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Abstract 

A non-destructive method for the residual stresses evaluation in welded joints is here  

proposed. Conventional residual stress determination techniques are based on the 

destruction of the original material stress state that causes a relaxation, hence is not possible 

to use those  methods on working components. The proposed method provides for an active 

lock-in infrared thermography analysis by  means of a FLIR thermal camera and an exciting 

laser head for the evaluation of the thermal  diffusivity. In general, it is possible to relate 

the thermal diffusivity to the diffusion length, which is the  ability of a thermal wave with 

a known wavelength to penetrate inside the sample, using the  phase contrast trend as a 

function of the distance from the laser spot. Through the variation in  diffusivity is possible 

to investigate the level of anisotropy in the Heat Affected Zone (HAZ).  On the basis of 

these considerations, tests were run by varying thermal source parameters, as  laser power 

level and number of impulses in the time unit. The post-processing of the experimental data 

needs to face high noise to signal ratio and  phase mapping extraction algorithm, therefore 

Single Value Decomposition (SVD)-denoising  and lock-in amplifier techniques were 

implemented in a Matlab script. Thus, the diffusivity is expected to be dependent on the 

local characteristics in the joint and  varying through the different directions Preliminary 

experimental results obtained on custom made welded joint samples are presented and 

discussed 
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Introduction and principles 

This work born from the collaboration between ADES Group and DiMeAs department of 

Politecnico di Torino. 

Active infra-red thermography (Active IRT) is becoming widely used as effective non 

destructive testing for defect investigation. 

However the application of this technology  for residual stresses on welded joint 

investigation has not been studied. In addition the the close dependence of the of the results 

by the environmental condition of the test and the surface thermal properties makes difficult 

the calibration of this model. So, a pure qualitative comparison between different 

specimens can’t work and all the phenomena involved in the technique needs to be taken 

into account. Thus an accurate study of the state of art has been done to understand the 

feasibility of a new method for the detection and characterization of residual stresses 

presence and severity. 

The active-IRT technique consists in recording and analysing the thermal response of a 

component subjected to an external heat excitation. The thermogram resulting from the test 

is the record of the infra-red spectrum of  light which is calibrated by knowing ambient 

parameter and emissivity of the investigated specimen to pass from the wave’s  energy to 

a temperature value.[1] 

 

 

 

Then will follow some basics definitions that must be reminded before going through the 

problem 

By the definition of black body, an ideal surface which only absorb energy, is possible to 

define the emissivity for the whole spectrum as: 

𝐸𝐸𝑏𝑏 = 𝜎𝜎 ∗ 𝑇𝑇4 
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Where 𝜎𝜎 is the Stefan-Boltzmann constant and T the absolute temperature. The real 

component won’t follow exactly this law because  is capable to transmit and reflect 

radiative energy. This is valid for the test article, the ambient where the test is performed, 

the atmosphere.  

So, the energy detected by the camera will be: 

𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇 = 𝐸𝐸𝑜𝑜𝑏𝑏𝑜𝑜 + 𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎 

Where Etot is the total energy detected, Eobj is the energy emitted by the component being 

tested, Erefl is the energy reflected by the ambient, Eatm is the energy emitted by the 

atmosphere. In real component the phenomenon is dependent by the frequency range 

 

Different material properties and geometries affects the the thermal diffusivity, this can be 

read as different thermal dynamic behaviour of the investigated zone. The main  techniques 

work on this principle. By studying the thermogram resulting from a dynamic thermal 

excitation is possible detect flaws in the material, the most used technique are the pulsed 

and lock-in thermography.  

The governing equation of the physic of the problem is the Fourier equation: 

𝛿𝛿𝑇𝑇
𝛿𝛿𝛿𝛿

= 𝛼𝛼
 𝛿𝛿2𝑇𝑇
𝛿𝛿𝑧𝑧2

 

Where: 

• T is the temperature in [K] 

• α is the thermal diffusivity [m2 /s] defined as: 

𝛼𝛼 =
𝑘𝑘
𝜌𝜌𝜌𝜌

 

Where k is the thermal conductivity [W/(mK)], ρ the density [Kg/m3] and c the specific 

heat[J/(KgK)] 
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State of art  

Residual Stresses investigation 

From [2] a investigation through laser beam lock-in thermography on residual stresses has 

been performed on plastically deformed specimen. 

This work perform both a quantitative and qualitative analysis to show the effect of the 

anisotropy induced by plastic deformation of the steel on thermal properties. A similar 

approach will be  used in this work. 

 

 

 

The specimen is excited locally using a laser beam, then the phase of the thermal response 

is used to characterize the thermal diffusivity, in the end a comparison is done between 

different areas of the specimen.  

 

Φ(𝑟𝑟) = Φ𝑜𝑜 −
𝑟𝑟
𝜇𝜇

 

 

Where: 

• Ф Phase 

• r distance from the laser spot 

• μ thermal diffusion length defined as: 

 

𝜇𝜇 = �
𝐷𝐷
𝜋𝜋𝜋𝜋
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where: 

• D thermal diffusivity 

• f modulation frequency of the laser 

So the thermal diffusion length take the meaning of the slope of the phase in relation to the 

distance from the laser spot 

In the image is possible to see the phase map of the thermal response, the phase obtained 

in the plastically deformed zone shows clearly an anisotropy. 

 

 

So the idea is to quantitatively characterize the anisotropy by means of the thermal 

diffusivity. 
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Then cutting the phase map through the two perpendicular axis x and y and confronting it 

can be seen that the phase has two different slope in the case of the test performed in the 

plastical deformed zone while the slope is the same in the isotropic zone. 

 

 

 

Thermal diffusivity as a function of the distance from the failure  plane. The reported values 

have been respectively obtained considering the profiles parallel (squares) and orthogonal 

(triangles) to the direction x of the applied tensile load 

 

 



State of art 

11 

 

Therefore the plastic deformation induces a change in thermal diffusivity, this can be 

qualitatively related to microhardness and microstructure 

 

  

 

Micrographs respectively corresponding to the surface areas close to the failure plane (left) 

and 4 cm far from it (right) 
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Analytical model: Quantitative analysis of diffusivity 

The work  [3] investigates the effect of boundary condition to have good thermal diffusivity 

measurement of thin/thick plates, even in the case of anisotropy, using laser beam lock-in 

thermography. 

While in some case we can say that there is a linear relation between the phase of the surface 

temperature and the lateral distance of the heating spot, such as in the case of stiff plates 

where we can neglect the heat losses, this is not always true. Starting from an analytical 

model is possible to asses the measurement in case of thin plates and filaments  

 

 

 

 

Here  is reported the analytical study of [3]for an anisotropic slab. 

 

Let us consider a slab of thickness l, heated by a laser beam of power P0 with a gaussian 

profile of radius a(at 1/e2) and modulated at frequency f. 
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𝑇𝑇𝑎𝑎𝑎𝑎(𝑥𝑥,𝑦𝑦, 𝑧𝑧) =  � � 𝑒𝑒−𝑖𝑖(𝑥𝑥𝑥𝑥+𝑦𝑦𝜂𝜂)[𝐴𝐴′𝑒𝑒𝛾𝛾𝛾𝛾 + 𝐵𝐵′𝑒𝑒−𝛾𝛾𝛾𝛾]𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
∞

−∞

∞

−∞

 

 

Where λ, η are the Fourier Variables and 𝛾𝛾2 = 𝐷𝐷𝑥𝑥𝑥𝑥2+𝐷𝐷𝑦𝑦𝑥𝑥2+𝑖𝑖𝑖𝑖
𝐷𝐷𝑧𝑧

. A’ and B’ are constants to be 

determined from the heat flux continuity at the sample surface. 

 

𝐾𝐾𝛾𝛾
𝜕𝜕𝑇𝑇𝑎𝑎𝑎𝑎
𝜕𝜕𝑧𝑧 �

𝛾𝛾=0
+ ℎ𝑜𝑜𝑇𝑇𝑎𝑎𝑎𝑎|𝛾𝛾=0 =

𝑃𝑃0
4𝜋𝜋

� � �𝑒𝑒−𝑖𝑖(𝑥𝑥𝑥𝑥+𝑦𝑦𝜂𝜂)𝑒𝑒−
�𝑥𝑥2+𝜂𝜂2�𝑎𝑎2

8 �𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
∞

−∞

∞

−∞

 

 

𝐾𝐾𝛾𝛾
𝜕𝜕𝑇𝑇𝑎𝑎𝑎𝑎
𝜕𝜕𝑧𝑧 �

𝛾𝛾=−𝑟𝑟
− ℎ1𝑇𝑇𝑎𝑎𝑎𝑎|𝛾𝛾=−𝑟𝑟 = 0 

 

𝑇𝑇𝑎𝑎𝑎𝑎(𝑥𝑥,𝑦𝑦, 𝑧𝑧) =
𝑃𝑃0

4𝑘𝑘𝜋𝜋
� �

𝑒𝑒−𝑖𝑖(𝑥𝑥𝑥𝑥+𝑦𝑦𝜂𝜂)𝑒𝑒−
�𝑥𝑥2+𝜂𝜂2�𝑎𝑎2

8

𝛾𝛾

∞

−∞

∞

−∞

× �
(1 + 𝐻𝐻1′)𝑒𝑒𝛾𝛾𝑟𝑟𝑒𝑒𝛾𝛾𝛾𝛾 + (1 −𝐻𝐻1′)𝑒𝑒−𝛾𝛾𝑟𝑟𝑒𝑒−𝛾𝛾𝛾𝛾

(1 + 𝐻𝐻0′)(1 + 𝐻𝐻1′)𝑒𝑒𝛾𝛾𝑟𝑟 − (1 −𝐻𝐻0′)(1−𝐻𝐻1′)𝑒𝑒−𝛾𝛾𝑟𝑟
� 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑     

 

Where H’0=h0/Kzλ 

Then are analysed two extreme cases of interest : 

• Thermally thin slab 

• Thermally thick slab 

 

Thermally thin slab (l<<μ) 

The equation reduces to  

 

𝑇𝑇𝑎𝑎𝑎𝑎(𝑥𝑥,𝑦𝑦) =

𝑃𝑃0
4𝜋𝜋𝜌𝜌𝜌𝜌𝜋𝜋 ∫ ∫ 𝑒𝑒−𝑖𝑖(𝑥𝑥𝑥𝑥+𝑦𝑦𝜂𝜂) × 𝑒𝑒−

�𝑥𝑥2+𝜂𝜂2�𝑎𝑎2
8∞

−∞
∞
−∞

𝐷𝐷𝑥𝑥𝑑𝑑2 + 𝐷𝐷𝑦𝑦𝑑𝑑2 + 𝑖𝑖𝑖𝑖 + 2ℎ
𝜌𝜌𝜌𝜌𝜋𝜋

 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
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Where 𝜌𝜌𝜌𝜌 = 𝐾𝐾𝑥𝑥
𝐷𝐷𝑥𝑥

= 𝐾𝐾𝑦𝑦
𝐷𝐷𝑦𝑦

= 𝐾𝐾𝑧𝑧
𝐷𝐷𝑧𝑧

  is the heat capacity. 

For a highly focused laser beam (a=0) the precedent equation has analytical solution along 

the principal axes 

 

𝑇𝑇𝑎𝑎𝑎𝑎(𝑥𝑥,𝑎𝑎 = 0) =
𝑃𝑃0

2𝜌𝜌𝜌𝜌𝜋𝜋
1

�𝐷𝐷𝑥𝑥𝐷𝐷𝑦𝑦
𝐾𝐾0(𝜎𝜎𝑥𝑥′𝑥𝑥)  

 

𝑇𝑇𝑎𝑎𝑎𝑎(𝑦𝑦,𝑎𝑎 = 0) =
𝑃𝑃0

2𝜌𝜌𝜌𝜌𝜋𝜋
1

�𝐷𝐷𝑥𝑥𝐷𝐷𝑦𝑦
𝐾𝐾0(𝜎𝜎𝑦𝑦′ 𝑦𝑦)  

 

Where :  𝜎𝜎𝑥𝑥,𝑦𝑦
′2 = 𝑖𝑖𝑖𝑖

𝐷𝐷𝑥𝑥,𝑦𝑦
+ 2ℎ

𝐾𝐾𝑥𝑥,𝑦𝑦𝑟𝑟
 

Using the asymptotic approach for large x and y values the equation reduces to 

 

𝑇𝑇𝑎𝑎𝑎𝑎(𝑥𝑥 → ∞,𝑎𝑎 = 0) ≈
𝑃𝑃0

2𝜌𝜌𝜌𝜌𝜋𝜋
1

�𝐷𝐷𝑥𝑥𝐷𝐷𝑦𝑦
�
𝜋𝜋

2𝜎𝜎𝑥𝑥′
𝑒𝑒−𝜎𝜎𝑥𝑥′𝑥𝑥

√𝑥𝑥

=
𝑃𝑃0

2𝜌𝜌𝜌𝜌𝜋𝜋
1

�𝐷𝐷𝑥𝑥𝐷𝐷𝑦𝑦
�
𝜋𝜋
2

1

�𝜎𝜎𝑥𝑥𝑥𝑥′ + 𝑖𝑖𝜎𝜎𝑥𝑥𝑥𝑥′
 
  𝑒𝑒−𝜎𝜎𝑥𝑥𝑥𝑥

′ 𝑥𝑥

√𝑥𝑥
 𝑒𝑒𝑖𝑖𝜎𝜎𝑥𝑥𝑥𝑥

′ 𝑥𝑥 

 

𝑇𝑇𝑎𝑎𝑎𝑎(𝑦𝑦 → ∞,𝑎𝑎 = 0) ≈
𝑃𝑃0

2𝜌𝜌𝜌𝜌𝜋𝜋
1

�𝐷𝐷𝑥𝑥𝐷𝐷𝑦𝑦
�

𝜋𝜋
2𝜎𝜎𝑦𝑦′

𝑒𝑒−𝜎𝜎𝑦𝑦′𝑦𝑦

�𝑦𝑦

=
𝑃𝑃0

2𝜌𝜌𝜌𝜌𝜋𝜋
1

�𝐷𝐷𝑥𝑥𝐷𝐷𝑦𝑦
�
𝜋𝜋
2

1

�𝜎𝜎𝑦𝑦𝑥𝑥′ + 𝑖𝑖𝜎𝜎𝑦𝑦𝑥𝑥′
 
  𝑒𝑒−𝜎𝜎𝑦𝑦𝑥𝑥

′ 𝑦𝑦

�𝑦𝑦
 𝑒𝑒𝑖𝑖𝜎𝜎𝑦𝑦𝑥𝑥

′ 𝑦𝑦 

 

Where  𝜎𝜎𝑥𝑥𝑥𝑥′ ,𝜎𝜎𝑥𝑥𝑥𝑥′ ,𝜎𝜎𝑦𝑦𝑥𝑥′ ,𝜎𝜎𝑦𝑦𝑥𝑥′  are the real and imaginary part of 𝜎𝜎𝑥𝑥′ ,𝜎𝜎𝑦𝑦′ . 
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The main result from this study is that the phase and the natural logarithm of the 

temperature amplitude multiplied by √𝑥𝑥 𝑜𝑜𝑟𝑟 �𝑦𝑦 have a linear dependence on the distance 

from the laser spot such that the product of the slope is equal to −𝜋𝜋𝜋𝜋/𝐷𝐷𝑥𝑥 and −𝜋𝜋𝜋𝜋/𝐷𝐷𝑦𝑦. 

The finite laser spot size 𝑎𝑎 ≠ 0 does not affect the slopes 

 

Thermally thick slab (l>> μ) 

In this case the surface temperature is given by  

𝑇𝑇𝑎𝑎𝑎𝑎(𝑥𝑥,𝑦𝑦, 𝑧𝑧 = 0) =
𝑃𝑃0

4𝜋𝜋𝐾𝐾𝛾𝛾
� 𝑒𝑒−𝑖𝑖(𝑥𝑥𝑥𝑥+𝑦𝑦𝜂𝜂)   

𝑒𝑒−�𝑥𝑥
2+𝜂𝜂2�𝑎𝑎

2

8

𝑑𝑑 + ℎ0
𝐾𝐾𝛾𝛾

∞

−∞

 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  

 

By numerical simulation has been shown that, in the absence of heat loss, the  natural 

logarithm of the temperature amplitude multiplied by x or y and the phase have linear 

dependence on the distance with the same slope −�𝜋𝜋𝑟𝑟
𝐷𝐷𝑥𝑥

 ,−�
𝜋𝜋𝑟𝑟
𝐷𝐷𝑦𝑦

. Anyway heat losses are 

usually negligible. 

Comments 

In this work a complete investigation of boundary condition has been performed. One of 

the main remark to be consider is the effect of high temperature rise on linearity of the 

physic of the problem.  

This is a big challenge because this leads to low signal to noise ratio so a stiff signal 

processing algorithm is needed , in fact is suggested to use a 2K maximum temperature 

increase over the environmental temperature. 

Another two important suggestion come us by this work, the first is to use a black paint 

layer to asses reflection phenomena, but the thickness of the layer must be negligible with 

respect to the specimen one, the second is to avoid high frequency (>10Hz) to avoid 

diffraction interference. 

Performing the tests in vacuum  suppress convective heat losses, in particular in the case 

of low diffusivity material. 
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SVD-Denoising 

The work [4] present a method for singular value decomposition denoising, the most 

significative parts will be reported here. 

Starting from a theoretical prediction of the root mean square error of the SVD modes, 

which is defined as 

 

𝑟𝑟𝑟𝑟𝑟𝑟𝑒𝑒(ṽ𝒌𝒌) ≡ �
1
𝐷𝐷�

(ṽ𝑖𝑖𝑖𝑖 − 𝑣𝑣𝑖𝑖𝑖𝑖)2
𝐷𝐷

𝑖𝑖=1

�

1
2

 

 

The key idea of our proposed noise filtering method is to use only the modes for which the 

rmse is sufficiently below this noise ceiling. Herein, is proposed the following method for 

minimum loss noise filtering from[4].  

1. Given a noisy data matrix ̃A , perform the SVD (Matlab svd command) to obtain 

𝒖𝒖𝒌𝒌�    𝑟𝑟𝑖𝑖�   𝑣𝑣𝑖𝑖�  

2. Estimate the measurement error ̄𝜖𝜖 and the ‘spatial correlation parameter’ f by fitting a 

Marchenko–Pastur distribution to the tail of the noisy singular values.  

3. (Optional) Infer the ‘effective smoothing window width’,w, from the curve fit, which 

reads 

 

𝑤𝑤 = 1 + �2𝜋𝜋 −
3
2
� �1 − 𝑒𝑒−20(𝑟𝑟−1)� 

 

4. Estimate the root mean square error of the modes: 

 

𝑟𝑟𝑟𝑟𝑟𝑟𝑒𝑒(𝒗𝒗�𝑖𝑖) ≈ 𝑟𝑟𝑖𝑖𝑚𝑚 ��2
𝐷𝐷�  , 𝜀𝜀�

𝑆𝑆𝑘𝑘�
�𝐷𝐷−𝑤𝑤

𝐷𝐷
+ 𝑤𝑤

𝐷𝐷
∑

𝑥𝑥�𝑚𝑚�3𝜆𝜆𝑘𝑘�−𝜆𝜆𝑚𝑚� �

�𝑥𝑥�𝑚𝑚−𝑥𝑥�𝑘𝑘�
2

𝑇𝑇
𝑎𝑎=1
𝑎𝑎≠𝑖𝑖

�

1
2
�   

 

Where 𝑑𝑑𝑖𝑖� ≡ 𝑟𝑟𝑖𝑖2� . 
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 𝑟𝑟𝑖𝑖�  ia the noisy mode k D are the data sites and T the timesteps        

 

5. Estimate the rank for minimum-loss reconstruction as follows: 

𝛿𝛿𝑖𝑖 ≡
𝜋𝜋𝑜𝑜𝑙𝑙�𝑟𝑟𝑟𝑟𝑟𝑟𝑒𝑒(𝐯𝐯�𝑖𝑖)� − 𝜋𝜋𝑜𝑜𝑙𝑙 ��2

𝐷𝐷� �

𝜋𝜋𝑜𝑜𝑙𝑙�𝑟𝑟𝑟𝑟𝑟𝑟𝑒𝑒(𝐯𝐯�1)� − 𝜋𝜋𝑜𝑜𝑙𝑙 ��2
𝐷𝐷� �

 

�̅�𝑟𝑎𝑎𝑖𝑖𝑚𝑚 ≡ maximum k such that 𝛿𝛿𝑖𝑖 > 5% 

 

The parameter tk quantifies the cleanliness of a mode, where t1 = 1 for the first (cleanest) 

mode, and tk = 0 for modes at the noise ceiling (rmse(̃v k) = √ 2∕D) .Modes that are 

sufficiently below this noise ceiling (i.e. that have a large enough tk ) are deemed clean 

enough to be useful for data reconstruction. The threshold in was set at 5% . 

 

6. Reconstruct an estimate of the clean singular values: 

 

𝑆𝑆�̅�𝑖 = ���̌�𝑆𝑖𝑖
2 − (𝜖𝜖′�̂�𝑟𝑖𝑖)2          𝑖𝑖𝜋𝜋 (𝑘𝑘 < 𝑘𝑘𝑎𝑎)

0                                  𝑖𝑖𝜋𝜋 (𝑘𝑘𝑎𝑎 ≤ 𝑘𝑘)
  

 

where𝜖𝜖′�̂�𝑟𝑖𝑖 is a Marchenko–Pastur distribution, and kc is the minimum index k such 

𝑟𝑟𝑖𝑖� < 𝜖𝜖′�̂�𝑟𝑖𝑖 . This cutoff index ensures that  yields a real number, and it sets 𝑟𝑟𝑖𝑖�  to zero for 

modes in the tail of the distribution, which are obliterated by noise Equation follows from 

the observation that  

�̃�𝑆𝑖𝑖2 ≈ 𝑆𝑆𝑖𝑖2 + �𝜖𝜖′�̂�𝑆𝑖𝑖�
2 

 

7. Reconstruct an estimate of the clean data via 

 

𝐀𝐀�𝑟𝑟 = �𝒖𝒖�𝑖𝑖�̅�𝑟𝑖𝑖𝒗𝒗�𝑖𝑖⊺
𝑟𝑟

𝑖𝑖=1
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with r = r̄min  

 

Subsequently the method is improved by mean of singular modes. 

 

For this part of the theory behind the denoising algorithm only the most important related 

to the work [5] parts will be discussed. In particular the part regarding the derivation of the 

approximation of the root mean square error and the canonical angles of the modes will 

not be presented. 

Perturbation theory is used to derive expressions for the expected values and standard 

deviations of the noisy singular values and vectors  

The temporal autocorrelation matrix 𝑯𝑯 ∈ 𝑅𝑅𝑇𝑇×𝑇𝑇  for the analytic data is defined as: 

 

𝐇𝐇 ≡ 𝐀𝐀𝐀𝐀⊺ 

 

The temporal autocorrelation matrix H for the noisy data 𝐀𝐀� = 𝐀𝐀 + 𝐄𝐄 is thus defines as 

 

𝐇𝐇� ≡ 𝐀𝐀�𝐀𝐀�⊺ = 𝐀𝐀𝐀𝐀⊺ + 𝐀𝐀𝐄𝐄⊺ + 𝐄𝐄𝐀𝐀⊺ + 𝐄𝐄𝐄𝐄⊺,≡ 𝐇𝐇 + ε𝐇𝐇� (𝟐𝟐) 

 

where  𝐇𝐇� (1) ≡ 𝐀𝐀𝑬𝑬�⊺ + 𝐄𝐄�𝑨𝑨⊺and𝐇𝐇� (2) ≡ 𝐄𝐄�𝐄𝐄�⊺ 

Continuing with the required definitions, now define the projection matrix 𝑷𝑷 ≡

𝑨𝑨�𝑨𝑨𝑻𝑻𝑨𝑨�−𝟏𝟏 = 𝑼𝑼𝑼𝑼𝑻𝑻, and define the mode k projection matrix by 

𝐏𝐏𝑖𝑖 ≡ 𝐮𝐮𝑖𝑖𝐮𝐮𝑖𝑖⊺  

  

Given vector x , the projection of x onto the column space of  A is Px- , and the projection 

of x onto mode k is Pkx. Since𝑯𝑯𝑷𝑷𝑲𝑲 = 𝑑𝑑𝑖𝑖𝑷𝑷𝒌𝒌, it is natural to consider the reduced resolvent 

matrix 
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𝐐𝐐𝑖𝑖 ≡�
𝐏𝐏𝑜𝑜

𝑑𝑑𝑜𝑜 − 𝑑𝑑𝑖𝑖

𝑇𝑇

𝑜𝑜=1
𝑜𝑜≠𝑖𝑖

 

 

Since𝑷𝑷𝒋𝒋𝑷𝑷𝒌𝒌 = 𝑷𝑷𝒌𝒌𝛿𝛿𝑜𝑜𝑖𝑖, observe that𝑷𝑷𝒌𝒌𝑸𝑸𝒌𝒌 = 𝑸𝑸𝒌𝒌𝑷𝑷𝒌𝒌 = 0, and thus 

𝐐𝐐𝑖𝑖2 ≡�𝑗𝑗 ≠ 𝑘𝑘
𝐏𝐏𝑜𝑜

�𝑑𝑑𝑜𝑜 − 𝑑𝑑𝑖𝑖�
2 

 

We will define the ijth element of several matrices. Repeated indices other than i, j, or k 

indicate implied summation over 1,…, T or 1,…,D. Using index notation (but with no 

implied sum over k), we have 

 

𝐴𝐴𝑖𝑖𝑜𝑜 ≡ 𝑈𝑈𝑖𝑖𝑎𝑎𝑆𝑆𝑎𝑎𝑚𝑚𝑉𝑉𝑜𝑜𝑚𝑚 = 𝑈𝑈𝑖𝑖𝑎𝑎𝑉𝑉𝑜𝑜𝑎𝑎𝑟𝑟𝑎𝑎 

 

𝐻𝐻𝑖𝑖𝑜𝑜 ≡ 𝐴𝐴𝑖𝑖𝑎𝑎𝐴𝐴𝑜𝑜𝑎𝑎 = 𝑈𝑈𝑖𝑖𝑎𝑎𝑈𝑈𝑜𝑜𝑎𝑎𝑟𝑟𝑎𝑎2  

 

𝐻𝐻�𝑖𝑖𝑜𝑜
(1) ≡ 𝐴𝐴𝑖𝑖𝑎𝑎𝐸𝐸�𝑜𝑜𝑎𝑎 + 𝐸𝐸�𝑖𝑖𝑎𝑎𝐴𝐴𝑜𝑜𝑎𝑎 

 

= �𝑈𝑈𝑖𝑖𝑚𝑚𝐸𝐸�𝑜𝑜𝑎𝑎 + 𝐸𝐸�𝑖𝑖𝑎𝑎𝑈𝑈𝑜𝑜𝑚𝑚�𝑉𝑉𝑎𝑎𝑚𝑚𝑟𝑟𝑚𝑚 

 

𝐻𝐻�𝑖𝑖𝑜𝑜
(2) ≡ 𝐸𝐸�𝑖𝑖𝑎𝑎𝐸𝐸�𝑜𝑜𝑎𝑎 

 

(𝐏𝐏𝑖𝑖)𝑖𝑖𝑜𝑜 ≡ 𝑈𝑈𝑖𝑖𝑖𝑖𝑈𝑈𝑜𝑜𝑖𝑖 

 

𝑈𝑈𝑎𝑎𝑖𝑖𝑈𝑈𝑎𝑎𝑖𝑖 = 1 

 

(𝐐𝐐𝑖𝑖)𝑖𝑖𝑜𝑜 ≡ 𝑈𝑈𝑖𝑖𝑎𝑎𝑈𝑈𝑜𝑜𝑎𝑎(𝑑𝑑𝑎𝑎 − 𝑑𝑑𝑖𝑖)−1(1− 𝑑𝑑𝑎𝑎𝑖𝑖) 
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In the case of spatially independent error data. Assuming each element of E, error matrix, 

is independent, identically distributed, all odd powers of E terms are expected to be zero 

for any combination of indices: ⟨Emn⟩ = 0 , ⟨EmnEpqErs⟩ = 0 , and so on. Some even 

power terms are as follows: 

 

〈𝐸𝐸𝑎𝑎𝑚𝑚𝐸𝐸𝑝𝑝𝑝𝑝〉 = 𝜖𝜖2𝛿𝛿𝑎𝑎𝑝𝑝𝛿𝛿𝑚𝑚𝑝𝑝 

 

〈𝐸𝐸𝑎𝑎𝑚𝑚𝐸𝐸𝑝𝑝𝑚𝑚〉 = 𝜖𝜖2𝐷𝐷𝛿𝛿𝑎𝑎𝑝𝑝 

 

〈𝐸𝐸𝑎𝑎𝑚𝑚𝐸𝐸𝑝𝑝𝑝𝑝𝐸𝐸𝑟𝑟𝑟𝑟𝐸𝐸𝑎𝑎𝑡𝑡〉 = 𝜖𝜖4��𝛿𝛿𝑎𝑎𝑝𝑝𝛿𝛿𝑚𝑚𝑝𝑝�(𝛿𝛿𝑟𝑟𝑎𝑎𝛿𝛿𝑟𝑟𝑡𝑡) + (𝛿𝛿𝑎𝑎𝑟𝑟𝛿𝛿𝑚𝑚𝑟𝑟)�𝛿𝛿𝑝𝑝𝑎𝑎𝛿𝛿𝑝𝑝𝑡𝑡� + (𝛿𝛿𝑎𝑎𝑎𝑎𝛿𝛿𝑚𝑚𝑡𝑡)�𝛿𝛿𝑝𝑝𝑟𝑟𝛿𝛿𝑝𝑝𝑟𝑟�� 

 

Error data with spatial correlation can be modeled as that produced by uniform smoothing 

of i.i.d. random data as follows: 

𝑬𝑬𝑎𝑎𝑚𝑚 =
1
𝑤𝑤
�𝐸𝐸�

𝑎𝑎,𝑝𝑝−1+𝑚𝑚−(𝑤𝑤−1)
2�

𝑤𝑤

𝑝𝑝=1

 

 

For proof, consider ⟨E2mn⟩ , with no implied sum over m or n. Note that for the original 

i.i.d. data, ⟨̄E mn ̄E pq⟩ = ̄𝜖𝜖 2 𝛿𝛿 mp 𝛿𝛿nq , so 

 

𝜖𝜖2 = 〈𝐸𝐸𝑎𝑎𝑚𝑚
2 〉 = 〈�

1
𝑤𝑤
�𝐸𝐸�𝑎𝑎𝑚𝑚

𝑤𝑤

𝑚𝑚=1

��
1
𝑤𝑤
�𝐸𝐸�𝑎𝑎𝑝𝑝

𝑤𝑤

𝑝𝑝=1

�〉 =
1
𝑤𝑤2���𝜖𝜖̅2𝛿𝛿𝑚𝑚𝑝𝑝�

𝑤𝑤

𝑝𝑝=1

𝑤𝑤

𝑚𝑚=1

=
𝑤𝑤𝜖𝜖̅2

𝑤𝑤2 =
𝜖𝜖̅2

𝑤𝑤
 

 

Now consider the expected values of other useful E terms. The odd powers are still 

expected to be zero: ⟨Emn⟩ = 0 , ⟨EmnEpqErs⟩ = 0 , and so on. For perturbation theory, we 

are interested in sums across entire rows, such as ∑  ⟨𝐸𝐸𝑎𝑎𝑚𝑚𝐸𝐸𝑝𝑝𝑝𝑝 ̄𝐷𝐷
𝑝𝑝=1 ⟩ This terms are evaluated 

as follows:  
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〈𝐸𝐸𝑎𝑎𝑚𝑚𝐸𝐸𝑝𝑝,𝑚𝑚+1〉 = 〈�
1
𝑤𝑤
�𝐸𝐸�𝑎𝑎𝑚𝑚

𝑤𝑤

𝑚𝑚=1

��
1
𝑤𝑤
� 𝐸𝐸�𝑝𝑝𝑝𝑝

𝑤𝑤+1

𝑝𝑝=2

�〉 =
1
𝑤𝑤2� ��𝜖𝜖̅2𝛿𝛿𝑎𝑎𝑝𝑝𝛿𝛿𝑚𝑚𝑝𝑝�

𝑤𝑤+1

𝑝𝑝=2

𝑤𝑤

𝑚𝑚=1

=
𝑤𝑤 − 1
𝑤𝑤

𝜖𝜖2𝛿𝛿𝑎𝑎𝑝𝑝 

 

〈𝐸𝐸𝑎𝑎𝑚𝑚𝐸𝐸𝑝𝑝,𝑚𝑚+2〉 =
1
𝑤𝑤2� ��𝜖𝜖̅2𝛿𝛿𝑎𝑎𝑝𝑝𝛿𝛿𝑚𝑚𝑝𝑝�

𝑤𝑤+2

𝑝𝑝=3

𝑤𝑤

𝑚𝑚=1

=
𝑤𝑤 − 2
𝑤𝑤

𝜖𝜖2𝛿𝛿𝑎𝑎𝑝𝑝 

 

Thus, the desired cross-sum can be computed as follows: 

�〈𝐸𝐸𝑎𝑎𝑚𝑚𝐸𝐸𝑝𝑝𝑝𝑝〉 = �
1
𝑤𝑤

+
2
𝑤𝑤

+ ⋯+
𝑤𝑤 − 1
𝑤𝑤

+ 1 +
𝑤𝑤 − 1
𝑤𝑤

+⋯+
1
𝑤𝑤
�

𝐷𝐷

𝑝𝑝=1

𝜖𝜖2𝛿𝛿𝑎𝑎𝑝𝑝 = 𝑤𝑤𝜖𝜖2𝛿𝛿𝑎𝑎𝑝𝑝 

 

To make the perturbation theory analysis tractable the following “lumping” approximation 

is made: 

〈𝐸𝐸𝑎𝑎𝑚𝑚𝐸𝐸𝑝𝑝𝑝𝑝〉 = 𝑤𝑤𝜖𝜖2𝛿𝛿𝑎𝑎𝑝𝑝𝛿𝛿𝑚𝑚𝑝𝑝 

 

The approximation in last equation is to set all the q ≠ n terms in sum of errors on D to zero 

and instead to lump the contributions of these terms into the q = n term. The consequence 

of this lumping approximation is that in the perturbation theory analysis, various Apq terms 

are then only evaluated at q = n ; in other words, Apq takes the value Apn over the entire 

smoothing window. Since Apq is expected to vary only slightly over the smoothing 

window, this approximation is justified  With the lumping approximation, the even power 

terms are now given as follows:  

 

〈𝐸𝐸𝑎𝑎𝑚𝑚𝐸𝐸𝑝𝑝𝑝𝑝〉 = 𝑤𝑤𝜖𝜖2𝛿𝛿𝑎𝑎𝑝𝑝𝛿𝛿𝑚𝑚𝑝𝑝 

〈𝐸𝐸𝑎𝑎𝑚𝑚𝐸𝐸𝑝𝑝𝑚𝑚〉 = 𝜖𝜖2𝐷𝐷𝛿𝛿𝑎𝑎𝑝𝑝 

〈∥ 𝐸𝐸 ∥𝐹𝐹〉 = 〈�𝐸𝐸𝑎𝑎𝑚𝑚𝐸𝐸𝑎𝑎𝑚𝑚〉 = 𝜖𝜖√𝑇𝑇𝐷𝐷 

 

〈𝐸𝐸𝑎𝑎𝑚𝑚𝐸𝐸𝑝𝑝𝑝𝑝𝐸𝐸𝑟𝑟𝑟𝑟𝐸𝐸𝑎𝑎𝑡𝑡〉

= 𝜖𝜖4𝑤𝑤2��𝛿𝛿𝑎𝑎𝑝𝑝𝛿𝛿𝑚𝑚𝑝𝑝�(𝛿𝛿𝑟𝑟𝑎𝑎𝛿𝛿𝑟𝑟𝑡𝑡) + (𝛿𝛿𝑎𝑎𝑟𝑟𝛿𝛿𝑚𝑚𝑟𝑟)�𝛿𝛿𝑝𝑝𝑎𝑎𝛿𝛿𝑝𝑝𝑡𝑡� + (𝛿𝛿𝑎𝑎𝑎𝑎𝛿𝛿𝑚𝑚𝑡𝑡)�𝛿𝛿𝑝𝑝𝑟𝑟𝛿𝛿𝑝𝑝𝑟𝑟�� 
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Note a sum is implied across q = 1,…,D , and this cross-sum leads to the appearance of w,. 

In the last equation, cross-sums are implied across each {q, s, u} , which leads to the 

appearance of w2 . By contrast, the weight w does not appear in others eq. , because the 

second index (n) is the same for both terms, and so no cross sum is implied (but rather just 

a regular sum over all n). Consider now other terms that appear in the perturbation theory 

derivations. Since all odd powers of E terms are expected to be zero, so to are odd “powers” 

of H(n) terms. That is, ⟨H(1) mn⟩ = ⟨H(1) mnH(2) pq ⟩ = ⟨H(1)mnH(1) pq H(1) rs ⟩ = ⋯ = 

0 . 

Some even “power” terms are these: 

 

〈𝐻𝐻𝑎𝑎𝑚𝑚
(1)𝐻𝐻𝑝𝑝𝑝𝑝

(1)〉 = 〈(𝐴𝐴𝑎𝑎𝑚𝑚𝐸𝐸𝑚𝑚𝑚𝑚 + 𝐸𝐸𝑎𝑎𝑚𝑚𝐴𝐴𝑚𝑚𝑚𝑚)�𝐴𝐴𝑝𝑝𝑟𝑟𝐸𝐸𝑝𝑝𝑟𝑟 + 𝐸𝐸𝑝𝑝𝑟𝑟𝐴𝐴𝑝𝑝𝑟𝑟�〉

= 〈𝐴𝐴𝑎𝑎𝑚𝑚𝐴𝐴𝑝𝑝𝑟𝑟𝐸𝐸𝑚𝑚𝑚𝑚𝐸𝐸𝑝𝑝𝑟𝑟 + 𝐴𝐴𝑎𝑎𝑚𝑚𝐴𝐴𝑝𝑝𝑟𝑟𝐸𝐸𝑚𝑚𝑚𝑚𝐸𝐸𝑝𝑝𝑟𝑟
+ 𝐴𝐴𝑚𝑚𝑚𝑚𝐴𝐴𝑝𝑝𝑟𝑟𝐸𝐸𝑎𝑎𝑚𝑚𝐸𝐸𝑝𝑝𝑟𝑟+𝐴𝐴𝑚𝑚𝑚𝑚𝐴𝐴𝑝𝑝𝑟𝑟𝐸𝐸𝑎𝑎𝑚𝑚𝐸𝐸𝑝𝑝𝑟𝑟〉

= 𝑤𝑤𝜖𝜖2�𝐻𝐻𝑎𝑎𝑝𝑝𝛿𝛿𝑚𝑚𝑝𝑝 + 𝐻𝐻𝑎𝑎𝑝𝑝𝛿𝛿𝑚𝑚𝑝𝑝+𝐻𝐻𝑚𝑚𝑝𝑝𝛿𝛿𝑎𝑎𝑝𝑝+𝐻𝐻𝑚𝑚𝑝𝑝𝛿𝛿𝑎𝑎𝑝𝑝� 

 

(since only the e=d term survived) 

 

〈𝐻𝐻𝑎𝑎𝑚𝑚
(2)〉 = 〈𝐸𝐸𝑎𝑎𝑚𝑚𝐸𝐸𝑚𝑚𝑚𝑚〉 = 𝜖𝜖2𝐷𝐷𝛿𝛿𝑎𝑎𝑚𝑚 

 

(since implied sum over d=1, …..,D) 

 

〈𝐻𝐻𝑎𝑎𝑚𝑚
(2)𝐻𝐻𝑝𝑝𝑝𝑝

(2)〉 = 〈𝐸𝐸𝑎𝑎𝑚𝑚𝐸𝐸𝑚𝑚𝑚𝑚𝐸𝐸𝑝𝑝𝑟𝑟𝐸𝐸𝑝𝑝𝑟𝑟〉 = 𝜖𝜖4𝐷𝐷2𝛿𝛿𝑎𝑎𝑚𝑚𝛿𝛿𝑝𝑝𝑝𝑝 + 𝑤𝑤2𝜖𝜖4𝐷𝐷�𝛿𝛿𝑎𝑎𝑝𝑝𝛿𝛿𝑚𝑚𝑝𝑝 + 𝛿𝛿𝑎𝑎𝑝𝑝𝛿𝛿𝑚𝑚𝑝𝑝� 
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〈𝐻𝐻𝑎𝑎𝑚𝑚
(1)𝐻𝐻𝑝𝑝𝑝𝑝

(1)𝐻𝐻𝑟𝑟𝑟𝑟
(2)〉 = 〈(𝐴𝐴𝑎𝑎𝑚𝑚𝐸𝐸𝑚𝑚𝑚𝑚 + 𝐸𝐸𝑎𝑎𝑚𝑚𝐴𝐴𝑚𝑚𝑚𝑚)�𝐴𝐴𝑝𝑝𝑟𝑟𝐸𝐸𝑝𝑝𝑟𝑟 + 𝐸𝐸𝑝𝑝𝑟𝑟𝐴𝐴𝑝𝑝𝑟𝑟��𝐸𝐸𝑟𝑟𝑟𝑟𝐸𝐸𝑟𝑟𝑟𝑟�〉

= 〈𝐴𝐴𝑎𝑎𝑚𝑚𝐴𝐴𝑝𝑝𝑟𝑟𝐸𝐸𝑚𝑚𝑚𝑚𝐸𝐸𝑝𝑝𝑟𝑟𝐸𝐸𝑟𝑟𝑟𝑟𝐸𝐸𝑟𝑟𝑟𝑟 + 𝐴𝐴𝑎𝑎𝑚𝑚𝐴𝐴𝑝𝑝𝑟𝑟𝐸𝐸𝑚𝑚𝑚𝑚𝐸𝐸𝑝𝑝𝑟𝑟𝐸𝐸𝑟𝑟𝑟𝑟𝐸𝐸𝑟𝑟𝑟𝑟

+ 𝐴𝐴𝑚𝑚𝑚𝑚𝐴𝐴𝑝𝑝𝑟𝑟𝐸𝐸𝑎𝑎𝑚𝑚𝐸𝐸𝑝𝑝𝑟𝑟𝐸𝐸𝑟𝑟𝑟𝑟𝐸𝐸𝑟𝑟𝑟𝑟 + 𝐴𝐴𝑚𝑚𝑚𝑚𝐴𝐴𝑝𝑝𝑟𝑟𝐸𝐸𝑎𝑎𝑚𝑚𝐸𝐸𝑝𝑝𝑟𝑟𝐸𝐸𝑟𝑟𝑟𝑟𝐸𝐸𝑟𝑟𝑟𝑟 +〉

= 𝜖𝜖4�𝐻𝐻𝑎𝑎𝑝𝑝�𝑤𝑤𝐷𝐷𝛿𝛿𝑚𝑚𝑝𝑝𝛿𝛿𝑟𝑟𝑟𝑟 + 𝑤𝑤2𝛿𝛿𝑚𝑚𝑟𝑟𝛿𝛿𝑝𝑝𝑟𝑟 + 𝑤𝑤2𝛿𝛿𝑚𝑚𝑟𝑟𝛿𝛿𝑝𝑝𝑟𝑟�

+ 𝐻𝐻𝑎𝑎𝑝𝑝�𝑤𝑤𝐷𝐷𝛿𝛿𝑚𝑚𝑝𝑝𝛿𝛿𝑟𝑟𝑟𝑟 + 𝑤𝑤2𝛿𝛿𝑚𝑚𝑟𝑟𝛿𝛿𝑝𝑝𝑟𝑟 + 𝑤𝑤2𝛿𝛿𝑚𝑚𝑟𝑟𝛿𝛿𝑝𝑝𝑟𝑟�

+ 𝐻𝐻𝑚𝑚𝑝𝑝�𝑤𝑤𝐷𝐷𝛿𝛿𝑎𝑎𝑝𝑝𝛿𝛿𝑟𝑟𝑟𝑟 + 𝑤𝑤2𝛿𝛿𝑎𝑎𝑟𝑟𝛿𝛿𝑝𝑝𝑟𝑟 + 𝑤𝑤2𝛿𝛿𝑎𝑎𝑟𝑟𝛿𝛿𝑝𝑝𝑟𝑟�

+ 𝐻𝐻𝑚𝑚𝑝𝑝�𝑤𝑤𝐷𝐷𝛿𝛿𝑎𝑎𝑝𝑝𝛿𝛿𝑟𝑟𝑟𝑟 + 𝑤𝑤2𝛿𝛿𝑎𝑎𝑟𝑟𝛿𝛿𝑝𝑝𝑟𝑟 +𝑤𝑤2𝛿𝛿𝑎𝑎𝑟𝑟𝛿𝛿𝑝𝑝𝑟𝑟�� 

 

The trace operation is  𝛿𝛿𝑟𝑟 (𝐗𝐗) ≡ 𝑋𝑋𝑎𝑎𝑎𝑎, with implied sum over m=1,…..,T. Also note the 

identities 𝛿𝛿𝑟𝑟(𝐗𝐗 + 𝐘𝐘) = 𝛿𝛿𝑟𝑟(𝐗𝐗) + 𝛿𝛿𝑟𝑟(𝐘𝐘) 𝑎𝑎𝑚𝑚𝑑𝑑 〈𝛿𝛿𝑟𝑟(𝐗𝐗)〉 = 〈𝛿𝛿𝑟𝑟(𝐗𝐗)〉. Thus  

 

〈𝛿𝛿𝑟𝑟�𝐇𝐇�𝟐𝟐�〉 = 〈𝐸𝐸�𝑎𝑎𝑚𝑚 𝐸𝐸�𝑎𝑎𝑚𝑚〉 = 𝑇𝑇𝐷𝐷, 

 

𝛿𝛿𝑟𝑟 �𝐇𝐇�2𝐏𝐏𝑖𝑖� = 〈𝐸𝐸�𝑎𝑎𝑚𝑚 𝐸𝐸�𝑝𝑝𝑚𝑚 𝑈𝑈𝑝𝑝𝑖𝑖  𝑈𝑈𝑎𝑎𝑖𝑖〉 = 𝐷𝐷𝛿𝛿𝑎𝑎𝑝𝑝 𝑈𝑈𝑝𝑝𝑖𝑖𝑈𝑈𝑎𝑎𝑖𝑖 = 𝐷𝐷, 

 

�̂�𝑑𝑖𝑖
(1) = 𝛿𝛿𝑟𝑟�𝐇𝐇(1)𝐏𝐏𝑖𝑖� = ��𝑈𝑈𝑝𝑝𝑚𝑚𝐸𝐸�𝑝𝑝𝑎𝑎 + 𝐸𝐸�𝑝𝑝𝑎𝑎𝑈𝑈𝑝𝑝𝑚𝑚�𝑉𝑉𝑎𝑎𝑚𝑚𝑟𝑟𝑚𝑚��𝑈𝑈𝑝𝑝𝑖𝑖𝑈𝑈𝑝𝑝𝑖𝑖� = 2𝑟𝑟𝑖𝑖𝑈𝑈𝑝𝑝𝑖𝑖𝐸𝐸�𝑝𝑝𝑎𝑎𝑉𝑉𝑎𝑎𝑖𝑖 , 

 

〈�̂�𝑑𝑖𝑖
(1)〉 = 0 

 

〈�̂�𝑑𝑖𝑖
(2)〉 = 〈𝛿𝛿𝑟𝑟�𝐇𝐇� (2)𝐏𝐏𝑖𝑖 − �𝐇𝐇� (1)𝐐𝐐𝑖𝑖��𝐇𝐇� (1)𝐏𝐏𝑖𝑖��〉 = 𝐷𝐷 − 〈𝐻𝐻�𝑎𝑎𝑚𝑚

(1)(𝐐𝐐𝑖𝑖)𝑚𝑚𝑝𝑝𝐻𝐻�𝑝𝑝𝑝𝑝
(1)(𝐏𝐏𝑖𝑖)𝑝𝑝𝑎𝑎〉 = 𝐷𝐷 −

𝑤𝑤�𝐻𝐻𝑎𝑎𝑝𝑝𝛿𝛿𝑚𝑚𝑝𝑝 + 𝐻𝐻𝑎𝑎𝑝𝑝𝛿𝛿𝑚𝑚𝑝𝑝 + 𝐻𝐻𝑚𝑚𝑝𝑝𝛿𝛿𝑎𝑎𝑝𝑝 + 𝐻𝐻𝑚𝑚𝑝𝑝𝛿𝛿𝑎𝑎𝑝𝑝� �𝑈𝑈𝑚𝑚𝑟𝑟𝑈𝑈𝑝𝑝𝑟𝑟(𝑑𝑑𝑟𝑟 − 𝑑𝑑𝑖𝑖)−1(1 −

𝛿𝛿𝑟𝑟𝑖𝑖)� �𝑈𝑈𝑝𝑝𝑖𝑖𝑈𝑈𝑎𝑎𝑖𝑖� = 𝐷𝐷 − 𝑤𝑤(𝑑𝑑𝑟𝑟 + 𝑑𝑑𝑖𝑖)(𝑑𝑑𝑟𝑟 − 𝑑𝑑𝑖𝑖)−1(1− 𝛿𝛿𝑟𝑟𝑖𝑖) . 

 

〈��̂�𝑑𝑖𝑖
(1)�

2
〉 = 4𝑤𝑤𝑟𝑟𝑖𝑖2 = 4𝑤𝑤𝑑𝑑𝑖𝑖 

 

The final results are as follows: 
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〈�𝑊𝑊𝑖𝑖𝑎𝑎
(1)𝑈𝑈𝑎𝑎𝑖𝑖�

2
〉 = 𝑤𝑤

𝑑𝑑𝑎𝑎 + 𝑑𝑑𝑖𝑖
(𝑑𝑑𝑎𝑎 − 𝑑𝑑𝑖𝑖)2 𝑈𝑈𝑖𝑖𝑎𝑎

2 (1 − 𝛿𝛿𝑎𝑎𝑖𝑖) 

 

〈𝑊𝑊𝑖𝑖𝑎𝑎
(2)𝑈𝑈𝑎𝑎𝑖𝑖〉 = −

𝑤𝑤
2

𝑑𝑑𝑎𝑎 + 𝑑𝑑𝑖𝑖
(𝑑𝑑𝑎𝑎 − 𝑑𝑑𝑖𝑖)2

(1 − 𝛿𝛿𝑎𝑎𝑖𝑖)𝑈𝑈𝑖𝑖𝑖𝑖 

 

〈�𝑁𝑁𝑖𝑖𝑎𝑎
(1)𝑉𝑉𝑎𝑎𝑖𝑖�

2
〉 =

1 −𝑤𝑤𝑉𝑉𝑖𝑖𝑖𝑖2

𝑑𝑑𝑖𝑖
+ 𝑤𝑤

𝑑𝑑𝑎𝑎(3𝑑𝑑𝑖𝑖 − 𝑑𝑑𝑎𝑎)
𝑑𝑑𝑖𝑖(𝑑𝑑𝑎𝑎 − 𝑑𝑑𝑖𝑖)2 𝑉𝑉𝑖𝑖𝑎𝑎

2 (1− 𝛿𝛿𝑎𝑎𝑖𝑖) 

 

〈𝑁𝑁𝑖𝑖𝑎𝑎
(2)𝑉𝑉𝑎𝑎𝑖𝑖〉 = − 1

2𝑥𝑥𝑘𝑘
�𝐷𝐷 − 𝑤𝑤 − 𝑤𝑤 𝑥𝑥𝑚𝑚(3𝑥𝑥𝑘𝑘−𝑥𝑥𝑚𝑚)

(𝑥𝑥𝑚𝑚−𝑥𝑥𝑘𝑘)2
(1 − 𝛿𝛿𝑎𝑎𝑖𝑖)� 𝑉𝑉𝑖𝑖𝑖𝑖 , 

 

with (1 − 𝛿𝛿𝑎𝑎𝑖𝑖) indicating a sum over m=1, ….,T but 𝑟𝑟 ≠ 𝑘𝑘 . 

 

Recall that the lumping approximation was used in precedent formulae ;so these formulae 

are also valid for the case of i.i.d. error data upon setting w = 1.  

Both for completeness and because the singular values are the square roots of the 

eigenvalues 𝑟𝑟𝑖𝑖� = �𝑑𝑑𝑖𝑖� , we first consider the perturbed eigenvalues 𝑑𝑑𝑖𝑖�. The kth eigenvalue 

of H can be written as a perturbation expansion  

 

�̃�𝑑𝑖𝑖 = 𝑑𝑑𝑖𝑖 + 𝜖𝜖�̂�𝑑𝑖𝑖
(1) + 𝜖𝜖2�̂�𝑑𝑖𝑖

(2) + ⋯ 

 

where, assuming the eigenvalues of H are unique 

 

�̂�𝑑𝑖𝑖
(1) = 𝛿𝛿𝑟𝑟�𝐇𝐇� (1)𝐏𝐏𝑖𝑖� 

 

�̂�𝑑𝑖𝑖
(2) = 𝛿𝛿𝑟𝑟�𝐇𝐇� (2)𝐏𝐏𝑖𝑖 − �𝐇𝐇� (1)𝐐𝐐𝑖𝑖��𝐇𝐇� (1)𝐏𝐏𝑖𝑖�� 
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Note that subscript k refers to the mode number, and no summation over k is implied. The 

expected value and standard deviation of  𝑑𝑑𝑖𝑖� are  

 

〈�̃�𝑑𝑖𝑖〉 = 𝑑𝑑𝑖𝑖 + 𝜖𝜖2 〈�̂�𝑑𝑖𝑖
(2)〉 + Ο(𝜖𝜖4) 

𝜎𝜎𝑥𝑥�𝑘𝑘 ≡ �〈��̃�𝑑𝑖𝑖 − 〈�̃�𝑑𝑖𝑖〉�
2〉 = 𝜖𝜖�〈��̂�𝑑𝑖𝑖

(1)�
2
〉+ Ο(𝜖𝜖2) 

 

Assuming that unique eigenvalues, and we extend his results to the case of spatially 

correlated error. We find 

 

〈�̃�𝑑𝑖𝑖 = 𝑑𝑑𝑖𝑖 + 𝜖𝜖2 �𝐷𝐷 − 𝑤𝑤 �
𝑑𝑑𝑎𝑎 + 𝑑𝑑𝑖𝑖
𝑑𝑑𝑎𝑎 − 𝑑𝑑𝑖𝑖

𝑇𝑇

𝑎𝑎=1
𝑎𝑎≠𝑖𝑖

� + Ο(𝜖𝜖4)〉 

 

𝜎𝜎𝑥𝑥�𝑘𝑘 = 2𝑟𝑟𝑖𝑖𝜖𝜖√𝑤𝑤 + Ο(𝜖𝜖2) 

 

We now use the above results to find the perturbed singular values. Since the singular 

values of  A are the square roots of the eigenvalues of  H , we have 

 

�̃�𝑟𝑖𝑖 = ��̃�𝑑𝑖𝑖 = �𝑑𝑑𝑖𝑖 + 𝜖𝜖�̂�𝑑𝑖𝑖
(1) + 𝜖𝜖2�̂�𝑑𝑖𝑖

(1) + ⋯ 

 

If the error is small, then can be expanded in a Taylor series about 𝑑𝑑𝑖𝑖, 

 

�̃�𝑟𝑖𝑖 = 𝑑𝑑𝑖𝑖
1
2 + 1

2
1

𝑥𝑥𝑘𝑘
1
2
�𝜖𝜖�̂�𝑑𝑖𝑖

(1) + 𝜖𝜖2�̂�𝑑𝑖𝑖
(2) + ⋯� − 1

2!
1
4
1

𝑥𝑥𝑘𝑘
3
2
�𝜖𝜖�̂�𝑑𝑖𝑖

(1) + 𝜖𝜖2�̂�𝑑𝑖𝑖
(2) + ⋯�

2
+ ⋯  

 

and upon substituting sk = √ 𝑑𝑑𝑖𝑖 , we have 
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�̃�𝑆𝑖𝑖 = 𝑆𝑆𝑖𝑖 + 𝜖𝜖 �
�̂�𝑑𝑖𝑖

(1)

2𝑟𝑟𝑘𝑘
�+ 𝜖𝜖2 �

�̂�𝑑𝑖𝑖
(2)

2𝑟𝑟𝑘𝑘
−
��̂�𝑑𝑖𝑖

(1)�
2

8𝑟𝑟𝑖𝑖3
�+ Ο(𝜖𝜖3) 

 

The expected value and standard deviation of ̃sk are 

 

〈�̃�𝑆𝑖𝑖〉 = 𝑆𝑆𝑖𝑖 + 𝜖𝜖2 �
〈�̂�𝑑𝑖𝑖

(2)〉
2𝑟𝑟𝑖𝑖

−
〈��̂�𝑑𝑖𝑖

(1)�
2
〉

8𝑟𝑟𝑖𝑖3
�+ Ο(𝜖𝜖4) 

𝜎𝜎�̃�𝑟𝑘𝑘 ≡ �〈(�̃�𝑟𝑖𝑖 − 〈�̃�𝑟𝑖𝑖〉)2〉 = 𝜖𝜖�〈�
�̂�𝑑𝑖𝑖

(1)

2𝑟𝑟𝑖𝑖
�
2

〉 + Ο(𝜖𝜖2) 

 

〈�̃�𝑆𝑖𝑖〉 = 𝑆𝑆𝑖𝑖 +
𝜖𝜖2

2𝑟𝑟𝑖𝑖
�𝐷𝐷 − 𝑤𝑤 −𝑤𝑤 �

𝑑𝑑𝑎𝑎 + 𝑑𝑑𝑖𝑖
𝑑𝑑𝑎𝑎 − 𝑑𝑑𝑖𝑖

𝑇𝑇

𝑎𝑎=1
𝑎𝑎≠𝑖𝑖

� + Ο(𝜖𝜖4) 

 

𝜎𝜎�̃�𝑟𝑘𝑘 = 𝜖𝜖√𝑤𝑤 + Ο(𝜖𝜖2) 

 

Note that to first order, 𝜎𝜎𝑥𝑥�𝑘𝑘 = 2𝑟𝑟𝑖𝑖𝜎𝜎�̃�𝑟𝑘𝑘  , which makes sense since 𝑑𝑑𝑖𝑖 = 𝑟𝑟𝑖𝑖2 , so 𝑑𝑑𝑑𝑑 = 2𝑟𝑟𝑖𝑖𝑑𝑑𝑟𝑟𝑖𝑖 

 

The kth left singular vector of A  

 

𝐮𝐮�𝑖𝑖 = 𝐮𝐮𝑖𝑖 + 𝜌𝜌𝐖𝐖(1)𝐮𝐮𝑖𝑖 + 𝜌𝜌2𝐖𝐖(2)𝐮𝐮𝑖𝑖 + ⋯ 

 

𝑈𝑈�𝑖𝑖𝑖𝑖 = 𝑈𝑈𝑖𝑖𝑖𝑖 + 𝜖𝜖𝑊𝑊𝑖𝑖𝑎𝑎
(1)𝑈𝑈𝑎𝑎𝑖𝑖 + 𝜖𝜖2𝑊𝑊𝑖𝑖𝑎𝑎

(2)𝑈𝑈𝑎𝑎𝑖𝑖 + ⋯  

 

with implied summation over m=1,……,T, where  
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𝐖𝐖(1) = 𝐐𝐐𝑖𝑖𝐇𝐇� (1)𝐏𝐏𝑖𝑖 

 

𝐖𝐖(2) = −𝐐𝐐𝑖𝑖𝐇𝐇� (2)𝐏𝐏𝑖𝑖 + �𝐐𝐐𝑖𝑖𝐇𝐇� (1)�
2
𝐏𝐏𝑖𝑖 − 𝐐𝐐𝑖𝑖2�𝐇𝐇� (1)𝐏𝐏𝑖𝑖�

2
−

1
2
𝐏𝐏𝑖𝑖𝐇𝐇� (1)𝐐𝐐𝑖𝑖2𝐇𝐇� (1)𝐏𝐏𝑖𝑖 

 

The expected value and standard deviation of 𝑈𝑈�𝑖𝑖𝑖𝑖 are : 

〈𝑈𝑈�𝑖𝑖𝑖𝑖〉 = 𝑈𝑈𝑖𝑖𝑖𝑖 + 𝜖𝜖2 〈𝑊𝑊𝑖𝑖𝑎𝑎
(2)𝑈𝑈𝑎𝑎𝑖𝑖〉+ Ο(𝜖𝜖4) 

 

𝜎𝜎𝑈𝑈�𝑖𝑖𝑘𝑘 ≡ �〈�𝑈𝑈�𝑖𝑖𝑖𝑖 − 〈𝑈𝑈�𝑖𝑖𝑖𝑖〉�
2〉�

1
2 = 𝜖𝜖 �〈�𝑊𝑊𝑖𝑖𝑎𝑎

(1)𝑈𝑈𝑎𝑎𝑖𝑖�
2
〉�
1
2

+ Ο(𝜖𝜖2) 

Extending Venturi’s results, with some effort to evaluate 〈�𝑊𝑊𝑖𝑖𝑎𝑎
(1)𝑈𝑈𝑎𝑎𝑖𝑖�

2
〉 and 〈𝑊𝑊𝑖𝑖𝑎𝑎

(2)𝑈𝑈𝑎𝑎𝑖𝑖〉 

we find: 

 

〈𝑈𝑈�𝑖𝑖𝑖𝑖〉 = �1− 𝜖𝜖2
𝑤𝑤
2
�

𝑑𝑑𝑎𝑎 + 𝑑𝑑𝑖𝑖
(𝑑𝑑𝑎𝑎 − 𝑑𝑑𝑖𝑖)2

𝑇𝑇

𝑎𝑎=1
𝑎𝑎≠𝑖𝑖

�𝑈𝑈𝑖𝑖𝑖𝑖 + Ο(𝜖𝜖4) 

 

𝜎𝜎𝑈𝑈�𝑖𝑖𝑘𝑘 = 𝜖𝜖√𝑤𝑤 ��
𝑑𝑑𝑎𝑎 + 𝑑𝑑𝑖𝑖

(𝑑𝑑𝑎𝑎 − 𝑑𝑑𝑖𝑖)2
𝑇𝑇

𝑎𝑎=1
𝑎𝑎≠𝑖𝑖

𝑈𝑈𝑖𝑖𝑎𝑎2 �

1
2

+ Ο(𝜖𝜖2) 
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The perturbed right singular vectors are evaluated. 

The kth right singular vector  of 𝐀𝐀� is: 

 

𝐯𝐯�𝑖𝑖 = 𝐯𝐯𝑖𝑖 + 𝜖𝜖𝐍𝐍(1)𝐯𝐯𝑖𝑖 + 𝜖𝜖2𝐍𝐍(2)𝐯𝐯𝑖𝑖 +⋯ 

 

v�𝑖𝑖𝑖𝑖 = v𝑖𝑖𝑖𝑖 + 𝜖𝜖𝑁𝑁𝑖𝑖𝑎𝑎
(1)v𝑎𝑎𝑖𝑖 + 𝜖𝜖2𝑁𝑁𝑖𝑖𝑎𝑎

(2)v𝑎𝑎𝑖𝑖 + ⋯ 

 

With implied summation over m=1, ….. , D.  gives N(2)  

 

𝐍𝐍(1) =
1
𝑑𝑑𝑖𝑖
�𝐀𝐀⊺𝐖𝐖(1)𝐀𝐀 + 𝑬𝑬�⊺𝐀𝐀� + �−

1
2
�̂�𝑑𝑖𝑖

(1)

𝑑𝑑𝑖𝑖
� 𝐈𝐈 

 

𝐍𝐍(2) =
1
𝑑𝑑𝑖𝑖
�𝐀𝐀⊺𝐖𝐖(2)𝐀𝐀 + 𝑬𝑬�⊺𝐖𝐖(1)𝐀𝐀� + �−

1
2
�̂�𝑑𝑖𝑖

(1)

𝑑𝑑𝑖𝑖2
� �𝐀𝐀⊺𝐖𝐖(1)𝐀𝐀+ 𝑬𝑬�⊺𝐀𝐀�

+ �−
1
2
�̂�𝑑𝑖𝑖

(2)

𝑑𝑑𝑖𝑖
+

3
8
��̂�𝑑𝑖𝑖

(1)�
2

𝑑𝑑𝑖𝑖2
� 𝐈𝐈 

 

The expected value and standard deviation of 𝑉𝑉�𝑖𝑖𝑖𝑖 are 

 

〈𝑉𝑉�𝑖𝑖𝑖𝑖  〉 = 𝑉𝑉𝑖𝑖𝑖𝑖 + 𝜖𝜖2 〈𝑁𝑁𝑖𝑖𝑎𝑎
(2)𝑉𝑉𝑎𝑎𝑖𝑖〉 + Ο(𝜖𝜖4) 

 

𝜎𝜎𝑣𝑣�𝑖𝑖𝑘𝑘 ≡ �〈�𝑉𝑉�𝑖𝑖𝑖𝑖−〈𝑉𝑉�𝑖𝑖𝑖𝑖〉�
2〉�

1
2 = 𝜖𝜖 �〈�𝑁𝑁𝑖𝑖𝑎𝑎

(1)𝑉𝑉𝑎𝑎𝑖𝑖�
2
〉�
1
2

+ Ο(Ο2) 

 

Extending Venturi’s results, with some effort to evaluate 〈�𝑁𝑁𝑖𝑖𝑎𝑎
(1)𝑉𝑉𝑎𝑎𝑖𝑖�

2
〉 and 〈𝑁𝑁𝑖𝑖𝑎𝑎

(2)𝑉𝑉𝑎𝑎𝑖𝑖〉, we 

find 
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〈𝑉𝑉�𝑖𝑖𝑖𝑖〉 = �1−
𝜖𝜖2

𝑑𝑑𝑖𝑖
�
𝐷𝐷 − 𝑤𝑤

2
+
𝑤𝑤
2
�

𝑑𝑑𝑎𝑎(3𝑑𝑑𝑖𝑖 − 𝑑𝑑𝑎𝑎)
(𝑑𝑑𝑎𝑎 − 𝑑𝑑𝑖𝑖)2

𝑇𝑇

𝑎𝑎=1
𝑎𝑎≠𝑖𝑖

��𝑉𝑉𝑖𝑖𝑖𝑖 

 

𝜎𝜎𝑉𝑉�𝑖𝑖𝑘𝑘 =
𝜖𝜖
𝑟𝑟𝑖𝑖
�1−𝑤𝑤𝑉𝑉𝑖𝑖𝑖𝑖2 +𝑤𝑤�

𝑑𝑑𝑎𝑎(3𝑑𝑑𝑖𝑖 − 𝑑𝑑𝑎𝑎)
(𝑑𝑑𝑎𝑎 − 𝑑𝑑𝑖𝑖)2

𝑇𝑇

𝑎𝑎=1
𝑎𝑎≠𝑖𝑖

𝑉𝑉𝑖𝑖𝑎𝑎2 �

1
2
 

 

with Ο(𝜖𝜖4) and Ο(𝜖𝜖2) accuracy respectively  

Furthermore more practical example are present in[4]–[6] 
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Comments 

The application of this denoising algorithm lower the noise by approximately one order of 

magnitude, the purpose of this work is not to study the error produced by this method on 

different configuration while is to investigate the feasibility of the application on active 

thermography signal processing. In fact this method is commonly used in particle image 

velocimetry (PIV) but no application has been found on thermography. 

In the image is shown the application on a pulsed thermography test, furthermore this is 

also applied in lock-in test which actually suffer of high noise ratio level in the boundaries 

of the laser beam  thermally affected zone. This kind of processing improves the size of the 

zone where to apply the phase method without having noise problems and also permits to 

use lower temperature amplitude test’s setup. 
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Cattaneo-Vernotte Model for short impulse 

The governing equation of the physic of the problem is the Fourier equation: 

 

𝛿𝛿𝑇𝑇
𝛿𝛿𝛿𝛿

= 𝛼𝛼
 𝛿𝛿2𝑇𝑇
𝛿𝛿𝑧𝑧2

 

 

This is also called Diffusion Theory, it works for the most of the application and is easy to 

use. Anyway an approximation is done, the heat diffusion speed is consider inifinte. 

A more accurate model is the Cattaneo Vernotte model[7], which is strictly related to the 

shock wave theory. Here we consider a finite heat diffusion speed C. In the case of an heat 

source moving with speed v, we are able to define the Mach number as: 

 

Ma=v/C 

 

This number characterize the thermal field nearby the heat source 

 

So the diffusion field will be divided into 2 zones: heat affected zone and unaffected zone. 

If Ma>1 the source will create a shock wave. We are interested in the case (a) where the 

source is not moving. 

The constitutive equation are 
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−∇ ∗ 𝑞𝑞 + 𝑆𝑆 = 𝜌𝜌𝐶𝐶𝑝𝑝𝑇𝑇,𝑎𝑎  

 

� 𝛼𝛼
𝐶𝐶2
� 𝑞𝑞,𝑎𝑎 + 𝑞𝑞 = −𝑘𝑘∇𝑇𝑇  

 

Where 

• 𝜌𝜌=density 

• 𝐶𝐶_𝑝𝑝=heat  capacity 

• 𝑆𝑆=volumetric heat source 

• 𝐶𝐶=heat diffusion speed 

The we can define 

𝛼𝛼/𝐶𝐶^2 =relaxation time 

Notice: 

If C goes to infinite we obtain the Fourier equation. 

 

The diffusion model so can be expressed as depend on q or on T: 

 

∇[∇ ∗ 𝑞𝑞] − ∇𝑆𝑆 = �
1
𝛼𝛼
� ��

𝛼𝛼
𝐶𝐶2
� 𝑞𝑞′𝑎𝑎𝑎𝑎 + 𝑞𝑞′𝑎𝑎� 

 

𝛼𝛼∇2𝑇𝑇 + �
1
𝜌𝜌𝐶𝐶𝑝𝑝

� �𝑆𝑆 + �
𝛼𝛼
𝐶𝐶2
�𝑆𝑆′𝑎𝑎� = �

𝛼𝛼
𝐶𝐶2
�𝑇𝑇′𝑎𝑎𝑎𝑎 + 𝑇𝑇′𝑎𝑎 

 

The formation of the wavefront is expressed by defining a point source as a dirac delta 

 

𝑆𝑆(𝑥𝑥1,𝑥𝑥2, 𝛿𝛿) = 𝑄𝑄𝛿𝛿(𝑥𝑥1 + 𝑣𝑣𝛿𝛿)𝛿𝛿(𝑥𝑥2) 

 

Then I substitute S(x1,x2,t) in the precedent equation 
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𝛼𝛼∇2𝑇𝑇 − �
𝛼𝛼
𝐶𝐶2
�𝑇𝑇′𝑎𝑎𝑎𝑎 − 𝑇𝑇′𝑎𝑎 = −�

𝑄𝑄
𝜌𝜌𝐶𝐶𝑝𝑝

� �𝛿𝛿(𝑥𝑥1 − 𝑣𝑣𝛿𝛿) + �
𝛼𝛼
𝐶𝐶2
�𝛿𝛿′𝑎𝑎(𝑥𝑥1 − 𝑣𝑣𝛿𝛿)� 𝛿𝛿(𝑥𝑥2) 

 

And by means of Galilean transform  

 

𝑥𝑥1 = 𝜉𝜉1 + 𝑣𝑣𝛿𝛿 and 𝑥𝑥2 = 𝜉𝜉2 

 

I obtain 

 

𝛼𝛼[(1 −𝑀𝑀2)𝑇𝑇′11 + 𝑇𝑇′22] + 2𝜌𝜌𝛼𝛼𝑇𝑇′1 = −�
𝑄𝑄
𝜌𝜌𝐶𝐶𝑝𝑝

� �𝛿𝛿(𝜉𝜉1) − �𝑀𝑀
2

2𝜌𝜌� �𝛿𝛿′1(𝜉𝜉1)� 𝛿𝛿(𝜉𝜉2) 

 

 

 

In the case of Mac<1 the solution of the differential equation is 

 

𝑇𝑇(𝜉𝜉𝑖𝑖)
𝑄𝑄
𝜌𝜌𝛼𝛼𝐶𝐶𝑝𝑝�

= 𝑒𝑒𝑥𝑥𝑝𝑝 �−
𝜌𝜌𝜉𝜉1

1 −𝑀𝑀2� �
2 −𝑀𝑀2

2(1−𝑀𝑀2)𝐾𝐾0 �
𝜌𝜌𝑟𝑟

(1 −𝑀𝑀2)1 2�
�

−
𝑀𝑀2

2(1 −𝑀𝑀2)𝐾𝐾1 �
𝜌𝜌𝑟𝑟

(1 −𝑀𝑀2)1 2�
��    𝑀𝑀 < 1 
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Where: 

• 𝜌𝜌 = 𝑣𝑣
2𝛼𝛼

 

• 𝐾𝐾𝑖𝑖 = 𝑟𝑟𝑜𝑜𝑑𝑑𝑖𝑖𝜋𝜋𝑖𝑖𝑒𝑒𝑑𝑑 𝐵𝐵𝑒𝑒𝑟𝑟𝑟𝑟𝑒𝑒𝜋𝜋 𝜋𝜋𝑓𝑓𝑚𝑚𝜌𝜌𝛿𝛿𝑖𝑖𝑜𝑜𝑚𝑚 𝑜𝑜𝜋𝜋 𝑟𝑟𝑒𝑒𝜌𝜌𝑜𝑜𝑚𝑚𝑑𝑑 𝑘𝑘𝑖𝑖𝑚𝑚𝑑𝑑 𝑜𝑜𝜋𝜋 𝑜𝑜𝑟𝑟𝑑𝑑𝑒𝑒𝑟𝑟 𝑖𝑖 

 

Starting by this Analytical model a Fem model  is therefore proposed to asses and calibrate 

experimental boundary condition influence in order to validate experimental results which 

are strongly dependent by test set-up and ambient. In addition for high laser modulation 

frequencies there can be non linearities and resonance phenomenon that should be avoided. 

In the absence of any other study on residual stresses of welded joint a numerical model 

helps to asses every variable and permits to link causes and effects during the studies of the 

test’s results. [8], [9] 
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Numerical Simulation of Cattaneo Vernotte model 

Starting from the Cattaneo Vernotte formulation for heat transfer 

 

𝑞𝑞 + 𝜏𝜏𝐶𝐶𝑉𝑉
𝜗𝜗𝑞𝑞
𝜗𝜗𝛿𝛿

= −𝑘𝑘∇𝑇𝑇 

 

Then we can define is for Temperature field 

 

𝑞𝑞 + 𝜏𝜏𝐶𝐶𝑉𝑉
𝜗𝜗𝑞𝑞
𝜗𝜗𝛿𝛿

= −𝑘𝑘∇𝑇𝑇 

 

Where  

• a thermal diffusivity 

• t_cv is relaxation time 

in literature t_s has value between 10^-8 and 10^-12. 

The relaxation time is definte as 

 

𝜏𝜏 =
3𝑎𝑎
𝑣𝑣𝑟𝑟2

=
𝑎𝑎
𝑟𝑟2

 

.  

Where 

• vs is the sound’s speed 

• s the thermal wave speed 

The physical meaning of the relaxation time has slighty different meaning in the two 

models: Cattaneo Vernotte ,Thermo Mass from which this formulas have been kept  [10] 

 

Then we obtain the discretized equation 

 

𝑴𝑴ü𝑖𝑖 + 𝑫𝑫(𝑓𝑓𝑖𝑖) + 𝑲𝑲(𝑓𝑓𝑖𝑖) = 𝑭𝑭𝑖𝑖 
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That can be used to create a Matlab Fem model following the theoretical method proposed 

in  [11] 

 

Then the tested Fem model[12]–[21] is configured as in the following picture  

With robin B.C.s on all sides and cylindrical cohordinates 

 

The algorithm is presented as proposed in [11] 

 

Initialization 

1. Initialize nodal displacement: ui = ui-1 =0 

2. Initialize the chosen time step size 

3. Apply load for the first timestep: forces Fi ← F0 

4. Obtain the damping matrix Di and stiffness matrix Ki (Di and Ki keep invariable 

for linear system) 

Precomputation stage 
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1. Load mesh and boundary conditions 

2. Select perfect values of p, q and r according to model’s physical property and time 

step size. Compute and diagonalize the matrix 𝛼𝛼𝑀𝑀 = 𝑝𝑝𝐾𝐾0∆𝛿𝛿2 + 𝑝𝑝
2
𝐷𝐷0∆𝛿𝛿 + 𝑟𝑟𝑀𝑀 (if 

the system is linear, then K0=Ki , Do=Di). 

Time stepping 

1. Take element nodal displacement ui  and ui-1 from previous time step 

2. Perform the proposed explicit integration method: 

3. Evaluate internal force Ki (ui) and damping force Di (ui). 

4. Obtain the external force Fi 

5. Obtain the current displacement ui+1 by solving the equation, 𝛼𝛼𝑀𝑀𝑓𝑓𝑖𝑖+1 =

∆𝛿𝛿2�𝐹𝐹𝑖𝑖 − 𝑘𝑘𝑖𝑖(𝑓𝑓𝑖𝑖)� + 𝐷𝐷𝑖𝑖∆𝛿𝛿(𝑓𝑓𝑖𝑖−1 − 𝑓𝑓𝑖𝑖) + 𝛼𝛼𝑀𝑀(2𝑓𝑓𝑖𝑖 − 𝑓𝑓𝑖𝑖−1) 

6. Update nodal displacement ui and ui-1 

 

The parameter used are the one suggested in the paper[11] 

• p=1/2 

• q=2 

• r=2 

 

  

  



State of art 

38 

 

Pulsed Calibration 

The input data are 

 

 

Then the result is compared with a real pulsed test In some cases the results of the 

simulation shows a good behaviour, in other cases some assessment are needed to take into 

account the gaussian shape of the laser. 

In the picture we can see how 

 

More test to calibrate the model are needed, one of the main future application can be to 

investigate the diffraction phenomena and thermal resonances by means of modal analysis  
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Comments 

Can be seen from the graphic representation an high instability which have a period about 

0,1seconds. This happens because an purposely incorrect time constant has been used to 

be able to see the goodness of the simulation, so if it is taking into account the finite heat 

propagation speed. This can also be seen in the video of the thermogram. 

 

 

 

Furthermore the FEM model can be improved to investigate the presence of thermal 

resonance phenomena during high frequency lock-in tests. No studies seems to exists about 

this application on steels.[8], [14], [21]–[24] 
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Materials 

The specimen has been cutted starting from a 30mm thick slab. Then two different type of 

butt weld has been done. The first specimen has been made using the correct technique to 

avoid the presence of residual stresses while the second one has been made such a way to 

induce the presence of residual stresses. 

The main geometric characteristics of the specimen are therefore presented: 

 

 

 

The ‘without residual stresses’ specimen welding specification are: 

• Preheating 80°C 

• String bead 

• Root gap 1-2 mm 

• Postheating 400-450°C x 1 h 

• Insulated cooling 

While the ‘with residual stresses’ specimen welding specification are: 

• NO preheating 

• Wave bead 

• Root gap 2-3 mm 

• High current level  

• Waterwash cooling 
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Equipment 

The Thermal camera used for all the tests is a FLIR A6751sc shown in the picture. 

 

 

 

The laser head is controlled with the software MultiDES, and the thermogram are 

recorded and exported with the software ResearchIR. 

Exporting the thermogram recording as .csv files some parameter are requires for the 

calibration 

 

 

 

These are the most important and a correct calibration must be done, in particular the 

emissivity varies a lot between different type of coating and surfaces and needs to be 

assessed. In the following  chapter this will be done. The reflected temperature is measured 

by mean of a metallic reflective element and is calibrated on field. As long we work with 

specimen which are not at high temperature the reflect temperature is usually near to the 

environmental temperature. The other parameter can be easily measured from a 

thermometer present in the room. 
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Assessing emissivity 

The most important parameter to assess when performing thermographic test is the 

emissivity. This can be kept from standard table or tested in lab.  

In this work we tested it in the lab. 

 

The experimental set-up has this parameter: 

• T enviroment : 23.1°C 

• Distance Thermocamera-Specimen : 29cm 

Then by mean of a thermocouple the temperature is measured and recorder while the 

specimen is excited by mean of a phon. 

 

Finally through the TImageConnect Software is possible to reverse assess the emissivity. 

In both cases the emissivity obtained is 0.55.  
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Pulsed 

The pulsed thermography, also called Transient Infrared Thermography (TIRT), is an 

active thermography technique. The heat source has to be capable to reach high power in 

short period. The impulse duration usually last few milliseconds to 5 seconds and depends 

by physical and geometrical properties of the investigated component  

 

 

 

One of the main issues about the use of pulsed thermography in welded joints is the highly 

dependence by the surface parameter. The presence of different thickness of the coating in 

the investigated zone or even the of small corroded zone can alterate the thermogram shape 

Furthermore no information about anisotropy can be extracted. 
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Preliminary study 

 

A Preliminary study has been performed  to check the repeatability of the analysis. 

Each curve plotted in the graph is obtained by averaging 4 different tests 

Is possible to see that NoL and SiL curves which represent the response in the base material 

show the same behaviour while there is a really different behaviour between the two 

weldings with and without residual stresses. This can be related to microstructure and to 

the photo-thermal characteristics of the surface, but we don’t know how the contribution 

can be weighted. 

[25]–[29] 
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Pulsed Calibration 

Once knew the entity and the type of impulse, and what kind of behaviour to expect s 

additional test have been performed. The scope of this test has been to study the cooling 

curve shape to characterize  the material. To improve the precision high frame rate has been 

chosen. As first guess the Newton law of cooling can be used, however we can only 

extrapolate the time constant, but no more information can be catch from this value. While 

considering the convective constant the same for all the tests, we cannot explain the cooling 

only considering the heat losses with the air, but we have also to consider conductive 

phenomena inside the bulk of the material. So this method can be used as first guess to find 

a different thermal behave of the investigated  material. 

 

Acronym: 

Y-RS = Yes Residual Stresses 

N-RS = No Residual Stresses 
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Base Metal NO-RS 10000ms 25% 12.5 fps 

 

Base Metal NO-RS 1000ms 50% 50 fps 
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Weld Bead NO-RS 1000 ms 50% 50 fps 

 

Weld Bead NO-RS 10000 ms 25% 12.5 fps 
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Base Metal Y-RS 1000 ms 50% 50 fps 

 

Base Metal Y-R 10000ms 25% 12.5 fps 
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Weld Bead Y-RS 1000 ms 50% 50 fps 

 

Weld Bead Y-R 10000ms 25% 12.5 fps 
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Results and discussion 

From the performed tests no more information can be extrapolated than the one in the 

preliminary studies. An high variability in the tests is present, and only studying  the hottest 

point of the thermogram doesn’t work. Furthermore the peak is reached only within the 

zone of the laser spot, in that zone the heat input has a gaussian distribution, in the particular 

case of short excitation time we can see how lots of variables are involved and this lead to 

non repeatable results. 

To improve the reliability of this test was tried to extrapolate some shape factor parameter 

from the exponential decay, so trying to uncouple the the thermogram from the peak 

temperature which is highly variable, but no consistent and reliable results have been found. 
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Lock in 

Introduction to Lock-in routine 

From the experience maturated during the pulsed experimental campaign the need of more 

liable method arises. Lock-in thermography is widely used in literature applied to lamp 

exciter, and even to laser beam exciter. In addition a oscillatory signal is easier to analyse 

and to denoise. This work will focus on the phase method, anyway other methods are 

commentated in the state of art chapter.  

 

 

 

The most common method to extract the phase of the signal is to use the fast fourier 

transform. This is applied by meant of the fft command of Matlab analysing the signal with 

this algorithm, that is a 1D fourier transform applied to each pixel. The data are formatted 

as a tensor of 3 dimension where the first two are the spacial dimensions (pixel) and the 

third dimension is the time dimension (frames) .[2], [3], [28]–[34] 
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However this method is computational heavy, require times and data space on the pc. So 

another method based on the lock in amplifier is here proposed. 

 

𝑦𝑦 = 𝑌𝑌 ∗ cos(𝑖𝑖1𝛿𝛿 + 𝜙𝜙) 

𝑥𝑥 = 𝑋𝑋 ∗ cos(𝑖𝑖2𝛿𝛿 + 𝜙𝜙) 

𝑥𝑥 ∗ 𝑦𝑦 =
𝑋𝑋 ∗ 𝑌𝑌

2
∗ cos�(𝑖𝑖1 − 𝑖𝑖2) ∗ 𝛿𝛿 + 𝜙𝜙� +

𝑋𝑋 ∗ 𝑌𝑌
2

∗ cos�(𝑖𝑖1 + 𝑖𝑖2) ∗ 𝛿𝛿 + 𝜙𝜙� 

𝑖𝑖1 = 𝑖𝑖2        −        𝑌𝑌 = 2 

𝑥𝑥 ∗ 𝑦𝑦 = 𝑋𝑋 ∗ cos(𝜙𝜙) + 𝑋𝑋 ∗ cos(2𝑖𝑖 ∗ 𝛿𝛿 + 𝜙𝜙) 

Neglect the contenta t 2omega by means of low pass  filter or zeroing the signal and 

considering only the mean value of the result to extract S. 

 

𝑥𝑥(𝛿𝛿) = 𝐴𝐴 ∗ cos(𝑖𝑖 ∗ 𝛿𝛿 + 𝜙𝜙) 

𝜌𝜌(𝛿𝛿) = 2 ∗ cos(𝑖𝑖 ∗ 𝛿𝛿) 

𝑟𝑟(𝛿𝛿) = 2 ∗ sin(𝑖𝑖 ∗ 𝛿𝛿) 

𝑆𝑆 = 𝐴𝐴 ∗ cos( 𝑖𝑖 ∗ 𝛿𝛿 + 𝜙𝜙) ∗ 2 ∗ cos(𝑖𝑖 ∗ 𝛿𝛿) = 𝐴𝐴 ∗ cos(𝜙𝜙) + 𝐴𝐴 ∗ cos(2 ∗ 𝑖𝑖 ∗ 𝛿𝛿)

= 𝐴𝐴 ∗ cos(𝜙𝜙) 

𝐶𝐶 = 𝐴𝐴 ∗ sin(𝜙𝜙) 
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𝐴𝐴 = �𝑆𝑆2 + 𝐶𝐶2 

𝜙𝜙 = atan �
𝑆𝑆
𝐶𝐶
� 

 

This method shows considerably shorter computational times and similar result to the fft 

method. 

The aim of this data processing  is to have a liable phase calculation to extract the phase 

plot along  the distance from the laser spot to apply the phase method presented  in the state 

of art chapter. As can bee seen in the following pictures the amplitudes map is more difficult 

to read and suffer from influence and interference from surface flaws such as local 

corrosions or irregularities (the weld bead is not flat, but presents some inhomogeneities) 
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Laser power\harmonics\methods comparisons 

• Lock-in: 25 impulses 

• Reflection configuration 

• Low modulation frequency : 1 Hz 

• Distance by the thermocamera: 22.5cm 

• Method 1: FFT matlab 

• Method 2: lock-in amplifier 

• Axis Y: Longitudinal to the weld bead 

• Axis X: Orthogonal to the weld bead 

 

 

Acronym: 

Y-RS = Yes Residual Stresses 

N-RS = No Residual Stresses 
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METHOD 1    Laser Power 11% 

NO-RS 1 HZ 11% 12.5 fps  Y-RS 1 HZ 11% 12.5 fps 
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METHOD 1    Laser Power 11% 

NO-RS 3 HZ 11% 12.5 fps  Y-RS 3 HZ 11% 12.5 fps 
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METHOD 1    Laser Power 11% 

NO-RS 5 HZ 11

% 

12.5 fps  Y-RS 5 HZ 11

% 

12.5 fps 
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METHOD 2    Laser Power 11% 

NO-RS 1 HZ 11% 12.5 fps  Y-RS 1 HZ 11% 12.5 fps 
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METHOD 2    Laser Power 11% 

NO-RS 3 HZ 11% 12.5 fps  Y-RS 3 HZ 11% 12.5 fps 
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METHOD 2    Laser Power 11% 

NO-RS 5 HZ 11% 12.5 fps  Y-RS 5 HZ 11% 12.5 fps 
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METHOD 1    Laser  Power 40% 

NO-RS 1 HZ 40% 12.5 fps  Y-RS 1 HZ 40% 12.5 fps 
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METHOD 1    Laser  Power 40% 

NO-RS 3 HZ 40% 12.5 fps  Y-RS 3 HZ 40% 12.5 fps 
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METHOD 1    Laser  Power 40% 

NO-RS 5 HZ 40

% 

12.5 fps  Y-RS 5 HZ 40

% 

12.5 fps 
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METHOD 2    Laser  Power 40% 

NO-RS 1 HZ 40% 12.5 fps  Y-RS 1 HZ 40% 12.5 fps 
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METHOD 2    Laser  Power 40% 

NO-RS 3 HZ 40% 12.5 fps  Y-RS 3 HZ 40% 12.5 fps 
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METHOD 2    Laser  Power 40% 

NO-RS 5 HZ 40% 12.5 fps  Y-RS 5 HZ 40% 12.5 fps 
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The oval aspect ratio is the ratio between the dimension along the two axis (X,Y) of the 

radius of the heat spot of the thermogram.  
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Thermal diffusivity   [mm2/s ] 

 
X dir. Y dir. X/Y % 

No stresses 3.752798 3.117928 120.36 

With stresses 2.966974 2.256169 131.50 

 

  

No stresses

With Stresses

0

5

10

15

X direction Y direction

Thermal diffusivity

No stresses With Stresses
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Base Metal vs Welded joint [With\Without residual stresses] 

More test has been performed to investigate the goodness of the calibration of the method, 

in particular the need borns by the fact that performing laser active IRT on irregular surfaces 

shows high number of hot spot on the thermogram. This problem is disturbing the goodness 

of data  elaboration, and the readability of phase plot, in particular when working with high 

power and short period heat impulses. 

So has been performed two different kind of test with a period of the impulse of 1000ms 

and 10000ms with a duty cycle of 50% of the time laser tuned on and 50% off. The lockin 

frequency of the two test are respectively 1Hz and 0.1Hz. 

In this test the X(horizontal)  axis will be the one along the welding direction and the 

Y(vertical) orthogonal to the welding. 

 

  

X 

Y 
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1Hz 

Base 

Metal 

NO-

RS 

5x1.000m

s 

50% 12.5 

fps 

 

 

Base 

Metal 

Y-

RS 

5x1.000ms 50% 12.5 

fps 
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0.1Hz 

Base 

Metal 

NO_RS 5x10.000m

s 

25% 3 

fps 

 Base 

Metal 

Y_RS 5x10.000ms 25% 3 

fps 
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1Hz 

Weld 

Bead 

NO_R

S 

5x1.000m

s 

50% 12.5 

fps 

 Weld 

Bead 

Y_RS 5x1.000ms 50% 12.5 

fps 
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0.1Hz 

Weld 

Bead 

NO_RS 5x10.000m

s 

25% 3 

fps 

 Weld 

Bead 

Y_RS 5x10.000ms 25% 3 

fps 
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No Stresses
Base Metal

NoStresses
Weld Bead

With
Stresses

Base Metal

With
Stresses

Weld Bead

0

2

4

6

8
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12

14

16

18

X Y

Diffusivity [mm2/s]

0.96

0.97

0.98

0.99

1

1.01

1.02

Y-RS NO-RS

Oval Shape Ratio

"Base Metal" "Weld Bead"
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   Diffusivity  [mm2/s]  

  Zone X Y X/Y % 

1Hz No RS Base Metal 5.4 5.5 97.4 

Weld Bead 41.3 26.3 156.8 

with RS Base Metal 6.6 5.7 115.4 

Weld Bead 23.9 29.0 82.34 

        

0.1Hz NoRS Base Material 17.5 14.2 123.0 

Welding 15.0 12.8 117.0 

With RS Base Material 15.2 12.2 124.7 

Welding 13.7 12.0 113.9 

Comments 

As regarding the diffusivity information extracted at 1Hz, is really difficult to have clean 

data because of the high sensitivity of the method of extraction of the diffusivity on the 

slope of the phase. The final values cannot be trust. 

The diffusivity information extracted with a modulation frequency of the laser at 0.1Hz 

show a clear phase diagram and is also possible to easily pick the slope information from 

it. Here the diffusivity data are more reliable and can be seen how the X/Y ration between 

the tests on base material is the same 123% for both tests probably due to the inclination of 

the camera, while the ratio in the welding zone is different. 

Even though the short number of impulse of the laser doesn’t lead to a stabilization of the 

of the thermogram the result obtained with 0.1Hz modulation frequency of the laser are 

more reliable and clean. This make sense as discussed in [3]because lower frequencies 

avoid diffraction phenomena and are preferred when the slab is large enough to avoid 

boundary effects 

The test performed on the top surface of the welding, which is highly irregular, has shown 

a better behaviour during low frequency/low power tests than in high frequency/ high 

power tests. Furthermore with improvement of signal processing algorithm lower and 
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lower power should be used to reach a lock-in test with an ideal peak temperature of less 

then 5K over the environmental temperature to avoid heat losses with air which leads to 

non-linearities. 

No information can be extrapolated from oval aspect ratio, in fact the only correlation 

analytically demonstrated between thermograms and diffusivity is the one with the slope 

of the phase or temperature with their appropriate scale factor.[32], [33] 
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Metallographic analysis 

The specimen have been named: 

• 1 : Specimen without residual stresses 

• 2 : Specimen with residual stresses 

For each specimen has been analysed 3 section with 2 different zoom , 5x and 50x: 

• Base Metal 

• HAZ 

• Weld bead 

The smoothing has been ended at 1 μm and the chemical etching has been done with 

NITAL 4%. 

Comments 

The base metal is a C30. The microstructure shows geometries characteristic of the 

lamination process. In particular it is possible to see the dark and elongated grains of fine 

perlite in a matrix of equiaxed grains of ferrite. 

 

The two welds, on the other hand, have profound differences, as far as the weld bead of the 

specimen 1 is concerned, a lower bainitic structure is noted, while for the specimen 2 the 

weld has a martensitic structure with probable residual austenite that cannot be resolved at 

this magnification. 

 

In the heat affected zone, the main phenomenon is a generalized diffusion of the cementite 

towards the grain boundaries. 
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Specimen 1 

Base metal 

 

Figure 1 Base Metal 50x 

 

Figure 2 Base Metal 5x 

  



Metallographic analysis 

79 

 

HAZ 

 

Figure 3 HAZ 50x 

 

Figure 4 HAZ 5x 
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Weld bead 

 

Figure 5 Weld Bead 50x 

 

Figure 6 Weld Bead 5x 
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Specimen 2 

Base metal 

 

Figure 7 Base Metal 50x 

 

Figure 8 Base Metal 5x 
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HAZ 

 

Figure 9 HAZ 50x 

 

Figure 10 HAZ 5x 
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Weld bead 

 

Figure 11 Weld Bead 50x 

 

Figure 12 Weld Bead 5x 

 

  



Conclusions 

84 

 

Conclusions 

The laser spot lock-in thermography has great potential, however needs a great calibration 

effort in comparison with the lamp lock-in thermography. 

This work is a first approach to the investigation of residual stresses in weldings, one of the 

main issue is related to the presence of different microstructures in the different parts of the 

specimen.  

Another  issue is the difficulty to obtain same test condition between different tests set-up 

when we use short impulses, it means that as far as we move the position of the laser in the 

surface the results changes. This is one of the main reason because we choose the lock-in 

thermography instead of pulsed. In fact, having only a qualitative comparison using pulsed-

IRT is not reliable. The pulsed thermography is sensitive to the local photo-thermal 

parameter and this, in the case of a ‘real’ welded specimen which doesn’t reach an high 

homogeneity on the surface, makes the method non reliable. 

At the same time I have to say that the same problem related to photo-thermal 

inhomogeneities on the surface creates problem in the amplitude map from lock-in tests. 

This the reason why, for the first approach, the phase map has been chosen to calibrate the 

parameters. In addition the phase method is commonly used in literature and this makes 

possible to have a better background to perform a good setup of the equipment (laser head, 

thermal camera, signal processing algorithm). By first guess we decided to use low laser 

modulation frequencies, as suggested in literature, between 1Hz and 0.1Hz.  

The main parts of the work has focused on calibration of the test parameter and signal 

processing algorithm. One of the main problem has been the computational time, this is 

why different methods are proposed. Some tests have been done on the different kind of 

results representation, as said before, and we decide to exclude for this first approach to 

residual stresses investigation the pulsed thermography and the amplitude map at lock-in 

frequency. We even tried to uncouple the pulsed thermogram by the boundary condition 

trying to process the thermal decay shape to extract some characteristic parameters but this 

isn’t possible and reliable.  

Then we compared the effect of temperature rises during lock in thermography using as 

constrain parameter the laser’s power instead of the absolute maximum temperature rises 

so we were able to characterize the test by the heat input and to see the diffusion of the heat 

into the bulk of the material. The reason of this choice can be linked to the same 

consideration as before, that is the need to uncouple the test parameter setup from the 
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surface characteristics trying to see into the bulk of the material. However by the 

thermogram’s recording we see only the surface, and not the bulk of the material, so is 

better to don’t use that information as constrains in the choice of the laser power output 

level. So, the comparison has been done between 11% and 40% laser’s power level , 

obviously the tests performed with a 40% laser’s power level have reached higher 

temperature’s peak. The results of this tests show that with higher temperature peak we 

have more difficult to read the phase map because more non-linearities are induced by heat 

losses with the air and high gradient plots. 

Starting from the precedent results it was possible to understand that we need to set the 

parameter in order to achieve a smoother diffusion of the heat in the material. So the other 

tests investigated the improve in the quality of the results using a 0.1Hz and 1Hz frequency 

and halving the power level  in the lower frequency test. Here the most interesting results 

were achieved. The 0.1Hz laser’s modulation frequency tests permits us to reach a really 

good quality of the phase map plot. As far as we care about the thermogram we continued 

to have noised zones but the ‘phase cut’ plots show a really smooth transition between the 

zone of the laser spot and the sloping zone of diffusion along the surface . This make easy 

to measure the slope and to elaborate it to quantify the thermal diffusivity. 

In the end we can say that the thermal diffusivity increases along the direction orthogonal 

to the weld bead in the case of residual stresses. However more test are required to reach a 

good accuracy for different kind of welding specs.  

This is an innovative technique never used for this kind of investigation, in addition is one 

of the few non destructive testing method  which can be performed on weldings. 
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