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Abstract 

Italiano-Strategie di controllo avanzato per la gestione di sistemi 

di accumulo energetico in un edificio non residenziale 

La crescente disponibilità e penetrazione delle risorse energetiche rinnovabili insieme alla progressiva 

elettrificazione degli usi finali di energia rende necessario porre particolare attenzione all’integrazione di tali 

fonti con la rete elettrica e alla stabilità della stessa. Le fonti di energia rinnovabili come il solare e l’eolico 

sono infatti tipicamente non programmabili; dunque, la loro disponibilità non segue in generale l’andamento 

della domanda. La flessibilità richiesta per l’adattamento alle esigenze della rete (Demand Response) trae 

beneficio dai sistemi di accumulo energetico la cui gestione, però, richiede sistemi di controllo adeguati. Le 

strategie di controllo tradizionali come l’On-Off e il PID sono essenzialmente orientate al mantenimento delle 

condizioni operative dei sistemi controllati. Le strategie di controllo avanzate permettono invece di includere 

obiettivi di efficientamento e flessibilità energetica grazie alle loro capacità predittive e alla possibilità di 

individuare soluzioni ottimali. Esigenti dal punto di vista computazionale, queste strategie stanno attraendo 

una crescente attenzione da parte del mondo della ricerca vista la sempre maggior disponibilità di potenza di 

calcolo. Il presente lavoro formula diverse strategie di controllo e propone un framework per la loro verifica 

in sede simulativa. Le strategie sono applicate a un caso studio che consiste in un edificio servito da un impianto 

di riscaldamento, una pompa di calore per la generazione di calore, un serbatoio di accumulo termico, una 

batteria elettrica e dei pannelli fotovoltaici per la produzione di energia elettrica. È inoltre possibile lo scambio 

di energia con la rete. La prima parte del lavoro dimostra come strategie di controllo Rule Based 

opportunamente formulate possano raggiungere obiettivi di efficienza, flessibilità e risparmio economico pur 

in assenza di capacità predittiva o di ottimizzazione. Successivamente, il problema viene affrontato servendosi 

di un controllo predittivo, ovvero il Model Predictive Control (MPC), che permette di minimizzare l’acquisto 

di energia dalla rete attraverso l’ottimizzazione di una funzione di costo opportunamente formulata. I risultati 

del controllo predittivo sono confrontati con quelli un RBC adottato come Baseline e mostrano come il primo 

sia più efficace nel conseguimento degli obiettivi di risparmio energetico prefissati. In particolare, Self 

Sufficiency, Self Consumption e spesa per l’acquisto dell’energia, adottati come indici per il confronto tra 

diverse strategie, mostrano significativi miglioramenti rispetto al caso Rule-based adottato come baseline. 

 

English- Advanced control strategies for the management of 
energy storage systems in a non-residential building 
The increasing availability and penetration of renewable energy sources, along with the progressive 

electrification of final energy uses makes it necessary to manage the integration of such sources with the power 

grid with care with respect to the stability of the grid itself. Indeed, renewable energy sources such as wind 



and solar are typically non-programmable, therefore their availability generally does not follow the demand 

profile. The flexibility required for the adaptation to the power grid needs (Demand Response) takes advantage 

from energy storage systems; however, their management calls for adequate control strategies. Traditional 

control strategies such as On-Off and PID are essentially oriented towards maintaining operating conditions 

of controlled systems. Advanced control strategies on the other hand allow to include energy efficiency and 

flexibility objectives thanks to their prediction capabilities and the ability to find optimal solutions. These 

strategies are computationally demanding; however, they are attracting increasingly large attention from the 

research community given the continuously growing availability of computational power. The present work 

formulates different control strategies and proposes a framework for their testing in a simulation fashion. 

Strategies are applied to a case-study consisting in a building served by a heating system, a heat pump for heat 

generation, a thermal storage tank, an electric battery and PV panels for electricity production. Power exchange 

with the grid is also allowed. The first part of the work proves how Rule Based control strategies can achieve 

efficiency, flexibility and economic savings goals despite lacking predictive and optimizing capabilities. The 

problem is then dealt with by employing a predictive control strategy, namely the Model Predictive Control 

(MPC), that allows to minimize the energy acquired from the grid by optimizing a suitable cost function. 

Results of the MPC control are compared to that of an RBC adopted as baseline and show how the former is 

more efficient in reaching the set energy savings goals. In particular, Self Sufficiency, Self Consumption and 

monetary expense, adopted as indexes for the comparison between different strategies, display a significant 

improvement with respect to the RBC baseline.  
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1 Chapter 1 
1.1 Building automation and Smart Buildings  

Definitions regarding building automation and its main features are abundant in research and regulatory 

literature. Of particular relevance are the definitions of Building Automation and Control (BAC), Building 

Automation and Control Systems (BACS) and Technical Building Management (TBM). BAC refers to the set 

of products, pieces of software and engineering services for automatic control, monitoring and optimization, 

human intervention and management that have the purpose to achieve economic, safe and energy wise efficient 

operation of building services equipment. BACS are all the products and services related to BAC; an alternative 

term often found in literature is Building Management System (BMS). TBM comprises control systems as well 

as their effective operation and integration within the whole building system.  

These definitions often interlap with each other and “clarify the multidisciplinary role of automation and 

control, involving hardware and software” (Aste, Manfren, and Marenzi 2017). More in general, building 

automation is aimed at optimizing the following functions: 

 

1. Heating, Ventilation and Air conditioning Systems (HVAC); 

2. domestic hot water (DHW); 

3. lighting system control; 

4. shading system control;  

5. energy conversion and storage; 

6. locally produced energy management; 

7. monitoring and data acquisition; 

8. communication and security management. 

 

Historically, the evolution of building automation has gone through the following phases, as reported in (Aste, 

Manfren, and Marenzi 2017): 

 

1. Dedicated Systems (1980-1985): subsystems have individual functions and are managed 

independently; 

2. Integrated Multifunctioning Systems (1985-1990): individual subsystems were grouped into functional 

areas; 

3. Building Level Integrated Systems (1990-1995): a first attempt at integrating subsystems at the 

building level of automation; 

4. Computer Integrated Building (1995-2002): the integration of subsystems at the building level in 

reached by exploiting the network technology capabilities; 

5. Enterprise Network Integrated System (ENIS) (after 2002): integration is carried out on a higher level 

and connects more than one building together. 



The automation of buildings is not restricted to the sole single facility domain. In fact, as point 5. in the 

forementioned historical phases suggests, the concept of smart buildings is becoming increasingly related to 

that of the smart city, seen as a set of actors interacting with each other. Particularly important is the role of 

energy exchange between buildings and the electric power grid.  

Dealing with the grid interaction with different actors for the purpose of including a significant share of energy 

production from renewable sources (RES) to substitute fossil fuel based primary resources has posed a serious 

challenge to the management of the power grid. Indeed, the main drawback of RES is that they are mostly non-

controllable, and their productivity is hard to foresee, so that a significant share of electricity production must 

be provided by traditional combustion based thermal plants.  

An all-renewable energy production scenario was investigated by (Johnson, Rhodes, and Webber 2020). The 

authors noted how, due to the non-synchronous nature of most renewable resources such as wind and solar, 

“the transition to a grid dominated by non-synchronous energy generation should be handled with care”. 

Moreover, RES tend to be fragmented into smaller production sites or even into local production nodes where 

consumers produce part of their needs with, say, roof mounted photovoltaic panels. These are often referred 

to as distributed energy resources or DER for short. A comprehensive literature review work on the topic of 

RES and prosumers integration into Smart Grids can be found in (Espe, Potdar, and Chang 2018). 

Electrification of final uses is increasing in most domains, including the building sector, as electric energy is 

much easier to manage and solar and wind sources produce indeed energy in this form. Heating and hot water 

demand accounts for 79% of the overall final energy consumed by residential buildings only (Psimopoulos et 

al. 2020). As electrification takes place, heating needs are covered by heat pumps (HP) which will, accordingly, 

have a serious impact on the grid stability. (Freier et al. 2020) observed how building electrification, 

particularly through the use of HPs, poses a challenge for the grid management. Similarly, (Zappa, Junginger, 

and van den Broek 2019) estimated that in order to have an 100%  renewable scenario for the European power 

scenario, one of the conditions would be “the well managed integration of heat pumps […] into the power 

system to reduce demand peaks”.  

All of the forementioned criticalities lead to the necessity of best managing energy by means of time-shifting 

between production and use, and that can be achieved with storage systems. The integration of thermal and 

electrical storage systems with heat pumps in building is an increasingly studies subject matter. Rule based 

control is the state of the art control technique for the operation of such systems, as it can achieve significant 

energy savings if properly implemented, despite its solution being suboptimal (Mařík et al. 2011). Other, more 

advanced techniques will be reviewed in the present chapter, while Chapter 2 will focus on MPC formulation 

and applications. The interaction between storage systems, heat pumps and the grid will be dealt with four rule 

based control strategies in Chapter 4, to be then translated into an MPC strategy in Chapter 5. 

 
 

 



1.2 Generalities on Control for Smart building applications 

1.2.1 State space representation of dynamic systems 

A dynamical system is a system whose behaviour changes with time, in general as a result of external actions. 

The discipline of control has the goal of ensuring that such behaviour is as close as possible to a set desired 

profile.  

The study of dynamical systems and therefore of control theory comes from the cultural heritage of mechanics 

and that of electrical/electronic engineering. In particular, from mechanics comes the idea of the state space 

model, while from the study of electrical circuits and components come the input-output approach. 

 

In mechanics, the dynamic evolution of a system is described by the time dependency of some specific 

quantities that describe the system itself; such quantities are called state variables and will be hereafter 

indicated with the letter x, following a common convention. More in general, a finite set of n∈ℕ state variables 

collected in a more convenient vectorial notation: 

 

𝑥(𝑡) = [𝑥ଵ(𝑡), 𝑥(𝑡), … , 𝑥(𝑡)]் (1.1) 

 

in which the time dependence has been highlighted. 

A common example is that of the point mass whose motion is completely described once its position 𝑥(𝑡) and 

its velocity �̇�(𝑡) are known; by denoting 𝑥 = 𝑥ଵ and �̇� = 𝑥ଵ, it is possible to describe the system as the 

evolution of vector 𝑥(𝑡) = [𝑥ଵ(𝑡), 𝑥ଶ(𝑡)]். From the definition of state variable naturally comes the definition 

of a state space, that is the set of the possible states in which a system can be found. 

 

A different view of a dynamic system emerged from the study of circuits and their components: according to 

this approach, attention is paid to the system response to external actions, that is the relationship between inputs 

and outputs. Inputs and outputs are in general time dependent functions and can be indicated as u(t) and y(t) 

respectively. Being m the number of the input variables and p the number of the output variables, vectors for 

the inputs and for the outputs can be defined: 

 

𝑢(𝑡) = [𝑢ଵ(𝑡), 𝑢(𝑡), … , 𝑢(𝑡)]் , 𝑢 ∈ ℝ   

𝑦(𝑡) = ൣ𝑦ଵ(𝑡), 𝑦(𝑡), … , 𝑦(𝑡)൧
்

, 𝑦 ∈ ℝ 
(1.2) 

 

Following the forementioned notation, the evolution of a dynamic system can be expressed through the state 

equations, which are the equations that express the variation of the states as a function of the current states and 

the inputs acting upon the system. Such equations, when in standard form, make up a set of n coupled first 

order ordinary differential equations in the following form: 

 



⎩
⎪
⎨

⎪
⎧�̇�ଵ = 𝑓ଵ൫𝑥ଵ, 𝑥, . . , 𝑥, 𝑢ଵ, 𝑢, … , 𝑢, 𝑡൯

�̇� = 𝑓൫𝑥ଵ, 𝑥 , . . , 𝑥 , 𝑢ଵ, 𝑢 , … , 𝑢, 𝑡൯

⋮   =   ⋮
�̇� = 𝑓൫𝑥ଵ, 𝑥 , . . , 𝑥 , 𝑢ଵ, 𝑢 , … , 𝑢, 𝑡൯

(1.3) 

 

 

where each 𝑓൫𝑥ଵ, 𝑥, . . , 𝑥, 𝑢ଵ, 𝑢 , … , 𝑢, 𝑡൯ is in general nonlinear and time varying. A more convenient 

vectorial notation can be used to represent such a system: 

 

�̇� = 𝑓(𝑥, 𝑢, 𝑡) (1.4) 

 

1.2.1.1 Observability 

In general, the states of a system might not be directly measurable; moreover, their choice is often such that 

they do not even represent an actual physical quantity; this is the case, for instance, of lumped parameters. 

Observability is a concept introduced by Rudolf E. Kalman to measure how precisely states values can be 

inferred from the values of the outputs. Indeed, outputs are in principle known since they are the results of 

measurements. Since only inputs and outputs can in general be considered as known, the sole state equations 

are not sufficient to describe the evolution of a dynamic system for the purpose of control: another set of 

equations, called output equations, are defined as follows: 

⎩
⎪
⎨

⎪
⎧𝑦ଵ = 𝑔ଵ൫𝑥ଵ, 𝑥, . . , 𝑥, 𝑢ଵ, 𝑢 , … , 𝑢, 𝑡൯

𝑦 = 𝑔൫𝑥ଵ, 𝑥, . . , 𝑥, 𝑢ଵ, 𝑢, … , 𝑢, 𝑡൯

⋮   =   ⋮
𝑦 = 𝑔൫𝑥ଵ, 𝑥 , . . , 𝑥, 𝑢ଵ, 𝑢 , … , 𝑢, 𝑡൯

(1.5) 

 

 

again, these equations can be written in the more compact vectorial form: 

    

𝑦 = 𝑔(𝑥, 𝑢, 𝑡) (1.6) 

 

1.2.1.2 Linear time-invariant systems 

A system is called time invariant when there is no explicit time dependency, so that the equations can be 

written as: 

 

�̇� = 𝑓(𝑥, 𝑢)

𝑦 = 𝑔(𝑥, 𝑢)
 (1.7) 

 

In case functions f and g are linear and time invariant, the system takes the following form: 



 

�̇� = 𝐴𝑥 + 𝐵𝑢
𝑦 = 𝐶𝑥 + 𝐷𝑢

 (1.8) 

where: 

 𝐴 is a constant 𝑛 × 𝑛 matrix, called dynamics matrix; 

 𝐵 is a constant nxn matrix, called control matrix; 

 𝐶 is a constant nxn matrix, called sensor matrix; 

 𝐷 is a constant nxn matrix, called direct matrix; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1.2.2 Classification of control strategies in buildings 

A large and varied number of control techniques have been employed in building applications throughout the 

years and more strategies are currently research material, so that a classification framework is necessary to 

both the researcher and the designer in order to make the proper design choices.  

(Gholamzadehmir et al. 2020) proposes a classification of control strategies that will be followed in the present 

work; an illustration of such classification can be seen in Figure(1). 

 

 
Figure 1-Control methods for building classification (Gholamzadehmir et al. 2020) 

 

Control strategies are in the first place divided into two main groups: traditional control strategies (TCS) and 

advanced control strategies (ACS). Traditional control strategies are further classified as sequencing control 

strategies and process control strategies. Advanced control strategies are categorized as follows: 



 soft computing control strategies: these strategies generally do not employ and analytical model, but 

instead make use of approximate or statistical computations. Among those strategies, the most used 

are reinforcement learning (RL), deep learning based on artificial neural network (ANN), fuzzy logic 

(FL) controls and agent-based controls.  

 Hard computing control strategies, such as auto tuning PID control, gain scheduling control, self-

tuning control, supervisory optimal control, model predictive control (MPC) and robust control. 

These strategies employ mathematical models for the systems to be controlled, and therefore require 

precise input data for a correct computation. 

 Hybrid control strategies: these strategies are a combination of hard and soft control methods. 

 

A different distinction can be drawn between adaptive and robust control methods. A control strategy is 

adaptive when it has the capability of changing its parameters during the operation: such controllers will 

therefore include mechanisms such as system identification tools in order to automatically re-tune and re-

calibrate the parameters. On the other hand, control is defined as robust when parameters are set at design time 

and assumed to be able to handle uncertainties without the need of any re-tuning during operation.  

1.3 Traditional control strategies 

Traditional control strategies are the most consolidated control techniques in the field of HVAC applications 

for buildings, as well as in most other applications, such as process industry. Their main advantage lays in their 

simplicity, in that they employ a minimal computational capability, if any at all. Indeed, they can be at times 

reached by means of passive actuators, such as regulation valves.  

1.3.1 ON OFF control 

On/Off control belongs to the set of control strategies known as discontinuous controllers. Such controllers 

are able to yield values of the control signal with a set of few discontinuous values, whereas continuous 

controllers can produce outputs that continuously change in dependence of the input the controller receives. 

Due to this simplifying characteristic, there will be a certain range in which the control signal is not affected 

by the fluctuations of the system output, resulting in a less accurate control of the system. In practice, most 

discontinuous controllers are two-position controllers, which means that their output has only two possible 

states, being a maximum and a minimum value or an On and an Off status of a particular actuator.  The 

analytical representation of a two-position control strategy requires a discontinuous formulation, as shown in 

the following expression:  

𝑢(𝑡) = ൜
𝑢௫, 𝑒 < 0
𝑢 , 𝑒 ≥ 0

                            (1.9) 

 

 

where 𝑢(𝑡) represents the control signal, while 𝑒 is the control error. 

 



 
Figure 2-On-off control (Uriča and Simonová 2017) 

Figure(2) (Uriča and Simonová 2017) shows the working principle of a simple two-position controller. Here, 

𝑦 is the action variable while 𝑥 is the process variable. A particular desired value of the latter is set as a setpoint 

𝑤, so that any deviation from that value results in a nonzero value of the control error 𝑒. The action variable 

responds to a negative control error, which occurs when the process variable is above the setpoint value, with 

an On status, that is the value 𝑦௫, whereas when the process variable is below the setpoint value, the action 

variable is on its minimum value (Off status here). Figure(2) highlights the pat followed by the process in the 

𝑥𝑦 plane.  

In the proximity of the setpoint value, this type of control might yield a high frequency intermittent control 

signal, which can damage the controlled components. To avoid this phenomenon, hysteresis is introduced. 

Given a hysteresis value h, the output of the controller changes its state from value 𝑦௫ to 0 when the process 

variable reaches 𝑥ு = 𝑤 + ℎ/2 and switches back to value 0 when the process value reaches 𝑥 = 𝑤 − ℎ/2. 

The resulting path in the 𝑥𝑦 plane can be seen in Figure(2); such path is closed, hence the hysteresis 

denomination.   

The choice of an On/Off strategy does not only depend on the characteristics of the controller, but is often due 

to the fact that the controlled object itself is able to work in two modes only; examples are fixed-speed pumps, 

non-modulating heat generators and two positions valves.  

The main advantages and disadvantages of On/Off control are highlighted in the following table, from 

(Behrooz et al. 2018): 

 

Figure 3-Main pros and cons of On-Off control (Behrooz et al. 2018) 



1.3.2 PID control 

Two position control is a strategy adopted for system whose control variables or actuators cannot modulate in 

their value. Most technological components nowadays can be defined as continuous as opposed to 

discontinuous in that their outputs change continuously as a function of the input it receives from the control 

unit. Common examples in HVAC applications include modulating heat generation systems, regulating valves 

and variable-speed pumps.  

In a feedback control system, the controller is thus enabled to react in response to the output it receives from 

the plant. The simplest and most intuitive feedback mechanism is that of proportional control. In proportional 

control, the feedback control input 𝑢(𝑡) is computed from the error 𝑒(𝑡) as: 

𝑢(𝑡) = 𝐾𝑒(𝑡) (1.10) 

 

where constant 𝐾 is called proportional gain. In terms of transfer functions, signal 𝑈(𝑠) is computed as 

𝐾𝐸(𝑠) where 𝐸(𝑠) is the error transfer function. The process scheme is represented in Figure(4) from (Wang 

2020) 

 
Figure 4-Closed loop proportional control (Wang 2020) 

The main drawback of proportional control is that it does not eliminate the steady state error of the controlled 

system. Instead, in response to a disturbance, the plat will settle to a new steady state configuration that will 

have an error with respect to the reference value. To overcome this limitation, an integral action is introduced 

in the so called proportional-integral control (PI for short).  

The integral term is not proportional to the error at instant t but rather on the integral in time of the error itself. 

The control signal of a PI controller is computed as: 

𝑢(𝑡) = 𝐾𝑒(𝑡) + 𝐾ூ න 𝑒(𝜏)𝑑𝜏
௧



 (1.11) 

The constant value 𝐾ூ is called integral gain and is often represented as: 

𝐾ூ =
𝐾ூ

𝜏ூ
 (1.12) 

where 𝜏ூ is the integral time constant. 

 



The resulting Laplace transform of the PI controller is: 

 

𝑈(𝑠) = 𝐾𝐸(𝑠) + 𝐾ூ𝐸(𝑠) (1.13) 

 
Figure 5-Closed loop PI control (Wang 2020) 

Another limitation of both proportional and integral control is that the control signal profile can be at times 

very steep, which poses a threat to the technological elements of the controlled plant.  

This limitation is overcome by the introduction of a derivative term, which is proportional to the derivative of 

the feedback error. A resulting PD controller follows Eq(1.14) in computing the control signal: 

𝑢(𝑡) = 𝐾𝑒(𝑡) + 𝐾

𝑑𝑒(𝑡)

𝑑𝑡
 (1.14) 

Constant 𝐾 is called derivative gain and is often represented as: 

  

𝐾 = 𝐾𝜏 (1.15) 

where 𝜏 is called derivative time constant. 

Again, Laplace transform of the PD control system shall be: 

𝑈(𝑠) = 𝐾𝐸(𝑠) + 𝐾𝑠𝐸(𝑠) (1.16) 

 
Figure 6-Closed loop PD control (Wang 2020) 



All three terms can be summed up to obtain the proportional-integral-derivative control, or PID for short. 

The main advantage of classical PID control is that, being purely reactive in nature, does not require a detailed 

knowledge of the controlled systems, that is, a plant model is not necessary. However the tuning process, which 

is the process of choosing the most appropriate values of  𝐾, 𝐾ூ and 𝐾 is a delicate stage of the design phase 

of the controller.  

Classical tuning methods are the Cohen-Coon method and the Ziegler-Nichols methods. More advanced tuning 

methods for HVAC applications can be found in (Almabrok, Psarakis, and Dounis 2018) and in (Fütterer, 

Stinner, and Müller 2016). 

 

 

1.4 Building energy modelling for control 

A key component of an advanced control strategy lies in its prediction capability. Predicting the behaviour of 

both the building in terms of its envelope and of its technological components allows these control strategies 

to compute actions adapted to the forecasted boundary conditions. Moreover, a reliable building model is 

crucial in the design phase as it allows a simulated testing of the intended strategies. For the same reason, 

simulation is a key in research.  

Despite its importance, “developing a high-fidelity forecasting model for building systems is not an easy task” 

(Li and Wen 2014). For the most part building systems are complex system which display a nonlinear 

behaviour and are influenced by a vastly diverse range of hard-to-foresee disturbances such as weather 

conditions, building operating modes, hydraulic circuits and mixing tools, storage systems and occupant 

schedules. Moreover, economic and practical reasons make it hard to monitor and accurately measure building 

systems. Sensors are less common and less precise than those typically employed in industrial applications.  

Regarding HVAC systems modelling, (Afroz et al. 2018) pointed out how “considering all of these discrete, 

non-linear and highly constrained characteristics and parameters of HVAC systems, it is a challenging task 

to develop an accurate and effective model for these systems that accurately represents reality. For the 

development of modelling research it is necessary that the building research and management community 

become informed about the application, role, strengths and weaknesses of the various modelling techniques 

associated with research studies and how the developed models perform in real world situations”.    

1.4.1 Classification of modelling techniques  

A key factor in building and HVAC systems modelling is that these systems are dynamic in nature and 

therefore require transient models to be described, and of course the same applies to forecasting models for 

weather and other disturbances. A first distinction therefore shall be drawn on the basis of the time scale needed 

for the prediction horizon of the model; (Li and Wen 2014) point out how literature has focused on three 

categories:  

1. long-term load forecasts for system planning; 



2. medium-term forecasts for system maintenance; 

3. short-term modelling for daily operation, scheduling and load shifting plans. 

Short-term models are the ones used for day-to-day control of the building system can be further categorized 

in three main classes which follow three different approaches: 

1. physics based, known as white box/mathematical/forward models; 

2. data-driven, known as black box/empirical/inverse models; 

3. hybrid models which combine the first two approaches, known as grey box models. 

These modelling paradigms can yield models either linear or nonlinear, static or dynamic, explicit or implicit, 

discrete or continuous, deterministic or probabilistic, deductive, inductive or floating.  

The distinction between static (steady state) models and dynamic (unsteady state/transient) models lies in the 

fact that in models of the first type parameters are constant while in the second type parameters change with 

time. Dynamic modelling is particularly relevant for system start-up, shutdown and reaction to disturbances. 

Following this categorization, generally physics-based techniques are deductive and data-driven models are 

inductive, while grey box modelling can fall under both the inductive and the deductive class. All modelling 

paradigms can result in linear/nonlinear, static/dynamic, and explicit or implicit models.  Usually physics-

based techniques yield continuous and deterministic models whereas data-driven techniques commonly result 

in discrete and deterministic or stochastic models. 

1.4.2 White box models 

White box models are developed on the basis of the physical equations of energy, mass and momentum 

conservation which yield a set of equations that can be derived and solved. When writing these equations, the 

designer must determine the structure of the equations, meaning their order, number of dimensions and number 

of parameters, while setting the exact values of such adopted parameters. Indeed, according to (Drgoňa et al. 

2020a) “the main challenge in white-box modelling is the significant effort required to describe the building 

properties”. The values adopted are based on the physical characteristics of the modelled objects and need to 

be obtained by design plans, manufacture catalogues or on-site measurements. Models for building energy use 

often include hundreds if not thousands of parameters, which increases the chances of having potential sources 

of inaccuracy, other than making the modelling process highly demanding. However, when the parameters 

choices are accurate, their results are extremely reliable.   

White box models can be either distributed or lumped parameter type; however, lumped parameter models 

have proven to be more efficient because of their ease of use.  

The main drawback of white box models lies in their highly demanding computational needs, which makes 

them hard to employ in most control applications that require simulations and optimization processes to be 

conducted within the span of a sampling timestep. On the other hand, their high accuracy makes them a viable 

choice for simulation and testing.  



Physics-based dynamic HVAC system models are usually employed for slower processes such as zone 

temperature dynamics, zone humidity dynamics, heating/cooling coil dynamics etc. Static models are often 

developed for faster dynamics systems, like mixed air temperature and carbon dioxide concentration in a 

mixing box or fluid flowrate through a valve, or to compute fans and pumps energy consumption. 

In the following paragraphs, a chiller modelling will be presented as an example of white box model. 

 

1.4.2.1 Chiller model 

Chillers are reversed thermal machines that reject heat from a fluid through a vapor compression cycle or an 

absorption cooling cycle. Chillers are made up of four main components, namely the evaporator, the condenser, 

the compressor and the expansion valve.  

The chiller power consumption is a function of the fluid flowrate, the heat capacity of the fluid, the difference 

in temperature between the incoming and the outgoing fluid in the chilled fluid loop and the COP of the chiller. 

The COP varies according to the load on the chiller.   

Due to their widespread diffusion in households and non-residential buildings they account for a significant 

share in final energy consumption. According to (Browne and Bansal 2002) “it is a well-known fact in the 

HVAC industry that for the majority of the time these machines operate under part-load conditions (away from 

design conditions) and in an unsteady manner. This generally results in a decrease in the coefficient of 

performance (COP) and hence electrical costs are greater than necessary”. From this premise follows that 

engineers might benefit from chiller models that can help in both the design and the control phase.  

The model proposed by (Browne and Bansal 2002) will be here shortly presented and reviewed. The authors 

proposed a dynamic model, noticing that while steady-state models can be useful under many conditions, under 

common strongly dynamic conditions these models become “unacceptably inaccurate”. The purpose of the 

work was to model the dynamic performance of vapor-compression liquid chillers under various operating 

conditions. Although their approach was mostly physic-based, in one of the chillers they had to employ a 

regression model for the compressor and apply some degree of empiricism for the evaporator tube wall mass 

to predict the start-up process for that particular chiller adequately. Four simplifying assumptions were made: 

 

 The mass flow rate of the refrigerant is assumed to be the same throughout the system and equal to the 

mass flow rate through the compressor. 

 The temperature of the walls does not vary through the cross-section or along the length of the tubes. 

 The refrigerant properties within each component are assumed to be homogeneous with pressure drops 

being neglected. 

 The expansion process through the EEV/orifice plate was assumed to be isenthalpic. 

 

 

 

 



The evaporator load and its energy balance equations used are: 

 

�̇� = 𝛼𝐴(𝑇௪ − 𝑇௪) (1.17) 

 

�̇�(∆ℎ௩) = 𝛼𝐴(𝑇௪ − 𝑇) (1.18) 

 

similarly, the same equations across the condenser are: 

 

�̇� = 𝛼𝐴(𝑇௪ − 𝑇௪) (1.19) 

 

�̇�(∆ℎ௩) = 𝛼𝐴(𝑇 − 𝑇௪) (1.20) 

 

Here, �̇� and �̇� represent the heat power exchanged at the evaporator and the condenser respectively, 𝛼 and 

𝛼 represent the evaporator and the condenser heat transfer coefficients, 𝐴 and 𝐴 represent the heat 

exchangers areas, ∆ℎ௩ and ∆ℎ௩ stand for the enthalpy difference occurring across the components for the 

refrigerant of flowrate �̇�.  

The prediction result of this model was found to be within ±10% as a result of a number of simplifying 

assumptions.  

 

1.4.3 Black box models 

Black box modelling is a paradigm that captures the correlation between the inputs and the outputs of a 

dynamic system without any assumption regarding the physics involved. Such an approach requires a sufficient 

amount of input-output data for the training phase, which establish the relationship between the two sets. After 

the training phase, the system is able to infer outputs on the basis of new input.  

The main advantage of data-driven modelling is its low development cost; on the other hand, huge amounts of 

data are required for the training and the model is not reliable outside the training range.  

The data-driven nature of black box models suggests applications on existing systems for which measurements 

are available, thus excluding its employment in design of new system and in research. However, the recent 

trend in research has been to couple black box models to white box models which replace the real system in 

providing the required training data, allowing researchers and designers to explore new solutions and 

applications of black box models.   

(Afroz et al. 2018) propose a classification of data-driven models into nine types. 

 

1.4.3.1 Frequency domain model 

Slow dynamic processes, such as the dynamics of zone temperature and humidity, can be modelled with first 

and second order models with dead time. Second order models are in this case over-damped.  



As to first order models, their general transfer function shall be: 

 

𝐺(𝑠) =
𝑌(𝑠)

𝑈(𝑠)
=

𝐾

𝜏𝑠 + 1
𝑒ି௦ (1.21) 

 

while for second order models the transfer function shall be: 

 

𝐺(𝑠) =
𝑌(𝑠)

𝑈(𝑠)
=

1

𝑎𝑠ଶ + 𝑏𝑠 + 𝑐
𝑒ି௦ (1.22) 

 

where 𝐾 is the gain, 𝜔 is the natural angular frequency and 𝐿 is the dead time of the process; therefore: 

 

𝑎 =
𝑐 − 𝑅𝑒 ൬

𝑒ିఠ௦

𝐺(𝑗𝜔)
൰൨

𝜔
ଶ

 (1.24)
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 (1.25) 

 

𝑐 =
1

𝐾
 (1.26) 

 

𝐾 =
∆𝑦(∞)

∆𝑢(∞)
 (1.27) 

 

Applications of the first order model can be found in (Huang, Wang, and Xu 2009) and (Huang, Wang, and 

Xu 2010); the authors used the model in both works to describe the dynamics of AHUs to design a robust 

control strategy of an air conditioning system. In their examples, the output 𝑌 represents the outlet air 

temperature after the cooling coil, the input 𝑈 represents the openness of the valve which controls the chilled 

water flow rate through the cooling coil.  A similar approach was followed by (Bi et al. 1999) who proposed a 

robust identification of first-order plus dead-time model from step response applied to an AHU. The authors 

here formulated an identification method based on a step-response test through linear regression equations 

outperforms the existing estimation methods that use step-test responses, while being robust in the presence of 

large amounts of measurement noise. The effectiveness of the identification method was demonstrated through 

several simulation examples and a real-time test. 

The second order model finds an application in the design of an optimal PID control system conducted by 

(Kurokawa et al. 2020). 



Both the first and the second order model can be applied for SISO as well as for MIMO systems. Their main 

advantages lie in the simple structure and the small number of parameters to be determined from measurement 

data; moreover, it is a well-established method supported by abundant literature. On the other hand, collecting 

data is an intrusive process as the step response test requires to pause the ordinary operation of the system. 

Furthermore, these models can only be applied to linear, time-invariant systems. 

 

1.4.3.2 Data mining algorithms 

Data mining algorithms are designed to find patterns in input-output datasets provided by the designer. The 

algorithms are capable of finding a relationship between the inputs and the outputs of the provided set so that 

future outputs will be inferred from new inputs. This process of training requires sufficient amount of suitable 

data, but allows to model complex and non-linear dynamics.  

The most widely used data mining algorithms for HVAC systems and building dynamics are Artificial Neural 

Network (ANN) and Support Vector Machine (SVM). 

 

1.4.3.3 Fuzzy logic models  

Fuzzy logic was introduced by Lotfi Aliasker Zadeh with the intention of creating a computer logic able to 

mimic the human mind decision making process. In classical theory, sets are called crisp as any given element 

can either belong or not belong to a certain set; in fuzzy logic theory, elements can be said to belong to a set 

“to some degree”. This approach follows closely human reasoning and language. People describe and define 

reality through several categories that cannot possibly be translated in “crisp” terms: adjectives like “reliable”, 

“safe”, “convenient” or “expensive” can hardly be attributed to elements of a discourse in a definite way. Fuzzy 

logic comes in handy in providing a mathematical formalization of such concepts to allow ultimately a 

computer-based formulation, offering interesting prospects to control systems applications since these are 

based on a decision-making algorithm. This approach naturally follows under the domain of the black box 

modelling rationale, since it allows experience-based knowledge to be translated into logical rules. 

In formal terms, given a generic element 𝑢 belonging to a universe of discourse 𝑈 (see Usó-Doménech, 

Nescolarde-Selva, and Gash 2018 for a more detailed definition of universe of discourse and existance), a 

fuzzy set 𝐴 can be defined by a membership function 𝜇: 𝑈 → [0,1] or rather, function 𝜇(𝑢) gives 𝑢 a measure 

of its degree of membership to set 𝐴. By contrast, a crisp set membership function could only assign either 0 

or 1 value to element 𝑢. It is important to note that the uncertainty expressed by fuzzy logic should not be 

interpreted as a form of probability distribution as it is not based on randomness but rather on the vagueness 

of the definition of a fuzzy set.  

Fuzzy logic is applied to decision making processes through the so-called fuzzy inference, that is the process 

of mapping inputs to outputs on the basis of previous knowledge. A Fuzzy Inference System (FIS) has a general 

architecture that can be summed up in three stages: 

1. Fuzzification: crisp inputs are evaluated in their degree of membership to the fuzzy sets to obtain the 

fuzzy variables. For example, a temperature value, rather than being either cold or hot, might be 



assigned a value of membership to the two categories, on the condition that the sum of the two values 

equals one. 

2. Inference: fuzzy variables go now through the decision-making process described by the fuzzy rules 

to obtain fuzzy outputs. 

3. Defuzzification: fuzzy outputs are translated back into crisp values. 

The two most common Fuzzy Inference Systems are the Mamdani and the Sugeno methods and find many 

applications to control systems and fuzzy modelling. 

Fuzzy logic is a popular choice for modelling as the resulting models are “generally very simple and easy to 

understand” (Afroz et al. 2018); moreover, FL allows designers to incorporate previous experience and, due 

to the very nature of fuzzy logic, human-like reasoning in the design and modelling phases. Several examples 

of FL applied to the modelling and control of HVAC components and building energy systems are found in 

literature. (Calvino et al. 2004) developed a fuzzy PID regulator for the PMV value in an office room subject 

to different outdoor climatic conditions. The experimental results proved the control system to be stable under 

diversified boundary conditions and able to provide “an effective and fast control of the indoor microclimate 

conditions”. Thermal comfort is also the modelling technique developed in (Chen, Jiao, and Lee 2006). The 

authors pointed out how the very notion of comfort is fuzzy in nature and therefore prone to be translated in 

terms of FL; the study is carried out employing the architecture of the Fuzzy Adaptive Network (FAN).    

 

 

1.4.4 Grey box models 

Grey box modelling is often referred to as hybrid modelling for it combines white and black box paradigms 

together. The rationale behind this approach is that of writing the equations describing the system, as physics-

based modelling suggests, while leaving the parameters to be determined by a data-driven process. This gives 

grey box modelling two main advantages: 

 a reduced amount of data required for the training process compared to a purely data-driven model; 

 a possibly simplified structure of the equations compared to a solely physics-based model. 

Indeed, “usually, the physics in grey-box models is simplified by means of state space dimensionality reduction 

or linearization” (Drgoňa et al. 2020a), which means that the designer can choose to linearize the equations 

describing the system or to convert them to lumped-parameter differential equations on the basis of their 

intended employment. Grey box modelling is particularly apt to be used in MPC applications as it allows to 

adapt to the needs of an optimization solver.  

Another advantage of grey box modelling is its portability. (Reynders, Diriken, and Saelens 2014) argued that 

“only few model types are needed to represent the majority of buildings”.  

 

 



1.4.5 RC equivalent circuits 

As previously illustrated, one of the main advantages of grey box modelling lies in the option given to the 

designer to reduce the complexity of the chosen model. Simplification is directly linked to the application for 

which the model will be used. When it comes to modelling buildings from the point of view of their thermal 

behaviour, the simplest and therefore most desirable solution is that of a lumped-parameter, possibly linear 

model, that could provide a set of linear ordinary differential equations. The thermal-electrical analogy applied 

to heat transfer comes in handy in formulating such equations with the optional graphical aid of a circuit 

representation. More in detail, it is possible to assign to each thermophysical quantity an equivalent electrical 

quantity, as summarized in Table(1) : 

 

Thermophysical quantity  Electrical quantity 

Thermal resistance [R]=K/W Electrical resistance [R]= Ω 

Heat flux [�̇�]=W Current [I]=A 

Temperature [T]=K Voltage [V]=V 

Thermal capacity [C]=J/K Capacitance [C]=F 

Table 1-Thermal/electrical analogy 

Following this analogy, heat transfer through a component in one dimension shall be modelled with the 

Eq.(1.29): 

�̇� =
∆𝑇

𝑅
 (1.29) 

so that the heat flux �̇� will be driven by the difference in temperature ∆𝑇 between the two boundaries of the 

element interested by the heat conduction, just as current flow is driven by a difference in voltage between two 

nodes of a circuit. Similarly, resistance will oppose such flow in both cases.  

In order to model heat transfer in a non-steady state regime, capacity must be taken into account, yielding the 

following equation: 

�̇� = 𝐶
𝑑𝑇

𝑑𝑡
 (1.30) 

that is, the variation in temperature is proportional to the heat flux interesting the object. Again, the analogy 

with the model for an electric capacitance holds perfectly.  

A simple and effective application of this analogy to building models has been proposed by Henrik Madsen in 

(Bacher and Madsen 2011). This methodology is applied to single zone buildings and can be summarized in 

three main steps: 

1. Model choice, that is the choice of a circuit and therefore of the set of equations to adopt; 

2. Parameters estimation, which means assigning a value to the equations parameters on the basis of 

considerations of the physical properties of the system components; 

3. Parameters tuning and model validation by means of an input-output data set coming from field 

measurements or an accurate white box simulation. 



This procedure, referred to as Forward selection, is recursive; the authors suggest starting from the simplest 

possible model and then increase its complexity until no extension to the model yields and improvement below 

a given p-value, usually set to 5%.     

The most complete model is showed in Figure(7): 

 
Figure 7-Complete RC equivalent model (Bacher and Madsen 2011) 

 

The model is made of the following elements: 

 Five significant circuit nodes, 𝑇௦, 𝑇, 𝑇, 𝑇, and 𝑇 representing five states of the systems whose 

equations will determine their values in time. Treated as voltages in the circuit, they represent 

temperatures of different elements of the building, as it will be detailed later. 

 Five capacitances, 𝐶௦, 𝐶, 𝐶, 𝐶, and 𝐶 representing the thermal capacity of the forementioned 

elements. 

 Six resistors, 𝑅௦, 𝑅, 𝑅, 𝑅, 𝑅, and 𝑅 representing thermal resistances. 

 Three current generators, 𝛷, 𝐴௪𝛷௦ and  𝐴𝛷 representing heat fluxes. 

 One voltage generator 𝑇, representing the external temperature. 

These circuit elements are employed to model the dynamics of the different components of the building and 

their interaction, to allow the formulation of the state space equations. These components are here analysed 

in detail. 

1.4.5.1 Sensor 

An accurate modelling of the dynamic behaviour of any system should consider the non-steady state nature of 

sensors, particularly when dealing with on field measurements. Here, along with the sensing element 

temperature 𝑇௦, whose reading indicates the internal ambient temperature, a resistance (𝑅௦) separates the 

sensor from the internal air. The thermal capacity (𝐶௦) is responsible for the lag between the temperature 

variations of the internal ambient air and the respective reading on the measurement instrument.  



1.4.5.2 Interior 

The portion of the circuit called interior models the dynamics of the internal air mass. This air mass is separated 

from the other elements by several thermal resistances and includes a usually significant thermal mass (𝐶). 

1.4.5.3 Medium 

The medium portion models all the masses inside the building envelope other than the internal air. Indeed, 

such masses have usually thermal proprieties significantly different from air, so that the internal energy stored 

or released might need a dynamic modelling of its own. Internal masses can include furniture or internal walls 

between spaces of the same thermal zone. The medium temperature, capacity and its resistance with respect to 

the internal air are here called 𝑇, 𝐶and  𝑅 respectively. 

1.4.5.4 Heater 

The heater section accounts for the contribution of a heating system, in terms of sensible heat. The most 

accurate model separates a lumped parameter “heater” node temperature (𝑇) from the internal air node with 

a resistance between the two (𝑅). The heating terminal might have a non-neglectable thermal dynamic that 

requires a capacity to be included (𝐶). This is particularly relevant for radiant systems whose time constant is 

comparable to that of the internal thermal mass.  

1.4.5.5 Solar 

The solar portion consists of a current generator representing the heat flux entering the building through the 

transparent surfaces. Indeed this contribution is estimated as the product of the incident solar radiation 𝛷௦  as 

power per unit of surface and the area of the transparent surface 𝐴௪. This parameter accounts for the g-value 

of the employed glass as well.  

1.4.5.6 Envelope 

The envelope is modelled as a temperature node exchanging heat with the internal temperature node and the 

external temperature node through two resistances 𝑅 and 𝑅. As the envelope mass is often non-neglectable, 

a capacity is associated with it (𝐶). The solar radiation on the envelope surface is an additional heat flux 

entering the envelope node and it is modelled as 𝐴𝛷௦ in analogy with the solar contribution through the 

transparent components; clearly, 𝐴 stands for the opaque surface. 

An additional branch connects directly the external ambient air and the internal air nodes with resistance 𝑅. 

This quantity accounts for the infiltration losses of building, which can be computed as: 

 

�̇� = �̇�𝑐(𝑇 − 𝑇) (1.31) 

so that:  

�̇� =
(𝑇 − 𝑇)

𝑅
 𝑤𝑖𝑡ℎ 𝑅 =

1

�̇�𝑐
 (1.32) 



1.4.5.7 Ambient 

Ambient air temperature is imposed to the system from data (predicted or measured), and therefore an ideal 

voltage generator, so that the value of the temperature in node 𝑇 is always known. 

1.4.5.8 State space representation 

This model yields the following set of equations by applying Kirchoff’s nodal law to the five temperature 

nodes: 
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  (1.33) 

These equations can conveniently be written in matrix form according to the standard state-space 

representation notation; since the states are the five temperatures 𝑇 = [𝑇௦ , 𝑇, 𝑇, 𝑇 , 𝑇]், the inputs are 𝑢 =

[𝑇 , 𝛷௦ , 𝛷  ]், the equations take the following form: 

𝑑𝑇

𝑑𝑡
= 𝐴𝑇 + 𝐵𝑢 (1.34) 

where matrixes A and B contain the sole parameters. 

The only output of this system is the internal temperature as read by the sensor. The output equation is: 

𝑌௦ = 𝑇௦ + 𝑒 (1.35) 

since the output 𝑌௦ is affected by an error 𝑒. 

 

1.4.6 Thesis objectives and structure 
The original contribution of the present thesis-work is to formulate and test different control strategies for the 

management of the energy systems serving a non-residential building. In particular, the strategies control the 

storage systems serving the building, namely a hot water tank for thermal storage and a battery for electric 

energy storage, plus their interaction with the public power grid. The suggested strategies are oriented towards 

different objectives regarding energy efficiency, economic savings and optimal operation of technological 

components.  Moreover, a methodology of modelling, designing, testing and analysis is suggested as it could 

be employed in future applications. 

Chapter 2 is dedicated to the Model Predictive Control and illustrates the main features of such strategy. 

Theoretical fundamentals are provided, including some notes on mathematical optimization. The chapter, 

albeit relatively general in many respects, focuses primarily on building and HVAC applications and provides 

an overview of previous model predictive control strategies applied to this field.  



Chapter 3 presents the case study, which is a non-residential building equipped with an energy system made 

of thermal energy and an electrical energy storage system, photovoltaic arrays for local renewable energy 

production, a heat pump for heat generation and a connection to the public power grid. The chapter presents 

the building and the plant main features, along with their modelling process.  

Chapter 4 is dedicated to the formulation and testing of four Rule-Based Control strategies, two of which are 

oriented to the enhancement of energy related and economic goals respectively. The two strategies are 

compared to each other and to two simpler control logics that shall serve as baselines. The modelling and 

simulation process is described in detail. 

Chapter 5 presents a Model Predictive Control strategy applied to the same case-study. Again, simulation and 

modelling are detailed throughout the chapter. The MPC strategy is then compared to a Rule-Based control 

strategy that serves as baseline. The baseline case is properly designed to provide an equal comparison 

benchmark.  

Finally, observations and future research suggestions are brought forward in Chapter 6. 

  



2 Chapter 2: Model Predictive Control  

Model predictive control (MPC) is a term used to designate a class of control methods first developed in the 

Seventies within the field of process industry, particularly chemical industry (Hechavarría, Rodney; López 

2013) to be later adopted by other industrial fields, robotics, clinical anaesthesia and autonomous driving 

systems. 

As a well-established control method in industrial applications, MPC has attracted increasing attention by 

research in the field of building automation, energy management and HVAC control systems. Particularly 

interesting are the review works of (Serale et al. 2018) and (Drgoňa et al. 2020) which prove how the 

research community has dedicated increasing focus on the implementation of MPC strategies for building 

applications.  

2.1 Working Principles  

The authors of (Hechavarría, Rodney; López 2013) indicate three main elements of an MPC controller: 

 the presence of a system model with the purpose of predicting its outputs in future time instants over 

a given time horizon ahead in the future; 

 the calculation of a control sequence that minimizes a given objective function; 

 the so-called receding strategy, that is the shifting at any timestep of the time horizon and the actual 

application of the sole first control signal of the control sequence. 

 

Therefore, an MPC controller does not only choose its control action to be valid at the present time instant, but 

plans their evolution over a determined time horizon in the future. This is possible thanks to an explicit model 

of the controlled system that allows to make a prevision of the time profile of the controlled variables. 

 

Multiple reasons justify the adoption of the MPC strategy; among the many, the following make MPC a much 

more effective competitor against classical control methods. 

 

1) Multi-input-multi output systems (MIMO): Model predictive control is a much more suitable choice 

for MIMO systems compared to a traditional control strategy. For instance, let’s consider a system 

with two output y1 and y2 and two control actions u1 and u2, controlled by a PID controller. Action u1 

will depend solely on the value of y1, while u2 will depend on y2. However, u1 will influence y2 as well 

as u2 shall influence y1, thus greatly increasing the complexity of the control system design. MPC on 

the other hand offers the possibility of formulating a single strategy able to manage multiple inputs 

and multiple outputs at once.  

2) Optimization: in traditional control strategies the choice of the control actions is exclusively oriented 

towards keeping the controlled systems outputs as closely as possible to a desired profile; however, 

control actions can have the most varied consequences upon a dynamical system and the reaching of 

a specific objective might be conflicting with the reaching of another. In general terms, in order to 



consider multiple contrasting objectives, it is necessary to find a compromise or, in more rigorous 

terms, to solve an optimization problem. More formal aspects concerning mathematical optimization 

will be dealt with later in the present work; some examples might nonetheless help grasp the concept 

intuitively. A heat exchanger employed to recover waste heat will allow greater savings as its surface 

increases; at the same time, with a larger surface comes a higher monetary investment: it is therefore 

desirable to find some criteria to help reaching a compromise. Another example, more suited to the 

purpose of this thesis, is that of keeping a comfortable air temperature inside of a building: this, in 

general, goes against energy and monetary savings. Optimization problems come in handy when 

dealing with such matters. 

In model predictive control an optimizer works alongside the system model, driving the controller 

towards a choice of actions that minimize a function known as cost function. The cost function sums 

up the different quantities to be minimized, possibly assigning to each one a weight representing its 

relative priority. Following the previous example, we could define a parameter that accounts for the 

difference between the actual internal air temperature and its desired value and a parameter accounting 

for energy consumption: reducing both shall be desirable, but a relative importance could be assigned 

to one of the two elements. 

3) Disturbances: traditional control strategies merely react to the disturbances acting upon the 

controlled plant. Disturbances are, by nature, non-controllable as it is their very definition. A control 

system with the capability to react directly disturbances is therefore most desirable. In order to 

include disturbances in the control logic, a previous knowledge of their profile is required, or, in 

other words, their prediction is necessary. Model Predictive Control is able to include predictions of 

disturbances in its structure so that the controller can to some extent “anticipate” them. 

 

2.1.1 Receding horizon strategy   

Neither the predictive model nor the disturbances previsions are sufficient to guarantee the MPC controller to 

operate as a purely open-loop, feedforward control strategy: indeed, the prediction model embedded in the 

controller shall never be perfect and often requires a great deal of simplification given the computational 

burden of the optimization process. At the same time, disturbances will never be exactly predicted and the 

system is in general affected by unpredictable disturbances and measurement noises. A feedback mechanism 

of some kind is therefore necessary in the MPC algorithm. Such mechanism is known as the receding  horizon 

strategy. A description of this strategy follows along with the adopted notational conventions. 



 

Figure 8-MPC receiding horizon strategy (Serale et al. 2018) 

The receding horizon strategy is based on the following quantities: 

- Current instant 𝑘: the present instant in the discretization of the time variable. 

- Control timestep 𝑇௦: the time interval used in the discretization of time. It is usually also the sampling 

time and is for most applications considered to be constant. 

- Prediction horizon 𝑁: also called planning horizon, it is the span ahead in time for which the MPC 

will predict the profile of the cost function under the given constraints. It is measured in number of 

timesteps, therefore it is given as a natural number. 

- Control horizon 𝑁: also called execution horizon or manipulated input horizon, it is the span ahead 

in time for which the MPC will predict the profile of the manipulated variables. It is always set that 

𝑁 ≤ 𝑁, which means that the MPC algorithm might predict the values of the outputs and the cost 

function over a longer horizon than that on which it chooses the values of the manipulated variables. 

In case 𝑁 < 𝑁, for the remaining timesteps between 𝐾 = 𝑁 + 1 and 𝐾 = 𝑁the control variable 

will be evaluated as constant.  

 

 

 



The algorithm’s working principle follows this general structure: 

1) at time instant k, assumed as the present instant, the controller evaluates the state of the plant and 

reads the values of the disturbances’ predictions (if available); 

2) an optimal sequence of control actions is computed over the control horizon, that is, the size of the 

sequence will be equal to the control horizon 𝑁; 

3) of all the Nc steps computed by the optimizer, only the first action will be actually implemented until 

the following sample instant 𝑘 + 1 = 𝑘 + 𝑇௦; all the other steps of the computed sequence will be 

discarded; 

4) as time advances to the next sampling instant, the whole time window is shifted by one position, that 

is, time 𝑘 + 1 becomes the new time instant 𝑘, and the procedure will start all over from point 1), 

hence the name receding horizon strategy.   

 

The fact that the plant states and outputs are measured or at least estimated at each sampling time, and that 

the structure of the above described algorithm is intrinsically recursive guarantees that the MPC strategy has 

a feedback nature. 

 

2.2 Optimization  

A mathematical optimization problem, often referred to as just optimization problem, is formalized as 

follows: 

ቐ

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝑓(𝑥) ≤ 0,      𝑖 = 1,2, … , 𝑚

                      ℎ(𝑥) = 0,      𝑖 = 1,2, … , 𝑝
 (2.1) 

 

Aim of optimization is to find a set of n real values that minimize a given cost function (or objective function), 

here indicated as 𝑓(𝑥). This is a function in real scalar values defined on a domain included in ℝ . The 

solution to the problem therefore shall be a vector in 𝑥∗ ∈ ℝ  so that 𝑓(𝑥∗) has the minimum value; the 𝑥 

variable is called optimization variable. Not all points ℝ  are eligible as solutions: the choice of all possible 

candidate 𝑥 for the solution to the problem is to be found within the set of the so-called feasible points; points 

not included in such set are defined as unfeasible.  

Feasibility of points is determined by inequalities 𝑓(𝑥) ≤ 0, 𝑖 = 1,2, … , 𝑚 and equalities ℎ(𝑥) = 0, 𝑖 =

1,2, … , 𝑝 called inequality constraints and equality constraints respectively, while the corresponding functions 

𝑓: ℝ  → ℝ  and ℎ: ℝ  → ℝ  are called inequality functions and equality functions. In case no constraints 

are present (𝑝 = 𝑚 = 0), the problem is said to be unconstrained. 

The set of points for which the objective function and all the constraint functions are defined is called domain 

of the optimization problem: 



D = ሩ 𝑑𝑜𝑚(𝑓) ∩ ሩ 𝑑𝑜𝑚൫ℎ൯



ୀ



ୀ

 

 

A point 𝑥 is feasible if it belongs to domain 𝐷 and satisfies all the constrains. If a problem has at least one 

feasible point, the problem itself is defined as feasible; likewise, it is defined as unfeasible when it has no 

feasible points. The set of all feasible points of a problem is called feasible set or constraints set.  

We can define an optimal value of the problem 𝑝∗ a point such that: 

 

𝑝∗ =  𝑖𝑛𝑓 {𝑓(𝑥)|𝑓(𝑥) ≤  0, 𝑖 =  1, . . . , 𝑚, ℎ(𝑥)  =  0, 𝑗 =  1, . . . , 𝑝} 

 

We say that 𝑥∗ ∈ ℝ  solves the problem (or is an optimal point) if  𝑥∗ is feasible and 𝑓( 𝑥∗) = 𝑝∗. Defining 

an optimal point leads to the definition of an optimal set, that is the set of all optimal points. We can describe 

such a set as: 

 

𝑋௧ =  {𝑥 | 𝑓(𝑥) ≤  0, 𝑖 =  1, . . . , 𝑚, ℎ(𝑥)  =  0, 𝑗 =  1, . . . , 𝑝, 𝑓( 𝑥∗) = 𝑝∗ } 

 

The definition of optimality for feasible points gives us a criterium for assessing the solvability of an 

optimization problem; indeed, a problem is solvable if 𝑋௧ has at least one element, and we therefore say that 

the problem is attained or achieved. In case 𝑋௧ is an empty set, the optimal value is not attained or not 

achieved. 

 

Finding the optimal set is evidently the most desirable goal for anyone dealing with an optimization problem: 

optimal points are in fact the “best choices” for problem at hand in that they minimize the cost function in 

absolute terms compared to all the other feasible points. However, practical limitations might make it necessary 

to find a compromise with respect to the optimal solution, and to identify as solutions points that are not 

optimal, but nonetheless must respect some kind of requirement for us to accept them as reasonable solutions. 

Such alternatives are offered by sub-optimal solutions and locally optimal solutions.   

 

Given a value of 𝜀 > 0, a feasible point 𝑥 is called ε-suboptimal if 𝑓( 𝑥∗) ≤ 𝑝∗ + 𝜀 and the set of all ε-

suboptimal points is called ε-suboptimal set for the problem.  

 

A feasible point is locally optimal if there exists a real value 𝑅 > 0 such that: 

 

𝑓(𝑥) = 𝑖𝑛𝑓 {𝑓(𝑧)|𝑓(𝑧) ≤  0, 𝑖 =  1, . . . , 𝑚, ℎ(𝑧) =  0, 𝑗 =  1, . . . , 𝑝, ‖𝑧 − 𝑥‖ଶ ≤ 𝑅} 

 

which is equivalent to saying that point x solves the following problem: 

 



⎩
⎨

⎧
𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑧)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝑓(𝑧) ≤ 0,      𝑖 = 1,2, … , 𝑚

                      ℎ(𝑧) = 0,      𝑖 = 1,2, … , 𝑝

‖𝑧 − 𝑥‖ଶ ≤ 𝑅

 (2.2) 

The meaning of local optimality is that the point 𝑥 does actually minimize the cost function 𝑓, but solely in 

within the neighbourhood of a point 𝑧. Indeed, many authors specifically refer to the ordinary optimal solution 

as the global solution to avoid confusing it with the local solution.   

If a point 𝑥 is feasible and 𝑓(𝑥) = 0, the i-th inequality constraint 𝑓(𝑥) ≤ 0 is defined as active at x. In case 

𝑓(𝑥) ≤ 0, the i-th inequality constraint is called inactive. From this definition, it is obvious that all equality 

constraints are active for all feasible points. In case a constraint does change the feasible set, such constraint 

redundant.  

 

It might be useful, before solving an optimization problem, to determine whether the given set of constraints 

are consistent, and in such case find a point that satisfies those constraints. This is achieved by solving a 

feasibility problem, which can be written as: 

 

ቐ

𝑓𝑖𝑛𝑑 𝑥

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝑓(𝑥) ≤ 0,      𝑖 = 1,2, … , 𝑚 

                      ℎ(𝑥) = 0,      𝑖 = 1,2, … , 𝑝
                            (2.3) 

2.2.1 Equivalent problems: slack variables  

A non-rigorous definition of equivalence for optimization problems can be stated as: “two problems are 

equivalent if the solution of one can easily be obtained from the solution of the other”. In other words, it is 

possible to manipulate the problem to obtain a new one whose solution is the same as that of the original 

problem, or at most is closely related to it. Such manipulations are of different nature and their application is 

justified by computational convenience. 

A commonly used transformation that is particularly important in MPC applications is the introduction of the 

so-called slack variables. Any constraint inequality can undergo the following transformation: 

𝑓(𝑥) ≤ 0 ⇔ ∃𝑠 ≥ 0: 𝑓(𝑥) + 𝑠 = 0 

which states that inequalities can be restated as equalities with the addition of a value 𝑠  indeed called slack 

variable. Using slack variables, the optimization problem can be turned into an equivalent one: 

⎩
⎪
⎨

⎪
⎧

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

 𝑓(𝑥) + 𝑠 = 0,      𝑖 = 1,2, … , 𝑚
𝑠 ≥ 0    𝑖 = 1,2, … , 𝑚                   

ℎ(𝑥) = 0,      𝑖 = 1,2, … , 𝑝

 (2.4) 



where the problem variables are 𝑥 ∈ ℝ  and 𝑠 ∈ ℝ . In such a case, the solution of the problem shall be a 

pair (𝑥, 𝑠).  

 

2.3 Model Predictive Control for buildings  

The following section aims at sketching an overview of Model Predictive Control by presenting its main 

features. Particular attention will be paid to building applications and specifically to the thermal control 

achieved through the employment of HVAC systems; however, since the adoption of MPC strategies by this 

sector is a fairly recent phenomenon, many examples will be drawn from the existing literature concerning 

various other engineering fields in which MPC has found applications so far.     

Literature consulted in the making of this thesis showed that a general agreement in MPC notation, formulation 

and nomenclature has yet to find consensus among the scientific community, therefore different examples will 

display variations in the notation. 

2.3.1 Problem formulation 

The MPC problem formulation can be adapted to the control of the building thermal behaviour as indicated 

by a general standard form proposed by (Drgoňa et al. 2020): 

min
௨బ,…,௨ಿషభ

𝑙ே (𝑥ே) + ∑ 𝑙(𝑥 , 𝑦 , 𝑟, 𝑢 , 𝑠)ேିଵ
ୀ

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

𝑥ାଵ = 𝑓(𝑥 , 𝑢, 𝑑), 𝑘 ∈ ℕ
ேିଵ 

𝑦 = 𝑔(𝑥 , 𝑢, 𝑑), 𝑘 ∈ ℕ
ேିଵ

𝑢 = 𝑓ு(𝑥, 𝑎 , 𝑚), 𝑘 ∈ ℕ
ேିଵ

𝑠 = ℎ(𝑥 , 𝑦 , 𝑢 , 𝑟), 𝑘 ∈ ℕ
ேିଵ

𝑥 ∈ 𝑋, 𝑢 ∈ 𝑈,  𝑎 ∈ 𝐴,  𝑠 ∈ 𝑆, 𝑘 ∈ ℕ
ேିଵ

𝑑 = 𝑑(𝑡 + 𝑘𝑇௦), 𝑘 ∈ ℕ
ேିଵ

𝑟 = 𝑟(𝑡 + 𝑘𝑇௦), 𝑘 ∈ ℕ
ேିଵ  

𝑥 = 𝑥ො(𝑡)

 (2.5)

 

 

 

Figure 9-MPC actors and interaction with the controlled system (Drgoňa et al. 2020) 



The building with its behaviour and its dynamics is affected by the disturbances. Disturbances are all those 

actions that act upon the system that cannot be controlled by the controller, i.e. people presence, internal heat 

gains such as lighting systems and electrical appliances and, of course, weather conditions. Disturbances, 

however, can be quantified and above all predicted to be fed to the MPC control unit: this justifies their 

presence in the first two constraint equations above stated.  

The 𝑛௬ outputs of the system, collected in a vector 𝑦 ∈ ℝ , are the quantities that can actually be 

measured and therefore will constitute the feedback element of the MPC logic. The object indicated as 

estimator in the picture estimates the value of the 𝑛௫ state variables that will take the form of vector 𝑥 ∈ ℝ ೣ.  

Building envelope inputs are here represented with the vector 𝑢 ∈ ℝ ೠ, while HVAC actuators are 

considered separately in a vector 𝑎 ∈ ℝ ೌ, and their relationship is represented by the third constraint 

equation. Vector 𝑚 ∈ ℝ  collects additional measured variables, 𝑑 ∈ ℝ  denotes the disturbances, 𝑟 ∈

ℝ ೝ the reference signals and 𝑠 ∈ ℝ ೞ is the vector of the slack variables.  

 

The objective function is given as the sum of two terms: 𝑙ே(𝑥ே) represents the terminal penalty term, used to 

ensure stability and convergence; however, most building applications omit this term. The second term 

𝑙(𝑥, 𝑦 , 𝑢 , 𝑟 , 𝑠) is stage cost because for its stage k this function assigns a cost to the choice of values 

𝑥 , 𝑦 , 𝑢, 𝑟 , 𝑠. 

 

Slack variables represent a violation of algebraic constraints, usually a deviation from the set values of comfort. 

The conditions 𝑥 ∈ 𝑋, 𝑢 ∈ 𝑈,  𝑎 ∈ 𝐴,  𝑠 ∈ 𝑆, 𝑘 ∈ ℕ
ேିଵ are bounding constraints on the possible values of 

the state variables, building envelope inputs, actuator inputs and slack variables. Forecasts of disturbances and 

reference signals are given by the equations 𝑑 = 𝑑(𝑡 + 𝑘𝑇௦) and 𝑟 = 𝑟(𝑡 + 𝑘𝑇௦). Finally, initial conditions 

of the states are given at each sampling instant as 𝑥 = 𝑥ො(𝑡), where 𝑥ො denotes an estimation of the states, since 

they often cannot be directly measured. 

 

2.3.2 MPC problem classes 

2.3.2.1 Linear MPC 

An MPC problem is said to be linear when both the plant model and the constraints are linear and the cost 

function is either linear or quadratic. In such a situation, the relative optimization problem is guaranteed to be 

convex, being in particular a Linear Program (LP) or a Quadratic Program (QP) for the linear and the quadratic 

cost function respectively. In such situations, a large number of algorithms available guarantee a solution time 

shorter than the sampling time for most applications.  

(Serale et al. 2018) propose a typical MPC formulation for a Linear Time Invariant (LTI) plant model: 

 

൜
𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵௨𝑢(𝑘) + 𝐵௩𝑣(𝑘) + 𝐺𝑤(𝑘)

𝑦(𝑘) = 𝐶𝑥(𝑘) + 𝐷௨𝑢(𝑘) + 𝐷௩𝑣(𝑘) + 𝑑(𝑘)
 (2.6)  



where 𝑥(𝑘 + 1) is the vector of the predicted state for the time instant 𝑘 + 1, 𝑥(𝑘) is the vector of the states 

at the present instant 𝑘, 𝑢(𝑘) is the vector of the controlling inputs, 𝑣(𝑘) is the vector of the measured 

disturbances that affect the system (e.g. the weather), 𝑤(𝑘) is the unmeasured random noise on the 

measurement of the states and  𝑑(𝑘) is the unmeasured random noise on the measurement of the outputs 𝑦(𝑘). 

The terms 𝐴, 𝐵௨, 𝐵௩, 𝐶, 𝐷௨, 𝐷௩ and 𝐺 are state matrix, manipulated input matrix, measured disturbances matrix, 

output matrix, direct transmission matrix for manipulated inputs, direct transmission matrix for measured 

disturbances, and the matrix of the unmeasured random noise on the states respectively.  

Linear systems can be integrated in a very simple way by recursive substitutions of the state variables moving 

forward in time. Such a formulation of the problem is referred to as dense formulation and the computational 

complexity of this algorithm is of order 𝑂(𝑁ଷ𝑛௨
ଷ), where N is the number of steps of the control horizon and 

𝑛௨ is the number of inputs. An alternative to the dense formulation is the sparse formulation, whose complexity 

increases to 𝑂(𝑁ଷ(𝑛௫  + 𝑛௨ )ଷ) where 𝑛௫  indicates the number of states of the problem. However, if the solver 

makes proper use of the sparsity of the problem, the algorithm complexity drops significantly to order 

𝑂(𝑁(𝑛௫  + 𝑛௨ )ଷ). Clearly, dense formulation is an appropriate choice when the number of states is large, 

which is a situation typically found in building control applications.  

2.3.3  

2.3.3.1 Nonlinear MPC 

The vast majority of real processes from the most diverse applications and fields are nonlinear in nature. 

However, most MPC applications have so far used linear models. Linearity for MPC has been often preferred 

for its computational convenience, since employing a linear plant model along with a quadratic objective 

function yields a convex optimization problem (Quadratic Programme). As (Camacho-Bordons) noted, there 

are two other important reasons that suggest the use of a linear model: firstly, system identification for linear 

models from process data is much easier; secondly, linearity well approximates the behaviour of a system in 

the neighbourhood of the operating point, assumed to be in steady-state.  

Not all applications, however, support a linear model; in case of building physics applications, the building 

model is often assumed linear but coupled with a nonlinear modelling of the HVAC system and the effects of 

the disturbances.  

 

2.3.3.2 Hybrid MPC 

Many systems contain variables that cannot be described as continuous but require a discrete description. Such 

quantities can be related to a wide range of physical and technical objects, such as switches, two-state valves, 

fixed speed pumps and ON-OFF commands in general. For many years, the control of discrete quantities was 

considered as completely set apart from the control of continuous variables, for which mathematical tools like 

differential equations and transfer functions apply. As to discrete variables, common modelling tools have 

been state transition graphs, finite states automatas and Petri nets, supported by theoretical fields such as 

switching theory and graph theory. Traditionally, discrete systems dynamics have been fields of interests for 

computer scientists.  



A change started to appear under the horizon in the beginning of the 1990s, since when there has been a 

growing interest in in processes that incorporated both discrete and continuous time-dependent quantities, 

giving birth to the study of the so-called hybrid systems.  

Notable research in the field of hybrid systems, particularly in the perspective of MPC applications, have been 

carried on by Alberto Bemporad among others. Important results can be found in (Bemporad, Heemels, and 

De Schutter 2002), in which five main classes of hybrid systems, namely linear complementarity, extended 

linear complementarity, mixed logical dynamical, piecewise affine and min-max-plus-scaling systems were 

firstly proven to be equivalent, albeit under specific assumptions related to well-posedness and boundedness 

of some variables. Starting from this result, the paper moves on to prove that “for linear or hybrid plants in 

closed-loop with a model predictive control (MPC) controller based on a linear model, fulfilling linear 

constraints on input and state variables, and utilizing a quadratic cost criterion […] the closed-loop system is 

a subclass of any of the former five classes of hybrid systems”. As mentioned by the authors, this result is 

important for the development of hybrid MPC controllers with increased robust stability.  

The most commonly used approach for hybrid MPC is to translate the control model into a piecewise affine 

system (PWA). A PWA system can be described by the following state space representation: 

 

ቊ
𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘) + 𝑓

𝑦(𝑘) = 𝐶𝑥(𝑘) + 𝑔
 (2.7) 

 

Apex i refers to the choice of a given “configuration” depending on the particular combination of the values 

taken by the discrete variables. In other words, for each choice of the discrete variables, different indexes i will 

change form 1, . . , 𝑠  yielding a different description of the system dynamics. This dynamics, however, is 

nonetheless linear, albeit different under different conditions, hence the name “piecewise affine”. More 

formally, the space of the states and input space is partitioned by hyperplanes (polyhedral partitioning) so that: 

 

ቆ
𝑥(𝑘)

𝑦(𝑘)
ቇ ∈ 𝑋  (2.8) 

where {𝑋}ୀଵ
௦  is the polyhedral partition. 

 

If the hybrid dynamic model is indeed piecewise linear, two scenarios might arise: 

1) if the objective function is linear, the corresponding optimization problem shall be a Mixed Integer 

Linear Programming (MILP); 

2) if the objective function is quadratic, the corresponding optimization problem shall be a Mixed Integer 

Quadratic Programming (MIQP); 

In case the dynamical model itself contains nonlinearities, the corresponding problem will be a Mixed Integer 

Nonlinear Programme (MINLP), a problem of particularly difficult solution. 

 



2.3.4 MPC solution 

This section aims at presenting the main strategies adopted for the solution of MPC problems, as found in the 

existing literature. Along with the already illustrated receding horizon strategy, MPC solvers require some 

other steps, the first being state estimation. State estimation is the process of inferring the values of state 

variables that cannot be directly measured as outputs.  

2.3.4.1 Optimal control solution method 

The problem that stems out of Model Predictive Control requires the solution of an optimal control problem 

(OCP). Such solution is traditionally achieved through three different approaches: 

1) Direct methods: this class of methods is the most widely used for MPC applications to the present 

day; as their name suggests, they consist in the translation of the OCP into the corresponding 

optimization problem, which is then solved via the most appropriate optimization algorithm. 

2) Indirect methods: these methods reformulate the OCP as a boundary value problem. The stage cost 

and the costate equations are incorporated into the control Hamiltonian, which is later minimized (or 

maximized). 

3) Dynamic programming: dynamic programming employs the Hamilton-Jacobi-Bellman equations 

solved recursively. The main disadvantage of this methods lies in the fact that it cannot be applied to 

systems with too many state variables ((Drgoňa et al. 2020b) refer to this limitation as curse of 

dimensionality). This drawback can be overcome by applying the so called approximate dynamic 

programming, which takes advantage of reinforcement learning techniques.  

The following paragraphs will focus on direct methods, since they are the most implemented choice for the 

solution of optimal control problems.  

One possible method takes the name of single shooting method, dense formulation or state condensing 

method. The basic working principle of this method is to try out different candidate trajectories for the 

control actions in different directions until it finds the one that satisfies the boundary conditions. This method 

is suited to the solution of system whose computational burden is low, such as with linear systems.  

A second approach is the multiple shooting method, also known as sparse formulation.  

 

2.3.4.2 Implicit MPC 

Implicit MPC refers to a paradigm for MPC solution based on direct methods. This method finds the optimal 

choice of the control actions sequence at the present time instant k by solving online the optimization problem. 

Online solution evidently requires more computational time; however, buildings have slow dynamics, so 

typically implicit MPC is considered a viable choice for building applications. 



2.3.4.3 Explicit MPC 

Solving online optimization problems for each timestep can be computationally demanding. In some cases, the 

computational time required for such a solution exceeds the sampling time itself, calling for a more capable 

processor for the MPC application. Explicit MPC tackles this problem by pre-computing the optimal solution 

for a range of initial values of the state variables. These precomputed solutions are then stored and made 

available offline in the form of lookup tables or simple algebraic equations in the following form: 

𝑢(𝑥) = 𝑓൫𝑥(𝑘)൯ (2.9) 

By doing this, the computational time is drastically reduced as the optimizer merely evaluates a simple function 

rather than solving a whole optimization problem at each sampling instant, allowing for the employment of 

cheaper hardware. As noted by (Alessio and Bemporad 2009) the functions to which the optimization is 

translated offline is often piecewise affine, so that “the MPC controller maps into a lookup table of linear 

gains”.  

The main drawback of explicit MPC is that the precomputed solutions, while relieving the processor from the 

computational burden, increase the need for memory storage. Therefore, explicit MPC is recommended for 

small scale systems with no more than 10 parameters. 

 

2.3.4.4 Approximate MPC 

An alternative to the solution of the optimization problem comes from the Machine Learning (ML) world. 

With approximate MPC, a ML model is trained to mimic the behaviour of MPC, which is used to generate 

training data for the approximate controller. These training data are generated in closed loop simulations using 

implicit MPC. The resulting machine learning model shall be an approximation of the MPC control law called 

control policy. 

Control policy is basically a parametric solution to the MPC problem whose representation is a function that 

goes from the space of the parameters ξ to the space of the control variables, in the following mathematical 

form: 

 

𝑓ெ : ℝ ಖ → ℝ ౫ 

 

The explicit MPC used as an expert teacher of the ML model generates a set of m training data 

൛൫ξ(ଵ), u(ଵ)൯, … , ൫ξ(), u()൯ൟ linking a set of control actions to each set of states, so that ξ() ∈ ℝ ಖand u() ∈

ℝ ౫. The training algorithm will result in a function 𝑓௵: ℝ ಖ → ℝ ౫ called response or target variable that 

predicts the values of the control actions (future vector) given a state ξ, so that 𝑢 = 𝑓௵(ξ). The main drawbacks 

of approximate MPC are: 

- an accurate but nonetheless suboptimal solution of the MPC problem 

- the need for a large training data set 

- no guarantees on stability and constraints handling. 



2.3.5 Models and architecture 

One of the main challenges in formulating an MPC controller is that of choosing an appropriate model for the 

system at hand. In case of buildings, we are dealing with systems whose dynamics is, albeit slower, in many 

ways more complex than that of, say, industrial processes. Indeed, disturbances in an industrial setting are 

much easier to control and predict. At the same time, building control is not solely related to the envelope, but 

encompasses the control of the HVAC systems a well, whose behaviour is conversely much faster in its 

dynamics and much harder to model with simple, linear equations. 

The challenge in the MPC formulation thus becomes that of finding a trade-off between model accuracy and 

computational feasibility. 

An MPC controller for a building and its HVAC system requires two models in the first place: 

 

 A control oriented model, that is a model embedded into the MPC controller unit, capable of offering 

predictions upon the behaviour of the building and its HVAC system thermodynamics wise. This 

model cannot be accurate at will but must be simple enough to allow the optimizer to find a feasible 

solution, whether it be online or offline. 

 A disturbance model, whose aim is to provide a forecast of the profile of the uncontrolled variables 

affecting the system, e.g. the weather conditions, occupants behaviour and energy pricing. 

 

These two models are always necessary for the implementation of an MPC controller. They provide a 

prediction of the behaviour of the system and a choice for the actions to be taken by the actuators so that, 

according to the standard MPC scheme, the effects of such actions are measured on the actual physical plant, 

that is the building and/or its HVAC system, to allow the controller to act as in a closed-loop, feedback fashion. 

However, in the design phase or in research contexts, a building with its mechanical and piping systems are 

not available, which calls for a third type of model: 

 

 A surrogate model, whose job is to simulate the plant with the best possible accuracy, since its 

computational burden will not affect the controller itself, and it will not appear in the final 

implementation as it is a mere substitute for the real system. 

 

2.3.5.1 HVAC systems  

Objects usually constituting an HVAC system, such as boilers, heat pumps, combustion-based heat generators, 

chillers, filters, pumps, heat exchangers and pipes, have often complex and non-linear characteristics, making 

it challenging to find a suitable compromise between complexity and computational demand.  

For instance, pumps and fans have nonlinear characteristics and are coupled with nonlinear relations of mass 

flow rates and pressure differences along the piping and duct systems. Clearly Computational Fluid Dynamics 

(CFD) codes are far too demanding for the computational simplicity required by the MPC controller; in 

literature, different approaches can be found to tackle this problem.  



 

 A first approach separates the HVAC system from the building including solely the latter into the 

MPC formulation, thus solving a higher level optimization problem. The solution of this problem 

might return, for instance, the temperature setpoints to be reached by the HVAC system. Controllers 

on a lower hierarchical level of the control architecture will work towards those setpoints by means 

of more traditional ON-OFF or PID logics. 

 A second approach takes the problem of modelling the HVAC system head on, choosing an 

appropriate mathematical description. This method contemplates two cases: integrating this model 

within the MPC formulation, thus solving one single optimization problem, or separate it from the 

building, so that the building demand will be treated as a predicted disturbance by the MPC controller. 

The first method requires a higher computational effort, since the states considered for the description 

of the system increases to take into account the states relative to the HVAC system objects. The 

second method yields a nonlinear problem in case one of the states multiplies a control variable, like 

it might happen if a temperature value, assumed as a state, multiplies a controllable mass flow rate 

value. 

 

 
Figure 10-MPC approaches for building applications (Serale et al. 2018) 

2.3.5.2 Disturbances prediction models 

Disturbances are those inputs that influence the system but cannot be controlled. The capability of handling 

disturbances is indeed one of the main advantages of MPC with respect to traditional control methods; 

however, disturbances must be predicted with sufficient precision in order to be correctly evaluated by the 

controller. A classification proposed by (Serale et al. 2018) is reported in the following paragraph. 

Disturbances can be either measured or unmeasured. Measured disturbances can take part into the feedback 

mechanism of the receding horizon, therefore are generally included in the system dynamic model. 

Unmeasured disturbances on the other hand cannot be included in the embedded model regardless of the 



significance of their impact upon the system, so they affect the uncertainty and the accuracy of the model 

response. 

Measured disturbances can be assumed as ideal in case no noise (white, stochastic etc.) is significantly 

affecting their measurement, otherwise thy are considered as affected by uncertainty and their signal will 

require to undergo some suitable processing. 

Disturbances affecting buildings and their HVAC systems usually follow under one of three categories: 

 

1. Climatic disturbances, such as external temperature, humidity ratio, relative humidity, solar 

radiation, wind velocity, ground temperature. 

2. Occupant behaviour related disturbances, such as the number of occupants in a given thermal zone 

or the gain dew to the use of electrical appliances. 

3. Grid and energy distributor related disturbances, such as real-time energy prices. 

 

In some cases, disturbances can be lumped together in one single factor. Regarding indoor occupancy, models 

can provide either the heat gain profile, the occupant count or the count along with a behaviour prediction, 

since people behaviour influences window opening, appliances usage and heat emission. According to (Drgoňa 

et al. 2020b), “the state-of-the-art occupancy behaviour models […] are computationally too expensive to be 

included in MPC. Therefore, less computationally demanding approaches are typically adopted in the context 

of MPC, for example models based on heuristics (e.g. anticipated schedules) or machine learning” 

 

Predictions of disturbances can be obtained in a simple way from commonly available sources, such as 

Representative Meteorological Year, Typical Meteorological Year, International Weather for Energy 

Calculations files or building demand patterns as proposed by ASHRAE. This approach only provides general 

trends but would be hardly suited for precise, short-term predictions. They are therefore used in the design 

stage rather than in operation. 

A more precise solution for design purposes is to analyse historical data collected by the BAS, which provides 

a more accurate description of the case at hand. 

For real applications the MPC controller requires accurate short-term predictions that can be obtained by two 

main methods: 

 

 Online predictions: these are internet based predictions that take advantage of computations made by 

a third party, relieving the processor in loco from the computational burden.  

 Offline predictions: these methods do not require am internet connection but a forecast model in 

necessary for their employment. They are compulsory for the prevision of occupancy related 

disturbances, since these are specific to the single building.  

 

 



 

2.3.6 Constraints and objective functions 

2.3.6.1 Cost function formulation  

The MPC algorithm aims at minimizing a cost function; as previously mentioned, a control strategy might 

have multiple control targets to be addressed. These targets can often conflict with each other so that a trade-

off between them needs to be found. (Drgoňa et al. 2020a) indicate as the most widely used approaches for 

multi-objective optimization the strategies of goal attainment, minmax and Pareto front. 

Goal attainment. Goal attainment formulation aims at finding a balance between different goals by assigning 

each a weight, that is in practice a coefficient that multiplies each term to be minimized. For instance, a 

combination of goals could be that of minimizing discomfort while minimizing energy consumption as well. 

As these are clearly contrasting objectives, Eq.(2.5) could be reformulated as follows Eq.(2.10): 

min
௨బ,…,௨ಿషభ

∑ (‖𝑄௦𝑠‖ଶ
ଶ + 𝑄௨𝜅𝑢)ேିଵ

ୀ  (2.10)  

Here the term ‖𝑄௦𝑠‖ଶ
ଶ represents discomfort as a weighted squared 2-norm of the slack variables, as these 

represent the distance from the desired behaviour of the system, and therefore are to be minimized to guarantee 

comfort for the occupants. Since these deviations can assume both signs, the adoption of a squared norm is 

justified. In the second term, 𝜅 represents the time varying weights associated with emission or price profiles. 

The matrix 𝑄௨  collects the weighting factors. 

Minmax. Minmax formulation is employed when the optimization goal is to minimize the worst element of 

a cost function. Indeed, norm 1 is often used for minmax problems. 

Pareto front. The Pareto front technique is used to find trade off solutions between contrasting objectives.  

2.3.6.2 Comfort satisfaction 

Internal comfort for the occupants is the main purpose of HVAC systems in nonindustrial applications. 

Usually, thermal comfort is the main constituent of indoor environmental quality (IEQ) (Drgoňa et al. 2020b). 

In order to achieve thermal comfort, it is necessary to maintain internal air temperature close to a set value, as 

indicated by technical standards.  

The MPC algorithm requires a quantification of thermal comfort. A simple solution is that of minimizing the 

displacement of the internal air temperature, assumed as a system output 𝑦, from the desired setpoint. However, 

more advanced indexes can be found across the literature. A well established metric for the quantification of 

indoor thermal comfort is the PMV, introduced by Fanger in 1973 and later adopted by most international 

standards, such as ISO7730, ASHRAE55 and EN15251. The main drawback of the PMV model is its nonlinear 

nature, which makes it particularly demanding for MPC computations.   

 



2.3.6.3 Minimization of cost 

Minimizing the energy consumption of a building might not always go along with the purpose of minimizing 

operational costs. Indeed, storage systems allow load shifting, which could make it more economically 

convenient to store energy when energy prices are lower, to then use stored energy when prices are higher.  

The dynamics of fuel prices such as gas, oil and wood, is neglectable when compared to the prediction horizon 

of an MPC controller for a building, the former being much slower. Subsequently, fuel prices factor could be 

updated offline in the general formulation when major variations in tariffs occur.  

 

2.3.6.4 Minimization of green-house gasses emission 

An important objective for control is that of minimizing greenhouse gasses (GHG) emission in order to reduce 

the carbon footprint of the building energy needs. A formulation for such objective function could be that of 

replacing the cost factor of an economic MPC with by an emission factor that multiplies the amount of used 

energy.  

Minimizing energy consumption will match the aim of minimizing GHG emission solely when conventional 

fossil energy sources are employed. On the other hand, electricity might come from a mixture of sources so 

that a decrease in consumption is not necessarily proportional to a decrease in GHG emission. An extreme case 

is that in which the electricity distributor guarantees that the provided electricity comes from renewable sources 

only: in this case, GHG emissions related to the direct use of electric energy are zero, leaving no room for 

optimization. 

 

2.3.6.5 Maximization of the share of renewable sources 

Maximization of the usage of renewable resources is one of the most relevant objectives for MPC energy 

applications. If the building has a local production of renewable energy, this quantity can be added to the 

cost function associated to a negative cost factor, thus pushing the MPC to maximize their exploitation. 

(Drgoňa et al. 2020b) suggest the introduction of an abstract factor 𝜅 = 1 − 𝑅 where 𝑅 stands for the 

fraction of renewable energy employed by the load at timestep 𝑘. 

 

2.3.7 Design and tuning 

Designing an MPC controller requires to choose a suitable model for the building and, if included, its HVAC 

system. Along with the choice of the model, factors in the problem formulation must be properly set in the 

tuning phase. Tuning requires experience on the part of the MPC designer, and the design stage, with its use 

of a surrogate model, is essential in that it allows a trial-and-error procedure.  

Literature and past experience suggest however some general rules of common practice that serve as a rule of 

thumb basis for further refinements. Parameters related to time should be based on the dynamics of the 

controller system. A general rule prescribes a choice of a sampling time 𝑇௦ large enough to allow computing, 

communicating and implementing the next control signal, according to the complexity of the optimization 

problem that the controller must be solve. At the same time, it must be small enough to control the system in 



a stable way. Practice suggests a choice of 𝑇௦ that allows to have at least 10 to 20 samples in the rise time 𝑇ଽ 

of the process step response. Building dynamics is slower than that of many industrial systems, so that a 

common choice for 𝑇௦ is between 15min and 180min. Therefore, the prediction horizon spans from 5h to 48h. 

As previously mentioned, the prediction horizon is larger or equal to the control horizon: the reason behind 

this choice is that the effects of computed actions decreases with each step in the future, so that only the first 

few computed control actions would have a significant impact on the system behaviour. Choosing a shorter 

control horizon thus allows to reduce the computational demand of the optimization problem. Indeed if 𝑁 =

𝑁, the number of optimized variables will be equal to 𝑛௨𝑁, whereas with a reduced control horizon, this 

number drops to 𝑛௨𝑁. It is recommended to set 𝑁 at about 20% of the prediction horizon, with 𝑁 ≥ 2. 

 
   



3 Chapter 3: Case study 

3.1 The PVZEN building 

The PVZEN building is a project developed by the Politecnico di Torino with the interaction of the Energy 

department (DENERG),  the Architecture and Design department (DAD) and the Department of Electronic 

and Telecommunications (DET) and consists in the design of an experimental NZEB building.   

The PVZEN building is bound to be built within the area of the Politecnico di Torino campus, in the city of 

Turin, Italy. The exact coordinates are the following: 

 latitude: 45.06557°N; 

 longitude: 7.6584 °E. 

The location of the facility is shown in Figure(11): 

 
Figure 11-PVZEN building future location (Amato 2013) 

where the red circle indicates the position that the building will occupy. A 3D rendering obtained from Google 

Earth (from Amato 2013)) shows how the structure will be influenced by the nearby pre-existing buildings in 

terms of shadowing and wind speed:  



 
Figure 12-PVZEN building location inside the PoliTo campus (Amato 2013) 

The building destination of use is that of a study room at the service of the University students. In detail, the 

facility is made of four rooms overall, namely two study rooms, one control room and a technical room. The 

two study rooms are intended to host a maximum number of ten people each, while the control room is 

supposed to be occupied by at most one technician at a time. As to the technical room, it will host the energy 

system technical equipment and it is therefore not intended to have a fixed occupation.  

The two study rooms are equipped by computers, lights, projectors at the disposal of the students. These pieces 

of equipment will each have a schedule of activity based on the most likely behaviour of the occupants in the 

different simulations presented in the present work; consequently, they will represent both a source of internal 

heat gains and an electrical load for the system. The control room is as well equipped with a computer and 

lighting systems at need, whereas the technical room shall host the energy conversion systems such as the 

inverters, which are once again a source of heat gains.   

 

3.1.1 Envelope properties and load profiles  

Table(2) summarizes the main geometric and thermo-physical features of the building. 
 

Feature Value 

Conditioned floor area 96.8m2 

Conditioned volume 501m3 

Envelope surface/conditioned volume ratio 0.85 m-1 



Transparent/opaque envelope surface ratio 6.6% 

Opaque envelope surface 400 m2 

Mean U value 0.184 W/m2K 

Table 2-Building main thermophysical and geometric properties 

3.2 Thermal and electrical system 

Purpose of the work is to study the energy interactions of a working building with the public power grid. The 

building is intended to be all-electric energy wise, thus including the thermal needs that well therefore be 

covered by an inverse cycle thermal machine, namely, a heat pump for the winter season. The preferred 

electricity source are the roof-mounted photovoltaic panels; however, a grid connection allows for energy to 

be exchanged in both directions with the public power grid.  

The key elements of the energy system, however, are the two storage systems, namely a battery for electricity 

storage and a water tank for heat storage in the form of hot water. The role of energy storage systems is indeed 

that of allowing energy to be stored when conditions are convenient, such as when the price is low or when 

the photovoltaic production is available. Evidently, for the storage systems to be most effective, suitable 

control strategies must be employed.   

 

Figure 13-Energy plant layout 

Figure(13) shows the general layout of the energy system plant serving the facility. Key element of the system 

is the water tank, which covers the function of storing the heat produced by the heat pump. The tank separates 

the plant in two main hydraulic circuits. A primary circuit allows the water to be heated up by the heat pump, 

while a secondary circuit makes the water circulate from the tank to the HVAC system where heat is exchanged 

through the terminals.  

The primary circuit pumps the water from the bottom of the tank where it is at its lowest temperature into the 

heat pump inlet; from there, water is heated up to the set temperature 𝑇 and sent to the tank inlet at the top 

of the TES, where hot water tends to stratify. Reversely, the secondary circuit pumps the water from the top 



of the TES where it is at its highest temperature and sends it to the HVAC system, where, by exchanging heat 

with the building, its temperature decreases to the value 𝑇௧ to be then sent to the bottom of the storage.  

With such a configuration, the primary and the secondary circuit are independent in their operation as long as 

a minimum availability of hot water is guaranteed inside the tank. This independent behaviour is key in 

allowing the system to operate the heat pump when it is most convenient without affecting the satisfaction of 

the heating needs, or, in other words, without compromising the thermal comfort of the occupants.  

An analogy holds between thermal and electrical storage. Indeed, the battery serves the purpose allowing the 

time shifting of the renewable energy locally produced, by storing it for the heat pump to use. Electric loads 

are indeed the sum of the internal appliances needs and the power required by the heat pump. The former must 

be guaranteed for the needs of the occupants to be satisfied and are not object of control, but rather disturbances 

to be predicted. On the other hand, the latter can be time-shifted thanks to the presence of the TES as already 

explained. Control strategies shall therefore operate choices in terms of the electrical balance between the 

power yielded or acquired from the grid, the charge or the discharge of the battery, and the operation of the 

heat pump, all for the purpose of maximizing set goals and within the boundaries of guaranteeing a comfortable 

and correct operation of the building and the storage systems themselves, which are constrained by their 

maximum and minimum state of charge.  

According to previous works (Amato 2013) 24 photovoltaic modules are installed on the rooftop of the 

building for a total installed power of 8.64kW. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3.3 EnergyPlus model  

The building being still in design phase, an accurate white-box model was needed for the simulations of the 

different strategies presented in this work. The platform of choice for this modelling has been the software 

EnergyPlus, which allows an accurate description of a building geometry and thermophysical properties, 

occupancy and equipment usage schedules, along with precise estimations of heating demand, local renewable 

energy production and many more data regarding the behaviour of the building. Moreover, boundary 

conditions such as weather conditions are included in the model through suitable IGDG files. 

As to the geometry and orientation of the building, the software SketchUp allows to get 3D renderings as 

shown in Figure(14): 

 
Figure 14-SketchUp geometrical modelling of building geometry (Amato 2013) 

The facility layout is represented with its rooms and main dimensions. The orange line represents the north-

axis orientation of the building.  

The model includes the presence of nearby buildings that will project their shadow on the structure, as shown 

in Figure(15): 



 
Figure 15-Nearby shadowing building (Amato 2013) 

Materials properties are described in the Material object, and include thickness, thermal conductivity, mass 

density and specific heat of opaque surfaces, and U-factor, solar heat gain coefficient and visible transmittance 

of transparent components. Object Construction packs together the materials of all the layers making up a 

given surface, to be then assigned to its specific geometric surface.  

Photovoltaic production is modelled first by placing the solar panels in their right position. For the positioning, 

the work (Amato 2013) was taken as a reference. Their productivity depends on the solar radiation whose 

value is provided by the weather file and is modelled through the single-diode model, available in EnergyPlus 

as the PhotovoltaicPerformance:EquivalentOne-Diode object. The positioning of the photovoltaic arrays is 

shown in Figure(16) from (Amato 2013): 

 
Figure 16-PV arrays location on the EnergyPlus model (Amato 2013) 



3.4 Gray box modelling 

In the following section, the procedure adopted for the modelling of the building thermal dynamics is 

described. The methodology follows that presented in (Bacher and Madsen 2011) as already introduced in 

Chapter 1. The forementioned article suggests a number of different RC equivalent circuits of increasing 

complexity; the specific choice of one of them is thereinafter justified. 

The model therein identified will play the role of the reduced model embedded into the MPC controller to 

capture the building dynamics and it will be recalled in Chapter 5 when the formulation of the MPC strategy 

is presented.  

The building has been assumed to be described with a single thermal zone for all the four rooms with the 

purpose of reducing the number of states thus facilitating the computation of the MPC optimizer.    

The circuit of choice is that of Figure(17): 

 

Figure 17- Adopted  RC equivalent model 

The states selected for the state space equations are: 

 Internal temperature 𝑇, representing temperature of the whole internal air mass. 

 Medium temperature 𝑇, accounting for the internal walls. As the model considers one single zone 

for the whole building, the three internal walls separating the four rooms belonging to the same zone 

are treated as internal masses. These wall masses have considerable heat capacity and thermal 

resistance, therefore a medium temperature node gives much more precise results in terms of dynamic 

description of the building. 

 Envelope temperature 𝑇: this parameters lumps in the temperature at approximately the centre of the 

building envelope. 

As to the heat gains, the following heat fluxes have been embedded into the circuit: 

 Internal gains: this quantity incorporates all the internal heat gains including lighting, electric 

equipment and people dissipated sensible heating rates.  

 Solar heat gains: this gain accounts for the heat entering the building through the transparent 

components.  



 HVAC heating system: this heat flowrate is the one provided by the heating system only to cover the 

sensible heat losses through the envelope. As to the ventilation power demand, it will be treated 

separately, as detailed further in the thesis. 

Since all the heat gains contribute equally in adding heat to the internal air control volume, they have been 

summed up in the system of equations as heat flux 𝛷௧. The resulting model is: 
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This system of equations can be written in a more compact form that separates the states from the input values: 

𝑥̇ = 𝐴𝑥 + 𝐵𝑢 (3.2) 

where dynamics matrix 𝐴 and control matrix 𝐵 are respectively: 
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3.4.1 Parameters estimation 

Parameters listed in the previous section require a first guess for the identification process be started. This first 

guess is based on physical considerations, such as the thermophysical properties of the materials making up 

the envelope stratigraphy and the transparent components. Nonetheless, these parameters, as it is usual with 

grey box type models, should not be interpreted under a rigorous physical prospective. In fact, as we are dealing 

with a lumped parameter model, very few terms of a simple system of equations substitute a rather complex 

thermophysical system, with different parts interacting with each other albeit being considered as uniform 

under the assumption of a homogeneous thermodynamical system. Moreover, since more than one reference 

circuit can provide a working model for the description of the same building, it is obvious that the same 

parameter must represent different physical quantities depending on the overall model of choice in which it 

finds itself.  Bearing this concept in mind, parameters are here listed along with the computation of their first 

guess.   



3.4.1.1 Envelope thermal resistance 

The thermal resistance for a one-dimensional multi-layered surface can be computed as follows: 

𝑅෨ =
1

ℎ
+ 

𝑠

𝜆
+  𝑅 +



1

ℎ
 (3.5) 

where ℎ and ℎ stand for the convective heat transfer coefficient of the internal and the external layers 

respectively, 𝑠  and 𝜆 are the thickness and the thermal conductivity of the j-th wall layer and 𝑅 is the 

resistance of layer 𝑘. 

This thermal resistance is then divided by the area 𝐴 of the conduction surface so that, in steady state 

conditions, heat transfer is governed by equation: 

�̇� =  𝐴
1

𝑅෨
(∆𝑇) (3.6) 

where heat flux �̇� (W) is driven by the temperature difference between the internal and the external air ∆𝑇. 

Heat conduction between the internal and the external ambient shall take place through all the envelope 

surfaces with the exception of the floor, which has been assumed as adiabatic. Since this building is made of 

different walls with differentiated properties, the overall resistance value has been computed by assuming heat 

conduction happening between an internal temperature node and an external temperature node. Consequently, 

the various wall resistances are summed up following the rule of parallel resistances in circuit theory, that is: 

1

𝑅
= 

1

𝑅



ୀଵ

 (3.7) 

Finally, the adopted model separates the envelope resistance into two series resistances, so that their sum equals 

the overall value. Since the walls making up the envelope of the studied building differ greatly stratigraphy-

wise, it was chosen to divide them equally and let the tuning process choose the relative weight of the two 

resistances. 

 

3.4.1.2 Envelope capacity  

The thermal capacity of a surface 𝑗 of unitary area made of 𝑘 layers is computed as: 

𝑐 =  𝜌𝑐,𝑠



(3.8) 

where 𝜌, 𝑐,, and 𝑠 are the mass density (𝑘𝑔/𝑚ଷ), the specific thermal capacity (



) and the layer thickness 

(𝑚). All the surfaces making up the envelope can be seen as parallel capacitances between an internal 

temperature node and an external temperature node and were therefore multiplied by their areas and then 

summed up: 

𝐶 =  𝐴𝑐



 (3.9) 



3.4.1.3 Internal capacitance 

The internal capacity accounts for the air thermal capacity and is therefore computed as: 

𝐶 = 𝑉𝜌𝑐,  (3.10) 

where 𝑉is the internal air volume, 𝜌is the air density and 𝑐, its thermal capacity. 

 

3.4.1.4 Medium capacity and resistance 

Medium elements in the building include the internal walls and the floor surface. Their capacity and resistance 

are computed as that of the other opaque surfaces. For the floor, the entire mass contributes to the overall 

medium capacity, while only half of the resistance shall be included into the value of the equivalent resistance.  

3.4.2 Collecting data for tuning and testing 

The grey box modelling process requires a suitable amount of input and output data so that the model can be 

trained to correlate the two sets at best. Generally, an additional amount of data is required for a testing phase, 

in which the quality of the obtained model is indeed tested on real data to assess the prediction capability of 

the model itself.  

The selection of input and output data is strictly correlated to the model of choice as well as to the availability 

and the technical practicality of the measurements. On field measurements are often expensive, particularly 

for building applications where the investment in sensor is not easily covered by productivity as it is often the 

case in industrial applications. Indeed, industry usually relies on more precise measurements compared to the 

building sector. This work, being entirely simulative, did not allow any on field collected data, so that they 

must come necessarily from simulations. While this opens up to the chance of obtaining a much broader 

amount of data from the white box model provided by EnergyPlus. However, in order for the present work to 

be of greater significance for future applications, limits of real-life measurements were born in mind even 

during the simulation.  

 

3.4.2.1 Simulation setup 

The required input-output dataset for the tuning process was obtained by a simulation of the building behaviour 

carried out on the EnergyPlus software, as it has been done with any other simulation involving the building 

dynamics on this thesis work. On the software, thermophysical properties of the building components are 

modelled so that the simulation can be thought as an acceptable substitute for the real building. Clearly, the 

process therein described can be replicated once the real building is in place with virtually identical steps.  

Along with the properties of the building materials and its geometry, EnergyPlus is able to model the building 

occupation, equipment usage profiles and the heating power delivered by the HVAC system. Since all these 

elements are collected under the “internal gain” heat flux into the model, it has been chosen to consider the 

building as empty during the data collection phase, that is, no internal gains come from people occupation or 

lights and equipment usage, because what the system sees mathematically is a power profile that sums up all 

the forementioned profiles along with the HVAC heating profile. So, it was convenient to activate the heating 



system as the sole internal heating source in order to have a wide range of possible profiles, including free 

running intervals in which no internal gains of any kind are present.  

As to the boundary conditions to the problem, external temperature and solar radiation were read from a 

climatic file (Torino-Caselle 1605901 (IGDG)).  

The only output of the system was in this case the internal air temperature. As to the other two temperature 

nodes, medium temperature and envelope temperature, they were inferred from the internal air temperature in 

a simple way for the initial conditions: 

𝑇 = 𝑇 + 1.5°𝐶

𝑇 = 𝑇 − 1.5°𝐶
 

The simulation setup was thus made of the following components. 

1. EnergyPlus, containing a description of materials and geometrical properties. 

2. Schedules for heating rate. 

3. A Climatic file, containing the boundary conditions 

 

3.4.2.2 Data collection and testing periods 

The grey box modelling procedure requires a period of time for the collection of input-output data which has 

to be suitable for the tuning phase. Following the tuning phase, the identified model must be put to the test; 

this requires an additional period to compare real data to the results provided by the identified model. For the 

present work, two weeks were adopted for the tuning phase, and the following week was chosen for testing. 

Boundary climatic conditions were referred to year 2019 starting from the 11th of February.    

3.4.2.3 Input schedules and boundary conditions 

As to the heating power, a maximum rate value was assumed as equal to 3500W of sensible heat through the 

OtherEquipment object of EnergyPlus. This object receives a fractional value from the schedule, e.g. between 

0 and 1, and models the introduction of sensible, all convective heat into the thermal zone equal to the received 

fraction times the maximum set power. This allowed the building to be subject to an internal heating rate that 

could range from 0 to 3500W. The heating rate profile for the training phase was chosen as follows: 

 Five days of random values between the minimum and the maximum heating rate, changing every 

60 minutes; 

 Three days of free running; 

 Six days of random values changing every 120 minutes 

For the testing week, the following schedule was created: 

 Three days of random values, changing every 60 minutes; 

 One day of free running; 

 Three days of random values changing every 120 minutes. 

The choice of changing heating rate inputs with a minimum frequency of 1 hour came from the fact that the 

MPC controller will work with that timestep. 

Figure(18) shows the resulting heating profile: 



 
Figure 18-Heating schedule for training and testing 

Boundary conditions include the external air temperature and the site direct solar radiation. 

The external air temperature for the selected three weeks follows the profile of Fig(19): 

 
Figure 19-External air temperature during the data collection phase 

while the solar radiation profile is shown in Figure(20): 

 
Figure 20-Site direct solar radiation 



3.4.3 Results 
Table(3) shows the results of the system identification process. In the first column are reported the guess 

values, that is the values of the parameters inferred from physical considerations. Since the identification 

process needs to change those values, minimum and maximum acceptable values were provided to the 

identification toolbox. The resulting identified parameters can be read in column 5.  

Parameter Guess value Minimum value Maximum value Adjusted value 

𝑅 (K/kW) 3.560 0.3560 35.60 1.8113 

𝑅 (K/kW) 14.240 1.4240 142.40 15.6469 

𝑅 (K/kW) 887.90 88.790 8879.0 88.7900 

𝐶 (kJ/K) 604.206 60.4206 6042.06 631.237 

𝐶 (kJ/K) 3.4979e+4 3.4979e+3 3.4979e+5 3.1663e+3 

𝐶 (kJ/K) 4.0425e+4 4.0425e+3 4.0425e+5 8.4758e+3 

𝐴௪ (kJ/K) 7.3503 0.73503 73.503 2.0165 

Table 3-System identification results 

Noticeably, the transparent component area was reduced by the identification process; indeed, while the guess 

value considered the actual area of the windows, solar radiation is measured in terms of its direct, vertical 

component, therefore a reduced identified value for the window area was expected. 

The last week served as a testing dataset to compare the behaviour predicted by the identified system to the 

real one provided by the measured (in this case, simulated) dataset. This comparison is made on the output of 

the system, which is the internal air temperature. Figure(21) compares the predicted behaviour (blue line) to 

the actual one (grey line).  

 
Figure 21-Simulated response of the identified system 

The identification toolbox provides the Normalized Root Mean Square Error (NRMSE) between the predicted 

and the actual temperature across the entire week as a metric to quantify the quality of the predicted system. 

In the continuous domain, the simulated response comparison resulted in a NRMSE equal to 76.28%. 

The last step is the discretization of the identified system. In fact, the RC model will be employed in the MPC 

control unit which operates by timesteps of one hour each. 



Moreover, the control signal coming from the MPC controller are staircase inputs, that is inputs that are 

constant throughout the whole timestep. Therefore, the discretization method of choice was the Zero-Order 

Hold method (ZOH) that indeed considers uniform inputs at each timestep: 

𝑢(𝑡) = 𝑢[𝑘] 

where 𝑡 represents the continuous time coordinate, while 𝑘 is the discrete timestep. 

The discretization was obtained with the “c2d” Matlab function, and its comparison with the collected data is 

shown in Figure(22): 

 
Figure 22-Simulated response of the Identified system in the discrete domain 

The NRMSE decreases in the discrete domain to 35.27%. 

In discrete domain matrixes 𝐴 and 𝐵 become: 

 

𝐴,ௗ = ൭
0.0559 0.9196 0.0197
0.0183 0.9737 8.6493𝑒 − 4
0.0015 0.0032 0.9953

൱ 

 

𝐵,ௗ = ൭
0.0049 1.7514 3.5318
0.0071 0.0769 0.1552

9.4691𝑒 − 6 0.006 0.0121
൱ 

 

 

  

 

 

 

 

 

 



3.5 Control objectives and KPIs 

The different strategies studied in the present work are oriented towards the attainment of various, often 

contrasting goals. The actual attainment of these objective requires quantitative indexes to be assessed. The 

following goals have been considered in the different proposed strategies. 

 Self Sufficiency. Self Sufficiency (SS) is a measure of how “independent” the system is energy wise, 

that is, how much the system relies on external input of energy for its operation. In detail, SS is defined 

as follows: 

𝑆𝑆(%) =
𝐸

𝐸ௗ
× 100 (3.11) 

where 𝐸 is the locally generated and consumed energy and 𝐸ௗ is the energy required by the 

facility, indeed in terms of its loads.  

 Self Consumption. Self Consumption (SC) is a measure of how well a system exploits locally 

generated energy over a period of time. Indeed, its definition is: 

𝑆C(%) =
𝐸

𝐸௩
× 100 (3.12) 

where at the denominator stands the locally  produced energy 𝐸௩. 

 Monetary cost. The monetary cost considered in this work is the sole expense related to the energy 

acquired from the grid, and does not consider other factors, such as maintenance costs. As a 

consequence, reducing the cost will depend on both the amount of energy acquired per se and the 

pricing of energy itself. As will be shown in Chapter 4, when pricing varies significantly from high to 

low tariffs, the choice of the most convenient price might lead to greater economic savings, even if the 

overall energy acquired is higher. Therefore, monetary cost and energy related indicators can at times 

be contrasting goals.  

 

 

 

 

  



4 Chapter 4: Rule Based Control Strategies 

In this chapter Rule Based control (RBC) is investigated. Rule based control is a control technique based on a 

set of if-then-else rules that operate decision on the control action to be sent to the plant. Traditional rule based 

control is a simple, reactive technique that does not include optimizing or prediction capabilities. However, 

literature shows how it can be very effective in reaching specific goals. For instance, (Mařík et al. 2011) 

observed that RBC can achieve significant energy savings when applied to heat pump operation. Two simple 

rule based control algorithms were tested and compared to two predictive RBC strategies for the management 

of an HP coupled with photovoltaic local production to improve Self consumption and minimize the final 

energy needs. Self consumption was enhanced in (Baggio, Bee, and Prada 2018) with a RBC strategy based 

on instantaneous PV production.  

Four RBC strategies are formulated for the control of the energy system serving the PVZEN building, whose 

details are specified in Chapter 3. Two of these strategies are assumed as baseline and do not aim at attaining 

any specific goal. Two enhanced, objective oriented RBC strategies were then compared to the baselines by 

means of the KPIs defined in Chapter 3. 

4.1 Simulation environment 

The strategies formulated were tested in a simulative fashion by means of different pieces of software of 

different nature that operated in synergy with each other. These are: 

 EnergyPlus. This piece of software provides the building white box model and was used to return the 

energy thermal and electrical needs, which were assumed to be fixed, or rather non-controllable by the 

proposed strategies. 

 Matlab. Simpler, lumped-parameter equations were written on Matlab codes for the modelling of the 

energy system serving the building, namely the hot water tank, the heat pump, the electric battery and 

the electric power exchange between the system, the battery, the photovoltaic panels and the power 

grid. 

 BCVTB. This piece of software, called Building Control Virtual Test Bed or BCVTB for short, enables 

different pieces of software to be connected to create a co-simulation environment. BCVTB acts at 

each given timestep of a set simulation period by allowing an exchange of data between the different 

actors of a system. Being intended for control, the present co-simulation linked the response of a 

system, modelled with both EnergyPlus and Matlab scripts to a controller, again written in Matlab. In 

detail, at each timestep the building response, quantified through the suitable output parameters, is sent 

to the Matlab programme that reads these values and computes a consequent control action. this 

establishes a proper closed loop or feedback mechanism that is required for a control system. 

4.2 Components modelling and methodology 

The methodology suggested in this work uses models of different nature. As already mentioned, the building 

dynamic behaviour is predicted by means of EnergyPlus, which can be assumed to simulate the exact building 

response. The other components are described through easier equations as better detailed below. 



The simulation environment and the modelling choice, along with the suitable KPIs to compare the different 

results, make up a paradigm that could easily be reproduced in other works to test control strategies in a similar 

setting. Moreover, this methodology is perfectly suitable for testing on field with a real system.  

 

 
Figure 23-Simulation and testing methodology 

The system layout is recalled in Figure(24): 

 
Figure 24-Plant layout 
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4.2.1 Thermal energy storage 
The thermal energy storage system is a water tank that stores the hot water produced by the heat pump. The 

tank has a total of two inlets and two outlets, and it is connected to the rest of the system by two hydraulic 

circuits. 

Phenomena happening inside water tanks include mixing, natural and forced convection, and heat conduction 

through the different layers of the fluid. These phenomena require detailed models which are highly demanding 

in the modelling phase as well as during simulation, as their computational needs can be substantial. As a 

result, a simpler, lumped parameter model was chosen for the water tank, that describes the TES dynamics by 

means of a single time dependent variable, this variable being its internal temperature 𝑇௧. Clearly this is 

possible on the assumption that perfect mixing takes place inside the tank: while this is not the most accurate 

choice, two reasons motivate it. Firstly, convection and conduction inside the tank will make the temperature 

field of the inside volume more uniform with time; secondly, the model preserves the first principle of 

thermodynamics as the overall internal energy inside the TES varies according to the heat delivered by the 

heat pump or subtracted by the building HVAC system in accordance with the energy conservation equation. 

In detail, heat exchange takes place as follows: 

 Heat provided by the HP as:  

�̇�୦୮ = 𝜌௪𝑐௪�̇�ଵ(𝑇 − 𝑇ௗ) (4.1) 

 Heat subtracted by the HVAC system:          

�̇�୲ୣ୰୫ = 𝜌௪𝑐௪�̇�ଶ൫𝑇௦௨ − 𝑇௧൯ (4.2) 

 Internal temperature variation 

𝑉𝜌௪𝑐௪

𝑑𝑇௧

𝑑𝑡
 (4.3) 

 𝑇ௗ = 𝑇௧ = 𝑇௧ since parameters are lumped 

 

Figure 25-TES working scheme 

 



The overall energy balance equation shall be: 

𝑉𝜌௪𝑐௪

𝑑𝑇௧

𝑑𝑡
= 𝜌௪𝑐௪�̇�ଵ(𝑇 − 𝑇௧) + 𝜌௪𝑐௪�̇�ଶ(𝑇௧ − 𝑇௧) (4.4) 

Here, 𝑐௪ represents the water thermal capacity and  𝜌௪ is the water density. This equation can be easily solved 

in discrete form with the Forward Euler Method. 

The main parameters of the tank are summarized in Table(4): 

 

Quantity Value 

Minimum water temperature 35°C 

Maximum water temperature 45°C 

Volume 1,335 m3 

Water specific heat capacity 4186 J/kg/°C 

Water density 1000 kg/m3 

Primary pump flowrate (nominal) 0.4 kg/s 

Table 4-Tank sizing data 

 

4.2.2 Heat pump 
The heat pump was assumed to have a constant COP equal to 3, a mass flowrate of 0.4 kg/s and a fixed 

temperature 𝑇 for water production. Outlet temperature and pump flowrate being set, the thermal power 

delivered by the heat pump shall be computed at each instant as: 

�̇�୦୮ = 𝜌௪𝑐௪�̇�ଵ(𝑇 − 𝑇ௗ) (4.5) 

where 𝑇ௗ is the temperature of the cold water returning from the tank. This simulates a realistic operation 

logic for a heat pump, as the settings can be given in terms of pump flowrate and water production regulations, 

while the power delivered is unknown and computed a posteriori.  

As a maximum thermal power was set to 9.2kWth, during operation the following situation might occur: if 

temperature 𝑇ௗ is too low, fixed 𝑇 and pump flowrate would result in a thermal power higher than the 

maximum capability of the HP. To avoid this, either the flowrate or the water production temperature must be 

decreased. From a technological perspective, it is easier for the system to reduce the pump motor rotational 

speed rather than the temperature at the outlet, as this might affect the water tank as well. Therefore, mass 

flowrate shall be recomputed as follows: 

�̇�ଵ =
�̇�୦୮,୫ୟ୶

𝜌𝑐௪(𝑇 − 𝑇ௗ)
 (4.6) 

 



4.2.3 HVAC system 
The HVAC system and its distribution piping network where not modelled in detail. The heat delivered by the 

terminals was computed by EnergyPlus through the object IdealLoads which returns the heat necessary to 

balance the heat losses of the building, given its heat gains. However, an assumption was made on the nature 

of the terminals to work at low temperature, namely 35°C. This means that water in the tank can be stored at 

any temperature equal or greater than 35°C; if greater, a mixing valve could easily regulate the temperature to 

be suited for the optimal operation of the terminal. Moreover, this assumption is conservative, since a lumped 

parameter model considers the average temperature inside the whole control volume; if the average 

temperature is equal or above 35°C, water on the upper outlet of the tank will be equal to that temperature in 

the worst case.  

4.2.4 Battery and electric power exchange 
The battery State of Charge (SOC) evolves in time through the following equations, valid for charging and 

discharging mode respectively: 

𝑆𝑂𝐶(𝑡) = 𝑆𝑂𝐶(𝑡 − 1) − 𝜂

𝑃௧(𝑡)∆𝑡

𝐶௧
(4.7) 

 

𝑆𝑂𝐶(𝑡) = 𝑆𝑂𝐶(𝑡 − 1) −
𝑃௧(𝑡)∆𝑡

𝐶௧
(4.8) 

where 𝑆𝑂𝐶(𝑡) is the State of Charge at instant 𝑡, 𝑆𝑂𝐶(𝑡 − 1) is the SOC at the previous time instant, 𝜂 

represents the charging efficiency, 𝐶௧ is the battery storing capacity and ∆𝑡 is the timestep of the adopted 

discretization. 𝑃௧ is the power exchanged by the battery, with the convention that a negative value accounts 

for an increase in SOC of the battery. 

The battery of choice was a commercially available model, the US2000 by Pylontech®, which was used as a 

reference for the sizing parameters, summed up in Table(5): 

 

Battery capacity 2400 Wh 

Minimum State of Charge 4% 

Max. charging power  1325 W 

Max. discharging power 1231 W 

Charging efficiency 96% 

Table 5-Battery data 

The electric power fluxes of the system are regulated by a Rule Based logic that involves the following 

quantities, other than 𝑃௧: 

 The power produced by the PV arrays 𝑃௩, as provided by EnergyPlus; 

 The building demand power load 𝑃ௗ, that accounts for all the non-HVAC power demand 

(computers, lights etc…) and for the HP electric demand; 



 A quantity called 𝑃ௗ , that makes up for the energy balance with an exchange with the power grid, 

according to the equation: 

𝑃ௗ = 𝑃ௗ − 𝑃௩ − 𝑃௧ (4.9) 

The logic adopted for the management of this power exchanges is rule-based and favours the usage of locally 

produced energy over the acquisition of power from the grid. 

 

4.2.5 Occupation and internal loads 
The people occupancy profile was modelled according to the most likely behaviour for a study room, as 

summarized in the top plot of Figure 1; accordingly, the electrical consumption of the non-HVAC equipment 

(computers, projectors and lighting) follows the profile shown in the bottom plot of Figure(21). 

 

 
Figure 26-Non-HVAC power demand and occupancy profile 

 

  

 

 

 

 

 

 

 

 



4.3 Strategies formulation 

The strategies formulated in this section are Rule-Based and aim at improving the operation of the system with 

respect to set goals. All the different strategies are tested with the methodology illustrated in the previous 

paragraphs under the same boundary conditions of occupancy, heating demand, time of the year, internal gains 

and internal loads. Essentially, the overall power demand of the building will remain the same for all 

simulations, while the various control strategies will operate their choices for the best management of the 

storge systems. 

All the implemented Rule Based strategies operate a choice between two working modes for the heat pump: 

 Mode 1. This working mode solely guarantees a minimum temperature inside the water tank of 35°C. 

This means that for any temperature above 35°C the heat pump will not operate; the temperature of 

35°C is maintained through an ON-OFF controller.  

 Mode 2. In this mode, the heat pump operates by producing water at 45°C until the storing capacity of 

the tank reaches its limit. Again, this translates into an ON-OFF control for the tank temperature 

around 45°C. 

The formulated strategies differ from each other in the way they choose between mode 1 and mode 2. In detail: 

 RBC1: the heat pump only operates in mode 1; 

 RBC2: the heat pump only operates in mode 2; 

 RBC3: mode 2 is the mode of choice when the battery SOC is above 90% and mode 1 is the choice 

otherwise; 

 RBC4: mode 2 is the mode of choice when the electricity price is at its lowest tariff level and mode 1 

is the choice otherwise; 

Of the two working modes for the heat pump, mode 2 is the one that favours heat storage, at the expense of 

instantaneous consumption on behalf of the HP. The criterium adopted for the choice of such a mode will 

therefore push the system towards the enhancement of a given objective. RBC3 operates in mode 2 when the 

battery SOC is above 90%, that is when locally produced energy is available. In fact, the rule based logic 

governing the battery exchanges does not charge the battery with energy coming from the grid. RBC3 is 

therefore expected to perform in terms of Self Sufficiency and Self Consumption, possibly at the expense of 

an increased monetary cost. Conversely, RBC4 favours the operation of the HP for the storage of heat when 

electricity prices are at their lowest, with no regard to energy related criteria such as battery state of charge or 

photovoltaic production. As a consequence, this strategy is intended to reduce the economic expense for the 

energy acquired. 

RBC1 and RBC2 do not take any decision on the basis of either economic or energy related factors: they are, 

indeed, assumed as baselines and are expected to perform poorer on both fronts.  

 



 
Figure 27-RBC strategies objectives 

 

The pricing adopted for the simulation of non-constant electricity tariffs follows this schedule: 

 higher price (0.3€/kWh): from Monday to Friday between 8am and 7pm; 

 medium price (0.165€/kWh): from Monday to Friday between 7am and 8am and between 7pm and 

11pm; on Saturdays from 7am to 11pm; 

 lower price (0.03€/kWh): all of the remaining time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thermal Storage 
management

Baseline strategies

RBC1

RBC2

Energy oriented
RBC3

Cost oriented RBC4



4.4 Results 

The simulation results are shown in Figure(28). The resulting profiles have been reported for the sole first 

week (February 14th-20th) of simulation for better graphical clarity (quantitative results will be computed on 

the entire simulation period). 

 

Figure 28-RBC strategies simulation results 

The top plot shows the time profile of the electricity prices (y-axis on the left) and of the thermal power 

delivered to the building.  

Focusing on RBC1 and RBC2, it is easy to notice how the HP power profile closely follows the heating power 

demand of the building in qualitative terms. Indeed, with these two strategies the TES merely functions as a 

hydraulic separator, with hardly any storing capability being employed and no criteria of convenience being 



followed. As expected, RBC2 works with a TES at its highest working temperature and therefore allows a 

smoother profile of heat pump usage, thus proving to be a preferable choice.   

RBC3 and RBC4 display much more varied profiles. Chiefly, they notably allow a time shifting between the 

heat pump usage and the building power demand profile. This proves how these strategies are able to decouple 

the operation of the heat pump from the instantaneous thermal needs of the facility. More in detail, RBC3 has 

the heat pump work during the central hours of the day, when photovoltaic production tends to be at its highest. 

Indeed, the purpose of this strategy is to better employ the locally produced renewable energy when available. 

Moreover, with this control system, the battery SOC tends to stay away from saturation and that limits the 

amount of energy yielded to the grid, thus increasing Self Consumption.  

RBC4, on the other hand, shifts most of the operating time of the heat pump to the night hours, when prices 

are at their lowest. However, these hours of the day are the ones with no photovoltaic production, which 

conversely peaks during daytime when tariffs are high.  

All of the strategies were tested over the same period of time, and then compared qualitatively and in terms of 

their KPIs. Since the building energy demand is the same in terms of both thermal and electrical energy, 

different performances are due to the control of the storage systems, particularly that of the TES, whose 

function is to decouple heat production form the heating energy demand. Indeed, the overall energy consumed 

by the heat pump is the same for all cases, with the exception of the difference in possible residual energy 

stored in the tank. This proves how control systems can noticeably affect the performance of energy system 

by simply time shifting the load profile of the heat pump.  

At the same time, power production from the photovoltaic arrays and the electric power demand of internal 

loads are the same regardless of the strategy adopted, therefore the control system must manage the electricity 

exchanges and the heat pump operation according to the intended goal. In this instance, two were the goals: 

reducing the expense and maximizing the exploitation of locally generated electric power. The former goal 

has been attained by storing thermal energy when electricity prices were at their lowest. Achieving the latter 

is possible depending on the per se amount of energy acquired from the grid, with no regard to its price. A 

simple energy balance computed on the simulation period shows that the sum of the energy acquired from the 

grid and the energy produced must equal the sum of the energy consumed by the facility and the energy yielded 

to the grid.    

Numerical results, quantified by the previously defined KPIs, confirm the expectations regarding the outcome 

of the compared strategies. Indeed, both RBC1 and RBC2 result in a poorer performance with respect to energy 

management and economic savings. As expected, RBC3 displays a remarkable improvement with respect to 

Self Sufficiency and Self Consumption, albeit at the expense on a poorer economic performance. Conversely, 

RBC4 decreases its energy related KPIs when compared to both RBC3 and the two baseline strategies, while 

significantly decreasing the economic expense.     

 

 

 



Control strategy Self-sufficiency Self-consumption Gross expense 

RBC1 59.10 % 52.75 % 13.95 € 

RBC2 62.29 % 57.59 % 13.67 € 

RBC3 72.89 % 67.39 % 10.84 € 

RBC4 55.85 % 51.63 % 6.53 € 

Table 6-RBC simulation results 

4.5 Conclusions 
The RBC strategies presented in this chapter proved to be effective albeit simple. Indeed, RBC control 

strengths lie in the following characteristics: 

 Simple design and implementation. These strategies are based on simple rules that can easily 

transferred to different buildings and different system layouts. Being entirely reactive, RBC does not 

require any prediction model, and few, easy-to-obtain measurements such as water tank temperature 

and battery SOC provide all the input data for the controller. Moreover, the simple nature of the 

controller poses no concerns regarding computational capabilities of the control logic units.  

 Goal attainment. The simple structure of the RBC strategies does not prevent them from obtaining 

significant improvements in attaining the set purposes. Indeed, both RBC3 and RBC4, being the two 

enhanced strategies, proved to be effective in improving the desired KPI.  

 Consolidate experience. Rule based control has been in use for decades by control engineers in the 

building energy field and has been extensively investigated by researchers. Clearly, future 

advancement in control technologies may take advantage of this sound, extensive pre-existing 

experience.   

On the other hand, this work has highlighted some drawbacks of Rule-Based control techniques. Chiefly, the 

following flaws are mentioned. 

 Non optimal solutions. Control actions computed by classical Rule-Based controllers are not 

specifically tailored for the exact boundary conditions that influence the plant and for the states in 

which the plant finds itself at a given time. In other words, while improvements can be achieved by 

these controllers, these improvements are not in general optimal, in that a better choice for the control 

action is in general possible. 

 No prediction capabilities. RBC is reactive in nature, which means that the control action is not based 

on any predictions as how the plant might evolve as a consequence of that action. Moreover, 

predictions might involve disturbances too. Classical RBC cannot include such models, and that 

excludes potentially improvements in the selection of the most appropriate control action. 

 Single objective control. This work compared the results of strategies (RBC3 and RBC4) that were 

oriented towards one specific goals. In fact, when improving on Self Sufficiency and Self 

Consumption, RBC3 resulted in a higher expense when compared to RBC4, which, conversely, greatly 

reduced the gross monetary cost at the expense of decreased SS and SC 



The forementioned flaws of Rule-Based control call for a different control strategy that would be able to 

compute optimal actions by exploiting a prediction capability, all the while reaching improvements under more 

than one specific goal. All these requirements are met by Model Predictive Control, which will be investigated 

in Chapter 5 by formulating a control strategy on the same case study of Chapter 4 and comparing it to a 

baseline RBC logic.   

 

  



5 Chapter 5: MPC strategies 

5.1 Simulation environment 

Model Predictive Control involves different actors in its operation. In order to test an MPC strategy in a 

simulative fashion, a proper simulative environment must be set to enable the interaction between the elements 

that make up the controller and the control system.  

Firstly, the controller must include a reduced model of the controlled plant and an optimizer for the cost 

function to be minimized. The reduced model and the problem constraints were written in the HYSDEL 

language (Torrisi and Bemporad 2004) and translated into an optimization problem by the MPT Toolbox. MPT 

(Multi-Parametric Toolbox) Toolbox is a free toolbox for Matlab that allows the design, the analysis, and the 

deployment of optimal controllers for the solution of hybrid, linear and nonlinear systems. 

The optimization problem is formulated by MPT, then Matlab calls the Gurobi optimizer for the solution of 

the problem. 

The surrogate model of the system is provided by EnergyPlus for the building response, while Matlab models 

substitute the pieces of storage equipment.  

 

5.2 Ventilation load estimation 
For the MPC simulation, an explicit estimation of the ventilation load in the building was conducted. In fact, 

for previous RBC strategies this load was computed by EnergyPlus and simply read by the control system, 

then the heat subtracted from the water tank included this load. Such an approach is justified for a reactive 

control system simulation. Indeed, reactive control does not require a knowledge of the system as a whole, but 

can focus on a single portion of it, the single portion being the energy system serving the building rather then 

the building itself. RBC strategies of Chapter 4 would work both in a simulation and in a real application with 

any thermal and electrical power profile used by the building as no prediction of that portion of the system is 

a requirement for the control logic to operate its choices.  

MPC control, on the other hand, must know all the quantities involved in the controlled process, at least at the 

level at which control operates. Any quantities involved in the MPC optimization must be either a prediction 

or a control choice of the controller. Heat delivered to the building to make up for the envelope thermal losses 

will be in this formulation computed with the aid of the RC model as control variables. Ventilation 

consumption, on the other hand, will be estimated as therein explained and passed to the MPC as a prediction. 

 

Ventilation thermal power can be computed as: 

𝑄௩௧ = �̇�௩௧𝜌𝑐,(𝑇 − 𝑇) (5.1) 

where �̇�௩௧ is the air volume flow rate while 𝜌 and 𝑐, are the air density and heat capacity respectively. 

Ventilation is proportional to the difference between the internal air and the external air temperature (𝑇 − 𝑇). 



Ventilation volume flowrate was computed according to the UNI10339 as 6 ∙ 10ିଷ𝑚ଷ/𝑠 per occupant and the 

ventilation system was supposed to work with a constant flowrate for an occupancy of ten people during the 

opening hours of the facility. 

While flowrate, density and heat capacity are known values (density and capacity were assumed to be 

constant), temperature difference (𝑇 − 𝑇) is a source of non-linearity for the system. Indeed, while external 

air temperature is a predicted quantity, internal air temperature is a state whose value in time along the 

prediction horizon changes depending on the actions taken by the controller. Consequently, 𝑄௩௧ could not 

be considered a prediction, being a function of state 𝑇 itself. To overcome this problem, internal temperature 

𝑇 was assumed as constant and equal to 20°C.  

 

5.3 Model Predictive Control formulation 

The MPC strategy is intended to manage the optimal operation of the energy system serving the PVZEN 

building as described in Chapter 3. The system layout is reminded in Figure(29): 

 
Figure 29-Plant layout 

MPC controllers work by controlling the system within the desired operating conditions while optimizing 

given criteria. Therefore, when formulating the MPC problem, priority is given to the maintenance of the states 

of the system within the boundaries indicated by the constraint.  

The system dynamics is described by state space equations in the reduced model which will be embedded into 

the MPC control unit. The control unit will then compute the control action on the basis of the reduced model 

and the optimizer. 

 



5.3.1 Reduced model of the system 
The first step of the design process was the formulation of a state space set of equations that would make up 

the reduced model to be embedded into the control unit. Firstly, it is necessary to define what states will be 

employed for an accurate dynamic description of the entire system. 

For each system component, one or more states have been pinned out as the most representative physical 

quantity for its description. This paragraph will describe all these reduced model equations that allowed a 

single system to be written. 

 

For the building, the equivalent RC circuit was chosen as the reduced model. The identification process of this 

grey box model is detailed in Chapter 3. As explained in that chapter, three states were considered for a proper 

dynamical description of the temperature evolution of the system. The equations are now recalled: 

 

൜
�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡)
  (5.2) 

 

Vector 𝑥 collects the three temperature nodes of the RC equivalent model that were selected as states; in 

detail, 𝑥 = [𝑇 , 𝑇, 𝑇]், where 𝑇, 𝑇 and 𝑇 are the internal air temperature, the envelope temperature and 

the medium temperature respectively. Inputs of the systems, including both control signals and disturbances, 

are collected in vector 𝑢 = ൣ𝑇 , 𝛷௦ + 𝑄௩ , 𝛷௦൧
்

, where 𝑇 is the external air temperature, 𝛷௦ is 

the sum of the internal heat gains (people occupancy, lighting and appliances heating power), 𝑄௩ is the 

power provided by the HVAC heating system and 𝛷௦ is the direct solar radiation on the facility site. All these 

quantities have been considered as inputs for the system. However, 𝑄௩ is of a different nature in the MPC 

perspective. In fact, external air temperature, internal gains and the solar radiation will not be computed by the 

control system as control variable, in that they are boundary conditions that will influence the system as 

disturbances. 𝑄௩, on the other hand, is a control variable whose value is not predicted by is computed as an 

output of the control unit.  

 

The tank model is a simplified one that uses only one state for the description of the tank dynamics. The 

equation is: 

�̇�௧ =
1

𝜌𝑐𝑉
[𝑄ு − (𝑄௩ + 𝑄௩௧)] (5.3) 

where 𝑇௧ is the water temperature inside the tank (see Chapter 3 for details of the model), 𝜌 is the water 

density, 𝑐 is the water thermal capacity and 𝑉 is the thermal storage volume. 𝑄ு is the heat produced by the 

heat pump which enters the TES as a heat flux, increasing its temperature. 𝑄௩௧ is the ventilation heat load 

that will be seen by the tank as a heat loss, along with 𝑄௩  which accounts for the heat transferred from the 

thermal storage to the building. Again, while 𝑄௩ and 𝑄ு are control input computed by the controller, 

𝑄௩௧ is here treated as a prediction. 

 



This equation is discretized with the selected timestep ∆𝑡 as: 

𝑇௧,ାଵ = 𝑇௧, +
1

𝜌𝑐𝑉
ൣ𝑄ு, − ൫𝑄௩, + 𝑄௩௧,൯൧∆𝑡 (5.4) 

 

A similar model is employed for the battery, whose state variable is the State of Charge. The SOC evolution 

follows Eq(…): 

𝑆𝑂𝐶̇ (𝑡) = −𝜂

𝑃௧(𝑡)

𝐶௧
 (5.5) 

where 𝑆𝑂𝐶 is the battery state of charge, 𝜂 is the charging efficiency, assumed in this case as equal to 

the discharging efficiency, 𝐶௧ is the battery capacity and 𝑃௧ is the power exchanged by the battery. 𝑃௧ is 

a control variable. 

 

In order for the reduced model to provide predictions of the state’s evolution, these state space equations must 

be collected into a single, solvable system. This was made possible by the presence of 𝑄௩ and 𝑄ு which 

both belong to two different equations. The resulting system, in continuous form, becomes: 

 

⎩
⎪
⎪
⎨

⎪
⎪
⎧

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)

�̇�௧ =
1

𝜌𝑐𝑉
[𝑄ு − (𝑄௩ + 𝑄௩௧)]

𝑆𝑂𝐶̇ (𝑡) = −𝜂

𝑃௧(𝑡)

𝐶௧

𝑃ௗ = 𝑃ௗ௦ +
𝑄ு

3
− 𝑃௩ − 𝑃௧

(5.6) 

 

5.3.2 Constraints 
Constraints are requirements on the values that both states and control variables can have during the time 

evolution of the system. The rationale behind constraints is that some quantities in the system cannot go below 

or above a set threshold, for instance to satisfy technological or comfort constraints.  

Constraint can be formulated in two forms: 

 Hard constraints. Hard constraints are expressed as inequalities in the MPC formulation, and they 

cannot be violated. For instance, for a given state 𝑥 to be constrained between a minimum value 𝑥 

and 𝑥௫, a hard constraint shall be formulated as: 

𝑥 ≤ 𝑥 ≤ 𝑥௫ 

 Soft constraints. Hard constraints might be too strict for the system to be satisfied; in fact, a single 

violation of a hard constraint yields a non-feasible solution. Often a soft constraint formulation is a 

preferrable choice when setting constraints. Soft constrained are introduced in the MPC formulation 

by means of slack variables. The previous example of a hard constraint would become: 

𝑥 − 𝑠 ≤ 𝑥 ≤ 𝑥௫ + 𝑠 



where 𝑠 is the slack variable. The slack variable 𝑠 is then treated as a control variable, whose value 

will be chosen by the MPC. The slack variable itself will then be constrained: 

൜
𝑠 ≥ 0

𝑠 ≤ 𝑠௫
 

where 𝑠௫ is the maximum value allowed for the slack variable.  

 

The constraints related to the building states is on the internal air temperature. Clearly, this will be motivated 

by comfort requirements; in this work, the simulation being conducted in winter season, a minimum 

temperature will be set at 𝑇, = 19°𝐶. In order to allow violation to this condition, a slack variable 𝑠் is 

introduced, whose maximum acceptable value is 2°C.  The soft constraint becomes: 

𝑇 ≥ 𝑇, + 𝑠்  (5.7) 

 

The water tank must operate between two temperatures, set as 35°C (𝑇௧,) in the lower boundary and as 

55°C (𝑇௧,௫) as the upper boundary. A slack variable 𝑠௧ allows the constraint to be of the soft kind. The 

inequalities become: 

  

𝑇௧, ≤ 𝑇௧ ≤ 𝑇௧,௫ (5.8) 

 

The limitations on the battery are formulated as hard constraints. Indeed, while temperature limitations in a 

component such as the water tank or in the building might be violated with possible repercussion on the 

component optimal operation or on the occupants’ comfort, these “extreme” temperatures are physically 

possible. On the other hand, a battery State of Charge cannot possibly be violated under any circumstances, as 

a SOC below zero or above the maximum capacity would be physically meaningless. The constraint becomes: 

 

𝑆𝑂𝐶 ≤ 𝑆𝑂𝐶 ≤ 𝑆𝑂𝐶௫ (5.9) 

 

where 𝑆𝑂𝐶 = 4% and 𝑆𝑂𝐶௫ = 96%. 

Another technological limitation affecting the battery is related to its maximum charging and discharging 

power. This translates into the following condition, again a hard constraint being once more a technological 

limit: 

𝑃௧, ≤ 𝑃௧ ≤ 𝑃௧,௫  (5.10) 

 

where 𝑃௧, = −1.3𝑘𝑊 and 𝑃௧,௫ = +1.3𝑘𝑊. The sign is due to the fact that the power can be 

exchanged by the battery in both directions.  

 

The heat pump maximum power was set to 10kWth, and the maximum power that can be delivered by the 

heating system is equal to 8kWth. These constraints are of the hard kind: 



 

0 ≤ 𝑄ு ≤ 10𝑘𝑊

0 ≤ 𝑄௩ ≤ 8𝑘𝑊
 (5.11) 

 

 

An additional condition has been added to smoothen the time profile of the heat delivered as 𝑄௩. Indeed, as 

no limitations are given on the steepness of that profile, the control input coming from the MPC unit might be 

to steep or even bang-bang like. To overcome this, a fictitious state called 𝑄௩ ,௦௧ recorded the last value of 

the 𝑄௩ input sent to the plant and actually implemented. The equation related to this state is such that the 

value remains the same for the whole prediction horizon, so: 

 

𝑄௩,௦௧ = 𝑄௩,௦௧ (5.12) 

 

 

while a hard constraint is added to make sure that any new value of 𝑄௩ during that control horizon is never 

higher or lower that value of more than 1.5kW: 

  

𝑄௩,௦௧ − 1.5 ≤ 𝑄௩ ≤ 𝑄௩,௦௧ + 1.5 (5.13) 

 

5.3.3 Boolean condition 
The main goal of the here proposed MPC system is to minimize the energy acquired from the grid. In fact, 

since the HYSDEL language does not allow a specific destination for predictions, they must be included in the 

model as states by means of a techniques defined as rolling sequence by (Torrisi and Bemporad 2004).  As a 

consequence, only one tariff has been attributed to the purchase of electricity from the grid. Still, in order to 

compute the expense at each timestep, the controller needs to know the direction in which the exchange with 

the grid takes place. In fact, by defining a variable cost as equal to the tariff times the power exchanged with 

the grid (𝑃ௗ), price would be equal for sold and bought energy. This problem calls for a Boolean condition 

to be introduced to discern between selling and purchasing conditions.  

Boolean conditions in an MPC formulation yield a Hybrid Model Predictive Control and require the 

introduction of a discontinuous variable, that is a variable whose values can either be 0 or 1 depending on a 

given logical condition. A variable selling was therefore defined as: 

 

𝑠𝑒𝑙𝑙𝑖𝑛𝑔 = ൬𝑃ௗ௦ +
𝑄ு

3
− 𝑃௩ − 𝑃௧൰ ≤ 0 (5.14) 

 

so that when the electric power balance is negative, power is yielded to the grid and the whole system is in the 

“selling scenario”.  



An auxiliary variable cost is therefore computed according to an if-then-else condition on the Boolean variable 

selling: 

𝑐𝑜𝑠𝑡 = ൞
൬𝑃ௗ௦ +

𝑄ு

3
− 𝑃௩ − 𝑃௧൰ 𝑅ଵ 𝑖𝑓 𝑠𝑒𝑙𝑙𝑖𝑛𝑔 = 1

൬𝑃ௗ௦ +
𝑄ு

3
− 𝑃௩ − 𝑃௧൰ 𝑅ଶ 𝑖𝑓 𝑠𝑒𝑙𝑙𝑖𝑛𝑔 = 0

(5.15) 

 

This formulation allows to attribute two different tariffs for the sale and the purchase of energy (𝑅ଵ and 𝑅ଶ 

respectively). In particular, 𝑅ଵ was chosen to be zero as no remuneration was assumed for energy yielded to 

the grid, while 𝑅ଶ was set to 30c€/kWh.  

 

5.3.4 Cost function 
The cost function is the core of the MPC control strategy: it formalizes and quantifies the objectives of the 

designed control by assigning a weighting factor to the quantities involved in the problem. The sum of all those 

quantities multiplied by their respective weighting factors yields the cost, which the optimizer will try and 

minimize under the conditions defined as constraints.  

The mpt toolbox allows the following general formulation of the cost function: 

min
௨బ,…,௨ಿషభ

‖𝑃ே𝑥ே‖ + ൣ‖𝑄𝑥‖ + ‖𝑅𝑢‖൧

ேିଵ

ୀ

 (5.16) 

Here, 𝑥 is the vector of the states while 𝑢 is the vector of the inputs. Since these vectors evolve with time, their 

value at a given timestep 𝑘  between the first instant 𝑘 = 0 and the last 𝑘 = 𝑁 is indicated as 𝑥 and 𝑢. The 

first term of the cost function ‖𝑃ே𝑥ே‖ is a cost on the terminal state, that is, a cost on the system state at the 

last timestep of the control horizon; 𝑃ே is the weight on the terminal state. 𝑄 is a diagonal matrix that contains 

the weights to attribute to the states, while 𝑅 contains the weights for the inputs. Norms in the cost function 

vary according to the value of 𝑝: for tracking problem, norm2 (𝑝 = 2) is advised. In the present work, the 

interest in formulating an economic MPC, therefore norm1 was the norm of choice.  

The choice of weights is crucial in designing an MPC controller. Choices adopted in this work are therein 

reported and justified.  

Inputs variables were given the following weights: 

Quantity  Dimensions Weight  

HVAC delivered energy 𝑄௩ kW 0 

HP delivered energy 𝑄ு kW 0 

Battery energy exchange 𝑃௧ kW 0.05 

Internal temperature slack 𝑠் °C 300 

Tank temperature slack 𝑠்௧ °C 200 

Table 7-weights on input variables 

No weight has been assigned to the heat delivered by the heat pump and the HVAC system. Indeed, the system 

should be able to regulate the temperature profile of the building internal air and the water tank with no 



limitations provided that constraints are respected. This allows in particular the water tank to be filled when 

necessary and with no associated cost, so that its storing capability is best exploited.    

While the same rationale might hold for the battery, a small weight was given to 𝑃௧ that is justified by 

technological reasons. In fact, batteries lifetime is a relevant element in their deployment and limiting the 

number of charging/discharging cycles but giving a little price to the charging and discharging power was 

considered to be a preferrable choice. Weights on temperature slack variables 𝑠் and 𝑠்௧ are much higher 

as their values are in order of magnitude of the unit (°C) and violation of soft constraints, albeit tolerated, are 

preferably to be avoided.  

State variables were given the following inputs: 

Quantity Dimensions Weight 

Cost  c€/kWh 1 

Deviation from 𝑇 setpoint 𝑇,ௗ௩ °C 0.01 

Table 8-weights on state variables 

Finally, no terminal cost was defined. 

5.4 Baseline strategy 
In order to assess the effectiveness of the MPC implemented, an RBC was adopted as baseline. The RBC of 

choice was RBC3; this strategy is in fact oriented towards the best exploitation of locally produced energy to 

minimize the amount of energy acquired from the grid. As electricity price is assumed as constant in the MPC, 

RBC4 would not be suitable for a fair comparison with the former, since RBC4 bases its choices on the 

variation of energy tariffs.  

RBC3 was adjusted in all sizing parameters to provide a comparable and consistent benchmark for the 

evaluation of the MPC performance. However, as mentioned in section 5.2, the MPC based controller must 

provide the heating power for the building as a control action, whereas RBC strategies of Chapter 4 act by 

reading the power delivered by the HVAC system as it is determined by other control systems that do not 

interfere with the proper operation of the storage system RBC. For a fair comparison between RBC and MPC, 

an ON-OFF control was included in the control system to determine the power delivered to the building by the 

HVAC system.  

 

 

 

 

 

 

 

 



5.5 Results  
The simulations were conducted for nine days between Monday 11th and Tuesday 19th of February of 2019, 

year of the weather file.  

External air temperature, internal heat gains and site direct solar radiation are reported in Figure(30): 

 
Figure 30-Internal air temperature, internal gains and Site Solar radiation 

Photovoltaic production and internal electric power demand are displayed in the plots of Figure(31): 

 

 

Figure 31-Photovoltaic production and non-HVAC predicted electricity demand 

Internal electric power demand accounts for the sum of computers, projectors and lights. 

5.5.1 MPC simulation 
Internal air temperature control depends on the 𝑄௩ power profile. 𝑄௩ is a control variable for both the 

MPC and the RBC strategy. Figure(32) shows the temperature profile obtained by the MPC controller as it is 

influenced by the HVAC power: 



 
Figure 32-Internal air temperature and HVAC delivered power 

   

Temperature time profile, displayed in the top plot, shows some overshoots above 21°C due to the high 

contribution of internal gains on a small, well insulated building, particularly during daytime. These overshoots 

are not controllable by the controller since the HVAC system works in heating mode only during this time of 

the year. However, as to the lower boundary set to 19°C, the MPC manages to control temperature much more 

precisely, so much that it rarely drops below the lower boundary setpoint. Indeed, the relatively high cost on 

the internal temperature slack variable guarantees that the constraint, albeit soft, is for the most time respected. 

As to the 𝑄௩  profile, the constraint that limits its variation between two consecutive timesteps to 1.5kW is 

never violated.  

The second component controlled by the MPC is thermal energy storage. Inside, water temperature was 

restricted between 35°C and 55°C, and the null cost on heat pump operation allows the temperature to increase 

and increase to best employ the storing capability of the tank. The water tank state of charge is influenced by 

the ventilation thermal power as well. Water tank temperature is compared to the heat subtracted by the heating 

and the ventilation powers in Figure(33). 



 
Figure 33-Water tank control (MPC) 

Thirdly, the controller manages the electric power exchanges between the battery, the grid, and the electricity 

demand. The latter is made of the internal loads contribution, which is a predicted quantity, and the heat pump 

electric consumption. Since the aim of the controller is to minimize the amount of purchased power from the 

grid, the heat pump operation is expected to be shifted to the hours of the day in which PV production is at its 

highest values. Figure(34) shows that the MPC controller effectively shifts HP operation during daytime when 

the PV production peaks.  

 
Figure 34-Electric power exchanges (MPC) 



5.5.2 Baseline 
The Rule Based strategy adopted as baseline controls the internal air temperature through an ON-OFF logic 

with a hysteresis of 2°C around a setpoint of 20°C. The maximum value of the power delivered by the HVAC 

system was set to 1.5kW and is delivered with a bang-bang type profile. This results into a much less regular 

internal temperature profile, with very steep variations in short time intervals. Air temperature variations as a 

reaction of the delivered thermal power are shown in Figure(28): 

 

Figure 35-Internal air temperature control (RBC) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



The control of the tank water temperature is shown in Figure(36): 

 
Figure 36-Water tank control (RBC) 

It can be noticed that is kept in many instances at either 35°C or 55°C, which are the set lower and upper 

boundary values, as the RBC logic is to choose between these two setpoint at any time during operation. Since 

the external temperature is the same for both the MPC and the RBC simulations, ventilation power follows 

very similar profiles in both cases. This confirms that the assumption of an internal air temperature of 20°C as 

a constant value when estimating the ventilation thermal power proves to be solid. 

Finally, electrical exchanges between the system and the power grid are shown in Figure(37).  

 
Figure 37-Electric power exchanges (RBC) 



Qualitatively, as already observed when analysing the results of RBC3 in Chapter 4, the rule based strategy 

manages shifting most of the heat pump operating time during daytime, when PV production peaks, for a better 

exploitation of the locally produced energy. However, as quantitative results will prove, this improvement is 

still not as good as that achieved by the MPC, as its control is of optimal nature.  

Quantitatively, simulation results in terms of the indexes defined in Chapter 3 are reported in Table(9): 

 MPC RBC 

Self Sufficiency 80.83% 75.51% 

Self Consumption  89.2619% 86.2306% 

Total purchased energy 22.8398kWh 30.1705kWh 

Total monetary expense 6.81€ 9.05€ 

Table 9-Quantitative results of the MPC simulation 

All KPIs are substantially improved by the MPC strategy. Clearly, expense and purchased energy are in fact 

the same indicator as the tariff was considered constant.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 Conclusions 
The present thesis-work chiefly aimed at formulating and testing a Model Predictive Control strategy for a 

building energy application. The main challenge of this formulation was the integration of many components 

whose interaction led to a complex MPC formulation. The resulting formulation was that of a Hybrid Model 

Predictive Control system, as it included a discrete variable whose value was determined by a Boolean 

condition. The strategy was tested in a simulative fashion on a case-study consisting in an experimental 

building served with electrical and thermal storage systems and equipped with rooftop-mounted photovoltaic 

panels for the local generation of energy. Finally, the connection to the public power grid allowed a 

bidirectional flux of electric power. The MPC strategy aimed at minimizing the amount of energy acquired 

from the grid, increasing Self Sufficiency and Self Consumption while ensuring comfort conditions for the 

occupants and working conditions for the system equipment operation. Results showed a significant 

improvement with respect to these objectives when compared to a Rule Based strategy adopted as baseline and 

tested under the same boundary conditions.   

MPC showed, however, some limitations that call for further research to be conducted on the subject. The 

main obstacle that prevents a wider employment of MPC strategies lies in the optimization capabilities of 

software and hardware involved in the control process. Indeed, any MPC problem is translated into an 

optimization problem, whose solution becomes increasingly demanding as the complexity of the controlled 

system increases. Moreover, many building applications require hybrid formulations that make the 

computational burden even greater.  

Another aspect to be investigated is that of robustness of the control system with respect to non-perfect 

predictions. In fact, predictions in this work were assumed to be perfect, which was allowed by the simulation. 

Real applications, particularly in the building sector, might suffer from non-perfect predictions such as inexact 

weather forecasts or predicted occupants’ behaviours that are not met.  

Nonetheless this work and more significantly previous literature examples proved that MPC is a potent, 

promising technology that, if properly implemented and deployed, could lead to significant results in terms of 

energy savings, building integration in Smart Grids and attainment of comfort conditions for occupants. 

As to Rule Based Control, the enhanced strategies formulated in Chapter 4 proved that this control paradigm, 

albeit simple, is capable of achieving interesting results towards different goals. The main limitations of Rule 

Based Control lies in its non-optimal solutions and its difficulty in working towards contrasting goals. 

However, their simplicity, robustness and their consolidated knowledge make them a solution still to be 

considered in both research and applications. 
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