
 
 
 

POLITECNICO DI TORINO 
DIMEAS – DEPARTMENT OF MECHANICAL AND AEROSPACE ENGINEERING 

 
 

MASTER OF SCIENCE 
DEGREE IN 

AUTOMOTIVE ENGINEERING 
 

Master's degree thesis 
 

VEHICLE CONTROL AND TRAJECTORY 
PREDICTION USING SUPERVISED NEURAL 

NETWORK 

 

 
 

University Supervisor: Candidate: 
Prof. Andrea Tonoli  Arun Prasath Ganesa    

Moorthy Ilangovan 
 Matr.: S260355 

Company Supervisor: 
Ing. Francesco Ambrogi 
(VI-Grade, Italy) 

 
October 2021 



ii 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 
 

Acknowledgements 
 
Firstly, I would like to express my sincere thanks to my company supervisor  Ing. Francesco 

Ambrogi, Global Service Manager, VI-Grade, Italy, for giving me an excellent opportunity to 

carry out my thesis work on this topic. His continuous support throughout the project, along with 

detailed reviews and suggestions, helped a lot in directing me to complete this thesis work. 

I would like to express my gratitude and appreciation to my university supervisor Prof. Andrea 

Tonoli of the Department of Mechanical and Aerospace Engineering (DIMEAS) of the Politecnico 

di Torino for providing the humongous support from the university end throughout this study. 

I would also like to sincerely thank Dr Stefano Feraco for his assistance and encouragement right 

from the beginning of this research work. His valuable suggestions and feedbacks helped me to 

improve the technical aspects of this research work. 

Finally, I would like to thank and dedicate this thesis to my parents, sister, and friends, who always 

gave me moral support and courage to finish this thesis work. 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 
 

Contents 

 
Abstract ......................................................................................................................................... xi 

Introduction ................................................................................................................................... 1 

1.1 Thesis Motivation ............................................................................................................................... 1 

1.2 Scope ................................................................................................................................................... 2 

1.3 Limitations .......................................................................................................................................... 2 

1.4 State of the Art .................................................................................................................................... 2 

1.4.1 Overview of Neural Network based Vehicle Control: ................................................................. 2 

1.4.2 Overview of Neural Network based Trajectory Prediction: ......................................................... 5 

1.5 Thesis Outline ..................................................................................................................................... 7 

Theory ............................................................................................................................................ 9 

2.1 Machine Learning ............................................................................................................................... 9 

2.2 Artificial Neural Networks................................................................................................................ 10 

2.3 Feed-Forward Neural Networks ........................................................................................................ 11 

2.4 Activation Function .......................................................................................................................... 13 

2.4.1. ReLU Activation Function ........................................................................................................ 13 

2.4.2 Sigmoid Activation Function ..................................................................................................... 14 

2.4.3 ELU Activation Function ........................................................................................................... 14 

2.5 Loss Function .................................................................................................................................... 15 

2.6 Optimization Algorithm .................................................................................................................... 15 

2.6.1 Adam Optimization .................................................................................................................... 16 

2.7 Network............................................................................................................................................. 17 

2.7.1 Multilayer Perceptron ................................................................................................................ 17 

2.7.2 Training a Network .................................................................................................................... 18 

2.7.3 Network Regularisation ............................................................................................................. 18 

VI-CarRealTime ......................................................................................................................... 20 

3.1 Vehicle Model ................................................................................................................................... 20 

3.1.1 Coordinate System ..................................................................................................................... 20 

3.1.2 VI-CRT Vehicle Model ............................................................................................................. 21 

3.1.3 VI-Driver Theory ....................................................................................................................... 22 

3.2 Simulation Events ............................................................................................................................. 24 



vi 
 

3.2.1 File Driven Event ....................................................................................................................... 25 

3.2.1 Max Performance Event ............................................................................................................. 26 

3.3 MATLAB/Simulink Co-Simulation ................................................................................................. 26 

Methodology - Vehicle Control .................................................................................................. 29 

4.1 Overview ........................................................................................................................................... 29 

4.2 NN-framework .................................................................................................................................. 30 

4.2.1 TensorFlow ................................................................................................................................ 30 

4.2.2 Keras .......................................................................................................................................... 30 

4.2 System Setup ..................................................................................................................................... 31 

4.3 Dataset Preparation ........................................................................................................................... 32 

4.3.1 Data Collection .......................................................................................................................... 32 

4.3.2 Feature Selection ........................................................................................................................ 33 

4.3.3 Data Pre-Processing ................................................................................................................... 36 

4.4 Training ............................................................................................................................................. 38 

4.4.1 Network Architecture ................................................................................................................. 39 

4.4 Online Validation Setup .................................................................................................................... 44 

Methodology – Trajectory Prediction ....................................................................................... 46 

5.1 Overview ........................................................................................................................................... 46 

5.2 System Design .................................................................................................................................. 47 

5.2.1 Road Boundary Generation ........................................................................................................ 47 

5.2.2 Sliding Window Approach ......................................................................................................... 52 

5.3 Dataset Preparation ........................................................................................................................... 53 

5.4 Network Architecture ........................................................................................................................ 56 

Results and Discussion ................................................................................................................ 59 

6.1 Training Results ................................................................................................................................ 59 

6.2 Testing Results .................................................................................................................................. 61 

6.2.1 Vehicle Control: Offline Prediction ........................................................................................... 61 

6.2.2 Vehicle Control: Online Prediction ............................................................................................ 69 

6.2.1 Vehicle Trajectory Prediction .................................................................................................... 72 

Conclusion and Future Work .................................................................................................... 78 

Bibliography ................................................................................................................................ 80 

 

 



vii 
 

List of Figures 
 
Figure 1.1 Basic layout of NN model - Lateral Control ............................................................................... 4 

Figure 1.2 Basic layout of NN model - Longitudinal Control ...................................................................... 5 

Figure 1.3 Basic layout of NN model - Trajectory prediction ...................................................................... 7 

Figure 2.1 Types of Learning Strategies ....................................................................................................... 9 

Figure 2.2  Simple network structure .......................................................................................................... 11 

Figure 2.3 Network with its weights and biases ......................................................................................... 12 

Figure 2.4 ReLu Activation function range ................................................................................................ 13 

Figure 2.5 Sigmoid Activation function range ............................................................................................ 14 

Figure 2.6 Network Architecture of MLP ................................................................................................... 17 

Figure 3.1 Reference coordinate system ..................................................................................................... 20 

Figure 3.2 Vehicle model Sprung and Unsprung mass ............................................................................... 22 

Figure 3.3 Classical bicycle model ............................................................................................................. 22 

Figure 3.4 VDF file settings ........................................................................................................................ 25 

Figure 3.5 Passive Vehicle S fucntion - Simulink ...................................................................................... 27 

Figure 3.6 Input and output channel selection pan ..................................................................................... 27 

Figure 4.1 Steps in Keras model creation ................................................................................................... 31 

Figure 4.2.1 Track : VI-Road Example ....................................................................................................... 32 

Figure 4.2.2 Track : VI-Track ..................................................................................................................... 32 

Figure 4.2.3 Track : Austin ......................................................................................................................... 32 

Figure 4.2.4 Track : Oschersleben .............................................................................................................. 32 

Figure 4.2.5 Track : Budapest ..................................................................................................................... 33 

Figure 4.2.6 Track : Brand hatch ................................................................................................................ 33 

Figure 4.3 Histogram before Data Augmentation - Steering Values .......................................................... 37 

Figure 4.4 Histogram after Data Augmentation - Steering Values ............................................................. 38 

Figure 4.5 NN Architecture Diagram - Lateral Control .............................................................................. 39 

Figure 4.6  Model Summary - Lateral Control ........................................................................................... 40 

Figure 4.7 NN Architecture Diagram - Longitudinal Control .................................................................... 42 

Figure 4.8 Model Summary - Longitudinal Control ................................................................................... 43 

Figure 4.9 Integration Environment Layout ............................................................................................... 44 

Figure 4.10 Simulink co-simulation setup for NN validation ..................................................................... 45 

Figure 5.1 Different trajectories generated based on Corner-cutting .......................................................... 46 

Figure 5.2 Inner and outer Boundaries plot ................................................................................................ 48 

file:///E:/Sem%201/4th%20Semester/Thesis1/Literature%20Review/Report/l


viii 
 

Figure 5.3 Tack’s optimal trajectory line along with the road boundaries ................................................. 49 

Figure 5.4 Optimal trajectory point’s misalignment with the centre points................................................ 50 

Figure 5.5 Optimal trajectory line (blue) .................................................................................................... 51 

Figure 5.6 Optimal trajectory point in line with boundary coordinates ...................................................... 51 

Figure 5.7 Single Sliding Window .............................................................................................................. 52 

Figure 5.8.1 Track : VI - Track ................................................................................................................... 53 

Figure 5.8.2 Track : Nürburgring ................................................................................................................ 53 

Figure 5.8.3 Track : Austin ......................................................................................................................... 54 

Figure 5.8.4 Track : Budapest ..................................................................................................................... 54 

Figure 5.8.5 Track : Oschersleben .............................................................................................................. 54 

Figure 5.8.6 Track : Nürburgring ................................................................................................................ 54 

Figure 5.9 NN Architecture diagram - Trajectory Prediction ..................................................................... 56 

Figure 5.10 Model Summary - Trajectory Prediction ................................................................................. 57 

Figure 6.2 MaxPerformance - Lateral Control ............................................................................................ 59 

Figure 6.1 Constant Velocity - Lateral Control .......................................................................................... 59 

Figure 6.4 Trajectory Prediction ................................................................................................................. 60 

Figure 6.3  MaxPerformances - Longitudinal Control ................................................................................ 60 

Figure 6.5.1 Unseen Track : Straight .......................................................................................................... 61 

Figure 6.5.2 Unseen Track : Single Turn .................................................................................................... 62 

Figure 6.5.3 Unseen Track : Chicane .......................................................................................................... 62 

Figure 6.5.4 Unseen Track : Unknown Track 1 .......................................................................................... 62 

Figure 6.5.5 Unseen Track : Spielberg ....................................................................................................... 62 

Figure 6.6.1  Prediction : VI-Track ............................................................................................................. 62 

Figure 6.6.2 Prediction : VI-Road Example ............................................................................................... 63 

Figure 6.6.3 Prediction : Brand hatch ......................................................................................................... 63 

Figure 6.6.4 Prediction : Budapest .............................................................................................................. 63 

Figure 6.6.5 Prediction : Melbourne ........................................................................................................... 63 

Figure 6.7.1 Unseen track prediction : Straight .......................................................................................... 64 

Figure 6.7.2 Unseen track prediction : Single Turn .................................................................................... 64 

Figure 6.7.3 Unseen track prediction : Chicane .......................................................................................... 64 

Figure 6.7.4 Unseen track prediction : Unknown 1 .................................................................................... 64 

Figure 6.7.5 Unseen track prediction : Spielberg ........................................................................................ 64 

Figure 6.8.1 Unseen Track 1 : Spielberg .................................................................................................... 65 

Figure 6.8.2 Unseen Track 2 : Sakhir ......................................................................................................... 65 



ix 
 

Figure 6.9.1 Prediction : VI RaceTrack ...................................................................................................... 66 

Figure 6.9.2 Prediction : VI-Track .............................................................................................................. 66 

Figure 6.9.3 Prediction : Brand Hatch ........................................................................................................ 66 

Figure 6.9.4 Prediction : Budapest .............................................................................................................. 66 

Figure 6.10.1 Unseen Track Prediction : Spielberg .................................................................................... 67 

Figure 6.10.2 Unseen Track Prediction : Sakhir ......................................................................................... 67 

Figure 6.11.1 Prediction : VI-Track ............................................................................................................ 67 

Figure 6.11.2 Prediction : VI-RaceTrack .................................................................................................... 67 

Figure 6.11.3 Prediction Brand hatch ......................................................................................................... 68 

Figure 6.11.4 Prediction : Budapest ............................................................................................................ 68 

Figure 6.12.1 Unseen track Prediction : Spielberg ..................................................................................... 68 

Figure 6.12.2 Unseen Track Prediction : Sakhir ......................................................................................... 69 

Figure 6.13 Modified NN layout ................................................................................................................ 70 

Figure 6.14 Simulink Environment : Online validation setup .................................................................... 70 

Figure 6.16 Online Prediction  : Straight Path ............................................................................................ 72 

Figure 6.15 Offline Prediction : Straight Path ............................................................................................ 72 

Figure 6.18 Noise level after change in Activation function ...................................................................... 72 

Figure 6.17 Noise level before change in Activation function ................................................................... 72 

Figure 6.19 Unseen Trajectory Prediction : Spielberg ................................................................................ 73 

Figure 6.20 Unseen Trajectory Prediction : Sakhir ..................................................................................... 75 

Figure 7.1 Complete System Layout........................................................................................................... 79 

 

 
 

 

 

 

 

 

 

 



x 
 

List of Tables 

 
Table 1 System Configuration .................................................................................................................... 31 

Table 2 Selected input and output features of the Network ........................................................................ 34 

Table 3 Configuration and Hyperparameters - Constant velocity Lateral control ...................................... 41 

Table 4 Configuration and Hyperparameters - MaxPerformance Lateral control ...................................... 41 

Table 5 Configuration and Hyperparameters - MaxPerformance Longitudinal control ............................. 43 

Table 6 Selected input and output features of the Network ........................................................................ 55 

Table 7 Configuration and Hyperparameters - Trajectory Prediction Network .......................................... 58 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xi 
 

Abstract 
 
The research and development in the area of Autonomous vehicles have gained huge attention in 

recent years, intending to transform it to be a safe, reliable and intelligent solution for 

transportation. The latest advancement of Artificial Intelligence and Machine learning techniques 

finds its application in the development of Autonomous vehicles to make it a resilient system. 

Perception, Localization, Planning and Control are the four-module that makes up the Autonomous 

vehicle system as a whole. The final parts of planning and control are the most important 

subsystems where the end control decision has to be made. 

This thesis work is a small contribution towards the research on Supervised Neural Network based 

trajectory prediction and control models for autonomous vehicles. In this study, the performance 

of the Multi layer Perceptron Neural Network model for both the trajectory prediction and control 

is presented. In the first part of the thesis, the construction of the Neural Network Model for the 

lateral and longitudinal control is presented. In the second part, the architecture of the Neural 

Network model for the optimal trajectory prediction is briefed along with the MATLAB algorithms 

utilized for its construction. These two separate Neural Network models are constructed based on 

the simulation data of the VI-CarRealTime Driver model. The built-in Neural Network model is 

tested in the Simulink interface, where the co-simulation with VI-CarRealTime events are 

performed. 

 

 

 

 

Key Words: Supervised Learning, Neural Network, Deep Learning, Trajectory Prediction, 

Autonomous vehicle control. 

 

 



1 
 

Chapter 1 
Introduction 
 

1.1 Thesis Motivation 
 

The continuing evolution of Automotive technologies to deliver safe transportation has seen a huge 

revolution with the development of Autonomous Vehicles. Focusing on the benefits of a reliable, 

intelligent solution, self-autonomy and other environmental gains, the research into Autonomous 

vehicles has gained much interest in the recent past. The Autonomous driving vehicle is nothing 

but a system that can sense its surrounding environment and takes the required decision and control 

actions similar to that of the human driver without their intervention with the help of the core 

software modules embedded in it. The onboard system architecture of the Autonomous vehicle is 

comprised of three different modules as environment perception, planning, decision-making and 

vehicle control. The first perception module acquires the details on the surrounding with the help 

of the onboard sensors like cameras, radars etc., and it utilises this gathered information to form 

the grid maps to identify the feasible driving areas. The planning and decision-making modules 

take in the mapping information from above and combine it with the vehicle states details to 

compute desired target path and the velocity profile. The last control module takes care of the final 

control actions on the engine, brake and steering to follow the computed path with the desired 

speed. 

Despite the several advancements in the Autonomous vehicle technology, the full autonomy where 

complete driver independence could be realised is not yet achieved so far. The recent advancement 

in the field of machine learning and its adoption in autonomous vehicle development has provided 

numerous solutions to make it a complete, reliable system. The machine learning algorithms can 

be deployed to solve several tasks in the case of Autonomous cars ranging from object detection, 

classification, recognition and movement predictions. Both Deep learning and Reinforcement 

learning which are part of the machine learning techniques are becoming inevitable choices in 

solving the several complexities involved in the Autonomous cars, as it offers the vast advantages 

over the current control modules. The concept of deep learning is based on the Artificial Neural 

Network composed of several layers of neurons which helps to solve the complex linear and non-



2 
 

linear problems. Based on the learning strategies, the Artificial Neural Network is classified as 

supervised, semi-supervised or unsupervised networks. 

The motivation of the thesis is to explore deep learning strategy especially supervised neural 

networks, on the application of the trajectory prediction and control module of the Autonomous 

vehicle system. The main aim of the work is to study the performance of the proposed strategy and 

to formulate further technical reformation to improve the robustness of the system for the 

aforementioned application. 

1.2 Scope 
 

The construction of Neural Networks, learning methods, offline prediction, online prediction 

environment setup. Also, it is within the scope of the thesis to study how these parameters affect 

the performance of the system and to recommend the best possible solution. 

1.3 Limitations 
 

As the proposed strategy is based on the simulation of the vehicle model in the closed tracks, this 

algorithm is limited for the application in the road tracks without any surrounding participants(i.e. 

not in the urban environments). The trajectory prediction algorithm proposed here to be a global 

path planning system for a given road track; however, the real-time trajectory prediction could be 

the future scope of this project. 

1.4 State of the Art 
 

1.4.1 Overview of Neural Network based Vehicle Control: 
 

The Control module in the Autonomous vehicle is a critical system as they are responsible for the 

final action to be taken. Over the recent years, several advancements have been witnessed on 

Autonomous vehicle control based on the traditional control system controllers.  

The recent development in Machine learning and its application in self-driving cars has gained 

huge interest. Much research has taken place in the recent past to know the feasibility of the 

Artificial Intelligence based control modules in Autonomous vehicles. End-end vehicle control 



3 
 

using deep learning technology is one of the latest trends in the development of Autonomous 

Vehicles. The word ‘End-end’ comes from the end-to-end (E2E) learning strategy, with which the 

Deep Neural Network (DNN) composed of several layers will be able to solve complex, non-linear 

problems. The overview of the previous technical works related to this, which are gathered and 

analysed during the beginning of the thesis work, are described in this section. 

The Deep Learning based Autonomous Vehicle Lateral Control have been studied in the 

simulation environment in the technical paper [1]. In this, the Convolution Neural Network (CNN) 

is trained with the input of the camera images and its respective steering angle for the different 

training tracks. With the image segmentation, lane detection from the input images, the CNN 

model, after training with few different training tracks, has been able to provide lateral control for 

the unknown road tracks. In continuation of the above work, the addition of longitudinal control 

is incorporated by developing a separate CNN model for speed prediction as described here [2]. 

This model also takes in the road images as input; with the minimal dataset, the longitudinal control 

prediction was found to be satisfactory for the low-speed simulations. The further improvement in 

this type of NN control model is described in this paper [3]. In this work, in addition to the camera 

images as input, the parameters capturing the dynamics of the vehicle are provided as input to the 

CNN model. The training and the prediction of this NN model have performed well compared to 

the model with only the road images as input. In addition, the ground truth has also improved after 

feeding the NN model with the previous-continuous vehicle states information for the lateral and 

longitudinal control. The feasibility of the trajectory control using the neural network model has 

been explored in the research work [4]. The supervised and reinforcement learning strategies are 

tested for tracking the given reference trajectory. The simple Feed-Forward Neural Network and 

Recurrent Neural Network(RNN), which belongs to the supervised learning scheme, has 

outperformed the traditional geometric path tracker. The training and testing data’s are gathered 

with the controllers like Pure pursuit controller and Stanley controller in this case. Even though 

Reinforcement learning shows promising performance comparatively, it requires more work to be 

used in the actual physical systems. Another case study on the trajectory-based lateral control using 

Reinforcement learning has been briefed in the technical paper [5]. The combined lateral and 

longitudinal control using the Deep Neural Network (DNN) is reported in the reference work [6]. 

The Multi-Layer Perceptron (MLP) and Convolution Neural Network(CNN) schemes are tested 

for the vehicle control application. Compared to the previous studies, here, only the vehicle 



4 
 

dynamics parameters are feed as input to the NN models along with the trajectory information. 

Both categories of the NN model performed well with the CNN schema predictions appeared better 

in the tight curves of the tracks.  

With the inference from the above research works, the performance of the Multi-Layer Perceptron 

Neural Network based Lateral and Longitudinal control model is briefed in this thesis work. Rather 

than using the visual perception (camera images) as input to the NN model, here the vehicle states 

feedbacks that captures the lateral and longitudinal dynamics along with the reference path 

information (Path Curvature, Path Distance-Lateral Offset) are feed as input to the NN model 

during the training and testing. The architecture of the NN model each for Lateral and Longitudinal 

control is depicted in Figures 1.1 &1.2 

 

 

 

 

Vehicle States: Longitudinal velocity, Lateral velocity, Yaw angle, Roll angle, Sideslip angle. 

 

 

 

 

 

 

 

Figure 1.1 Basic layout of NN model - Lateral Control 

 

 

 

 



5 
 

 

 

Vehicle States: Longitudinal Acc, Lateral Acc, Pitch angular Acc, Yaw angular Acc, Roll angular 
Acc. 

 

The NN model architectures are built using the Keras and TensorFlow Python libraries in the 

Google Colab Python notebook. The simulation data’s from the VI-CarRealTime are used for the 

training and setting up the NN models. All the simulations in VI-CarRealTime are performed using 

the 14 DOF full vehicle model. At first, the NN model’s performance in lateral control for the 

constant velocity simulations is studied. Then, the NN models are developed separately for the 

lateral and longitudinal control for the dynamic limit simulation events (Max-performance events). 

The online testing of the NN model is done in the Simulink environment by performing the co-

simulation with VI-CarRealTime events. The built-in NN models are invoked from the Simulink 

environment through the python interface. 

1.4.2 Overview of Neural Network based Trajectory Prediction: 
 

Similar to the control module, Trajectory Planning is also an important sub-system concerning 

Autonomous vehicles. In addition to providing the collision free-path, this module also holds the 

significance of various other factors such as performance, handling and comfort. Several studies 

on the path planning modules based on the A*, RRT algorithms has been done for its application 

in Autonomous Vehicles. The widespread use of Machine learning and Deep Neural Networks in 

solving complex problems is being studied in the area of target trajectory prediction and 

Figure 1.2 Basic layout of NN model - Longitudinal Control 



6 
 

classification as well. A few of the several works related to this context that are collected during 

the thesis work are discussed in this section. 

When it comes to Machine Learning, all the problems could be formulated either as a classification 

or a regression one. Likewise, there have been several studies already done on trajectory planning 

in terms of trajectory prediction and classification. The preliminary study on the trajectory 

classification using the Deep Neural Network is presented in the paper [7]. In this, the sequential 

pattern which preserves the order of information of trajectory is chosen to be the feature candidate 

to make classification among the trajectories. The Convolutional Neural Network and Recurrent 

Neural Network(LSTM) is deployed for the classification of the GPS based trajectory information 

to identify the vehicle class as reported in work [8]. Since the GPS trajectory(series of 

chronological ordered points) cannot be directly fed into the deep neural network models, a 

representation of the trajectory in terms of vehicle motion features are done as a pre-processing 

step before training the classification CNN model. However, the proposed classification technique 

is much less accurate than the classification done by the fixed-point sensors. The application of 

the Recurrent Neural Network on the future trajectory prediction is briefed in the study [9]. In this, 

the future position of the surrounding vehicles is predicted using the past observation using Conv-

LSTM(Convolutional Long Short Term Memory) Neural Network Model. Also, a feedback 

scheme is employed to update the position of the target and the surrounding vehicle in the 

observation sequence after each instant prediction. The study to overcome the problem of 

identifying the target trajectory based on the machine learning approach is formulated in work 

[10]. ANN-based system for generating the optimal racing line for the given tracks is explored in 

this study aimed to reduce the calculation time of several orders compared to the calculation of the 

target path using the traditional method. This regression task of optimal trajectory line prediction 

is performed using the feed-forward Neural Network. 

Based on the study of the above research works, the Multi-Layer Perceptron Neural Network based 

optimal trajectory prediction model is presented in this work. The NN model formulated here will 

predict the optimal trajectory position in terms (X, Y) coordinates by taking the input trajectory 

details of boundary coordinates and path curvature. Although the model developed here as a global 

trajectory prediction for a given road track, this could also be utilized as a rapid real-time trajectory 



7 
 

planning in Autonomous Vehicles. The architecture of the NN model for the trajectory prediction 

is depicted in Figure 1.3. 

 

 

 

Similar to the above discussed NN model for the control, this model was also built using the Keras 

and TensorFlow Python libraries in the Google Colab Python notebook. Different road tracks from 

the VI-CarRealTime database and also from TUMFTM-(2020)(open source racetracks database 

developed by the TU Munich team) are used for preparing the training and testing datasets. The 

optimal trajectory here is chosen to be the fastest trajectory(one with the minimal lap-time) which 

is generated for a given track by the path-builder script(a python script developed by VI-grade to 

generate different trajectories to the given track centre line based on the corner-cutting value). For 

the selected road tracks, their corresponding track features are extracted with the help of the 

MATLAB algorithm. With the information on the optimal trajectory and its respective track 

parameters, the above NN model architecture is trained to predict the optimal trajectory for any 

given unseen road track. 

1.5 Thesis Outline 
 

The thesis is organized as  follows: 

• Chapter 2: This module presents the general description of the Machine Learning 

techniques and the type of the learning strategies. Further, the theory behind the ANN in 

general, model parameters, training parameters and optimization algorithm which are used 

in the thesis work are also discussed in this chapter    

Figure 1.3 Basic layout of NN model - Trajectory prediction 

 



8 
 

 

• Chapter 3: This module present the description of the VI-CarRealTime vehicle model, the 

theory behind the VI-Driver model, the Simulation setups utilised in the thesis and the 

details on the Simulink co-simulation. 

 

• Chapter 4: This module presents the methodology involved in the construction of the 

Neural Network for vehicle control. The Keras and TensorFlow framework, data collection 

and preparation, training procedure and the online validation setup are also covered in this 

chapter 

 

• Chapter 5: This module presents the methodology involved in the construction of the 

Neural Network for trajectory prediction. The MATLAB Algorithm for boundary and 

optimal trajectory point generation along with the data collection, training and validation 

procedure of the model are also discussed in this chapter. 

 
• Chapter 6:  This module presents the results of the performance evaluation on two built-in 

Neural Network models based on different validation procedures. 

 
• Chapter 7:  This module presents the conclusion and future scope of the thesis work. 

 

 

 

 

 

 

 

 

 

 



9 
 

Chapter 2 
 

Theory 
 

2.1 Machine Learning 
 

Machine Learning (ML) is the subset of Artificial Intelligence that trains a system how to learn. It 

is an efficient method of data analysis that aids to build analytical models based on the idea that 

the system can learn from data, identify patterns and makes a decision with less human 

intervention. In accordance with the learning strategy, the ML approaches are broadly classified 

into Supervised, Semi-supervised, Unsupervised and Reinforcement Learning. 

 

 
Figure 2.1 Types of Learning Strategies 



10 
 

• Supervised learning: In this learning algorithm, the mathematical model is built based on 

the training data containing both the input and desired outputs. The training dataset could 

contain one or more inputs and desired output termed as a supervisory signal. This 

supervised algorithm can be adopted for active learning, classification and regression 

problems. 

• Unsupervised learning: In contrary to the supervised algorithm, unsupervised learning 

models are provided with the training data, which contains only the inputs, with which it 

finds structure in the data like clustering or grouping. In general, the algorithm learns from 

the data which has not been labelled or classified by identifying the commonalities in the 

dataset and reacts to new data based on the presence or absence of such common patterns.  

• Semi-supervised learning: This type of learning algorithm falls between the supervised 

and unsupervised categories. In this, only a few parts of the training data will be 

labelled(with desired output), while the remaining will be unlabelled(without desired 

output). 

• Reinforcement learning: This is a branch of machine learning which concerns how agents 

need to take actions in the environment such that they maximize its cumulative reward. 

This type of learning strategy is best suited for the disciplines such as control theory, multi-

agent systems, genetic algorithms etc.  

2.2 Artificial Neural Networks 
 

Artificial Neural Networks, more commonly termed as Neural Networks, are computing systems 

inspired by the biological neural topology that constitutes the human brain. They were first 

proposed by McCulloch and Pitts in 1943, in which they proposed a linear combiner with multiple 

binary input and a single output. With the proper data feeding, this proposed system was able to 

solve the simple Boolean functions but was not able to learn from the experience. Later the learning 

scheme was developed, which introduced the first scheme of Neural Network called Perceptron. 

The Perceptrons are comprised of variable weights, which allowed them to learn from the data. 

In general, the structure of a Neural Network is composed of interconnected computation entities 

called Artificial neurons or nodes in its layers, as shown in figure 2.2.  



11 
 

 

 

The layers of artificial neurons try to create a mapping function between the input and output, same 

as that of the brain reaction (output) when it senses something (input). The Neural Networks are a 

typical application of supervised learning where the input-output mapping is performed by 

minimising the residual prediction error through forward and backwards pass over several input-

output pairs. All the machine learning algorithms are centred around data. The data which are 

employed to build the network model are categorised as training, validation and testing datasets. 

Firstly, the training dataset is the one based on which the model will be trained, and hence this 

should be the largest and cover diverse data to make the trained model robust enough. The 

validation set is used while training the network to assure that the model generalizes well on the 

new unseen data. The test data set is utilised for the final evaluation of the neural network once it 

has finished its training. Its main purpose is to check the performance of the model on the dataset, 

which has not been used in any part of the training. 

2.3 Feed-Forward Neural Networks 
 

The Feedforward neural network (FFNN) is the simplest form of ANN where the connection 

between the units do not form a cycle. The name feedforward comes from the fact that the 

Figure 2.2  Simple network structure 

 



12 
 

information flows only forward in the network from the input nodes to the output nodes through 

hidden nodes (if present). 

Feedforward neural network is primarily used in supervised learning applications. This network 

tries to compute the function f on the fixed size input x such that f(x)= y for the training pairs (x,y). 

The typical representation of the feedforward network can be given by the formula  

f(x) = f1 ( f2 (…fn-1 (fn(x)))) 

where fi is a layer in the network consisting of n layers. 

 

 

The FFNN with several neurons is shown in figure 2.3. The neurons j in the hidden layers gets 

their input x1, x2, ……, xk from the input layers, which are then multiplied with the respective 

weights wj1, wj2,…, wjk. These weight products are added together with the bias bj. This summation 

is then passed through an activation function σ(.), which results in the output oj.  The below 

equation represents the complete math behind the output of each neuron. 

oj = σ(𝛴wji xji + bj ) 

The same computation takes place in the neurons in the next layer with this output of the previous 

layer as its input. 

Figure 2.3 Network with its weights and biases 

 

 



13 
 

The input layer size depends on the input features decided to be fed to the network, e.g., if the 

input data is an image, each input will correspond to one pixel. Likewise, the size of the output 

layer depends on the number of the desired target chosen. Based on the nature of the problem, the 

type of activation function varies; the usual procedure is to have the same activation function 

throughout the network except for the output layer, which produces the values in the range of the 

desired target value y. The important feature of the activation function is to add non-linearity into 

the linear model. 

The performance of the network hugely depends on its architecture, such as the number of layers, 

size of layers and hyperparameters. However, there is no possible way available now to know 

beforehand about the effectiveness of the chosen architecture. Currently, performance is usually 

evaluated by trial and error of different architectural settings, which is generally a time-consuming 

process.  

2.4 Activation Function 
 

As stated in the above section, the activation function takes the input value from the nodes and 

maps it into a specific range based on the chosen function. The output from this is then fed as input 

to the next nodes in the network. There are several activation functions available to be used for 

training the Neural Network; the most common functions are discussed below. 

2.4.1. ReLU Activation Function 

 

Figure 2.4 ReLu Activation function range 



14 
 

The Rectified Linear Unit, most often termed as ReLU, is the most used function in the present 

generation in most deep learning applications.  

The range of the ReLU activation function is 0 to infinity. It is half rectified (from the bottom), as 

shown in the figure.  f(z) is zero when z is negative, and it is equal to z when z is greater than or 

equal to zero. The major disadvantage with ReLU is it cannot handle negative value, meaning with 

the negative value given, the function returns zero, which in turn affects mapping of the value 

which are less than zero. 

2.4.2 Sigmoid Activation Function 
 

As the range of the sigmoid function is 0 to 1, it is predominantly used in the models where it 

needs to predict the probability as the output. The shape of the function looks like an S-shape 

 

The sigmoid function is also one of the most widely used activation functions, especially for the 

classification problem. The major drawback of this function is the vanishing gradient problem; 

when the function reaches its horizontal part of the curve, the gradient will be very small, and the 

network will struggle to learn. 

2.4.3 ELU Activation Function 
 

It is the extension of the  Rectified Linear Unit function to operate with the negative values with 

the function as f(x) = a(ex-1) when x is less than zero. 

Figure 2.5 Sigmoid Activation function range 

 

 

 

 

 

 

 

 

 

 

 



15 
 

2.5 Loss Function 
 

The loss functions are key components in the ML algorithms which relates to model accuracy. The 

main purpose of the loss function is to evaluate how well the model is trained for the given dataset. 

Based on the value of the loss during the network training, the model’s prediction accuracy can be 

determined (i.e.). The loss value will be very less when the predictions are good, and it will be of 

larger value when the predictions are totally off.  

Depending on the type of problem that needs to be handled, the loss function needs to be chosen. 

The most common loss function for the regression problems is Mean Squared Error (MSE) which 

is described below. In this thesis work, all the NN models are evaluated based on the MSE loss 

function. 

The MSE works by computing the sum of the squared distance between the predicted value and 

the expected value. The MSE function works well but is heavily affected by the outliers, and this 

has to do with the square of the error. So when the error grows larger than 1, then MSE will grow 

exponentially.  

2.6 Optimization Algorithm 
 

During the backpropagation, while training the network based on the optimization algorithm, the 

weights are updated to minimise the loss function J(ϴ), where ϴ is the model parameters. Gradient 

descent is the most commonly used optimization algorithm in deep learning model construction. 

To reduce the loss, during each training step, the parameters are updated in the opposite way of 

the gradient of the loss function. The learning rate has to be multiplied by the gradient to know 

how much weight needs to be updated during each step. 

Among the variants of gradient descents, batch gradient descent is more effective as it computes 

the gradients for the batch of training samples. Thus only a small subset of the training data needs 

to be in the memory at a time, and hence the fluctuations are reduced. The gradient descent is often 

time-consuming to identify the correct learning rate. The learning rate should neither be so high or 

very small, thus finding the optimal point is hard and time-consuming. During this update process, 

there is a possibility to end up in a sub-optimal state where it might be hard to get out gradient 



16 
 

descent. To overcome these disadvantages, other optimizers have been developed; among them, 

the Adam is the most widely used optimizer, and it is also be used in all the NN models presented 

in this thesis work. 

2.6.1 Adam Optimization 
 

Identifying the good value of the learning rate is very important to have accurate training results. 

The Adam optimization algorithm computes adaptive learning rates, which are preferable for deep 

and complex networks. 

The intuition behind adapting the learning rate to the individual parameter is that the history of the 

parameter with the small magnitude gradient should be updated with more impact than those with 

the larger ones so that the training process will progress more evenly along all the parameters axes. 

The Adam, which is an acronym for adaptive moment estimation, make use of the past gradients 

and also its squares, much like momentum. 

Adam Configuration Parameters [11] 

• Alpha: Referred to as the learning rate or step size. The proportion that weights are updated 

(e.g. 0.001). Larger values (e.g. 0.3) results in faster initial learning before the rate is 

updated. Smaller values (e.g. 1.0E-5) slow learning right down during training 

• beta1: The exponential decay rate for the first moment estimates (e.g. 0.9). 

• beta2: The exponential decay rate for the second-moment estimates (e.g. 0.999).  

• epsilon: Is a very small number to prevent any division by zero in the implementation (e.g. 

10E-8) 

Specifically, the algorithm calculates an exponential moving average of the gradient and its 

squared gradient, and the parameters beta1 and beta2 control the decay rates of these moving 

averages. 

The initial value of the moving averages and beta1 and beta2 values close to 1.0 (recommended) 

result in a bias of moment estimates towards zero. This bias is overcome by first calculating the 

biased estimates before then calculating bias-corrected estimates. 



17 
 

2.7 Network 
 

In section 2.3, the theory behind the general feed-forward neural network is described; however, 

there are several variants of neural network topologies available at present which could be 

employed depending upon the application. Multilayer Perceptron(MLP) topologies have been used 

in this work as it is the best fit for the regression problems.  

2.7.1 Multilayer Perceptron  
 

Multilayer Perceptron is the class of feed-forward neural network often applied to supervised 

learning problems. They train on a set of input-output pairs and learn to model the correlation (or 

dependencies) between those inputs and outputs. Training involves adjusting the parameters or the 

weights and biases of the model to minimize error. Backpropagation is used to make those weight, 

and bias adjustments relative to the error, and the error itself can be measured in a variety of ways, 

including by root mean squared error (MSE). 

In the forward pass, the signal flow moves from the input layer through the hidden layers to the 

output layer, and the decision of the output layer is measured against the ground truth labels. 

In the backward pass, using backpropagation and the chain rule of calculus, partial derivatives of 

the error function concerning the various weights and biases are back-propagated through the 

MLP. That act of differentiation gives us a gradient, or a landscape of error, along which the 

parameters may be adjusted as they move the MLP one step closer to the error minimum. This can 

be done with any gradient-based optimisation algorithm such as Adam optimizer. The network 

Figure 2.6 Network Architecture of MLP 



18 
 

keeps playing that game of tennis until the error can go no lower. This state is known 

as convergence. 

2.7.2 Training a Network 
 

The training process of a supervised neural network starts by initializing the parameters to a small 

random value. These parameters are then updated to reduce the difference in distance between the 

output of the network and ground truth, thus optimizing the problem. This distance is computed 

based on the L2-norm as the squared distance between the output and the ground truth values. This 

distance is formulated as scalar-valued error or loss, denoted by L, which need to be optimized 

with the gradient descent optimization as briefed in section 2.6. 

The learning rate is set to scale the training update; however, too large a learning rate value may 

cause the loss to diverge, and too small leads to very slow convergence [12]. This can be regularly 

updated by calculating the gradient of the loss with respect to all the parameters.  To compute this, 

the gradient of all the parameters between the last network layer and the specific parameters of 

interest have to be calculated as they are dependent on each other. By using the chain rule of 

calculus, this is done by results in error being propagated backwards through the network, and this 

process is usually termed as backpropagation. 

This process of backpropagation will be repeated many times over the training dataset while 

training the supervised neural network. As per the theory, the network first passes the data forward 

in the network and then performs the backpropagation and updates the parameter. In every update 

step, the network tried to reduce the loss between the output and ground truth, eventually reaches 

a convergence at one point to satisfy the optimal performance. 

2.7.3 Network Regularisation 
  

The main objective of building a Neural Network is to have a final model that performs well on 

both the training data and also on the new data on which model should be able to make a good 

prediction. The degree to which the model is regularised measures its prediction accuracy on the 

new unseen data not been used while training the network. This makes the necessity to improve 

the training of the model, which may in turn results in too much learning with respect to the training 



19 
 

data set, resulting in an overfitting problem. On the contrary, too little learning during the training 

results in an underfitting model. In either of the cases, the model is not generalised enough to 

predict the new data. Based on this phenomenon, the model could be grouped as following [13] 

• Underfit Model: A model that fails to sufficiently learn the problem and performs poorly 

on a training dataset, and does not perform well on an unseen data sample. 

• Overfit Model: A model that learns the training dataset too well, performing well on the 

training dataset but does not perform well on a new data sample. 

• Good Fit Model: A model that suitably learns the training dataset and generalizes well to 

the holdout dataset. 

An underfitting phenomenon could be addressed by increasing the capacity of the network (i.e.) 

increasing the complexity of the model by changing its structure, such as adding more nodes or 

layers so that the good mapping of input to output takes place. 

Mostly while training the network, it is more prone to reach the overfitting phenomenon. It is easily 

diagnosed by monitoring the training performance of the model on the training and validation 

dataset, especially by observing the learning curve, which shows an overfitting pattern. There are 

several strategies available to reduce the overfitting problem, below are the two techniques utilized 

in this work while training the NN model. 

Dropout 

One of the most widely used procedures in most of the NN architecture is to overcome the 

overfitting model on training data. Depending on the dropout factor, this layer will deactivate the 

neurons during the forward pass making the data bypass these nodes, reducing the capacity of the 

network by a fraction. This technique will randomly turn off neurons during each iteration forcing 

the model to regularize well. 

Early Stopping 

This technique prevents the network from overfitting by stopping the training process once the 

loss related to the validation set starts to increase. The patience level can be set to monitor the 

validation loss during the training; once the loss keeps increasing till the threshold iterations, the 

training will be terminated to prevent the model from overfitting. 



20 
 

Chapter 3 
 

VI-CarRealTime 
 

VI-CarRealTime is a virtual modelling and simulation environment targeted to a simplified four-

wheeled vehicle model. In this chapter, the vehicle model used in this thesis work will be briefed 

along with a short description of the tool and set-up which has been utilized in the course of this 

project.  

3.1 Vehicle Model 
 

The Mathematical vehicle model is a multi-body system that could be well suited to study dynamic 

behaviours. The vehicle model, in general, is a complex system composed of various sub-systems 

like vehicle body, wheel and tires, steering, suspension, power train, brakes. In this thesis work, 

we used the VI-CarRealTime vehicle model for both data collection and validation purposes. Few 

of the important vehicle model details [14]  are briefed in the following subtopics. 

3.1.1 Coordinate System 
 

The reference coordinates used in the VI-CRT vehicle model, as shown in figure 3.1, is in 

accordance with the standards:  

Figure 3.1 Reference coordinate system 

 

 



21 
 

ISO 8855, Road Vehicles- Vehicle dynamics and road-holding ability- Vocabulary.1991 and SAE 

Recommended Practice J670f, Vehicle Dynamics Terminology. 

Global Reference Frame 

The root body of the tree representing the rigid-body system is the global frame. The body is a 

Newtonian or inertial frame, which means that it does not accelerate in translation and does not 

rotate. 

The global inertial frame of reference, N (N denotes Newtonian), for VI-CarRealTime models has 

unit vectors nx, ny, and nz, and origin point N0 as shown in the picture below. In design condition, 

Global Reference Frame coincides with Vehicle Reference System. 

Vehicle Reference Frame 

The vehicle model is positioned concerning the global frame. The origin of the Vehicle Reference 

System S0 is located at Z=0 of Global Reference Frame and half front vehicle track. 

Gyro Reference Frame 

The gyro reference system (gyro marker) is located on the body coinciding to sensor point and is 

oriented with the Z-axis coincident with global Z during the simulation with the X-axis along the 

vehicle movement direction, so it follows the vehicle displacement, follows the yaw but not the 

pitch of the vehicle. 

3.1.2 VI-CRT Vehicle Model 
 

In this thesis work, the goal is to build a Neural Network vehicle controller which mimics the 

behaviour of the exiting control system based VI-driver model with respect to the lateral and 

longitudinal dynamics. For this purpose, a simplified vehicle model with 14 degrees of freedom is 

used, which includes five rigid parts such as vehicle chassis(sprung mass) and four-wheel parts 

unsprung mass, as depicted in figure 3.2. 

The 14 DOF includes 6 DOFs of vehicle chassis, while wheel parts have 2 DOFs (each for 

describing the motion concerning the vehicle body and for the wheel spin). The main assumption 

are suspension does not have linkage or bushings, and the steering system does not have the part 

file:///C:/Program%20Files/VI-grade/VI-CarRealTime%2020/help/webhelp/crt_sensor_point.htm


22 
 

for the steering wheel or rack. The kinematic and compliance data of the steering and suspension 

are described by the look-up tables using the conceptual approach. 

 

The Vehicle model intends to accurately predict overall vehicle behaviour for cornering, braking, 

and acceleration-performance studies for four-wheeled vehicles with independent-front and 

independent-rear suspensions. The simplified model is described in terms of commands and 

functions that use an internal development environment working as a symbolic manipulator 

tailored for deriving multibody equations and a code generator. 

3.1.3 VI-Driver Theory 
 

VI-Driver is a control system designed to drive the vehicle model simply and efficiently to 

fulfilling the requirements such as being capable of driving on both limit and sub-limit 

Figure 3.2 Vehicle model Sprung and Unsprung mass 

 

Figure 3.3 Classical bicycle model 



23 
 

manoeuvres, simple to tune and self-adapting and robust enough to adopt a wide range of vehicle 

characteristics. 

This system is based on the model-based predictive control for which the classical bicycle model 

is used as described below. The lateral controller uses a model base predictive control technique, 

calculating at each instant in time the required control action. 

For the vehicle model shown above, given a target curve that represents the trajectory that must be 

followed, it is possible to define a connecting contour (compliant to the differential flatness 

principle) obtained by resolving the equation below (assuming a proper order polynomial is used 

for interpolation): 

The vehicle moving frame is used as reference (Frenet Frame), and the connecting contour 

constraints taken into account are: 

1. contour initial position (compatible with the vehicle position) 

2. contour initial orientation (compatible with the vehicle speed and heading) 

3. contour final position (the reference driver line evaluated at the preview distance) 

4. contour final orientation (smoothly joined with the reference driver line) 

 Those four constraints require at least a polynomial of order four: a cubic polynomial has been 

chosen, and its coefficients calculated using the relations shown in the picture above. 

 Using the differential flatness property, the connecting contour is used as a dynamic vehicle 

trajectory to be applied as a control action. The same property allows inverting that trajectory and 

calculating the appropriate steering control action. 

This procedure is repeated at each instant in time, following the Model Predictive Control 

Paradigm. Given the vehicle speed v, the side slip angle, the preview time pt the preview distance 

D (computed as v*pt), the principle used can offer a very good approximation of the required 

steering angle necessary to bring back the vehicle to the target path, when a tracking error occurs. 

A final stage has been implemented, which compensates for the unmodeled lateral dynamics. The 

compensation, called "yaw rate controller", uses the reference path curvature and the actual vehicle 



24 
 

yaw rate and corrects the steering action with the yaw rate error to bring the instantaneous vehicle 

curvature as close as possible to the reference path curvature 

As for longitudinal dynamics, a model-based feedforward /feedback scheme is used to compute 

the needed torques to accelerate or brake the vehicle based on the target speed profile coming from 

the stationary prediction. 

Because of unmodeled dynamics, disturbances and numerical integration noise, the simulated 

vehicle almost always diverges from the global optimal trajectory target. The combination of the 

control actions takes the vehicle back on it in some sub-optimal fashion: the motion control acts 

on the steering, the throttle and/or the brake to reduce the longitudinal speed tracking error to 

acceptable limits. The controller is not acting in a combined way though, the longitudinal and the 

lateral controller algorithms are separated: any longitudinal controller action would certainly 

influence the lateral dynamics of the car, especially at the limit.  

Nevertheless, the simplicity and the natural robustness of the lateral controller invokes correct 

actions, and it has been observed to behave very realistically in all the cases where the target 

trajectory is not properly followed due to excessive side slip. Those cases include limit over and 

understeer situations, which typically occur to a real driver when trying to reach the limit vehicle 

performance. 

3.2 Simulation Events 
 

The build mode in the VI-CRT interface allows the creation of the vehicle model that need to be 

used in the simulation and other changes required to be introduced into any of the vehicle 

subsystems. The vehicle model can be analysed by the virtual simulation based on the setup of the 

driving event in the test mode ranging from simple manoeuvres to the more complex customised 

events. The simulation events used in this work to gather the data values are File driven events and 

the Max Performance events. 

 

 



25 
 

3.2.1 File Driven Event 
 

In the first part of the vehicle control Neural Network, the constant velocity model for lateral 

control is built and studied, for which the file-driven simulation event data have been used. The 

file driven events simulate the vehicle model based on the VDF file, which typically  

 

store driver controls tables of databases. These events are set up and modified with the help of the 

Event builder interface. The Event builder space for the constant velocity event for the sample road 

track is shown in figure 3.4 

All the VI-Driver controller settings and the manoeuvre set-up could be configured in this space. 

In addition, the reference path of the road track selected for the simulation event could be fed in 

the Path tool box as a DRD file which will be interpreted as target trajectory by the driver 

controller. This reference path input provides the path related output channels during the 

Figure 3.4 VDF file settings 



26 
 

simulation, such as path curvature and path distance (lateral offset between the actual vehicle point 

to the reference). Apart from the driver control setting, the road track in which the simulation has 

to run is given as input with the help of a road data file which could be created and modified with 

the help of the VI-Road interface. 

3.2.1 Max Performance Event 
 

Once the constant velocity model for the lateral control is studied, Neural Network architectures 

are reconfigured to suit the dynamic events based on the Max Performance simulation setup in VI-

CarRealTime. 

Max Performance event is used to define dynamic limit velocity profile on a given track. The event 

uses a specific static solver (VI-SpeedGen) to compute a velocity profile, and then it uses the 

dynamic solver to verify if the computed speed profile is feasible. If the velocity path is unfeasible 

(maximum path distance exceeded, zero velocity etc.), the solver turns back to the static and 

computes a new velocity profile, modifying only the portion nearby the unfeasible point. The 

process is iterated until a feasible velocity profile is found. 

The vehicle model used for static prediction has no suspensions and inherits all properties from 

the full model. The effect of aero forces is considered, and the effect of suspension jounce is taken 

into account by the presence of ride height maps. 

3.3 MATLAB/Simulink Co-Simulation 
 

The VI-CarRealTime environment can interact with the MATLAB/Simulink tool using a specific 

interface. The vehicle model can be connected to MATLAB so that all the MATLAB tools can be 

used to modify the model complexity or add any additional control modules which are developed 

in MATLAB/Simulink or external systems. This interface aids to run the co-simulation to analyse 

the test result. 

The VI-CRT model is imported to the Simulink as an S-function representing the vehicle plant, as 

shown below in figure 3.5.  

 



27 
 

 

This S-function receives the details of the vehicle parameter along with the simulation event details 

through the XML file (generated when the simulation is run in VI-CRT environment), which is 

feed as an input file to the Simulink solver.  

Figure 3.5 Passive Vehicle S fucntion - Simulink 

Figure 3.6 Input and output channel selection pan 



28 
 

The input and output ports of the vehicle model during co-simulation can be chosen from lists of 

available channels as shown above in figure 3.6, so the resulting overall interface is a unique 

Simulink block that can be connected to other blocks through its ports. 

To start a co-simulation, the standard approach on the VI-CarRealTime platform need to be 

followed to run a standalone simulation, setting the vehicle model and the simulation event. After 

configuring the desire solver settings (and providing the XML file as input ), MATLAB S-function 

communicates with the defined VI-CarRealTime event through the co-simulation from the 

Simulink environment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



29 
 

Chapter 4 
 

Methodology - Vehicle Control 
 

4.1 Overview 
 

In this chapter, the description of the tools, methods and workflow used during this thesis work 

concerning the NN model for vehicle control is explained. In general, the Neural Network model 

for vehicle control has been implemented iteratively, starting with the simpler system and has been 

extended further.   

As a first step, the Neural Network model, which predicts the lateral control for the low-speed 

constant velocity event, is created. After evaluating its performance and the selection of the input 

features of the network along with its mapping tendency to the output(steering angle in this case), 

this simple model is then extended. With increasing complexity, the lateral and longitudinal control 

prediction Neural Network model is then built for the dynamic limit conditions. Both the networks 

are set up based on the offline training strategy. The term offline training refers to training the 

Neural Network with the dataset, which is gathered and prepared in advance. With this dataset, the 

model is created by optimizing the training strategies and network hyperparameter. This method 

is contrary to the online training where the NN is trained by the real-time data generated from the 

simulator environment (for instance, through client-server connections). To evaluate the 

performance of the models created, both the offline and online prediction methodology is followed. 

The online validation setup is done with the VI-CarRealTime environment in the Simulink, where 

the NN model created is loaded and called from the python interface. The layout of this validation 

environment is discussed in the final section of this chapter. 

 

 

 



30 
 

4.2 NN-framework 
 

The Keras and TensorFlow libraries are commonly used to train and implement the development 

of the Neural Network model using the supervised learning method. Compared to other deep 

learning frameworks, the Keras/TensorFlow frameworks are most widely used for deep neural 

networks. A brief description of the Keras and TensorFlow is provided in the below section. 

4.2.1 TensorFlow 
 

TensorFlow is one of the top numerical platforms that provide the basis for deep learning research 

and development. It is a Python library for fast numerical computations, which was created and 

maintained by Google and released under the Apache 2.0 open-source [15]. It is a foundation 

library that can be used across a range of tasks but has a particular focus 

on training and inference of deep neural networks directly or by using wrapper libraries that 

simplify the process built on top of TensorFlow. The API is nominally for the Python programming 

language, although there is access to the underlying C++ API. 

4.2.2 Keras 
 

Keras is a minimalist Python library for deep learning that can run on top of TensorFlow [15]. 

Though TensorFlow suits the best for numerical computations, it can be difficult to use directly 

creating the deep learning models. Hence Keras is developed to make deep learning models as fast 

and easy as possible for research and development. It runs on Python 2.7 or 3.5 and can seamlessly 

execute on GPUs, and CPUs were given the underlying frameworks. 

In this project work, all the network architectures are predominantly created with the help of the 

Keras library on the top of TensorFlow. The main focus of Keras is the idea of a model. The model 

here denotes the sequence of layers, the main type utilised in this work is the Sequential model, 

which is a linear stack layer. Once the Sequential layer is initialised, depending upon the non-

linearity of the problem, the additional layer stacks could be added by specifying the number of 

neurons for each layer in the network. After the layers definition, the model needs to be compiled 

so that it makes use of the underlying framework to optimize the computation to be performed. 

During this compile part, the loss function and optimizer, along with its performance parameters, 

https://en.wikipedia.org/wiki/Types_of_artificial_neural_networks#Training
https://en.wikipedia.org/wiki/Statistical_inference
https://en.wikipedia.org/wiki/Deep_neural_networks


31 
 

should be specified. Once compiled, the model must be fit to the trained dataset. This can be done 

by dividing the dataset in batches or as a whole by mentioning the number of epochs. The epochs 

refer to the number of times the model will be trained to fit the dataset; for instance, if we give 

batch size as 50 and epoch as 50 when we try to fit the model for a given dataset, it will split the 

entire dataset in a batch of 50, and one epoch here refers to one cycle when all the training data 

(all the batches of 50) has been passed through the model. Once it trains the model for the given 

number of epochs, the model predictions ability could be assessed using. The brief layout of deep 

learning model construction in Keras is shown below. 

 

The TensorFlow/ Keras definition and model creation procedure as described above is done in the 

Google Colab python notebook. It is an open-source Google’s interactive environment that allows 

to write and execute the Python codes in the browser with all the configurations in-built, which 

eliminate the requirement of configuring the necessary python packages and libraries. 

4.2 System Setup 
 

Table 1 System Configuration 

Environment 

Python Distribution    3.8.8 

Anaconda Distribution    4.10.0 

 

Machine Learning Tools 

TensorFlow     2.3.0 

Keras      2.4.3 

Pandas      1.1.3 

NumPy      1.20.1 

h5py      2.10.0   

Compile the 

Model using 

compile () 

Make Model 

prediction by 

calling predict() 

 
Fit the Model by 

calling fit() 

 

Fit the Model by 

calling fit() 

 

Fit the Model by 

calling fit() 

 

Fit the Model by 

calling fit() 

 

Fit the Model by 

calling fit() 

 

Fit the Model by 

calling fit() 

 

Fit the Model by 

calling fit() 

 

Fit the Model by 

calling fit() 

Sequential 

Model Creation 

Figure 4.1 Steps in Keras model creation 

 

Fit the Model by 

calling fit() 

 

Fit the Model by 

calling fit() 

 

Fit the Model by 

calling fit() 

 

Fit the Model by 

calling fit() 

 

Fit the Model by 

calling fit() 

 

Fit the Model by 

calling fit() 

 

Fit the Model by 

calling fit() 

 

Fit the Model by 

calling fit() 



32 
 

4.3 Dataset Preparation 
 

4.3.1 Data Collection 
 

Primarily all the data required for the Neural Network model construction is extracted from the 

VI-CarRealTime simulations. As described in section 3.2, the simulation events are configured in 

the VI-CRT event builder space for the constant velocity condition, and longitudinal speed is kept 

a 10 m/s. As our main goal is to develop a NN model whose behaviour is a replica of the VI Driver 

controller, a wide range of different driving conditions should be included in the training data set. 

Due to this reason starting for the simple manoeuvres like straight, single turns, multiple turns, 

more complex road tracks are selected on which the constant velocity simulations are performed. 

Around 15 road tracks simulation data are used, which includes few tracks from the VI-

CarRealTime road database and the rest of the tracks are created in the VI-Road interface based 

on the centreline coordinates from the TUMFTM – race track database (an open-source GitHub 

repository created and maintained by TUM – Institute of Automotive Technology) [16]. A few of 

the road tracks used for the training data preparation is shown below.  

 

 

 

 

 

Figure 4.2.1 Track : VI-Road Example Figure 4.2.2 Track : VI-Track 

Figure 4.2.3 Track : Austin Figure 4.2.4 Track : Oschersleben 



33 
 

 All the road tracks are configured with the same track parameters, such as constant friction 

throughout, no bank angle, and the starting point aligns with the centreline. After performing 

simulation with each road track in VI-CRT test mode, the data recorded during the event (i.e.) all 

the output channels could be post-processed and exported in the CSV format in the review mode 

of the VI-CRT interface. The data recorded during each simulation are compiled together to form 

a single CSV report which eventually becomes the training data set for the NN construction. 

4.3.2 Feature Selection 
 

The CSV data report records a wide range of the output channel data values resulting from the 

simulation. To achieve the lateral and longitudinal control, the input features are selected 

considering the parameters which affect the dynamics of the vehicle and also based on the 

controller setup of the VI-Driver.  

Considering the theory of the simplified full vehicle model, its lateral dynamics are described by 

the following differential equation when assumed for the constant velocity (dV/dt= 0). 

 𝑚(�̇� + 𝑉𝑟) − 𝑚𝑠ℎ�̈� = 𝑌𝜈𝜈 + 𝑌𝑟𝑟 + 𝑌𝜙𝜙 + 𝑌𝛿𝛿 + 𝐹𝑦𝑒 4.1 

 

 

 𝐽𝑧�̇� − 𝐽𝑥𝑧�̈� = 𝑁𝜈𝜈 + 𝑁𝜙𝜙 + 𝑁𝛿𝛿 + 𝑀𝑍𝑒 

 

4.2 

 

Figure 4.2.5 Track : Budapest Figure 4.2.6 Track : Brand hatch 



34 
 

 𝐽𝑧�̇� − 𝐽𝑥𝑧�̈� = 𝑁𝜈𝜈 + 𝑁𝜙𝜙 + 𝑁𝛿𝛿 + 𝑀𝑍𝑒 

 

4.3 

Where = 𝜈 - component of the velocity in the y-direction, r - yaw rate, 𝜙 – roll angle are the degrees 

of freedom and m - total mass of the vehicle,  𝑚𝑠 - suspended mass, Jz - the moment of inertia of 

the whole vehicle about the z-axis, Jx - the moment of inertia of the whole vehicle about the roll 

axis, Jxz - the mixed moment of inertia in the xz plane, V - longitudinal velocity of the vehicle. 

The above three differential equation indicates the three DOF Lateral velocity (𝜈), Yaw rate (r), 

roll angle (𝜙). The coefficients indicate the factor of side-slipe and camber stiffness of the front 

and rear axles while representing the factor of the self-aligning moment and roll stiffness. 

With the consideration of the above representation of the full vehicle model and the theory behind 

the VI driver model, the vehicle state feedback channels which describe the DOF related to the 

lateral and longitudinal dynamics are selected to be the input feature for the Neural Network model. 

In addition to the vehicle states, the parameters which capture the information about the path, such 

as curvature and lateral offset concerning the reference trajectory, are also selected to be the input 

feature. These path features are computed by the driver controller, whose values are obtained from 

the output channels Path curvature and the Path distance. The details of the selected input features 

along with the target variables are listed in the below table. 

Table 2 Selected input and output features of the Network 

Selected Data Channel Measurements 

Vehicle_States.lateral_vel_wrt_road Lateral Velocity 

Vehicle_States.lateral_acc_wrt_road Lateral Acceleration 

Vehicle_States.longitudinal_vel_wrt_road Longitudinal Velocity 

Vehicle_States.longitudinal_acc_wrt_road Longitudinal Acceleration 

Vehicle_States.roll_angle Roll angle 

Vehicle_States.roll_angular_acc_wrt_road Roll angular acceleration 

Vehicle_States.side_slip Side slip angle 



35 
 

Vehicle_States.yaw_angle Yaw angle  

Vehicle_States.yaw_angular_acc_wrt_road Yaw angular acceleration 

Engine.engine_rpm Engine Rpm 

Driving_machine_monitor.path_x Target position X with respect to the 

reference trajectory 

Driving_machine_monitor.path_y Target position Y with respect to the 

reference trajectory 

Gyro.gyro_X Actual position X with respect to Gyro 

reference 

Gyro.gyro_Y Actual position Y with respect to Gyro 

reference 

Driving_machine_monitor.path_curvature Path curvature of with respect to the 

reference trajectory 

Driving_machine_monitor.path_distance Lateral offset with respect to the reference 

trajectory 

Driver_demands.steering Steering angle 

Driver_demands.throttle Throttle 

Driver_demands.brake Brake 

 

With the same vehicle state feedbacks used for the lateral control prediction, the longitudinal 

control output of throttle and brake demands are not satisfactory. Hence a longitudinal control is 

implemented separately with input features slightly varied compared to the network dedicated for 

the lateral control. The CSV report, which contains the data values of all the selected measurements 

of the data channels, is uploaded to the Google Colab space using a Pandas library as a Data frame. 

 



36 
 

4.3.3 Data Pre-Processing 
 

Data pre-processing is one of the most important steps in the creation of machine learning models 

to transform the data values to a suitable form which helps the model to learn efficiently from the 

given data set. There are several data pre-processing techniques available in general, and its choice 

is based on the type of dataset being handled and also its intended application. A few of the data 

pre-processing steps which are followed for the data preparation in this work are briefed in this 

section. 

Data Scaling 

Data scaling is the most widely used pre-processing procedure, especially in regression problems. 

Basically, during the supervised learning (mapping of input to the desired output as per the training 

data) of the deep neural network, the weights of the model are initialized to small random values 

and updated via an optimization algorithm in response to estimates of an error on the training 

dataset. For the use of small weights in the model and the use of error between predictions and 

expected values, the scale of inputs and outputs used to train the model is an important factor. 

Unscaled input variables can result in a slow or unstable learning process, whereas unscaled target 

variables on regression problems can result in exploding gradients, causing the learning process to 

fail. 

In addition, the differences in the scales across input variables may increase the difficulty of the 

problem being modelled [17]. An example of this is that large input values (e.g. a spread of 

hundreds or thousands of units) can result in a model that learns large weight values. A model with 

large weight values is often unstable, meaning that it may suffer from poor performance during 

learning and sensitivity to input values resulting in higher generalization error. 

Data normalization and standardisation are the two normally adopted data-scaling procedures 

during the preparation of the data set. A good rule of thumb is that input variables should be small 

values, probably in the range of 0-1 or standardized with a zero mean and a standard deviation of 

one [17]. In our case, since our input features cannot be standardised, the normalization procedure 

is adopted to rescale the values in the range of [0,1].  



37 
 

This normalization is performed using the scikit-learn (machine learning library for the data 

analysis) object MinMaxScaler. The scalar object performs rescaling by performing the below 

transformation on all the data values. 

 𝑦 = (𝑥 − min)/(𝑚𝑎𝑥 − min) (4.4) 

Where max, min is specific to each feature that is subjected for the data-scaling.  

Data Augmentation 

In general, training the deep neural network models with more data can provide a good result in 

terms of model accuracy. Data augmentation is a technique by which the data variation can be 

introduced, which improves the model ability to generalize from the provided learning data. 

Data balancing is a necessary factor for eliminating the model to be biased around a certain 

prediction range. For example, in the case of the steering angle prediction, if the training data set 

has more data representing the left turn, this makes the model to be biased towards the left steering 

angle. In our case, the target data such as steering angle, throttle and brake are checked for balance. 

The overbalancing for the steering angle is adopted, as shown below. When visualised the 

histogram of the steering angle in the training dataset, it is evident that it has a normal distribution, 

but the steering value around zero is very high compared to other values. To avoid the model being  

 
Figure 4.3 Histogram before Data Augmentation - Steering Values 



38 
 

biased towards the straight, data augmentation is applied to create a more balanced dataset without 

removing the data samples(overbalancing). The augmentation is as follows: 

• Steering values greater than 0.01 and less than 1 are multiplied 5 times 

• Steering values greater than 1 and less than 2 are multiplied 3 times 

• Steering values less than 0.01 and greater than 1 are multiplied 5 times 

• Steering values less than 1 and greater than 2 are multiplied 5 times 

The histogram plot after the data augmentation is as below. 

 

 

4.4 Training 
 

To achieve efficient training, several configurations of the Multi-Layer Perceptron network are 

tested by trial and error. During the exploration, a grid search algorithm is applied to check on the 

different combinations of the hyperparameters. This is done with the purpose to find the optimal 

hyperparameters setting for the given training dataset.  

 

 

Figure 4.4 Histogram after Data Augmentation - Steering Values 



39 
 

4.4.1 Network Architecture 
 

The main goal here is to feed the dynamic vehicle parameters as input to the network and get the 

output of vehicle control demands steering, throttle and brake. The architecture of three different 

networks based on control output is discussed in this section  

Constant Velocity & Max Performance – Lateral Control 
 

For the task of achieving the lateral control for the constant velocity conditions, the architecture of 

the multi-input and single output MLP network is selected. The input features here are vehicle 

states such as lateral velocity, longitudinal velocity, side slip angle, yaw angle, roll and the current 

vehicle position(Gyroscope measurement), along with the reference trajectory details such as 

target vehicle position, path curvature and path distance. On the other side, the output and target 

is the lateral control (i.e. the steering angle). Figure 4.5 shows a simplified layout of the network 

input, hidden and output layers, along with the input and output nodes.  

Input layer hidden layer 1 hidden layer 2 Output layer 

Figure 4.5 NN Architecture Diagram - Lateral Control 



40 
 

After several experimentations and with the grid search result, the configuration with an input 

layer, two hidden layers and an output layer with the nodes 300, 200,100, 1 in each layer showed 

the better result. The Keras model summary with the number of computational parameters 

involved in the network is given below. 

 

The dataset consists of 450406 data samples which are divided into training samples of ‘315284’ 

and validation samples of ‘135121’. The batch size is selected as 50, and the number of epochs is 

selected as 100; this splits the entire training dataset into a batch of 50 samples. When this entire 

split passes through the network, this cycle represents one epoch. While training, the model will 

be validated with the validation set whose loss, along with the training loss, will be given as output 

for each epoch.  The Mean Squared Error (MSE) and Mean Absolute Error (MAE) are the two-

loss functions tested; the use of MSE showed a better result while fitting the model with the 

training data. The residual error is optimized by the Adam optimizer with the learning rate 10e-

03; this worked well with the combination of the Relu activation function in all the layers except 

the output layer for which linear activation function is used. To prevent the training procedure 

from resulting in the overfitted model, the early stopping call back is introduced, which monitors 

the validation loss metric for the patients level of 10 epoch; if the validation loss keeps increases 

continuously for 10 cycles, the training procedure will be terminated. With the call back triggered, 

the training is completed before 100 epochs which helps the model to generalize well with the data 

provided. The summary of the architecture, along with its hyper- hyperparameter’s, is mentioned 

in the below table 2 and 3. 

Figure 4.6  Model Summary - Lateral Control 



41 
 

Table 3 Configuration and Hyperparameters - Constant velocity Lateral control 

Parameters Value 

Learning rate 10 e-04 

Optimizer Adam 

Loss Function MSE 

Activation function Relu 

Number of Epochs 100 

Batch Size 50 

Top Layers 300, 200, 100, 1 

 

The architecture of the MLP model for the prediction of the lateral control in the case of dynamic 

limit condition is almost the same as that constant velocity model, with few exceptions in the value 

of the hyperparameters chosen for training the network. The summary of the model 

hyperparameter’s is described in the below table. 

Table 4 Configuration and Hyperparameters - MaxPerformance Lateral control 

Parameters Value 

Learning rate 10 e-03 

Optimizer Adam 

Loss Function MSE 

Activation function Relu 

Number of Epochs 100 

Batch Size 400 

Top Layers 300, 200, 100, 1 



42 
 

 
Max Performance – Longitudinal Control 
 

The MLP configuration for the longitudinal control is implemented with the multi-input and multi-

output architecture Keras model as it is required to predict targets such as throttle and brake 

demand. Compared to the lateral control model, here, different input features are fed to the 

network, which has good relation with respect to the longitudinal control target parameters. The 

input features here are vehicle states such as lateral acceleration, longitudinal acceleration, side 

slip angle, yaw angular acceleration, roll angular acceleration and the current vehicle position 

(Gyroscope measurement), along with the reference trajectory details such as target vehicle 

positions, path curvature and path distance. The output side of the network contains the two target 

variables, which are, in this case, is throttle and brake. The architecture figure 4.7 shows a 

simplified layout of the network input, hidden and output layers, along with the input and out 

nodes. 

 

 
Input layer hidden layer 1 hidden layer 2 hidden layer 2 Output layer 

Figure 4.7 NN Architecture Diagram - Longitudinal Control 



43 
 

Here three hidden layers with a greater number of nodes are used compared to the lateral control 

model as it involves high non-linearity to make the multi-output prediction. The Keras model 

summary of this MLP model, along with the hyperparameters setting used for the network training 

procedure, is shown below in the figure and table. 

 

Table 5 Configuration and Hyperparameters - MaxPerformance Longitudinal control 

Parameters Value 

Learning rate 10 e-02 

Optimizer Adam 

Loss Function MSE 

Activation function Relu 

Number of Epochs 50 

Batch Size 400 

Top Layers 300, 200, 150, 100,1 

 

 

Figure 4.8 Model Summary - Longitudinal Control 



44 
 

4.4 Online Validation Setup 
 

In addition to the offline prediction evaluation of the built-in NN model architectures, the real-

time validation setup is established with the help of the Simulink interface. Though this integration 

of the NN model with the VI-CarRealTime can also be done with the help of plugin API’s, for the 

sake of simplicity, this is done in the MATLAB/Simulink environment. As described in the co-

simulation in section 3.3, the co-simulation of VI-CarRealTime events can be performed by 

importing the vehicle S plant in the Simulink space, which will get its simulation details and 

vehicle setup through the XML file generated from VI-CRT. The main idea here is to integrate the 

prediction output from the NN model to the vehicle model as an input while performing the co-

simulation in the Simulink interface. The basic layout of this integration process is represented by 

the below block, figure 4.9.  

 

 

To invoke and receive the prediction output from the Neural Network model, calling python from 

the MATLAB procedure is adopted. For this purpose, a python script is utilized, in which the built-

in Keras model, which is saved from the Google Colab notebook as .h5 format, is loaded. This 

python script is invoked from the Simulink by passing the vehicle state feedback (retrieved from 

the output channel of vehicle s function) from the vehicle model during the co-simulation. This 

vehicle state feedbacks are feed as input to the NN model and makes its prediction for each 

integration step and returns it to the Simulink. The returned prediction value is connected to the 

input channel of the vehicle model. With this integration environment, the Keras model prediction 

could be validated for different  VI simulation events. The architecture of the integration 

environment of the Simulink with the built-in Keras model is shown in the below layout figure 

4.10. 

 

Figure 4.9 Integration Environment Layout 



45 
 

 

 

The procedure of calling python from MATLAB is implemented in the MATLAB function block, 

as shown above. During the co-simulation, the VI-Driver controller’s control (lateral and 

longitudinal control) are cut-off. However, it will still be active to provide the information related 

to the path from the output channels during this co-simulation process. These steering, throttle and 

brake controller (to cut off) settings are modified in the VDF event file. 

 

 

 

 

 

 

 

 
 
 

Figure 4.10 Simulink co-simulation setup for NN validation 



46 
 

Chapter 5 
 

Methodology – Trajectory Prediction 
 

5.1 Overview 
 

This chapter covers the description of the algorithms and methodology adopted for building a 

Neural Network Model for optimal trajectory prediction. Like the above methodology for vehicle 

control, an iterative approach is followed here as well, starting from the system for a simple 

solution followed by the complex one. 

The main aim behind the construction of this model is to find a target trajectory to be provided for 

the vehicle control model. In this project, the global trajectory planning using the NN model is 

designed. At first, the research plan was to select the target trajectory from the set of trajectory 

candidates which are generated based on the VI-Path Builder script (a python script that generates 

a different trajectory based on the given centreline of the track by taking the factors of corner-

cutting) for a given road track. 

Figure 5.1 Different trajectories generated based on Corner-cutting 



47 
 

The different trajectories based on the corner-cutting value ranging from 0 to 1 for the simple ‘S’ 

curve track is shown in the above figure 5.1. However, when tried to formulate this as a 

classification problem to select a target trajectory from the set of different trajectories based on the 

feature candidates, such as tracking accuracy of the trajectory, the result from the NN model is not 

satisfactory. Hence as an alternative and to reduce the complexity, this global trajectory planning 

is deduced as a regression task that involves predicting the optimal trajectory points based on the 

road track parameters.  

5.2 System Design 
 

As the main goal here is to predict the optimal trajectory points, the target trajectory from each 

road track are selected, and the Neural Network is trained to make the optimal trajectory prediction 

for any given road track. The system definition involves taking the input parameters as track 

details, such as the information on the inner and outer boundary along with the curvature of the 

track at each point. These selected input features, along with output which is selected here to be 

the trajectory point in terms of X and Y coordinates, are provided to the NN architecture model 

during the training process.  

At first, the model is built with desired trajectory candidate as a centreline for each track (i.e. 

trained with the centreline of the multiple tracks as target trajectory to predict centreline for any 

given track ), once its performance is studied and the selection of the network hyperparameters is 

evaluated, this model is extended to make the prediction of optimal trajectory which is the fastest 

trajectory in our case. The fastest trajectory refers to the one selected from the above trajectory set, 

which shows as minimum lap time for the respective road track. The supervised learning procedure 

is applied to the NN model, which is fed with the track features of multiple road tracks with the 

aim of getting the global optimal trajectory prediction. 

5.2.1 Road Boundary Generation 
 

As described in the system definition, the model is designed to take the road boundary information 

as input features; the inner and outer boundaries of the different road track used for the training of 

the Neural Network is generated using a MATLAB algorithm. 



48 
 

Basically, this algorithm uses the centre line of each road track as a reference to generate the inner 

and outer boundaries. With the track width as constant at 10m, this algorithm generates boundaries 

using the general triangulation law, which involves finding the right and left point with reference 

to the centre point by calculating the distance between its succeeding centre point using the 

distance formula. 

 

 𝑑 =  √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 (5.1) 

 

Where (𝑥1, 𝑦1) – centre point coordinate, (𝑥2, 𝑦2) - succeeding point coordinate. 

 

 

  

The left and right boundaries generated for the simple S curve is shown above in figure 5.2. The 

representation of the inner and outer boundaries, which are generated based on the centre-line 

along with the optimal trajectory of the particular track, is shown in figure 5.3. 

Figure 5.2 Inner and outer Boundaries plot 



49 
 

  

 

Here the green line is the optimal trajectory (fastest) chosen for this respective track which 

corresponds to the corner-cutting value of 1(maximum). Since the algorithm above generates the 

inner and outer boundaries based on the centre line, the boundary coordinates are aligned here only 

to the centre point coordinates. Concerning the optimal trajectory point coordinates, there existed 

a misalignment with respect to the left and right coordinate points as its track total distance and 

curvature has variation compared to the centre-line. Hence to find the optimal trajectory point in 

Figure 5.3 Tack’s optimal trajectory line along with the road boundaries 



50 
 

line with its boundaries, the normal lines to the centre points, which intersect with the left and right 

boundaries, are plotted as shown in figure 5.4. 

   

 

 

Red      –> Centre-line 

Blue     –> Optimal line  

Green  –> Horizontal lines  

Figure 5.4 Optimal trajectory point’s misalignment with the centre points 



51 
 

This misalignment is solved by finding the intersection point of the optimal line (blue line shown 

in the below figure) with each normal line with the help of the separate curve intersection 

MATLAB algorithm [18]. This algorithm is slightly modified to suit our purpose of finding the 

intersection point.   

 

 

 

Figure 5.5 Optimal trajectory line (blue) 

Figure 5.6 Optimal trajectory point in line with boundary coordinates 



52 
 

These optimal trajectory points in accordance with the track boundaries are gathered for the 

different road tracks  used for the training dataset preparation. 

5.2.2 Sliding Window Approach 
 

This approach is based on the notion of the human driver look ahead perception on the tracks to 

identify the desired trajectory line. Normally, the driver line at any point of the track is influenced 

by the preceding as well as the upcoming track information (for instance, curvature), which results 

in the current vehicle position. Thus to enhance the performance of the Neural Network model in 

trajectory prediction, bidirectional ‘Foresight’ - both fore and aft of the current position are adopted 

here, thereby enabling the network to learn both how the vehicle arrived at the current position and 

where the trajectory heads next. 

For this purpose, the road track is fragmented into several segments (windows), which considers 

the forward and backward trajectory points to the current vehicle position. The single window of 

the approach is shown in figure 5.7 

 

Where wi – current trajectory point, wi+1 - forward trajectory point, wi-1 - backward trajectory 

point. 

This approach allows the entire tracks to be split it several overlapping sections with a fixed 

number of trajectory points which enables the supervised learning procedure to be more efficient. 

Also, the network learns from a larger number of windows of racetracks, enabling it to generalise 

across behaviour from multiple circuits with similar features. The sliding window approach vastly 

Figure 5.7 Single Sliding Window 



53 
 

increases the quantity of data provided by each circuit, thereby reducing the number of circuits 

required in the training dataset.  

5.3 Dataset Preparation 
 

All the data’s required for the trajectory prediction model is extracted from the trajectory 

information resulting out of the VI-CarRealTime simulations. As our primary aim is to build a 

model that predicts the fastest trajectory for any given track, the model is first formed to predict 

the centreline for any track. For this purpose, the simulations of the different road tracks are 

performed in the VI-CRT. The trajectory (centre-line) information, along with the curvature details 

of each track, is extracted from the output channel. With centre-line information (in terms of X 

and Y coordinates) as a reference, the inner and outer boundaries of the respective road track are 

extracted with the help of the MATLAB algorithm explained in section 5.2.1. 

Similarly, the optimal trajectory information resulting from the simulation with the trajectory 

corresponding to the minimum lap-time is also mapped according to the above-generated road 

boundaries with the help of the algorithm discussed in section 5.2.1. With the information on the 

desired trajectory coordinates and its respective inner and outer boundary coordinates and 

curvature details, the training dataset is prepared for supervised learning. Similar to the previous 

NN model, around 12 road tracks simulation data are used, which includes few tracks from the VI-

CarRealTime road database, and the rest of the tracks are created in the VI-Road interface based 

on the centreline coordinates from the TUMFTM – race track database (an open-source GitHub 

repository created and maintained by TUM – Institute of Automotive Technology).  

Figure 5.8.1 Track : VI - Track Figure 5.8.2 Track : Nürburgring 



54 
 

 

 

 

After importing the CSV report with data gathered in the Colab notebook, the pandas library is 

used for data sliding to implement the sliding window approach discussed in section 5.2.2. To 

transform the dataset into several overlapping sections, each column values are shifted forward 

and backwards to aid the bi-direction foresight in the prediction. The sampling amount (i.e. the 

number of trajectory points considered in the single window) affects the prediction accuracy; the 

higher the sampling rate more the accuracy on the trajectory prediction. In order to reduce the 

complexity and minimize the dimension of the input feature to the network, the sampling 

frequency of one is adopted here, which includes only one step before and after the data point in 

the single window.  

Figure 5.8.3 Track : Austin Figure 5.8.4 Track : Budapest 

Figure 5.8.5 Track : Oschersleben Figure 5.8.6 Track : Nürburgring 



55 
 

Listed below are the features selected and the augmented features present in the data frame used 

for training 

Table 6 Selected input and output features of the Network 

Features in Data frame 

Path_X Trajectory X-Coordinate 

Path_Y Trajectory Y-Coordinate 

Path_Curvature Trajectory Curvature 

Xin Inner Boundary X-Coordinate 

Yin Inner Boundary Y-Coordinate 

Xout Outer Boundary X-Coordinate 

Yout Outer Boundary Y-Coordinate 

X-1, X+1 Prior and after data shift of X-Coordinate  

Y-1, Y+1 Prior and after data shift of Y-Coordinate 

Xin-1, Xin+1 Prior and after data shift of inner boundary X-

Coordinate 

Yin-1, Yin+1 Prior and after data shift of inner boundary Y-

Coordinate 

Xout-1, Xout+1 Prior and after data shift of outer boundary X-

Coordinate 

Yout-1, Yout+1 Prior and after data shift of outer boundary Y-

Coordinate 

C-1, C+1 Prior and after data shift of Curvature 

 

 



56 
 

5.4 Network Architecture 
 

As this MLP model is formed in the same methodology as the previous NN model, the framework 

details and other standard model settings are not covered again in this section. 

The main goal of this model is to predict the trajectory points in terms of X and Y coordinates by 

taking the input of the track details such as the boundary information and the path curvature. As 

the problem here is formulated to be a regression one, the Neural Network model selected here is 

also a Multilayer Perceptron since it is best suited for the regression task and the property that this 

network needs to have minimum computation time for generating the trajectory prediction.  

The MLP architecture required for this task will have a multi-input and multi-output structure. The 

network contains the 15 input features which capture the details on the road track information, 

such as the inner and outer boundary coordinates and the path curvature, along with its data  

Figure 5.9 NN Architecture diagram - Trajectory Prediction 

Input layer hidden layer 1 hidden layer 2 hidden layer 2 Output layer 



57 
 

shifts (Xin-1, Xin, Xin+1, Yin-1, Yin, Yin+1, Xout-1, Xout, Xout+1, Yout-1, Yout, Yout+1, C-1, 

Curvature, C+1),on the other side of the network is 6 target parameters(X-1, X, X+1, Y-1,Y, Y+1) 

which are the trajectory points with the sampling rate 1.  

The simplified architecture diagram with the number of nodes in the input and output layer, along 

with the number of the hidden layer, is shown in figure 5.9. 

The data samples as a whole gathered for this model learning contains 192990 samples which is 

split in the range of 80:20 into a training dataset of 154392 and the validation dataset of 38598. 

The final Keras model involves one input layer, three hidden layers and an output layer with a 

number of nodes 200, 100, 100, 50, 6, respectively. The summary of this Keras model is as shown 

below 

 

 

 

The Network is updated during the learning process using the Adam optimization algorithm, with 

the parameter settings such as learning rate 10 e-04, beta_1 0.9, beta_2 0.999, epsilon 1e-07. The 

loss functions such as ‘MSE’ and ‘Huber’ are tested for accuracy, and the final grid search score 

showed Huber loss as the best choice. The Adam optimizer, in combination with the 

aforementioned setting, resulted in the best possible prediction accuracy. Further, the data samples 

are split into batches of 15, and the model is trained for the 50 number epochs. As a step of 

Figure 5.10 Model Summary - Trajectory Prediction 



58 
 

generalisation and to prevent the overfitting of the model, the call back strategy is adopted. The 

early stopping with the patience level of 3 to monitor the validation loss during training is 

configured, which makes the loss history graph with no signs of overfitting. A brief description of 

the model feature and the hyperparameters are listed in the below table. 

 Table 7 Configuration and Hyperparameters - Trajectory Prediction Network 

Parameters Value 

Learning rate 10 e-04 

Optimizer Adam 

Loss Function Huber 

Activation function Softmax 

Number of Epochs 50 

Batch Size 15 

Top Layers 200, 100, 100, 50, 6 

 

The model, when built, initially showed noise in its prediction of the trajectory. However, after 

experimentation with a comprehensive combination of the hyperparameters, especially the batch 

size and the activation function, the Softmax activation function resulted in the smooth trajectory 

prediction with the noise elimination. Further, the sampling factor also influenced the smoothness 

in the prediction of the trajectory (the higher the sampling frequency, the more the smoothness in 

the trajectory prediction). As previously stated, to reduce the dimensionality, sampling of 1 is 

considered here, with the network structure and parameters providing the best possible prediction 

result. 

Using the described model structure and the methodology, the Neural Network model is trained to 

predict the centre-line and the optimal trajectory line for any given track separately. The model 

showed good prediction in both cases with less computational time involved. 

 



59 
 

Chapter 6 
 

Results and Discussion 
 

6.1 Training Results 
 

All the final neural network models used for the testing showed the validation loss in the range of 

10e-04. The training loss history of each model is reported below, which shows the metrics values 

attained at each epoch. The metrics here are the training loss and the validation loss (these losses 

denotes the value difference in the expected output with respect to the training and the validation 

dataset). 

Figure 6.1 Constant Velocity - Lateral Control 

Figure 6.2 MaxPerformance - Lateral Control 



60 
 

   

Though all the Neural Network models for both the vehicle control and trajectory prediction are 

trained with the epoch value 100, early stopping call back on each model stopped the training 

before 100 epochs. This is done to prevent the overfitting of the model to the training data, which 

results in poor generalisation of the resulting model. It is evident from all the training graphs 

reported above that the final models are not overfitted, which will be the case when the validation 

curve(orange) starts to increase above the training curve(blue) after training for a certain number 

of epochs. The constant velocity model, though it showed initial fluctuation in terms of the 

validation loss, manages to achieve a better result at around 32 epochs, with the validation loss in 

the range of e-04. Comparatively, the Max-Performance lateral control model showed a most 

consistent result from training and achieved a good result at around 80 epochs. The longitudinal 

control model had more fluctuation in the validation loss but managed to gain a better outcome 

Figure 6.3  MaxPerformance - Longitudinal Control 

Figure 6.4 Trajectory Prediction 



61 
 

before overfitting. The best checkpoint in terms of validation loss is at epoch 35, with the loss in 

the range of e-04. 

6.2 Testing Results 
 

To evaluate the performance of the final resulting model with the unseen data(which has not been 

used in training), two methodologies are adopted, which are offline and online validation. The 

offline validation follows the same methodology as carried out during the training of the neural 

network. The VI-CarRealTime simulation data are gathered for the road tracks which have not 

been used in training, and the input features corresponding to the model are selected and provided 

as the input to the model to predict the target features. The output resulting from the model is 

compared to the relevant simulation VI-driver output. The term online validation refers to the 

testing of the model during the real-time simulation. The resulting NN models are used to provide 

the control input to the vehicle model during the co-simulation in the Simulink interface during 

each integration step. 

6.2.1 Vehicle Control: Offline Prediction  
 

Constant Velocity-Lateral Control Model 
 

Before validating the performance of the model in the unseen tracks, the model is checked for its 

prediction result concerning some of the road tracks used during training and compared the result 

with corresponding VI-Driver output.  To evaluate the prediction in the unseen track, firstly, the 

prediction results from simple manoeuvres are tested and then the full lap data are feed to the 

model to check the lateral control prediction for the same. Listed below are the unseen road tracks 

on which the model is validated  

Figure 6.5.1 Unseen Track : Straight 



62 
 

 

 

Training Tracks Predictions 

           

Figure 6.5.2 Unseen Track : Single Turn Figure 6.5.3 Unseen Track : Chicane 

Figure 6.5.4 Unseen Track : Unknown Track 1 Figure 6.5.5 Unseen Track : Spielberg 

Figure 6.6.1  Prediction : VI-Track 



63 
 

                                   

The above figures show the NN models predictions in terms of lateral control for the five road 

tracks used for training. The actual values denote the VI-Driver steering angle, and the prediction 

represents the predicted steering angle from the NN model. It is quite evident from the plots that 

the prediction accurately coincides with the actual steering angle of the VI-Controller.  

 

Unknown Tracks Predictions 

To evaluate the prediction performance in the unseen track, the prediction results from simple 

manoeuvres such as straight, single turn and double turns are tested. Then, the complete lap data 

are fed to the model to check the lateral control prediction.  

Figure 6.6.2 Prediction : VI-Road Example Figure 6.6.3 Prediction : Brand hatch 

Figure 6.6.4 Prediction : Budapest Figure 6.6.5 Prediction : Melbourne 



64 
 

 

        

      

   

 

Figure 6.7.1 Unseen track prediction : Straight Figure 6.7.2 Unseen track prediction : Single Turn 

Figure 6.7.3 Unseen track prediction : Chicane Figure 6.7.4 Unseen track prediction : Unknown 1 

Figure 6.7.5 Unseen track prediction : Spielberg 



65 
 

Except for the straight manoeuvre, the steering angle prediction coming from the Neural Network 

model is almost the same as that of the lateral control provided by the VI-Driver Controller for the 

same unseen tracks. For the straight manoeuvre, the model predictions are still in the range of e-

03, which is not far from the expected desired value to keep the vehicle straight. 

MaxPerformance - Lateral Control Model 
 

Similar to the constant velocity model, the built-in Neural Network model for the dynamic limit 

conditions are tested at first for its prediction with respect to its training tracks. Then the model 

generalization is evaluated by checking its predictions result in the unseen road tracks shown 

below. 

 

 
Figure 6.8.1 Unseen Track 1 : Spielberg 

Figure 6.8.2 Unseen Track 2 : Sakhir 



66 
 

Training Tracks Predictions 

    

 

 

 

Figure 6.9.1 Prediction : VI RaceTrack Figure 6.9.2 Prediction : VI-Track 

Figure 6.9.3 Prediction : Brand Hatch Figure 6.9.4 Prediction : Budapest 



67 
 

Unknown Tracks Predictions 

 
MaxPerformance - Longitudinal Control Model 
 

Training Tracks Predictions 

 

Figure 6.10.1 Unseen Track Prediction : Spielberg Figure 6.10.2 Unseen Track Prediction : Sakhir 

Figure 6.11.1 Prediction : VI-Track 

Figure 6.11.2 Prediction : VI-RaceTrack 



68 
 

 

 

Unknown Tracks Predictions 

   

 

Figure 6.11.3 Prediction Brand hatch 

Figure 6.11.4 Prediction : Budapest 

Figure 6.12.1 Unseen track Prediction : Spielberg 



69 
 

 

The lateral and longitudinal control prediction for the MaxPerformance condition is depicted in 

the above plots. The prediction concerning the training tracks is quite the same as that of the VI-

Driver output with little variation, only by a few margins. Similar to that of the training, the full 

lap prediction for the two unseen tracks, which are reported, shows that the model is generalized 

enough to make the prediction as same as that of the VI-Controller in case of dynamic limit events 

for any given road track. 

6.2.2 Vehicle Control: Online Prediction 
 

The online validation of the developed Neural Network model for vehicle control is performed in 

the Simulink environment using the co-simulation events discussed in section 4.4. The model built 

for the constant velocity condition for lateral control prediction is tested for its performance during 

the real-time simulation. To synchronise the Simulink co-simulation with the prediction output 

from the NN model created, the same solver settings (Integration steps 0.001 and the solver Runge-

Kutta) are made in the Simulink and the VI-environment. But with this setup and the 

synchronization, when performed the co-simulation with the NN model to predict a steering input, 

there existed an offset in the prediction value getting into the vehicle model during the simulation. 

To be precise, with the state feedback value recorded at a time ‘t’ (which is provided as an input 

feature to the Neural Network), the NN model makes a steering angle prediction which is given to 

the vehicle model at a time ‘t+1’. To overcome this issue, the NN model structure is slightly 

Figure 6.12.2 Unseen Track Prediction : Sakhir 



70 
 

modified to predict the next step steering angle by taking the state feedbacks and the current step 

steering angle as an input. The modified NN model block is as below in figure 6.13 

 

The Simulink space where the co-simulation is performed with the passive vehicle model on 

integration with the above modified Neural Network model is shown below in figure 6.14  

Figure 6.13 Modified NN layout 

Figure 6.14 Simulink Environment : Online validation setup 



71 
 

With the above setup and the final NN model as per the architecture detailed above, the prediction 

coming from the NN model was able to get into the vehicle model successfully during the co-

simulation in the Simulink. But its performance during this online validation is not the same as 

that of the offline prediction results. Upon investigating the issue, it is addressed that the scaling 

(normalization: pre-processing), which is performed before training the NN model, causing the 

abrupt change in the prediction coming from the Neural Network model. This is because the 

normalization procedure during the pre-processing scales the data value based on the maximum 

and minimum value limit available in the training dataset, which is used while building the model. 

During the real-time simulation, when the raw input data, which is the state feedback in our case, 

goes beyond the maximum or below the minimum limit range according to the training dataset, 

the NN model gets perplexed, and the prediction gets out of bound (i.e.) not as expected. As a 

general rule, the scaling of the input feature is necessary to achieve a good prediction result with 

the regression neural network. Still, it is not mandatory for all applications. Hence the model is 

again trained without the scaling procedure and found to be performing almost the same as that of 

the scaled model in the case of the offline prediction. The unscaled model, when performed the 

online validation shown slight improvement in the result, but in this case also it is not quite the 

same as that of the offline prediction results. The improvement is seen with this model in the case 

of the straight segments, where the model was able to make the prediction well enough to keep the 

vehicle in the straight path. When approaching the curves, the model could not predict the desired 

steering angle, which makes the vehicle not follow the desired trajectory. However, this is the case 

with the model without having the input feature path-distance as input to the model. This is also 

due to the same fact as discussed above in the case of the scaling issue. In the training dataset, the 

path distance value (denotes the lateral offset with respect to the reference trajectory) will have its 

maximum in the range of 10 e-02 since the VI-controller here provides the trajectory control to 

track the reference path as close as possible. Because of this, during the real-time simulation with 

the NN model, when the path distance input goes beyond its maximum value in the training dataset, 

the Neural Network was not able to provide the steering angel prediction to bring the vehicle to its 

reference path. 

 



72 
 

The below plot shows the offline prediction result of the NN model for the straight path and the 

result of the same model during the online validation (VI-CRT simulation output). In this case,  

offline prediction is the same as that of the steering angle prediction coming during the real-time 

co-simulation. 

6.2.1 Vehicle Trajectory Prediction  
 

The final Neural Network model in the case of the optimal trajectory prediction is evaluated by 

validating its prediction performance in the case of the unseen road tracks by providing the input 

of the road boundaries and the path curvature. Before feeding the input to the final model, the 

boundary coordinate’s and the curvature is subjected to the data shift (sliding window) same as 

performed during the training procedure. The initial prediction by this procedure showed a noise 

in the trajectory line, which is reduced with the help of the change in the Neural Network 

Activation function.  

 

Figure 6.15 Offline Prediction : Straight Path Figure 6.16 Online Prediction  : Straight Path 

Figure 6.17 Noise level before change in Activation function Figure 6.18 Noise level after change in Activation function 

Trajectory 



73 
 

The final optimal trajectory prediction for the two unseen tracks, which is compared to the optimal 

trajectory line of those tracks as generated from the path builder script based on the corner-cutting 

value, is reported below. 

 

 

a 

 

a 

b 

 

b 

c 

 

c 

d 

 

d 

e 

 

e 

Figure 6.19 Unseen Trajectory Prediction : Spielberg 



74 
 

 

 

 

 

 

 

 

 

Curve a Curve b 

Curve c Curve d 

Curve e 



75 
 

 

 

 

 

a 

b 

c 

 

d 

e 

f 

Figure 6.20 Unseen Trajectory Prediction : Sakhir 



76 
 

 

 

 

 

 

 

 

Curve a Curve b 

Curve c Curve d 

Curve e Curve f 



77 
 

The above two plots show the prediction of the Neural Network model for the optimal trajectory 

for the two unseen tracks. Figure 6.19 and 6.20 shows the global optimal trajectory line predicted 

by the Neural Network when fed with the boundary and curvature details of the respective road 

tracks. For a better visualisation purpose, the inner and outer boundaries are plotted together, which 

is shown by the orange and blue lines. The predicted trajectory line is denoted as a red line, and 

the optimal trajectory (fastest trajectory for the track) corresponds to that track obtained by the 

path-builder script is represented by the green line.  

The final NN model was able to make the trajectory prediction for any given track within the road 

boundaries, and in the corners, its prediction behaviour (which is depicted in the following figures 

of each track trajectory prediction) is almost the same as that of the optimal trajectory line of that 

road track. This predicted trajectory line is exported from the google colab, and it is used as a 

reference path in the VI-CarRealTime simulation, and the vehicle was able to follow the trajectory 

predicted from the neural network. But with this predicted path, there observed little amount of 

noise in the tight corners. In comparison to the optimal line generated by the path builder script, 

the prediction made by the Neural Network showed a slight increase in the lap-time, which is 

mainly due to the small amount of noise as described above in deep curves. 

 

 

 

 

 

 

 

 

 

 



78 
 

Chapter 7 
 

Conclusion and Future Work  
 

Autonomous vehicle development is a highly discussed subject in the present research world as 

well as within the industry. To realise it as a complete system in an on-road vehicle, several 

complexities in the system need to be worked together. In this thesis work, the current 

advancement in Machine learning and Neural Networks is evaluated as a realistic option to replace 

the existing traditional control method for the task of trajectory planning and control. 

In many cases, the existing path planning and tracking methods based on the control strategies 

have shown unsatisfactory results. This made ANN a good option for such tasks as it is proven to 

imitate any mathematical function accurately. In this experimental thesis work, the performance 

of the Multi-Layer Perceptron Neural Network Model for the task of trajectory planning and 

control is conceptualized as a possible choice for the development of the autonomous vehicle 

system. In the first part of the work, the vehicle control model is validated with unseen data from 

the simple to the complex driving tracks. The offline prediction, which showed better performance 

results, indicates the ability of the Neural Network to learn the task of driving in the closed tracks 

without the information of visual information (i.e. no camera images are used as input data in the 

thesis work). It also shows that it can regularize well for the new unseen driving tracks, which 

confirm good generalization. The online validation setup points out the successful integration of 

the Neural Network model with the simulation environment, as the model was able to provide the 

steering command as input during the simulation. But the results are not robust enough in this case 

as it can make predictions only in the straight segment. The main reason for this could be the 

simplicity of the MLP model in general and also the training strategy utilized here, which is offline 

in our case. In addition, since the training data here are gathered from the VI-Driver controller, the 

data will already be in the regulated condition (i.e.) the data denoting the unsatisfactory behaviour 

is not captured in this case during the simulations, and because of this missing information, Neural 

Network model fails to perform the corrective measure when the driving condition goes far beyond 

the normal. With the hybrid/complex model schemes and by increasing the wide range of driving 

uncertainties in the training dataset, the Neural Network will be able to show better performance 



79 
 

in the case of the real-time simulation. In the second part of the thesis work, the trajectory 

prediction, the model is validated to predict the optimal global trajectory for the two complex road 

tracks. The validation results are promising, as the model developed can consider the road 

boundaries and provide the optimal trajectory line in between. Also, this indicates that this method 

could be a time-efficient one compared to other path planning strategies. Compared to the optimal 

trajectory line generated based on the path builder script, there is a slight degree of mismatch in 

the model predicted trajectory line. However, the prediction accuracy could be improved much 

with the same model by training with a large number of road tracks. To make the trajectory smooth 

as possible, the sampling rate could be increased (i.e.) the number of lines in each sliding window 

could be increased; this, in turn, increases the complexing of the NN model as the number of input 

and output features will be more. 

This research work can be carried out to integrate the two separated NN models as a single 

complete system to be a good choice for the trajectory planning and control part. 

  

 
 

 

 

The above block shows the layout of the complete system where two Neural Network models 

could be combined and automated to provide its prediction in real-time. In addition, considering 

this as a promising starting point, certain improvements can be carried out in the future to make 

the model more robust enough to be implemented as an external driver model for the VI-

CarRealTime as an additional option to the already existing driver model. 

 

 

 

 

 

Trajectory 

Prediction NN 

 

Vehicle Control 

NN 

 

Boundary and 

curvature details 

 

Boundary and 

curvature details 

Optimal 

Trajectory -X,Y 

 

Optimal 

Trajectory -X,Y 

Lateral and 

Longitudinal 

Control  

 

Lateral and 

Longitudinal 

Control  Figure 7.1 Complete System Layout 

Road Perception 

 



80 
 

Bibliography 
 

[1]  G. T. a. J. K. S. Sharma, "Behavioral Cloning for Lateral Motion Control of Autonomous Vehicles 
Using Deep Learning," in IEEE International Conference on Electro/Information Technology (EIT), 
2018.  

[2]  G. T. a. J. K. S. Sharma, "Lateral and Longitudinal Motion Control of Autonomous Vehicles using 
Deep Learning," in IEEE International Conference on Electro Information Technology (EIT), 2019.  

[3]  C.-H. W. a. Y.-R. C. Tsung-Ming Hsu, "End-to-End Deep Learning for Autonomous Longitudinal 
and Lateral Control based on Vehicle Dynamics," in International Conference on Artificial 
Intelligence and Virtual Reality, New York, NY, USA, 2018.  

[4]  L. J. Viktor Insgård, "Heavy vehicle path control with neural," Department of Mechanics and 
Maritime Sciences, CHALMERS UNIVERSITY OF TECHNOLOGY., Gothenburg, Sweden, 
2018. 

[5]  A. B. D. M. P. O. J. H. P. &. B. P. Wasala, "Trajectory based lateral control: A Reinforcement 
Learning case study," Engineering Applications of Artificial Intelligence, 2020.  

[6]  G. P. P. A. F. &. M. F. Devineau, "Coupled Longitudinal and Lateral Control of a Vehicle using 
Deep Learning," in 21st International Conference on Intelligent Transportation Systems (ITSC), 
2018.  

[7]  U. A. J. Deepak S. Gaikwad, "Classifying Trajectories on Road Network using Neural Network," 
International Journal of Computer Applications© 2013 by IJCA Journal, pp. Volume 81 - Number 
13, 2013.  

[8]  S. &. M. N. &. H. K. &. R. C. Dabiri, "A deep convolutional neural network based approach for 
vehicle classification using large-scale GPS trajectory data," Transportation Research Part C: 
Emerging Technologies., 2020.  

[9]  S. W. a. A. W. S. Mukherjee, "Interacting Vehicle Trajectory Prediction with Convolutional 
Recurrent Neural Networks," in IEEE International Conference on Robotics and Automation 
(ICRA), 2020.  

[10]  S. &. B. A. Garlick, "Real-Time Optimal Trajectory Planning for Autonomous Vehicles and Lap 
Time Simulation Using Machine Learning". 

[11]  "Gentle Introduction to the Adam Optimization Algorithm for Deep Learning," [Online]. Available: 
https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/. 

[12]  J. Brownlee, "How to Configure the Learning Rate When Training Deep Learning Neural 
Networks," Machine Learning Mastery, [Online]. Available: 
https://machinelearningmastery.com/learning-rate-for-deep-learning-neural-networks/. 



81 
 

[13]  J. Brownlee, "Overfitting and Underfitting With Machine Learning Algorithms," Machine Learning 
Mastery. [Online].  

[14]  VI-Grade, VI-CarRealTime 20.2 Documentation.  

[15]  J. Brownlee, Deep Learning with Python, 2016.  

[16]   TUMFTM, Racetrack-Database. https://github.com/TUMFTM/racetrack-database, 2020..  

[17]  J. Brownlee, "How to use Data Scaling Improve Deep Learning Model Stability and Performance," 
[Online].  

[18]  MathWorks, Curve intersections Algorithm.  

[19]  I. G. a. Y. B. a. A. Courville, "Deep Learning," MIT Press.  

[20]  "MathWorks," [Online]. Available: https://it.mathworks.com/matlabcentral/fileexchange/22441-
curve-intersections. 

[21]  J. Brownlee, Deep Learning for Time Series Forecasting, 2018.  

[22]  A. S. A. K. a. J. X. C. Chen, "DeepDriving: Learning Affordance for Direct Perception in 
Autonomous Driving," IEEE International Conference on Computer Vision (ICCV), pp. 2722-2730, 
2015.  

[23]  A. N. Jaob Genander, "Control of Self-Driving Vehicles," Master’s thesis in Computer Science - 
CHALMERS UNIVERSITY OF TECHNOLOGY, Gothenburg, Sweden, 2018. 

[24]  J. Dammen, "End-to-end deep learning for," Master’s thesis in Computer science - Norwegian 
University of Science and Technology, 2019. 

[25]  S.-Y. O. a. Y. Yim, "Modeling of vehicle dynamics from real vehicle measurements using a neural 
network with two-stage hybrid learning for accurate long-term prediction," IEEE International 
Symposium on Computational Intelligence in Robotics and Automation, pp. 83-88, 1999 .  

[26]  X. H. C. L. Y. L. J. W. Xuewu Ji, "Adaptive-neural-network-based robust lateral motion control for 
autonomous vehicle at driving limits," Control Engineering Practice, vol. Volume 76, pp. 41-53, 
2018.  

[27]  D. L. P. L. L. a. A. P. B. L. Cardamone, "Searching for the optimal racing line using genetic 
algorithms," IEEE Conference on Computational Intelligence and Games,, pp. 388-394, 2010.  

[28]  R. J. Alexander Bukk, "Vehicle trajectory prediction using," Master’s thesis in Complex Adaptive 

Systems - CHALMERS UNIVERSITY OF TECHNOLOGY, 2020. 

[29]  J. W. J. M. D. H. Z. a. H. Z. Wenda Xu, "A real-time motion planner with trajectory optimization 
for autonomous vehicles," IEEE International Conference on Robotics and Automation, pp. 2061-
2067, 2012.  

 


