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Abstract 
 
Nowadays, condition monitoring is becoming crucial to increase productivity and reduce 
Maintenance and asset downtime. However, one of the most significant limits is that too 
many data are required obtain a robust and reliable algorithm.  
Getting those data from the experiment is costly both in terms of time and 
money.Furthermore, damaging components to generate faulty data is not always possible. In 
this thesis, a lumped parameter model will be used to generate different fault levels in an 
axial piston pump. To validate the lumped parameter model, a test with both a healthy pump 
and an Extremely damaged valve plate pump will be run. 
Experimental results will be commented and analyzed. 
Plus, feature selection and feature reduction will be performed in order to make the condition 
monitoring model as fast and reliable as possible. 
Furthermore, different models will be presented and final results will be shown. 
Finally, future solutions and improvement will be explained.   
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1  INTRODUCTION 
 
 

1.1 Motivations 
 
Axial piston pumps are widely used in aerospace,transport and heavy duty 
machineries.Because of harsh operating environment and wear, fault occurs very often. 
If not detected in time, a single damaged component can lead to huge damages of the entire 
equipment and of the operators who are using the machine. 
It is crucial to find a way to correctly detect in time pump faults, in the cheapest and easiest 
way. 
Checking periodically the unit elements is not always possible in reasonable time, so other 
solution must be found. 
Condition monitoring has become one of the best trending topics of the last few years. In fact, 
knowing which equipment component will broke, can greatly reduce machine stop time and 
spare parts cost [1]. Plus, maintenance cost can be reduced up to 50% [2]. This leads to huge 
money savings for industries and companies. 
However, one of the major challenges is collect a large amount of data in order to train a 
robust condition monitoring algorithm: both healthy and unhealthy component must be 
tested. Damaging healthy units and running many experimental tests can be very expensive, 
and often it is not an available solution. 
The main goal of this thesis is to use a machine learning classification model in order to find 
the least number of sensors to successfully detect different types of fault in an axial piston 
pump. 
To train the algorithm, different faulty conditions will be generated by using a lumped 
parameter model of the pump. This solution is timely and computationally affordable. 
The lumped model has been validated in healthy pump case and extremely damaged 
valveplate case. 
 
 

1.2 Research goals 
 
The main goal of the research is to show a procedure to use machine learning in order to 
design a condition monitoring models, able to detect faulty pump components with the 
minimum number of sensors. 
The research will include: 
 

• Pump digital twin model design 
• Experimental test to validate the model in healthy condition 
• Analysis and modelling of different pump faults. 
• Extremely damage valve plate experimental test, to validate the model 
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• Data processing and filtering 
• Use machine learning to find the minimum number of sensors to detect different 

faults 
• Condition monitoring models analysis and comparison 

 
 

1.3 Organization 
 
The thesis will be divided in sections.The chapter 2 will show the state of the art of condition 
monitoring research, showing different adopted approaches and their limits and 
potentialities. 
Chapter 3 will describe the reference pump used for the research work.The following chapter 
will be related to pump model and fault analysis.In chapter 5 experimental test procedure will 
be described.Experimental measured data will be compared with the simulated ones to 
validate the model. 
Chapter 6 will show different condition monitoring models, and in the following chapter the 
model results will be presented. 
Finally, in chapter 8 conclusions and future work will be shown. 
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2  STATE OF THE ART 
 
This chapter has the goal of showing the progress and different solution adopted by other 
authors to face the condition monitoring topic.Every solution will be presented considering 
both positive aspects and possible improvements. 
 
 

2.1 Spectral analysis of vibration 
 
One of the oldest methods to detect fault inside a pump consist in studying the vibrations 
coming from the case[3].In fact, a damaged  pump component will affect the pressure ripple 
and the flow ripple.The pressure anomalies will be transmitted by the oil to the pump case. 
 
 Noise and vibration study started in 1965: Kane et al.[4] investigated the vibration produced 
by different faults in several hydraulic systems. In particular, they were able to show the 
differences in frequency domain due to air bubbles in oil by using an oscilloscope.Other 
sources of noise were taken into account apart from the pump: hydraulic line, mechanical 
vibrations and pump fluctuations can contribute to increase the pump noise. 
 
In 1993, Wen [5]showed a method to detect slipper failures in axial piston pump, by studying 
the signal power spectrum measured by placing 4 accelerometers on the pump case.He 
showed how it is possible to understand the slipper fault level analyzing the power spectrum 
peak positions and magnitude. 
 
Ten years later, Gao,Kong and Zhang [6]developed a wavelet analysis for piston pump fault 
diagnosis.They showed different diagnosis systems, such as diagnosis based on over-limit 
mean square amplitude, characteristic frequencies and time-frequency domain analysis 
 
Recently, in 2019, Casoli and Rundo [7]presented a way to successfully detect and distinguish 
between different fault types (worn port plate,port plate with cavitation,worn slippers and 
damaged cylinder block) by dividing the frequency signal in 2 part: a constant one plus 
another contribute related to noise. 
 
 

2.2 Machine Learning  
 
Machine learning is a relatively recent method, based on letting the solver find a correlation 
between the input data.it is advantageous because a fully precise and complete knowledge 
of the studied system is not required. 
 
In 1997 Watton and Pham[8] used multilayer perceptron (MLP) type neural networks to 
predict variation in pump outlet flow due to different types of damages.Finally they showed 
that this method would was able to detect correctly two different cylinder leakages. 
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MLP is a particular type of neural network in which there are always one input layer, one 
hidden layer and one output layer.A multilayer perceptron can be represented as in figure 1. 
 

 
 

Figure 1: MLP structure 

 
In this figure, the circles represent neurons. A row of neurons is called layer. Each neuron 
receives an input, which will pass through a tranfer function, which is a function able to give 
different weights to different inputs. 
 
In 2013, Kivela and Mattila[9] introduced a multivariable histogram method for condition 
monitoring.This method is based on finding relations between different variables by using 
muti-dimension histograms.After having collected data for different faulty conditions, the 
MVH model is trained and validated. 
To detect faults, the measured data are compared with the model.In this approach, the model 
is used as “map”, and a lot of experimental data are required for having good accuracy. 
 
 
A convolutional neural network approach to detect faulty pump elements have been shown 
by Yan et al. in 2016[10] 
This approach is more accurate with respect to multi-layer perceptron because is able to 
detect spatial and temporal relationship between data, by using different filters[11].Those 
filters has the function to divide the dataset into smaller datasets, in order to find feature 
correlations with a relatively low computational effort  
 
 
Recently, in 2018, Lan,Hu et al  [12]presented a method to diagnose slipper abrasion of axial 
piston pump by using extreme learning machine (ELM). This kind of machine learning 
algorithm is based on feedforward neural networks.This solution is faster with respect to 
standard neural networks[13].This solution, however, can lead to minor accuracy[14] 
 
 
 
 
 
 

    OUTPUT LAYER 

HIDDEN LAYER 

INPUT LAYER 
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3  REFERENCE PUMP  
 

3.1  Introduction 
 
In general, pumps are units able to convert mechanical energy (provided by a rotating motor) 
into hydraulic energy (transmitted to the actuations by a hydraulic fluid, in general oil). 
They can be divided into different categories. The figure 2 shows different types of pumps[15]. 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The reference unit chosen for this research work is a P18cc axial piston pump.The main reason 
of this choice is the availability of many units and the large amount of research done by 
previous researchers at Maha. The testing procedure and the hydraulic circuit didn’t required 
any relevant changes with respect to the one used in N. Keller research[16].Finally, this unit 
is also used on a 5T excavator for the main actuations.That means that in future the developed 
condition monitoring algorithm could be tested on a real heavy duty machine.  
The unit used in this thesis is shown in figure 3,taken from Parker catalog. 
 

Axial piston pumps 

Radial Pistons Pumps 

In line piston pumps 

Gear pumps 

Screw pumps 

Vane pumps 

Pumps 

Figure 2: different types of pumps 
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Figure 3: reference unit  

 
 

3.2 Working principle 
 
Pumps are used to convert mechanical energy, coming from an external motor, into hydraulic 
energy, transmitted by fluid. 
The principal components of an axial piston pump are the following ones: 
 

• Swashplate 
• Pistons 
• Valve plate 
• Barrel 
• Cylinder block 
• Slippers 
• Shaft 

 
The figure 4 [17] shows those components and their positions.  
The working principle of this unit can be resumed as follows.The shaft is coupled at one side 
to a motor, and at the other side to the cylinder block. When the shaft rotates, the cylinder 
block rotate at the same speed.Thus,each piston is connected either to the delivery port or 
to the suction port, depending on its  angular position, as shown in figure iii 
The stroke of each piston is controlled by the swashplate,which can be inclined from -19° 
(negative full displacement) up to +19°(positive full displacement). 
The contact between swashplate and cylinders is always guaranteed by slippers:those 
elements are used to convert the swashplate angular motion into cylinder linear motion.  
During the experimental test, the displacement has been set by a directional valve, controlled 
by a feedback signal. The controller type is a simple proportional control: real swashplate 
position is compared to the desired one.If it is smaller, more flow will be sent to the actuator. 
In the other case, instead, the valve will send less flow.   
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The P18 unit is a closed-circuit pump that can control the swashplate to the over-center 
position.That means that the configuration can be set to motor or pump depending on the 
swashplate position.  
The unit will work as motor if the flow direction is entering to the unit. In the opposite case 
(positive displacement), the unit will work as pump. In this case, the flow direction will be 
exiting with respect to the unit. 

 

Figure 4: pump main elements 

 

3.3 Pump Kinematics 
 
To better understand the effects of each pump fault, in this paragraph the pump kinematics 
will be shown. 
 
First of all, the main geometrical parameter are presented in figure 5 [18]. 

 
 
 
 

 
 
 
 
 

Figure 5: pump section and main geometrical parameters 

BARREL PISTON 

SWASHPLATE 

DISPLACEMENT ACTUATOR VALVE PLATE 
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(1) 

(2) 

(3) 

(4) 

The shaft is connected to a motor from one side, while from the other side is connected to 
the cylinder block using a spline coupling. 
The cylinder block rotates together with the shaft, while the swashplate and valveplate are 
fixed to the pump case. 
The fluid is taken from low pressure port (blue one), and it is delivered to high pressure. 
Using 𝜙𝜙 for the angular position, and 𝜔𝜔 for the angular velocity it is possible to compute the 
piston stroke, piston velocity and piston acceleration. 
In particular,from equation 1 it is possible to observe that the piston stroke 𝑠𝑠𝑘𝑘 depends with 
the pitch radius 𝑅𝑅𝑏𝑏 , the angular positon and the swashplate angle 𝛽𝛽 . 
 

sk =  −𝑅𝑅𝑏𝑏 ∙ 𝑜𝑜𝑎𝑎𝑡𝑡β(1 − cosϕ) 
Eq. 1: piston stroke 

The maximum piston stroke can be computed as follows: 
 

𝐻𝐻𝑘𝑘 = 2 ∙ 𝑅𝑅𝑏𝑏 ∙ 𝑜𝑜𝑎𝑎𝑡𝑡𝛽𝛽 
Eq. 2: piston maximum stroke 

From the maximum stroke, it is possible to derive the piston speed  
 

𝑣𝑣𝑘𝑘 =
𝑑𝑑𝑠𝑠𝑘𝑘
𝑑𝑑𝜙𝜙

∙ 𝜔𝜔 =  −
1
2

 𝜔𝜔 ∙ 𝐻𝐻𝑘𝑘 ∙ 𝑠𝑠𝑠𝑠𝑡𝑡𝜙𝜙 

Eq. 3: piston speed 

The acceleration can be expressed by the following formula: 
 

𝑎𝑎𝑘𝑘 =
𝑑𝑑𝑣𝑣𝑘𝑘
𝑑𝑑𝜙𝜙

∙ 𝜔𝜔 =  −
1
2
∙ 𝜔𝜔2 ∙ 𝐻𝐻𝑘𝑘 ∙ 𝑐𝑐𝑜𝑜𝑠𝑠𝜙𝜙 

Eq. 4: piston acceleration 

 
 
 

3.4 Main components and common faults 
 
Since axial piston pumps are widely used in harsh environments, all the components are 
frequently subject to faults. The main causes are reported in service manuals and are: 
 

• Lack of lubrication 
• Operating at excessive temperature 
• improper fluid used 
• Aerated fluid 
• Abrasive contaminants 
• Over speeding 
• Solid contamination 
• Water contamination 
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Figure 8: healthy 
 

 

Figure 6: oil contamination damage 

 

Figure 7:  lack of lubrication damage 

 

For each pump component, the possible damages will be shown.Most of those pictures are 
taken from Danfoss service manual [19]. 
 

3.4.1 Slipper 
 

The piston slipper has the role of converting the swashplate angular variation into cylinder 
linear motion.The small hole in the center is used to deliver a small amount of oil in order to 
lubricate the swashplate – slipper interfaces.  
The slipper element can be damaged by contaminants inside the oil or by lack of lubrication. 
In the first case, the slipper will be similar to figure 6.In case of lack of lubrication, instead,it 
will appear like in figure 7.Healthy slipper is shown in figure 8.   
              
 

 
                                  

 
 
 

 
 

 
 

3.4.2 Piston 
 
Each piston deliver flow to the outlet port, and pulls flow from the inlet port.The semi-
spherical head is linked to the slipper. In this way the slipper will be able to rotate on this 
joint, being able to track the swashplate angular position.As it is possible to see in figure 9, 
the piston head has a small hole, used to deliver a minimum part of flow to the slipper-
swashplate interface,to guarantee a constant lubrication. 
 One common piston damage is the discoloration due to lack of lubrication or too extreme 
operating temperature     

 
Figure 9: cylinder damage (lack of lubrication) 

 
Another fault that often occur is the scratch due to fluid contamination, as shown in figure 
10 

 
 

 

 

Figure 10: cylnder damage (oil contamination) 
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3.4.3 Slipper retainer 
 
This element is used to keep the piston slippers parallels between each ohers.It very sensitive 
to overspeed: as it is possible to observe in figure 11, the most fragile part is the slipper 
retainer edge. 

 
 

Figure 11: slipper retainer damage  

 
3.4.4 Cylinder block 
 
The cylinder block is used to transmit the rotational motion from the shaft to the 
cylinders.When the cylinder block is rotating, the cylinders enters in contact with the high 
pressure port and the low pressure port, depending on their own angular position. 
The main fault is that occur is the wear of cylinder block - slipper interface and cylinder block-
valve plate interface (figure 12)  
 

                       
 

Figure 12: cylinder block damage (lack of lubrication) 

 
3.4.5 Swashplate 
 
To change the pump displacement, the inclination of this element is changed,by controlling 2 
control cylinders, which act on 2 hinges (figure 13) 
The swashplate is very sensitive to the presence of contaminants in fluid.If the swashplate is 
damaged, probably the slippers will be damaged too,because they slides on the swashplate 
when the cylinder block rotates. 
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Figure 13: swashplate damage (oil contaminants) 

 

3.4.6 Valve plate 
 
This element is crucial for noise reduction and pressure ripple mitigation.In particular, the 
groove in correspondence of the high pressure and low pressure port starting point are crucial 
to guarantee a smooth transition between the different pressure levels.   
Valve plate damage can occur because of external contaminants, lack of lubrication, excessive 
wear or too high temperature. 
For research purposes, an extreme damage due to contamination has been simulated. 
This is visible in picture iii. This kind of damage has been created by artificially damaging the 
valve plate simulating a 0.35 mm depth scratch (figure 14) 
The effect of this scratch is expected to not only increase the pressure ripple, but also deliver 
a certain amount of flow to case. In fact, in correspondence of the finishing part of the scratch, 
the valve plate will not be fully sealed toward the cylinder block. 
 
 

 
 

Figure 14: extremely damage valveplate 

From figure 12, it is possible to see 2 different grooves, in correspondence of both high 
pressure and low pressure port. 
A more detailed view of this groove is shown in figure 15. 
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Figure 15: relief groove detail (Yamauchi and Yamamoto,1976) 

From figure 16, taken from Matlab Simulink guide, a simplified version of valve plate is 
shown.In table 1 are shown the different opening area values depending on piston angular 
position. 
  
 
  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: valve plate geometrical parameter description 

Figure 16: Valve plate main geometrical parameters 

ODC 
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The real valve plate, shown in figure 12, has 8 different slots instead of 2 major 
ones.However,as first approximation they can be considered equal to 2 bigger slots, since the 
orifice equation is not valid anymore: the ratio between the fluid volume diameter and the 
kidney is quite equal to 1. Orifice equation is considered valid only when the diameter ratio is 
less than 0.1. 
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4  PUMP MODEL  
 

4.1 Block Diagram 
 
To model the pump, a lumped parameter approach has been used. This method has been 
shown that can have a quite precise accuracy with reduced computational time [17]. 
This kind of approach has been chosen because of the necessity to have a large amount of 
data in a small amount of time. 
The block diagram in figure iii shows the input and output of each component. 

 
Figure 17: Healthy model block diagram 
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The pump block gets as input the shaft speed n and the inlet pressure 𝑝𝑝_𝑠𝑠𝑡𝑡. The output 
pressure pout is imposed: in real experimental setup it is set manualy by regulating the needle 
valve opening.  
This block, basically, can be considered as made by 9 different sub-blocks, representing the 9 
pump cylinder displacement chambers. Inside those cylinders blocks,the shaft speed is 
converted into shaft position by integration from zero to 2𝜋𝜋. The shaft position is used as 
input to determine the correct opening area of low pressure and high-pressure variable 
orifices.To correlate shaft position with opening area a 1D look up table has been used. 
Figure 18 shows the opening area with respect to angular position for both high pressure port 
and low pressure.  
 
 
 
 
 
 
 
 
 
 
 
 
 
The relation which connect flow and pressure is shown in equation iii. 
 

𝑄𝑄 = 𝑐𝑐𝑓𝑓 ∙ 𝐴𝐴 ∙ �
2 ∙ Δ𝑝𝑝
𝜌𝜌

 

Eq. 5: orifice equation 

To get the opening area plot, AVAS (Automated Valve plate Area Search) tool has been 
used.Further details about this tool will be provided in appendix 1. 
As it is possible to observe from figure18, the valve plate opening area is perfectly symmetric.  
Special attention must be paid to the groove area, better shown in figure 19: in 
correspondence of 180 degrees the high pressure and low-pressure port are crossing. This 
phenomenon is defined cross porting, and its crucial to reduce the pressure ripple and 
consequently the pump noise. 
 

Figure 18: opening area for high pressure and low-pressure port 

(5) 
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Figure 19: cross porting area between high pressure and low pressure port 

The high-pressure orifice, as the name suggest, is linked to the high-pressure port as input, 
that is the one in which the pressure is set by acting on the needle valve.  
The low-pressure port, instead, is connected to the low-pressure inlet line. In this case, the 
low pressure has been set by acting on the low pressure pump in the Maha Power supply 
room.On heavy duty machines, instead, this pressure is set by a small charge pump, which 
provides the desired set pressure (25 bar). 
The other side of orifice blocks is linked to the displacement chamber. 
This chamber has a variable volume, according to the formula 6 . 
 
 
 
 
 
All the geometrical parameters have been taken from a CAD file or directly measured when it 
has been possible. In particular, the pitch radius is shown in figure iii, while the displacement 
is shown in figure iii. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝐴𝐴𝑝𝑝𝑖𝑖𝑠𝑠 is the piston area, and 𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  is the dead volume.This is the minimum chamber volume, 
that is the volume of the chamber when the piston stroke is zero (minimum stroke position). 

𝐶𝐶ℎ =  
2𝜋𝜋𝑡𝑡
60

 ∙ 𝑅𝑅𝑝𝑝𝑖𝑖𝑝𝑝𝑐𝑐ℎ ∙ tan( 𝛽𝛽𝑚𝑚𝑑𝑑𝑚𝑚) ∙ 𝐴𝐴𝑝𝑝𝑖𝑖𝑠𝑠 + 𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
Eq. 6: discharge chamber volume 

 

𝑥𝑥 

𝑦𝑦 

𝑅𝑅𝑝𝑝𝑖𝑖𝑝𝑝𝑐𝑐ℎ 

𝛽𝛽 

Figure 21: valveplate drawing Figure 20: section view of an axial piston pump 

(6) 
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As it is possible to observe in figure iii, the flow delivered by each cylinder is sinusoidal. The 
phase shift is equal to 360/9 degrees.The over imposing of each sinusoidal gives the effective 
output flow.The pump has an odd number of piston to reduce the flow ripple. 
The output line has been modeled as a capacitance. That could lead to some differences 
between the measured values and the simulated ones. In particular, the pressure ripple can 
present some substantial differences. In fact, the output line in the real experiment setup 
consist in rubber hoses, steel elbows and different fittings.Those element can be a relevant 
source of noise and interference with respect to the ideal output shape.  
 

4.2 Drain flow estimation 
 
To simulate the flow losses inside the pump, in healthy condition, different types of leakage 
has been taken into account. 
As first approximation, it is possible to identify three main leakage sources: 

• Piston cylinder interface 
• Slipper-swashplate interface 
• Valveplate-cylinder interface  

 
Those kinds of leakages can be considered using two different formulations: flow between 
stationary and moving flat, parallel plates (Eq 7), and steady flow in annulus between circular 
shaft and cylinder (Eq iii). 
 

𝑄𝑄 =
𝜋𝜋𝜋𝜋𝑏𝑏3 �1 + 1.5 �𝜖𝜖𝑏𝑏�

2
� (𝑃𝑃𝑈𝑈 − 𝑃𝑃𝑑𝑑)

12𝜇𝜇𝜇𝜇
 

Eq. 7: flow between stationary and moving plate 

 

𝑄𝑄 = � −
𝑏𝑏3

12𝜇𝜇
  
𝑃𝑃𝑢𝑢 − 𝑃𝑃𝑑𝑑

𝜇𝜇
 +

𝑉𝑉𝑏𝑏
2

 �  𝑤𝑤  

Eq. 8: steady flow in annulus between circular shaft and cylinder 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(7) 

(8) 

Figure 23 

Figure 24 

Figure 22 

Figure 25 



31 
 

 
As first approximation, the drain flow 𝑄𝑄𝑑𝑑 can be assumed as series and parallel of different 
laminar orifices, plus an additive contribution related to velocity. 
 
The figure iii better explains the two different approaches.The blue lines highlights the eq.7 
leakages, while the green lines are related to eq 8 leakages.  
 

 
Figure 26: main leakage interfaces in axial piston pump 

Since the geometrical parameters are not available only macroscopic consideration has been 
performed. As first approximation,the drain flow has been assumed as sum of the three 
previous contributes.Pressure and speed have been identified as most important 
factors.Thus, the drain flow it has been expressed according to formula 9 
 
 
 
 
To estimate those parameter, the measured drain flow at 1500 and 2000 rpm, with output 
pressure of 50,100,150,200,250 bar has been compared with the simulated one, given by 
formula 9. 
The parameters have been determined by using a GRG nonlinear solver (Generalised Reduced 
Gradient). 
 As cost function, the minimization of Root Square Mean Error has been chosen (eq. 10) 
 
 
 
 
 
 
Finally, the parameters have been validated using acquired data at 1800 rpm, 
50,100,150,200,250 bar as output pressure.The estimation and validation error will be 
shown in the results chapter. 
 
 
 
 
 
 
 

𝑄𝑄𝐷𝐷 = 𝑥𝑥1 ⋅ pH + 𝑥𝑥2 ⋅ pL + 𝑥𝑥3 ⋅ 𝑡𝑡 
      

 

𝐶𝐶 = 𝑚𝑚𝑠𝑠𝑡𝑡�
1
𝑁𝑁
∙ ��

𝑄𝑄𝐷𝐷𝑚𝑚𝑑𝑑𝑑𝑑𝑠𝑠 − 𝑄𝑄𝐷𝐷𝑠𝑠𝑖𝑖𝑚𝑚
𝑄𝑄𝐷𝐷𝑚𝑚𝑑𝑑𝑑𝑑𝑠𝑠

 �
2

 
𝑁𝑁

𝑖𝑖=1

 

Eq. 10:drain flow estimation cost function 

 
 

(9) 

(10) 

http://www.numdam.org/article/RO_1974__8_3_73_0.pdf
https://dl.acm.org/doi/10.1145/355769.355773
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4.3 Fault models 
 
4.3.1 Cylinder damage 
 
The case of a scratch  produced by oil contaminant has been taken into account (figure 23). 
This scratch can be modeled as a fixed orifice which connects the piston chamber with the 
pump case. 
 

 
 

Figure 27:piston damaged by oil contaminants 

 
In particular, the orifice equation 13 has been implemented into the numerical model. 
 

𝑄𝑄𝑙𝑙𝑑𝑑𝑑𝑑𝑘𝑘 = 𝑐𝑐𝑓𝑓 ∙ 𝐴𝐴  �
2 ∙ (𝑝𝑝𝐷𝐷𝐶𝐶 − 𝑝𝑝𝑐𝑐𝑑𝑑𝑠𝑠𝑑𝑑)

𝜌𝜌
 

Eq. 11: general orifice equation 

 
From experimental test, it has been observed that the case pressure is two orders of 
magnitude smaller than the displacement chamber pressure, so it is possible to assume that  
 

𝑝𝑝𝑐𝑐𝑑𝑑𝑠𝑠𝑑𝑑 ≪ 𝑝𝑝𝐷𝐷𝐶𝐶 =  0 
Eq. 12:pressure constraints 

 
The equation 11, then,can be rewritten as equation 13 
 

𝑄𝑄𝑙𝑙𝑑𝑑𝑑𝑑𝑘𝑘 = 𝑐𝑐𝑓𝑓 ∙ 𝐴𝐴  �
2 ∙ 𝑝𝑝𝐷𝐷𝐶𝐶
𝜌𝜌

 

Eq. 13: simplified orifice equation 

Figure iii shows the orifice implementation inside the model. 
 

 

(11) 

(12) 

(13) 
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Eq. 14: cylinder damage model 

 
 

4.3.2 Slipper damage 
 
A clogged slipper (figure 24) has been modeled, using overimposing effect.The procedure to 
estimate the healthy leakages between lubricating interfaces has been shown in chapter 
5.2. 

 
 

Figure 28: lack of lubrication damaged slipper 

In normal operating conditions, every slipper has a little hole, used to divert some flow to the 
slipper-swashplate interface.This flow will guarantee a correct lubrication between the 2 
interfaces. 
Because of oil contamination or excessive wear, the orifice can be clogged: no more flow will 
pass trough it.  
Consequentially, this flow must be subtracted to the healthy estimated one. 
Formula iii has been implemented into the numerical model. 
 
 

� 𝑄𝑄𝑙𝑙𝑑𝑑𝑑𝑑𝑘𝑘 = 𝑐𝑐𝑓𝑓 ∙ 𝐴𝐴 ∙ �
2 ∙ 𝑝𝑝𝐷𝐷𝐶𝐶
𝜌𝜌

𝑄𝑄𝜋𝜋 = 𝑥𝑥! ∙ (𝑝𝑝𝐻𝐻) + 𝑥𝑥2 ∙ (𝑝𝑝𝐿𝐿) + 𝑥𝑥3 ∙ 𝑡𝑡 − 𝑄𝑄𝑙𝑙𝑑𝑑𝑑𝑑𝑘𝑘

 

Eq. 15:damaged slipper drain flow estimation 

(14) 
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To better understand the role of piston slipper a CAD section view is shown in figure 25.  
Here is possible to see that the lubricating flow is delivered to the interface between an 
orifice inside the piston head and another orifice inside the slipper. 
 

 
 

Figure 29:slipper CAD section detail 

 
4.3.3 Valve plate Extreme Damage 
 
The valve plate damage (figure 26), caused by the presence of contaminants inside oil, can 
be modeled considering 2 effects. 
 

 
 

Figure 30: Extremely damaged valve plate 

The first effect of the scratch is delivering a part of flow from the high pressure toward the 
pump case. 
This effect can be modeled using the equation 15. Also in this case, the case pressure is 
considered neglectable with respect to the high pressure. 
 

𝑄𝑄 = 𝑐𝑐𝑓𝑓 ∙ 𝐴𝐴 �
2 ∙ 𝑝𝑝𝐻𝐻
𝜌𝜌

  

Figure 31: orifice equation 

 
The second effect, that is the scratch in correspondence of the high pressure relief groove, 
has been modeled by changing the high pressure orifice area plot, as in figure 27. 
 

(15) 
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Figure 32: comparison between healthy valve plate and extremely damaged valve plate 

 
Figure 29 shows the model implementation  

 
Figure 33: valve plate fault model implementation 
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5  EXPERIMENTAL TEST 
 
For both healthy and unhealthy valveplate the same test rig has been used, with the same 
layout: the valveplate has been changed without removing the pump from its support.In this 
way shaft misalignment errors have been avoided.To disassembly the pump,the procedure 
present on pump service manual has been followed.Thus, the case bolt screwing torque has 
been checked with an adjustable wrench, set to 51 Nm (values suggested by pump 
manufacturer). 
The ISO schematic in figure iii represent the hydraulic testrig configuration. 
 

5.1 Testing procedure 
 
Before starting the measurement part,the data acquisition system has been tested and 
calibrated. The calibration phase consist in finding the right scaling factors to convert the 
output of each sensor (that is, voltage), in physical signals 
(pressure,flow,temperature,pressure ripple). 
To calibrate the pressure sensors, different pressure values have been set by using a hand 
pump.The correspondence voltage has been acquired.by plotting the pressure with respect 
to voltage and by finding the best fitting line, it is possible to find the correct calibration 
values. 
Regarding to the flow meters, different flow signals have been sent to the data acquisition 
system box, using  the VSE TB2 tool. 
Then, the respective voltage has been measured.The best fitting line offset and slope values 
corresponds to the desired calibration parameters. 
A better description of calibration phase will be provided in appendix A. 
Once all the electrical connections and wiring have been checked, the testing part can be 
started.It can be resumed by the flow chart below. 
After turning the motor on,the needle valve has been fully closed, and the pressure relief 
valve has been set to a value of 270 bar. 
Once the pressure relief valve is properly set, the load pressure can be adjusted by acting on 
the needle valve. 
All the measurements have been taken with an inlet temperature of 50°C, because the pump 
datasheet shows the values for this temperature. 
The data acquisition phase started after 10 minutes that the measured inlet temperature 
reached the set point.This is because in this way more stable values will be measured. 
In fact, during the operating conditions change, the temperature value will oscillate before 
reaching a stable point. 
The above procedure has been repeated for all the operating conditions shown in table 2 
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Table 2: tested operating conditions 

𝑡𝑡 (𝑟𝑟𝑝𝑝𝑚𝑚) Δ𝑝𝑝 (𝑏𝑏𝑎𝑎𝑟𝑟) 

3000 

250 
200 
150 
100 
50 

2000 

250 
200 
150 
100 
50 

1800 

250 
200 
150 
100 
50 

1500 

250 
200 
150 
100 
50 

1000 

250 
200 
150 
100 
50 

800 

250 
200 
150 
100 
50 

 

 
 
 
 
 
 
 
 
 
 
 
 
  
 
  

 Turn motor on  

  Set speed 

Set outlet pressure 

Wait until inlet temperature = 50°C 

Output  pressure = 250? 

Figure 34: testing procedure flowchart 
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Figure 35: steady state testrig ISO schematic 

 

Sensor  Signal Sensor type model Full scale Accuracy 
1 inlet temperature Thermocouple Omega K 1-1250°C 0.75 % FS 

2 inlet pressure Voltage output pressure 
transducer Hydac 4475-B-0150 5000 psi 0.1 % FS 

3 Shaft speed Encoder Kistler 4503A 7000 rpm 0.1% FS 
4 Torque Torquemeter Kistler 4503A 500Nm 0.1% FS 

5 Output pressure 
ripple Piezo pressure sensor Kistler 603C 1000 bar 0.4 bar 

FS 

6 Output pressure Voltage output pressure 
transducer Hydac 4475-B-6000 6000 psi 0.1% FS 

7 Output 
temperature Thermocouple Omega K 1-1250°C 0.75 % FS 

8 Output flow Gear type flowmeter VSI 4/16 EPO 12 T- 250 lpm 0.1% FS 

9 Control pressure Voltage output pressure 
transducer Keller 30 bar 0.1% FS 

10 Control flow Gear type flowmeter VS 0.2 EPO 12 T- 18 lpm 0.1% FS 
11 Drain flow Gear type flowmeter VS 0.2 12V-HT/3 18 lpm 0.1% FS 

12 Drain 
temperature Thermocouple Omega K 1-1250°C 0.75 % FS 

13 Drain pressure Voltage output pressure 
transducer Keller Value Line 10 bar 0.1% FS 

14 Swashplate 
position Hall effect angular sensor RS60 180° 1.3° 

 

Table 3:steady state test rig sensor list 
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Figure 36: acquisition system wiring schematic 
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5.2  Experimental results 
 
Different operating condition have been taken into account.For each of those, the parameter 
listed in table iii have been acquired.In particular all data have been acquired with a sampling 
frequency of 1kHz, except for the pressure ripple, which has been acquired with a 50kHz 
sampling frequency. 
Example of collected data are shown in figures 33 and 34. 
 

 
 

Figure 37:example of measured output pressure 

 
 

Figure 38:example of measured outlet flow 
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5.3  ISO 46 vs ISO 32 comparison 
 
To observe how the oil viscosity affects the model results, the same test have been performed 
both with ISO 32 and ISO 46 oil.The differcences between the 2 type of oil are shown in table 
4. 
 

 ISO 32 ISO 46 
𝜋𝜋𝐷𝐷𝑡𝑡𝑠𝑠𝑠𝑠𝑜𝑜𝑦𝑦 (𝐾𝐾𝐾𝐾/𝑚𝑚3) 850.8 861.519 
𝑉𝑉𝑠𝑠𝑠𝑠𝑐𝑐𝑜𝑜𝑠𝑠𝑠𝑠𝑜𝑜𝑦𝑦 (𝑐𝑐𝑐𝑐𝑜𝑜) 22.0133 30.3296 

𝐵𝐵𝑜𝑜𝐵𝐵𝐵𝐵 𝑚𝑚𝑜𝑜𝑑𝑑𝑜𝑜𝐵𝐵𝑜𝑜𝑠𝑠 (𝑃𝑃𝑎𝑎) 1.3581 ∙ 109 1.38484 ∙ 109 
 

Table 4:ISO 32 vs ISO 46 oil properties comparison 

As first approximation,it has been observed that the differences between the drain flow and 
outlet flow are constant and related to the square root of density.This has been demonstrate 
experimentally by A.Sciancalepore starting from the orifice equation 16 
 

𝑄𝑄 = 𝑐𝑐𝑓𝑓 ∙ 𝐴𝐴 ∙ �
2 ∙ Δ𝑝𝑝
𝜌𝜌

 

Eq. 16: orifice equation 

From plot in figure 35, it is possible to notice that the flow discharge coefficient 𝑐𝑐𝑓𝑓 is 
proportional to the square root of Reynolds number. 

 
Figure 39: orifice flow coefficient vs square root of Reynolds number 

Reynolds number, which is used to distinguish between turbulent and laminar fluid flow, is 
related to viscosity, conduct diameter,speed of the fluid and fluid density, as in equation 17 
 
 

𝑅𝑅𝐷𝐷 =
𝑣𝑣 ∙ 𝜋𝜋
𝜈𝜈

=
𝜌𝜌 ∙ 𝑣𝑣 ∙ 𝜋𝜋

𝜇𝜇
 

Eq. 17: Reynolds number equation 

 

(16) 

(17) 



42 
 

Considering that the flow across an orifice is directly proportional to the flow coefficient 𝑐𝑐𝑓𝑓, 
and that the flow coefficient is proportional to the square root of Reynolds number, it is 
possible to write this relation as in eq 18. 
 
 

𝑄𝑄 ∝ √𝑅𝑅𝐷𝐷 
Eq. 18: relation between output pump flow and Reynolds number 

From equation 18, it possible to see that the Reynolds number is inversely proportional to 
viscosity. 
As conclusion, the output pump flow for 2 different oils will be equal to the square root of the 
inverse of their viscosity. 
 
This relation can be written as in eq. 19 
 

𝑄𝑄𝑜𝑜𝑢𝑢𝑝𝑝,32

𝑄𝑄𝑜𝑜𝑢𝑢𝑝𝑝,46
= �

𝜌𝜌46
𝜌𝜌32

  

Eq. 19:output  pump flow ration compared to oil density ratio 

 
 

 
 

Figure 40: drain flow comparison for different oil types 

 

(18) 

(19) 
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Figure 41: Output flow comparison for different oil types 
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5.4 Pressure ripple comparison 
 
Interesting differences have been noticed between the measured healthy pressure ripple and 
the unhealthy one.In particular, different peak magnitude in frequency domain, which is 
related to different peak to peak values in time domain. Some measurements have been 
shown in figures 38 and 39. 
 

 
 

         

 

 
 
 
 
 

Figure 42: pressure ripple magnitude comparison 

 

Figure 43: pressure ripple fft comparison 
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From figure 38, it is possible to observe that a 2000 Hz pressure sensor can be used to detect 
the first 3 peaks: in fact, to have a correct data acquisition (without aliasing), it is necessary 
to sample at least at 2 times the desired sampling frequency.This is better known as Nyquist’s 
theorem.It will be better explained in appendix 3. 
In figure 39 it is possible to understand the differences seen in fft plot: the healthy signal (blue 
line), has one peak very much higher with respect to the other one.  
This behaviour is supposed to be related to different transition areas between high pressure 
and low pressure.To double check this hypotesis, further analysis on the valveplate would be 
required. 
However,because of lack of time and because perfectly modelling the valveplate area is out 
of this research scope, the optical profilometer analysis has been indicated as future work 
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6  MODEL RESULTS AND 
VALIDATION 

 
In this part, output flow, drain flow and drain pressure results and validation will be 
shown.Output pressure has been set by tuning the load orifice area: a recursive procedure 
has been applied in order to match the requested output pressure.   
 

6.1 Drain flow 
 
The drain flow has been assumed as proportional to speed, inlet pressure and outlet pressure. 
The percentage error with respect to the measured flow is shown in figure 41 and 43.  
Validation of this approach is shown in figure 45. 
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           Figure 45: drain flow vs outlet pressure, 1500 rpm  Figure 44: drain flow  error, 1500 rpm 
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Figure 49:drain flow vs outlet pressure, 1800 rpm 
                        
                                                           

The error is always less than 5%. Thus the model is considered validated and quite precise 
from 1500 up to 2000 rpm.Those range has been chosen because they are the typical 
operating speed for an excavator.This will lead to the possibility of future work improvement 
and implementation on a real machine. 
The error is not correlated to the output pressure.This is because the optimization algorithm 
looked for the smallest global error, not related to pressure. 
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       Figure 47: drain flow vs outlet pressure, 2000 rpm   Figure 46:: drain flow  error, 2000 rpm 

Figure 48:drain flow error, 1800 rpm 

2000 rpm drain flow vs output pressure 
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6.2 Outlet flow 
 
The outlet flow is shown in figures 46, 48, and 50 
 

 
 

    Figure 51: outlet flow vs outlet pressure, 1500 rpm                       
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Figure 53::outlet flow vs outlet pressure, 1800 rpm  

Figure 50: output flow error, 1500 rpm 

Figure 52: outlet flow error, 1800 rpm 
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6.3  Drain pressure 
 
To estimate the drain pressure, an optimization problem, similar to the one used to estimate 
the drain flow. Here the cost function, shown in equation 20 is the minimization of RSME, that 
is the square root of the squared error between the measured value and the simulated one. 
 
 
 

(20) 
 
        
 
Drain pressure validation will be shown together with the extremely damage validation 
paragraph. 
 

6.4 Extreme damage model validation  
 
To simulate the valve plate scratch, shown in figure 52, two different changes have been done 
to the healthy model. 
First of all, the area file has been modified, in correspondence of the scratched part.Plus, an 
additional orifice has been add to the model, in order to simulate the flow path from the high 
pressure port toward the pump case. 
To modify the area file, AVAS tool has been used using a damaged valve plate CAD instead of 
the healthy one (Figure 54). 

𝐶𝐶 = 𝑚𝑚𝑠𝑠𝑡𝑡�
1
𝑁𝑁
∙ ��

𝑝𝑝𝐷𝐷𝑚𝑚𝑑𝑑𝑑𝑑𝑠𝑠 − 𝑝𝑝𝐷𝐷𝑠𝑠𝑖𝑖𝑚𝑚
𝑝𝑝𝐷𝐷𝑚𝑚𝑑𝑑𝑑𝑑𝑠𝑠

 �
2

 
𝑁𝑁

𝑖𝑖=1

 

Eq. 20: drain pressure esrimation cost function 
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Figure 55: output flow vs output pressure, 2000 rpm Figure 54: output flow model error, 2000 rpm  
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Figure 58: comparison between healthy and unhealthy groove area 

 
The orifice area has been taken from the Avas output.As double check, an optimization 
problem has been set: assuming that the orifice flow coefficient is 0.65, the RSME between 
estimated flow and experimental flow has been minimized.  
As conclusion, it has been observed that the optimal area is very similar to the AVAS tool one. 
However, a large error has been observed at low and medium pressures (50 and 100 bars), as 
shown in figure 55 
 

Figure 57:extremely damaged valveplate  

 

Figure 56: extremely damaged valveplate CAD
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Figure 59: leakage flow error  

At this point, it has been decided to investigate more about the flow coefficient. Keeping the 
orifice area fixed, the flow coefficient has been estimated.Then those values have been 
plotted with respect to the Reynolds number, to better investigate the orifice behavior (figure 
56). 
This number, identified as the ratio between the inertia forces over the viscous ones.At low 
values, the flow is laminar, while at high ones is turbulent. Reynold number is shown in 
formula 21 
 
 

𝑅𝑅𝐷𝐷 =
𝜌𝜌 ∙ 𝑣𝑣 ∙ 𝜋𝜋

𝜇𝜇
=
𝜌𝜌 ∙ 𝑄𝑄𝐴𝐴 ∙ 𝜋𝜋

𝜇𝜇
=
𝜌𝜌 ∙ 𝑄𝑄 ∙ 4

𝜋𝜋𝜋𝜋2 ∙ 𝜋𝜋

𝜇𝜇
=
𝜌𝜌 ∙ 𝑄𝑄 ∙ 4

𝜋𝜋 ∙ 𝑑𝑑
𝜇𝜇

  
Eq. 21: Reynolds equation 

Where 𝜌𝜌 is the viscosity, 𝑣𝑣 is the fluid speed, 𝜋𝜋 is the passage area diameter, 𝜇𝜇  is the dynamic 
viscosity and Q is the flow rate flowing across the orifice (difference between healthy drain 
flow and Exremely damaged valveplate drain flow). 
 

  
 Figure 60: Comparison between Reynolds number and flow coefficient for exp. data 
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Viscosity has been computed from the case temperature.The empirical relation between 
those 2 variables has been found by collecting different temperature values and their 
respective density values, taken from Simscape Hydraulic fluid library.Then the best fitting 
line has been computed.This method is shown in figure 57. 
  

 
Figure 61: density vs temperature plot 

 
The same above procedure has been used to determine the relation between temperature 
and dynamic viscosity (figure 58).  

 
Figure 62: viscosity vs temperature plot 

As precautionary decision, the model has been considered validated only at 150, 200 and 250 
bars. For this condition, the flow coefficient has been assumed equal to 0.62, because when 
the Reynolds number is greater than 2900 the flow is considered completely turbulent. 
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Figure 64: leakage flow  model error Figure 63:leakage flow error – valdation at 1800  rpm 

Figure 60 shows the model testing, using collected data at 1500 and 2000 rpm. Figure 61, 
instead, shows validation of the algorithm with data collected at intermediate speed (1800 
rpm) 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
Since for the intermediate faults it will not be possible to know the leakage flow toward the 
scratch, the ratio between the Reynolds number and flow coefficient will be used as 
constraint.Solving the 2 equation systems (iii), it has been possible to compute the 
mathematical formulation of those value. It will depend only from known values 
(density,viscosity,output pressure and orifice area). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                 
ρ ∙ cf ∙ �

2 ∙ Δp
ρ ∙ D

μ
≥

2900
0.62

 

Eq. 24:critical ratio 

 
 

⎩
⎪
⎨

⎪
⎧ 𝑅𝑅𝐷𝐷 =

𝜌𝜌 ∙ 𝑣𝑣 ∙ 𝜋𝜋
𝜇𝜇

 𝑄𝑄 = 𝑐𝑐𝑓𝑓 ∙ 𝐴𝐴 ∙ �
2 ∙ Δ𝑝𝑝
𝜌𝜌

 

Eq. 22: Reynolds number and orifice Equation 

 
𝑅𝑅𝐷𝐷
𝑐𝑐𝑓𝑓

=
𝜌𝜌 ∙ 𝑐𝑐𝑓𝑓 ∙ �

2 ∙ Δ𝑝𝑝
𝜌𝜌 ∙ 𝜋𝜋

𝜇𝜇
 

Eq. 23: Reynolds number vs orifice flow coefficient 

 

(22) 

(23) 

(24) 
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6.5 Drain pressure estimation 
 
The drain pressure formula has been found from experimental data:after plotting the drain 
flow with respect to the drain pressure,the best fitting line has been computed.Figure 61 
shows the experimental line (obtained from collected data at 1500 and 2000 rpm), the second 
degree fitting line and the validation data at 1800 rpm, both for healthy and for unhealthy 
conditions. 

 
 

Figure 65: drain pressure vs drain flow,healthy and ED data 

The error between the measured data and the estimated one, in extremely damaged (ED) 
valveplate experiments are shown in  figure 62; 
 

 
Figure 66: line model error, healthy and ED data 
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7 CONDITION MONITORING 
MODEL 

 
A standard approach used to create efficient condition monitoring models is depicted in figure 
63. The disadvantage of this method is related to the fact that a lot of experiment must be 
performed to get satisfactory results. 
costly solution, because it requires a lot of time to prepare the experimental setup.Plus, some 
errors in experimental procedure can lead to wrong considerations. 
In this thesis, an alternative approach shown in figure 64 will be used. 
This approach will dramatically decrease the time to collect data: in fact, a digital twin lumped 
parameter model will be used. 
Another advantage is that the physical components will not have to be damaged.That is 
crucial, because often internal pump components are very expensive and their availability is 
often limited. 
The alternative procedure workflow is shown in figure 64 
 
  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In this chapter, different algorithms will be presented and explained.Finally, the results will 
be compared and discussed.Then the best algorithm will be chosen. 
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Figure 67: general condition monitoring model workflow 
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Figure 68: alternative condition monitoring model workflow 



56 
 

7.1 Machine learning introduction 
 
Machine learning algorithms can accomplish different variety of tasks, such as 
transcription,regression,machine translation,regression,denoising,density estimation, and 
classification. 
An example of transcription task can be the OCR(optical character recognition) technology: 
the algorithm converts a scanned document in text format.Relatively to regression task,it 
consist in finding a function able to correlate a set of input and output values.An example of 
regression problem has been faced in previous chapter, during the estimation of the 
parameters which relates inlet pressure,outlet pressure, speed to drain flow. 
Machine translation consist in converting symbols from one language to another one. 
The last task is the one that has been set for the condition monitoring part.In fact, 
classification consist in identifying different classes (in this case, different fault levels) and 
assign the right class to every element of a given dataset. 
Depending on the type of dataset, machine learning problems can be divided into supervised 
problem and unsupervised ones.The first ones are characterized by non-labeled data: that 
means that the algorithm cannot know the properties of each data.In case of condition 
monitoring, the dataset is labeled: every data is associated to different fault 
levels:healthy,extremely damaged,intermediate level, damaged piston,damaged slipper.The 
labeled data are organized in a design matrix, which will be fed into the condition monitoring 
model.An example of design matrix is the one in table iii,where H stands for healthy pump, 
ED for extremely damaged valveplate,ID for intermediate damage.CD, instead, is related to 
cylinder damage, SD is slipper damage. 
All the mean value sensor data are collected.Plus,for the pressure ripple, variance value have 
been collected. 
In table 5, due to space issues, the sensor names abbreviation are shown. 
 

1. drain pressure (𝑝𝑝𝐷𝐷 ) 
2. drain flow (𝑄𝑄𝐷𝐷) 
3. drain temperature (𝑇𝑇𝐷𝐷) 
4. outlet pressure (𝑝𝑝𝑜𝑜𝑢𝑢𝑝𝑝 ) 
5. outlet flow (𝑄𝑄𝑜𝑜𝑢𝑢𝑝𝑝) 
6. outlet temperature (𝑇𝑇𝑜𝑜𝑢𝑢𝑝𝑝) 
7. inlet pressure (𝑝𝑝𝑖𝑖𝑖𝑖) 
8. inlet temperature (𝑇𝑇𝑖𝑖𝑖𝑖 ) 
9. displacement control flow (𝑄𝑄𝐶𝐶  ) 
10. displacement control pressure (𝑝𝑝𝐶𝐶) 
11. displacement level (𝛽𝛽 ) 
12. pressure ripple variance(𝑝𝑝𝑟𝑟𝑠𝑠𝑝𝑝𝑝𝑝𝐵𝐵𝐷𝐷𝑉𝑉𝐴𝐴𝑉𝑉 ) 
13. Healthy condition (H) 
14. Extremely damaged valveplate (ED) 
15. Cylinder damage (CD) 
16. Slipper damage (SD) 

 
 

𝑝𝑝𝐷𝐷 0.12 
𝑄𝑄𝐷𝐷 0.57 
𝑇𝑇𝐷𝐷 65 
𝑝𝑝𝑜𝑜𝑢𝑢𝑝𝑝 47.9 
𝑄𝑄𝑜𝑜𝑢𝑢𝑝𝑝 27.12 
𝑇𝑇𝑜𝑜𝑢𝑢𝑝𝑝 49.6 
𝑝𝑝𝑖𝑖𝑖𝑖 28.4 
𝑇𝑇𝑖𝑖𝑖𝑖 48.9 
𝑄𝑄𝐶𝐶  0.28 
𝑝𝑝𝐶𝐶  24.5 
𝛽𝛽 1 

𝑃𝑃𝑟𝑟𝑠𝑠𝑝𝑝𝑝𝑝𝐵𝐵𝐷𝐷𝑉𝑉𝐴𝐴𝑉𝑉 10.9 
H 0 

ED 0 
CD 0 
SD 1 

Table 5:sensor name abbreviation 
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Before starting to consider the different proposed solutions, it is necessary to understand the 
differences between overfitting,underfitting and appropriate capacity. 
That can be understood by observing the figure 65 [20] 
 
 

 
Figure 69: difference between underfitting, appropriate capacity and overfitting  

In the first case,the model cannot fit the data trend (because the degree is too low).the central 
case represents the optimal solution: degree 2 is the optimal one to fit the parabolic trend.The 
last case is a clear example of overfitting: the degree 9 plot presents highly unwanted 
oscillating behavior. 
 

7.2 Supervised learning models 
 
7.2.1 Support vector machine (SVM) 
 
This model is very useful to discriminate between different classes (i.e: faults 
levels).Originally, it was designed for binary classification problems.When the classes are 
more than 2, the problem is divided into different binary classification sub-problems (one-to-
one approach).  
Another possible approach is the one-to-rest approach: one class is separated with respect to 
all the other ones. 
SVM algorithm uses different hyperplanes to discriminate between different classes. 
A simple example of one to one approach is shown in figure 66 [21] 
Figure 67 [21], instead, shows a one to rest approach. 
 
 
 
 
 
 
 
 
 
 

UNDERFITTING 
 

APPROPRIATE CAPACITY OVERFITTING 
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Figure 71:one to one SVM approach                          

 
Since the hyperplanes are linear, sometimes the problem can be more complex, as in figure 
68 [21].In this case, a linear hyperplane in xy space cannot be used.Thus, the kernel trick is 
introduced: a new dimension is add.For example, in figure 69[21] , a kernel with equation 
𝑧𝑧2  =  𝑥𝑥2 + 𝑦𝑦2 has been used.In xz plan the distinction becomes quite straight forward. 
 
 

 
 

 

 
 

Figure 72: classification problem in xy plane                      

 

Figure 70:one to rest SVM approach 

Figure 73:classification problem in xz plane 
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Figure 75; k-nn problem representation 

The last example is depicted in figure 70, taken by Coursera online platform. 
 

 
 

Figure 74: kernel method representation 

 
 

7.2.2 K-nearest neighbor 
 
This algorithm is very accurate for high training set values, but at the very same time is 
computationally expensive.Its weak point is that the algorithm cannot learn that one feature 
is more discriminative with respect to another one. 
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This algorithm computes the distance between the new example to classify and the neighbor 
points, which can be part either of a class or of another one.Those distances are saved into a 
matrix, and are labeled with the class type (i.e : square or triangle). 
The matrix is ordered by sorting the distance in ascendant order, that is , smaller to higher. 
The k rows of this matrix are consided.The most frequent class label is assigned to the 
example data. 
Depending on solvers, the distance can be computed as Euclidean one, that can be 
interpreted as the cathet of a triangle, or Manhattan distance, which corresponds to the sum 
of the 2 perpendicular sides of a triangle. 
Figure 72[22] helps to better understand the differences between the 2 possible distances. 
 

 
 

Figure 76: Manhattan vs Euclidean distance 
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7.2.3 Decision tree 
 
This algorithm can be represented by a tree in which the branches are feature 
(pressure,temperature and so on), while the leaves are class labels(healthy, Extremely 
damaged). 
To better understand the working principle, a decision tree is shown in figure 72 
 

 
Figure 77: decision tree example 

The root node, that is the starting one,is chose by minimizing the entropy and information 
gain or minimizing the Gini impurity. 
Entropy can be defined as quantity of randomness of a certain variable. If this value is high, 
then the decision tree will not be able to clearly distinguish between different situations. 
It is obtained by using the formula 25 
 

𝐻𝐻(𝑋𝑋) =  −�𝑃𝑃(𝑥𝑥𝑖𝑖) log𝑏𝑏 𝑃𝑃(𝑥𝑥𝑖𝑖)
𝑖𝑖

𝑖𝑖=1

 

 
Information gain is the amount of information obtained by a random variable by observing 
another random variable. It is an index that show how much a changing in one variable 
affects another one. 
Basically, it is the difference between the entropy of parent node and weighted average 
entropy of child nodes.It can be expressed by formula 26 
 

𝐼𝐼𝐼𝐼(𝑐𝑐,𝐴𝐴) = 𝐻𝐻(𝑐𝑐) −�𝑝𝑝(𝑥𝑥) ∙ 𝐻𝐻(𝑥𝑥)
𝑖𝑖

𝑖𝑖=0

 

 
Entropy and Information gain are used in ID3 (Itherative Dichomiser 3) type classification 
learner algorithm. 
The Gini impurity value is used instead in CART(Classification and Regression Tree) problem.It 
can be interpreted as the probability of misclassifying an observation.This index can have 

(25) 
Eq. 25: Entropy equation 

 

(26) Eq. 26: Information gain 
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values from zero to one. A value of 0 means that there is no misclassification (ideal case). 
The Gini impurity for a number n of different classes can be represented as follows 
 

𝐼𝐼𝑠𝑠𝑡𝑡𝑚𝑚 = 𝑝𝑝! ∙ (1 − 𝑝𝑝1) + 𝑝𝑝2 ∙ (1 − 𝑝𝑝2) + ⋯+ 𝑝𝑝𝑖𝑖 ∙ (1 − 𝑝𝑝𝑖𝑖) 
Eq. 27: Gini impurity index 

 
 
With  
 

�𝑝𝑝𝑖𝑖 = 1  𝑜𝑜𝑟𝑟 �𝑝𝑝𝑗𝑗 = 1 − 𝑝𝑝𝑗𝑗
𝑗𝑗≠𝑖𝑖

  
𝑖𝑖=1

𝑖𝑖

 

Eq. 28: probability distribution 

 
  Then  
 

𝐼𝐼𝑠𝑠𝑡𝑡𝑚𝑚 =  �𝑝𝑝𝑖𝑖 
𝑖𝑖=1

𝑖𝑖

∙  �𝑝𝑝𝑗𝑗 =  �𝑝𝑝𝑖𝑖 
𝑖𝑖=1

𝑖𝑖

∙ (1 − 𝑝𝑝𝑗𝑗)
𝑗𝑗≠𝑖𝑖

 

Eq. 29: Gini index: alternative formula 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(27) 

(28) 

(29) 



63 
 

8 CONDITION MONITORING 
RESULTS 

 

8.1 Test 1: Healthy / Unhealthy Detection  
 

8.1.1 Steady state values only 
 
In this first test, only a distinction between healthy and unhealthy pump has been 
implemented, to show different advantages and limits of this approach.After having 
taken into account different algorithms,quadratic SVM has been used. 
Using outlet flow,drain flow, output pressure, drain pressure, velocity the obtained 
accuracy is about 95%, as it is possible to observe in figure 74.Class 1 is referred to 
faulty pump, while class 0 is the healthy pump class indicator. 
 

 
Figure 78: confusion matrix 

In this case, 12 class 0 samples have been correctly identified as healthy, while 107 
samples have been correctly identified as unhealthy. 
1 sample has been classified wrongly as healthy and 6 samples have been wrongly 
classified as healthy. 
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Thus, the number of uncorrected classified samples is 7, over a total population of 126 
samples. This correspond to 94.4% of model accuracy. 
For research purposes, only drain pressure sensor, outlet pressure sensor and speed 
have been considered in another test.This choice is motivated by the high price of flow 
meter sensors. 
The obtained accuracy is 85%. 
In particular, it has been noticed that the slipper damage can lead to uncorrected 
predictions: in fact, the drain flow will be very near to the healthy pump 
condition.This is because this kind of leakage has a very small effect on the pump 
flow, since the orifice area .The figure iii better explain this issue. The confusion 
matrix in figure iii is used to better investigate the limit of this first approach. 
To improve algorithm accuracy,in the next paragraph pressure ripple will be taken 
into account. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 79: confusion matrix for test 1a 
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    Figure 80: speed vs estimated drain flow 

The confusion matrix in figure 79 is composed by 4 squares.The first one shows the 
case in which the true class 0  (real healthy data) is correctly predicted by the 
algorithm.In 66.7% of cases, the healthy data is interpreted as unhealthy ( because the 
algorithm is not able to distinguish between slipper damage and healthy pump). 
In 91.7% of cases the fault is correctly predicted, while in 8.3% the condition monitoring 
model is classifying faulty data as healthy. 
 

8.1.2 Pressure ripple variance only 
 
The variance can be defined as in formula iii. It indicates the squared deviation of a 
variable from its mean value. 
 

𝜎𝜎2 =
Σ(𝑋𝑋 − 𝜇𝜇)2

𝑁𝑁
 

Eq. 30: variance 

Where 𝜎𝜎2  is the population variance, Σ is the sum operator, X is a random value taken 
from population, 𝜇𝜇 is the population mean and N is the total number of population 
samples. 
From experimental results showed in previous chapter,it has seen that the healthy 
pressure ripple is very different  with respect to the faulty one.  
To understand how the pressure ripple sensor can improve the model accuracy, a test 
considering only this parameter has been performed. The confusion matrix in figure 77 
shows that using a medium K-nn algorithm, it is possible to obtain a quite satisfying 

(30) 
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result (83%). However, the number of samples incorrectly identified as damaged is 
high: this is not acceptable, because a false alarm means a not necessary stop of the 
equipment. This issue can lead to severe money losses. 
 

 
Figure 81:confusion matrix for test 1b 

 
From figure 61, it is possible to see that one over 18 healthy sample is correctly 
detected, while 17 samples are wrongly identified as damage conditions. 
104 samples over 108 are correctly detected as unhealthy, while 4 unhealthy observers 
are incorrectly classified as healthy. 
 

8.1.3 Steady state values and pressure ripple variance 
 
In this case, the model has reached a value of accuracy of 91%. Analyzing the confusion 
matrix, it is possible to observe that the model predicts in a very precise way the 
unhealthy data (118 samples over 126).Relatively to the healthy class, 13 samples over 
18 are identified correctly. 
A brief recap relative to the needed sensor, the optimal algorithm and the required 
sensors is shown in table 6. 
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Figure 82: confusion matrix for test 1c 

 
Algorithm sensors accuracy 

Quadratic SVM 𝑝𝑝𝑑𝑑 ,𝑡𝑡,𝑝𝑝𝑜𝑜𝑢𝑢𝑝𝑝 85% 
Quadratic SVM 𝑝𝑝𝑉𝑉𝑖𝑖𝑝𝑝𝑝𝑝𝑙𝑙𝑑𝑑 83% 

Cubic SVM 𝑝𝑝𝑑𝑑 ,𝑡𝑡,𝑝𝑝𝑜𝑜𝑢𝑢𝑝𝑝 ,𝑝𝑝𝑟𝑟𝑖𝑖𝑝𝑝𝑝𝑝𝑙𝑙𝑑𝑑 91% 
 

Table 6:test 1 model results 
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8.2 Test 2: Different Damages, No 
Combination 

 
In this test, different types of damages have been taken into account (cylinder 
damage,slipper damage,valveplate damage).Only one damage per time has been 
considered.The best condition monitoring algorithm has been shown. 
The used sensor are drain pressure,pressure ripple variance,output pressure and 
speed. 
Using a quadratic SVM algorithm an 85% accuracy has been obtained. 
The most critical damage to detect is the slipper damage.In fact, as it is possible to 
observe in figure 79,only 61% of the slipper damage data are correctly classified. 
The cause of this bias is probably due to a too small fault, which need to be better 
modeled to be predicted successfully. 
Healthy case is correctly detected in 83.3% of cases.In the other cases is wrongly 
classified as slipper damage. 
Extreme damage is predicted well in 94.4% of cases.In 5.6% of cases is detected as 
healthy. 
Finally, the model can predict with 94.4% of accuracy a damaged cylinder

 
Figure 83:Confusion matrix test 2 
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Figure 86: class 1 real fault Figure 87: class 0 real fault 

Figure 85: class 6 real fault Figure 84: class 5 real fault 

 
The pie chart in figure 81,82,83,84 can better explain the algorithm limits. 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 

   
 

 

 

 
 

Class number Damage type 
0 No damage (healthy pump) 
1 Extremely damaged valve plate 
5 Slipper damage 
6 Cylinder damage 

 

Table 7: damage class legend 
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8.3 Test 3: Multiple Faults 
 
In this chapter, different fault combinations will be taken into account.In particular, 8 
different classes will be considered: 
 

• 0:Healthy pump 
• 1: extremely damaged valve plate 
• 2: extremely damaged valve plate + cylinder leakage 
• 3: extremely damaged valve plate + cylinder leakage + slipper damage 
• 4: extremely damaged valve plate + slipper damage 
• 5: slipper damage 
• 6:cylinder leakage 
• 7: slipper + cylinder damage 

 
As sensor, will be considered pressure ripple, outlet pressure, speed, drain pressure. 
 
This test has given low accuracy results: the best value obtained is 54%, using quadratic 
SVM. 
In particular, the most difficult combination is extremely damaged valve plate and 
slipper fault. 
As shown in previous test, leakage fault seems to be the biggest source of 
bias.Probably, a more precise model for this loss is required. 
 

 
Figure 88: confusion matrix test 3 
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The pie charts in figures 85,86,87,88,89,90,91,92 shows the accuracy of the model for 
each single class. 
Table iii shows the classes legend. 
 

 

 
 
 
 

 

 
 

 
 
 
 

 
 
 
 
 
 

 
 

 
 

 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 

Figure 89:class 2 real fault Figure 90: class 1 real fault 

 

Figure 91: class 0 real fault 

Figure 93:class 4 real fault Figure 92:class 5 real fault Figure 94: class 3 real fault 

Figure 95: class 7 real fault Figure 96:class 6 real fault 



72 
 

 
Condition number description 

0 Healthy pump 
1 Extremely damaged valve plate 
2 ED valveplate + cyl fault 
3 ED valveplate + cyl fault + slipper fault 
4 ED valveplate + slipper fault 
5 Slipper fault 
6 Cylinder fault 
7 Slipper fault + cylinder fault 

 

Table 8: condition number legend (fault combination) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



73 
 

9 CONCLUSIONS AND 
FUTURE WORK 

 
During this research work, different issues have been faced both from experimental 
point of view, and from simulation one. 
Lumped parameter model can be considered validate in steady state conditions. 
The proposed approach had made possible to create different faults without damaging 
the internal component of the pump. 
Finally, the condition monitoring model has shown a good accuracy (85%) to detect 
different faults separately. 
The combination of faults has been difficult to detect, probably because of the model 
limits. 
In future research, a more precise model could be used instead of a lumped parameter 
one.It will be crucial find a good compromise between model complexity and condition 
monitoring algorithm accuracy. 
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Appendix 1: AVAS tool 
 
 
To get the opening area plot, AVAS tool (Automated Valve plate Area Search) has been 
used.This program, developed by Shanmukh Sarode and Swarnava Mukherjee is able 
to get the minimum area normal to the streamline for every shaft position.The fluid 
volume used to compute the minimum area is shown in figure 93.The AVAS working 
flow is depicted in figure 94 
  
 

 

 
 

Figure 97: example of fluid volume used for minimum area computation 

 
 

 
 

Figure 98: AVAS tool workflow 
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As final output, the tool is able to provide the plot shown in figure 95. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 99: example of area file 
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Appendix 2: DAQ calibration 
 
To calibrate pressure sensors data acquisition system, different pressure values have 
been sent using and hand pump in picture 96, taken from Keller cathalog to the sensors 
and the correspondent sensor output voltage have been measured. 

 
Figure 100: example of hand pump used to test pressure sensors 

An example of pressure vs voltage plot is shown in figure 97.The trendline equation 
gives the relation between pressure and voltage. 
Table iii resume calibration factor (trendline slope and  trendline offset) necessary to 
covert the read voltage in pressure value.  
 

 
 

Figure 101: pressure vs voltage plot 

Full scale slope offset 
6000 psi 41.446 -0.3569 
5000 psi 34.51 -1.5316 
250 bar 25.012 -2.3681 

 

Table 9: pressure sensor conversion factors 

 

p = 34.51V - 1.5316
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Appendix 3: Fft And Nyquist’s Theorem 
 
Fast fourier transform, or fft, refers to an algorithm able to compute the discrete 
Fourier transform (DFT) in a faster way. 
The DFT can be expressed by the equation 31. 
 
 

𝑥𝑥[𝐵𝐵] = �𝑥𝑥𝑖𝑖𝐷𝐷
−𝑗𝑗2𝜋𝜋𝑘𝑘𝑖𝑖

𝑁𝑁

𝑁𝑁−1

𝑖𝑖=0

 

Eq. 31: discrete Fourier transform 

  
Where N is the size of the domain. 
This procedure is very time and computationally expensive, because it requires to 
sum and multiply a large amount of data. 
Coley and Turkey [23] showed that the DFT can be divided into 2 sub-parts (eq. 32 
and 33) 
 
 
 

𝑥𝑥[𝐵𝐵] = � 𝑥𝑥2𝑚𝑚 ∙ 𝐷𝐷
−𝑗𝑗2𝜋𝜋𝑘𝑘(2𝑚𝑚)

𝑁𝑁

𝑁𝑁/2−1

𝑚𝑚=0

+  � 𝑥𝑥2𝑚𝑚+1 ∙ 𝐷𝐷
−𝑗𝑗2𝜋𝜋𝑘𝑘(2𝑚𝑚+1)

𝑁𝑁

𝑁𝑁/2−1

𝑚𝑚=0

 

Eq. 32: DFT decomposition 

 
 

𝑥𝑥[𝐵𝐵] = � 𝑥𝑥2𝑚𝑚 ∙ 𝐷𝐷
−𝑗𝑗2𝜋𝜋𝑘𝑘(𝑚𝑚)

(𝑁𝑁/2)

𝑁𝑁/2−1

𝑚𝑚=0

+  𝐷𝐷
−𝑗𝑗2𝜋𝜋𝑘𝑘
𝑁𝑁 � 𝑥𝑥2𝑚𝑚+1 ∙ 𝐷𝐷

−𝑗𝑗2𝜋𝜋𝑘𝑘(𝑚𝑚)
(𝑁𝑁/2)

𝑁𝑁/2−1

𝑚𝑚=0

 

Eq. 33: DFT decomposition - part 2 

 
 
 
Those 2 terms are computed from zero to N/2 +1, that means that the computational 
time will be halved.  
It is possible to apply this method in a recursive way, decreasing again the 
computational effort.  
The threshold is reached when further divisions are not advantageous anymore. 
 
FFT operator is applied to the signal in time domain to get a value in frequency 
domain.During the data acquisition part, it is crucial to avoid aliasing. This pheanomena 
occurs when the acquisition system is not able to correctly transfer the information 
from analog domain to digital one. 

(31) 

(32) 

(33) 
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An example of aliasing is shown in figure 98 [23].It is possible to see that in case of 
undersampling the sinusoid can be read as one with different frequency with respect 
to the original one. 
 

 
 

Figure 102:example of aliasing effect 

When aliasing occurs, it is not possible to truly know the signal shape. 
The Shannon’s theorem states that a continuous-time signal x(t) with frequencies no 
higher than the maximum signal frequency 𝑓𝑓𝑚𝑚𝑑𝑑𝑚𝑚 can be reconstructed exactly from its 
samples x[n] = x(nTs), if the samples are taken a rate fs = 1 / Ts that is greater than 2 
𝑓𝑓𝑚𝑚𝑑𝑑𝑚𝑚. 
The minimum sampling rate, that is 𝑓𝑓𝑚𝑚𝑑𝑑𝑚𝑚, is called Nyquist rate. 
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