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Abstract 

The increasingly stringent limitations in terms of CO2 and pollutant emissions imposed by Regulators, 

such as the European Union (EU), are leading car manufacturers to increase the electrification level 

of their fleets. Hybrid Electric Vehicles (HEVs) can be seen as an intermediate step in the transition 

from the traditional Internal Combustion Engine (ICE) vehicles towards the fully electric ones. 

Actually, thanks to their capacity for exploiting the benefits of both propulsion systems while 

mitigating their drawbacks, hybrid powertrains are receiving lots of attention and are continually 

increasing their market share. 

However, the introduction of, at least, an auxiliary electric machine introduces an additional degree 

of freedom that, to fully exploit all the benefits provided by the electrification, has to be managed by 

an ad-hoc designed powertrain control strategy. 

In the past, several strategies have been proposed to design the high-level controller, named Energy 

Management System (EMS): i.e., the layer controlling the power split among the actuators. Thanks 

to the increased potentialities of Artificial Intelligence (AI) techniques in effectively solving complex 

parameterization tasks, the design of the EMS exploiting AI is being deeply investigated in the 

literature.  

In this framework, this thesis concerns the design of an EMS through the exploitation of deep learning 

techniques: the AI models allow to describe high non-linear relationship among the data 

characterizing the problem. For achieving sub-optimal results, the AI models have been trained off-

line on a wide range of potential driving and traffic scenarios by providing the optimal solutions given 

by an optimization control algorithm, namely Dynamic Programming (DP). 

The proposed methodology is tested, by means of numerical simulation, on a plug-in HEV, available 

on the European market: the model had been previously developed in GT-SUITE and Simulink 

environment and validated against experimental data. 

The simulations proved that the proposed approach is able to achieve quasi-optimal results in terms 

of fuel consumption minimization while, at the same time, being theoretically feasible in a vehicle 

Electronic Control Unit (ECU).
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Sommario 

Le aziende del comparto automobilistico stanno incrementando il livello di elettrificazione della loro 

flotta di veicoli, spinte dalle sempre più stringenti limitazioni in termini di emissioni di CO2 ed 

inquinanti imposte dagli Enti Regolatori, come l’Unione Europea (UE). 

I veicoli a trazione ibrida possono essere visti come una soluzione intermedia fra i tradizionali veicoli 

dotati di motore a combustione interna e i veicoli dotati di trazione completamente elettrica. 

I powertrain ibridi, grazie alla loro capacità di enfatizzare i benefici di entrambi i sistemi di 

propulsione e di limitarne gli svantaggi, stanno ricevendo molte attenzioni da parte delle case 

costruttrici, diffondendosi sempre più sul mercato autonomistico. 

Tuttavia, l’introduzione di una o più macchine elettriche ausiliarie aumenta la complessità del sistema 

di propulsione, aggiungendo un ulteriore grado di libertà che deve essere correttamente gestito tramite 

un dedicato sistema di controllo del powertrain. per poter sfruttare a pieno le potenzialità fornite 

dall’elettrificazione. 

Negli anni, numerose strategie sono state proposte per progettare il controllore di alto livello, 

chiamato Energy Management System (EMS), ovvero il livello dedicato alla gestione della 

suddivisione di potenza (power split) da richiedere agli attuatori per soddisfare la richiesta di potenza 

proveniente dal veicolo. Grazie alle crescenti potenzialità dell’Intelligenza Artificiale (IA) nel 

risolvere complessi problemi di parametrizzazione, in letteratura sono state proposte diverse soluzioni 

che sfruttano l’IA nella progettazione dell’EMS di veicoli ibridi. 

In questo lavoro di tesi viene proposta la progettazione dell’EMS utilizzando tecniche di deep 

learning: l’utilizzo di modelli di IA permette di descrivere relazioni fortemente non-lineari tra i dati 

che caratterizzano il problema. L’obiettivo è quello di ottenere una soluzione sub-ottima, allenando 

il modello di IA tramite un vasto database di potenziali scenari di guida e traffico, utilizzando come 

target la soluzione ottima ottenuta tramite un algoritmo di ottimizzazione, chiamato Dynamic 

Programming (DP). 

La metodologia proposta è stata testata, tramite strumenti di simulazione numerica, su un veicolo 

ibrido plug-in, disponibile sul mercato europeo, il cui modello è stato precedentemente sviluppato in 

GT-SUITE e Simulink e validato su una grande quantità di dati sperimentali. 

L’approccio modellistico proposto è in grado di fornire una soluzione quasi-ottima in termini di 

minimizzazione dei consumi di combustibile ed è, teoricamente, implementabile su una centralina 

elettronica di un veicolo. 
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1 Hybrid Electric Vehicles 

1.1 Global Warming Problem and Emission Regulations 

Nowadays, global warming is one of the most serious problems that humanity has to face. 

The emissions in the atmosphere of Greenhouse gases (GHG), elements that block the reflected solar 

radiation on the ground, are the major cause of the increment of the earth temperature. These 

emissions are related to the energy sector, from energy generation industries to buildings heating 

sectors to road transportation sector [1]. 

The latter is responsible for 23% of energy-related CO2 emissions, which is the most common 

greenhouse gas because it is one the product of the combustion process of fossil fuels and has been 

pointed out as the main responsible for global warming [2]. 

To tackle this problem, in the past years, a series of CO2 emissions limitations have been imposed 

from the European Union (EU), in Europe, to car manufacturers. Firstly, these limitations were not 

mandatory but based on a voluntary agreement, with some awards for those who were able to respect 

them. 

However, since 2015, a fleet average CO2 emissions target of 130 g/km, on NEDC cycle, was imposed 

on all passenger cars manufacturers, with a penalty of 95€ per vehicle for each g/km exceeding the 

target. 

The target is intended for decreasing with the new regulations and, from 2020, is set to 95 g/km and 

it is supposed to reduce by 15% by 2025 and by 37.5% compared to 1990 levels by 2030 [3][4]. 

 

 

Figure 1.1: CO2 emission target trend 
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A stricter limitation has been proposed on 14.07.2021, called FIT for 55. This climate package intends 

to reach the 55% of the target imposed in 1990 within 2030 in terms of CO2 emissions, with the goal 

of reaching the carbon neutrality within 2050. It is a very optimistic perspective since the temporal 

target is very close to achieve a so drastic limitation. 

Even if the modern internal combustion engines have reached remarkable values of efficiency, the 

target is very strict and new propulsions forms have to be adopted to reach this target, also because, 

in a driving cycle, the engine is forced to work at low-efficiency points for most of the time, an aspect 

that nullifies the increment in terms of efficiency [2]. A hybrid powertrain could help the internal 

combustion engine to move these operating points to more efficient zones, increasing the average 

efficiency of the engine and so decreasing the CO2 emissions. 

 

 

Figure 1.2: Engine operating points in a traditional pure ICE powertrain application[2] 

 

Powertrain electrification can play a key role since it can because it can combine the advantages of 

two propulsion systems, such as the electric and the thermal ones, it allows using a smaller internal 

combustion engine (downsizing), saving more fuel and so having a softer contribution in terms of 

CO2 emissions. 

A pure electric powertrain approach is not ready to fully penetrate the market for two main reasons: 

the low energetic density of the electric energy, compared to the fossil fuels, that limits the range of 

electric vehicle and impose to use a very heavy pack of batteries to store the energy on board. The 

other point is the infrastructure that is not ready yet to sustain a great number of electric cars that have 

to recharge their batteries, both due to the limited quantity of recharge points, both to the energy grid 

that is not ready to face continuous peak of energy demands. 
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Considering both internal combustion engine efficiency limits and fully electric vehicle problems, 

nowadays one of the most interesting solution to reduce CO2 emission in the atmosphere is to drive 

the vehicle with a hybrid powertrain. 

1.2 Hybrid Propulsion System Description 

Any propulsion system that combines two or more sources of energy, installed onboard, is defined as 

hybrid propulsion system [2][5]. 

Different sources of power could be exploited, however, for traction application, the most common 

are the traditional fossil fuels, burned in an internal combustion engine, and electric energy, used by 

one or more electric motors, intending to transform the electric energy stored in the battery, in 

mechanical energy. 

This kind of propulsion system has the advantage of reducing fuel consumption, compared with a 

traditional internal combustion engine propulsion system. The required power from the load can be 

obtained by exploiting both the electric machine and the internal combustion engine, and it is possible 

also to exploit the electric machine to avoid that the internal combustion engine operating points are 

located in low-efficiency regions, allowing to increase the overall efficiency of the engine, that is 

smaller compared to the efficiency of the electric motor. 

This goal can be achieved in two different ways: 

• Moving the operating points through the electric machine: the electric machine provides a 

torque, that can be a motor torque or a braking torque, to modify the internal combustion 

engine torque, moving its operating point trying to reach the highest efficiency region at a 

fixed rotational speed. 

• Downsizing: having more energy sources onboard allows to use of a smaller internal 

combustion engine that can work at higher torque because higher load usually means higher 

efficiency. 

Another advantage is related to the presence of the electric machine that can be used as an electric 

current generator to decelerate the vehicle when the required power is negative. It allows to transform 

and exploit the kinetic energy that, in a traditional mechanical braking system, will be lost, to recharge 

the battery. This functionality is called regenerative braking. 

However, increasing the number of energy sources installed onboard, increases the complexity of the 

system both from a mechanical and a control point of view [5][6] 
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The latter is a crucial aspect because the energy management system must be optimized to exploit the 

full potential of this powertrain. But this operation is not easy and depends on different variables (e.g., 

powertrain architecture, plug-in vehicle, electric machine size, etc.). 

1.3 Powertrain Architecture 

As it is possible to understand from the above sections, a hybrid powertrain is not a fixed solution, 

but it can be designed in different ways, depending on the request of the vehicle. 

Due to the presence of these degrees of freedom, hybrid powertrain architectures need to be classified, 

to distinguish architectures with different features. 

The first classification of HEV can be done considering how all the power sources installed on board 

are connected. Different powertrain architectures enable different functionality of the vehicle [5][6]. 

• Series architecture: in this configuration, there is no mechanical link between the internal 

combustion engine and the wheels. This configuration allows the internal combustion engine 

to operate in a narrow power range near to the optimum efficiency. Moreover, the internal 

combustion engine has to be coupled to an electric machine, to transform the mechanical 

energy from the fuel into electric energy that can be stored in the battery. 

To drive the vehicle a second electric machine is present and works mainly as a motor and 

has to be designed according to the peak power that the vehicle can require. This architecture 

has the drawback of double energy conversion from chemical to electrical, with the couple 

engine-first electric machine, and a second conversion from electrical to mechanical with the 

main electric motor; thus, it is not so efficient from the energetic point of view. Furthermore, 

using two electric machines introduce another complexity from the design point of view. 

 



  1.3. Powertrain Architecture 
 

5 
 

  

Figure 1.3: Scheme of a series hybrid architecture[2] 

All these drawbacks lead to use the architecture only as a range extender configuration, that 

is a particular battery electric vehicle, that uses the engine only if the battery is empty, 

increasing the range of the vehicle to reach a recharge point, avoiding the so-called "recharge 

anxiety" of the users. 

It is possible to define a parameter that, based on the relative size of the machines installed 

onboard, define a degree of electrification of the vehicle, called hybridization ratio [2][5][6]. 

 

 𝑅ℎ,𝑠𝑒𝑟𝑖𝑒𝑠 =
𝑃𝐸𝐿,𝐺𝐸𝑁

𝑃𝐸𝑀
 1.1 

 

Concerning the series architecture, it ranges from a value of 0 that represents a pure electric 

vehicle to a value of 1 that represents the electric transmission. 
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Figure 1.4: Series hybridization ratio[6] 

 

• Parallel architecture: in this configuration, it is possible to perform power splits between the 

different power sources installed on board since the wheels are connected both at the internal 

combustion engine and the electric machine. 

 

Figure 1.5: Scheme of a parallel hybrid architecture[2] 
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This architecture, compared to the series one, eliminates the inefficiency related to the double 

energy conversion and allows to downsize of both the machines because the peak power can 

be obtained using both the machines that sum their powers if parallel mode propulsion is used. 

Another advantage is that only one electric machine is enough to exploit the engine to recharge 

the battery, working as a generator, and to drive the vehicle, working as a motor in the parallel 

mode, obtaining a simpler mechanical design than the series architecture, but a more complex 

control system since the possibility of multiple propulsion methods. 

For a parallel architecture too, it is possible to define a parallel hybridization ratio [2][5][6], 

that has the same meaning of the series one: 

 

 𝑅ℎ,𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 =
𝑃𝐸𝑀

𝑃𝐼𝐶𝐸 + 𝑃𝐸𝑀
 1.2 

 

 

Figure 1.6: Parallel hybridization ratio[6] 

 

It ranges from 0, representing a traditional vehicle, to 1 which is a full electric vehicle. The 

intermediate values represent the possible hybrid configurations that enable more 

functionality if the parallel hybridization ratio increases because the size of the electric 

machine is higher, spacing from the micro-hybrid, in which the electric machine is very small 

and allow just the start and stop and regenerative braking functionality, permitting to save fuel 

at idle operation, to the full hybrid, in which it is also possible to define a pure electric range, 

that is the distance the vehicle can cover with a pure electric propulsion method. 

• Complex architecture: this architecture is obtained by increasing the number of traction 

systems, enabling the possibility of obtaining a parallel and a series architecture on the same 
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vehicle. This increases the complexity of the mechanical design and the control system too. 

If all the machines are linked together using a system of clutches, a series/parallel architecture 

is obtained, while if a planetary gearbox is used a power-split architecture is obtained. 

 

Figure 1.7: Scheme of series/parallel configuration[2] 

 

Figure 1.8: Scheme of a power-split configuration[2] 

1.4 Electric Machine Position in a Parallel Architecture 

 In a parallel configuration, an additional classification is defined, considering the electric machine 

position [4][6]: 

• P0: the electric machine is connected to the engine through a belt on the Front-End Accessory 

Drive (FEAD), obtaining the so-called Belt Alternator Starter (BAS). The size of the electric 

machine is limited and so just regenerative braking and start and stop, with a little engine 

assistant, are possible. 
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• P1: the electric machine is directly connected to the crankshaft and the same functionalities 

of a P0 configuration are possible, with the advantage of eliminating a source of losses such 

as the belt. 

• P2: the electric machine is positioned between the engine and the transmission and has a 

greater size than the above-mentioned configurations, enabling more hybrid functionalities. 

A clutch allows disconnecting the engine from the electric machine when the pure electric 

propulsion mode is exploited. Since both the machines are located on the same shaft, if the 

clutch is closed, they have the same speed. 

• P3: the transmission is located between the electric machine and the internal combustion 

engine. This configuration allows to better exploit the characteristic of the electric machine 

since it can work at a higher speed than the engine, if the transmission ratio allows to exploit 

this feature, and the transmission allows the machines to rotate at different speeds. A smaller 

electric machine can be used because its size is defined by the torque and, due to the higher 

speed, the same power can be obtained with a smaller torque and so a smaller machine. The 

additional degree of freedom of electric motor speed increases the complexity of this 

configuration compared to the above-mentioned. 

• P4: the two machines are not mechanically connected because they are located on different 

axles, but their connection is Through-The-Road (TTR). This architecture allows having a 

four wheels drive vehicle, without a central differential gear. 

 

  

Figure 1.9: Electric Motor Position[6] 
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2 Energy Management System 

In a hybrid electric vehicle, the introduction of one or more power actuators, such as the electric 

machine(s), introduces an additional degree of freedom that increases the complexity of the 

powertrain control system compared to a conventional ICE powertrain. In the latter, a low-level 

controller is sufficient to establish the injected amount of fuel based on the driver request in terms of 

accelerator and brake pedal position [7]. 

For an HEV the addition of a high-level controller is necessary, and it must control the power split 

among the different actuators installed onboard. 

This second controller is called Energy Management System (EMS) and it is composed of two parts, 

as shown in figure 1.1 [2][8]: 

• Supervisory controller: decides the best operating mode considering the operating 

conditions of the vehicle and the powertrain. 

• Energy Management System: decides the power split among the actuators based on the 

operating conditions of the vehicle and of the powertrain and the information coming from 

the supervisory controller. 

 

 

Figure 2.1: EMS structure[2] 
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The goal of the EMS is to optimize the power split based on some predefined targets to be achieved. 

The most common optimization strategy is to let the ICE works in its best efficiency regions, to 

minimize fuel consumption, but it is not the only one. A hybrid power split can be also optimized to 

minimize pollutant emissions, a strategy that can be relevant for a diesel engine, due to its high NOx 

emissions. 

Several energy management system control strategies have been proposed in the literature and a first 

classification can be done splitting them into two categories [2][6]. 

2.1 Traditional EMS Control Strategies 

These kinds of control strategies are based on an already known control algorithm that defines the 

optimal power split control strategy. It is possible to split them into three categories [2][9]: 

• Global optimization strategies: the dynamic nature of the system is considered for 

optimization and an optimal solution is found over a predefined driving cycle, which must be 

a-priori known. It is a global optimization because it considers the entire driving cycle, both 

in the past and in the future: it makes this optimization strategy unfeasible on a real-time 

application. The best known is Dynamic Programming (DP). 

• Static optimization strategies: since the global optimization strategies need the full 

knowledge of the driving cycle, the static optimization strategies idea is based on the 

knowledge of just short-term time horizon of the past and, if possible, of the future of the 

driving cycle, to realise a local optimization. The best known is the Equivalent Consumption 

Minimization Strategy (ECMS) that realises a local optimization at each instant by using 

instantaneous information of the powertrain energy flows. The main idea is that the electric 

energy can be converted into virtual fuel consumption, to be summed to the effective fuel 

consumption of the engine, using a factor, called equivalence factor. The sum of the two-fuel 

consumption is the function that has to be locally minimized [10][11]. 

• Rule-based control strategies: based on the introduction of a set of rules that, using as input 

a set of meaningful parameters, decide the power split. They are not truly optimization 

strategies, since any function to be optimized is defined, but they are in the form of if-then-

else, and efficiency maps or fuzzy-control logic methods may be used in the implementation. 

The main advantage is their high computational speed, compared to the other methods, and it 

is possible to analyse a huge number of situations on which a single rule can be used. Many 

situations are analysed and more accurate is the control strategy. [2][6] 
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2.2 Dynamic Programming 

As above-mentioned, dynamic programming is a global optimization technique, [12][13] one of the 

optimal control strategies capable of providing the optimal solution to problems of any complexity 

level. It is based on Bellman’s principle of optimality: 

“The principle of optimality suggests that an optimal policy can be constructed in piecemeal fashion, 

first constructing an optimal policy for the “tail subproblem” involving the last stage, then extending 

the optimal policy involving the last two stages and continuing in this manner until an optimal policy 

for the entire problem is found.” [6][14] 

In a hybrid electric vehicle control problem, dynamic programming can be used to find the optimal 

control strategy on the entire driving cycle, but it is impossible to be implemented in real-time on a 

true vehicle due to two main limitations. 

First of all, the dynamic programming algorithm works in two steps, firstly it solves the backward 

problems, thus starting from the last time step and proceeding backwards until the first-time step has 

been reached. This is the reason for the mandatory a-priori knowledge of the driving cycle. After the 

backward operation, the algorithm proceeds in a forward direction-finding the best control trajectory 

that minimizes the global cost function. 

 

 

Figure 2.2: Example of DP algorithm procedure[2] 
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Secondarily, this algorithm is not feasible in a vehicle Electric Control Unit (ECU) due to its high 

computational burden. 

Although these limitations, the DP control algorithm is used as a benchmark for other control 

strategies to evaluate their performance. 

In a hybrid electric vehicle dynamic programming optimization, some state variables 𝑥(𝑡) and 

control variables 𝑢(𝑡) must be defined. The former defines the state of the system, an example is the 

State of Charge (SOC) of the battery, while the latter is the variable whose values at each time step 

are defined by the control algorithm (i.e., electric machine power and engine state). 

The cost function that has to be minimized is usually defined by Equation 2.1. It is not the only one 

that can be defined. It allows to minimize the fuel consumption but, for example, one goal of the 

optimization is to minimize NOx emissions, introducing a different cost function. 

 

 𝐽(𝑡, 𝑢(𝑡)) = ∫ 𝑚𝑓̇ (𝑡, 𝑢(𝑡))𝑑𝑡
𝑇

0

 2.1 

 

Where: 

• 𝑡 is the time 

• 𝑢(𝑡) is the control variable 

• 𝑚𝑓̇  is the fuel rate 

Another important aspect to consider is the discretization of the values that the state and control 

variables can assume. The optimal solution can be theoretically found only if these variables have a 

continuous domain, however, it will lead to a huge computationally effort. Thus, a discretization of 

the domain is required, but a compromise is mandatory, to minimize the computational effort, 

preserving the performance of the algorithm, being sure to stay as close as possible to the optimal 

solution [2][13]. 

2.3 Innovative techniques 

The optimal operating points for the engine and the decision of the most appropriate power split value 

in a hybrid powertrain is not a simple decision and a clear correlation is not easy to find. The rule-

based control strategies are based on a set of rules that change depending on the vehicle demands, but 

it without defining a clear relationship between power split and the variables that characterize the 

control problem. [15] 
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The same consideration can be extended to the other control strategies already analysed, based on an 

algorithm of optimization such as the dynamic programming, or to the proper optimization of a 

parament, such as the ECMS. 

New horizons in terms of modelling approaches have recently been investigated. 

Nowadays the artificial intelligence (AI) is one of the most promising approaches in several 

technological fields and it can also be exploited in the automotive field to proper model and describe 

very complex phenomena that characterized the automotive field, from the soot emissions prediction, 

for example, to the design of a high-level control system. 

The artificial intelligence models can predict a numeric value or classify a phenomenon among a 

certain number of classes, without knowing a clear relationship between the variables that 

characterized the problem and the related predicted value. 

The real challenge of these types of models is to effectively train the AI model, because, during the 

training phase, the model catches the relationship between the variables that characterize the model, 

called features, and the predicted value that, in the training phase in already known. 

It is considered a challenge for two main reasons. The training dataset must be wide enough to let the 

training algorithm reach a high value of accuracy, and, since these models are applied, as already 

said, to very tricky problems, the features selection is a crucial phase, and it is not easy as it may 

appear. 

For an EMS design application, two models are most promising in terms of results and real-time 

application: 

• Neural Networks and Deep Neural Networks: these models are inspired by how our brain 

exchanges information. As the brain uses electric impulses to pass the information between 

the neurons, a neural network exchanges information between the artificial neurons in terms 

of number. The artificial neuron applies a mathematical function to the values that receive in 

input to compute an output value that passes to the next neuron and so on. 

If the architecture of the network is organized with more than three layers, which are a 

collection of neurons operating together at a specific depth, we talk about deep neural 

networks (DNN). 
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Figure 2.3: Neural Network Architecture[16] 

 

• Reinforcement Learning (RL): based on how humans and animals learn, that is a trial-and-

error process. In fact, the control problem can be split into two elements, the agent and the 

environment. The agent acts on the control variable of the system (i.e., power split) and 

interacts with the surrounding part of the system, which can be represented by the 

environment. This learning process does not require a training data set with already known 

values of the control variables, because it automatically learns through an award function. 

The value of this function is computed after any decision of the agent. The close the solution 

is to the optimality, the higher the award. Due to its ability to represent a complex non-linear 

system without any information about the optimal solution, reinforcement learning methods 

are very suitable for the design of the EMS of a hybrid electric vehicle.  

 

 

Figure 2.4: Example of agent-environment interaction[17] 

 

• Deep Reinforcement Learning (DRL): it is the combination of reinforcement learning and 

a deep neural network. The reinforcement learning algorithm is used to train the agent, while 

the deep neural network is exploited to describe the system. 
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3 AI Theoretical Background 

3.1 Introduction to Artificial Intelligence? 

Artificial Intelligence (AI) is a wide-ranging branch of computer science concerned with tasks 

normally performed by human intelligence, such as visual perception, speech recognition, decision-

making, and translation between languages. 

This scientific and technological field is quite recent, and the term artificial intelligence was coined 

only in 1956 for the first time by the scientist John McCarty. The first computer program that was 

able to reproduce a simple human way of thinking was presented at the Dartmouth College workshop 

in 1956 by Allen Newell and Herbert Simon. It was known as Logic Theorist, and it was able to prove 

logical theorems only using math principles. 

After the introduction of the subjects, artificial intelligence had some ups and downs periods because 

it was seen as a very promising technology, but some ethical and technical problems slowed down 

the grew of this technology, particularly due to the low computational power of the available 

computers. From the ethical point of view, the attention was pointed to the danger of creating a 

machine that was able to think and act without any human control, while from the technological point 

of view these models required a huge computational effort, due to their complicated algorithm, that, 

with the computer technology of those years, was practically unfeasible. 

Starting from this century, the increase in the computational capabilities, algorithmic improvements 

and the possibility to access large amounts of data, have arisen the interest in artificial intelligence, 

which is now exploited in fields not directly linked with computer science: e.g., medical diagnosis, 

data mining, etc. [18] 

The term deep learning has dominated the scene in the last years because of increasing attention to 

the creation of models that can auto-learn directly from data, resuming a mathematical model known 

as an artificial neuron, theorized by Alan Tuning even in 1943, and included in a more complex 

model known as neural network. [19] 

Since the general problem of creating intelligent machines is very wide and also the term intelligence 

is referred to several different human actions, the artificial intelligence field can solve different sub-

problems. 

It can be used in problem-solving and reasoning models, using algorithms that imitated step-by-step 

reasoning that humans use in some logical context, or knowledge representation: i.e., the 
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representation of a different type of information. Another important field is natural language 

processing, a sub-field that studies how to allow the machines to read and understand human 

language, as a clear example can be Alexa from Amazon or each kind of vocal recognition device. 

Last but not least, artificial intelligence has been exploited in the learning field, leading to the creation 

of machine learning. This last sub-field of artificial intelligence is the one that is analyzed in this 

thesis since it is referred to a computer algorithm that improves automatically through experience, let 

the machine learn directly from the data, requirements that were introduced in the previous chapter 

when the Energy Management System design innovative technique was introduced. 

3.2 Machine Learning 

Machine Learning (ML) is a subset of models that are parts of the artificial intelligence group. The 

main goal of these modelling techniques is to design a model that can find some relationships and 

learn something from a set of data that it receives as inputs, without any external instruction. The 

term “learning” is referred to the ability to auto-learn hidden relationships from the input data, while 

the term “machine” is referred to the presence of a computing model. 

However, also the machine learning world is very wide, and it contains several subcategories that are 

employed very usefully in a large set of applications. 

Nowadays machine learning is everywhere around us: from artificial systems that can communicate 

with humans, understanding and answering to what the user asks to the machine, like Alexa, 

developed from Amazon or Siri from Apple; it is heavily exploited in the biomedical field to 

understand, for example, if a TAC image could be dangerous for the patient or not, using machine 

learning techniques with image classification purpose. Image classification models are also used in 

the computer vision field (e.g., in autonomous driving vehicles, where the vehicle should correctly 

recognize a pedestrian crossing the street or the traffic light phase). [20] 

Other applications of machine learning are related to the financial field, trying to predict if a stock is 

going to grow or fall, in the data mining field, for cluster a set of data in a certain number of groups 

that are linked together by some common features, in the natural language processing, a field that has 

that aim of process texts and audios trying to extract the most important words or the idea that the 

text wants to communicate. It is also present in every search engine that, starting from the information 

gathered from the cookies of each personal computer, send the most attractive advertisements to the 

user. It is possible to understand that machine learning technology has a huge potential that has been 

only partly explored yet, due to its novelty. 
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After this brief introduction to the machine learning world, aimed at introducing the main idea that is 

behind these models and a list of some application fields, the next section will be analysed the main 

classification of machine learning models with their principal characteristics. 

3.3 Machine Learning Categories 

As already presented in the above section, machine learning models are exploited in several fields 

and, due to the wide difference among each field of applications, also machine learning models are 

very different from each other both from the algorithm point of view and model results point of view. 

Machine learning techniques are usually classified into three wide categories, based on how the 

training data are structured and the feedback available to the learning method. [20][21] 

• Supervised Learning: data are structured in two sets: input data, which are the input variables 

to the model, and output data, which are the correct results that the model has to pursue. The 

goal of this model is to extract a general rule that can associate an output as close as possible 

to the correct one, to each input. 

• Unsupervised Learning: data are provided to model only in the form of input data with no 

correct output associated. These kinds of models, generally, are exploited to find the hidden 

relationship among the input data, to group the several set with similarities that the model 

must find. Usually, the unsupervised learning procedure is used coupled to a supervised 

learning model if the available data do not have enough information about the correct output 

in classification problems. 

• Reinforcement Learning: the model can interact with a dynamic environment and has the 

task to pursue a goal: i.e., a variable that has to be maximized or minimized. These models 

are based on the concept of rewards. During the training phase, the model generates some 

control actions that are exploited by the dynamic environment to generate the value of the 

goal variable.[22] If the value is getting closer to the target the model receives a reward, which 

means that the model is going in the right direction to find a global minimum to the goal 

variable. The ability of reinforcement learning models to interact with the dynamic 

environment makes them very useful in control systems and so also exploitable for energy 

management system design in hybrid vehicles. 

Another classification could be done based on how the output of the model is structured: 

• Classification: the output can have only discrete values, that are called classes. The machine 

learning model is a supervised model, that classifies the input values into the correct class. 
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• Regression: in this case, the output is a continuous variable, and the model is a supervised 

one. An example of a regression problem could be the evaluation of the electric motor torque 

to be provided in a hybrid electric vehicle. 

• Clustering: the input provided to the model is divided into a certain number of groups. 

Clustering models are unsupervised because the groups are not a priori known and all the 

considerations valid for unsupervised learning models can be extended to clustering models. 

3.4 Supervised Learning Algorithms 

In the literature, the EMS design problem is usually dealt with reinforcement learning algorithms or 

supervised learning algorithms, if the artificial intelligence is exploited. 

Since in this work supervised learning techniques were adopted for the EMS design problem, this 

type of model will be described more in detail. In particularly, Long Short-Term Memory (LSTM) 

Deep Neural Networks (DNN) were employed because they can remember some temporal 

relationship between a time series input data. 

A supervised learning model was chosen since the Dynamic Programming (described in section 2.2) 

can be used for generating a set of optimal results: i.e., the outputs for training the neural networks, 

consisting of the optimal solution on different driving cycles. The procedure to create the model is 

described in section 4.6 

As above-mentioned, a supervised learning algorithm takes a known set of input data and known 

responses to the data, training a model to generate reasonable predictions for the responses to new 

input data. Several supervised learning algorithms can be applied with a trial and error procedure to 

find the most suitable one. [20][21] The selection of the most appropriate algorithm is a process of 

trial and error and a trade-off between the specific characteristic of the algorithms, speed, memory 

allocation and accuracy. 

In the following section, the classification and regression algorithms initially considered for this study 

are briefly described. 

3.4.1 Logistic Regression 

This model can be used only for binary classification problems with two classes. It works fitting a 

model that can predict the probability that a response belongs to one class or the other. This model is 

very simple both to be interpreted and to be trained, however, it has some limits: it only works with 

binary classification problems and with data that can be quite easily divided into two main classes. 

[20][21]. 
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Figure 3.1: Example of logistic regression application[23] 

3.4.2 K-Nearest Neighbour 

k-Nearest Neighbour model (kNN)[24] begins by randomly choosing k (number of classes) centres 

into an n-dimensional space (number of features). It assigns each point to the nearest centre, 

recomputing them as the centre of mass for all points assigned to it. This process is repeated until the 

process converges to a stable value of the computed centres. 

KNN algorithm categorizes objects based on the classes of their nearest neighbours in the dataset, 

assuming that objects near each other are similar [20][21]. 

A parameter that can be tuned on this model is the distance calculation by means the n-closest objects 

are found: 

• Euclidean: 𝑑𝐸 = √∑ (𝑝𝑘 − 𝑞𝑘)2𝑛
𝑘=1  

• Cosine: cos(𝜃) =
∑ 𝑝𝑘𝑞𝑘

𝑛
𝑘=1

√∑ 𝑝𝑘
2𝑛

𝑘=1 √∑ 𝑞𝑘
2𝑛

𝑘=1

 

• Chebyshev: 𝑑𝐶(𝑝, 𝑞) = max
k

{|𝑝𝑘 − 𝑞𝑘|} 

This model is useful to easily establish benchmark learning rules, but with the drawbacks of high 

prediction speed and high memory usage. 

 

Figure 3.2: Example of kNN model application[23] 
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3.4.3 Support Vector Machine 

In Support Vector Machine (SVM),[25] a linear decision boundary, called hyperplane, Separating the 

points of the different classes. 

The hyperplane has a linear formulation as shown in Equation 3.1: 

 

 ∑ 𝑤𝑘𝑥𝑘 + 𝑏 = 0

𝑛

𝑘=1

 3.1 

 

The hyperplane is fitted into an n-dimensional space, where n is the number of features of the dataset. 

The hyperplane with the largest margin between the two classes is selected. [20][21] 

 

 

Figure 3.3: Example of SVM application[23] 
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Figure 3.4: hyperplane with highest margin selection[26] 

 

One of the major issues of this model is that is not highly accurate with non linearly separable data. 

In this case, two main solutions are used. 

A loss function, as indicated in Equation 3.2, can be used to penalize the points on the wrong side of 

the hyperplane: 

 

 max (0,1 − 𝑦𝑘 (∑ 𝑤𝑘𝑥𝑘 − 𝑏

𝑛

𝑘=1

)) 3.2 

 

Where: 

• 𝑦𝑘 is the kth target.  

• ∑ 𝑤𝑘𝑥𝑘 − 𝑏𝑛
𝑘=1  is the kth output from the traditional hyperplane computation. 

 If the data is on the right side the function will return 0, while in the other case a value that is 

proportional to the distance from the margin set by the hyperplane. 

The goal of the optimization is to minimize the loss function, in Equation 3.3: 

 

 [
1

𝑛
∑ max (0,1 − 𝑦𝑘 (∑ 𝑤𝑘𝑥𝑘 − 𝑏

𝑛

𝑘=1

))

𝑛

𝑘=1

] + 𝜆 ∑ √𝑤𝑘
2

𝑛

𝑘=1

 3.3 
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The parameter 𝜆 determines the trade-off between increasing the margin size and ensuring that point 

𝒙𝒊 lies on the correct side of the margin. 

The other solution is to use a kernel transformation to transform nonlinearly separable data into higher 

dimensions where a linear decision boundary can be found. In other words, a change of reference 

frame is used to describe the data and, into the new reference frame, they can be described as linearly 

separable. 

 

 

Figure 3.5: SVM Kernel application. Data are transformed and described into the new reference frame, through a 

transform function ϕ[26] 

 

Another limitation of this model is that, since a single hyperplane is used to separate the data, the 

classic SVM algorithm can be exploited only for a binary classification problem. However also this 

limit can be overcome by fitting more than one hyperplane, allowing multiclass classification 

problems, with a technique called error-correcting output codes. 

3.4.4 Naïve Bayes 

A Naïve Bayes classifier[27] uses a probabilistic approach to classify data, based on the application 

of Bayes' theorem, stated mathematically by Equation 3.4: 

 

 𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
 3.4 

 

Where 𝐴 and 𝐵 are two events and 𝑃(𝐵) ≠ 0. It allows to compute the conditional probability, that 

is the probability of event 𝐴, for example, occurring given the event 𝐵 is appended and can be flagged 

as true in a logic perspective [20]. 
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A Naïve Bayes classifier is based on a fundamental assumption: the presence of a particular feature 

in a class is unrelated to the presence of any other features. In other words, the presence of a single 

feature in a class is not related to the presence of any other feature in the same class. 

Assumed this statement, the classifier classifies new data based on the highest probability of its 

belonging to a particular class, computed the probability distribution of each class in the features 

space during the training phase. 

A typical application of the classifier is in many financial and medical fields since it is very powerful 

when the model encounters scenarios different from the training data ones. [21] 

 

 

Figure 3.6: Example of Naive Bayes classifier application[23] 

3.4.5 Discriminant Analysis 

This classifier is based on the Gaussian distribution concept. It assumes that different classes generate 

data based on Gaussian distributions. 

The discriminant analysis classifies data by finding linear combinations of features and using 

boundaries between each class, established through every Gaussian distribution of each class. 

The goal of the training phase of this model is to find the parameters to fit a Gaussian distribution for 

each class to compute the boundaries, which can be linear or quadratic functions. 

Based on which part of the features space a new data is located and inside of which boundary, a new 

data is classified. 

This model is very fast to make its predictions, while it involves a large amount of memory during 

the training phase [20][21]. 
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Figure 3.7: Example of discriminant analysis application[23] 

3.4.6 Decision Trees and Regression Algorithms 

Another common classifier that is used in many applications is the so-called decision tree. 

A tree consists of a set of branches that link different conditions, as a flow of if-then-else conditions, 

whose parameters are set during the training phase. This classifier is quite weak, and the prediction 

accuracy should not be a crucial requirement. To boost up the performance of a tree classifier, it is 

possible to combine several weaker decision trees into a stronger ensemble, called bagged and 

boosted decision trees. 

 

 

Figure 3.8: Example of decision tree[23] 

 

The most common machine learning algorithm for classification purposes has been briefly described 

(a separate section is dedicated to neural networks). The following algorithm is used for regression 

problems, in which the concept of classes cannot be used anymore, since the value that has to be 

predicted is continuous and not discrete anymore [21]. 
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3.4.7 Linear Regression 

The linear regression can be compared to the logistic regression for classification algorithms. It is the 

easiest regression model that can be used, and it only fits data with a linear behaviour. 

Linear regression is a statistical modelling technique used to describe a continuous response variable 

as a linear function of one or more predictor variables [20][21]. 

Since the fitted function is linear, the response is: 

 

 𝑦 = 𝑎0 + ∑ 𝑎𝑘𝑥𝑘

𝑛

𝑘=1

 3.5 

 

 

Figure 3.9: Example of linear regression application[23] 

3.4.8 Nonlinear Regression 

A nonlinear regression technique is based on the same idea of the linear regression one, that is to find 

an equation that can fit inside the dataset, with the lowest distance between each data point and the 

regression function. 

Nevertheless, a simple linear function is not complex enough to be able to fit a strongly nonlinear 

data set. In this case, a nonlinear regression function should be used. Generally, these models are 

assumed to be parametric, where the model is described as a nonlinear equation. The nonlinear term 

is referred not to the equation itself and so to the variables (features), but to the parameter since the 

equation is assumed to be nonlinear, while the parameter is not. 

To better clarify this aspect, the equation 𝑦 = 𝑎0 + 𝑏1𝑥2 is assumed to be a linear function of the 

fitting parameters, while the equation 𝑦 = 𝑎0𝑥𝑎1 is nonlinear of the fitting parameters and can be 

considered as a nonlinear regression model [20][21]. 
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Figure 3.10: Example of nonlinear regression model application[23] 

3.4.9 Gaussian Process Regression Model 

Gaussian Process Regression Model can be seen as an infinite-dimensional (continuous value as in 

regression problems) generalization of multivariate normal distribution. It is a stochastic process, 

such that every finite collection of variables has a multivariate normal distribution (Gaussian 

distribution), and also every finite linear combination of them is normally distributed. The distribution 

of a Gaussian process is the joint distribution of all variables, obtaining a distribution over functions 

with a continuous domain. 

Gaussian process regression models are nonparametric models since no equations are used to predict 

the responses from variables. It is widely used for interpolating spatial data [20][21]. 

 

 

Figure 3.11: Example of GPR model application[23] 

3.4.10  SVM Regression 

It is the extension of the Support Vector Machine, used for classification tasks, adapted to predict 

continuous responses. The main difference of the SVM regression if compared to the SVM described 
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in section 3.4.3 is that, in this case, instead of finding a hyperplane (or more hyperplanes for multiclass 

problems) that separates data, these algorithms find a model that deviates from the training data by a 

small value, no greater than a small amount, to make possible the prediction of continuous responses. 

SVM regression model fits very well with high dimensional data with a great number of features that 

describe the dataset [20][21]. 

 

 

Figure 3.12: Example of SVM regression application[23] 

3.4.11  Generalized Linear Model 

A generalized linear model is part of the nonlinear model family, but the difference is that it uses 

linear methods. In fact, during the training phase, it fits a linear combination of the input to a nonlinear 

function of the outputs. These algorithms are used when the response variable have nonnormal 

distributions [20][21]. 

The two functions that are fitted can be represented by Equations 3.6 and 3.7: 

 

 𝑦𝐿 = 𝑎0 + ∑ 𝑎𝑘𝑥𝑘

𝑛

𝑘=1

 3.6 

 

That is the linear combination of the input (variables of the model) and it is called linear predictor. 

 

 𝐸(𝑦) = 𝑔−1(𝑦𝐿) 3.7 

 

is called the expected value, the response to be predicted by the model, while 𝑔 is the so-called link 

function, which is the nonlinear function applied to the output. 
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Figure 3.13: Example of generalized linear model application[23] 

3.4.12 Regression Tree 

These models work exactly as the decision trees, already described in section 3.4.6, modified to be 

exploited in regression problems [21] 

Also, the features of this model are comparable to decision trees ones. 

 

 

Figure 3.14: Example of regression tree application[23] 

3.5 Neural Networks 

The last machine learning model that is presented in this thesis work is, concerned with the application 

on EMS design of a (p)HEV, the most interesting and powerful, and it is called Artificial Neural 

Networks (ANNs), usually simply called Neural Networks (NNs). 

This type of model tries to emulate the operating principle of a brain to copy the human way of 

thinking. This necessity was born since computers, with traditional programming techniques and also 

simplified machine learning models, don’t easily solve problems that are easily solvable by a human 

brain, such as some problems of speech recognition or images recognition. To solve these hard 

computational problems, a new branch of artificial intelligence and machine learning fields has been 

born, called deep learning. Deep Learning models exploit the concept of artificial neural networks, 
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expanding their complexity using bigger architecture and deeper networks, as we will see later in this 

section. 

Since deep learning models are very computationally demanding, the potentialities of these models 

have been started to be exploited only in the last decade, thanks to the increasing computational power 

of computers, to the possibility of using cluster calculation and cloud computing.[19][20]  

As already stated, NNs try to mimic the principle of functioning of our brain. The brain works thanks 

to some structures called neurons, which are linked together and can exchange information with each 

other utilizing electrical impulses. In the same way, an artificial neuron, also called perceptron, is 

linked to the other artificial neurons that compose the artificial networks and can exchange 

information through numbers. 

Conceptually speaking, the only difference between biological and artificial neural networks is based 

on the kind of information exchanged between neurons, electric impulse in the case of biological one, 

and numbers in the case of the artificial one. Nevertheless, these models are too simplistic to perfectly 

mimic a biological neural network, but it is just a mathematical model inspired by its operating 

principles.[19][20] 

 

 

Figure 3.15: Picture of biological neural network 
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Figure 3.16: Example of artificial neural network 

 

To effectively understand the relationship between the biological and artificial neurons, first of all, it 

is important to understand how the biological neuron operates. The main goal of this disquisition is 

not to deeply analyse the structure of a biological neuron, but the mechanism that regulates the flow 

of information in it. 

In a single biological neuron, there are three main subparts: 

• Dendrites: it is the input channel of the neuron, receiving the flow of information coming 

from the other neurons of the network. 

• Soma: also called the cell body, is the central component of the neuron. Its goal is to sums the 

inputs that the neuron receives around the axon hillock. This sum operation is weighted by 

the synaptic strength, that is the connection between the neurons in the network. Stronger is 

this connection and higher will be the weight that multiplies the related input. The weighted 

sum is later compared to a threshold. If it exceeds this threshold, a so-called action potential 

is triggered and the neuron can be considered as active. 

• Axon: the output of the neuron. The action potential travels along the axon and, employing 

synaptic connection, serve as inputs to other neurons of the network.[28] 
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Figure 3.17: Biological neuron model 

 

The artificial network tries to replicate the behaviour of biological neuron and it is composed of an 

input, an output, a cell that realize a mathematical operation and, finally, an output that is passed to 

the next neurons. 

 

 

Figure 3.18: Artificial neuron model 

 

The operation that is realized inside the cell of the neuron, or perceptron, is the following: 

 

 𝑎 = �̅� ∙ �̅� + 𝑏 = ∑ 𝑊𝑖𝑥𝑖 + 𝑏

𝑛

𝑘=1

 3.8 

 

Where: 

• �̅� ∈ ℝ𝑁 is the input vector, that collects the output coming from the other 𝑁 linked neuron. 
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• �̅� ∈ ℝ𝑁 is the weight vector, represent the synaptic strengths and determine how strongly a 

certain input affects the output. 

• 𝑏 ∈ ℝ is the bias of the pre-activation function, 𝑎. 

This first part of the model represents what happens in the cell of the biological neuron, the next step 

is to model the action potential and the activation of the neuron. This is represented by the activation 

function 𝑓(∙) that operates on the pre-activation function, giving the output from the related neuron. 

 

 𝑦 = 𝑓(𝑎) = 𝑓 (∑ 𝑤𝑖𝑥𝑖 + 𝑏

𝑛

𝑘=1

) 3.9 

 

The goal of the activation function is to determine if a neuron should return a value higher, lower or 

equal than 0, as the threshold in the biological version. Several activation functions have been 

proposed in the literature and, each of them, characterizes the neuron, making the neuron more 

appropriate for a specific application.[19] 

The more common functions along with their representation on the x-y plot are listed below: 

 • Hyperbolic tangent function: tanh(𝑎) =
𝑒𝑎−𝑒−𝑎

𝑒𝑎+𝑒−𝑎 3.10 

 

 

Figure 3.19: hyperbolic tangent function 

 

 • Softsign function: softsign(𝑎) =
𝑎

1+|𝑎|
 3.11  
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Figure 3.20: Comparison between softsign and hyperbolic function 

 

 • Sigmoid function: 𝜎(𝑎) =
1

1+𝑒−𝑎 3.12  

 

 

Figure 3.21: Sigmoid function 
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• Hard-sigmoid function: 𝜎(𝑎) = 𝑓(𝑎) = {

0
0.2𝑎 + 0.5

1
 if 

𝑎 < −2.5
−2.5 ≤ 𝑎 ≤ 2.5

𝑎 > 2.5
 3.13 

 

 

 

Figure 3.22: Comparison between hard-sigmoid function and sigmoid function 

 
• Threshold function: 𝑓(𝑎) = {

𝑘, 𝑎 > 0
0, 𝑥 ≤ 0

 3.14  

 

Figure 3.23: Threshold function 
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However, the weights and bias values must be properly chosen. The neural network model can 

automatically learn and set the best values for the weight and bias of each neuron in the network 

through the training phase. Therefore, this type of model can autonomously learn very complex 

relationships between the inputs of the network and the output of the network itself without any 

definition from the user. However, the data pre-processing is still at the expense of the designer: it is 

the trickiest part since it is concerned with selecting the variables, algorithm and parameters of the 

training phase.[29]  

 

 

Figure 3.24: Comparison among the above-described activation function 

 

3.5.1 Neural Network Architecture 

An artificial neural network is composed of many neurons linked together in a pre-determined way. 

The “shape” of the neural network and the connections between each neuron establish the neural 

network architecture. 

A layer is composed of a set of neurons that are not linked together, but they can be connected only 

with other neurons of the previous and the next layer, as shown with the yellow square in Figure 3.25. 
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Figure 3.25: Layer representation in the yellow box and layer categories 

The layers can be divided into three main categories, based on the function inside the network: 

• Input layer: the main function of the input layer is to prepare the input data to be processed 

by the next layers of the network. Its presence is not mandatory, but it is recommended 

especially in presence of complex networks, with which a step of data pre-processing is 

mandatory. The input network has to accomplish this task, which can space from data 

normalization to data mini-batch assembly, as we can see in section 3.5.3. 

• Hidden layer: all the mathematical computations described in the above section are realized 

in the neurons of the hidden layer. They can be more than one and they establish the deep of 

the network, the higher the number of the hidden layers the deeper the network. The concept 

of a deep neural network is referred to the network that has more than one hidden layer. Of 

course, increasing the number of hidden layers increases the complexity of the network with 

all the consequences that will be analysed later. 

• Output layer: the only task of the output layer is to collect the information coming from the 

previously hidden layers and process them to be presented as the user expects. 

3.5.2 Supervised Neural Network Training Algorithm 

Artificial Neural Networks can be applied to solve any problem in the machine learning field. They 

can solve unsupervised learning problems, with the so-called self-organizing map, supervised 

learning and reinforcement learning problems too. 

In this dissertation, supervised learning neural networks will be analysed more in detail because they 

are utilised in this work. 

In this section, the main training algorithm will be described in detail, trying to underline the strengths 

and the weaknesses of this crucial phase and which are the limits of the learning phase. 
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The algorithm used to train a network is called backpropagation algorithm used in combination with 

an optimization method that depends on the type of network to be trained.[19] The most common 

optimization method is called the Gradient Descent Method (GDM). In the case of complex networks, 

e.g., deep neural networks, it requires a too demanding computation effort, therefore a different 

algorithm is used, called Stochastic Gradient Descent Method (SGDM), which works in the same 

way as GDM algorithm but is less computationally expensive, because it uses only a part of the 

training dataset, called mini-batch, to computes the derivatives. Other optimization methods used to 

train a deep neural network are Adaptive Moment Estimation Method (Adam) Method and Root Mean 

Square Propagation Method (RMSProp), which, compared to traditional SGDM can increase the 

performance of the training phase, at the expense of a higher computational effort.[30]  

The goal of the training phase is to iteratively update the weight vector and bias vector, collected 

together in the parameter vector 𝜃, trying to minimize a predefined error function 𝐸(𝜃). 

In MATLAB environment application the error function, also called loss function is the cross-entropy 

loss function for classification tasks and mean-square-error for regressive tasks. 

The former function can be used only for classification problems because its formulation let to 

underline the goodness of the assignment of input data to the right class. The goal of classification 

(deep) neural networks is to compute the probability that the single input data can be classified in 

each of the available classes. For example, if the classification problem needs to classify data into 9 

classes, the neural network returns 9 values of probability that the input data belongs to each of the 9 

classes. This operation, in a deep learning architecture, is computed by the softmax layer, as it is 

deeply analysed later in this section, while the correct class, which is the class with the higher 

probability value, is selected by the output layer, that has just to output the class with the highest 

probability.[31] 

The cross-entropy loss function, previously mentioned is expressed in Equation 3.15 and evaluates 

the accuracy of the classification: 

 

 𝐸(𝜃) = 𝑙𝑜𝑠𝑠 = −
1

𝑁
∑ ∑ 𝑤𝑖𝑡𝑛𝑖 ln 𝑦𝑛𝑖

𝐾

𝑖=1

𝑁

𝑛=1

 3.15 

 

Where: 

• 𝐾 is the number of mutually exclusive classes. 

• 𝑁 is the number of samples, which are the number of input/output training data that the user 

uses to train the network. 
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• 𝑡𝑛𝑖 is an indicator that the 𝑛th sample belongs to the 𝑖th class, and it is necessary to select the 

right probability value from the probability vector coming from the softmax layer. This 

indicator assumes the value of 1 only if, during the sum operation, the function wants to 

evaluate the probability that the 𝑛th sample belongs to the 𝑖th class. In all the other cases the 

value of 𝑡𝑛𝑖 is 0. 

• 𝑦𝑛𝑖 is the output for sample 𝑛 for class 𝑖 from the softmax layer and, as already said in this 

section, compute the probability that the network associates the 𝑛th input with class 𝑖. 

• 𝑤𝑖 is the weight for class 𝑖 from the softmax layer to the output layer.[32] 

During the training phase, this function must be minimized. 

The mean-square-error loss function is used for regressive tasks and it is expressed in Equation 3.16. 

 

 𝐸(𝜃) = 𝑙𝑜𝑠𝑠 =
1

𝑁
∑(𝑦𝑛 − 𝑦�̂�)2

𝑁

𝑛=1

 3.16 

 

𝑦𝑛 is the output computed by the network while 𝑦�̂� is the correct value provided in the training dataset. 

Since absolute values are compared in this function, the performance of networks with different scales 

cannot be compared using this error, therefore a normalized version is preferred, as shown in Equation 

3.17. 

 𝐸(𝜃) = 𝑙𝑜𝑠𝑠 =
1

𝑁
∑ (

𝑦𝑛 − 𝑦�̂�

𝑦�̂�
)

2𝑁

𝑛=1

 3.17 

 

The loss function can be minimized thanks to the optimization algorithm, which updated the biases 

and the weights of each neuron to converge to the minimum. The three most important algorithms 

will be described more in detail. 

3.5.3 Gradient Descent Method (GDM) and Stochastic Gradient 

Descent Method (SGDM) 

GDM algorithm can only be applied to a very simple neural network, due to its high computational 

effort. However, it is the reference algorithm from which all the other training algorithms are derived. 

The basic principle is based on finding the direction in ℝ𝑁 space, where 𝑁 is the parameter vector 𝜃 

dimension, that minimizes the loss function. 
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The parameters are firstly initialized with small values. By indicating with 𝑔𝑘(𝒙) the operation 

performed in a single neuron, the output of the neural network can be writing as 𝑦(𝒙) =

𝑓(∑ 𝑤𝑘𝑔𝑘(𝒙) 𝑘 ). 

 

 

Figure 3.26: Example of a feed-forward neural network 

 

The error function 𝐸(𝜃) can be obtained by comparing the optimal value y and the output value of 

the neural network. 

After that, the direction minimizing the error function can be found by computing the gradient 

−∇𝐸(𝜃), and the parameter vector can be updated. 

 

 𝜃𝑙+1 = 𝜃 − 𝛼∇𝐸(𝜃𝑙) 3.18 

 

𝜃𝑙+1 is the updated parameter vector, while the parameter 𝛼 > 0 is called 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 and is the 

step done to update the parameters along the minimization direction, as shown in Figure 3.27. The 𝛼 

is one of the hyperparameter of the model, i.e., the parameters that are not automatically learned by 

the network but must be set by the user or optimized using an optimization method, such as the 

Bayesian optimization.[19][29] [30] 

The smaller the step, the higher the possibility of finding the minimum of the error function, but the 

training phase should last longer to effectively reach the minimum. The higher the value, the shorter 

the duration of the training phase but a higher probability to skip the minimum and obtain a 

parameters vector far from its optimum value. Setting the learning rate value is a trade-off operation 

between accuracy and computational time of the training phase. 
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Figure 3.27: GDM illustration in terms of direction towards the minimum[33] 

 

The “backpropagation” name derives from the methodology: after a forward step, consisting of 

computing the output value 𝑦 with fixed parameters 𝜃𝑙, there is a backward step because the 

parameters update begins from the output of the network at 𝜃𝑙+1 values and streams back to the first 

layer of the network to recompute the output 𝑦. 

In the case of a deep neural network, since SGM are excessively computational demanding, SGDM 

are usually employed. The only difference between the two techniques is on the data used to compute 

the gradient, which is a subset of the entire dataset, called mini-batch. This is another hyperparameter 

that should be optimized. 

However, this method can oscillate along the path of the steepest descent towards the optimum. To 

reduce this, it is possible to add a momentum term that is a movement similar to a rotation, obtaining 

the stochastic gradient descent method with momentum 𝛾, as shown in Equation 3.19.[30] 

 

 𝜃𝑙+1 = 𝜃 − 𝛼∇𝐸(𝜃𝑙) + 𝛾(𝜃𝑙 − 𝜃𝑙−1) 3.19 

 

With SGDM some problems can lead to stop the training process or to do not reach the convergence 

towards the minimum. The most common ones are the vanishing gradient problem and the exploding 

gradient problem, described in section 3.5.4. 



  3.5. Neural Networks 
 

43 
 

3.5.4 Vanishing Gradient Problem and Exploding Gradient Problem 

With the stochastic gradient descent method, each weight of the network is updated by a value 

proportional to the partial derivate of the error function with respect to the current weight in each 

iteration of training, as stated by Equation 3.18. 

Since the typical activation functions, such as tanh or sigmoid functions, can range between (0, 1), 

the consequence is that also their gradient could stay in the same range. If we consider a deep neural 

network architecture, the gradient of the error function could vanish because it can assume very small 

values, avoiding the parameters update and stopping all the training phases. This is a typical 

characteristic of the deep neural network because, with backpropagation algorithm coupled with 

SGDM, the gradient of the error function is computed by the chain rule since neural network model 

can be seen as a function composition of 𝑛 function, with 𝑛 that is the number of neurons that 

composed the network. Since the chain rule computes the partial derivative multiplying 𝑛 functions 

that can have values in the range (0, 1), it is easy to understand that this product tends to 0 increasing 

the number of neurons.[19][20] 

The same problem, but with the opposite consequence is when the gradient of the error function tends 

to infinite values, depending again on the activation functions that are used in the network. In this 

case, the problem is called exploding gradient problem. 

Several solutions to these issues have been proposed in the literature. One of the most effective, that 

can be easily implemented in MATLAB environment is to use some optimization algorithms that do 

not update the parameters proportional to the gradient magnitude, such as RMSProp and Adam. 

 

 

 

Figure 3.28: Example of activation function affected by the vanishing gradient problem[34] 
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Figure 3.29: Training phase affected by vanishing gradient problem[35] 

3.5.5 Root Mean Square Propagation Method (RMSProp) 

More sophisticated algorithms are always based on the same basic principles of the GDM algorithm, 

but with some improvements. RMSProp adds the possibility to use a not fixed learning rate like in 

SGMD. This can be helpful because if the gradient is very small, the parameters update will be very 

small too, wasting computational time to compute the gradient and update the parameters without 

obtaining a correct step towards the minimum. On the contrary, a high gradient can lead to too long 

updating steps. 

The idea behind the RMSProp algorithm is to use a moving average of the element-wise squares of 

the gradient, automatically scaling the learning rate as shown in Equation 3.21. 

A parameter 𝜈𝑙 is defined by Equation 3.20: 

 

 𝜈𝑙 = 𝛽2𝜈𝑙−1 + (1 − 𝛽2)[∇𝐸(𝜃𝑙)]2 3.20 

 

𝛽2 is the squared decay rate factor of the moving average that is usually set to 0.9,0.99 and 0.999. 

This moving average is used to update each parameter individually. 

 



  3.6. Recurrent Neural Networks 
 

45 
 

 𝜃𝑙+1 = 𝜃𝑙 −
𝛼∇𝐸(𝜃𝑙)

√𝜈𝑙 + 𝜖
  3.21 

 

With RMSPorp, parameters with large gradient have a higher value of 𝜈𝑙 and a correspondingly lower 

value of the modified learning rate 𝛼

√𝜈𝑙+𝜖
. 𝜖 is a small constant added to avoid division by zero.[30] 

3.5.6 Adaptive Moment Estimation (Adam) 

Adam algorithm uses a parameter update similar to RMSPropr, using an added momentum term, 

keeping an element-wise moving average of both parameter gradients and their squared values. 

 

 𝑚𝑙 = 𝛽1𝑚𝑙−1 + (1 − 𝛽1)∇𝐸(𝜃𝑙) 3.22 

 𝜈𝑙 = 𝛽2𝜈𝑙−1 + (1 − 𝛽2)[∇𝐸(𝜃𝑙)]2 3.23 

 

𝛽1 is the gradient decay rate factor that has the same meaning of 𝛽2 but is just applied on the 

momentum term. Adam uses both moving averages to update the network parameters as: 

 

 𝜃𝑙+1 = 𝜃𝑙 −
𝛼ml

√𝜈𝑙 + 𝜖
  3.24 

 

The moving average of the gradient enables the parameter updates to pick up momentum in a certain 

direction, obtaining a different value of gradient. If the gradients are noisy, then the moving average 

of the gradient becomes smaller, along with the parameters update.[30][36] 

3.6 Recurrent Neural Networks 

In the previous section, only the feed-forward neural networks have been analyzed; it means that data 

can only flow from the input layer to the output one through the hidden layers. This characteristic 

avoids the presence of any cycle between the layers themselves: each observer is isolated from the 

others composing the dataset. 
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Figure 3.30: Feed-forward deep neural network 

 

However, there are some cases in which the correlations between the observations are fundamental. 

For example, the vehicle speed at a specific time instant is not standalone, because it is strictly 

correlated with both the sections before and after the point. Therefore, the energy management system 

of an HEV can decide to switch on/off the engine, only by considering the entire sequence of speed, 

SoC, and other powertrain parameters, and not by considering a single time instant.[37]  

For this reason, a feed-forward neural network is not optimal for the EMS of HEV application, but a 

neural network that can work with sequences and allows to consider the trend of the input features is 

needed. 

Recurrent Neural Networks (RNN), on the other end, are a class of artificial neural networks where 

connections between nodes in a network architecture along are possible also in a temporal sequence, 

gaining dynamic temporal behaviour. 
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Figure 3.31: Difference between RNN and feed-forward NN. The output from a single neuron is feedback as input for 

the same neuron at the next time step 

 

As evident from Figure 3.31, where each neuron is connected in a loop: therefore, the output of the 

previous time step is used as an additional input. 

This characteristic of RNN allows the creation of a sort of state memory for each neuron that makes 

them suitable for dynamic and time-variant applications, such as the energy management system 

design of a hybrid electric vehicle.[19][38] 

These types of networks can also be suited for making predictions on future time steps, starting from 

a previously known section. In the automotive field, they can be employed for obtaining speed 

forecasting in real-time applications exploiting Vehicle-to-Everything (V2X) connectivity. More 

broadly, these networks are also used to classify data from the analysis on time-variant signals (e.g., 

understand if a machine is damaged from its vibration motion analysis), to extrapolate the mining of 

a part of a written text (natural language processing) or other similar applications. 

Several types of different layers can be used to build the network, such as Gated Recurrent Unit 

(GRU) and Long Short-Term Memory (LSTM) layers, available also in MATLAB environment. 

3.6.1 Gated Recurrent Unit Layer 

Introduced by Kyunghyun Cho in 2014, a GRU layer allows considering the previous parts of a 

sequence exploited to compute the actual step output. This is possible thanks to the presence of the 

hidden state that contains, at a specific time step 𝑡, the output of the GRU layer of the time step. At 

each time step, the layer adds information to or removes information from the state, using the so-

called gates. 



3. AI Theoretical Background 
 

48 
 

 

Figure 3.32: Gated Recurrent Unit (GRU) internal architecture 

 

In a gate, the typical operations of a classic perceptron are done, with the presence of weights and 

bias that, similarly to a classical neural network, are properly tuned during the training phase. 

The fully gated version of the GRU layer has two gates, the reset gate: which controls the level of 

state reset, and the update gate, which controls the level of state update. 

The mathematical computation performed in this layer is expressed in Equations 3.25, 3.26, 3.27 and 

3.28: 

 

 𝑧�̅� = 𝜎𝑔(𝑊𝑧
̅̅̅̅ 𝑥�̅� + �̅�𝑧ℎ𝑡−1

̅̅ ̅̅ ̅̅ + 𝑏𝑧) 3.25 

 𝑟�̅� = 𝜎𝑔(�̅�𝑟𝑥�̅� + �̅�𝑟ℎ𝑡−1
̅̅ ̅̅ ̅̅ + 𝑏𝑟) 3.26 

 ℎ�̂�
̅ = ϕℎ(𝑊ℎ

̅̅ ̅̅ 𝑥�̅� + 𝑈ℎ
̅̅̅̅ (𝑟�̅�⨀ℎ𝑡−1

̅̅ ̅̅ ̅̅ ) + 𝑏ℎ) 3.27 

 ℎ�̅� = (1 − 𝑧�̅�)⨀ℎ𝑡−1
̅̅ ̅̅ ̅̅ + 𝑧�̅�⨀ℎ�̂�

̅  3.28 

 

Where: 

• 𝑥�̅�: input vector 

• ℎ�̅�: output vector at time 𝑡 

• ℎ�̂�
̅ : candidate activation vector, it is the value of the hidden state of the layer, allowing to 

consider also previous time step output ℎ𝑡−1
̅̅ ̅̅ ̅̅  

• 𝑧�̅�: update gate vector, it is the output of the update gate 

• �̅�,  �̅�, 𝑏: parameter matrices and vector with �̅� that is the weights matrix while �̅� is the 

recurrent weights matrix 

• 𝜎𝑔, 𝜙ℎ are the activation function for gates and candidate state vector 



  3.6. Recurrent Neural Networks 
 

49 
 

As it is possible to note from Equation 3.28 the output of the gate ℎ�̅� is computed considering the 

output of the previous time step ℎ𝑡−1
̅̅ ̅̅ ̅̅  and the cell activation vector ℎ�̂�

̅  in a weighted average operation 

with an update gate vector as weight.[39]  

3.6.2 Long Short-Term Memory Layer 

LSTM layer[40] is an updated version of the classic GRU layer to handle the recurrent neural 

network. One of the problems of RNN with the GRU layer is its inability to learn long-time 

dependencies because these neural networks suffer the vanishing or exploding gradient problem. It 

is particularly evident if the network tries to memorize long-time dependencies information during 

the training phase with the backpropagation algorithm. 

LSTM bypasses this problem since it allows gradients to flow remaining unchanged avoiding its 

vanishment but not its explosion. 

 

 

Figure 3.33: LSTM layer flow of information[41] 

 

In Figure 3.33 The flow of information inside an LSTM layer is displayed. At each time step, the 

layer receives as input a vector of 𝐶 features: they are used to compute the output and to update the 

cell state. It is a buffer of memory l that learns long time dependencies in the time-sequence data. The 

state of the layer consists of the hidden state ℎ𝑡−1 and the cell state 𝑐𝑡−1. The cell state contains 

information learned from the previous time steps and, at each time step, the layer adds information to 

or removes information from the cell state, using, such as in GRU, the gates. 
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Figure 3.34: LSTM layer internal structure 

 

LSTM layer has four gates Whose weights and bias are tuned during the training phase. 

• 𝑖 is the input gate controlling the level of cell state update 

• 𝑓 is the forget gate and control level of cell state reset 

• 𝑔 is the cell candidate gate and add information to cell state 

• 𝑜 is the output gate and control level of cell state added to hidden state (or output) 

As in GRU, the weights matrix contains two different kinds of weights: 𝑊 referred to the actual time 

step and 𝑅 that are the recurrent weights, referred to information coming from previous time steps. 

The formulas that describe this layer are expressed in Equations 3.29, 3.30, 3.31 and 3.32. 

 

 𝑖𝑡 = 𝜎𝑔(𝑊𝑖
̅̅ ̅𝑥�̅� + 𝑅�̅�ℎ𝑡−1

̅̅ ̅̅ ̅̅ + 𝑏𝑖) 3.29 

 𝑓𝑡 = 𝜎𝑔(𝑊𝑓
̅̅ ̅̅ 𝑥�̅� + 𝑅𝑓

̅̅ ̅ℎ𝑡−1
̅̅ ̅̅ ̅̅ + 𝑏𝑓) 3.30 

 𝑔𝑡 = 𝜎𝑐(𝑊𝑔
̅̅ ̅̅ 𝑥�̅� + 𝑅𝑔

̅̅̅̅ ℎ𝑡−1
̅̅ ̅̅ ̅̅ + 𝑏𝑔) 3.31 

 𝑜𝑡 = 𝜎𝑔(𝑊𝑜
̅̅ ̅̅ 𝑥�̅� + 𝑅𝑜

̅̅ ̅ℎ𝑡−1
̅̅ ̅̅ ̅̅ + 𝑏𝑜) 3.32 

 

The operations are made in each gate of the layer. It is possible to note that each gate considers 

information from the input vector at the actual time step and information from the output of the 

previous time step. The forget gate is able to delete information also from old time steps when it is 

not relevant anymore. If it is not activated, the cell candidate and input gates continue to add 

information to the past stored in the cell states. 
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Finally, the cell state and the output are computed by Equation 3.33. 

 

 𝑐�̅� = 𝑓𝑡⨀𝑐𝑡−1̅̅ ̅̅ ̅ + 𝑖𝑡⨀𝑔𝑡ℎ�̅� = 𝑜𝑡⨀𝜎𝑐(𝑐�̅�) 3.33 

 

𝜎𝑐 , 𝜎𝑔 are the activation functions used in the layer, the same introduced for Artificial Neural in 

section 3.5.[41] 
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4 Case Study 

4.1 Vehicle Specification 

The vehicle used to perform all the analysis is a plug-in Hybrid Electric Vehicle, with a P2 

architecture, as schematized in Figure 4.1, available on the market. 

 

 

Figure 4.1: Powertrain layout 

 

This vehicle has been subjected to a massive experimental campaign to extract all powertrain 

parameters needed to characterize how the vehicle powertrain operates and select the relative 

operating mode during road driving.[42] 

The experimental setup consists of an AWD chassis dynamometer, tested on RDE scenarios, with a 

PEMS equipped vehicle. 

The operating modes, available from the control unit are the following, depending on the driver’s 

power demand: 

• Hybrid mode: ICE and EM act together and all hybrid functions, such as electric driving 

boost and energy recovery, are available and selected according to the driving conditions. 

• Electric mode: only the EM propels the vehicle, exploitable mainly in the city centre, where 

the driver power demand is usually limited with respect to highway driving. 
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• E-save: ICE and EM propel the vehicle, ensuring a charge sustaining operation. 

• Charge: the ICE provides more energy than the driver’s request, constantly charging the 

battery and the EM does not provide any contribution to vehicle propulsion. 

Concerning the vehicle characteristics, it is a P2 Diesel Plug-In Hybrid Electric Vehicle (PHEV), 

equipped with a conventional 1950 cc Diesel engine, able to provide 143 kW as maximum power 

with 400 Nm of maximum torque. The electric motor is a 90 kW/440 Nm Permanent Magnet 

Synchronous (PMSM) EM, that can be uncoupled from the engine employing an auxiliary clutch, 

that allows using some operating modes with the engine turned off, avoiding useless wasting of 

energy to drag the engine. 

The hybrid powertrain is then followed by a 9-speed automatic transmission (AT) and a torque 

converter (TC) that transfer the powertrain developed torque to the rear wheels. 

The battery is a 13.5 kWh Li-Ion nickel-manganese-cobalt-oxide (Li-NMC) HV battery, that can 

provide energy to only electric propel the vehicle at a top speed of 130 km/h. 

In Table 4.1 the main vehicle characteristics are listed. 

 

Table 4.1: Vehicle specification 

Engine 

Engine Type In-line 4 cyl. Turbo Diesel 

Displacement 1950 cc 

Max Power/Max Torque 143kW @3800rpm / 400Nm @1600-2800 rpm 

Compression Ratio 15.5:1 

Transmission 

Transmission Type 9 –AT w/ Torque Converter 

Speed Ratios I 5.36 IV 1.64 VII 0.87 

II 3.25 V 1.22 VIII 0.72 

III 2.26 VI 1.00 IX 0.61 

Reverse-Final Drive -4.93/2.65 

Vehicle 

Curb Weight 2060 kg 

Configuration Rear Wheel Drive (RWD) 

Electric Motor 

Electric Motor Type PM Synchronous motor 

Max Power/Max Torque 90 kW / 440 Nm @1750rpm 
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Max Speed 6000 rpm 

High Voltage Battery 

Battery Type Lithium- NMC 

Rated Voltage 365V 

Capacity 13.5kWh / 37 Ah 

Cooling System Water Cooled 

4.2 Driving Cycles 

Deep Learning models requires a huge quantity of data to effectively train the model and obtain 

satisfactory results during the test phase. A Hybrid Electric Vehicle Energy Management System 

application requires collecting data in terms of driving cycles that should be afterwards preprocessed 

to extract the most relevant features. 

The driving cycles database is composed of type-approval cycles, such as NEDC, WLTC or FTP75, 

and some more relevant RDE cycles. The latter category is more relevant than type approval ones, to 

be passed to the EMS NN-based model because the ultimate goal of this thesis work is to develop an 

ECU real-time implemented version of the EMS, that should work under real-driving conditions and 

RDE cycles want to simulate them. 

4.2.1 RDE 

These driving test cycles have been introduced in the regulation because there is an obvious gap 

between emissions computed in laboratories on standard type-approval tests, like WLTC, and real 

driving conditions ones. This is due because, a laboratory environment, cannot consider several 

factors that are present in normal on-road driving, such as traffics, presents of lights, hard and not 

constant acceleration, different ambient conditions and so on. Real Driving Emissions (RDE) tests 

have been introduced to also consider these factors when a vehicle has to be approved by the 

regulation. RDE tests were introduced by Euro 6d Temp regulation, becoming compulsory from 

September 2019. 
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Figure 4.2: Example of RDE Cycle 

 

However, a completely free on-road driving cycle is not suitable for regulations purpose, because, 

depending on the driving conditions, ICE emissions are obviously different. For this reason, RDE is 

composed of three segments, Urban, Rural and Motorway, that must respect some imposed 

constraints, shown in Table 4.2.[4] 

 

Table 4.2: Cycle characteristic to be an RDE compliant driving cycle 

Segment Percentage 

of the total 

distance 

Minimum 

Distance 

Instantaneous speed Average speed 

Urban 29-44% 16 km 𝑣 ≤  60 𝑘𝑚/ℎ 15 𝑘𝑚/ℎ < 𝑣 ≤  40 𝑘𝑚/ℎ 

Rural 23-43% 16 km 60 𝑘𝑚/ℎ < 𝑣 ≤  90 𝑘𝑚/ℎ 60 𝑘𝑚/ℎ < 𝑣 ≤  90 𝑘𝑚/ℎ 

Motorway 23-43% 16 km 𝑣 >  90 𝑘𝑚/ℎ 𝑣 >  90 𝑘𝑚/ℎ 

 

Concerning LSTM neural network training, since this type of network allows to consider past 

information in output computation, the type of driving cycle that the network takes as input is 

important during the training phase. Thus, RDE cycles are the most suitable for network training 

applications. Nevertheless, a deep learning application requires a huge quantity of training data, and 
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due to the limited quantity of RDE cycles available, some type-approval driving cycles have been 

used to train the network, coupled with an RDE database expansion procedure. 

4.3 Database Expansion 

The driving cycles database is composed of 34 cycles,  consisting of RDE, performed around the city 

of Turin, and type-approval ones. However, they cannot be all used because some cycles are not 

suitable for LSTM network training for several reasons, such as the presence of only one driving 

section (i.e., highway part) neglecting the other, or because some of them are not able to represent an 

on-road driving condition due to not representative vehicle speed trends. 

To obviate at driving cycles database poorness, a database expansion strategy has been adopted. This 

procedure creates some artificial RDE cycles, starting from all the 34 available cycles. 

They have been divided into patterns that start from stand-still and finish at stand-still to be afterwards 

randomly combined. Each pattern is then categorized in the relative driving section (Urban, Rural, 

Highway), considering the speed limits of RDE sections and an energetic index, 𝐼𝑣2 =
∫ 𝑣2(𝑡)𝑑𝑡

𝑡𝑓

𝑡𝑖

𝑡𝑓−𝑡𝑖
, that 

in [43] is demonstrating to be able to correctly classify the sub-pattern category. 

 

 

Figure 4.3: Example of urban pattern 
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Then, a scale factor is applied to each driving pattern, during the entire RDE compliant driving cycle 

creation, to introduce some differences among the same pattern but used in different cycles. 

Finally, the driving patterns are randomly concatenated to create the entire driving cycle, ensuring 

that RDE compliance characteristics, introduced in the above-written section, are satisfied. 

Thanks to the database expansion strategy, a database of 73 driving cycles have been used to train 

and test the networks, obtaining a remarkable improvement in terms of RMSE and accuracy both in 

the train and test phase. 

 

 

Figure 4.4: Example of RDE compliant generated driving cycle 

 

4.4 Vehicle Modelling 

The goal of this thesis work is to develop a control strategy that can minimize the overall fuel 

consumption of the vehicle on real driving conditions cycles. An additional target is that the designed 

Energy Management System future implementable on a real ECU, target achievable only if the online 

computational time of the EMS is suitable with the driving cycle duration. 

To properly design the EMS, simulation tools became central to model the entire vehicle and the 

hybrid powertrain, since a full experimental design is too much expensive due to the huge number of 
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experimental data needed and costs. The vehicle and powertrain behaviour has been modelled 

employing GT-SUITE, a mono-dimensional (1D) fluid-dynamic numerical code developed by 

Gamma Technologies (GT), a leader in the CFD simulation applied to the automotive field. Since 

fuel consumption and CO2 emissions are the main interested quantity the so-called quasi-static 

approach has been exploited because it models the machine's behaviour through look-up tables, 

allowing to also represent the transient behaviour in the form of consecutive steady-states operating 

points. More sophisticated approaches, such as a full 3D CFD simulation of the engine, also limited 

to the in-cylinder behaviour characterization, are not suitable for this thesis purpose in terms of 

computational efforts and a simplified quasi-static approach is accurate enough to correctly predict 

the total fuel consumption of the vehicle. However, if the goal of the analysis is to predict some 

phenomena that are related to how the combustion process develops inside the cylinder of the engine, 

such as some pollutant emissions, like NOx and soot, this approach is not accurate enough and a more 

detailed CFD analysis is needed.[44] 

Concerning the electric motor modelling approach, as for the internal combustion engine, a map-

based methodology has been adopted, describing its behaviour using torque and efficiency maps.[5] 

Since the interest in battery performance is increasing due to the higher electrification trend in the 

automotive field, a well-detailed battery model is as important as the engine or the electric motor 

model. However, this is not an easy task and, for this thesis purpose, a simple static model, for SOC 

evaluation has been used. The battery model consists of an equivalent electric circuit made by an 

ideal voltage generator in series with a resistor, neglecting all the electric dynamic behaviour of the 

system.[5] 

The SOC can be easily evaluated with the following relationship: 

 

 𝑆𝑂𝐶(𝑡) =
𝑄(𝑡)

𝑄𝑚𝑎𝑥
=

∫ 𝑖(𝑡)𝑑𝑡
𝑡

0

𝑄𝑚𝑎𝑥
 4.1 

 

Where: 

• 𝑖(𝑡) is the instantaneous electric current that flows into or from the batter. 

• 𝑄(𝑡) is the actual battery charge. 

• 𝑄𝑚𝑎𝑥 is the maximum charge level. 

4.4.1 Forward Dynamic Analysis 

Concerning vehicle dynamic modelling, a forward dynamic analysis has been used to develop the 

GT-SUITE model. This method solves the longitudinal vehicle dynamics equation, described in 
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section 4.5, to determine engine speed and torque demand. The vehicle speed is seen as a target value 

that a Proportional-Integral-Derivative (PID) controller, which represents a driver model, has to reach 

acting on the accelerator and brake actuation, generating a tractive or braking force. Then, the vehicle 

acceleration and speed can be computed by means, again, of the vehicle dynamic equation. 

 

 

Figure 4.5: Information flow in a forward simulator[5] 

 

Concerning the development of the Energy Management System, it has been designed in Simulink, 

the market leader in automatic control modelling, a software developed by MathWorks, where a 

multidomain dynamic system can be easily modelled. Finally, the EMS designed in Simulink has 

been coupled with the vehicle model, developed in GT-SUITE, and it decides how to split the power 

demand between the engine and the electric motor. 

4.4.2 Backward Kinematic Analysis 

The backward approach imposes both vehicle speed and road grade, unlike the forward approach that 

views these quantities as a target to be reached from the driver model. 

With backward kinematic analysis, the driving cycle is divided into small time intervals where both 

speed, acceleration and torques remain constant. This assumption simplifies the model with respect 

to the forward dynamic approach in terms of computational efforts, but the accuracy of this model is 

lower. 

The internal powertrain dynamics are neglected and a look-up table approach defining efficiencies, 

fuel rate and power losses is adopted. 

Since vehicle speed and acceleration are imposed on each time interval, it is possible to derive both 

engine, electric motor and wheel speed, through a simple kinematic relationship, neglecting the 

transient response of these sub-systems and considering all the wheels in pure rolling conditions. 
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 𝜔𝑤ℎ =
𝑣

𝑟𝑤ℎ
 4.2 

 𝜔𝑔𝑏 = 𝜔𝑤ℎ𝑖𝑓𝑑𝑖𝑔𝑏 4.3 

 

Where: 

• 𝜔𝑤ℎ is the wheel speed. 

• 𝑣 is the vehicle speed. 

• 𝜔𝑔𝑏 is the inlet gearbox rational speed (electric motor side) 

• 𝑟𝑤ℎ is the effective wheel rolling radius. 

• 𝑖𝑓𝑑 is the final drive gear ratio. 

• 𝑖𝑔𝑏 is the gearbox gear ratio (depending on the actual gear). 

Power demand computation is described in section 4.5. For sake of brevity, in this section is reported 

the final relationship. 

 

 𝑃𝑔𝑏 = (𝑓0 + 𝑀𝑣𝑒ℎ 𝑔 𝑠𝑖𝑛(𝛿) + 𝑓1 𝑣 + 𝑓2 𝑣2 + 𝑀𝑒𝑞 𝑎)𝑣 𝜂𝑔𝑏

𝑠𝑖𝑔𝑛(−(𝑓0+𝑀𝑣𝑒ℎ 𝑔 𝑠𝑖𝑛(𝛿)+𝑓1 𝑣+𝑓2 𝑣2+𝑀𝑒𝑞 𝑎))
 4.4 

 

Where: 

• 𝑃𝑔𝑏 is the gearbox inlet power, seen as a power request from the hybrid powertrain. 

• 𝑓0, 𝑓1, 𝑓2 are the coast-down coefficients. 

• 𝑀𝑣𝑒ℎ is the vehicle mass. 

• 𝑀𝑒𝑞 is the equivalent mass of the vehicle considering all the driveline inertia contributions. 

• 𝛿 is the road slope. 

• 𝑔 is the gravitational force. 

• 𝑎 is the vehicle acceleration. 

• 𝜂𝑔𝑏 is the gearbox efficiency, computed by a map interpolation. 

Known the powertrain power request, engine speed and established the power split between ICE and 

EM, it is possible to easily compute the engine Break Mean Effective Pressure (BMEP) with the 

following relationship: 

 

 𝐵𝑀𝐸𝑃 =
60 𝑖 𝑃𝑒𝑛𝑔

𝑛 𝑉
 4.5 
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Where: 

• 𝑃𝑒𝑛𝑔 is the engine power demand. 

• 𝑖 is the number of revolutions per power stroke. 

• 𝑛 is the engine speed in rad/s. 

• 𝑉 is the engine displacement. 

Known BMEP it is possible to compute the instantaneous fuel consumption by map interpolating 

using engine speed and BMEP values. 

The fuel cumulate quantity can be obtained by integrating the instantaneous fuel consumption over 

the entire driving cycle. 

 

 

Figure 4.6: Information flow in a backward kinematic approach[2] 

 

The backward kinematic approach has been used to build a simple kinematic model of the entire 

vehicle to realize a Dynamic Programming optimization on the whole driving cycles database. The 

results of DP optimization are used as the target values that the neural network-based model has to 

reach.[2][5] 

4.5 Vehicle Equations of Motion 

Usually, when the powertrain of the vehicle has to be designed, it is not necessary to investigate all 

vehicle dynamics in deep, neither a full detailed 1D modelling approach is appropriate. The vehicle 
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dynamics answers are limited to just vehicle speed, acceleration and power (or torque) demand, that 

have to be fully satisfied by the powertrain. So, an energetic approach is sufficient to properly descript 

all the needed vehicle dynamics. 

The vehicle can be seen as a single point of mass (lumped in the centre of gravity of the vehicle), 

characterized by the following equilibrium equations:[5] 

 

 𝑀𝑒𝑞

𝑑𝑣

𝑑𝑡
= 𝐹𝑝𝑤𝑡 + 𝐹𝑏𝑟𝑎𝑘𝑒𝑠 + 𝐹𝑟𝑜𝑙𝑙 + 𝐹𝑎𝑒𝑟𝑜 + 𝐹𝑔𝑟𝑎𝑑𝑒 4.6 

 
𝑀𝑒𝑞 = 𝑀𝑣𝑒ℎ +

2 𝐼𝑤ℎ,𝑓 + 2 𝐼𝑤ℎ,𝑟

𝑟𝑤ℎ
2 +

𝐼𝑒𝑛𝑔

𝑟𝑤ℎ
2  𝑖𝑓𝑑

2  𝑖𝑔𝑏
2 +

𝐼𝐸𝑀

𝑟𝑤ℎ
2  𝑖𝑓𝑑

2  𝑖𝑔𝑏
2  

4.7 

 

Where: 

• 𝐹𝑝𝑤𝑡 is the powertrain tractive force. 

• 𝐹𝑏𝑟𝑎𝑘𝑒𝑠 is the mechanical braking force (the regenerative braking action is considered in the 

powertrain force). 

• 𝐹𝑟𝑜𝑙𝑙 is the rolling resistance. 

• 𝐹𝑎𝑒𝑟𝑜 is the aerodynamic resistance. 

• 𝐹𝑔𝑟𝑎𝑑𝑒 is the road slope resistance. 

• 𝐼 is referred to the inertia of the related component. 

 

 

Figure 4.7: Vehicle free body diagram along the longitudinal direction[5] 

 

𝑀𝑒𝑞 is an equivalent mass of the vehicle that considers all the inertia contributes from the driveline 

components, necessary to avoid a too simple model that considers only the mass of the vehicle, 

neglecting all the rotational inertia contributions. 
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𝑑𝑣

𝑑𝑡
 is the acceleration of the vehicle, described in terms of derivative of the speed to the time. 

The single resistance components have the following analytical expressions: 

 

 𝐹𝑟𝑜𝑙𝑙 = 𝑐𝑟𝑜𝑙𝑙𝑀𝑣𝑒ℎ𝑔𝑐𝑜𝑠(𝛿) 4.8 

 

Where: 

• 𝑔 is the gravitational acceleration. 

• 𝛿 is the road slope. 

• 𝑀𝑣𝑒ℎ is the vehicle mass, only this contribution without considering the driveline components 

inertia effects. 

• 𝑐𝑟𝑜𝑙𝑙 is the rolling resistance coefficient, that can be modelled as a third-grade polynomial 

function of vehicle speed. 

 

 𝐹𝑎𝑒𝑟𝑜 =
1

2
𝜌𝑎𝑖𝑟𝐴𝑓𝐶𝑑𝑣2 4.9 

 

Where: 

• 𝜌𝑎𝑖𝑟 is the air density. 

• 𝐴𝑓 is the vehicle frontal section. 

• 𝐶𝑑 is the aerodynamic drag coefficient. 

 

 𝐹𝑔𝑟𝑎𝑑𝑒 = 𝑀𝑣𝑒ℎ𝑔𝑠𝑖𝑛(𝛿) 4.10 

 

Since aerodynamic and rolling forces are quite hard to be determined because rolling resistance 

coefficient and aerodynamic drag coefficient do not have a close form relationship, they are 

experimentally determined. The two resistive actions are experimentally determined in the so-called 

coast-down test. It consists of a free vehicle deceleration test, a condition in which only these two 

resistive components act on the vehicle. Measuring the instantaneous vehicle speed is possible to 

determine the total drag force acting on the vehicle itself. 

 

 𝐹𝑎𝑒𝑟𝑜+𝑟𝑜𝑙𝑙 = 𝐶0 + 𝐶1𝑣 + 𝐶2𝑣2 4.11 

 

Where 𝐶0, 𝐶1, 𝐶2 are called Coast-Down Coefficients.[44] 
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4.6 Methodology 

The Energy Management System of a Hybrid Electric Vehicle can be implemented by exploiting 

different algorithms or models, optimizing one of the quantities of interest, such as minimizing fuel 

consumption or pollutant emissions, as stated in Chapter 2. 

The main purpose of EMS developed in this thesis work is to minimize the overall fuel consumption 

of the vehicle on different driving cycles, focusing mainly on RDE cycles since they are the most 

representative of real on-rode driving conditions. 

The EMS should imitate the behaviour of an optimal control algorithm, such as Dynamic 

Programming, obtaining a sub-optimal solution implementable online, such as a neural network-

based supervised learning model. 

 

 

Figure 4.8: Supervised learning algorithm offline training process from DP and online implementation 

4.6.1 Dynamic Programming 

Dynamic Programming (DP) control algorithm can provide the optimal solution of the control 

problem, in this case, it allows to achieve the lowest fuel consumption on a pre-defined driving cycle, 

with the constrain of the complete knowledge in advance of the driving cycle. 

It is easy to understand that, concerning an online application of the purposed EMS, the complete 

knowledge of the driving cycle is impossible to achieve, and this is one of the issues that makes this 

control algorithm not directly suitable for this thesis purpose. The main limitation of DP is related to 

its high computational effort that takes a too long time to optimize the power split on the driving cycle 

on an online optical implementation.  

Despite this hard limitation, DP can be used as a benchmark to be reached by an online implementable 

control algorithm, such as a supervised learning model. 

The Dynamic Programming model has been exploited to obtain the actual engine state and the Brake 

Mean Effective Pressure (BMEP) of the internal combustion engine each second, quantities used as 

labels during the training phase of the supervised learning model. 
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The developed DP model is based on a backward kinematic approach, deeper analysed in section 

4.4.2, and it uses one state variable, State of Charge (SOC) of the battery, and two control variables, 

engine state and electric machine power, with a discretization time of 1 second. 

Gear shift profile has been imposed using experimental values, for those cycles with this information 

available, and a biLSTM Neural Network model, trained with the experimental gear profile, for those 

cycles without the experimental gear profile. 

 

 

Figure 4.9: Gear profile biLSTM Neural Network model. Vehicle speed, vehicle acceleration and vehicle power 

demand are the selected features 

 

It is important to choose the right control and state variables considering a trade-off between 

computational time and accuracy of the simulation since the computational effort increases 

exponentially with the number of control and state variables used. Of course, considering other state 

variables, such as the engine state, allows the development of a more accurate model which should 

make the DP model more representative of the real vehicle model. However, since a huge quantity of 

simulation has been performed, the best solution considers just the above-mentioned variables. 

The cost function to be minimized consider just the overall fuel consumption and it is the following. 

 

 𝐽(𝑡, 𝑒(𝑡), 𝑃𝐸𝑀(𝑡)) = ∑ 𝑚𝑓̇ (𝑡, 𝑒(𝑡), 𝑃𝐸𝑀(𝑡))

𝑇

𝑡=0

 4.12 
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Where: 

• 𝑒(𝑡) is the engine state. 

• 𝑃𝐸𝑀(𝑡) is the electric machine power. 

• 𝑚𝑓̇  is the engine fuel rate. 

• 𝑇 is the final simulation time. 

Since this model is not continuous, due to computational effort reasons, the cost function 𝐽 is not 

characterized by the presence of integration, such as in Equation 2.1, but of a sum operation. 

The simulations have been performed both in charge sustaining operation, considering an initial SOC 

of 0.2, and charge depleting, considering different SOC initial values with SOC final value set at 0.2. 

In the following figures is possible to see some results of DP simulation on an RDE cycle. 

 

 

Figure 4.10: State of Charge in charge sustaining mode 

 

From Figure 4.10 it is possible to note the perfect behaviour of DP optimization in terms of charge 

sustainability. The main goal of this battery management strategy is to obtain the initial value of SOC 

of the battery at the end of the driving cycle.  
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Figure 4.11: Different ICE behaviour between urban pattern (above) of the cycle and highway pattern (below) 

 

Another interesting consideration comes from Figure 4.11, which plots internal combustion engine 

power in two different driving conditions. The first figure is referred to an urban driving condition, 

and the engine is exploited only during peaks of power demand, while the major part of the urban 

part is run in electric mode, an aspect confirmed from the SOC trend that, in the first part, tends to 
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decrease, discharging the battery. The second figure presents a different behaviour, with major 

exploitation of the engine in pure thermal mode or parallel mode. This is due to the higher power 

demand in the highway part due to the higher value of vehicle speed. Also for the highway part of the 

cycle is possible to confirm this behaviour from the SOC trend that, in this case, is rising, charging 

the battery to achieve the desired final value of SOC. 

 

 

Figure 4.12: Engine operating points on BSFC map 

 

One of the goals of a hybrid powertrain is the possibility of moving the engine operating point on 

more efficient zones, exploiting the electric machine, aspect that is shown in Figure 4.12, where the 

engine operating points are plots on the engine Brake-Specific Fuel Consumption (BSFC) map. The 

operating points tend to be as close as possible to Optimal Operating Line (dashed red line), which 

represents the most efficient operating point at fixed BMEP and engine speed. 

This is done because one of the problems of the internal combustion engine is the low efficiency, 

especially at low load operation, and, thanks to a hybrid powertrain architecture, is possible to better 

exploit the internal combustion engine, making it more efficient. 
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Figure 4.13: Overall fuel consumption 

 

In a charge depleting strategy, the State of Charge of the battery is the most relevant quantity. In fact, 

it is possible to prove that the optimal solution in terms of fuel consumption is obtained when the 

SOC, in a SOC-distance plot, almost linearly decreases from the initial value to the final value. 

 

 

Figure 4.14: State of Charge vs Distance in a charge depleting strategy 
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From Figure 4.14 this trend is almost reached. The discordance from a perfect linear trend is due to 

the not continuous model but discretized with a 1 s time step, and to some missing information that 

makes this DP solution sub-optimal. However, the distance between the optimal solution and the 

obtained sub-optimal one is very low and it is necessary due to computational limits. 

 

 

Figure 4.15: State of Charge vs Time in charge depleting 
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Figure 4.16: Fuel consumption in charge depleting 

 

Figure 4.17: Internal combustion engine operating points on BSFC map in charge depleting 

4.6.2 Deep Learning-based EMS 

The online implemented Energy Management System (EMS) has been designed using two different 

deep neural networks to control a charge sustaining mode and two deep neural networks to control 

the charge depleting mode because the management of the battery is quite different between the two 



4.6. Methodology 
 

73 
 

strategies and a single deep neural network could not be able to provide the expected results on both 

the optimization strategies. 

A driving cycle can be seen as a quantity (i.e., vehicle speed) function of time, thus, to make the best 

decision in terms of power split optimization, some past information are needed, concerning the State 

of Charge trend or vehicle speed trend to identify the driving pattern (urban, rural or highway) to 

decides between a battery charge or discharging strategy. The most suitable deep neural network 

architecture is a Recurrent Neural Network (RNN), with Long Short-Term Memory (LSTM) layers, 

described in deep in section 3.6. 

In deep learning projects, the most important part is related to data pre-processing because, without 

appropriate pre-processed data, it is impossible to achieve good results from the model. Possible 

problems are related to the over or underfitting of the model. 

The overfitting problem is detectable by analysing the model performance on the test and train 

dataset. If test performance is not comparable to train one, there is an overfitting problem. This is due 

to a high adaptation of the model on train data, without a generalization capacity, underlined by the 

poor performance on test data, which are data that the model has not seen and are not used during the 

training phase. In fact, during the training, if data have not been correctly pre-processed or the training 

dataset is not wide enough to catch all possible situations, the model can learn only the noise present 

in the data and not the general trend of the solution. 

 

 

Figure 4.18: Difference between an overfitted model and a correct model[45] 

 

The underfitting problem is due to the wrong selection of the features that describe the problem. In 

fact, if not all the needed features are selected, during the training phase, the performance is very bad, 

because the model does not have the right information to relate the output value to the input quantities. 
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Figure 4.19: Difference between an underfitted model, an overfitted model and a correct model[45] 

 

Concerning how the EMS has been designed, the first LSTM neural networks predict the engine state 

at each time step. This output is then passed as input to the second LSTM neural network, used to 

predict the BMEP value of the internal combustion engine at each time step, as shown in Figure 4.20. 

The features selected to represents the relevant quantities for the engine state prediction in charge 

sustaining mode are the following: 

• Vehicle speed: mainly used as passed information, to recognize on which driving condition 

the vehicle is operating at each time step. 

• Vehicle acceleration: has the same task as the vehicle speed. 

• Powertrain power demand: is the power signal at the inlet of the gearbox, that is the power 

that, coming from the wheel, the powertrain must satisfy. It is probably the most relevant 

feature because, depending on its value, a direct decision on the engine state could be taken. 

• State of Charge: the network can take decisions based on the level of SOC because, 

especially in charge sustaining operation, values too high or too low of SOC force the internal 

combustion engine to be turned off or turned on to discharge or recharge the battery. It should 

represent a sort of internal state of the model. 

The features used as input for the BMEP neural network in both charge sustaining and charge 

depleting mode are the following. 

• Vehicle speed: same considerations did for the first neural network. 

• Vehicle acceleration: same considerations did for the first neural network. 

• Powertrain power demand: same considerations did for the first neural network. 

• Gearbox speed: this feature has the task to virtually fix one quantity on the BSFC plot. This 

is useful because one of the targets of the parallel mode is to move the engine operating point 

as close as possible to the optimal operating line and, if the engine speed is foxed, the only 

variable is the BMEP. 
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• Engine State: used to recognize if the engine is turned on or off and outputs a null value if 

the engine is not working. 

 

 

Figure 4.20: Energy Management System based on two LSTM NN architecture representation 

The engine state prediction neural network used in charge depleting exploit some future information, 

theoretically available through V2X connectivity, such as the estimated driving cycle time and 

distance, necessary to obtain the correct SOC trend, having the following features: 

• Time percentage: 𝑇𝑖𝑚𝑒

𝑇𝑖𝑚𝑒𝑇𝑂𝑇
 to provide time-based information about how long the driving 

cycle last. 

• Distance: travelled distance from the vehicle at each time step. 

• Distance percentage: 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑇𝑂𝑇
 to provide distance-based information about how many 

meters the vehicle must run until the end of the cycle. 

• Vehicle speed: same considerations did for the charge sustaining neural network. 

• Vehicle acceleration: same considerations did for the charge sustaining neural network. 

• Powertrain power demand: same considerations did for the charge sustaining neural 

network. 

• State of Charge: same considerations did for the charge sustaining neural network. 

During the training phase, to maximize the performance of the network both on train and test datasets, 

some additional considerations must be taken. 

First of all, all the input features to the network must have comparable magnitudes. In this case, 

without any operation, this condition is not respected because features magnitude space from 10−1 

of SOC to 104 of power demand. One of the possible operations that can be done is called 
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standardization of the data. It consists of rescaling each sequence of features with zero mean and 

unitary standard deviation, standardizing the data in the following way: 

 

 𝒚 =
𝒙 −

∑ 𝑥𝑖
𝑁
𝑖=1
𝑁

𝜎(𝒙)
 4.13 

 

Where: 

• 𝒚 is the rescaled data vector. 

• 𝒙 is the original data vector. 

• 𝑁 is the number of data per each feature, considering all the available driving cycles. 

• 𝜎(𝒙) is the standard deviation of the not scaled data. 

Data standardization has been applied to each input feature for both the used neural network. 

Concerning the output of the regressive neural network, it is important to consider the output label in 

a narrow range that can space from 0 to 1 or -1 to 1. All these data operations have been made to 

avoid obtaining too many high weights during the training phase, an aspect that can lead to overfitting 

the model. 

BMEP output values have been rescaled in the following way, to space from 0 to 1: 

 

 𝑩𝑴𝑬𝑷𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑩𝑴𝑬𝑷 − min 𝑩𝑴𝑬𝑷

max 𝑩𝑴𝑬𝑷 − min 𝑩𝑴𝑬𝑷
 4.14 

 

A maximum value of 25 bar has been used while 0 bar is the minimum value. 

4.6.3 MATLAB Neural Networks Models Implementation and 

Experiment Manager Optimization 

MATLAB environment allows managing deep learning problems, creating deep neural networks 

exploiting some predefined functions, without explicating manually writing the code to create the 

network. 

This feature allows to speed up and hugely simplify each kind of artificial intelligence model. 

When any artificial intelligence problem has to be managed, the first step is to divide the available 

dataset into three smaller datasets, used respectively for training, validating and testing the model. 

This split operation is necessary to verify the generalization capacity of the model and detect if the 

model overfits. 
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Since the available dataset is composed of 73 driving cycles, it has been split into 57 test driving 

cycles, 10 validation driving cycles, used to test the model while the training phase is in progress and 

6 test driving cycles to evaluate the overall performance of the proposed neural network-based EMS. 

An additional split of the above-mentioned driving cycles database has been performed, split them 

into sequence long 120 s. This operation has been done because LSTM neural network can have some 

problems managing too long sequences and, since 120 s is enough to recognize the actual driving 

conditions, these sequences have been used to train and validate the model. 

A future sensitivity analysis on this parameter can be done to evaluate its influence on the 

performance of the model. 

Regarding the architecture of the two RNN is structured as follow: 

1. Engine State classification LSTM neural network in charge sustaining: 

• Sequence Input Layer: a layer that manages inputs in the form of sequences of values 

function of time (4 nodes). 

• LSTM Layers: recurrent layer, described in section 3.6.2. The concatenation of more 

than one LSTM layer defines the deep of the network (1 layer of 48 nodes). 

• Dropout layer: a layer that is useful to limit the overfitting problem. 

• Fully Connected Layer: characterized by having just 2 nodes, necessary to pass the 

information to the next layer that has to manage the probability of the input of 

belonging to each class. The activation function is sigmoid. 

• Softmax Layer: compute the probability of the input values belonging to each class of 

the classification problem (in this case engine turned on/off). 

• Classification Output Layer: outputs the predicted class. 

 

 

Figure 4.21: Engine state LSTM neural network in charge sustaining representation 
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2. BMEP regression LSTM neural network in charge sustaining: 

• Sequence Input Layer: a layer that manages inputs in the form of sequences of values 

function of time (5 nodes). 

• Fully Connected Layer: layer with a certain number of nodes, connected with each 

node of the previous and the next layers, with a tanh activation function (54 nodes). 

• LSTM Layers: recurrent layer, described in section 3.6.2. The concatenation of more 

than one LSTM layer defines the deep of the network (2 layers of 50 and 24 nodes 

respectively). 

• Dropout layer: a layer that is useful to limit the overfitting problem. 

• Fully Connected Layer: characterized by having just 1 node, necessary to pass the 

information to the next output layer. The activation function is sigmoid. 

• Regression Output Layer: outputs the predicted BMEP value. 

 

 

Figure 4.22: BMEP LSTM neural network in charge sustaining representation 

 

3. Engine State classification LSTM neural network in charge depleting: 

• Sequence Input Layer: a layer that manages inputs in the form of sequences of values 

function of time (7 nodes). 

• Fully Connected Layer: layer with a certain number of nodes, connected with each 

node of the previous and the next layers, with a tanh activation function (63 nodes). 

• LSTM Layers: recurrent layer, described in section 3.6.2. The concatenation of more 

than one LSTM layer defines the deep of the network (1 layer of 37 nodes). 
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• Dropout layer: a layer that is useful to limit the overfitting problem. 

• Fully Connected Layer: characterized by having just 2 nodes, necessary to pass the 

information to the next layer that has to manage the probability of the input of 

belonging to each class that characterized the classification problem. The activation 

function is sigmoid. 

• Softmax Layer: compute the probability of the input values belonging to each class of 

the classification problem (in this case engine turned on/off). 

• Classification Output Layer: outputs the predicted class. 

 

 

Figure 4.23: Engine state LSTM neural network in charge depleting representations 

 

4. BMEP regression LSTM neural network in charge sustaining: 

• Sequence Input Layer: a layer that manages inputs in the form of sequences of values 

function of time (5 nodes). 

• Fully Connected Layer: layer with a certain number of nodes, connected with each 

node of the previous and the next layers, with a tanh activation function (59 nodes). 

• LSTM Layers: recurrent layer, described in section 3.6.2. The concatenation of more 

than one LSTM layer defines the deep of the network (1 layer of 75). 

• Dropout layer: a layer that is useful to limit the overfitting problem. 

• Fully Connected Layer: characterized by having just 1 node, necessary to pass the 

information to the next output layer. The activation function is sigmoid. 

• Regression Output Layer: outputs the predicted BMEP value. 
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Figure 4.24: BMEP LSTM neural network in charge depleting representation 

 

Another very useful MATLAB tool, called Experiment Manager,[46] has been used to perform the 

hyperparameters optimization. It allows to sweep in a set range each defined hyperparameter (sweep 

optimization) or to perform the Bayesian optimization,[19][29][46] a probabilistic based optimization 

method that allows to speed up the optimization process compared to sweep optimization. 

Among the hyperparameters, the most important are the deep of the neural network and the number 

of nodes of each layer, optimized employing the Bayesian optimization procedure. 
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Figure 4.25: MATLAB Experiment Manager graphical user interface 

4.6.4 Neural Network-based Energy Management System Performance 

Evaluation 

The most important phase in the development of an artificial intelligence model is to test it with data 

not used during the training phase, to evaluate the generalization capacity of the model. 

The EMS has been tested considering how well perform in terms of fuel consumption and charge 

sustainability capacity, rather than using standard performance indexes such as Root Mean Square 

Error (RMSE), using a user-defined cost function. 
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 𝐶𝑜𝑠𝑡 =
1

𝑛
∑

∫ (|𝑚𝑏̇ 𝐷𝑃
− 𝑚𝑏𝑁𝑁

̇ |𝑑𝑡)
𝑡𝑓

𝑡0

∫ 𝑚𝑏̇ 𝑑𝑡
𝑡𝑓

𝑡0

𝑛

𝑖=1

+ 𝑐1

|𝑆𝑂𝐶𝐷𝑃(𝑡𝑓) − 𝑆𝑂𝐶𝑁𝑁(𝑡𝑓)|

𝑆𝑂𝐶𝐷𝑃(𝑡𝑓)
 4.15 

 

Where: 

• 𝑚𝑏𝐷𝑃
̇  is the fuel rate coming from dynamic programming optimization. 

• 𝑚𝑏𝑁𝑁
̇  is the fuel rate coming from neural network-based EMS simulation. 

• 𝑆𝑂𝐶𝐷𝑃(𝑡𝑓) is the battery State of Charge coming from dynamic programming optimization at 

the final time step. 

• 𝑆𝑂𝐶𝑁𝑁(𝑡𝑓) is the battery State of Charge coming from neural network-based EMS simulation 

at the final time step. 

• 𝑛 is the number of test driving cycles. 

• 𝑐1 is a scale factor to make the fuel consumption evaluation part and charge sustainability part 

comparable. 

It evaluates a sort of relative error that considers both the variables of interest, which are the overall 

fuel consumption and the network capacity to reach to final SOC target at the end of the driving cycle. 

Another aspect to consider is that some input features (SOC and engine state) depend on the output 

of the previous time step. Since they influence the output of both the networks, the error between the 

correct results coming from DP and the predicted one, will be higher in the test phase than in the train 

or validation phase that inputs these features as results from the DP simulation, without any error 

affection from previous time step output. 

To speed up the test phase, a backward kinematic vehicle model has been developed, very similar to 

the dynamic programming vehicle model, deeply analysed in section 4.6.1, developed in Simulink 

environment to consider the dynamic behaviour of battery SOC during the simulation. 
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Figure 4.26: BMEP Neural Network implementation in backward kinematic Simulink model to test the pre-trained 

network. The block Stateful Predict loads a MATLAB data file (.mat) with the pre-trained neural network and predicts 

the output at each time step updating the internal state of the network. 

 

The best NN-based EMS has the following results during the kinematic test phase: 

 

Table 4.3: EMS performance indexes on test driving cycle dataset 

Cycle Accuracy RMSE Cost function 

Test1 97.69% 0.045 1.91 

Test2 95.75% 0.054 6.73 

Test3 96.27% 0.050 4.01 

Test4 95.31% 0.050 4.20 

Test5 95.36% 0.061 2.60 

Test6 97.48% 0.044 1.54 

Training 97.69% 0.017 - 

Validation 96.42% 0.021 - 

 

From the comparison of training performance indexes and test ones, the engine state NN is not 

affected by any overfitting problem and has a great capacity of predicting the correct engine state at 

each time step reaching very high accuracy values both in the test and training phase. From the 

confusion chart of Figure 4.27, on one of the test driving cycles, the great prediction capacity is 

highlighted. This chart is characterized by the right predictions on the main diagonal, while the non-

diagonal terms represent the wrong predictions of the model. 
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Figure 4.27: Confusion chart on one of the test cycles 

 

RMSE in the test phase is higher than training or validation RMSE but this behaviour is not due to 

overfitting of the model, since validation and training values are quite close, but to the error chain 

that starts from a wrong prediction of the first neural network and flows to the output of the second 

network. 

However, using just one neural network (i.e., just BMEP network) instead of the combination of the 

purposed EMS, leads to more bad results, since the knowledge of the actual engine state is a key 

feature for the prediction of the BMEP value. 

Since the output value of BMEP influences the engine and electric machine power demand, a 

discrepancy between the correct value of BMEP and the predicted one will lead to an error also in the 

SOC value that will flow through the entire driving cycle. Since the actual SOC is computed from the 

previous time step value, a wrong value in the previous time step will lead to a wrong value also in 

the right time step. This aspect can cause a divergence between the DP SOC value and the NN-based 

EMS value. However, this aspect is mitigated by the capacity of the engine state neural network to 

take decisions also from SOC values. 
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Figure 4.28: State of Charge comparison between DP (correct) and NN-based EMS (predicted) on the test cycle 

 

Figure 4.29: Fuel consumption comparison between DP (optimal) and NN-based EMS (sub-optimal) 

 

Figure 4.28 and Figure 4.29 highlights the great behaviour of the NN-based EMS on one of the used 

test-driving cycles, in terms of both charge sustainability and fuel consumption on the kinematic 

vehicle model. 

The same consideration can be appliable also to the charge depleting trained neural networks. 
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4.6.5 Dynamic Model 

Vehicle fuel consumption is affected by phenomena that cannot be represented in a simple kinematic 

model. To have more realistic values of fuel consumption and to effectively evaluate the purposed 

Energy Management System, the NN-based EMS, developed in Simulink, has been integrated on a 

dynamic vehicle model developed in GT-SUITE environment. 

This model has a map-based powertrain integrated into a quasi-static backward dynamic vehicle 

model, presented in section 4.4.2. It has been validated with a huge quantity of experimental data, 

with a methodology described in [42], representing a plug-in Hybrid Electric Vehicle with a P2 hybrid 

powertrain architecture available on the market. 

 

 

Figure 4.30: Simulink Harness in GT-Suite environment 

 

Concerning the modelling approach, the communication between the two software is possible 

utilizing Simulink Harness block in GT-SUITE (Figure 4.30) and GT-SUITE Model block in Simulink 

library (Figure 4.31). To achieve correct communication, GT-SUITE has been set as slave, with the 

simulation that runs in Simulink environment. 

 

 

Figure 4.31: GT-SUITE Model block in Simulink environment 
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5 Results 

The proposed Neural Network-based Energy Management System was tested on the test cycles 

dataset and the results obtained on two of them are presented in this chapter. 

Dynamic Programming (DP) optimized model is considered as a benchmark because, as already seen 

in section 2.2, this optimization method allows to obtain the optimal solution, given a-priori known 

driving cycles. However, due mainly to computational effort reasons, the DP model optimizes the 

power split considering a kinematic model of the vehicle, while the dynamic model considers all the 

dynamic behaviour of the vehicle and the powertrain in terms of mechanical response, introducing 

some aspect that DP model cannot consider. 

The consequence is that there is a relevant gap between the benchmark and the effective model in 

terms of fuel consumption that makes this comparison quite unfair. 

A fairer fuel consumption evaluation can be done on the same dynamic vehicle model, equipped with 

a different power-split control strategy: a Rule-Based strategy, and an ECMS strategy. 

The ECMS fuel consumption is a new benchmark to be as close as possible, since, even if it is not an 

optimal solution, it is an offline optimization procedure. 

Concerning the SOC trend, the DP signal can be used to evaluate the battery charging/discharging 

strategy. 

The simulation results will be presented for both charge sustaining and charge depleting operations. 

5.1 Charge Sustaining 

Charge sustaining results are presented on two RDE compliant driving cycles, used for testing the 

model. 

The goal is to minimize fuel consumption by obtaining a charge sustainability strategy, that consists 

of having the final SOC value as close as possible to the initial value. 

The initial value of SOC has been set to 0.2. 
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Figure 5.1: Vehicle speed and relative engine state on the first RDE test driving cycle 

 

Figure 5.2: Vehicle speed and relative engine state on the second RDE test driving cycle 

 

Figure 5.1 and Figure 5.2 show the powertrain operating modes at each time step. The urban part, 

which in both cycles is present at the initial parts of the cycle, is performed mainly in pure electric 

mode, an aspect confirmed from the SOC trend that, in this part is decreasing as shown in Figure 5.3 

and Figure 5.4. 
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The last part of both the cycles represents a highway driving condition, performed mainly in parallel 

mode, with the goal of recharge the battery to obtain a charge sustaining operation. 

 

 

Figure 5.3: SOC comparison between DP, RB, ECMS and NN-based EMS on the first RDE test driving cycle 
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Figure 5.4: SOC comparison between DP, RB, ECMS and NN-based EMS on the second RDE test driving cycle 

 

Figure 5.3 and Figure 5.4 plot the State of Charge trend in both test cycles. The final SOC is very 

close to the initial value and it has a comparable evolution during the cycle with the DP SOC signal, 

an aspect that confirms a very good behaviour of the neural network strategy on either the first and 

the second driving cycle. 

Neural Network-based EMS compared with Rule-Based presents a better capacity of charge 

sustainability, since the final SOC value is closer to the target value. The higher SOC final value of 

RB-EMS implies higher fuel consumption at the end of the cycle (Figure 5.5). 

The comparison with ECMS-EMS presents a completely different evolution of the state of charge 

with a higher value of NN-based EMS than the ECMS-EMS one. However, as shown in Figure 5.5 

and Figure 5.6, despite a higher final SOC value, NN-based EMS reaches lower fuel consumption 

than ECMS-EMS. This behaviour underlines more efficient exploitation of the internal combustion 

engine. 
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Figure 5.5: Fuel consumption comparison between RB, ECMS, DP and NN-based EMS on the first RDE test driving 

cycle 

 

Figure 5.6: Fuel consumption comparison between RB, ECMS, DP and NN-based EMS on the second RDE test driving 

cycle 
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Figure 5.7: BSFC comparison between the three selected EMS on the first test driving cycle 

 

Figure 5.8: BSFC comparison between the three selected EMS on the second test driving cycle 

 

From Figure 5.7 and Figure 5.8 is possible to point out that NN-based EMS is the most efficient 

solution, from BSFC, a parameter linked to engine efficiency. Smaller BSFC higher the efficiency. 

In both the figure NN-based EMS has the lowest BSFC. 
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Table 5.1: BSFC comparison on the two-test driving cycle on the different control strategy presented 

Control strategy BSFC reduction on RDE1 BSFC reduction on RDE2 

RB 0 % 0 % 

ECMS-EMS -0.32 % -0.5 % 

NN-EMS -0.87 % -1.01 % 

 

 

Figure 5.9: Fuel consumption on the three selected EMS on the first test driving cycle 

 

Table 5.2: Fuel consumption reduction comparison on the two-test driving cycle on the different control strategy 

presented 

Control strategy Fuel consumption 

reduction on RDE1 

Fuel consumption reduction 

on RDE2 

RB 0 % 0 % 

ECMS-EMS -1.74 % -2.37 % 

NN-EMS -3.31 % -3.95 % 
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Figure 5.10: Fuel consumption on the three selected EMS on the second test driving cycle 

 

Figure 5.9 and Figure 5.10 represent how the fuel consumption is remarkably decreased in the 

proposed EMS compared to both the other optimization strategies. 

 

 

Figure 5.11: SOC comparison with the target value on the first test driving cycle 
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Figure 5.12: SOC comparison with the target value on the second test driving cycle 

 

Table 5.3: Final SOC comparison between the presented control strategy and the target value 

Control strategy SOC distance from the 

target on RDE1 

SOC distance from the 

target on RDE2 

DP 0 % 0 % 

RB +21.6 % +32 % 

ECMS-EMS +6.98 % -5.26 % 

NN-EMS +9.75 % +1.1 % 

 

ECMS strategy reaches the closest value to the target in terms of SOC. This result is expectable 

because it is the only strategy that is pure optimization, while both Rule-Based and NN-based EMS 

are models calibrated on experimental data the former and on an optimal control strategy, such as the 

dynamic programming, the latter. 

However, NN-EMS can obtain remarkable achievements also in terms of charge sustainability 

capacity, being very close to the target SOC value. 
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Figure 5.13: Time distribution of the engine operating points of NN-based EMS on the first test driving cycle 

 

In Figure 5.13 and Figure 5.14, the time distribution of engine operating points controlled by NN-

based EMS is plot, while in Figure 5.15 and Figure 5.16 the operating points are referred to EMS-

ECMS. Bigger the dot, more time the engine has spent at that efficiency region. 

The comparison between Figure 5.13 and Figure 5.15 highlights a different time distribution, with 

the NN-based EMS that presents a more uniform distribution on the BSFC map. This allows 

exploiting the engine at higher load operating points, characterized by a lower BSFC and so a greater 

efficiency. 

In ECMS-EMS the operating points are mainly focused in the zone that ranges from 5 to 10 bar of 

BMEP, so at low load. 

This is the main reason for the smaller BSFC of NN-based EMS compared to ECMS-EMS shown in 

Figure 5.7 and Figure 5.8. 

The same consideration can be done on the second test driving cycle. 
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Figure 5.14: Time distribution of the engine operating points of NN-based EMS on the second test driving cycle 

 

Figure 5.15: Time distribution of the engine operating points EMCS-EMS on the first test driving cycle 
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Figure 5.16: Time distribution of the engine operating points EMCS-EMS on the second test driving cycle 

5.2 Charge Depleting 

A plug-in Hybrid Electric Vehicle is better exploited in a charge depleting mode since its battery has 

a capacity that allows a remarkable full-electric range. 

Ideally, the driving cycle should start with a fully charged (100% SOC) battery and stop with an 

empty battery (0% SOC). However, the Energy Management System has been designed to reach a 

final SOC as close as possible to 0.2, to eventually switch to charge sustaining operating mode. 
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Figure 5.17: Comparison between SOC of NN-based EMS, DP and RB on the first test driving cycle 

 

Figure 5.18: Comparison between SOC of NN-based EMS, DP and RB on the second test driving cycle 

 



5. Results 
 

100 
 

The SOC of the NN-based EMS has a comparable trend with DP SOC signal, with a higher propensity 

to discharge the battery, as underlined by the confusion chart (Figure 5.20), because the model is 

mainly wrong when the engine should be turned on and the prediction is to do not exploit it (2nd row 

with 80.3% of overall accuracy). 

A comparison with how the RB model manages the discharge of the battery (Figure 5.19) highlights 

a more intelligent way of exploiting the battery energy since NN-based EMS do not distinguish 

between the highway and urban part of the cycle but try to obtain a SOC trend as much linear as 

possible, as DP does, with a clear advantage in terms of fuel consumption (Figure 5.21 and Figure 

5.22). 

 

 

Figure 5.19: RB battery management strategy on RDE driving cycle[42] 
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Figure 5.20: Confusion chart on one of the test driving cycles of engine status optimized neural network 

 

Figure 5.21: Fuel consumption comparison between DP and NN-based EMS on the first test driving cycle 
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Figure 5.22: Fuel consumption comparison between DP and NN-based EMS on the second test driving cycle 

 

In Figure 5.21 and Figure 5.22, DP, RB and NN-based EMS fuel consumption are compared. RB 

strategy exploit in the first part of both the cycles a pure electric driving mode, since the fuel 

consumption starts to increase after a considerable amount of time, in which a charge sustaining mode 

is enabled. This strategy leads to higher fuel consumption than NN-based EMS that adopt a pure 

charge depleting strategy, even if the final SOC of the latter strategy is lower. 

However, despite the lower SOC in NN-based EMS, the fuel consumption reduction is remarkable, 

as shown in Table 5.5, highlighting the more efficient strategy proposed by this method. 
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Figure 5.23: Fuel consumption histogram with NN-based EMS and DP optimized value on first test driving cycle 

 

Figure 5.24: State of Charge histogram on first test driving cycle 
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Figure 5.25: Fuel consumption histogram with NN-based EMS and DP optimized value on second test driving cycle 

 

Figure 5.26: State of Charge histogram on second test driving cycle 
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Table 5.4: SOC in charge depleting comparison with the target on the two test driving cycles 

Control strategy SOC distance from the 

target on RDE1 

SOC distance from the 

target on RDE2 

DP 0 % 0 % 

NN-EMS -61 % -77.5 % 

RB -2.56 % -43.9 % 

 

Table 5.5: Fuel consumption reduction in charge depleting comparison with the two purposed strategies on the two test 

driving cycles 

Control strategy SOC distance from the 

target on RDE1 

SOC distance from the 

target on RDE2 

RB 0 % 0 % 

NN-EMS -10.2 % -8.38 % 
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6 Conclusion 

The increasingly demanding worldwide trend concerning the reduction in terms of CO2 and pollutant 

emissions is leading all the automotive field to be rethought. 

The regulator-imposed CO2 emissions targets are increasingly strict, leading car manufacturers to 

search new solutions to increase the fuel efficiency with the goal of saving as much fuel as possible, 

reducing the CO2 emissions. 

Among the solutions provided by the literature, the introduction of hybrid powertrain to propel the 

vehicle is one of the most promising, thanks to the possibility of combining the advantages of 

traditional internal combustion engines and full electric vehicle. 

However, the introduction of an ancillary source of energy with its associated actuator, introduces an 

additional degree of freedom, that is the power split among the available actuators. 

This is to be managed by the Energy Management System of the powertrain controller, to fully exploit 

all the benefits that an electrified powertrain architecture can provide in terms of fuel saving and fuel 

efficiency. 

This dissertation was mainly focused on the methodology used to design a deep learning-based 

Energy Management System, with the exploitation of deep Recurrent Neural Networks, an Artificial 

Intelligence model able to use past information coming from the driving cycle in order to decide to 

decide the optimal power split. 

Different neural networks solutions and architectures have been tested and the most promising one is 

based on two different networks that decide respectively the engine state and the engine Brake Mean 

Effective Pressure (BMEP) at each time step, trained with the optimal solution provided by Dynamic 

Programming optimization algorithm. 

A plug-in Hybrid Electric Vehicle with a P2 powertrain architecture available on the European market 

was used to test the proposed Energy Management System. The proposed approach was tested, by 

means of numerical simulation, on a validated model of the case study implemented in the GT-SUITE 

environment. 

The results have been compared with two different powertrain control strategy based on a Rule-Based 

strategy, excreted from the experimental campaign carried out on the real vehicle, and an Equivalent 

Consumption Minimization Strategy (ECMS) optimization. 

Remarkable achievement in terms of fuel economy were achieved on both charge sustaining and 

charge depleting strategy. In charge sustaining, there is a fuel consumption reduction of about 4 % 
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respect to the Rule Based strategy, as shown in Table 5.2, with a remarkable charge sustaining 

capacity of the Energy Management System. The engine exploitation is more efficient thanks to the 

lowest BSFC among the compared control strategies (Table 5.1). 

In charge depleting, the EMS is able to provide a full charge depleting strategy on the entire driving 

cycle (Figure 5.24 and Figure 5.26), reaching a fuel consumption reduction of about 10 % respect to 

Rule Based EMS (Table 5.5).  

A remarkable improvement of the Neural Network-based EMS can be obtained exploiting V2X 

connectivity, with the possibility of considering future information about the predicted vehicle speed, 

road infrastructure and traffic to improve the capacity of the EMS of reaching the SOC target value 

and further increases the engine efficiency. 

As final consideration, even if this thesis work presents remarkable results in terms of fuel saving 

with the exploitation of a supervised learning model, such as a deep learning model, future 

development of EMS based on Artificial Intelligence should exploit the Reinforcement Learning (RL) 

algorithms. RL is more suitable to complex control problems that act in highly dynamic environment, 

such as the design of the Energy Management System of a Hybrid Electric Vehicle. 
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