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Abstract 
 

 

Vibrations are an omnipresent phenomena and generally their presence is sought to be limited 
since they may cause malfunction, noise, wear, discomfort and destruction. In the last century, 
methods and technologies regarding to dynamic analysis developed significantly. Modal 
analysis constitutes an important section of these developments and all the numerous 
approaches it has can be grouped in two major categories: Experimental Modal Analysis (EMA) 
and Operational Modal Analysis. Because of the sheer number of modal analysis approaches 
and them being constantly developed it is hard to come by up-to-date comparisons of different 
methodologies under different circumstances. In this thesis, modal parameter extraction method 
Rational Fraction Polynomials method in z-domain (RFP-z) is elaborated and evaluated by 
creating a numerical model to run digital simulations. Other than a comparison of EMA and 
OMA accuracy, different parameters and their effect on accuracy are contrasted as well since 
the performance of the extraction may change depending on factors such as noise, excitation 
typology and frequency. Results indicate with numerical evidence that EMA is significantly 
more accurate and should be utilized if possible, especially for the analysis of critical parts. The 
effect of the presence of noise can be mitigated for well-separated modes by increasing the 
model order of RFP-z, but it affects the extraction accuracy of closely placed modes in a critical 
and unsalvageable way. Results also highlight that RFP-z method works much more accurately 
when the excitation applied to the structure is arbitrary in nature, rather than harmonic. In case 
of hybrid excitations, the “random” contribution should dominate the load behaviour. Another 

finding is that if of steep peaks are present in the frequency response function (FRF), it should 
be estimated with a higher number of spectral lines, otherwise the low resolution causes a loss 
of information ergo an inaccurate modal parameter extraction. The effect of RFP-z maximum 
model order is very situational and a general conclusion cannot be reached in that regard. 
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1. Introduction 
 

In many branches of industry and engineering there comes the need to study the vibrational 
response and the overall dynamic behaviour of certain components, because vibration can cause 
a plethora of undesired effects including fatigue, abrasion, noise, discomforts to human body 
such as nausea and even destruction of the machine or the structure. A very powerful approach 
to study the dynamic behaviour is ‘modal analysis’[1][2] which has its roots in around 1940 and, 
thanks to the developments in dynamic testing, spectrum analyser availability and signal 
processing is developing further with new methods ever since.  In modal analysis a components 
response to vibration is assumed as a combination of different modes, each with its own 
parameters such as natural frequency, mode shape and damping ratio (figure 1.1). Even though 
in real life every component has an infinite amount of modes, simulating the component as a 
lumped model and taking only a finite amount of significant modes gives very accurate results, 
given that the modal parameters of the component to be studied is known beforehand. 

 

 
Figure 1.1: Modal Decomposition (Structural Vibration Solutions) 

 

In practice, engineers usually do not know the modal parameters of the component which they 
work with. If the component has a simple shape and the material is known then it is possible to 
calculate the parameters without much trouble. Even the parameters of more complex parts can 
be identified with simple experimental ways such as the logarithmic decrement method, as long 
as the component can be modelled as a single degree of freedom (SDOF) system. But most of 
components an engineer will face in practice is a more complex assembly of different parts 
consisting of maybe more than one material. They can only be modelled as multiple degree of 
freedom systems (MDOF) where even small structural changes can alter the modal parameters 
significantly. 

Therefore, one of the most fundamental areas in modal analysis is the ‘Modal Parameter 

Extraction’ or ‘Modal Parameter Identification’. As the name suggests this area consists of 

methods to find out the modal parameters of a component via experimentation. This is an area 
with utmost engineering and academic interest, new methods of extraction are constantly 
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invented and developed, each having advantages and disadvantages on particular conditions. 
There are different ways to classify among these extraction methods. One of the most common 
property of an extraction method is in which domain is the data it uses. The excitation and 
response in an experiment or calculation can be either in time domain or frequency domain. 
Another crucial property is whether we have only the output data or if the output data (response) 
is supplemented with the input data (excitation). The output only case gives less accurate results 
but it still might be required in some cases since the excitation cannot always be precisely 
measured, for instance in the case of a bridge excited by the wind. 

Also depending on the input and output data sets we can classify the extraction data further into 
single input single output (SISO), singe input multiple output (SIMO), multiple input single 
output (MISO) or multiple input multiple output (MIMO) methods. This is usually decided in 
the conduction of the experiment and the extraction method may vary greatly passing from one 
way to another. Also, another very basic method classification is whether if the system is SDOF 
or MDOF. A selection of common extraction methods can be seen in the figure 1.2 below. 

 

1.1 Motivation 

 
The extraction method which will be studied and elaborated in this thesis is the ‘RFP-Z method’ 

[3]. The details of this method will be elaborated in the following chapter, but for an introduction 
it models the system in the same manner as the ‘Rational Fraction Polynomials (RFP) 
method’[4][5] which was developed in the 1980s. The main difference of RFP -Z method from 
the RFP method is that it transforms the experimental data from the time domain to the z 
domain, which introduces some numerical advantages. 

The primary aim of this thesis is to verify the RFP -Z method on changing conditions such as 
different noise levels and different excitation types. Also, different numerical methods of 
creating a frequency response function (FRF) from the experimental data will be discussed, 
elaborated and compared using the modal assurance criterion (MAC). The reader of this thesis 
will gain an idea about the RFP -Z method in general and also about the accuracy of the 
extracted modal parameters via this method under different conditions. 

Also, a proper code will be developed on MATLAB in order to automatically verify the RFP -
Z method under different conditions. 
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1.2 Outline of the Thesis 

 
In chapter 2 of this thesis there will be an overview of the RFP -Z method so that the reader can 
understand the principal idea of how to extract the modal parameters from experimental time-
domain data with this method. In chapter 3 the system on which we will perform the numerical 
experiment will be described. The way to get the time-domain data on matlab will also be 
discussed in brief, and different ways to transform data into the frequency domain will be 
outlined. These data in frequency domain will be our starting point of the data extraction with 
RFP -Z method. 

Chapter 4 will outline the methods used in the verification process. Procedure stated here will 
be important in comparing the results of different simulations under several circumstances. 

In the remaining chapters the RFP -Z method will be verified under different conditions such 
as different noise levels, different excitation types (random, harmonic or hybrid excitations), 
and different ways to compute the initial FRF. 
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(a) 

 

(b) 

Figure 1.2: (a) Modal analysis identification method classification (b) Frequency domain 
identification method classification. (Maia, Nuno M.M. and Silva, Julio M.M. (1997), Theoretical and 

Experimental Modal Analysis, Chapter 4) 
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2. Outline of the RFP -Z Method 
 

The main part of this thesis will be about the verification of the RFP -Z method under varying 
conditions, so it makes sense to describe the method itself beforehand. The reader is highly 
encouraged to read its original paper [3]. Although the exact paper version of the method is 
viable, in 10 years numerically more efficient modifications have been introduced on the 
method and they will be described in this chapter. 

To use the RFP -Z method, firstly we must consider the experimental signal received to be from 
a linear time invariant (LTI) system. In this description “linear” underlines that the signal can 

be considered as a sum of different signals, according to the superposition principle. “Time 

invariant” implies that the considered structure does not change in time, i.e. its mass, stiffness 
and damping are constant. 

The fact that our system is a LTI system ensures that it also has a transfer function, which we 
call the response function. If it is in the time domain, it generally has the symbol h(t) and is 
called the impulse response function. When Fourier transformed, we obtain the frequency 
response function, notated as H(ω), which is a complex function and has the information of the 
magnitude and the phase of response of a point to a harmonic excitation with frequency ω. 

Another a priori assumption is the damping model of the system. Damping is an inherent 
characteristic of every real-life system, since it models the dissipation of energy which is 
negligible at best. Since there are lots of different energy dissipation mechanisms in the system 
it is hard to accurately describe them all with a simple model. There are two common damping 
models; the viscous model, which is linear and analogous to a real viscous dashpot, and the 
hysteretic or the structural model, which is analogous to a viscoelastic solid and is independent 
on the frequency. Viscous damping is the simplest model to use and since the system we will 
use in this thesis is a theoretic system generated in MATLAB we will proceed with the viscous 
damping model. 

The impulse response function of a LTI system with n degrees of freedom (dof) can be 
expressed as: 

ℎ(𝑡) =  ∑𝐴𝑟𝑒
𝑠𝑟𝑡                                                                                                                                (2.1)

2𝑛

𝑟=1

 

We can take the Fourier transform of the impulse function to obtain the frequency response 
function (FRF):  

𝐻(𝑖𝛺) =  ∑
𝐴𝑟

𝑖Ω − 𝑠𝑟
                                                                                                                        (2.2)

2𝑛

𝑟=1
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In these equations r denotes the mode number. Any n dof system has n modes which often occur 
in complex conjugate pairs, hence there are a total of 2n contributions. Equation (2.2) is just a 
more compact form to write the same equation in another way as: 

𝐻(𝑖𝛺) =  ∑(
𝐴𝑟

𝑖Ω − 𝑠𝑟
+ 

𝐴𝑟
∗

𝑖Ω − 𝑠𝑟∗
)                                                                                              (2.3)

𝑛

𝑟=1

 

In this thesis I will stick with the notation of equation (2.2) since it is more compact. 

The element denoted as sr is the r-th generic pole of the r-th mode shape. It is linked to the r-th 
natural frequency ωr and damping ratio ζr as: 

𝑠𝑟 = −𝜁𝑟𝜔𝑟 + 𝑖𝜔𝑟√1 − 𝜁2                                                                                                              (2.4) 

Since we are working with digital data, we cannot think of the frequency spectrum as a 
continuous band but rather a set of discrete frequencies. Therefore, moving to the Z-domain Eq. 
(2.2) would take the form: 

𝐻𝑘 = ∑�̅�𝑟
𝑧𝑘

𝑧𝑘 − 𝑧𝑟
 

2𝑛

𝑟=1

                                                                                                                        (2.5) 

In this notation Hk denotes the spectral line of the k-th generic frequency. A crucial point to 
underline is that the sampling frequency information is completely lost when we do the z-
transform. It is as if we take the sampling frequency as 1 Hz and hence the sampling period as 
1 s. Later, the calculated residues will be adjusted with this regard. Z coefficients are tied to the 
z-transformation, and they are expressed as: 

𝑧𝑟 = 𝑒
𝑠𝑟Δ𝑡                                                                                                                                              (2.6) 

𝑧𝑘 = 𝑒
−𝑖(𝑘−1)ΔΩΔ𝑡 = 𝑒−

𝑖𝜋(𝑘−1)
𝑁−1                                                                                                        (2.7) 

where N denotes the total number of spectral lines, Δt is the sampling period and ΔΩ is the 
discretization step width for the frequency. To avoid confusion, it must be noted that Eq. (2.7) 
is slightly modified with respect to the original paper. The reason is that having a negative 
exponent in that case will give a more stable stabilization chart in the end.[6] 

Z-transform maps a function into a unit circle in the Argand-Gauss plane. In this case we are 
interested only in the upper semicircle because we can only analyse the spectrum up to half the 
sampling frequency according to Shannon-Nyquist sampling theorem.[7] 

To proceed with the parameter estimation Eq. (2.5) is written in the form: 

 

𝐻𝑘 =  
𝑏1𝑧𝑘 +⋯+ 𝑏2𝑛𝑧𝑘

2𝑛

𝑎0 + 𝑎1𝑧𝑘 +⋯+ 𝑎2𝑛−1𝑧𝑘
2𝑛−1 + 𝑧𝑘

2𝑛                                                                                  (2.8) 

 

It is worth noting that all the parameters ai and bi are real. 
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We can then expand Eq. (2.8) to N spectral lines using matrix notation. 

[
 
 
 
𝐻1 𝐻1𝑧1 ⋯ 𝐻1𝑧1

2𝑛−1

𝐻2 𝐻2𝑧2 ⋯ 𝐻2𝑧2
2𝑛−1

⋮ ⋮ ⋱ ⋮
𝐻𝑁 𝐻𝑁𝑧𝑁 ⋯ 𝐻𝑁𝑧𝑁

2𝑛−1]
 
 
 

{

𝑎0
𝑎1
⋮

𝑎2𝑛−1

} − 

[
 
 
 
𝑧1 𝑧1

2 ⋯ 𝑧1
2𝑛

𝑧2 𝑧2
2 ⋯ 𝑧2

2𝑛

⋮ ⋮ ⋱ ⋮
𝑧𝑁 𝑧𝑁

2 ⋯ 𝑧𝑁
2𝑛]
 
 
 

{

𝑏1
𝑏2
⋮
𝑏2𝑛

} = − 

{
 

 
𝐻1𝑧1

2𝑛

𝐻2𝑧2
2𝑛

⋮
𝐻𝑁𝑧𝑁

2𝑛}
 

 
   (2.9) 

When there are 𝑁 ≥ 4𝑛 spectral lines Eq. (2.9) can be solved via Least Squares Method. 

Eq. (2.9) consider only a single FRF with N spectral lines. We can expand the equation even 
further to include a total of NFRF frequency response functions. It can straightforwardly be 
observed that the first matrix of Eq. (2.9) will be subject to change from FRF to FRF while the 
second matrix is same for all the FRFs. Also, the first vector of coefficients ai will be same for 
all FRFs while coefficients bi are tied to residues and hence they vary. 

[
𝑨1
⋮

𝑨𝑁𝐹𝑅𝐹

] 𝒂 + [
−𝑩 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ −𝑩

] {
𝒃1
⋮

𝒃𝑁𝐹𝑅𝐹

} =  {

𝒘1
⋮

𝒘𝑁𝐹𝑅𝐹

}                                                                (2.10) 

Eq. (2.10) can theoretically be solved with a least squares approach, but the matrices involved 
might be ill-conditioned and thus they may bring numerical errors. Also, when the number of 
N spectral lines and NFRF FRFs is large taking the inverse matrices is going to be very time 
consuming, especially when the number of modes n is not known a priori, and an iterative 
procedure is required to build the stabilization chart. These drawbacks are circumvented by a 
very interesting approach using matrix/vector calculus and minimizing the error. The steps of 
the procedure are described in the original paper (See Appendix A), and the result reached is: 

𝑹𝒂 = 𝒓                                                                                                                                                 (2.11) 

Where the matrix R and the vector r are easily calculated via matrices B and Am of each NFRF, 
and they are well-conditioned. After finding vector a, the solution of the system can be found 
by the equation: 

𝑎0 + 𝑎1𝑧 +⋯+ 𝑎2𝑛−1𝑧
2𝑛−1 + 𝑧2𝑛  = 0                                                                                     (2.12) 

Eq. (2.12) yields 2n zeros and they are utilized in order find the poles of the system: 

𝑠𝑟 =
ln 𝑧𝑟
Δ𝑡

                                                                                                                                            (2.13) 
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2.1 Additional Considerations due to Z-Transform 
 

In this point it is worth reminding that the sampling period information was lost in Eq. (2.5), 
and it is considered as 1s. Therefore Eq. (2.13) can be written as: 

𝑠𝑟 = ln 𝑧𝑟 = −𝜁𝑟𝜔𝑟̅̅̅̅ + 𝑖𝜔𝑟̅̅̅̅ √1 − 𝜁𝑟2                                                                                            (2.14) 

We can exploit some mathematical properties to easily extract the following parameters: 

|𝑠𝑟| =  𝜔𝑟̅̅̅̅ = 2𝜋𝑓�̅�                                                                                                                              (2.15) 

 𝜁𝑟 =
𝑅𝑒(𝑠𝑟)

|𝑠𝑟|
                                                                                                                                      (2.16) 

In the above equations the frequency value 𝑓�̅�  does not retain its absolute value but rather the 
relative value due to mapping. The mapping itself can be graphically visualized in figure (2.1).  

 

 
Figure 2.1: (a) Representation of the analysis band in the frequency domain. (b) How we numerically 
simulate the FRF of the analysis band using N discrete spectral lines (line 1 corresponds to fmin and N 

corresponds to fmax). (c)  Z-transformation maps N discrete z values, as semicircle. 
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To avoid confusion, it is useful to make some remarks about figure (2.1.c). Z-transformation 
normally maps a given discrete set of values in the shape of a circle but due to the Shannon-
Nyquist theorem we can only properly analyse up to half the sampling frequency and therefore 
the mapping is made so that the analysis band is fitted in a semicircle. 

Another remark is that the same figure is drawn according to the Eq. (2.7) used as in the original 
paper. The version of the same equation in this thesis would generate a similar mapping, but 
with a semicircle in the 3rd and 4th quadrants. 

Figure (2.2) and Eq. (2.17) summarizes the procedure to reach the correct absolute frequency 
value. 

 
Figure 2.2: Reverting the frequency into the absolute term. 

 

𝑓𝑟 = 𝑓𝑚𝑖𝑛 + 2(𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛) ∗ 𝑓�̅�                                                                                                    (2.17) 

Asides from the natural frequency and the damping ratio another crucial parameter to extract in 
order to build the FRF is the residues. For that purpose, we utilize the vectors 𝑏𝑚, which is 
calculated independently for every measured FRF. (See Appendix A for derivation of (2.18)) 

𝒃𝑚 = (𝑅𝑒[𝑩𝐻𝑩])−1(𝑅𝑒[𝑩𝐻𝑨𝑚]𝒂 − 𝑅𝑒[𝑩
𝐻𝒘𝑚])                                                               (2.18)  

With some smart manipulations, residues can hence be computed. (See Appendix B) 

𝐴𝑠̅̅ ̅ =  
𝑏1𝑧𝑠 +⋯+ 𝑏2𝑛𝑧𝑠

2𝑛

𝑧𝑠 ∗ ∏ (𝑧𝑠 − 𝑧𝑟)𝑟≠𝑠 
                                                                                                               (2.19) 

Since 𝑓𝑟  and 𝜁𝑟 are found using the vector a they will be shared across different FRFs while 
residues 𝐴𝑟 are computed via vector bm and they differ for each FRF, which represents a unique 
point of the structure. 
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2.2 Elimination of the Spurious Modes 
 

Whichever modal parameter extraction method is put in use, there is always a common problem 
of deducing the number of modes. Modal analysis is based on modelling the important modes 
of a system which in theory has an infinite number of different modes. RFP -Z method analyses 
the experimental FRF via least squares approach and it identifies modal parameters by creating 
a best fitting. The model order n is not known a priori. While underestimating the model order 
yields inaccurate results, overestimating it might introduce unnecessary computational burden 
while potentially distorting the FRF outside the analysis band.  

A simple and convenient procedure is to iteratively repeat the RFP-Z method assuming different 
model orders. It will be elaborated in the next chapter that the case study in this thesis is a 
system with 7 dof and the algorithm starts from assuming the model order to be 𝑛 = 5 and 
iterates until it assumes model order to be 𝑛 = 30. A complementary algorithm will be used to 
choose the model order with the best MAC matrix. 

It can be expected that using a high model order will give more accurate results, due to 
numerical reasons, but it will also introduce spurious modes, which are modes that the structure 
does not physically possess but rather are the result of numerical approximations. An example 
of this issue can be seen in figure (2.3). 

 
Figure 2.3: A stabilization chart. As the model order increases the stable frequencies get more 

accurate with occasional shifts, but also not stable spurious frequencies (or modes) are introduced. 
(With courtesy of MathWorks®). 
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In literature elimination of the spurious modes is a popular subject and there are some advanced 
methods available also for the RFP -Z algorithm.[8] However this topic is beyond the scope of 
this thesis so a much simpler but still effective method will be utilized.  

RFP -Z algorithm will generate n complex conjugate pair of zeros, poles and thus modal 
parameters for each model order n. After each iteration it automatically checks the “quality” of 

modal parameters of every mode to whether delete them or not. First it checks if there is any 
mode with a negative or a too large damping ratio. Then it eliminates the modes with a natural 
frequency within %2 of the analysis band boundaries, since they are mathematically more prone 
to accumulate in that region . This simple filter lets less experienced technicians avoid 
inaccurate FRF models. 

 

2.3 Output of the RFP -Z Algorithm 
 

The MATLAB code of the RFP -Z method generates a matrix containing all the modal 
parameters as the output. The dimension of the matrix is (2 + 𝑁𝐹𝑅𝐹) ∗ 𝑛 x 𝑛. The column 
corresponds for the r-th mode. There are n vertical vectors of (2 + NFRF) elements in each 
column, one for each model order iteration, containing the information of the frequency, 
damping ratio and residue for each FRF of the j-th column mode. This matrix can be better 
explained visually: 

[
 
 
 
 
 
 
 
 
 
 
 

𝑓1
𝜁1
�̅�1,1
⋮

�̅�𝑁𝐹𝑅𝐹,1

𝑓2
𝜁2
�̅�1,2
⋮

�̅�𝑁𝐹𝑅𝐹,2

⋯

𝑓𝑛
𝜁𝑛
�̅�1,𝑛
⋮

�̅�𝑁𝐹𝑅𝐹,𝑛
⋮ ⋮ ⋱ ⋮
𝑓1
𝜁1
�̅�1,1
⋮

�̅�𝑁𝐹𝑅𝐹,1

𝑓2
𝜁2
�̅�1,2
⋮

�̅�𝑁𝐹𝑅𝐹,2

⋯

𝑓𝑛
𝜁𝑛
�̅�1,𝑛
⋮

�̅�𝑁𝐹𝑅𝐹,𝑛]
 
 
 
 
 
 
 
 
 
 
 

}
 
 

 
 

}
 
 

 
 

   

𝑓𝑖𝑟𝑠𝑡 𝑚𝑜𝑑𝑒𝑙 𝑜𝑟𝑑𝑒𝑟

𝑓𝑖𝑛𝑎𝑙 𝑚𝑜𝑑𝑒𝑙 𝑜𝑟𝑑𝑒𝑟

                                                (2.20) 

It must be noted that natural frequencies, damping ratios and residues vary between each model 
order. Without the spurious mode elimination, this matrix would have been a quasi-triangular 
matrix (might not be triangular at all depending on the model order to begin the iterations). But 
thanks to the spurious mode filtering the latter columns are going to be mostly empty. This 
matrix does have all the necessary parameters to build a FRF. 

One final remark should be made about the residues. As can be seen in Eq. (2.19) residues are 
calculated via z values which do not contain the frequency information. Thus, the residues in 
the output matrix, when used in order to build FRF, should be scaled as: 

𝐴𝑟 = 𝐴𝑟̅̅ ̅ ∗ 2 ∗ (𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛) + 𝑓𝑚𝑖𝑛                                                                                         (2.21)  
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3. Experiment Simulation 
 
In this chapter the case study of this thesis will be presented. Instead of a laboratory experiment, 
a digital case study is numerically simulated on MATLAB. This approach welcomes the 
obvious advantage of easy reproducibility , especially when numerous iterations are required. 
Additionally, the verification of RFP -Z method will depend upon comparison of extracted 
parameters with real ones, and numerically generated “real” parameters will be stored in the 

system for quick and easy comparison. 

 
3.1 Simulating the Time Domain Data 

 
The system under study has 7 dof linked with 13 springs and 13 dampers. The topology of the 
elements can be seen in figure (3.1). In order to represent and simulate this system on 
MATLAB, it should be described with the mass, stiffness and damping matrices. Mass matrix 
is a simple diagonal matrix while the others are computed using local matrices. 

𝑴 = 𝑑𝑖𝑎𝑔(𝒎) = 𝑑𝑖𝑎𝑔(12,15, 12, 15, 12, 15, 12)                                                                                

𝑲 = 

[
 
 
 
 
 
 
   1 ∗ 106 −2 ∗ 105 −3 ∗ 105 0 0 0 0
−2 ∗ 105    9 ∗ 105 −4 ∗ 105 −1 ∗ 105 −2 ∗ 105 0 0
−3 ∗ 105 −4 ∗ 105 1.5 ∗ 106 −3 ∗ 105 −5 ∗ 105 0 0

0 −1 ∗ 105 −3 ∗ 105    9 ∗ 105 −2 ∗ 105 −3 ∗ 105 0
0 −2 ∗ 105 −5 ∗ 105 −2 ∗ 105 1.4 ∗ 106 −4 ∗ 105 −1 ∗ 105

0 0 0 −3 ∗ 105 −4 ∗ 105    9 ∗ 105 −2 ∗ 105

0 0 0 0 −1 ∗ 105 −2 ∗ 105    3 ∗ 105]
 
 
 
 
 
 

           

𝑪 = 

[
 
 
 
 
 
 
   75 −15 −10 0 0 0 0
−15  120 −50 −50 −5 0 0
−10 −50  120 −10 −50 0 0
0 −50 −10     85 −15 −10 0
0 −5 −50 −15  170 −50 −50
0 0 0 −10 −50    65 −5
0 0 0 0 −50 −5    55]

 
 
 
 
 
 

                                                             (3.1) 

The system is excited at the 3rd degree of freedom. The properties of the input force will change 
several times to verify the accuracy of the RFP -Z method under different conditions. Force 
typologies will be elaborated later, but in general it is a vector of normally distributed random 
numbers. 

To compute the output of the system under given force the state space vectors are utilized. 

𝒛 =  {
𝒙
�̇�
}                   �̇� =  {

�̇�
�̈�
}                                                                                                              (3.2) 
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With the use of state space variables, we can get an idea of both the current situation and the 
past history of the system. We can calculate and graph the response to the excitation by solving 
the following equations with system quadruple[9]  : 

{
�̇�(𝑡) =  𝒜�̇�(𝑡) +  ℬ𝒖(𝑡)
𝒚(𝑡) =  𝒞𝒛(𝑡) +  𝒟𝒖(𝑡)   

                                                                                                             (3.3) 

Where: 

𝓐 = [−𝐌
−1𝐂 −𝐌−1𝐊
𝐈 𝟎

] = 𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝑀𝑎𝑡𝑟𝑖𝑥                                                                                    

𝓑 = Input Gain Matrix                                                                                                                                 

𝓒 = Output Gain Matrix                                                                                                                              

𝓓 = Direct Influence Matrix                                                                                                                      

𝒖(𝑡) = 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡𝑠                                                                                                                            

𝒚(𝑡) = 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑜𝑢𝑡𝑝𝑢𝑡𝑠                                                                                                                          

The preceding set of differential equation are run on MATLAB and fourth order Runge-Kutta 
integration technique is implemented (ODE4). The force is simulated for 200 seconds. The 
input and output vectors have 102401 discrete values of force/response for each dof so a 
sampling period of 𝑑𝑡 =  1

512
 is mimicked. 

After obtaining a set of input and output vectors to build a analytical FRF, a random noise is 
added to input and output vectors to simulate real-life experimental conditions. The noise is 
also generated as a normally distributed random vector and its amplitude is tied to the standard 
deviation of input and output values. Also, a custom parameter is set to increase and decrease 
the noise conditions at will, to test RFP -Z method’s accuracy under varying signal qualities. 

It is also required to compute and store the modes and poles of the system. In the upcoming 
chapters those data will be used to build the MAC matrix and compare the FRF based on real 
analytical values and the FRF built with extracted parameters. In order to do so it is convenient 
to introduce the Duncan Method matrices, since we cannot assume that the damping is 
proportional, and solve the eigenproblem.[10]  

[
𝐂 𝐌
𝐌 𝟎

] {�̇�
�̈�
} + [

𝐊    𝟎
𝟎 −𝐌

] {
𝐱
�̇�
} =  {

𝟎
𝟎
}                                                                                             (3.4)  

For rendering the future referencing of this formula simple, the compact form is written below. 

[𝑨] {
�̇�
�̈�
} + [𝑩] {

𝐱
�̇�
} =  {

𝟎
𝟎
}                                                                                                                  (3.5) 
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Figure 3.1: The 7dof system on which the simulations are made. 
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3.2 Obtaining the FRF of Experiment Simulation 
 

To extract modal parameters from the system we need an established FRF. Simulated time 
domain data have to be Fourier Transformed into the frequency domain. In order to test the 
accuracy of RFP-Z method in different scenarios two different FRF generation approaches will 
be used; EMA (Experimental Modal Analysis) and OMA (Operational Modal Analysis).  

The former uses the data of both the input (excitation) and the output (response). It is 
straightforward to think that it is more advantageous due to its higher number of information, 
but it should be noted that an engineer will encounter many situations where it is impossible to 
create a testing rig and provide laboratory conditions for some structures, especially for the big 
and heavy ones. Sometimes measuring the input will be outright impossible and sometimes due 
to high noise levels it will be unsatisfying. Also, sensors and shakers used to measure the 
input/outputs may alter the structure and thus the FRF result. Since there may be a limited 
number of sensors and/or data acquisition channels usually repeating test by changing the 
sensor positions are required and this may produce some inconsistent data. 

OMA in the other hand is easier in the sense that it does not require the strict lab identification 
to perform the tests. It may also be referred as ODS (Operating Deflection Shapes). Often it is 
the only feasible option, but since it lacks the crucial input data it lacks the accuracy of EMA. 
There are many papers on how to optimize parameter extraction using OMA methods.[11][12]  

The description of EMA and OMA method used in our case study is not in the scope of this 
thesis, but a basic elaboration of each method will be supplied to the reader in order to give 
context to the later chapters. 

 

3.2.1 Experimental Modal Analysis (EMA) Approach 
 

Instead of proceeding to compute FRF, it is more suitable to take use of a Welch 
Periodogram.[13] In essence, instead of Fourier transforming the whole time-domain signal at 
once we divide it into small sections with overlap (as seen in Fig. 3.2), Fourier transform the 
small portions one by one and take the average of spectral results. Although this might reduce 
the spectral precision the non-systematic noise is smoothed over. 

 
Figure 3.2: Overlapping intervals of a Welch Periodogram. 
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The percentage of overlap in our case is 67%. In the calculation of power spectral densities 
Hann window function is applied in each time window in order to reduce leakage caused by the 
non-periodicity of the original time data. The peak sidelobe relative to main-lobe amplitude of 
the Hann window is -31 dB. (Fig 3.3). 

 

 
Figure 3.3: Hann Window. (With courtesy of Wikipedia). 
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Once the Power Spectral Densities (PSD) of both the input and output data are calculated 
different estimators can be used to build the FRF. The estimator applied in this case study is the 
maximum likelihood (ML) estimator.[14] The reason we have selected this estimator is the fact 
that we are numerically generating a random noise which can be considered as a white noise, 
and it is unbiased. The ratio of the spectra of the measurement noises 𝜅(𝑓) is assumed to be 
unity and thus is omitted in the following equation. 

𝐻𝑣(𝑓) =  
�̃�𝑦𝑚𝑦𝑚(𝑓) − �̃�𝑥𝑚𝑥𝑚(𝑓) + √[�̃�𝑥𝑚𝑥𝑚(𝑓) − �̃�𝑦𝑚𝑦𝑚(𝑓)]

2
+ 4|�̃�𝑥𝑚𝑦𝑚(𝑓)|

2
 

2�̃�𝑦𝑚𝑥𝑚(𝑓)
             (3.6) 

Where S stands for cross PSD and auto PSD. 

 

3.2.2 Operational Modal Analysis (OMA) Approach 

 
While OMA approach is not essentially different from EMA there is a massive contrast; the 
input data is lacking. In OMA, an output channel is selected as a “reference channel” and it is 
treated as the input channel. In order to do so, some requirements are to be met. Obviously there 
has to be more than one output channel. Also, it is important that the different output data is 
simultaneously acquired, or at least the measurements are repeatable. 

In case of using different sets of data not taken simultaneously the phase of different sets should 
also be adjusted before the FRF estimation. Also, the amplitude of different sets may vary due 
to repeating the experiment and thus a scale factor might be appropriate to use. 

In our case we have the advantage of simulating the experiment digitally and thus we have the 
ability to measure every FRF simultaneously. Still,  some consideration is required in selecting 
an output channel as the reference output. There are some papers in the literature addressing 
this (see ref. [12]) but this topic is beyond the scope of this thesis. Since in our case there are 
only 7 output channels, different reference channel selections will be tested and contrasted in 
the following chapter. 

Once the reference output is selected the FRF is estimated simply using the cross power spectral 
density (cpsd) included in the MATLAB’s Signal Processing Toolbox.  
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4. Verification Procedure 
 
The previous chapters serve as a foundation for the verification of RFP-Z method. Chapter 3 
describes how to build the numerical system model and build its FRF. Chapter 2 outlines the 
steps of ideal RFP-Z method which extracts the modal parameters from the FRFs. Since we 
know the modal parameters of the system we can easily compute the MAC matrix[15] of the 
extraction. 

In the following chapters FRFs will be addressed according to this nomenclature: 

Analytical FRF is the “real” FRF of our simulated system. It is built numerically from the 

modal parameters which can be calculated from the known mass, stiffness and damping 
matrices. The only error that might be present in the Analytical FRF is the numerical errors due 
to the computational process. 

Experimental FRF is the FRF obtained from the simulated experiment. It is calculated by the 
input (the simulated random force) and the response (the simulated excitation). The input and 
output data are affected by a random generated noise to simulate real-life experimental cases. 
Because of the noise and generated FRF accuracy (The algorithms presented in Chapter 3.2 is 
not 100% accurate, especially when the input data is missing.) the Experimental FRF is different 
from the Analytical FRF. 

Extracted FRF is the FRF built with the extracted parameters via RFP-Z method on the 
experimental FRF. Along experimental FRFs already existent inaccuracy the extracted FRF 
may introduce new errors due to the method itself. 

 

 
Figure 4.1: Accuracy level comparison of FRFs. 
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Contrasting the extracted FRF with the analytical FRF would show the accuracy of RFP-Z 
method considering also the errors related to estimation of the experimental FRF. In real-life 
structures the “real” modal parameters are never known because even they may be easily 

computable a small production defect of a part might influence the modal characteristics. 

Comparing the extracted FRF with the experimental FRF shows only the accuracy contribution 
of the RFP-Z method. While the accuracy of the method might vary greatly with the noise level, 
the initial experimental FRF errors due to noise are overlooked in this comparison. 

While the latter comparison seems more realistic I prefer to verify RFP-Z method with the 
former comparison because it is simply more conservative. The reduction of errors related to 
building the experimental FRF is a huge topic on its own and may seem unrelated to the RFP-
Z method itself, but this thesis is aimed to control the “real” accuracy of RFP-Z method in 
conditions where the built FRF quality cannot be improved. 

 

4.1 Computation of the FRFs 

 
In this subchapter the methods used in finding the FRFs will be underlined. There is a different 
yet similar approach to compute the three different types of FRFs mentioned previously. All of 
these methods are also implemented in the MATLAB as a function of the main verification 
code. (See Appendix C for the main code and Appendix D for the related functions). 

The first FRF to be computed is the analytical FRF. This is the easiest one due to the fact that 
we know all the variables beforehand. A very straightforward way to compute the response, or 
the receptance in the mdof case, is the following: 

[𝛼𝑗𝑘(𝜔)] =  
{�̅�𝑗}

{𝑭𝑘}
= [[𝑲] − 𝜔2[𝑴] + 𝑖𝜔[𝑪]]

−1
                                                                           (4.1) 

Where: 

[𝛼(𝜔)] = 𝑟𝑒𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒 

{𝑭} = 𝑓𝑜𝑟𝑐𝑒 

{�̅�} = 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 

Although this is a theoretically very simple formula, numerically it might not be so simple. As 
the degree of freedoms of the system grows, the matrices grow larger and taking the inverse of 
the resulting matrix becomes a computational burden. Even though computers can handle this 
method for the 7dof system described in chapter 3, implementing it in the code would not be a 
good practice. 
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Numerically a more efficient method for computing the FRF exists. 

𝛼𝑗𝑘(𝜔) =  
{�̅�𝑗}

{𝑭𝑘}
=  ∑

𝝑𝑗𝑟𝝑𝑘𝑟
𝑏𝑟 + 𝑖𝜔𝑎𝑟

                                                                                                   (4.2)

2𝑛

𝑟=1

 

Where 𝝑 are the eigenvectors of the Duncan eigenproblem. Constants 𝑎𝑟 and 𝑏𝑟 are computed 
in the following way: 

𝑑𝑖𝑎𝑔(𝑎𝑟) = [
⋱ 0 0
0 𝑎𝑟 0
0 0 ⋱

] =  [𝝑]𝑇[𝑨][𝝑]                                                                                       (4.3) 

𝑑𝑖𝑎𝑔(𝑏𝑟) = [
⋱ 0 0
0 𝑏𝑟 0
0 0 ⋱

] =  [𝝑]𝑇[𝑩][𝝑]                                                                                       (4.4) 

Note that matrices A and B in the previous definitions are the Duncan matrices seen in Eq. 
(3.5). Eq. (4.2) is really simple especially with the fact that eigenvectors are known and modal 
constants are easily calculated without taking inverse of any matrix. 

Calculating the experimental FRF is relatively more complex. A basic description which 
outlines  the method is given in chapter 3.2.1 and chapter 3.2.2. 

The extracted FRF is calculated in a way similar to the analytical one, but the parameters used 
are different. The parameters extracted from the RFP-Z algorithm, which are saved in the matrix 
of Eq. (2.20), are used in the following way: 

[𝛼𝑗𝑘(𝜔)] =  
{�̅�𝑗}

{𝑭𝑘}
=  ∑(

𝐴𝑟 𝑗𝑘

𝑖𝜔 − 𝑠𝑟
+

𝐴𝑟 𝑗𝑘
∗

𝑖𝜔 − 𝑠𝑟∗
)                                                                            (4.5)

𝑛

𝑟=1

 

All variables in the equation above can be obtained from the output of RPF-Z. Poles 𝑠𝑟 in the 
denominator can be computed from the Eq. (2.4). Residues 𝐴𝑟 𝑗𝑘 are obtained via Eq. (2.21).  

As a small footnote it should be mentioned that while all the reported formulas use angular 
frequency, I will work with normal frequency in MATLAB. All the equations will be modified 
to convert frequency values as in 𝜔 = 2𝜋𝑓. 
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4.2 Computation of MAC 

 
Modal Assurance Criterion (MAC) is the most common tool in modal analysis to assess model 
similarity. Its greatest advantage is that the mode shapes are sufficient for its measurement. It 
is defined as follows: 

𝑀𝐴𝐶(𝑟, 𝑠) =  
|{𝜗𝑟}𝐸𝑋𝐶

𝐻 ∗ {𝜗𝑠}𝐴𝑁𝐴|
2

({𝜗𝑟}𝐸𝑋𝐶
𝐻 ∗ {𝜗𝑟}𝐸𝑋𝐶) ∗ ({𝜗𝑠}𝐴𝑁𝐴

𝐻 ∗ {𝜗𝑠}𝐴𝑁𝐴)
                                                        (4.6) 

Where: 

{𝜗𝑟}𝐸𝑋𝐶 = 𝑟 − 𝑡ℎ 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 𝑚𝑜𝑑𝑒 𝑠ℎ𝑎𝑝𝑒                                                                                             

{𝜗𝑠}𝐴𝑁𝐴 = 𝑠 − 𝑡ℎ 𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙 𝑚𝑜𝑑𝑒 𝑠ℎ𝑎𝑝𝑒                                                                                            

It is worth noting that the nominator, as well as the two factors in the denominator are all real 
quantities. Since we are contrasting various mode shapes, a matrix called the MAC matrix will 
be obtained showing the coherence of a mode with every other one. The values are between 0 
and 1. A highly accurate extraction would have high values on MAC’s diagonal elements, 
showing correlation between modes, and low values on MAC’s non-diagonal elements, 
showing that each mode is unique. 

The analytical mode shapes are already calculated at this point. To find the extracted mode 
shapes, following relationship can be exploited: 

𝐴𝑟 𝑝𝑞 = 𝜗𝑝𝑟𝜗𝑞𝑟                                                                                                                                      (4.7) 

Where 𝑟 is the mode, 𝑝 is the output and 𝑞 is the input reference. In our case a force is applied 
in 3rd degree of freedom so values of residues A with subtext 𝑞 = 3 is what we have extracted. 
Thus the 3rd element of any mode shape r is given by: 

 𝜗3𝑟 = √ 𝐴33𝑟                                                                                                                                        (4.8) 

Any other element of mode shape r can be found by the relation: 

𝜗𝑝𝑟 = 
𝐴𝑝3𝑟

𝜗3𝑟
                                                                                                                                         (4.9) 

It is evident that mode shapes are proportional to the residues. To computationally be more 
efficient, another approach in obtaining the MAC matrix can be used: 

𝑀𝐴𝐶(𝑟, 𝑠) =  
|{𝐴𝑟}𝐸𝑋𝐶

𝐻 ∗ {𝜗𝑠}𝐴𝑁𝐴|
2

({𝐴𝑟}𝐸𝑋𝐶
𝐻 ∗ {𝐴𝑟}𝐸𝑋𝐶) ∗ ({𝜗𝑠}𝐴𝑁𝐴

𝐻 ∗ {𝜗𝑠}𝐴𝑁𝐴)
                                                    (4.10) 

Where: 

{𝐴𝑟}𝐸𝑋𝐶 = 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑟 − 𝑡ℎ 𝑚𝑜𝑑𝑒 (𝑖𝑛𝑝𝑢𝑡 𝑞 = 3)                                             
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5. Verification of RFP-z in Output-Only Case 
 
In the previous chapters the basis of the RFP-Z and the verification process are described. That 
foundation will be exploited from now on in order to test the accuracy of this method. In this 
chapter our case study will be assumed as a structure which cannot be evaluated via EMA, thus 
its operational deflection shapes (ODS) will be used alternatively, or in other words OMA will 
be performed. 

In real life the testing and performance conditions inevitably change. Vibrations, in most 
engineering fields, present a problem not only unavoidable, but in most cases also 
unpredictable. For this reason, assessing the accuracy of RFP-Z under differing circumstances 
is crucial. 

The most significant characteristic remains without doubt the force itself. Since the vibrations 
the structure might encounter is largely unpredictable, different typologies of forces are to be 
expected. The following force types will be analysed in this chapter: 

- Random force 

- Harmonic force  

- Harmonic force with an additional random force contribution 

For the second case various excitation frequencies will be put under trial and for the last case, 
different circumstances with the magnitude of the additional random force relative to the 
harmonic force’s amplitude will be tested. 

It is reasonable to elaborate the randomness of the force. To make our tests more realistic the 
force will be random in a normally distributed way. The standard deviation will be defined in 
the code, and all the random values will be clustered around a mean of 0. The probability density 
function of the normal distribution is given below. 

𝑓(𝑡) =  
1

𝜎√2𝜋 
𝑒
−
1
2
(
𝑡−𝜇
𝜎
)
2

                                                                                                                    (5.1) 

Where: 

𝜇 = 𝑚𝑒𝑎𝑛                                                                                                                                                        

𝜎 = 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛                                                                                                                            

To simulate a variety of different forces, standard deviation is going to be altered. This way 
also the impact of the standard deviation, if there is any, will be observed. 

Another critical characteristic to test is the presence of noise. In an optimal case there would 
not be any noise but unfortunately this is never the case. Ergo, the response of the system under 
examination will always be contaminated with noise in the following tests. 

The same problem is also present in the excitation itself as well. During experiments, the force 
transmitted by a shaker or an impact hammer can never exactly be known and this inaccuracy 
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can be mimicked by including noise in the generated force vector. The accuracy of the RFP-Z 
method will be measured where the noise is present only in the response, and in both input & 
output. 

Finally, different noise levels will be applied in several tests in order to retain an opinion in 
every possible real-life case. 
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5.1 Random Excitation 

 
5.1.1 3% Noise in Output 

The first force typology to be put on trial is the simplest one, in the 3rd degree of freedom a 
normally distributed random force with a standard deviation 500𝑁 is inserted. Since our force 
typology is purely random mean value is not actually important. With the set of Eq. (3.3) the 
time history of the output, which is the displacement of seven dofs, can be calculated. The 
results can be seen in fig. 5.2 (a). Since the seven different time histories of each dof are all 
packed together and sometimes overlap, it is hard to see that fig. 5.2 (a) contains the 
displacement of each dof. To define a context, a close up of the same graph is given 5.2 (b). 

(a) 

(b) 

Figure 5.2: (a) Response of each degree of freedom to a random excitation of 200 seconds, with a 3% 
noise added in the output. (b) Zoomed in version of the same graph, highlighting that there is an output 

of every dof. 
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The seven different time histories will be cross correlated to build an FRF. Since this is the first 
case in which we adhere to the procedure described in chapter 3.2.2 we are obliged to determine 
the best dof to use as the reference response as well. As a side note it is possible that this 
reference dof will be different in various circumstances. The accuracy of the results will be 
assessed via their similarity to the analytical FRF of the structure. In figure 5.3, the sum of 
analytical FRFs of each dof can be observed. The more our experimental FRF resembles fig. 
5.3 the more accurate it is. 

(a) 

(b)              

Figure 5.3: (a) Analytical FRF of 7 individual degrees of freedom. (b) Sum of all the analytical FRFs. 
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In fig. 5.3 there are 2 different representations of the FRF information. The first one possesses 
more information, it represents the FRF of every individual dof. The second represents 
essentially the sum of 7 individual FRFs. It contains less information but it is more concise and 
thus in the proceeding comparisons the second representation will be used. 

The true natural frequencies and damping ratios of the system can be computed via Eq. (2.15) 
and (2.16). These values are reported in table 5.1 below. 

MODE 1 2 3 4 5 6 7 
𝒇𝒏 [𝑯𝒛] 8.09 24.70 35.32 45.03 47.55 53.46 65.99 

𝜻 0.22% 1.44% 1.43% 1.15% 1.38% 1.61% 1.97% 
Table 5.1: Analytical modal parameters of the 7-dof system. 

It can be seen both by analysing fig. 5.3.b graphically or table 5.1 numerically the modes 1,  2, 
3, 6 and 7 are properly separated. Modes 4 and 5 in the other hand are close to each other and 
weaker amplitude wise: Those two are going to pose the hardest challenge. 

To deduce which dof has to be taken as the reference, the graphical results of FRF estimation 
using each dof as reference are given in fig. 5.4. It is lucid to the eye that the closest FRF 
estimation is when the reference dof is the 2nd one, as it is the solitary case in which 7 distinct 
modes are visually present. But running the RFP-Z algorithm on each of them separately 
highlights otherwise. The stabilization chart of the case where the reference dof is the 2nd one 
can be seen in fig. 5.5. It is apparent that the algorithm can estimate only 5/6 modes in the best 
case in a given model order. Increasing the model order iteration up to 80 has not proven any 
improvement in this regard. 

Some further analysis on other cases makes it possible to deduce that either the 4th or the 6th dof 
is the most suitable as the reference. Their stabilisation charts can be seen in fig. 5.6 and fig. 
5.8 respectively. A preliminary observation gives hints that 6th dof might be more suitable as it 
has more model orders containing 6 estimated modes, showing consistency, and the modal 
frequencies are more consistent with respect to those of the 4th dof. In both cases there no model 
order with 7 estimated modes so in any case one mode is lost. The lost mode is 5th analytical 
mode. 

First the 4th dof is set as the reference. A least squares approximation suggests that 18th model 
order is the most accurate one. The FRF constructed using the parameters extracted from the 
estimated FRF is seen in fig. 5.7. The natural frequencies and the damping ratios of the extracted 
modes are reported in table 5.2. The natural frequency of each mode is quite accurate, all within 
an error margin of ±0.4%. Regrettably, the same accuracy cannot be observed for the damping 
ratios, especially in the case of 1st and 4th modes. The fact that the first mode’s damping ratio 

is loosely at least one order of magnitude lower than the rest causes it to dominate the dynamic 
response estimation of the system. The rest of the modes have lost their relevancy due to this 
wrong damping estimation. 

MODE 1 2 3 4 6 7 
𝒇𝒏 [𝑯𝒛] 8.12 24.76 35.23 44.97 53.41 65.84 

𝜻 0.025% 1.32% 1.28% 0.18% 1.57% 1.54% 
Table 5.2: Extracted modal parameters (reference dof:2 model order:24). 
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Figure 5.4: FRF Estimations having set each dof as the reference. 
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Figure 5.5: Stabilization chart of the case with the 2nd dof as the reference dof. 

 

Figure 5.6: Stabilization chart of the case with 4th dof as the reference. 

 
Figure 5.7: Constructed FRF using extracted modal parameters (reference dof:4 model order:18). 
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The mode shapes can be compared with the original ones via the MAC matrix reported in table 
5.3. The analytical modes are represented as columns while the extracted ones correspond to 
the rows. It is observed that the original modes denoted with number 1, 2 ,3, 6 and 7 have their 
mode shapes extracted with an accuracy of at least ∼ 90%. The analytical mode 5 is completely 
lost, while the analytical mode 4 is extracted in an inaccurate way. Its shape bears a 
nonnegligible similarity with respect to analytical modes 5, 6 and 7 respectively while being 
completely irrelevant to the actual 4th analytical mode.  

 

Table 5.3: MAC Matrix of the case reference dof = #4, model order = #18. 

To see if it yields a more accurate FRF estimation, 6th dof is set as the reference dof for another 
examination. Some preliminary analysis can be conducted by examining the stabilization chart 
in Fig. 5.8. This chart highlights that there are 7 different model orders, with the range 15-21, 
that extract 6 modes. The 5th analytical mode is lost also in this case. Additionally, a glance at 
fig. 5.9 shows that also in this trial the extracted damping ratio of the first mode is extremely 
low and thus it will dominate the FRF just like the previous case.  

This is clearly an abnormal result, which sometimes may be observed in the first peaks. 
Throughout the following chapters the first damping ratio will persist being the biggest 
inaccuracy by an order of magnitude, and the source of it is not the related to the methods of 
cross-power spectral density or RFP-z but rather related to numerical reasons. Hence, that 
specific inaccuracy should be neglected until it and its remedy is explained in chapter 5.4. 

 
Figure 5.8: Stabilization chart of the case with the 6th dof as the reference dof. 
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Figure 5.9: Damping ratio of each mode in several model orders. 

Among the model orders noted above, #19 is the closest approximation to the analytical FRF 
in a least-squares sense so it will be used in further analysis. The estimated FRF in fig 5.10 is 
very similar to that in fig. 5.6. Due to the low damping estimation, the response is dominated 
by the first mode. The exact extracted parameters can be seen in table 5.4. 

 
Figure 5.10: Constructed FRF using extracted modal parameters (reference dof:6 model order:19). 

MODE 1 2 3 4 6 7 
𝒇𝒏 [𝑯𝒛] 8.1209 24.7137 35.2866 45.0220 53.4608 65.8821 

𝜻 0.016% 1.21% 1.44% 0.42% 1.64% 1.96% 
Table 5.4: Extracted modal parameters (reference dof:6 model order:19). 
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The MAC matrix of this case is given below. 

 

Table 5.5: MAC Matrix of the case reference dof = #6, model order = 19. 

Shapes of the analytical modes 1, 2, 3, 6 and 7 show similar congruency levels to that of the 
previous instance. The 4th analytical mode shows a congruency of 10%, which is horrible. 

The two previous situations demonstrate us that the Output-Only FRF Estimation can extract 
the natural frequencies with a excellent accuracy but is not reliable in damping ratio 
identification and this heavily distorts the constructed FRF. Mode shapes are identified with a 
satisfactory level of accuracy for fairly separated modes, but there is no accuracy for the case 
of twin modes. Another problem with this method is that when there are close modes, only one 
of them gets extracted and the other one is lost.  

With both the 4th and the 6th as the reference, there is no crucial difference observed. They both 
confirm the same accuracy in extracting natural frequencies and inaccuracy in extracting the 
damping ratios. The mode shapes extracted with having the 6th dof as the reference are slight 
closer to the analytical model so the reference dof will be the 6th one in OMA method for the 
rest of this chapter. 

 

5.1.2 10% Noise in Output  
SNR or signal-to-noise ratio is a quantity used to describe the amount of noise present with 
respect to the original signal. This ratio should be bigger than 1, as in the previous subchapters, 
in order to yield a meaningful signal distinct from the noise. In this subchapter, a SNR level of 
10, or in other words 10% noise is present in output. 

The response graph can be seen in fig. 5.10. Since the excitation maintains a casual nature, the 
response graph is not unexpectedly random and it does not betray the higher noise level clearly. 
The graph of the excitation is not reported as a figure but it is subject to a noise in a similar 
fashion. 
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Figure 5.10: Response of each degree of freedom to a random excitation, with 10% noise in both 

input and output. 

 

The estimated FRF using high-noise corrupted signals can be seen in the stabilization chart 
given in figure 5.11. The FRF, especially on frequencies not close to resonances, has ruggedness 
because of the higher noise in this simulation. In the FRF 6 modes can be detected visually, but 
the RFP-Z algorithm can extract only 5 of those. Trying different reference dofs for the OMA 
method does not improve this result. Model order #19 is selected because it has the highest 
damping ratio estimation for the first mode. The extracted modal parameters are reported in 
table 5.6. The constructed FRF is reported in fig. 5.12. 

 

MODE 1 2 3 4 5 
𝒇𝒏 [𝑯𝒛] 8.1179 24.7263 35.2764 53.3680 65.8843 

𝜻 0.012% 0.41% 0.49% 1.08% 0.54% 
Table 5.6: Extracted modal parameters (reference dof:6 model order:19). 
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Figure 5.11: Stabilization chart in the case of randomly excited system with a 10% noise in input and 

output, with and operational modal analysis approach. 

 
Figure 5.12: Constructed FRF using extracted modal parameters in table 5.8 (reference dof:6 model 

order:19). 
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The extracted parameters, although lacking a mode, show an acceptable accuracy level with 
regards to the natural frequency. A major difference from the previous cases is the damping 
ratios. All of the damping ratios are greatly underestimated. The first one is still at least an order 
of magnitude lower than the rest so it still dominates the constructed FRF, but at least some 
other modes are visually detectable in a narrow local resonance frequency band. 

The mode shape closeness can be analysed via the MAC matrix in table 5.7. The twin modes 
and hence their mode shapes are completely lost. Shapes of the separate modes have accuracy 
levels slightly lower but still acceptable. The sole exception is the 3rd mode shape which has an 
accuracy of 87,6%. Although not very low, it is below the threshold of 90%. This amount of 
fall in the accuracy is in concordance with other papers about this topic in the literature such as 
[16]. 

 

 
Table 5.7: MAC Matrix of the case with 10% noise in input and output. 

 

This subchapter highlighted that the noise levels affect the accuracy of the RFP-Z method 
greatly. The natural frequencies are easier to extract and thus they are more resistant to noise 
levels. Identified mode shapes may remain within an acceptable margin of error given that the 
modes themselves are well separated. Damping ratios are the fundamental problem in modal 
parameter identification and the accuracy of their estimation is affected profoundly with the 
increasing noise levels. The RFP-Z method, when paired with OMA FRF estimation, would not 
yield good results in the case of a random excitation because of critically misidentified damping 
ratios. 
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5.2 Harmonic Excitation 

 
In this chapter the previous testing procedure will be employed, but the typology of the force 
will be harmonic instead of a random force. Apart from different noise levels, different 
excitation frequencies will be tested as well in order to perceive the effects of exerting a force 
near to one of the natural frequencies. 

 

5.2.1 3% Noise in Output 
The first case to be put on trial is a harmonic force with an excitation frequency of 10𝐻𝑧. This 
frequency does not correspond to any natural frequency or their harmonics. A noise of 3% is 
present in the output signal. Response of this excitation in the time domain is seen in fig. 5.13. 
Unlike the previous random excitation, the response indicates a perpetual steady-state motion 
after the initial transient period. The transient section of the signal is usually not recorded in 
practical situations and therefore it must be cropped out for the analysis. A zoomed in section 
of the same time domain response indicates that the signal passes to steady state at around 30th 
second (fig. 5.13 b). Since the sampling frequency 𝑓𝑠 = 512 𝐻𝑧, the first 15.360 samples will 
be neglected in every output signal. 

 

 
Figure 5.13a: Response of each degree of freedom to a harmonic excitation with a frequency of 10Hz, 

with 3% noise in output. 
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Figure 5.13b: Passing from transient to steady-state behaviour of the signal. 

When the FRF is estimated from this response via the cross power spectral density method, the 
result is hopelessly inaccurate regardless of the reference dof chosen. As it can be observed in 
fig. 5.14, there are only 2 detected peaks. One of them is the first analytical mode and the other 
one is a non-existent virtual mode detected right in the excitation frequency. The damping ratio 
of the virtual mode is between the range of 1 − 2.1% depending on the model order. This is an 
unexpected result which can be attributed to numerical reasons, similarly to the severe 
underestimation of the first mode. Due to the root of the problem being the same, this abnormal 
result will also be explained in chapter 5.4. Fig. 5.15 shows the FRF estimation in the case of 
not cropping the transient signal section. The change between 2 FRFs indicates limiting the 
analysis with steady state reduces the spectral leakage. 

 
Figure 5.14: Sum of the FRF estimation of each dof with an excitation frequency of 10Hz. (Transient 

part excluded) 
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Figure 5.15: Sum of the FRF estimation of each dof with an excitation frequency of 10Hz. (Transient 

part included) 

There is no point to test the extracted parameters and MAC matrix of this instance since the 
FRF estimation is completely irrelevant from the analytical FRF. 

An interesting frequency to test is 24𝐻𝑧 because in its close proximity there is both the 2nd 
natural frequency and the 3rd harmonic of the 1st natural frequency. From fig. 5.16 it can clearly 
be seen that the response amplitude is twice that of the previous case. This behaviour is totally 
expected. In this case the transient response lasts merely 10 seconds so the first 5120 samples 
are to be neglected. 

 
Figure 5.16: Response of each degree of freedom to a harmonic excitation with a frequency of 24Hz, 

with 3% noise in output. 
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The estimated FRF can be seen in fig. 5.17. Just like in the previous case the first analytical 
mode persists while all the other modes are failed to get estimated. The second mode seems to 
be present, but that is because of its superposition with the virtual mode in its natural frequency.  

 

 
Figure 5.17: Sum of the FRF estimation of each dof with an excitation frequency of 24Hz. 

 

Another interesting excitation frequency would be 40𝐻𝑧 because as seen in fig. 5.3.b it 
corresponds to the deepest antiresonance of the system as a whole. The resulting time domain 
response is graphed in fig. 5.18 and it is very interesting. Response level of every dof is 
different. Orange colour corresponds to the 2nd dof and it responds violently to the force, while 
the 7th dof represented by red is resistant to movement. Dofs 4 and 5 are even more stationary 
and they are not even seen under the 7th dof’s response. This behaviour can be explained clearly 
with a quick glance at fig. 5.3.a. Every dof has a different response magnitude at the frequency 
of 40𝐻𝑧. 

Considering every dof, steady state behaviour establishes itself in the system after 32 second. 
This means that the first 16384 samples have to be neglected in the FRF estimation. 
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Figure 5.18: Response of each degree of freedom to a harmonic excitation with a frequency of 40Hz, 

with 3% noise in output. 

The FRF estimation of this time history can be seen in fig. 5.19. There is the expected virtual 
mode at 40𝐻𝑧.  

 
Figure 5.19: Sum of the FRF estimation of each dof with an excitation frequency of 40Hz. 
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Another intriguing thing to analyse is what happens if the excitation frequency is high enough 
that it does not correspond to a natural frequency or their strong harmonics. When an excitation 
with a frequency of 90𝐻𝑧 and  200𝐻𝑧 is applied to the 3rd dof, the responses shown in fig. 5.20 
is obtained. Passage to steady state of every dof’s response takes 60 seconds and 50 seconds 

respectively for 90Hz and 200Hz. Expectedly the response levels fell harshly. Only the 3rd dof 
shows significant motion because that is the point where the force is applied. The FRF is 
reported in fig. 5.21. Even though the damping ratio is far from being accurate and the FRF 
magnitude is very low, the first mode is visually detectable in both cases.  

 

(a) 

(b) 

Figure 5.20: Response of each degree of freedom to a harmonic excitation with a frequency of         
(a) 90 Hz and (b) 200Hz, with 3% noise in output. 
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(a) 

(b) 

Figure 5.21: Sum of the FRF estimation of each dof with an excitation frequency of                          
(a) 90Hz. (b) 200Hz. 
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An interesting observation can be made when the signals’ transient part is not chopped out; 

analytical modes present themselves visually in the case of 200 Hz excitation frequency. The 
FRF estimation in this case is incredibly sensitive to the selection of the reference dof, and 1st 
dof is by far the most accurate one. 

(c) 

(d) 

Figure 5.22: (c) Sum of the FRF estimation of each dof with an excitation frequency of 200Hz, 
transient signal included (d) zoomed in version to place emphasis on the frequency range up to 80Hz. 
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Unfortunately, the fact that the modes are visually present does not mean that they are detectable 
by the RFP-Z algorithm. Only the 1st and the 2nd analytical modes are extracted. With only 2 
modes identified there is no point in evaluating the extracted modal parameters so that part is 
skipped. 

Some conclusions can be made from this subchapter. The most obvious one is that OMA 
method does not  work well when there is a harmonic input present. This is actually an expected 
conclusion because one of the required assumptions to use the OMA method is that the 
excitation signal must be a stochastic realization (white noise)[17][18]. As a consequence, RFP-Z 
algorithm cannot extract the modal parameters from the poor FRF estimations and thus when 
there is no possibility to perform EMA, usage of RFP-Z algorithm should be avoided for 
harmonic excitations. 

Since this conclusion is reached, there is no point in continuing this subchapter with different 
noise levels and thus the next force typology will be observed. 
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5.3 Harmonic Excitation with Random Contribution 

 
5.3.1 Excitation close to an eigenfrequency 

 
The aim of this subchapter is to see if having a random force contribution may evade the 
inaccuracy problem seen in the case with only harmonic excitation. The typology of the force 
is mainly harmonic and there is a modest contribution of a stochastic random force. Precisely 
the amplitude of the harmonic force is 500𝑁 with a frequency of 10𝐻𝑧, whilst the random part 
utilizes a mean of 0𝑁 and a 99.7% probability to be within ±15𝑁. It is worth noting that this 
random force contribution is not considered as noise because it is not directly manipulating the 
signal but rather is the force itself. 

Just as the previous chapters the first case to be put under trial is applying a 3% noise in the 
output. The acquired response reported in fig. 5.23 shows a very high level of similarity to the 
response reported in fig. 5.13. 34th second can be taken as the beginning of the steady-state 
response. 

 

 
Figure 5.23: Response of each degree of freedom to a harmonic excitation with a frequency of 10Hz, 

with 3% noise in output. 

 

Visually speaking, the FRF estimations of this response are very inaccurate. By setting the 
reference dof as 7, 2 analytical and 1 virtual mode can be seen(fig. 5.24) but the FRF does not 
resemble the analytical FRF. 
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Figure 5.24: Sum of the FRF estimation of each dof with an excitation frequency of 10Hz. 

 

The random force is then increased tenfold to check if it would enhance the FRF estimation. 
Resulting response (fig. 5.25), while still giving hints of a steady-state behaviour after a 
transient decay, is clearly more random in nature. 40th second marks the end of the initial decay. 

 
Figure 5.25: Response of each degree of freedom to a harmonic excitation with a frequency of 10Hz, 

with 3% noise in output. 
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There is a noticeable improvement in the FRF estimation when the 1st dof is selected as the 
reference one (fig. 5.26). Apart from the fact that one of the twin modes is lost, all the other 
analytical modes are estimated correctly. Also, the virtual mode is not extracted between the 
model orders 43-70. 

 
Figure 5.26: Response of each degree of freedom to a harmonic excitation with a frequency of 10Hz, 

with 3% noise in output. Crosses represent the detected mode for a certain model order. 

 

The FRF built by the identified parameters will be far from reality because of the missing 
modes, but the identified modes’ parameters (table 5.8) are not completely inaccurate. Not 
surprisingly the natural frequencies all exhibit a good accuracy. The damping ratios of modes 
2, 3, 6 and 7 are all underestimated, but the level of the underestimation is milder with respect 
to the previous instance. 5th and especially 1st modes have their damping ratios underestimated 
greatly.   

MODE 1 VIRTUAL 2 3 5 6 7 
𝒇𝒏 [𝑯𝒛] 8.11 10.00 24.72 35.34 47.41 53.40 65.70 
𝜻  0.07% 0.0014% 1.41% 1.14% 0.76% 1.28% 1.36% 

Table 5.8: Extracted modal parameters (reference dof:1 model order:58). 

 

The MAC matrix can be observed in table 5.9. The detected separate modes’ shapes are 

identified with an accuracy similar to that of chapter 5.1 and they are all within acceptable 
ranges. The virtual mode stands out due to its extremely low damping ratio. The identified mode 
shape of the twin mode shows only 48% of congruency with the analytical one, and this result 
highlights again that this combination of methods cannot detect modes which are close to each 
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other with a good accuracy. Another interesting finding is that: the extracted mode shape of the 
virtual mode shows 91% similarity to that of the 1st analytical mode, due to both having not 
distant natural frequencies while possessing low damping (hence a good separation). 

 
Table 5.9: MAC Matrix related to the table 5.8. 

 

5.3.2 Excitation far from an eigenfrequency 

 
Considering the accuracy level of the previous test, it would be interesting to analyse the 
preceding situation where the excitation frequency is far away from any natural frequency 
(200 𝐻𝑧 to be exact) so that the virtual mode can not affect the extraction of analytical modes. 
Keeping all the other parameters of the force same, the resulting time domain response is 
reported in figure 5.27. Expectedly the response is 2 orders of magnitude weaker, and the 
steady-state behaviour cannot be observed.  

 

 
Figure 5.27: Response of each degree of freedom to a harmonic excitation with a frequency of 200Hz, 

with 3% noise in output. 
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The FRF estimation from the response and the consequent stabilization diagram can be seen is 
fig. 5.28 (with dof #4 as the reference). Unlike the previous situation the first mode is detected 
from a lesser model order. Table 5.10 reports the extracted parameters. Same degree of 
underestimation in 1st and 4th modes damping ratio as the previous instances is observed. The 
MAC matrix (table 5.11) highlights very high similarity in separate modes’ shapes and poor 

relevancy between the twin mode shapes. These findings are nearly identical to the results in 
chapter 5.1.1. 

 
Figure 5.28: Response of each degree of freedom to a harmonic excitation with a frequency of 200Hz, 

with 3% noise in output. 

 

MODE 1 2 3 4 6 7 
𝒇𝒏 [𝑯𝒛] 8.11 24.74 35.31 44.98 53.34 65.71 
𝜻  0.056% 1.38% 1.44% 0.87% 1.42% 1.74% 

Table 5.10: Extracted modal parameters (reference dof:4 model order:77). 

 

 
Table 5.11: MAC Matrix related to the table 5.10. 
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5.3.3 High excitation frequency with high output noise 

 
Further increasing the noise level in the output signals yield the response see in the fig. 5.29. 

 
Figure 5.29: Response of each degree of freedom to a harmonic excitation with a frequency of 200Hz, 

with 10% noise in input and output. 

Again, the best FRF estimation belongs to the situation where the 4th dof is the reference. One 
obvious observation is that there is only 5 detected analytical modes (fig. 5.30). The levels of 
estimated damping ratios are not considerably different than those of the previous cases. This 
can be examined in fig. 5.31. Although it can be examined that the damping estimation of 7th 
analytical mode is severely affected by the noise and is underestimated. 
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Figure 5.30: Stabilization chart over the response of the system to a harmonic excitation with a 

frequency of 200Hz, with 10% noise in input and output (reference dof #4). 

 
Figure 5.31: Extracted damping ratios over the response of the system to a harmonic excitation with a 

frequency of 200Hz, with 10% noise in input and output (reference dof #4). 
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5.4 Inaccuracies Related to Spectral Line Density 

 
Until this point, the analysis of the combination of cross power spectral density FRF estimation 
and RFP-Z modal parameter extraction has yielded some unexpected results . In the case of 
purely random excitation, the extracted damping ratio of the first mode is severely 
underestimated, causing it to dominate any constructed FRF. This phenomenon resulted in the 
observation that this combination of methods is way more inaccurate than they really are. Also, 
it hindered the visual analysis of the constructed FRF since the only significant peak is the first 
one. 

We have encountered another similar abnormality in this case of harmonic input; the extracted 
damping ratio of the virtual mode, which basically a tall and very localized spike in the 
estimated FRF, is expected to be extemely low, but we have obtained a result in the range of 1-
2%. 

The former abnormality is a severe underestimation of the expected value while the second one 
is a harsh overestimation. This may seem like they originate from different roots due to having 
opposite trends, but taking a step back hints their common property; both abnormalities occur 
in peaks which are relatively tall and steep, as if there are not enough spectral lines in the 
estimated FRF to model those peaks with a good resolution. 

The number of generated spectral lines was set to 212 throughout this chapter and this value 
was not altered at any point to keep the results consistent. Very often technicians say that it is 
good to have a small spectral line amount for low computational burden and a smooth FRF, but 
in the particular cases mentioned above it might be necessary to boost the spectral line amount 
as it will improve the fitting. This value is set to 215 as it is a nice compromise between the 
resolution and computational efficiency. 

Another important consideration is that the lower limit of the frequency band to analyse 𝑓𝑚𝑖𝑛  
should not be too near to the peak itself, otherwise there can be a loss of data. The peaks in 
question are close to 8 Hz and 10 Hz, so a low 𝑓𝑚𝑖𝑛  value is necessary. This parameter is set to 
2 Hz, as it is suitable and realistic; most of the accelerometers cannot sense frequencies lower 
than that value. 

With the aim of recreating the random excitation case, fig. 5.32 underlines why it is generally 
considered better to not exaggerate the spectral line count. Due to a higher resolution the 
resulting graph is verry rugged. Moving this estimation to the RFP-Z algorithm and setting the 
upper frequency analysis band to 20 Hz yields the damping ratio extractions seen in fig. 33. 
The improvement with respect to the previous cases is obvious. As the model order reaches 43, 
the identified damping ratio is 0.20 which is really close to the analytical value of 0.22. 
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Figure 5.32: FRF Estimation of a purely random excitation with 215 spectral lines. 

 

Figure 5.33: 1st damping ratio extraction of fig. 5.32. 
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Although this represents a very significant increase in the accuracy of the 1st mode’s parameter 

extraction, other peaks are affected in an opposite manner. Increased jaggedness of the FRF 
estimation hinders the extraction performance of the remaining damping ratios, causing them 
to be underestimated. The twin mode is not even detected. This observation is backed by the 
data reported in table 5.12. Since the natural frequencies are always accurate in the same level 
only the damping ratios of the high sld (spectral line density) case is reported. It is worth noting 
that the 1st damping ratio is now extracted as 0.17%, this is a result of changing the upper 
frequency band limit. 

 
Figure 5.34: Damping ratio extractions of all detected modes in fig. 5.32. 

 

MODE 1 2 3 4 6 7 
𝒇𝒏 [𝑯𝒛] 8.12 24.71 35.29 45.02 53.46 65.88 
𝜻𝒍𝒐𝒘 𝒔𝒍𝒅 0.016% 1.21% 1.44% 0.42% 1.64% 1.96% 
𝜻𝒉𝒊𝒈𝒉 𝒔𝒍𝒅 0.17% 0.72% 0.34% - 0.58% .01-.12% 

Table 5.12: Extracted modal parameters (reference dof:6). 

 

Observations related to the MAC matrix are not reported because there are not any significant 
changes. 
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Repeating the same procedure for the case with a harmonic excitation at 10 Hz gives the 
damping ratio extractions depicted in fig. 5.35. The values are extremely low, but this is exactly 
what is expected in this case. 

 
Figure 5.35: Extracted damping ratios of the harmonic excitation virtual mode. 

 

According to these findings, we can conclude that increasing the spectral line density is 
necessary when the parameters of localized steep peaks are to be extracted. 
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5.5 Final Remarks 
 

Chapter 5 yields several conclusions about the compatibility of RFP-Z method with OMA 
method under various circumstances. The most obvious result is that the natural frequencies 
and mode shapes of well separated modes are extracted very accurately. In the case of twin 
modes one of them is lost: the detected natural frequency is reasonably accurate while the mode 
shape is very poorly correlated. A limited amount of noise such as 3% output does not affect 
the accuracy considerably but elevating the noise to the higher level damages the parameter 
extraction process. Noise in the input signal is completely irrelevant. 

The damping ratio remains the main problem in modal parameter identification. All the 
analytical modes in our system are underdamped. This poor result is not related to the model 
order. In the first subchapter, about the purely random excitation, raising the maximum model 
order is not mentioned to avoid repetition, but in fig. 5.36 it can be seen that increasing model 
order beyond 30 only slightly increases the accuracy of the 1st mode’s damping estimation 

initially and then it decays by increasing the model order further. This inaccuracy should be 
considered as an exception and its cause and remedy is thoroughly discussed in chapter 5.4. 
Conversely the 4th mode’s extraction seems to improve with the increasing model order. It 
approaches to 1%, but even elevating the model order up to 80 does not bring it to an acceptable 
range.  

 
Figure 5.36: Effect of model order on the extracted damping ratios. 
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Another result underlined in this chapter is that the OMA method is not suitable when only a 
harmonic excitation is present. This not surprising result is already a fundamental knowledge 
in the scientific literature. 

Combining the harmonic excitation with a random one might improve the quality of RFP-Z 
method. The random force contribution needs to be big enough to render the force signal 
stochastic. Another requirement is about the excitation frequency; if it is close to an analytical 
mode’s resonance frequency it makes the mode undetectable by the algorithm. Additionally, an 
excitation frequency close to the first few harmonics of any mode should be evaded if possible. 
In any case having a harmonic force contribution will create a virtual mode at the excitation 
frequency.  

In the case of a combination of a random and a harmonic force, noise sustains its effect. At low 
noise levels OMA and RFP-Z method generate result with the same accuracy of the case with 
only a random force factor. Increasing the noise decreases the accuracy in the same way. 
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6. Verification of RFP-Z in the Input-Output Case 
 
In contrast to the previous one, this chapter will analyse the accuracy of the RFP-Z method with 
an EMA approach. All the mentioned characteristics above such as the force typology, 
magnitude and the noise level are maintained. An exception is the reference dof, because in 
EMA the input signal is also present ergo the use of Welch’s Periodogram does not require an 
output signal to be selected as a reference.  

An initial parameter that will be certainly interesting to tweak will be the noise level in the input 
signal. Alongside analyses similar to those in the previous chapter, whether the effect of the 
input noise is greater, equal or lesser than the output signal will be explored. 

Executing a proper EMA in real life is a hard task as there are different complications. Besides 
the need of a proper test set up which may be expensive depending on the shape and size of the 
specimen, there is also the fact that sensors and shakers may influence the dynamic behaviour 
of the structure. This problem is even greater when there are not enough sensors/shakers to give 
excitation and receive output signals simultaneously. Using different batches of sensors/shakers 
may result in incoherent FRF in each experiment. Even with all these problems, it is very likely 
that especially a big structure is not eligible for experimental testing. 

All the requirements and hardships mentioned in the paragraph above are shadowed by one 
thing; EMA is much more accurate than OMA since it uses more information. The results 
obtained in this chapter are expected to be more precise with respect to those of the previous 
one. A comparison between EMA and OMA in accuracy can be done once the results are 
reached. 
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6.1 Random Excitation 

 
6.1.1 %3 Noise in Output 

Just as in the previous case the first force typology to analyse is a purely random excitation. 
The noise level in the output is set to 3% and no noise is added in the input signal. The resulting 
response is seen in fig. 6.1. 

 
Figure 6.1: Response of each dof to a purely random signal with 3% noise in the output. 

 

The accuracy enhancement due to passing to EMA method clearly shows itself in the estimated 
FRFs. In Figure 6.2 the stabilization chart obtained after running the RFP-z algorithm on the 
estimated FRF can be seen. The FRF itself visually shows a clear difference. It is precisely 
estimated and all of the analytical modes are detected, even the twin modes. Additionally, the 
morphology of the mode peaks is almost identical to the analytical FRF. The only obvious 
difference is the noise, especially when the response magnitude gets lower. 

Besides from the ability to detect all the modes, combining RFP-z with EMA approach also 
excels in extracting the damping ratios. In fig. 6.3 the black circles represent the true location 
of the analytical damping ratios. Well separated modes are detected with an excellent precision. 
The twin modes’ damping ratios are underestimated but the error is within acceptable levels, 

considering the orders of magnitude worth of errors in the previous cases. 1st modes’ ratio draws 

attention because by utilizing OMA it could only be detected accurately with a high spectral 
density ratio, which in turn decreases the accuracy of the other modes.  
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Figure 6.2: FRF estimation of fig. 6.1 overlaid with the detected modes (stabilization chart). 

 
Figure 6.3: FRF estimation of fig. 6.1 overlaid with the detected damping ratios. 
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Among all the model orders the 30th one yields the best result in both having the minimum error 
in a least squares sense and the damping ratio accuracy. It should be noted that the difference 
in model orders is not as steep as in the OMA case, apart from the twin modes all the frequencies 
and the damping ratios are detected within a narrow range in each model order, save few 
exceptional cases. 

The acquired modal parameters can be seen in table 6.1. The last row indicates the difference 
between the damping ratios in this table and table 5.1. The analytical modes 2, 3, 6 and 7 show 
an excellent accuracy. Modes 4 and 5 suffer from a nonnegligible error, due to being so close 
together. Mode 1 also shows a considerable amount of error. The frequency values in the other 
hand show superb similarity to the analytical values. 

  

MODE 1 2 3 4 5 6 7 
𝒇𝒏 [𝑯𝒛] 8.09 24.71 35.32 44.97 47.52 53.40 65.81 
𝜻  0.25% 1.44% 1.42% 0.86% 1.24% 1.65% 2.02% 

DAMPING 
ERROR 

12% 0% 0.7% 25.2% 10.1% 2.5% 2.5% 

Table 6.1: Extracted modal parameters (model order:30). 

 

The effects of increasing the model order can be seen in fig. 6.4. There is an improvement in 
the accuracy as the model order is increased until model order 40. A least square approximation 
announces that model order 38 is the most accurate one. Its associated extracted modal 
parameters are reported in table 6.2. 

 
Figure 6.4: Effect of model order on the extracted damping ratios. 
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MODE 1 2 3 4 5 6 7 
𝒇𝒏 [𝑯𝒛] 8.09 24.71 35.31 44.99 47.52 53.40 65.81 
𝜻  0.21% 1.43% 1.40% 0.92% 1.27% 1.64% 2.01% 

DAMPING 
ERROR 

4.5% 0.7% 2% 20% 8 % 1.9% 2 % 

Table 6.2: Extracted modal parameters (model order:38). 

Using the 38th model order decisively improves the results. Error of the 1st mode is pulled down 
to acceptable levels. While the twin modes’ ratios still have an undeniable level of error, the 

accuracy is improved with the change in the model order. 

To analyse the truthfulness of the extracted residues the MAC matrix seen in table 6.3 is to be 
evaluated. Mode shapes demonstrate a remarkable accuracy. The extracted shapes of the well 
separated modes are nearly identical while the twin modes’ shapes show a similarity of 98.5%. 
These findings clearly represent the viability of RFP-z algorithm with EMA with low noise on 
output. 

 
Table 6.3: MAC Matrix related to the table 6.2. 

The constructed FRF using aforementioned modal parameters is visually identical to that of the 
analytical FRF as it can be seen below. 

 
Figure 6.5: Constructed FRF in the case of 3% noise in the output (model order 38). 
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6.1.2 3% Noise in input and output 

 
To test if noise in the input affects the accuracy while the input signal it is involved in the FRF 
estimation process, a 3% noise is included in it. The resulting time domain response can be seen 
in fig. 6.6. 

 

 
Figure 6.6: Response of each dof to a purely random signal with 3% noise in the input and  the output. 

 

To observe the effects of the model order, an iterative simulation is done until the 60th model 
order. In fig. 6.7 the trend of the damping ratios with an increasing model order can be seen. 
The most impactful effect after a certain order level is seen on the first damping ratio, and it is 
closest to reality in the 49th model order. In fact, that is also the most accurate modal order least-
squares wise. Same figure also highlights that the 7 analytical dofs are successfully extracted 
in most of the model orders. 

The estimated modal parameters are reported in table 6.4. 

 

MODE 1 2 3 4 5 6 7 
𝒇𝒏 [𝑯𝒛] 8.09 24.70 35.31 45.02 47.51 53.40 65.80 
𝜻  0.22% 1.44% 1.43% 1.00% 1.32% 1.65% 2.04% 

DAMPING 
ERROR 

0% 0% 0% 13% 4.3% 2.5% 3.6 % 

Table 6.4: Extracted modal parameters (model order:49). 
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Figure 6.7: Effect of model order on the extracted damping ratios. 

 

The results in the table above shows excellent extraction accuracy. However, it must be kept in 
mind that the increase in accuracy with respect to the case without the input noise is due to 
higher model order. To compare the results of two cases, the extracted parameters of the 38 th 
model order is reported in table 6.5. 

 

MODE 1 2 3 4 5 6 7 
𝒇𝒏 [𝑯𝒛] 8.09 24.70 35.31 45.01 47.52 53.40 65.80 
𝜻  0.27% 1.43% 1.42% 1.00% 1.31% 1.65% 2.04% 

DAMPING 
ERROR 

22.7% 0.7% 0% 13% 5.1 % 2,5% 3,6 % 

Table 6.5: Extracted modal parameters (model order:38). 

 

The fall in the accuracy is clearly seen in the first mode’s damping ratio. In mode 2, 3, 6 and 7 

there is no significant difference between 2 distinct cases. The damping ratio extractions of the 
twin modes are paradoxically more accurate in the case with the additional input noise.  
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The MAC matrix of the most accurate model order (#49) can be analysed below. The diagonal 
values show some variance with respect to those of table 6.3 but there is not any significant 
difference between accuracy levels. 

 

 
Table 6.6: MAC Matrix related to the table 6.4. 

 

Similar to the previous case without input noise, the constructed FRF is visually indifferentiable 
form the analytical one. 

 
Figure 6.8: Constructed FRF in the case of 3% noise in the output (model order 49). 

 

From these results a simple conclusion can be drawn; including a small noise, in a similar level 
to that of the output noise, does not hinder the RFP-z algorithm’s accuracy given that higher 

model orders can be employed. Additional noise does not affect the accuracy but rather the time 
required for the modal parameters extraction. 
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6.1.3 %10 Noise in input and output 

 
To test the viability of the modal parameter extraction under severe noise conditions the noise 
levels are boosted up to 10% in both input and output. The response to a random force can be 
seen in fig 6.9. 

 
Figure 6.9: Response of each dof to a purely random signal with 10% noise in the input and  the 

output. 

 

The FRF estimation of this case is expectedly rougher. This ruggedness makes it difficult for 
the RFP-z algorithm to detect all the modes. In fact, this expectation can be confirmed via the 
stabilization chart in fig. 6.10. Even with increasing the model order up to 60 does not prove 
useful in detecting more than 6 modes. The twin modes become indistinguishable with noise; 
they cannot be detected as 2 different modes. Aside from the detected mode number, extracted 
damping ratios seen in fig. 6.11 also put the effect of noise under the spotlight.   

Increasing the model order partially mitigates these problems, but with the cost of time 
inefficiency. As seen in the stabilization chart in fig. 6.12 all 7 modes are extracted after the 
80th model order. Fig. 6.13 highlights the trend of damping ratios with increasing model order, 
up to 120. The first mode’s damping ratio, which is normally overestimated, restores accuracy 

when the model order nears to 120. In the other hand the twin modes only slightly improve their 
accuracy, especially the 4th mode which is detected only at higher model orders. It should also 
be noted that running the iterative process up to the 120th model order takes circa 35 times 
longer than running it up to 30th model order. 
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Figure 6.10: FRF estimation of fig. 6.9 overlaid with the detected modes up to model order 60 

(stabilization chart). 

 

Figure 6.11: FRF estimation of fig. 6.9 overlaid with the detected damping ratios. 
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Figure 6.10: FRF estimation of fig. 6.9 overlaid with the detected modes up to model order 120 
(stabilization chart). 

 

Figure 6.11: Effect of model order on the extracted damping ratios when high noise is present. 
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Approximating the constructed FRF to the analytical one for each model order indicates that 
109th order is the most accurate one. In table 6.7 its extracted modal parameters are reported. 
Additionally in table 6.8 the extracted modal parameters of model order 38 is reported in order 
to compare the accuracy with the previous cases. 

 

MODE 1 2 3 4 5 6 7 
𝒇𝒏 [𝑯𝒛] 8.09 24.70 35.32 45.01 47.50 53.40 65.81 
𝜻  0.22% 1.41% 1.25% 0.08% 0.55% 1.48% 1.78% 

DAMPING 
ERROR 

0% 2.1% 12.6% 93.0% 60.1 
% 

8.1% 9.6 % 

Table 6.7: Extracted modal parameters (model order:109). 

 

MODE 1 2 3 5 6 7 
𝒇𝒏 [𝑯𝒛] 8.09 24.70 35.32 47.49 53.40 65.81 
𝜻  0.29% 1.40% 1.19% 0.35% 1.47% 1.76% 

DAMPING 
ERROR 

31.8% 2.8% 16.8% 74.6 % 8.7% 10.7 % 

Table 6.8: Extracted modal parameters (model order:38). 

 

The latter table shows that high noise affects the accuracy of the modal parameter identification 
severely. For cases with a significant noise floor a high number of iterations is the only way to 
achieve partially viable information. This is only for well-separated modes, as already hard twin 
modes do not yield any meaningful damping ratio estimation.  

The model order is not increased above 120 in this thesis due to computational difficulties but 
in a professional/academic scenario higher model orders may provide better estimations. Still, 
the fact that the 1st mode’s damping ratio has reached to its real value hints that slightly 

improving the other mode’s damping ratio estimations will result in underestimating the 1st one. 

Analysing the MAC matrix of the 109th model order (table 6.9) indicates that the residues are 
extracted in an accurate manner. Like the natural frequencies, mode shapes are extracted 
successfully even with high noise present in both signals. 

 
Table 6.9: MAC Matrix related to the table 6.6. 
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The FRF constructed using the extracted parameters of the 109th model order is graphed in fig. 
6.12 and it show significant differences with respects to the analytical FRF. The magnitude and 
the damping ratio (steepness) of the well-separated modes are still quite accurate taking into 
account the high noise corrupting the signal, but the underestimation of the twin mode’s 

damping is clearly visible as a disproportionate spike.  

 
Figure 6.12: Constructed FRF in the case of 10% noise in the output (model order 109). 
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6.2 Harmonic Excitation 

 
In EMA the input and the output signals are cross correlated in the frequency domain in order 
to derive the transfer function, which we call the response. When a random excitation is present 
the frequency spectrum of the excitation is similar to that of the white noise, but in case of a 
purely harmonic excitation its frequency spectrum is merely a spike at the excitation frequency 
This situation renders the calculation of cross power spectral density for the FRF estimation 
useless. 

The excitation reported as Eq. 6.1 is applied to the 3rd dof. No noise is included in neither input 
nor output signals for reasons to be discussed in the next paragraph. The frequency spectrum of 
the excitation and the responses can be seen in fig. 6.13. Output spectrum contains the 
information of all 7 dofs but they overlap. Visually it seems like the magnitude is 0 in 
frequencies other than the specific excitation frequency, but in reality the spectrum shows an 
asymptotic behaviour around 0. The absence of noise shows its effect on the time domain-
response (fig. 6.14). 60th second marks the end of the transient decay. The non-nullity of the 
output spectrum results in the FRF estimation seen in fig. 6.15, using the Eq. 3.6. The only 
useful information in such an estimation is the detection of the first mode and its natural 
frequency. 

𝐹(𝑡) = 500 ∗ sin(2𝜋 ∗ 8𝑡)                                                                                                               (6.1) 

 

 

(a)                                                                  (b) 

Figure 6.13: Input and output spectrum of the harmonic excitation with the frequency of 8 Hz. 

 

Including a 1% noise floor in the output signal slightly corrupts the signal spectrum. When 
zoomed out it is visually indistinguishable from fig. 6.13(b). However, when zoomed in the 
effect of noise is clearly seen. In fig 6.16 the same signals spectrum is seen when the output 
noise is null and 1% respectively. 
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Figure 6.14: Time domain response to the force in eq. 6.1, in the absence of noise. 

 

Figure 6.15: FRF estimation using the signals in fig. 6.13. 

 

(a)                                                                              (b)                                   

Figure 6.16: Output spectrum zoomed around 40 Hz with (a) null noise and (b) 1% noise. 
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The ruggedness of fig. 6.16(b) resembles a white noise. In fact, as it can be seen in fig. 6.17, the FRF 
estimation resembles a slanted white noise with an antiresonance at the excitation frequency. This result 
is due to numerical reasons. When the input spectrum is close to null at a certain frequency, the noise in 
the output suggests that the response magnitude to that frequency is high and vice versa. So further away 
the frequency goes from the excitation frequency, this larger the response estimation gets. 

 

Figure 6.17: FRF estimation of a harmonic signal with 1% noise in the output. 

 

Increasing noise further uplifts the magnitude of the response and affects the steepness of the 
antiresonance (figure 6.18). 

 
Figure 6.18: FRF estimation of a harmonic signal with 10% noise in the output. 
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It can thus be derived that a harmonic excitation is not suitable for the combination of cross 
power spectral density and RFP-z methods which is the focus of this thesis. This is due to the 
fact that noise is omnipresent and even the slightest noise will corrupt the signals to the point 
of uselessness.  

In a purely exploratory point of view, it is interesting to see the behaviour of high excitation 
frequency in the ideal case of the absence of noise. Setting the excitation frequency at 200 Hz, 
as reported in Eq. 6.2, yields the FRF estimation in fig. 6.19. All the analytical modes are 
roughly present as spectral spike, but some are more prevalent than others. Apart from the 1st 
and the 7th mode, the modes are quite dispersed as if spectral leakage is present. This is not due 
to the transient part of the signal which has been cropped. Also, it should be mentioned that the 
spiked highlighted in grey are just numerical errors. Since the excitation frequency is 200 Hz 
no mode can be excited in particular. Of course, this FRF estimation is not suitable to proceed 
with RFP-Z method. 

𝐹(𝑡) = 500 ∗ sin(2𝜋 ∗ 200𝑡)                                                                                                          (6.2) 

 
Figure 6.19: FRF estimation of a harmonic signal with high excitation frequency and no noise. 

 

Comparing the FRF with fig. 5.3 indicates that the magnitude is not coherent. Running the RFP-
z algorithm up to the 80th model order produces unstable results. The stabilization chart below 
shows the abundance of the spurious modes. Fig. 6.21 show the cumulative number of detected 
modes for each frequency. Extracted damping ratios in fig. 6.22 show the same level of chaotic 
distribution. These poor results are due to the matrix in Eq. 2.11 being close singular or badly 
scaled. 
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Figure 6.20: Stabilization chart of fig 6.17. 

 

Figure 6.21: Detected modes of fig 6.17. 
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Figure 6.22: Extracted damping ratios of fig 6.17. 

 

There is not any model order in which all the analytical modes are detected with accurate natural 
frequencies and damping ratios, so further analysis is redundant. 
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6.3. Harmonic Excitation with Random Contribution 

 
6.3.1 3% Noise in Output 
Just as the OMA case, by including a stochastic random contribution to a harmonic excitation 
it is expected to improve the accuracy of modal parameter identification. To test this force 
typology, initially a harmonic excitation with 10 Hz frequency and 500N amplitude which is 
accompanied by a random contribution with a mean of 0𝑁 and a 99.7% probability to be within 
±15𝑁 is applied to 3rd dof. A noise floor of 3% is included in the output signal. Fig. 6.23 shows 
that the random contribution of this magnitude is not strong enough to give a random response. 
The FRF estimation will not be any better than the previous cases. In fact, RFP-Z algorithm can 
only extract the 1st mode with poor accuracy from the estimated FRF.  

 
Figure 6.23: Time domain response of a harmonic excitation with mild random contribution. 

 

By multiplying the random force contribution tenfold, the time domain response starts to 
resemble a random signal. Still a transient decay is present until the 25th second. RFP-z 
algorithm is run up to 80 model order iterations and its associated stabilization diagram and 
extracted damping ratios are given in fig. 6.25 & 6.26. There certainly is an improvement, 
boosting the random contribution of the force facilitates the FRF estimation greatly and thus 
improving the accuracy of RFP-z method. The extracted parameters are: 

MODE 1 2 3 5 6 7 
𝒇𝒏 [𝑯𝒛] 8.09 24.71 35.30 47.56 53.40 65.82 
𝜻  0.22% 1.42% 1.13% 0.19% 1.42% 1.61% 

DAMPING 
ERROR 

0% 1.4% 21% 86.2 % 11.8% 18.3 % 

Table 6.10: Extracted modal parameters (model order:78). 
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Figure 6.24: Time domain response of a harmonic excitation with moderate random contribution. 

 

 

Figure 6.25: stabilization diagram associated with fig. 6.24. 
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Figure 6.26: extracted damping ratios associated with fig. 6.24. 

 

Among the 6 detected modes, 1st and 2nd ones exhibit good accuracy in both damping and 
natural frequency. The rest of the modes show quite inaccurate damping ratios, especially the 
twin mode’s damping is heavily underestimated.  

Moving on to MAC analysis (table 6.11), one can say that the extracted mode shapes manifest 
excellent accuracy. 

 
Table 6.11: MAC Matrix related to the table 6.10. 

 

Increasing the random force contribution by another order of magnitude will render the input 
signal more similar to excitation seen in subchapter 6.1. As seen in fig. 6.27, the input signal 
still retains a strong harmonic spike but also a spectra of input elements dispersed like white 
noise. The resulting time domain response is reported in fig. 6.28. It seems significantly more 
arbitrary. 
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Figure 6.27: Input spectrum of a force with high random contribution. 

 
Figure 6.28: Time domain response of a harmonic excitation with high random contribution. 
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A moderate amount of consistent randomness in the input spectrum greatly improves the FRF 
estimation accuracy as seen in fig. 6.29. This results in RFP-z method detecting every analytical 
mode. Table 6.12 reports the extracted modal parameters and figure 6.30 underlines the 
excellence of the constructed FRF. 

 
Figure 6.29: stabilization diagram associated to fig. 6.28. 

MODE 1 2 3 4 5 6 7 
𝒇𝒏 [𝑯𝒛] 8.09 24.71 35.31 45.01 47.52 53.40 65.81 
𝜻  0.22% 1.44% 1.41% 0.89% 1.24% 1.64% 2.02% 

DAMPING 
ERROR 

0% 0% 1.4% 22.6% 10.1 % 1.9% 4.4 % 

Table 6.12: Extracted modal parameters (model order:42). 

 

Figure 6.30: Constructed FRF using extracted parameters reported in table 6.12. 
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Related MAC matrix manifest exceeding accuracy. 

 
Table 6.13: MAC Matrix related to the table 6.12. 

These results are very similar to those in subchapter 6.1.1. Increasing the random force 
contribution in this case expectedly produced the same results with a pure random excitation. 
To emphasize on a mixture of harmonic and random input signal, excitations with moderate 
random contribution will be analysed for the remainder of this chapter.  

Before altering the noise level to analyse its effect, the consequences of shifting the excitation 
frequency will be analysed. An excitation with a frequency of 24.7 Hz, which corresponds to 
the 2nd natural frequency of the system, is applied. A zoomed in section of the time-domain 
response is reported below in order to make it easy to see the initial growth. It can be said that 
there is a transient behaviour until the 4th second. 

 
Figure 6.31: Time domain response of a harmonic excitation with moderate random contribution. 
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The effects of such an excitation frequency are immediately observed. The response is naturally 
larger and more importantly it is more consistent. In contrast to fig. 6.24. it is less arbitrary and 
steadier. In other words, it can be argued that the harmonic contribution of the force dominates 
the response. This can be seen like the opposite case of we just analysed in fig. 6.28 where the 
random contribution of the force dominated the response. As a result, the FRF estimation got 
more rugged and hence only 5 analytical modes are detected by the RFP-z algorithm.  

 

Figure 6.32: stabilization diagram associated to fig. 6.31. 

And the extracted modal parameters are: 

MODE 1 2 3 6 7 
𝒇𝒏 [𝑯𝒛] 8.09 24.71 35.30 53.39 65.79 
𝜻  0.28% 1.44% 0.87% 1.17% 1.18% 

DAMPING 
ERROR 

27.3% 0% 46.2% 27.3% 40.1 % 

Table 6.14: Extracted modal parameters (model order:80). 

 

The MAC matrix shows excellent accuracy, which always has been the case for the well 
separated modes when the noise is small. 

 

Table 6.15: MAC Matrix related to table 6.14. 
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The steep fall in accuracy of extracted damping ratios is clear to see, with the exception of the 
2nd mode. It would be interesting to find if the accuracy of the extracted damping ratio of a 
given mode is related to whether the excitation frequency is close to its natural frequency. 
Keeping all the parameters same, with the exception of excitation frequency, which is set 
subsequently to the other natural frequencies, the extracted parameters are as follows: 

 

MODE 1 
𝒇𝒏 [𝑯𝒛] 8.09 
𝜻  0.066% 

DAMPING 
ERROR 

70% 

Table 6.16: Extracted modal parameters when excitation frequency is 8.1 Hz (model order:80). 

MODE 1 2 3 4 5 6 7 
𝒇𝒏 [𝑯𝒛] 8.10 24.71 35.33 44.99 47.51 53.40 65.83 
𝜻  0.22% 1.44% 1.38% 0.55% 1.01% 1.61% 1.92% 

DAMPING 
ERROR 

0% 0% 3.5% 52.2% 26.8% 0% 2.5 % 

Table 6.17: Extracted modal parameters when excitation frequency is 35.32 Hz (model order:49). 

MODE 1 2 3 4 5 6 7 
𝒇𝒏 [𝑯𝒛] 8.09 24.71 35.31 45.01 47.51 53.40 65.81 
𝜻  0.21% 1.44% 1.41% 0.92% 1.25% 1.64% 2.01% 

DAMPING 
ERROR 

4.5% 0% 1.4% 19.1% 9.4% 1.9% 2 % 

Table 6.18: Extracted modal parameters when excitation frequency is 45.03 Hz (model order:43). 

MODE 1 2 3 4 5 6 7 
𝒇𝒏 [𝑯𝒛] 8.10 24.71 35.32 45.01 47.51 53.40 65.80 
𝜻  0.22% 1.44% 1.42% 0.92% 1.26% 1.65% 2.01% 

DAMPING 
ERROR 

0% 0% 0.7% 19.1% 8.7% 2.5% 2 % 

Table 6.19: Extracted modal parameters when excitation frequency is 47.55 Hz (model order:45). 

MODE 1 2 3 4 5 6 7 
𝒇𝒏 [𝑯𝒛] 8.09 24.71 35.31 44.95 47.52 53.40 65.83 
𝜻  0.22% 1.43% 1.35% 0.43% 0.85% 1.58% 1.92% 

DAMPING 
ERROR 

0% 0.7% 5.6% 62.6% 38.4% 1.9% 2.5 % 

Table 6.20: Extracted modal parameters when excitation frequency is 53.46 Hz (model order:65). 

MODE 1 2 3 4 5 6 7 
𝒇𝒏 [𝑯𝒛] 8.09 24.71 35.31 44.99 47.52 53.39 65.83 
𝜻  0.22% 1.44% 1.37% 0.62% 1.04% 1.60% 1.95% 

DAMPING 
ERROR 

0% 0% 4.2% 54.8% 24.6% 0.6% 1.0 % 

Table 6.21: Extracted modal parameters when excitation frequency is 65.99 Hz (model order:60). 
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These interesting results make it possible to develop some arguments. First of all, there is a 
general trend that the accuracy improves as the excitation frequency increases. Secondly, When 
the excitation frequency is near a mode’s natural frequency, its modal parameters are extracted 

with a better accuracy. Also, there are several modes which are more easily extractable in any 
case. For example, the 2nd mode, except case in table 6.16, is always identified with an excellent 
accuracy whilst the 4th mode shows quite poor accuracy even when the excitation frequency is 
nearby. Of course, this is due to the separation level of the mode.  

A final analysis is done at the anti-resonant frequency of 40.5 𝐻𝑧. Extracted modal parameters 
are as follows: 

MODE 1 2 3 4 5 6 7 
𝒇𝒏 [𝑯𝒛] 8.09 24.71 35.31 45.00 47.51 53.39 65.80 
𝜻  0.22% 1.44% 1.42% 0.95% 1.32% 1.65% 2.02% 

DAMPING 
ERROR 

0% 0% 0.7% 17.4% 4.3% 2.5% 2.5 % 

Table 6.22: Extracted modal parameters when excitation frequency is 40.5 Hz (model order:50). 

 
Not surprisingly these are the most accurate results so far (for harmonic & random force with 
moderate random contribution). The opposite effect of what happened in resonant frequencies 
is observed here; anti-resonance hinders the impact of the harmonic excitation, so random 
contribution dominates the response. This results in a “more arbitrary” response and thus a 

better estimated FRF, and finally a better working RFP-z case.  
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6.3.2 3% Noise in both Input and Output 

 
In the previous subchapter effects of 2 important parameters are analysed: random force 
contribution magnitude and excitation frequency. Therefore, comprehensive analysis of those 
two parameters will be bypassed in this subchapter. To see if the inclusion of noise in the input 
signals reduces the accuracy in the same rate, tests will be performed with excitations having 
moderate random contribution and the following frequencies: 

- 35.32 Hz (natural frequency of a well-separated mode) 
- 40.50 Hz (frequency of the anti-resonance) 
- 47.55 Hz (natural frequency of a twin mode) 

The former case yields the following extracted parameters: 

 

MODE 1 2 3 4 5 6 7 
𝒇𝒏 [𝑯𝒛] 8.10 24.70 35.31 45.00 47.50 53.40 65.84 
𝜻  0.29% 1.38% 1.35% 0.50% 0.97% 1.58% 1.87% 

DAMPING 
ERROR 

31.8% 4.2% 5.6% 56.5% 29.7% 1.9% 5.1 % 

Table 6.23: Extracted modal parameters when excitation frequency is 35.32 Hz (model order:80) with 
%3 noise in input and output. 

 

An initial observation can be done on the number of model orders in which all the analytical 
modes are detected. In the case with only output noise, the 7 modes were detected starting from 
the 18th model order whereas in this case the starting point is 27th model order. Also, the fact 
that damping ratio extraction error is increased in every single mode highlights the effect of 
newly introduced noise. Table 6.24 indicates that the accuracy of extracted mode shapes are not 
affected significantly. 

 

 
Table 6.24: MAC Matrix related to table 6.23. 
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Moving onwards to the second case (40.50 Hz) yields the following extracted parameters: 

MODE 1 2 3 4 5 6 7 
𝒇𝒏 [𝑯𝒛] 8.09 24.70 35.31 45.00 47.52 53.41 65.84 
𝜻  0.28% 1.42% 1.39% 0.94% 1.28% 1.60% 1.97% 

DAMPING 
ERROR 

27.3% 1.4% 2.8% 18.3% 7.2% 0.6% 0 % 

Table 6.25: Extracted modal parameters when excitation frequency is 40.5 Hz (model order:79). 

From model order #19 the algorithm could detect all the modes. The 6th and 7th modes’ damping 

extractions actually improved. The first 5 modes’ extractions show greater inaccuracies since 

the addition of the noise, but still the growth of inaccuracy is relatively smaller with respect to 
the case in which the excitation frequency corresponds to a natural frequency. As clearly seen 
in the related MAC matrix, accuracy of the extracted mode shapes is not affected by the 
additional noise significantly. 

 
Table 6.26: MAC Matrix related to table 6.25. 

 

In the last case (47.55 Hz) the following modal parameters are extracted: 

MODE 1 2 3 4 5 6 7 
𝒇𝒏 [𝑯𝒛] 8.09 24.70 35.32 45.01 47.51 53.40 65.80 
𝜻  0.22% 1.44% 1.42% 0.92% 1.26% 1.65% 2.01% 

DAMPING 
ERROR 

0% 0% 0.7% 19.1% 8.7% 2.5% 2 % 

Table 6.27: Extracted modal parameters when excitation frequency is 47.55 Hz (model order:44). 

All the modes are detected from the 21st model order.  
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6.3.3 10% Noise in both Input and Output 

 
The effect of severe noise conditions will be analysed in this subchapter in a similar fashion to 
the preceding one. Same three excitation frequency values will be used in tests. 

The stabilization diagram of the first case (35.32 Hz) is reported in fig. 6.33 and its extracted 
parameter are reported int able 6.27. Distortion of the estimated FRF due to noise is clearly 
visible. 

 
Figure 6.32: Resulting stabilization diagram of the case with an excitation frequency of 35.32 Hz and 

10% noise in both input and output. 

MODE 1 2 3 6 7 
𝒇𝒏 [𝑯𝒛] 8.09 24.70 35.28 53.36 65.75 
𝜻  0.25% 1.25% 0.62% 0.85% 0.66% 

DAMPING 
ERROR 

13,6% 13.2% 56.6% 47.2% 66.5 % 

Table 6.27: Extracted modal parameters when excitation frequency is 35.32 Hz (model order:78) with 
%10 noise in input and output. 

At this point we can only deduce the expected decrease in the number of detected modes and 
damping extraction accuracy. Every single mode’s damping ratio is extracted lesser than the 

case with lower noise. This reduction leads to unacceptable levels of inaccuracies. Only the first 
mode’s damping is closer to the truth because it was already overestimated in the previous case.  

The parasitic nature of the estimated FRF also hints that increasing the model order further 
would not render the detection of the twin modes possible. 

Another intriguing result is that every diagonal element in the MAC matrix, for the detected 
modes, is bigger than ~%99. This finding outlines that mode shapes, like natural frequencies, 
are extracted in an accurate way regardless of the noise content. 
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Table 6.28: MAC Matrix related to table 6.27. 

To verify the hypotheses suggested in the previous paragraph we move on to the second case 
(40.5 Hz) which corresponds to the anti-resonance. Fig. 6.33 depicts a similar stabilization chart 
to the previous case, but the fact that there are more model orders with 5 detected modes betrays 
that having the excitation frequency shifted towards anti-resonant values improves the 
extraction accuracy. The extracted parameters are listed in table 6.29. 

 
Figure 6.33: Resulting stabilization diagram of the case with an excitation frequency of 40.50 Hz and 

10% noise in both input and output. 

MODE 1 2 3 6 7 
𝒇𝒏 [𝑯𝒛] 8.0910 24.7016 35.2501 53.3558 65.7607 
𝜻  0.25% 1.30% 0.95% 1.17% 1.30% 

DAMPING 
ERROR 

13,6% 9.7% 33.6% 27.3% 34.0 % 

Table 6.29: Extracted modal parameters when excitation frequency is 40.50 Hz (model order:78) with 
%10 noise in input and output. 
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These findings empower two notions: High noise effects the accuracy severely and harmonic 
excitations with frequencies corresponding to anti-resonant frequencies are more suitable for 
modal parameter extraction. A MAC matrix with utmost accuracy once again shows that mode 
shapes are easy to extract also under high noise. 

 
Table 6.30: MAC Matrix related to table 6.29. 

 

Finally, the excitation is raised to 47.55 Hz to see if it will help in detecting the twin modes. 
Fig. 6.34 shows that moving the excitation frequency to the resonant frequency of hard-to-
detect modes renders those modes easier to extract. 

 
Figure 6.34: Resulting stabilization diagram of the case with an excitation frequency of 47.55 Hz and 

10% noise in both input and output. 
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Related extracted parameters are reported below: 

MODE 1 2 3 5 6 7 
𝒇𝒏 [𝑯𝒛] 8.09 24.71 35.31 47.47 53.40 65.86 
𝜻  0.31% 1.30% 0.75% 0.02% 1.09% 1.21% 

DAMPING 
ERROR 

40,9% 9.7% 47.6% 98.6% 32.3% 38.6 % 

Table 6.31: Extracted modal parameters when excitation frequency is 47.55 Hz (model order:78) with 
%10 noise in input and output. 

 

With respect to the previous case a fall in accuracy is observed. This is an expected result since 
we moved towards a harmonic frequency. Even though the damping ratio is extremely 
inaccurate, natural frequency and the mode shape extraction is quite accurate.  

 

 
Table 6.32: MAC Matrix related to table 6.31. 
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7. Conclusion 
 
The preceding two chapters include many observations of the RFP-z viability under varying 
circumstances. The result will be compared in this chapter in order to draw more general 
conclusions. Since there are more than one important parameter which affects the accuracy of 
the method, each of them will be compared separately in different subchapters. These 
parameters include: 

- FRF estimation method (EMA vs. OMA) and the reference dof in OMA case 
- Noise level 
- Force typology 
- Excitation frequency in presence of a harmonic force contribution 
- Spectral line density 
- Model order (of RFP-z) 

It should be noted that in all the simulations in this chapter the RFP-z method will analyse the 
frequency band between 2 Hz and 80 Hz. This is relevant information because changing the 
analysis band might affect the accuracy of the results. 2 Hz is selected as the lower boundary 
because it is low enough to not crop the first peak while being realistic (most commercial 
accelerometers cannot sense responses lower than 2 Hz).  

 

7.1 FRF Estimation Method 
In the area of modal analysis, it is a well-known fact that there is not really a competition 
between EMA and OMA methods. The former is more accurate by a great margin since it has 
more information while the latter is relatively less expensive and easier to conduct. For critical 
systems such as aircraft parts EMA should be conducted regardless of the costs, if possible. In 
most of the other cases OMA is more feasible and new methods of increasing its accuracy are 
developed every year. 

A primary conclusion we can draw relates to the reference dof selected when utilizing the OMA 
method. There is not a simple way to deduce a priori which dof will yield better results when 
chosen as the reference. The ideal case may not only change from structure to structure, but 
also depending on the circumstances such as force typology and SNR. This is clearly seen from 
the fact that there was not any single dof to persist as the optimal reference throughout chapter 
5. There are various papers in the literature to tackle this problem and develop ways to pick an 
optimal reference dof [12].  

EMA and OMA methods can be contrasted numerically under the generic circumstance with 
following parameters: A purely random excitation with 3% noise in the output signal, running 
the RFP-z algorithm for up to 80 model orders and having 214 spectral lines for both EMA and 
OMA. The results of the best model orders are reported in table 7.1. Since the natural 
frequencies are very accurate in every case they are not repeatedly reported. For the same reason 
MAC matrix values are also  kept outside of the comparison. 
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mode   1 2 3 4 5 6 7 

fn (analytical) [Hz] - 8.09 24.7 35.3 45.0 47.5 53.4 65.9 

 ζ (analytical) - 0.22% 1.44% 1.43% 1.15% 1.38% 1.61% 1.97% 

 ζ (OMA RDOF 2) 
model order 44 

- 0.16% 1.20% 0.95% - 0.21% 1.04% 0.42% 

damping error - 27.3% 16.7% 33.6% - 84.8% 35.4% 78.7% 

 ζ (OMA RDOF 4) 
model order 43 

- 0.16% 1.13% 0.86% 0.39% - 1.03% 0.50% 

damping error - 27.3% 21.5% 39.9% 66.1% - 36.0% 74.6% 

 ζ (OMA RDOF 6) 
model order 47 

- 0.16% 1.11% 0.81% 0.31% - 1.08% 1.08% 

damping error - 27.3% 22.9% 43.4% 73.0% - 32.9% 45.2% 

fn (EMA) [Hz] 8.08 8.11 24.7 35.3 45.0 47.5 53.4 65.8 

 ζ (EMA)           
model order 78 

0.16% 0.25% 1.57% 1.51% 1% 1.33% 1.71% 2.09% 

damping error 27.3% 13.6% 9.0% 5.6% 13.0% 3.6% 6.2% 6.1% 
 

Table 7.1: Comparison between EMA and OMA. 

 

The table above can be examined for some interesting observations. First of all, RDOF 6 seems 
to be the optimal case for OMA, but there is no significant difference between reference DOFs 
other than the 7th modes damping ratio. This is not an important conclusion since the results in 
this regard is very situational. 

As it can be seen, while OMA method could never detect all the modes (although the missing 
mode changes with RDOF), EMA did detect all of the modes. In fact, it detected eight modes 
because the algorithm misinterpreted the first mode as two separate modes. According to all the 
simulations in this thesis so far, this is not a common result but it is reported nonetheless to 
highlight the possibility. This is due utilizing a high model order of 78. The comparison of 
damping ratio’s error values demonstrates the superiority of the EMA in case of accuracy.  

Another factor contributing to inaccuracy of the 1st mode is the fact that its natural frequency is 
nearby to lower limit of the analysed frequency band. This results in partial cropping of the 
peak and hence some information loss about the mode. 

Another trend that persisted throughout this thesis is that the best model order in OMA is usually 
a moderate value in the range of 20-50, and increasing it further decreases the accuracy. In the 
other hand the accuracy of EMA increases continuously with the model order, at least until 80. 

Also, it can be safely deduced that OMA expectedly shows its worst performance in estimating 
ergo extracting the twin modes. In EMA twin modes are comparatively problematic as well, 
but not in the same scope of OMA. 

For the rest of this chapter, EMA will be utilized as the FRF estimation technique, since a 
comparison between not so low accuracies would yield healthier conclusions. 
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7.2 Noise Level 
 

Perhaps the most obvious parameter that would affect the modal parameter extraction accuracy 
is the noise level. SNR is a value with utmost importance in any field involved with signal 
processing and it should always be kept within acceptable levels. 

In this subchapter the following cases will be compared: 

-No noise (unrealistic optimal case) 

-3% Noise in the output signal 

-3% Noise in both input & output 

-10% Noise in the output signal 

-10% Noise in both input & output 

This way it is expected to see the consequences of having noise present in every signal as well 
as examining the impact level of increasing the noise. 

EMA method is utilized with a spectral line density of 214. Excitation is purely random with a 
standard deviation of 500𝑁. The results are reported in table 7.2.  

 

mode 1 2 3 4 5 6 7 

fn (analytical) [Hz] 8.09 24.7 35.3 45.0 47.5 53.4 65.9 

 ζ (analytical) 0.22% 1.44% 1.43% 1.15% 1.38% 1.61% 1.97% 

 ζ (No Noise)        
model order 14 

0.22% 1.57% 1.53% 1.23% 1.48% 1.75% 2.25% 

damping error 0.0% 9.0% 7.0% 7.0% 7.2% 8.7% 14.2% 

 ζ (3% Output Noise) 
model order 32 

0.39% 1.56% 1.49% 1.01% 1.35% 1.71% 2.08% 

damping error 77.3% 8.3% 4.2% 12.2% 2.2% 6.2% 5.6% 

 ζ (3% I/O Noise) 
model order 78 

0.33% 1.57% 1.51% 1.08% 1.38% 1.71% 2.10% 

damping error 50.0% 9.0% 5.6% 6.1% 0.0% 6.2% 6.6% 

 ζ (10% Output Noise) 
model order 79 

0.28% 1.55% 1.38% 0.30% 0.80% 1.61% 1.93% 

damping error 27.3% 7.6% 3.5% 73.9% 42.0% 0.0% 2.0% 

 ζ (10% I/O Noise) 
model order 78 

0.32% 1.55% 1.34% 0.09% 0.60% 1.56% 1.84% 

damping error 45.5% 7.6% 6.3% 92.2% 56.5% 3.1% 6.6% 

 

Table 7.2: Comparison between varying noise presence. 
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By reading the table above we can immediately see that the scenario with the absence of noise 
is the best one accuracy wise. With the presence of noise, the accuracies start to fall and some 
modes are seemingly affected more than others. The first mode directly catches attention due 
to its abrupt fall in accuracy, but it should be noted that its fall in accuracy is due to several 
reasons independent from the noise content. First, the spectral line density of the estimated 
FRFs directly affects the quality of the 1st peak more than others due to its steepness. This effect 
will be analysed later on in this chapter.  

Another phenomenon that affects the 1st modes damping extraction accuracy is the numerical 
fitting in the RFP-z process. Increasing the model order in already accurate cases result in the 
extraction of 2 separate modes in place of the 1st mode. This effect paradoxically occurs when 
the noise is not very high and the results of low model orders are fairly accurate. This gives 
higher noise content an advantage with regards to the first mode’s extraction accuracy. 

Last but not least, 1st modes vicinity to the lower limit of the analysis band causes some 
information loss and effects the modal parameter extraction in a bad way. 

Due to these three mentioned reason the first mode’s accuracy should not be taken as the 

deciding factor of this comparison. Instead, the damping ratios of the twin modes, being the 
hardest ones to extract accurately, stand to be the values to examine for a healthy comparison. 

At a first glance the accuracy does not seem to fall steeply as the noise content increases. This 
observation is justified considering that as the noise content increases so does the model order 
with the best least squares fitting. The twin modes accuracies are too sensitive to noise and the 
model order threshold in this simulation (80) was not enough to retain their extraction in an 
accurate fashion. Including 10% noise even only in output signals pushes the extracted 
parameters into the unacceptable zone. As the same noise is included also in the input signal, it 
is evident that the model order threshold is not enough also for the well separated modes.  

Another interesting finding correlates different noise types to accuracy of different mode types. 
To elaborate, increasing the noise content in the output signals seems to decrease the accuracy 
of the twin modes harshly, while adding a mirror noise to the input signal does not only 
moderately decreases the twin mode accuracy, but also hinders the accuracy of the extraction 
of well separated modes. 

It is as if increasing the noise content in the output renders the twin modes undetectable and 
thus makes the algorithm “focus more” on the detected modes while creating a best fit line, 

resulting in a slight increase in the accuracy of well separated modes.  

It is useful to elaborate how to select the best model order. The problem of selecting that with 
the minimum error between FRFs it favours the first mode, because it is the highest and the 
widest peak. The same mode is the most inaccurate one for the reasons mentioned above, and 
in chapter 7.4 its accuracy will be improved by tweaking the spectral line density, and it usually 
follows an opposite trend with the rest of the modes. Therefore, the best model order is selected 
manually focusing on the other modes, especially the 4th and the 5th ones. The plot of extracted 
damping ratio vs. model order is utilized to facilitate the selection. 
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7.3 Force Typology 
Force typology is one of the most important characteristics in modal analysis because the FRF 
estimation methods involved assume that the excitation covers a wide frequency band. Several 
force typologies that will be compared in this chapter are s following: 

- Purely random excitation  
- Purely harmonic excitation 
- Hybrid excitation with low random contribution (random part’s std. deviation is 1% of 

the harmonic part’s) 
- Hybrid excitation with moderate random contribution (random part’s std. deviation is 

10% of the harmonic part’s) 
- Hybrid excitation with high random contribution (random part’s std. deviation is same 

as the harmonic part’s) 

It has been observed previously that the excitation frequency of the harmonic contribution 
is a very critical factor and its effect will be analysed thoroughly in the following 
subchapter. For the force typology comparison, the excitation frequency is 35.32 Hz, which 
corresponds the 3rd mode’s natural frequency. This value is selected because it is neither the 

best case nor the worst case so the comparison can focus more on the random-harmonic 
balance of the force signal. 

Again, EMA is applied to estimate the FRF with a spectral line amount of 214. A noise of 
3% is considered to be present in both input and output signals. The comparison can be 
examined in table 7.3. 

mode 1 2 3 4 5 6 7 

fn (analytical) [Hz] 8.09 24.7 35.3 45.0 47.5 53.4 65.9 

 ζ (analytical) 0.22% 1.44% 1.43% 1.15% 1.38% 1.61% 1.97% 

 ζ (Purely Random)                
model order 32 

0.38% 1.56% 1.50% 0.92% 1.29% 1.71% 2.08% 

damping error 72.7% 8.3% 4.9% 20.0% 6.5% 6.2% 5.6% 

 ζ (High Random Hybrid)  
model order 19 

0.39% 1.57% 1.48% 0.62% 1.20% 1.71% 2.09% 

damping error 77.3% 9.0% 3.5% 46.1% 13.0% 6.2% 6.1% 

 ζ (Moderate Random Hybrid) 
model order 78 

0.31% 1.58% 1.44% 0.69% 1.05% 1.65% 1.96% 

damping error 40.9% 9.7% 0.7% 40.0% 23.9% 2.5% 0.5% 

 ζ (Low Random Hybrid)   
model order 69 

0.19% - - - - - - 

damping error 13.6% - - - - - - 

 ζ (Purely Harmonic)         
model order - 

- - - - - - - 

damping error - - - - - - - 
Table 7.3: Comparison between varying force typologies with the presence of noise in input & output. 
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Again, focusing on the accuracy of the twin modes rather than the first mode makes it possible 
to see that as harmonic contribution gets dominant over the random contribution, the accuracy 
falls steeply and the number of detected modes is simply pathetic. Repeating the same 
simulations without noise in the input yields the results in Table 7.4. 

 

mode 1 2 3 4 5 6 7 

fn (analytical) [Hz] 8.09 24.7 35.3 45.0 47.5 53.4 65.9 

 ζ (analytical) 0.22% 1.44% 1.43% 1.15% 1.38% 1.61% 1.97% 

 ζ (Purely Random)                
model order 51 

0.42% 1.57% 1.50% 1.01% 1.34% 1.71% 2.09% 

damping error 90.9% 9.0% 4.9% 12.2% 2.9% 6.2% 6.1% 

 ζ (High Random Hybrid)  
model order 55 

0.38% 1.57% 1.51% 1.03% 1.36% 1.71% 2.10% 

damping error 72.7% 9.0% 5.6% 10.4% 1.4% 6.2% 6.6% 

 ζ (Moderate Random Hybrid) 
model order 60 

0.31% 1.57% 1.43% 0.60% 1.09% 1.67% 2.01% 

damping error 40.9% 9.0% 0.0% 47.8% 21.0% 3.7% 2.0% 

 ζ (Low Random Hybrid)   
model order 80 

0.40% 1.20% - - - - - 

damping error 81.8% 16.7% - - - - - 

 ζ (Purely Harmonic)         
model order - 

- - - - - - - 

damping error - - - - - - - 
Table 7.4: Comparison between varying force typologies with the presence of noise in output. 

 

There is only a slight difference between two different noise cases. This difference is 
negligible because it can be attributed to generating a random force and response behaviour 
in every trial. The non-negligible pattern is clear, as the excitation becomes less random and 
more harmonic, the performance of RFP-z decreases. 
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7.4 Harmonic Excitation Frequency 
From the previous subchapter it is confirmed that loads with relatively high harmonic content 
are not suitable for RFP-z while those that contain at least a moderate amount of randomness 
can yield results to some extent. Regardless of this typology, whenever an excitation has a 
harmonic nature, its frequency affects the accuracy greatly. This is because it can correspond 
to either resonant or anti-resonant frequencies. 

In chapter 6.3.1 a thorough analysis of different frequency values is performed. The analysis is 
repeated because to get more realistic conclusion values minimum frequency of the analysis 
band is set to 2 Hz, while in the previous chapter it was 0 Hz. 

The analysis is carried out by utilizing EMA, with an excitation of moderate amount of 
randomness with respect to the harmonic content. 3% noise is included in the output signals. 
The results are as follows:  

mode 1 2 3 4 5 6 7 

fn (analytical) 
[Hz] 

8.09 24.7 35.3 45.0 47.5 53.4 65.9 

 ζ (analytical) 0.22% 1.44% 1.43% 1.15% 1.38% 1.61% 1.97% 

 ζ (8.1 Hz)        
model order - 

- - - - - - - 

damping error - - - - - - - 

 ζ (24.7 Hz)  
model order 32 

0.27% 1.54% 0.82% - - 1.18% 1.24% 

damping error 22.7% 6.9% 42.7% - - 26.7% 37.1% 

 ζ (35.3 Hz ) 
model order 44 

0.33% 1.57% 1.48% 0.61% 1.05% 1.66% 2.00% 

damping error 50.0% 9.0% 3.5% 47.0% 23.9% 3.1% 1.5% 

 ζ (40.5 Hz)  
model order 79 

0.34% 1.57% 1.50% 0.92% 1.28% 1.69% 2.06% 

damping error 54.5% 9.0% 4.9% 20.0% 7.2% 5.0% 4.6% 

 ζ (45.0 Hz)  
model order 54 

0.38% 1.57% 1.51% 1.00% 1.32% 1.71% 2.08% 

damping error 72.7% 9.0% 5.6% 13.0% 4.3% 6.2% 5.6% 

 ζ (47.6 Hz)  
model order 54 

0.39% 1.57% 1.50% 0.92% 1.28% 1.70% 2.08% 

damping error 77.3% 9.0% 4.9% 20.0% 7.2% 5.6% 5.6% 

 ζ (53.5 Hz)  
model order 79 

0.36% 1.56% 1.42% 0.50% 0.98% 1.69% 1.97% 

damping error 63.6% 8.3% 0.7% 56.5% 29.0% 5.0% 0.0% 

 ζ (66.0 Hz)  
model order 68 

0.36% 1.57% 1.46% 0.69% 1.12% 1.65% 1.99% 

damping error 63.6% 9.0% 2.1% 40.0% 18.8% 2.5% 1.0% 
Table 7.5: Comparison between varying excitation frequencies. 
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RFP-z detects two different modes at the 1st peak after a certain model order for each case. 1st 
mode’s accuracy decreases as we get closer to that specific model order while the other mode’s 

accuracies generally increase. For this reason, the first accuracy should not be focused on in 
this analysis. Since the other separate mode accuracies do not change significantly, twin modes’ 

accuracies can be taken as references in a general sense. 

The first obvious observation is that the excitation frequency should not be close to the analysis 
band’s lower limit.  

Generally speaking, as the excitation frequency approaches a mode’s natural frequency, 

extraction of that frequency improves. This is observed to an extent, but there are lots of 
exceptions in the results above. This can be attributed to the randomness of the excitation and 
noise in every case, since the code generates a new random vector for every excitation, small 
changes should not determine the derived results. 

Around 40-50 Hz there is a significant improvement in the accuracy. This range includes the 
anti-resonance point and twin modes, whose peaks are not as strong as the separate modes.  

Overall, this subchapter can be concluded by saying that in case of utilizing EMA to a structure 
whose FRF has not well-separated modes, the excitation applied by the shakers should have a 
frequency in the appropriate range. 

 In fact, to avoid this problem a single frequency excitation is never applied in EMA. Instead, 
a random input or a sine sweep, where the excitation frequency varies in a large frequency 
range. Loads with single excitation frequencies (and their harmonics) are not usually there for 
testing purposes but rather come from rotating machinery which introduce an unmeasured 
excitation. 
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7.5 Spectral Line Density 

 
Spectral line density, i.e. frequency resolution plays crucial role in the accuracy of the extraction 
of narrow and steep modes, as they require a good resolution to encompass their data in the 
FRF. The importance of this parameter is explained in chapter 5.4. Also, all the previous 
subchapters do have an inaccurate 1st mode extraction. This is due to having set an inappropriate 
spectral line density. This decision was done to be able to increase the model order up to 80, 
which would be computationally a very inefficient task with more spectral lines. In this 
subchapter the maximum model order is reduced to 30 in order to increase the SLD. 

If we consider the simple case of a random force and a 3% noise in the output signal, utilizing 
EMA, the effect of SLD can be seen in table 7.6. 

mode 1 2 3 4 5 6 7 

fn (analytical) [Hz] 8.09 24.7 35.3 45.0 47.5 53.4 65.9 

 ζ (analytical) 0.22% 1.44% 1.43% 1.15% 1.38% 1.61% 1.97% 

 ζ (2^12 Spectral Lines) 
model order 19 

0.81% 1.61% 1.53% 1.10% 1.43% 1.73% 2.16% 

damping error 268.2% 11.8% 7.0% 4.3% 3.6% 7.5% 9.6% 

 ζ (2^13 Spectral Lines) 
model order 18 

0.56% 1.57% 1.50% 0.91% 1.32% 1.72% 2.12% 

damping error 154.5% 9.0% 4.9% 20.9% 4.3% 6.8% 7.6% 

 ζ (2^14 Spectral Lines) 
model order 26 

0.36% 1.56% 1.49% 0.93% 1.32% 1.70% 2.09% 

damping error 63.6% 8.3% 4.2% 19.1% 4.3% 5.6% 6.1% 

 ζ (2^15 Spectral Lines) 
model order 30 

0.31% 1.56% 1.46% 0.70% 1.18% 1.68% 2.04% 

damping error 40.9% 8.3% 2.1% 39.1% 14.5% 4.3% 3.6% 

 ζ (2^16 Spectral Lines) 
model order 30 

0.30% 1.53% 1.23% - 0.42% 1.55% 1.74% 

damping error 36.4% 6.3% 14.0% - 69.6% 3.7% 11.7% 
Table 7.6: Comparison between varying spectral line densities. 

These results are very interesting. Increasing the spectral line amount definitely improves the 
accuracy of the 1st mode. The other side of the coin is that as the spectral resolution increases 
the required model order increases, and the accuracy of other modes are compromised. The 
reason of this is better seen than explained, increasing the SLD harshly decreases the 
smoothness of the estimated FRF.FRFs of the cases in table 7.6 can be seen in fig. 7.1.  

Unless there is an exceptional case like the 1st mode, spectral line density should not be kept 
high. In the other hand keeping that value low greatly affects the extracted damping ratio too. 
As seen in the first case (212 lines), the damping ratios are all overestimated. This 
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overestimation actually improves the accuracy of the 4th mode’s extraction, which is always 

underestimated and is balanced out in this particular case. 

 

(a)                                                                                               (b) 

 

(c)                                                                              (d) 

 
(e) 

 
Figure 7.1: Effect of SLD on FRF smoothness. The number of spectral lines are respectively 

(a) 212,  (b) 213, (c) 214 , (d)  215 and (e) 216. 
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7.6 Utilizing Automatic Selection Algorithm 

 
In all the cases studied this far there was a significant constraint: Parameters extracted from 
different model orders cannot be used simultaneously, i.e. the best model order is selected and 
only its associated parameters are used to evaluate the accuracy. Although in the selection of 
the model order least squares approximation and damping-model order trend plots are used as 
a guide, the process itself is manual to focus on the appropriate parameter. This is because 
different modal parameters might exhibit their best extraction accuracy in different model 
orders, resulting in that there is not actually a universally best model order.  

In practice, fortunately there is no reason to adhere to this constraint. Instead, there are 
algorithms built for detecting the most accurate extraction of every modal parameter within the 
matrix of parameters including the results of every model order. They can differentiate spurious 
and non-spurious modes, and seek consistently detected modes, or in other words stable modes.  

While sticking to our original constraint gives valuable insights such as the correlation between 
the noise level and the required minimum model order, utilizing automatic combination 
algorithms definitely underlines what to expect in a real practical case. It also eliminates the 
errors caused by the manual selection of the best model order, as observing the data of nearly a 
hundred model orders quickly can naturally end with erratic conclusions. But unfortunately, 
this does not guarantee a better accuracy, as the algorithm does not know the analytical modal 
parameters and select the best extractions based on consistency. 

In this chapter an algorithm designed to detect the optimal extraction parameters specifically 
for RFP-z will be utilized (see [8]). Since EMA is undoubtedly superior to OMA, given that it 
is feasible, their comparison with this algorithm is skipped and the first simulation characteristic 
to be analysed is the noise level. Repeating the simulations carried out for table 7.2 yields the 
results in table 7.7. Control characteristics of the simulation (like the model order, spectral line 
density...) are conserved. 
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mode 1 1* 2 3 4 5 6 7 

fn (analytical) [Hz] 8.09 8.09* 24.7 35.3 45.0 47.5 53.4 65.9 

 ζ (analytical) 0.22% 0.22%* 1.44% 1.43% 1.15% 1.38% 1.61% 1.97% 

 ζ (No Noise) 0.43% 0.46% 1.56% 1.53% 1.23% 1.48% 1.75% 2.25% 

damping error 95.5% 95.5% 8.3% 7.0% 7.0% 7.2% 8.7% 14.2% 

 ζ (3% Output Noise) 0.35% - 1.56% 1.49% 0.89% 1.27% 1.71% 2.09% 

damping error 59.1% - 8.3% 4.2% 22.6% 8.0% 6.2% 6.1% 

 ζ (3% I/O Noise) 0.37% - 1.57% 1.51% 1.05% 1.38% 1.71% 2.10% 

damping error 68.2% - 9.0% 5.6% 8.7% 0.0% 6.2% 6.6% 

 ζ (10% Output Noise) 0.32% - 1.54% 1.39% 0.21% 0.75% 1.62% 1.90% 

damping error 45.5% - 6.9% 2.8% 81.7% 45.7% 0.6% 3.6% 

 ζ (10% I/O Noise) 0.34% - 1.53% 1.32% - 0.59% 1.58% 1.79% 

damping error 54.5% - 6.3% 7.7% - 57.2% 1.9% 9.1% 

Table 7.7: Comparison between varying noise presence utilizing automatic selection algorithm. 

 

The first mode is detected twice in the case with no noise. This due to numerical reasons related 
to absence of the noise, increasing it even to 0.2% eliminates this problem. It is better to ignore 
the accuracies of the first mode until the spectral line density is adjusted later on.  

The twin modes’ accuracy significantly falls with respect to manual picking. This is natural 

since those two modes were taken as reference for handpicking the best model order. Also, 
especially 4th mode’s extracting damping ratio generally increases with the model order and 
does not converge before the 80th model order, so it is harder to detect a consistent damping 
ratio for that specific mode.  

The well separated modes do not exhibit a significant change in accuracy. 

Analysis of the force typology’s effect will be done under two different conditions like the 

previous instance, the first of which is the presence of both input and output noise (table 7.8). 
In the second case the input noise is assumed to be negligible (table 7.9). Note that the harmonic 
contributions of the excitations below are applied at a frequency of 35.32 𝐻𝑧 which 
corresponds to the 3rd mode. 
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mode 1 2 3 4 5 6 7 

fn (analytical) [Hz] 8.09 24.7 35.3 45.0 47.5 53.4 65.9 

 ζ (analytical) 0.22% 1.44% 1.43% 1.15% 1.38% 1.61% 1.97% 

 ζ (Purely Random) 0.37% 1.57% 1.51% 1.05% 1.38% 1.71% 2.10% 

damping error 68.2% 9.0% 5.6% 8.7% 0.0% 6.2% 6.6% 

 ζ (High Random Hybrid) 0.38% 1.56% 1.51% 0.98% 1.34% 1.71% 2.09% 

damping error 73.6% 8.6% 5.7% 15.1% 2.6% 6.5% 6.3% 

 ζ (Moderate Random Hybrid) 0.38% 1.49% 1.41% 0.53% 0.97% 1.62% 1.97% 

damping error 72.1% 3.4% 1.2% 54.1% 29.7% 0.3% 0.2% 

 ζ (Low Random Hybrid) - - - - - - - 

damping error - - - - - - - 

 ζ (Purely Harmonic) - - - - - - - 

damping error - - - - - - - 
Table 7.8: Comparison between varying force typologies with the presence of noise in input & output 

utilizing automatic selection algorithm. 

 

 

mode 1 2 3 4 5 6 7 

fn (analytical) [Hz] 8.09 24.7 35.3 45.0 47.5 53.4 65.9 

 ζ (analytical) 0.22% 1.44% 1.43% 1.15% 1.38% 1.61% 1.97% 

 ζ (Purely Random) 0.38% 1.57% 1.50% 1.02% 1.35% 1.72% 2.10% 

damping error 73.1% 8.8% 4.9% 11.5% 2.5% 6.8% 6.5% 

 ζ (High Random Hybrid) 0.37% 1.56% 1.47% 0.73% 1.18% 1.69% 2.06% 

damping error 69.8% 8.5% 3.1% 36.2% 14.8% 5.2% 4.4% 

 ζ (Moderate Random Hybrid) 0.36% 1.55% 1.42% 0.45% 0.97% 1.65% 1.98% 

damping error 63.4% 7.8% 0.6% 60.5% 29.8% 2.2% 0.3% 

 ζ (Low Random Hybrid) 0.38% 1.06% - - - - - 

damping error 73.0% 26.7% - - - - - 

 ζ (Purely Harmonic) - - - - - - - 

damping error - - - - - - - 
Table 7.9: Comparison between varying force typologies with the presence of noise only in output 

utilizing automatic selection algorithm. 
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From the data above it is observed that increasing the harmonic contribution of the excitation 
results in an improvement of the extraction accuracy of well separated modes, up to a point. 
Increasing the harmonic contribution further has a sudden adverse effect, rendering almost all 
modes undetectable by RFP-z. The twin modes on the other hand have their extraction accuracy 
fall steeply with increasing harmonic contribution. Since they count as the bottleneck of the 
overall accuracy, it can be derived that more random a signal is, more accurate its extraction 
gets. This confirms with the fact that in practice 2 major methods of performing experimental 
modal analysis is either supplying a random excitation or performing a sine sweep. The latter 
is justified by the fact that a moderate amount of harmonic excitation contribution actually 
improves the extraction of that specific frequency. It is clear that the 3rd mode’s extraction gets 

better by shifting the forces typology to harmonic, up to a point. 

The next batch of simulations is dedicated to see the effect of the harmonic excitation frequency. 
The excitation also includes a moderate amount of random contribution to guarantee some level 
of accuracy. Only a 3% noise in the output is included. 

 

mode 1 2 3 4 5 6 7 

fn (analytical) 
[Hz] 

8.09 24.7 35.3 45.0 47.5 53.4 65.9 

 ζ (analytical) 0.22% 1.44% 1.43% 1.15% 1.38% 1.61% 1.97% 

 ζ (8.1 Hz) - - - - - - - 

damping error - - - - - - - 

 ζ (24.7 Hz) 0.34% 1.51% 0.76% - - 1.15% 1.26% 

damping error 54.8% 4.6% 46.7% - - 28.5% 35.8% 

 ζ (35.3 Hz ) 0.36% 1.55% 1.42% 0.45% 0.97% 1.65% 1.98% 

damping error 63.4% 7.8% 0.6% 60.5% 29.8% 2.2% 0.3% 

 ζ (40.5 Hz) 0.39% 1.56% 1.49% 0.95% 1.30% 1.71% 2.08% 

damping error 75.1% 8.3% 4.2% 17.2% 5.7% 6.2% 5.5% 

 ζ (45.0 Hz) 0.36% 1.56% 1.48% 0.84% 1.26% 1.71% 2.07% 

damping error 65.9% 8.5% 3.4% 26.6% 8.8% 6.1% 5.2% 

 ζ (47.6 Hz) 0.37% 1.57% 1.48% 0.90% 1.28% 1.70% 2.08% 

damping error 70.1% 9.0% 3.5% 21.3% 7.4% 5.8% 5.4% 

 ζ (53.5 Hz) 0.32% 1.56% 1.38% 0.13% 0.77% 1.61% 1.94% 

damping error 47.5% 8.2% 3.4% 88.7% 44.3% 0.2% 1.6% 

 ζ (66.0 Hz) 0.37% 1.56% 1.44% 0.55% 1.06% 1.68% 1.99% 

damping error 68.8% 8.0% 1.0% 52.2% 23.2% 4.1% 0.9% 
Table 7.10: Comparison between varying excitation frequencies utilizing automatic selection 

algorithm. 
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Data above resonates with the conclusions drawn in chapter 7.4. Frequency range of 40-50 Hz 
represent the band with most accurate result. This is because it corresponds to the range of anti-
resonance and the twin modes. Also, it is very clear that every well-separated mode is extracted 
most accurately when an excitation with a frequency that correspond to their natural frequency 
is applied. Additionally, it is evident that applying an excitation close to the limits of the 
analysis band should be avoided. 

To focus on the 1st mode’s extraction accuracy, spectral line density should be tweaked. Table 

7.11 contains the accuracy results of different frequency resolution values. The excitation is 
random in nature and a noise of 3% is included in the output channels. 

 

mode 1 2 3 4 5 6 7 

fn (analytical) [Hz] 8.09 24.7 35.3 45.0 47.5 53.4 65.9 

 ζ (analytical) 0.22% 1.44% 1.43% 1.15% 1.38% 1.61% 1.97% 

 ζ (2^12 Spectral Lines) 0.72% 1.60% 1.53% 0.42% 1.00% 1.74% 2.15% 

damping error 226.0% 10.8% 7.2% 63.5% 27.4% 7.9% 9.3% 

 ζ (2^13 Spectral Lines) 0.55% 1.58% 1.51% 0.96% 1.35% 1.73% 2.13% 

damping error 151.6% 9.5% 5.9% 16.2% 2.5% 7.4% 8.3% 

 ζ (2^14 Spectral Lines) 0.34% 1.57% 1.50% 1.05% 1.37% 1.72% 2.10% 

damping error 55.8% 8.9% 5.2% 9.0% 0.8% 6.9% 6.8% 

 ζ (2^15 Spectral Lines) 0.30% 1.56% 1.48% 0.89% 1.25% 1.70% 2.07% 

damping error 37.7% 8.6% 3.5% 22.9% 9.4% 5.7% 4.8% 

 ζ (2^16 Spectral Lines) 0.26% 1.56% 1.34% 0.03% 0.61% 1.60% 1.85% 

damping error 18.5% 8.1% 6.4% 97.8% 56.0% 0.4% 5.9% 
Table 7.11: Comparison between varying spectral line densities utilizing automatic selection 

algorithm. 

 

The results are more accurate than the case with manual selection of the best mode. It is 
interesting to see that every mode follows a different trend when increasing frequency 
resolution. A general conclusion can be drawn: If a mode peak is high and close to the analysis 
band limit, then it is a necessity to increase the spectral line amount. The first mode’s increase 

in accuracy clearly underlines this. Also, the 1st , 2nd and the 5th mode peaks, which are the 
highest among all peaks, share the trend of increasing accuracy vs. the frequency resolution. 
Lower mode peaks actually do have a sweet spot, 215 for well separated modes and 214 for the 
twin modes, which are especially sensitive to the change in the spectral line density. 

While the results in the table above clearly show the effects of increasing the frequency 
resolution, it does not reflect the expected RFP-z accuracy in a practical case because there are 
ways to improve it. Simply narrowing the analysis band to encompass only modes which are 
hard to detect, 4 and 5 in our case, improves the result as seen in table 7.12. This prevents the 
algorithm to not see the majority of the twin modes as the contribution of other modes. 
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mode 4 5 

fn (analytical) [Hz] 45.0 47.5 

 ζ (analytical) 1.15% 1.38% 

 ζ (2-80) 0.03% 0.61% 

damping error 97.8% 56.0% 

 ζ (38-50) 0.57% 1.81% 

damping error 50.6% 31.5% 

 ζ (39-49) 0.77% 1.54% 

damping error 33.2% 11.8% 

 ζ (40-49) 0.97% 1.81% 

damping error 15.4% 31.3% 
Table 7.12: Effect of narrowing down the analysis band on hard-to-detect modes. 

 

It should be noted that the automatic selection algorithm functions only when at least two 
modes are detected by RFP-z (in order to have a MAC ‘matrix’). Due to this reason analysis 

band cannot be narrowed down on individual peaks. Also, appropriate amount of margin 
needs to be present to not crop the peaks and thus lose information. As it can be examined, 
analysis band’s final limits are kept at 40 and 49 Hz, narrowing the band further results in 
RFP-z not detecting 2 distinct modes. 
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APPENDIX A  - Calculation of Unknown 
Vectors 
 

Eq. 2.10 can be simplified into Eq. 2.11 by utilizing some properties of matrix calculus. The 

starting point is:  

[
𝑨1
⋮

𝑨𝑁𝐹𝑅𝐹

] 𝒂 + [
−𝑩 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ −𝑩

] {
𝒃1
⋮

𝒃𝑁𝐹𝑅𝐹

} =  {

𝒘1
⋮

𝒘𝑁𝐹𝑅𝐹

}                                                                 (𝐴. 1) 

This linear system can be opened up for an m-th generic FRF as: 

𝑨𝑚𝒂 − 𝑩𝒃𝑚 −𝒘𝒎 = 𝒆𝑚                                                                                                                 (𝐴. 2) 

Where 𝒆𝑚 is the vector that considers the error between the measured FRF and the assumed 
model. To find the best fitting 𝒂 and 𝒃𝑚 vectors, the algorithm minimizes the sum of errors 
present in every spectral line of m FRFs, defined as  𝐸𝑚 = 𝒆𝑚

𝐻 𝒆𝑚. The global error is thus 
defined as: 

𝐸 = ∑ 𝐸𝑚

𝑁𝐹𝑅𝐹

𝑚=1

= ∑ 𝒆𝑚
𝐻 𝒆𝑚

𝑁𝐹𝑅𝐹

𝑚=1

= Re ∑ [(𝑨𝑚𝒂− 𝑩𝒃𝑚 − 𝒘𝒎)(𝑨𝑚𝒂 − 𝑩𝒃𝑚 −𝒘𝒎)
𝐻]

𝑁𝐹𝑅𝐹

𝑚=1

 (𝐴. 3) 

 
To find the optimum values in which 𝐸 is minimum, we should find when its derivative with 
respect to those vectors correspond to 0. Matrix Calculus rules state for generic x, z and Y: 

𝜕(𝒙𝑇𝒀𝒛)

𝜕𝒙
=  𝒀𝒛                                                                                                                                               

𝜕(𝒙𝑇𝒀𝒛)

𝜕𝒛
=  𝒀𝒙                                                                                                                                   (𝐴. 4) 

Expanding (A.3) and applying rules in (A.4) yields: 

𝜕𝐸

𝜕𝒂
= 2 ∑ (Re[𝑨𝑚

𝐻𝑨𝑚]𝒂 − Re[𝑨𝑚
𝐻𝑩]𝒃𝑚 − Re[𝑨𝑚

𝐻𝒘𝑚])

𝑁𝐹𝑅𝐹

𝑚=1

= 0                                             (𝐴. 5) 

𝜕𝐸

𝜕𝒃𝑚
= −2Re[𝑩𝐻𝑨𝑚]𝒂 + 2Re[𝑩

𝐻𝑩]𝒃𝑚 + 2Re[𝑩
𝐻𝒘𝑚]) = 0                                              (𝐴. 6) 

Note that the sum is not present because vectors 𝒃𝑚 are all independent from each other. Eq. 
(A.6) yields: 

𝒃𝑚 = (Re[𝑩𝐻𝑩])−1(Re[𝑩𝐻𝑨𝑚]𝒂 − Re[𝑩
𝐻𝒘𝑚])                                                                    (𝐴. 7)  

Efficient way of taking the inverse of (Re[𝑩𝐻𝑩])−1 is explained in the original paper. 
Substituting (A.7) into (A.6) and simplifying it result as: 

𝑹𝒂 = 𝒓                                                                                                                                                  (𝐴. 8) 
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APPENDIX B  - Calculation of Normalized 
Residues 
 

Calculation of the normalized residues in Eq. (2.19) is derived from the definitions of the 

responses 𝐻𝑘  in Eq. (2.5) and Eq. (2.8). Placing two definitions in the same equation yields: 

𝐻𝑘 = 
𝑏1𝑧𝑘 +⋯+ 𝑏2𝑛𝑧𝑘

2𝑛

𝑎0 + 𝑎1𝑧𝑘 +⋯+ 𝑎2𝑛−1𝑧𝑘
2𝑛−1 + 𝑧𝑘

2𝑛  = ∑�̅�𝑟
𝑧𝑘

𝑧𝑘 − 𝑧𝑟
 

2𝑛

𝑟=1

                                             (𝐵. 1) 

By multiplying both sides with (𝑧𝑘 − 𝑧𝑠) where 𝑧𝑠 ≠ 𝑧𝑟 we get: 

𝑏1𝑧𝑘 +⋯+ 𝑏2𝑛𝑧𝑘
2𝑛

(𝑧𝑘 − 𝑧1) ∗ … ∗ (𝑧𝑘 − 𝑧𝑠) ∗ … ∗ (𝑧𝑘 − 𝑧2𝑛)
(𝑧𝑘 − 𝑧𝑠) =  ∑�̅�𝑟

𝑧𝑘
𝑧𝑘 − 𝑧𝑟

(𝑧𝑘 − 𝑧𝑠)

2𝑛

𝑟=1

      (𝐵. 2) 

This can be rewritten as: 

𝑏1𝑧𝑘 +⋯+ 𝑏2𝑛𝑧𝑘
2𝑛

∏ (𝑧𝑘 − 𝑧𝑟)𝑟≠𝑠
= �̅�𝑠𝑧𝑘 +∑�̅�𝑟𝑧𝑘

(𝑧𝑘 − 𝑧𝑠)

(𝑧𝑘 − 𝑧𝑟)
𝑟≠𝑠

                                                                   (𝐵. 3) 

Calculating in 𝑧𝑘 = 𝑧𝑠 gives: 

�̅�𝑠𝑧𝑠 =
𝑏1𝑧𝑘+⋯+ 𝑏2𝑛𝑧𝑘

2𝑛

∏ (𝑧𝑠− 𝑧𝑟)𝑟≠𝑠
                                                                                                                       (𝐵. 4)  

And thus: 

𝐴𝑠̅̅ ̅ =  
𝑏1𝑧𝑠 +⋯+ 𝑏2𝑛𝑧𝑠

2𝑛

𝑧𝑠 ∗ ∏ (𝑧𝑠 − 𝑧𝑟)𝑟≠𝑠 
                                                                                                                (𝐵. 5) 

With this formula the normalized residues 𝐴𝑠̅̅ ̅ can be easily calculated, remembering that vectors 
𝒃𝑚 are defined as: 

𝒃𝑚 = (Re[𝑩𝐻𝑩])−1(Re[𝑩𝐻𝑨𝑚]𝒂 − Re[𝑩
𝐻𝒘𝑚])                                                                     (𝐵. 6) 
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APPENDIX C  - Main MATLAB Verification 
Code 
 

%Building the numerical FRF with extracted poles and zeros 

clear all 

close all hidden 

 

dir_exe= 'C:\Users\Batuhan\SIMOMIMO\TEZ\'; % .m files 

dir_resu='C:\Users\Batuhan\SIMOMIMO\TEZ\Resu\';% Folder containing results 

dir_data='C:\Users\Batuhan\SIMOMIMO\TEZ\Data\';% Folder containing true data 

dir_alpha='C:\Users\Batuhan\SIMOMIMO\TEZ\Alpha\';%Folder containing FRF_rec.m FRFs 

fmin=2;   % Lower limit of the frequency band to analyse (7 dof case) 

fmax=80.0;   % Upper limit of the frequency band to analyse (fmax<Fs/2) (7 dof 

case) 

resol=8192;        %resolution of True FRF (DO NOT CHANGE) 

SIMOinp = 3;            %Dof in which the force is applied 

analyzeMO = 10; %Model order to be graphed and MAC 

anmorange_from = 10; %model order to be analyzed from 

anmorange_to = 30; %model order to analyze to 

 

 

str=['cd ' dir_resu ';']; 

eval(str); 

load matmodi 

load modi_modello 

str=['cd ' dir_exe ';']; 

eval(str); 

 

n = size(matmodi, 2);       %model order 

temp = size(matmodi ,1); 

MAXFRF = (temp/n)-2;        %number of output channels 

minvec = zeros(n,1);        %for error calculation later 

clear temp 

 

str=['cd ' dir_data ';']; 

eval(str); 

load check 

str=['cd ' dir_exe ';']; 

eval(str); 

 

%diagonal elements a & b 

a = (conj(teta))'*AA*teta; 

a = diag(a); 

b = (conj(teta))'*BB*teta; 

b = diag(b); 

 

%True numerical FRF 

DofTrue = size(fr,1); 

omegaTrue = 2*pi*fr; 

ff=linspace(fmin,Fs/2,resol); 

step=(fmax-Fs/2)/(resol-1); 

FRF = zeros(DofTrue, DofTrue, length(ff)); 

tic 

for ii=1:DofTrue 

    for j=1:DofTrue 

        for fff=1:resol 

            %FRF(ii,j,fff) = FRF_NUMinv(M, K, C0, fff, ii, j, ff); 

            FRF(ii,j,fff) =FRF_NUM(teta, lam, fff, ii, j, ff, DofTrue, a, b); 

        end 
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    end 

end 

toc 

 

%set plotband 

delta=abs(ff - fmin); 

[xxx inmin] = min(delta); 

fmin=ff(inmin); 

delta=abs(ff - fmax); 

[xxx inmax] = min(delta); 

fmax=ff(inmax); 

clear xxx 

plotband = ff(inmin:inmax); 

 

FRFNUMSUM=zeros(resol,1); 

figure 

for ii=1:DofTrue 

    forplot=zeros(1,resol); 

    forplot=squeeze(FRF(ii,SIMOinp,:)); 

    semilogy(plotband,abs(forplot(inmin:inmax))) 

    xlabel('Frequency (Hz)') 

    ylabel('ANALYTICAL FRF') 

    grid on 

    zoom on 

    hold on 

    FRFNUMSUM = FRFNUMSUM + abs(forplot); 

end 

figure 

semilogy(plotband,abs(FRFNUMSUM(inmin:inmax))) 

xlabel('Frequency (Hz)') 

ylabel('SUM OF ANALYTICAL FRF') 

grid on 

zoom on 

hold on 

 

%ANALYTICAL VALUES 

 

fana = abs(lam)/(2*pi); 

zana = real(lam)./abs(lam); 

 

%Obtaining the results of FRF_rec.m 

 

str=['cd ' dir_alpha ';']; 

eval(str); 

for k=1:7 

    str=['load FRF_' num2str(k) '.mat FRF_' num2str(k) ';']; 

    eval(str); 

end 

load FRFSum.mat FRFSum 

FRFSum = DofTrue * FRFSum; 

 

%str=['Experimental FRF']; 

%figure('Name', str) 

%semilogy(plotband, abs(FRFSum(inmin:inmax))) %Because in FRF_rec.m FRFSum = 

TxySum/ndof; 

%xlabel('Frequency (Hz)') 

%ylabel('SUM OF EXPERIMENTAL FRF') 

%grid on 

%zoom on 

%hold on 

 

str=['cd ' dir_resu ';']; 

eval(str); 

load matmodi 

str=['cd ' dir_exe ';']; 

eval(str); 
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for k=anmorange_from:anmorange_to  %k=5:n     %cycle on model order 

   %initialisation 

   resir = zeros(k, MAXFRF);     %residues 

   freqr = zeros(k,1);           %frequency 

   omegr = zeros(k,1);           %frequency in rad/s 

   zetar = zeros(k,1);           %damping ratio 

   polir = zeros(k,1);           %poles 

   for j=1:k                  %cycle to get values from matmodi 

       freqr(j,1) = matmodi((k-1)*(2+MAXFRF)+1,j); 

       zetar(j,1) = -matmodi((k-1)*(2+MAXFRF)+2,j);    %- because in matmodi zr 

values are negative 

       for ii=1:MAXFRF 

           resir(j,ii) = matmodi((k-1)*(2+MAXFRF)+(2+ii),j); 

           resir(j,ii) = Fs .* resir(j,ii) ./ ((Fs/2)/(fmax-fmin)); %We multiply 

residues with sampling freq. 

       end 

   end 

   omegr = 2*pi*freqr; 

   for ii=1:k           %Cycle to build poles vector 

       polir(ii,1) = (-zetar(ii,1)*omegr(ii,1) + i*omegr(ii,1)*sqrt(1-

zetar(ii,1)^2)); 

   end 

   FRFEXC = zeros(DofTrue, DofTrue, length(ff));    %initialise extracted FRF 

matrix 

   for ii=1:DofTrue 

       for fff=1:resol 

           %fff is only the index, ff is the vector  from 0 to Fs/2 

           FRFEXC(ii,SIMOinp,fff) = FRF_EXC(resir, polir, ii, fff, k, ff); 

%SIMOinp=3, we are only interested in that column 

       end 

   end 

   str = ['Model Order' num2str(k)]; 

   FRFEXCSUM = zeros(resol,1); 

   for ii=1:DofTrue %Cycle to compute som of all FRFs 

       forplot=zeros(1,resol); 

       forplot=squeeze(FRFEXC(ii,SIMOinp,:)); 

       FRFEXCSUM = FRFEXCSUM + abs(forplot); 

   end 

   if k == analyzeMO %manually set to avoid a lot of windows 

    figure('Name', str) 

    semilogy(plotband,abs(FRFEXCSUM(inmin:inmax))) %I can probably omit abs() 

    xlabel('Frequency (Hz)') 

    ylabel('SUM OF EXTRACTED FRF') 

    grid on 

    zoom on 

    hold on 

   end 

 

%BEST MODEL ORDER IS SELECTED IN LEAST SQUARES SENSE 

ERROR = zeros(resol,1); 

ERROR = (FRFNUMSUM(inmin:inmax) - FRFEXCSUM(inmin:inmax)).^2; 

SUMERROR = sum(ERROR); 

str = ['Error of model order ' num2str(k) ' is ' num2str(SUMERROR)]; 

disp(str); 

minvec(k,1) = SUMERROR; 

 

 

end 

 

minvec = minvec(anmorange_from:anmorange_to); 

[minerr, index] = min(minvec); 

BMO = index+anmorange_from-1; %Best Model Order 

str = ['model of order ' num2str(BMO) ' has the minimum total error, which is ' 

num2str(minerr)]; 

disp(str); 
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BMO = analyzeMO;  %To manually set model order to examine 

%MAC 

resir = zeros(DofTrue); 

for j=1:DofTrue                  %cycle to get values from matmodi 

     for ii=1:MAXFRF 

           resir(j,ii) = matmodi((BMO-1)*(2+MAXFRF)+(2+ii),j); 

           resir(j,ii) = Fs .* resir(j,ii) ./ ((Fs/2)/(fmax-fmin)); %We multiply 

residues with sampling freq. 

     end 

end 

 

MAC = zeros(DofTrue); 

for i=1:DofTrue 

    for j=1:DofTrue 

        A1 = squeeze(resir(i,:)); 

        T1 = squeeze(modes(:,j)); 

        A2 = A1'; 

        T2 = T1'; 

        %dot product 

        nom = 0; 

        for k=1:DofTrue 

            temp = A2(k)*T1(k); 

            nom = nom+temp; 

        end 

        nom = abs(nom)^2; 

        denom1 = 0; 

        for k=1:DofTrue 

            temp = A2(k)*A1(k); 

            denom1 = denom1+temp; 

        end 

        denom2 = 0; 

        for k=1:DofTrue 

            temp = T2(k)*T1(k); 

            denom2 = denom2+temp; 

        end 

        MAC(i,j) = nom / (denom1*denom2); 

    end 

end 

xlswrite('MAC.xls',MAC); 
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APPENDIX D  - Auxiliary MATLAB functions 
 

function [res] = FRF_NUMinv(M, K, C0, fff, ii, jj, ff) 

 

 

om = ff(1,fff)*2*pi; 

temp= K - (om^2) * M + i*om*C0; 

temp=inv(temp); 

res=temp(ii,jj); 

 

end 

 

function [SUM] = FRF_NUM(teta, lam, fff, ii, j, ff, DofTrue, a, b) 

 

SUM = 0; 

om = ff(1,fff)*2*pi; 

for k=1:2*DofTrue 

    den=b(k)+i*om*a(k); 

    A = teta(ii,k)*teta(j,k)./den; 

    SUM = SUM + A; 

 

end 

 

function [SUM] = FRF_EXC(resir,polir,ii,fff, n, ff) 

 

SUM = 0; 

om = ff(1,fff)*2*pi; 

for k=1:n 

    if polir(k,1) ~= 0 

        temp=resir(k,ii)/((i*om)-polir(k,1)); 

        tempcon = conj(resir(k,ii))/((i*om)-conj(polir(k,1))); 

    else 

        temp = 0; 

        tempcon =0; 

    end 

        SUM = SUM + temp + tempcon; 

end 

end 
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