 proved to
be the most efficient in this work. The proposed CNN model achieved high performance on
both databases.
Peppas et al [23] proposed a CNN model performed on WISDM [58] and Actitracker [59]
datasets, using only accelerometer data from a mobile device. The CNN model was composed
of two identical blocks formed by a convolution layer and a max-pooling layer. The output of
the max-pooling layer was then flattened and concatenated with the statistical features and
passed to a fully connected layer consisting of 512 neurons. The ReLU function has been ap-
plied to its output. A dropout layer was added with a dropout rate of 0.5 to avoid overfitting.
Finally, the output of the fully connected layer is passed to a softmax layer, which computes a
probability distribution over six activity classes. Furthermore, this works provided an analysis
of accuracy with varying window size and concluded that a window size of 50 provides efficient
performance. Experiments demonstrated this architecture of the CNN model is better in terms
of size, throughput, and performance and allows to achieve an accuracy of 94.18% on WISDM
and an accuracy of 79.12 % on Actitracker, 0.5% and 2% higher than the previous state of the
art.
Zebin et al [47] proposed a CNN model architecture for the classification of five ADLs using raw
accelerometer and gyroscope data from a waist-mounted inertial sensor. The architecture was
composed by four identical blocks composed by a convolutional and max-pooling layer. Then,
the output of the max-pooling layer was flattened and passed to a fully-connected layer of 50
neurons. The ReLU function was applied to its output. A batch normalization layers and a
dropout layer with a dropout rate of 0.2 were added to avoid overfitting. Finally, the output of
the fully-connected layer passed to a softmax layer, which computes a probability distribution
over five activity classes. The performances of the model were evaluated by varying the number
of convolutional layers, the number of filters and the size of the kernel, observing their effect on
detection speed and accuracy. Experimental results showed that with an increasing number of
layers, the accuracy of the model increases starting from an accuracy of 82 % with a single layer
and up to 94.9% with five levels. However, the complexity and execution time of the network
increases due to the increasing number of parameters as the number of levels increases. By
increasing the number of filters the model accuracy increases from 89 % with 6 filters up to
96.4 % with 50 filters. As the kernel size increases, model accuracy increases up to a kernel
size of 12. Model accuracy deteriorates with larger filter sizes, such as 15 and 18. Furthermore,
the work concluded that the batch normalized implementation makes the network to achieve
stable training performance in almost four times fewer iterations.
In the present work the CNN model was proposed for the classification of some dynamic and
postural activities using the accelerometer and gyroscope data collected from a smartphone
mounted on the waist. The current work employed three different databases, which share some
characteristics including the position of the smartphone on the body, the orientation of the
device, the inertial sensors and the sampling rate. Construction of the model was done layer
by layer, stacking a different number of convolutional and max-pooling layers to create five
different CNN architectures. This work showed a clear optimization of the CNN model by
tuning the number of filters and the filter size to observe their effects on performance.
Finally, a HAR cross-corpus was performed to improve generalization. Having three databases,
the CNN model with the five architectures was tested on two databases using labeled training
data from the other dataset.
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Chapter 3

Methods

This chapter describes the methods used to predict and identify human activities, and in-
cludes datasets description, signal pre-processing, CNN model architectures description, hyper-
parameters tuning and performances evaluation.

3.1 Datasets description

This section describes the datasets selected among different public databases containing kine-
matic data of human subjects. The selected datasets are the most common used in human
activity research fields based on wearable sensors [26], [11], [30] and share some characteristics,
including the position of the smartphone on the body, the orientation of the device, the sensors
and the sample rate.

3.1.1 Human Activity Recognition Using Smartphones Data Set

The Human Activity Recognition Using Smartphones Data Set is one of the datasets read-
ily available on UC Irvine (UCI HAR) Machine Learning Repository. The dataset includes
inertial signals collected from 30 people aging from 19 to 48, while wearing a waist-mounted
smartphone (Samsung Galaxy SII) embedding both a 3-axial accelerometer and a 3-axial gyro-
scope; data was captured at a steady rate of 50 Hz. Each subject performed six daily activities
(ADL), namely: walking, walking upstairs, walking downstairs, sitting, standing, laying. In
the present work, walking, sitting, and standing were selected from the entire activity set. All
the others activities were merged together, forming the ’other’ class. First, sensor signals were
pre-processed with a median filter and a third order low-pass Butterworth filter, with a cutoff
frequency of 20 Hz.
Then, data was splitted into fixed time windows of 2.56 s, with 50% overlap to create windows
with 128 time-steps. Thus, each window includes six variables, corresponding to the 3-axis
of acceleration and 3-axis of angular velocity. After signals pre-processing, several time and
frequency features were extracted, leading to a total of 561 features commonly used in the field
of human activity recognition. Finally, the dataset has been splitted into a training set (70%)
and a test set (30%).
Figure 3.1 shows the time associated to each activity in UCI HAR database. The x-axis refers
to the activities identifiers, ranging from 1 to 4, corresponding to walking, sitting, standing and
other, respectively. The y-axis represents the duration in seconds of each activity performed
by all subjects.
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Figure 3.1: Duration associated to each activity in UCI HAR database. The ’other’ class, standing,
sitting and walking correspond to the identifiers 4, 3, 2, and 1, respectively.

3.1.2 Human Activity Postural Transitions Data Set
The Human Activity Postural Transitions (HAPT) dataset is an update version of the UCI
Human Activity Recognition Using Smartphones dataset, that provides the original raw tri-
axial signals recorded by 30 volunteers within an age bracket of 19-48 years. By using inertial
sensors in a smartphone placed on the waist, 3 axial linear acceleration from an accelerometer
and 3-axis angular velocity from gyroscope data in three dimension (x,y,z) were recorded at
constant frequency rate of 50 Hz, without any signal pre-processing process, in order to make
predictions with the raw data. The activities performed by each subject were divided into three
static postures (standing, sitting, lying), three dynamic activities (walking, walking downstairs
and walking upstairs) and six postural transitions (stand-to-sit, sit-to-stand, sit-to-lie, lie-to-
sit, stand-to-lie, and lie-to-stand). In this work, only five activities were selected from this
database, while others are merged together to form the ’other’ class. The selected activities
included walking, sitting, standing, stand-to sit, and sit-to stand.
Figure 3.2 reports the duration in seconds of each activity in HAPT database.

3.1.3 RealWorld Human Activity Recognition Data Set
The RealWorld Human Activity Recognition (RealWorld HAR) dataset includes sensor data
from a 3-axial accelerometer and 3-axial gyroscope, sampled at a fixed frequency rate of 50 Hz.
The recorded activities include climbing stairs down and up, jumping, lying, standing, sitting,
running, and walking, performed by 15 subjects aging from 16 to 62 years. In this work, walk-
ing, sitting, and standing were selected, while the remaining activities were merged together to
form the ’other’ class. The database provides data recordings from 7 different sensors on the
body, including chest, head, upper-arm. In the present study, only data from the sensor on the
waist was selected.
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Figure 3.2: Duration associated to each activity in HAPT dataset. Walking, sitting, standing, stand-
to-sit, sit-to-stand, and the ’other’ class correspond to the identifiers ranging from 1 to
6.

Figure 3.3 shows the duration in seconds (s) of each activity, performed by all subjects in
RealWorld HAR dataset.

Figure 3.3: Duration associated to each activity in RealWorld HAR dataset. Walking, sitting, stand-
ing, and the ’other’ class correspond to the identifiers 1,2,3 and 4.
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Table 3.1 summarizes all features of each database and itemizes the number of subjects,
their age, the sensor type and location on the body, the sample rate, and finally the activities
selected in the present work.

Dataset Subjects Age Sensor Sensor Sample Selected
(years) type location rate (Hz) activities

UCI HAR 30 19-48 accelerometer on waist 50 walking,
and gyroscope sitting,

standing

HAPT HAR 30 19-48 accelerometer on waist 50 walking,
and gyroscope sitting,

standing,
stand to sit,
sit to stand

RealWorld HAR 15 16-62 accelerometer on waist 50 walking,
and gyroscope sitting,

standing

Table 3.1: Description of the three datasets used in this work.

3.2 Data pre-processing
First of all, the data structure of the three dataset was uniformed, together with the class label
indicators.

3.2.1 Data structure
In each database, sensor data was collected from a 3-axial accelerometer and 3-axial gyroscope.
The accelerometer detects the acceleration force applied to the sensor along the three physical
axes (x,y,z), and it is measured in m/s2. On the other hand, the gyroscope provides orientation
details and measures the sensor rotation speed around the three physical axes (x,y,z). The
angular velocity is measured in rad/s.
The following data structure was set and used for all the datasets. The 3-axial accelerometer
readings were located in the first three of columns of a matrix, followed by the 3-axial gyroscope
readings; the final column referred to the label activity. Table 3.2 shows an example of the
data structure of each database.

Acc x-axis Acc y-axis Acc z-axis Gyro x-axis Gyro y-axis Gyro z-axis label

Table 3.2: Data structure of each database.

Once identified the proper data structure, data from each database was splitted into a train-
ing set (80% of the total data) and a test set (20% of the total data). Pre-processing was
performed equally on noth the training and the test set.
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Figure 3.4 shows 3-axial accelerometer signals of ’walking’ of the HAPT database for the
first 500 samples, that correspond to 10 s of duration.

Figure 3.4: 3-axial accelerometer signals of ’walking’ for the first 500 samples of HAPT database.

Figure 3.5 shows 3-axial gyroscope signals of ’sitting’ of the HAPT database for the first
500 samples, that correspond to 10 s of duration.

Figure 3.5: 3-axial gyroscope signals of ’sitting’ for the first 500 samples of HAPT database.
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3.2.2 Data standardization
Scaling is a common requirement for Deep Learning Neural Networks to improve model stability
and performances.
Unscaled input variables could lead a slow or unstable learning process, whereas unscaled target
variables could cause the learning process to fail.
The scaling used in the present data is z-score standardization, which maps the data into a
distribution with mean 0 and a standard deviation 1, as reported in Equation 3.1.

x′ = x− µx
σx

(3.1)

where µx = 1
N

∑N
i=1 xi is the mean value and σx =

√
1

N−1
∑N
i=1(xi − x)2 is the standard deviation.

3.2.3 Data segmentation
Segmentation is the most common pre-processing method implemented for sensor-based HAR
and plays a crucial role in improving the performances of HAR applications. The segmentation
approach used in the current work is based on Sliding Windows, which are consecutive
and equal segments of fixed size so that each of them is analyzed separately and sequentially.
Each segment includes sufficient characteristics that allow the recognition of human activity
at a given moment. The windows’ size was set to 2.56 s, which was found to provide good
performances on the training process, considering a frequency rate of 50 Hz.
In addition windows were overlapped with a percentage of 50%, in order to create segments in
which 50% of samples of the previous window intersects the samples of the next window.
Figure 3.6 depicts the Sliding Window technique, in which the dataset is defined as X =
D1, D2, ..., Dt, where Dt represents the data value at time t. Each window is defined asWi with
a Sliding Window size w of 2.56 s, while the overlap is set on 50%.

Figure 3.6: Sliding Windowing technique. Each time window Wi with a window size w of 2.56 s
slides forward for a portion of data, in which Dt represents the data value at time t.The
overlapping segment was set on 50%.

After data segmentation, the Hold out technique was applied on the training set, which
consists in dividing the training set into the train set (80% of the training set) and the validation
set (20% of the training set).
The Hold out technique is a simple technique to implement for the performance evaluation of
machine learning models, and works very well on large datasets. Figure 3.7 visually describes
such a method. Figure 3.8 summarizes all signals pre-processing steps performed on each
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Figure 3.7: Hold out technique: the training set of the total dataset is splitted into two parts: 80%
as training set and the remaining 20% as validation set.

Figure 3.8: Signals pre-processing steps.

database. In order to ovoid over-fitting on RealWorld HAR Dataset, Leave-One-Subject-
Out (LOSO) validation was performed. LOSO is an algorithm that iteratively trains the
model with data from all subjects except one, which is used for validation. In the present work,
LOSO was performed both for validation and for testing. Specifically, LOSO is used first for
the model optimization, i.e. architecture determination and hyperparameters tuning, and then
for testing and for the final performance evaluation. Figure 3.9 visually describes LOSO.

Figure 3.9: Leave-One-Subject-Out technique (LOSO). Iteratively some samples are selected as train
set and the remaining as validation and test set.
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Figure 3.10 summarizes the entire process of signals pre-processing for the RealWorld HAR
database.

Figure 3.10: Signals pre-processing steps for the RealWorld HAR database.

3.3 Convolutional Neural Network
In the present work, Convolutional Neural Network (CNN) was selected among Deep Learning
network models.
CNN learn directly from data, eliminating the need to manually extract features. Similarly
to other neural networks, CNNs include an input layer, an output layer, and many hidden
intermediate layers. In addition, differently from other neural networks, CNNs have a number
of convolutional layers, where filters slide along the input data. The convolutional layer
is the key component of CNNs and is generally the first layer of the architecture. Such layer
performs the convolution operation, in which a filter slides along the input data to generate an
output value for each position input, by executing the scalar product between the filter and the
input. The filters corresponds exactly to the extracted features. If x is input data and f is the
filter, the convolution operation’s result is reported in Equation 3.2.

c = f · x (3.2)

Generally, a convolutional layer is made of a set of NF filters, each of which convolves along
the width and height of the input volume. Therefore NF two-dimensional activation maps
are produced, each providing the result of the relative filter in each spatial position. Their
concatenation along the third dimension produces the output of the convolutional layer. The
number NF of filters, that compose the convolutional layer is one of the hyper-parameters that
can be tuned to obtain high model performances. On the other hand, the stride or kernel size
is the hyper-parameter that specifies how many input time is processed into the feature maps.
When the stride is equal to one, the filter slides one pixel at a time, and consequently a longer
output is generated. On the contrary, higher values of kernel size move the filter with high
jumps, thus a smaller output is generated.
The convolution layer is generally alternated by a non linear activation function. The most
common activation function used is the Rectified Linear Unit (ReLU), defined as

ReLU(net) = max(0, net) (3.3)

This function was selected over other functions, such as the sigmoid or hyperbolic tangent,
due to its capability to avoid network saturation. This allows to prevent inputs with different
characteristics from causing the same type of output.
Formulae of sigmoid function is reported in Equation 3.4:

hθ(x) = 1
1 + e−θTx

(3.4)
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The other layers that compose CNNs are described below.

The pooling layer performs an aggregation of information in the input volume, generating
feature maps of inferior size. The main task of "pooling" is reducing the number of parameters
by consolidating them only to the most essential elements. In addition, it reduces the compu-
tational load, speeds up the calculation and makes some of the features detected more robust.
Widespread pooling techniques include average pooling and max pooling, which compute re-
spectively the average and the maximum value of data. The max-pooling layer was selected in
the current work, being the most used in the applications.

The dropout layer is a regularization technique, that randomly ignores or ’drops out’ some
hidden neurons during the training process [8]. This is a simple way to prevent neural networks
from over-fitting [9], thus avoiding loss of performance on the test data. If the problem of
over-fitting occurs, the model learns patterns that are more specific for a given dataset, thus
losing the generalization capability. Applying dropout, the learning process slows down and
the model achieves better performances on completely new unknown data.

The batch normalization layer is meant to accelerate the computation, provides regulariza-
tion, and reduces the generalization error. Through the use of batch normalization layer the
network model achieves stable training performance [10].

The fully connected layer connects every neuron in one layer to every neuron of the next
layer. The output of this layer is flattened into a one-dimensional vector and used for the
classification [11].

The softmax layer computes the probability distribution on predicted classes. The model
makes the prediction based on the output classes probability. The model output is defined as
a vector of elements containing the probability of a given window belonging to each type of
activity.

3.4 Convolutional Neural Networks architectures
This section describes the CNN architectures proposed in the present work. CNN was developed
on five different architectures having different layers combinations. The different architectures
are listed and described below, sorted in ascending order of complexity.

1. The first architecture of the CNN model consists of 1D CNN layer, followed by ReLU
activation function and a max-pooling layer, that reduces the learned features to half their
size. Then, the learned features pass through a dropout layer for regularization and a
batch normalization layer to accelerate training process. Finally, the learned features are
flattened to one long vector through the flatten layer, that serves as a connection between
previous layers and dense layers. Dense is the layer used for the output layer, which makes
a prediction. Softmax is the final layer, that returns the probability for each class.
Figure 3.11 shows the first architecture of the CNN model.
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Figure 3.11: First architecture of the CNN model. The 3-dimensional input passes through the first
architecture of the CNN model and output is computed as an integer for the class
number.

2. The second architecture of the CNN model is composed by two identical blocks made
of 1D CNN layer, ReLU activation function, max-pooling layer; then, dropout and batch
normalization layers are applied. Finally, flatten, dense and softmax are applied to get the
final output. Figure 3.12 represents the second architecture of the CNN model.

Figure 3.12: Second architecture of the CNN model. The 3-dimensional input passes through the
second architecture of the CNN model and output is computed as an integer for the
class number.

3. The third architecture of the CNN model consist of three identical blocks of 1D CNN
layers, ReLU activation function; then dropout and batch normalization layers are applied.
Finally, flatten, dense and softmax are applied to get the final output. Figure 3.13 shows
the third architecture of the CNN model.
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Figure 3.13: Third architecture of the CNN model. The 3-dimensional input passes through the
third architecture of the CNN model and output is computed as an integer for the class
number.

4. The fourth architecture of the CNN model is composed by two identical blocks of1D
CNN layers, followed by ReLU activation function. Then, a max-pooling layer is applied.
Subsequently, dropout layer and batch normalization are applied. Finally flatten, dense
and softmax are applied to get the final output. Figure 3.14 shows the fourth architecture
of the CNN model.

Figure 3.14: Fourth architecture of the CNN model. The 3-dimensional input passes through the
fourth architecture of the CNN model and output is computed as an integer for the
class number.

5. The fifth architecture of the CNN model consists of two 1D CNN layers, followed by a
ReLU activation function. Then a max-pooling layer and a 1D CNN layer, followed by a
ReLU activation function are applied. Subsequently, dropout layer and batch normaliza-
tion are applied. Finally flatten, dense and softmax are applied to get the final output.
Figure 3.15 shows the fifth architecture of the CNN model.
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Figure 3.15: Fifth architecture of the CNN model. The 3-dimensional input passes through the
fifth architecture of the CNN model and output is computed as an integer for the class
number.

3.5 Training and Validation
In the following, the optimizer, the loss function, and the optimization metric are listed and
described in details.

• Adam is a common used optimizer that adjusts the learning rate throughout training.
The learning rate determines how fast the optimal weights for the model are calculated.
A small learning rate may lead to more accurate weights, but the time it takes to compute
the weights will be longer. Moreover, such method has various advantages [7], including

– simple implementation
– computationally efficiency
– little memory requirements
– suitability for problems that are large in terms of data and/or parameters,
– fast tuning

• Categorical cross-entropy was selected as loss function, computed as reported in Equa-
tion 3.5.

Loss = −
output size∑

i=1
yi · log ŷi (3.5)

where ŷi is ith scalar value in the model output, yi is the corresponding target value, and
the output size is the number of scalar values in the model output.
Categorical cross-entropy is well suited to classification tasks.

• Accuracy was the metric selected to evaluate the model after the training process. It
calculates how often predictions on validation set are equal to labels. Accuracy is defined
as the percentage of correct predictions on the validation set and can be calculated easily
by dividing the number of correct predictions on the validation set by the number of total
predictions.

Accuracy = correct predictions on validation
total predictions (3.6)

Finally, the CNN model was trained on the training set, optimizing the hyper-parameters,
and then evaluated on the validation set.
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3.6 Hyper-parameters tuning
To generate high performances and fast output, the CNN model needs to be optimized per-
forming hyper-parameters tuning. The hyper-parameters should be chosen carefully, because
they could negatively affect the performances of the model. In the following, parameters of the
model architecture are listed and described.

• Number of layers is the first hyper-parameter to tune in a Convolutional Neural Network.
A larger number of layers makes the network more complex and depth, due to the fact
that layers learn progressively more complex and specific features. The number of layers
was tuned from 1 to 3, combining convolutional layers and max-pooling layers.

• Number of filter maps represents the number of times the input is processed. The
number of filter maps used in this work assumed the values reported below.

features maps = [8, 16, 32, 64, 128, 256] (3.7)

• Size of the kernel consists of the size of the filter which convolves around the feature
maps. The list of values used for kernel size is as follows.

kernel = [2, 3, 5, 7, 11] (3.8)

• Stride and pooling size are hyper-parameters of the pooling layer and are kept steady
at 1 and 2, respectively.

• Dropout rate is the hyper-parameter of the dropout layer. It was kept constant at a
value equal to 0.5, that is the common value used in CNNs [8] [9].

• Batch size is the hyper-parameter referred to the number of training examples used at
each iteration. It could affect the learning algorithm, especially about the speed which a
model learns and the stability of the learning process. A batch size of 32 was chosen, as
works well generally [10].

• Number of epochs is set to 10, that is the best compromise between generalization and
accuracy both on the training and the test set.

3.7 Prediction
The model trained on the training set and evaluated on the validation set was used to make
predictions on the test set and identify the class for this new data. Class prediction was per-
formed not only on test set of each database, but also on the other two entire datasets. Classes
predictions on the two databases allow to see how well the model works and generalizes on new
data.
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Table 3.3 lists the values of selected hyper-parameters.

Stage Hyper-parameters Selected Values
Data

pre-processing
window size

overlap
2,56s
50%

CNN model

Convolutional layer

Max-pooling layer

Dropout layer

Batch normalization

number of filters maps
kernel size

stride
pooling size

dropout rate

batch size

8,16,32,64,128,256
2,3,5,7,11

1
2

0.5

32

Training
and Validation

optmizer
loss function

metric
number of epochs

Adam
Categorical cross-entropy

Accuracy
10

Table 3.3: List of selected hyper-parameters.

Figure 3.16 summarizes the algorithm approach used to predict classes on the three different
databases.

Figure 3.16: Algorithm approach.
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3.8 Performance Evaluation
In order to provide an exhaustive performance evaluation and to compare results from the
various architectures of each dataset, different performance metrics were computed.
First of all, the Confusion Matrix, also known as an error matrix, is often used to visualize
the performance of a classification model and determines how accurate and effective the model
is. The matrix a number of rows corresponding to the actual classes and a number of columns
representing the predicted classes. To better understand the connections between actual and
predicted values, the following terms are associated with the confusion matrix.

• True positives (TP): model correctly predicts the positive class (prediction and actual both
are positive)

• False positives (FP): model correctly predicts the negative class (prediction and actual
both are negative).

• True negatives (TN): model gives the wrong prediction of the negative class (prediction
positive, actual negative)

• False negatives(FN): model wrongly predicts the positive class (prediction negative, actual
positive).

The following metrics were computed for performance evaluation, and reported as percentages
in Chapter 4. Metrics value ranges from 0 to 1, with 1 representing the best result.

• Accuracy is a common evaluation metric, that is calculated as the ratio between the
number of correct predictions and all predictions.

accuracy = TP + TN

TP + TN + FP + FN
(3.9)

• Specificity is calculated as the number of negative predictions divided by the total number
of negatives.

specificity = TN

TN + FP
(3.10)

• Precision is the ability of a classifier not to label a positive instance that is actually
negative. For each class it is defined as the ratio of true positives to the sum of true and
false positives.

precision = TP

TP + FP
(3.11)

• Sensitivity (or Recall) is the ability of a classifier to correctly identify all positive
instances. For each class it is defined as the ratio of true positives to the sum of true
positives and false negatives.

Sensitivity = TP

TP + FN
(3.12)

Sensitivity is usually used to limit the number of false negatives.

• f1-score is a weighted harmonic mean of the precision and recall metrics, and it also
ranges from 0 to 1.

f1-score = 2 · sensitivity · precisionsensitivity + precision (3.13)
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3.9 Selection of the best architecture
After computing performances for each architecture of each database, the best architecture for
each architecture was selected in terms of maximum validation accuracy. Between architectures
with the same validation accuracy, it was selected that with the lower computational complexity.

LOSO process is reported in Algorithm 1.

Algorithm 1 Algorithm for model optimization, validation and test performance evaluation
1: procedure optimizedModel(Data),performance(Data) .
2:
3: for i← 1 to N do . Perform N times test procedure
4:
5: for j ← 1 to N − 1 do . Perform N-1 times validation procedure
6:
7: [trainingSet]←data from all subject except for jth .
8:
9: [validationSet]← data from jth subject .
10:
11: for filtersfunction← [8,16,32,64,128,256] do . tune filter maps
12:
13: for kernelfunction← [2,3,5,7,11] do . tune kernel size
14:
15: Model ← train(model(trainingSet)) . train model
16:
17: prediction← predict(model(validationSet)) . predict validationSet
18:
19: end for
20:
21: end for
22:
23: ACC ← correct predictions on validationSet

total predictions . compute ACC
24:
25: [filtersfunction, kernelfunction]← max(ACC) . optimal parameters
26:
27: optimizedModel← model(filtersfunction, kernelfunction)
28:
29: end for
30:
31: performance← predict(model(ithsubject)) . compute performance on testSet
32:
33: end for
34:
35: return optimizedModel, performance .
36:
37: end procedure
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Experiments were performed on a PC with macOS 11 Big Sur operating systems, with 8GB
RAM and GPU 8-core. Matlab version R2021a was used to create data structure of each
database. Google Colab was used for CNN training and testing, with Python version 3.7.12,
Keras packages with TensorFlow backend to the implementation of the deep learning model.
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Chapter 4

Results

This chapter discusses the effect of the number of layers, feature maps and kernel size. Ad-
ditionally, it presents and analyzes the results obtained from the training process and the
model evaluation for each architecture of each database. Each architecture is described with
its acronyms, where C indicates the Convolutional layer and P refers to Max-pooling layer.

4.1 The effect of the number of layers
The number of layers of the CNN model and their combination can affect the execution time
and the model accuracy, as reported in the Figure 4.1, where the filter size and the kernel size
were selected conventionally as 32 and 5, respectively.

Figure 4.1: The effect of the number of layers of the CNN model.

Figure 4.1 suggests an increasing of the number of the layers of the CNN model contributes
to create a deeper network. From the Figure 4.1, it can be seen model accuracy increases
going from the 1st architecture to the 5th architecture, except for the 3nd architecture, where the
model accuracy achieves the lowest value. Accuracy, in fact, starts with a value equal to 94.9%
at first architecture and reaches 96.1% at the fifth architecture. However, more depth is the
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network and more larger is the complexity and execution time of the network. For this reason
the 3rd and the 5th architecture being composed by three layers have the highest computational
time.

4.2 The effect of the number of feature maps
The number of feature maps can affect the total number of parameters extracted by the model
and the model accuracy, as reported in the Figure 4.2, that shows results of the first architec-
ture of HAPT dataset, conventionally. More higher is the number of filters and more complex

Figure 4.2: The effect of the number of filters in the first architecture of the CNN model.

and deeper is the CNN model. From the Figure 4.2 it can be observed the increasing of the
number of parameters extracted by the model with increasing the number of filter maps. From
n=8 to n=256 filters, the parameters increase from 257822 to 8139014. The figure suggests the
accuracy increases until n=32 feature maps, but at 64 feature maps a significant drop occurs.
So, choosing of the feature maps is a critical issue.

4.3 The effect of the kernel size
The kernel size can affect the time to train and evaluate the CNN model and the model accuracy,
as reported in the Figure 4.3. As can be observed from the Figure 4.3 the mean accuracy
increases with increasing the kernel size until k=7. Then, the model accuracy deteriorates with
larger kernel size. On the other hand, the execution time increases until k=3 and then begins
to decreases until k=11, where the time to train and evaluate the CNN model is just about 61
s.
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Figure 4.3: The effect of the number of kernel in the first architecture of the CNN model.

4.4 Results for each database
1. HAPT database’s results

Table 4.1 lists the mean accuracy in percentage on train, validation and test set for
each architecture of the CNN model. Table 4.1 suggests the best architecture in HAPT

HAPT
database

mean accuracy (%)
architecture train validation test
1C+ReLU-1P 94.9 94.7 93.7

1C+ReLU-1P-1C+RelU-1P 94.9 96.0 96.9
1C+ReLU-1P-1C+RelU-1P-1C+RelU-1P 94.9 96.4 95.7

2C+ReLU-1P 96.0 96.4 94.3
2C+ReLU-1P-1C 94.5 95.4 93.8

Table 4.1: Mean accuracy(%) on train,validation and test set for each architecture of the CNN model
in the HAPT database.

database may be the 3rd architecture or the 4th architecture, where the mean validation
accuracy is the same and achieves the highest value of 96.4%. However, the 4th architecture
extracts a larger number of parameters (2049030 parameters) than the 3rd architecture,
where the number of parameters is just 440134. The 3rd architecture was selected as best
architecture in HAPT database for the low computational complexity. Results obtained
from the third architecture are described with more detail below.
The tuning process of the number of feature maps, also called number of filters led to
results reported in the Figure 4.4. As can be noticed from the Figure 4.4 the median
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Figure 4.4: Accuracy for different number of filter maps, obtained for the third architecture in HAPT
database. The best configuration, in terms of stability and computational time is given
by a number of filters equal to 64.

accuracy (orange line on the box) trend gradually increases when increasing the number
of feature maps, until to 64, where the accuracy reaches a peak of 97.5% with a standard
deviation of ±0.40. After this peak, accuracy decreases until n=256 feature maps. A
number of features equal to 64 represents the best configuration in terms of stability and
computational time.
Figure 4.5 reports accuracy values for different values of the kernel size. The number of
filters was set to 64, which represents the best value obtained previously.

Figure 4.5: Accuracy for different size of the kernel, for the third architecture in HAPT database.
Setting n = 64 feature maps, the best configuration is given by a kernel of size equal to
5.

Figure 4.5 suggests a kernel size equal to 5 is the best configuration in terms of median
accuracy, that assumes a value of 96.6% with a standard deviation of ±0.46. After selecting
the best configuration of feature maps and kernel size, the model was trained on the
training set. Figure 4.6 shows the different layers that compose the third architecture
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Figure 4.6: CNN model’s third architecture in HAPT dataset:a number of filter set to 64 and a
kernel size of 5 extract a number of parameters equal to 440134.

of the CNN model and the total number of parameters extracted. The training process
was displayed in the line graph of the Figure 4.7, which shows the evolution of the
training/validation accuracy through the epochs. As can be seen from the Figure 4.7,
the training accuracy gradually increases while increasing the number of epochs, until
reaching a peak value of about 97%, corresponding to a number of epochs equal to 10.
Validation accuracy trend is very similar to that of train accuracy and achieves higher
values about 98%.

Figure 4.7: Accuracy trend on the train and validation set for the 3rd architecture in HAPT dataset.
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The confusion matrix computed on test set of HAPT database is reported in the Figure
4.8.

Figure 4.8: Confusion matrix computed on the test set of HAPT database in the third architecture.

Metrics computed on the confusion matrix of the Figure 4.8 are listed in the Table 4.2.

activity accuracy(%) specificity(%) precision(%) sensitivity(%) f1-score(%)
walking 99.1 99.2 95.3 99.1 97.2
sitting 96.8 98.3 91.0 89.2 90.1
standing 96.8 97.9 90.5 91.9 91.2

stand to sit 99.6 99.9 95.0 76.0 84.4
sit to stand 99.8 99.9 89.7 89.7 89.7

other 99.1 99.4 99.4 98.9 99.1

Table 4.2: Metrics computed from the confusion matrix on the test set of HAPT database in the
third architecture.

As can be observed from the Figure 4.8 and from the Table 4.2 the values of true pos-
itives and true negatives are very high, leading to high accuracy and specificity for all
predicted classes. The values of precision, sensitivity (o recall) and f1-score are slightly
lower than those of accuracy and specificity, especially for the ’sit-to-stand’ class. The
wrong predictions of ’sit-to-stand’ may be caused due to the fact this activity is performed
for less time than other activities and this may impact the ability of the CNN model to
discriminate between the activities.
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From classes prediction on RealWorld HAR dataset, the confusion matrix reported in the
Figure 4.9 was obtained, in which it is evident a performances drop.

Figure 4.9: Confusion matrix obtained from classes prediction on RealWorld HAR dataset.

Metrics computed on the RealWorld HAR dataset are listed in the Table 4.3.

activity accuracy(%) specificity(%) precision(%) sensitivity(%) f1-score(%)
walking 52.6 42.9 26.7 26.7 26.7
sitting 85.2 84.1 54.5 54.5 54.5
standing 86.2 97.9 75.2 75.2 75.2
other 52.1 99.8 44.1 44.1 44.1

Table 4.3: Metrics calculated from the confusion matrix obtained from classes prediction on the
RealWorld HAR dataset.

Results suggest that the model is not capable of well predicting classes on RealWorld HAR
dataset, and this is evident from the low performances obtained for each class. The better
performances are obtained for the ’standing’ class, in which the accuracy reaches 86.2%
and the specificity is 97.8%. On the other hand, precision, recall and f1-score are about
75%. ’Sitting’ class is wrongly predicted with ’standing’ classes because they are similar
sequence of activities and ’other’ class is wrongly predicted with ’walking’ class, because
activities belonging to ’other’ class include climbing down/up, that are similar sequence
of activities with ’walking’. Summarizing, the model has mainly low performances.
Likewise, classes prediction on the UCI HAR dataset led to the confusion matrix showed
in the Figure 4.10.
Performances obtained testing the model on the UCI HAR dataset are slightly worst than
those of the RealWorld HAR Dataset, in fact precision, recall and f1-score are just about
40%. The model wrongly predicting ’sitting’ as ’standing’ and vice versa. Also, ’walking’
is confused with the ’other’ class.
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Figure 4.10: Confusion matrix obtained from classes prediction on the UCI HAR dataset.

Metrics computed on the UCI HAR dataset are listed in the Table 4.4.

activity accuracy(%) specificity(%) precision(%) sensitivty(%) f1-score(%)
walking 71.6 67.9 35.9 35.9 35.9
sitting 62.2 56.6 29.9 29.9 29.9
standing 79.9 95.7 35.5 35.5 35.5
other 52.3 98.2 44.9 44.9 44.9

Table 4.4: Metrics calculated from the confusion matrix obtained from classes prediction on UCI
HAR database.

2. UCI HAR database’s results
Mean accuracy in percentage on train, validation and test set for each architecture of the
CNN model in UCI HAR database are described in the Table 4.5.

UCI HAR
database

mean accuracy (%)
architecture train validation test
1C+ReLU-1P 72.4 73.2 71.2

1C+ReLU-1P-1C+RelU-1P 77.9 79.9 78.6
1C+ReLU-1P-1C+RelU-1P-1C+RelU-1P 75.0 77.9 77.7

2C+ReLU-1P 75.6 76.3 80.1
2C+ReLU-1P-1C 79.0 78.6 79.5

Table 4.5: Mean accuracy(%) on train,validation and test set for each architecture of the CNN model
in UCI HAR database.

Table 4.5 suggests the best architecture of the CNN model in the UCI HAR database is
the 2nd architecture, which led to the highest mean validation accuracy of 79.9%.
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Results obtained from the tuning process of the number of feature maps of the second
architecture are showed in the box-plot reported in the Figure 4.11.
Results suggest that n = 128 may be the optimal configuration, but the computational time
is very large. For this reason, the best configuration in terms of stability and computational
time is 64, where the median accuracy assumes a value of of 85.6% with a standard
deviation of ±1.5.

Figure 4.11: Accuracy for different number of filter maps, obtained for the second architecture in the
UCI HAR database. The best configuration, in terms of stability and computational
time is given by a number of filters equal to 64.

Setting the number of features maps to 64, the tuning of the kernel size obtained the
following results, represented in the Figure 4.12.

Figure 4.12: Accuracy for different values of the kernel size for the second architecture in UCI HAR
database. Setting n = 64 feature maps, the best configuration is given by a value of 5.

In the Figure 4.12 can be observed a general increase in model performance when increas-
ing the kernel size. Results suggest that a kernel size of 5 represents the best configuration,
providing accuracy of 85.7% with a standard deviation of ±1.0.
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Setting the best configurations chosen previously, the CNN model extracted a number of
parameters equal to 975620, as showed in the Figure 4.13.

Figure 4.13: CNN model’s second architecture in UCI HAR dataset. Using a number of filters equal
to 64 and a kernel size of 5 led to a total a number of parameters equal to 975620.

The accuracy trend on the train and validation set are reported in the Figure 4.14, where
it can be observed how the accuracy of the train set increases gradually while increasing
the number of epochs, achieving the highest value in the last epoch, where the value is
about 85%. The accuracy trend on the validation set is similar to that of the training set,
despite a dip is evident in the 2nd epoch.

Figure 4.14: Accuracy trend on the train and validation set for the 2nd architecture in the UCI HAR
database.
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Performances computed on the test set are summarized in the Figure 4.15.

Figure 4.15: Confusion matrix computed on the test set of UCI HAR database in the second archi-
tecture.

Metrics computed on the confusion matrix of the Figure 4.15 are listed in the Table 4.6

activity accuracy(%) specificity(%) precision(%) sensitivity(%) f1-score(%)
walking 94.4 93.3 75.1 99.7 85.7
sitting 86.3 92.0 59.2 57.4 58.3
standing 86.6 99.2 89.7 29.5 44.4
other 89.9 83.3 84.5 96.9 90.3

Table 4.6: Metrics calculated from the confusion matrix on the test set of the UCI HAR database
in the second architecture.

From the results it is evident that performance are high, except for recall and f1-score of
’sitting’ and ’standing’.
From classes prediction on HAPT database the confusion matrix reported in the Figure
4.16 was obtained.
Metrics computed on HAPT dataset are listed in the Table 4.7.
Figure 4.16 and Table 4.7 show that better performances are obtained for ’walking’
activity, where performances are about 80% on average. Moreover, the model allows
to achieve the highest specificity and precision for ’sitting’, because the number of false
positive is equal to 0, despite sensitivity and f1-score are very low for this class.
Performances obtained on ’other’ class are very low, because activities belonging to this
class are confused with ’walking’. This may be caused by the fact that ’other’ include
activities such as ’climbing down’ and ’climbing up’, that are very similar to ’walking’.
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Figure 4.16: Confusion matrix from classes prediction on HAPT dataset.

activity accuracy(%) specificity(%) precision(%) sensitivity(%) f1-score(%)
walking 75.3 83.3 89.3 71.2 79.3
sitting 84.6 100.0 100.0 0.9 1.9
standing 87.7 89.7 60.8 77.7 68.3
other 73.5 74.4 0.1 3.2 0.3

Table 4.7: Metrics computed from the confusion matrix obtained from classes prediction on HAPT
dataset.

Similarly, classes prediction on the RealWorld HAR dataset led to the confusion matrix
reported in the Figure 4.17.

Figure 4.17: Confusion matrix from classes prediction on RealWorld HAR dataset.
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All metrics computed from the Figure 4.17 are listed in the Table 4.8.

activity accuracy(%) specificity(%) precision(%) recall(%) f1-score(%)
walking 64.6 59.2 32.0 90.1 47.2
sitting 83.6 99.0 70.8 10.5 18.4
standing 85.0 88.3 55.2 69.1 61.4
other 61.1 83.2 66.9 37.0 47.6

Table 4.8: Metrics calculated from the confusion matrix obtained from classes prediction on Real-
World HAR dataset.

As can be observed from results, ’sitting’ is wrongly predicted as ’standing’ and ’other’
is wrongly predicted as ’walking’. Results suggest the model isn’t able to make correct
classes prediction on the RealWorld HAR database.

3. RealWorld HAR database’s results
Mean accuracy on train, validation and test set, obtained in RealWorld HAR for each
architecture are listed in the Table 4.9.

RealWorld HAR
database

mean accuracy (%)
architecture train validation test
1C+ReLU-1P 94.8 95.5 79.3

1C+ReLU-1P-1C+RelU-1P 94.9 95.9 70.6
1C+ReLU-1P-1C+RelU-1P-1C+RelU-1P 94.6 95.7 72.8

2C+ReLU-1P 95.8 95.9 75.2
2C+ReLU-1P-1C 95.7 96.1 69.7

Table 4.9: Mean accuracy(%) on train,validation and test for each architecture of the CNN model
in RealWorld HAR database.

Table 4.9 suggests the best architecture in terms of highest validation accuracy is the 5th
architecture.
Tuning the number of filters of the fifth architecture, the box-plot showed in the Figure
4.18 was obtained. From the box-plot, it can be observed an increasing trend accuracy
until to 64 feature maps with increasing the number of feature maps. The most stable
configuration is given by a number of filter maps equal to 64, that led an accuracy of
97.03% with a standard deviation of ±0.3.
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Figure 4.18: Accuracy for different values of the number filter maps, for the fifth architecture in
RealWorld HAR database. The best configuration is 64.

Using n=64 feature maps, the tuning of the kernel size led the following results, as reported
in the Figure 4.19.

Figure 4.19: Accuracy for different values of the kernel size, for the fifth architecture in the Real-
World HAR database. Setting 64 feature maps, the best configuration is given by a
value of 5.

Figure 4.19 shows the best configuration is a kernel size of 5, which provides an accuracy
of 97.0% with a standard deviation of ±1.7.
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Figure 4.20: CNN model’s fifth architecture in RealWorld HAR dataset: a number of filter set to
64 and a kernel size of 5 extract a number of parameters equal to 1880900.

Setting 64 feature maps and a kernel size of 5 the model extracts a total number of
parameters equal to 1880900, as reported in the Figure 4.20.
Accuracy trends on train and validation set are depicted in the Figure 4.21, where it is
evident the progressive increase of the accuracy on train set with increasing the number
of epochs. The validation accuracy trend is similar to that of train set and assumes value
between 94% and 96%.

Figure 4.21: Accuracy trend on train and validation set for the 5th architecture in the RealWorld
HAR dataset.

45



Results

Performances on the test set of the fifth architecture in the RealWorld HAR database are
described in the Figure 4.22. Results of the Figure 4.22 suggest performances on the

Figure 4.22: Confusion matrix calculated on the test set of RealWorld HAR database in the fifth
architecture.

test are quite high, but are significantly smaller than that on train and validation set.
For this reason, LOSO technique was applied and the results obtained from it are described
in the Figure 4.23.

Figure 4.23: Confusion matrix calculated on the test set of RealWorld HAR database in the fifth
architecture.
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Metrics obtained from Hold-out and LOSO technique are compared in the Table 4.10.
Comparing performances on test set from Hold-out technique and that from LOSO tech-
nique, reported in the Table 4.10, it is evident LOSO technique allows to achieve better
performances of a value of 5%.

Performances on TestSet (%)Activity Validation accuracy specificity precision sensitivity f1-score
HOLD OUT 86.6 97.4 77.7 39.0 52.0walking LOSO 89.5 95.2 73.8 62.8 67.8
HOLD OUT 87.0 93.6 65.9 56.9 61.1sitting LOSO 88.0 96.4 74.2 48.3 58.5
HOLD OUT 87.7 96.3 74.5 48.5 58.8standing LOSO 86.2 90.5 59.0 65.6 62.2
HOLD OUT 78.3 63.5 68.8 95.8 80.1other LOSO 86.5 80.5 81.5 93.0 86.9

Table 4.10: Metrics obtained from Hold-out and LOSO technique for the fifth architecture in Real-
World HAR database.

Similarly, performances obtained from classes prediction on HAPT database are reported
in the Figure 4.24. All metrics computed from the confusion matrix of the Figure 4.24
are listed in the Table 4.11.

Figure 4.24: Confusion matrix obtained from classes prediction on HAPT database.

As can be observed from the Figure 4.24 and from the Table 4.11 performances drop
occurs in the prediction on HAPT database. The model isn’t able to predict correctly
’walking’ , as reported from performances very low, because it is wrongly predicted as
’other’ classes. Summarizing, the model has mainly low performances.
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activity accuracy(%) specificity(%) precision(%) recall(%) f1-score(%)
walking 53.0 90.9 15.7 7.9 10.5
sitting 88.4 94.3 50.7 43.8 47.0
standing 99.9 102.3 126.2 82.3 99.7
other 29.3 41.0 1.4 2.0 1.6

Table 4.11: Metrics calculated from the confusion matrix obtained from classes prediction on HAPT
database.

Likewise, classes prediction on UCI HAR dataset led to the confusion matrix showed in
the Figure 4.25.
Performances obtained testing the model on the UCI HAR dataset are low, especially
precision,sensitivity and f1 score. Accuracy and specificity are slightly higher, but don’t
exceed 72% on average. Totally, the performances are not high a lot.

Figure 4.25: Confusion matrix obtained from classes prediction on UCI HAR dataset.

All metrics computed from the confusion matrix of the Figure 4.25 are listed in the
Table 4.12.

activity accuracy(%) specificity(%) precision(%) recall(%) f1-score(%)
walking 80.3 89.9 39.4 32.5 35.6
sitting 65.2 67.4 26.0 55.0 35.3
standing 71.4 82.2 23.3 23.7 23.5
other 58.1 75.9 59.1 38.4 46.6

Table 4.12: Metrics calculated from the confusion matrix obtained from classes prediction on UCI
HAR dataset.
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Table 4.13 summarizes the mean accuracy and f1-score on the test set for each dataset.

TESTTRAIN Performances (%) HAPT UCI HAR RealWorld HAR
accuracy 98.5 66.5 69.0HAPT
f1-score 91.9 36.5 50.1
accuracy 80.2 89.3 73.5UCI HAR
f1-score 37.4 69.6 43.6
accuracy 67.6 68.7 84.9RealWorld HAR
f1-score 39.7 35.2 63.9

Table 4.13: Summary of mean accuracy and f1-score on the test set for each dataset.

As can be observed from the Table 4.13, when the CNN model is trained on the train set
of a database and tested on the own test set, performances obtained are high. On the other
hand, when the model is used to make prediction on the other two databases, performances
decline significantly.

Finally, the computational time (s) was evaluated both on the train and test set, including
standardization, segmentation, training/validation and testing process. The computation time
was computed for a duration of signal ranging from 10 to 100000 s. Results are reported in the
following figures.

Figure 4.26: Computational time computed on standardization, segmentation and train-
ing/validation on the train set.

From the Figure 4.26, it is evident the time to compute training/validation process is more
longer than that on standardization and segmentation. Standardization process requires few
tenths of seconds, segmentation process needs of few seconds and training/validation requires
some hundreds of seconds, corresponding around to one minute.
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Figure 4.27 reports the total duration including standardization, segmentation and train-
ing/validation and suggests the trend of training/validation is very similar to that of total
duration. This means that training/validation is the process with more computational time.

Figure 4.27: Computational time computed on standardization, segmentation and train-
ing/validation on the train set.

Likewise, computational time was computed on the test set.
Figure 4.28 reports the time(s) of standardization, segmentation and testing process on the
test set. Figure 4.28 suggests the time to compute standardization is few tenths of seconds,

Figure 4.28: Computational time computed on standardization, segmentation and testing on the
test set.

50



Results

the time to compute segmentation is less of one second and that to compute testing is of the
same order of segmentation process.
Figure 4.29 reports the trend of the processes and includes the total duration trend.

Figure 4.29: Computational time computed on standardization, segmentation and testing on the
test set.

Figure 4.29 suggests the time to compute testing is very small, unlike the training/validation
process.
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Chapter 5

Discussion

This section presents and discusses the results of the current work with the aim of selecting
the most effective points. To provide an exhaustive performance evaluation of the CNN model,
five architectures were performed on the three selected databases; then the best architecture,
in terms of performances, was chosen for each database. However, results obtained aren’t im-
mediately comparable with the results found in literature. In this work, in fact it was decided
to select a smaller number of activities than literature and complex activities, such as jumping,
climbing up, climbing down were rejected. This work selected only simple activities, which gen-
erally are activities performed by all subjects, from older to younger. This issue may impact
on performances differences obtained from the proposed CNN model and on the performances
obtained in the literature.
In addition, the duration of performed activities can adversely affect the performance of the
model, as some activities rare performed for longer than others and this can affect the model’s
ability to discriminate between activities.
Concerning the performances on each database, it can be observed that the optimized model
obtained an high classification rate in the recognition of ADLs, both on validation and on test
set, despite the differences in performance being significantly evident between the datasets.
The performances computed on the test set of the HAPT data have values similar to those of
train and validation and are around 95%. The performances on the test set of the UCI HAR
database are similar to those on train and validation and are around 76 %. While, on the test
set of the RealWorldHAR, a drop in performances is significant. If the performances on train
and validation are around 95%, those on test set are around 75%. This decline could be caused
by the presence of over-fitting.
The LOSO technique allowed to improve performances on the test set, achieving an accuracy of
87.5% on average and a specificity of 90.6%. Better performances were obtained in particular
on sensitivity and f1 -score. The sensitivity went from an average value of 60.0% to 67.4%,
while the score of f1 increased from 62.9% to 68.8%.
On the other hand, the performance obtained by the model trained on its own train set and used
to make predictions on other datasets led to worse performance. More specifically, the model
trained on the train set of the HAPT dataset achieved performance of about 52% on average
on the UCI HAR dataset and 60% on RealWorld HAR. The model trained on the train set of
UCI HAR dataset resulted in approximately 58% performance on average on both the HAPT
dataset and the RealWorld HAR dataset. While, the model trained on RealWorldHAR’s train
set and tested on two other datasets resulted performances of approximately 54% and 52% on
average on the HAPT and the UCI HAR dataset respectively.
A possible performance degradation occurred when the model was trained on the train set of
a dataset consisting of only 4 activities and used to predict classes on a dataset consisting of 6
activities.
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In addition to the classification performance, the computational complexity was calculated,
reporting the total number of extracted parameters. More complex the architecture and more
parameters are extracted. As a result, the computation time to run the algorithm increases.
For this reason the choice of the best architecture of each architecture was the compromise
between performance and computational complexity.
However, a possible question arises from this work: "Is it possible to select a common architec-
ture for the three databases, considering that the performances are more or less similar to each
other?"
Perhaps the 2nd architecture can be chosen as the common architecture, because it is the fastest
architecture and allows for great performance. If the 2nd architecture is selected in the HAPT
database, the performance drops by only 0.4%. While, if you select the 2nd architecture in the
RealWorld HAR database, the performance decreases by only 0.2%.
Another issue to point out is the difference in computation time required to perform stan-
dardization, segmentation, training/validation and testing processes. Standardization and seg-
mentation are two processes that take little time to execute, a few tenths of a second for
standardization and a few seconds for segmentation. The training / validation process, on the
other hand, takes about one minute, for about 28 hours of activity. However, once the training
process is finished, the testing process is very fast and takes only tenths of a second.
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Chapter 6

Conclusions and Future Works

In this work, sensor-based HAR was used to predict and identify classes of a variety of ADIs
on subjects wearing a waist-mounted smartphone integrated with two wearable sensors: ac-
celerometer and gyroscope. Sensor data was acquired from the three most common databases
used in human activity research fields: HAPT, UCI HAR, and RealWorld HAR database, from
which only simple activities were selected.
The proposed model was the CNN model, built layer by layer, in which the tuning of the num-
ber of layers, feature maps and kernel size were performed.
Hyper-parameters tuning led to choosing the best configuration model for each database, in
terms of performance and computational complexity. The optimized model trained on the train
set, evaluated on the validation set and tested on the test set brought great performance in
each database: about 95% on the HAPT dataset and 80% on the UCI HAR dataset. On the
RealWorld HAR dataset, performance reached high values on the train and validation set, but
declined on the test set. The LOSO technique allowed to improve the performance on the test
set, in particular the sensitivity and the f1-score, which increased by about 10%. However, the
performance obtained from the model trained on its own train set and used to predict classes
on the other two entire datasets had a significant drop. Accuracy decreased by approximately
30% when the model was trained on the train set of the HAPT database, while the f1 score
decreased by approximately 53%. The same problem occurs in the UCI HAR dataset, where
the precision decreased by approximately 14 % and the f1 score decreased by approximately
42%. In the RealWorld HAR dataset, the accuracy decreased by approximately 20%, while the
f1 score decreased by approximately 41%.
The performance demonstrated the CNN model’s ability to make correct predictions of classes
on each database’s test set and suggested the model’s inability to make predictions on other
databases.
As future works, in order to get better performance on the test set and try to achieve similar
performance over activities, that performing for a longer time may be downsampled, while less
performed tasks may be oversampled.
Additionally, the CNN model could be used to support early diagnosis and treatment of PD:
the CNN model could be trained on an online dataset and tested on a dataset, containing data
from older subjects or PD.
Finally, Transfer Learning could be another improvement to apply. The pre-trained model
could be used as a starting point for training the model on new data.
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