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Abstract 

As the seismic data obtained during hydrocarbon exploration today are 

significantly increasing, manual interpretation is getting longer, and study is being 

increased. For instance, up to one terabyte of data can be produced daily by a single 

seismic survey, and seismic data sets may exceed many petabytes quickly. In the 

last decade, interpreters have been using computer applications to accelerate the 

interpretation process. Research employing machine learning (ML) is being 

actively conducted in the petroleum industry in recent years. This study reviewed 

research papers published over the past decade that discuss ML techniques for fault 

detection and interpretation. The research trends and machine learning models 

explored in the 79 articles were studied in depth.  The results demonstrated that ML 

studies had been actively conducted in the industry since 2010, primarily for fault 

interpretation. The convolutional neural network was utilized the most among the 

ML models, followed by deep learning models.  
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Chapter 1  

1. Introduction and Background 

Oil and gas are two critical energy sources that will continue to satisfy the world's 

growing power demands for several decades to come. Seismic surveys, both 

onshore and offshore, are used by resource explorers to create accurate images of 

different facies, sedimentary rock formations, and their geometrical distribution and 

structural features within the Earth's crust. 

Subsurface mapping by seismic surveys provides accurate images of different rock 

formations and local geology. In a seismic study, elastic waves from seismic 

sources such as vibrator trucks (onshore) or air guns (offshore) propagate through 

the Earth crust and undergo attenuation, diffractions, refractions, and reflections 

along their paths and at geological layer boundaries. These waves are recorded by 

sensors, such as geophones or hydrophones, located on the ground surface. Seismic 

records, called raw seismic data, are manipulated through on purpose processing 

workflows made of a variety of processing steps (Yilmaz, 2001) such as 

deconvolution (Griffiths et al., 1977; Margrave et al., 2011), velocity analysis 

(Alkhalifah & Tsvankin, 1995), stacking (G. Liu et al., 2009) and migration (Gray 

et al., 2001; Sava & Fomel, 2006), is the result of the processing is a compact 

volume of data, typically referred to as migrated data or stacked seismic volume, 

that is then interpreted through a variety of attributes and modeling and inversion 

processes aim at extracting structural and petrophysical in the formation. 

The interpreter works to identify significant geological structures closely related to 

hydrocarbon traps such as salt domes and faults in seismic volume and further 

estimate the location and size of hydrocarbons' reservoirs. An effective 
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seismic interpretation requires geological understanding and considerable 

expertise. As the seismic data obtained during hydrocarbon exploration today are 

significantly increasing in size, manual interpretation is getting longer and represent 

the bottleneck of the exploration workflow. For instance, up to one terabyte of data 

can be produced daily by a single seismic survey, and seismic data sets may exceed 

many petabytes quickly (Bouzas, n.d.). If manual interpretation is the only option 

accessible to an interpretation team, interpreters must label and locate all essential 

structures in such a data collection and the process can last for months. 

In the last decade, interpreters have been using computer applications to accelerate 

the interpretation process. However, it is almost unimaginable for a machine to 

mimic an expert interpreter with enough geological knowledge because of 

complicated sub-surface details. While fully automated interpretation is hard to 

adapt, computer programming can extract the quantitative characteristics of 

different geological structures and facilitate seismic manual interpretations. Any 

automation systems have effectively shown their ability to cut down on 

interpretation tasks, time, and labor costs. Besides, computer interpreting 

approaches also need to entail interactivity with interpreters to improve the 

interpretation's accuracy and robustness. In the majority of instances, a user-

friendly interactive process may help prevent time spent on tuning parameters. 

Consequently, computer interpretation with minimal human intervention has 

gained more room in practice than traditional manual interpretation. New seismic 

interpreting methods and strategies for researchers have recently advanced into 

image processing techniques and artificial intelligence (deep learning and machine 

learning) algorithms. 

For years, theories and algorithms in image processing have been used to aid in 

structural interpretation and make essential contributions. Structural interpretation 

typically requires two key steps, extraction of features and identification of 

structures. Attributes collecting main seismic data elements are extracted from the 

image and using signal processing methods. For instance, instantaneous attributes 
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(Taner et al., 1979) are derived using the Hilbert transform, and spectral attributes 

(Neelamani & Converse, 2013; Sinha et al., 2005) are the results of multi-resolution 

analysis such as continuous wavelet (Rioul & Vetterli, 1991) and curvelet 

transforms (Starck et al., 2002). In the context of seismic images, geological 

features, edges, textures, and shape details are to be defined, which are essential for 

characterizing objects in natural images. Initially developed for natural pictures, 

edge detectors (Asjad & Mohamed, 2015; SOBEL & I., 1990), texture descriptors 

(Amin et al., 2017; Haralick et al., 1973), and Hough transform (N M AlBinHassan 

& Marfurt, 2003; Duda & Hart, 1972; Jacquemin & Mallet, 2005) have shown their 

strong ability to distinguish geological features in seismic images. In addition, the 

interpretation depends on the human visual system (HVS) as a complicated and 

subjective task. Recently, the HVS model algorithms such as color space analysis 

(Zhen Wang, Temel, et al., 2014) and saliency detection (Shafiq et al., 2018) were 

suggested to mimic the interpretation process by extracting the most distinctive 

features of seismic data. 

Machine learning has introduced new insights into its seismic interpretation role in 

recent years, allowing geologists to understand the connection between large 

quantities of geological information or data. Machine learning algorithms 

trained on input data promote seismic interpretation by delivering replicative and 

accurate outcomes and mitigate two primary challenges faced by interpreters, 

interpreting vast quantities of data simultaneously and recognizing the relationship 

between different forms of data. Machine learning approaches for interpretation are 

based on two significant models of perception. In one, multi seismic attributes were 

derived based on interpreter domain knowledge and then trained on machine 

learning models, which could be supervised or unsupervised, such as K-means 

clustering (H. Di & Alregib, 2017), Gaussian mixture model (Berthelot et al., 2013), 

the multi-layer perceptron (MLP) (H. Di & Alregib, 2017; Z. H. Zheng et al., 2014) 

and the support vector machine (SVM) (H. Di & Alregib, 2017). The other performs 

attribute extraction and structure classification of machine learning models, which 
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is efficient in analyzing visual imaging by the input of local patches (H. Di et al., 

2018; Haibin Di et al., 2018). Instantly, patch-based learning models can create 

mapping relationships between post-stack amplitude and structure spaces rather 

than extract predefined multiple feature attributes and automatically generate a set 

of features by considering local seismic reflection patterns. The seismic noise 

(random or coherent) and processing objects involved in local patterns can then 

efficiently be detected and excluded. Without interference by interpreters, patch-

based learning models focus mainly on the presence of geological structures in the 

dataset and replicate interpreters' actions to a certain level. Computer-assisted 

seismic volume interpretation often has two strategies. The first is to implement 

interpretation algorithms on two-dimensional (2D) seismic sections. However, 

interpreters must eventually tune each section's parameters to achieve high 

interpretation accuracy, thus increasing interpretation time and interpretation cost 

and reducing interpretation performance. The other is to expand seismic 

interpretation algorithms into 3D space and then apply them to seismic volumes. 

While 3D interpretation methods save time on tuning parameters, they typically 

have high time and space complexities. Methods with high numerical complexity 

take a long time to complete. Furthermore, 3D interpretation approaches strive for 

accurate interpretation from a global perspective, overlooking local regions' details. 

Seismic faults have important geologic implications for petroleum and gas 

explorations in the Earth's subsurface because they form structural traps for oil and 

gas reservoirs and block hydrocarbon movement due to their sealing characteristics. 

For prospective field development, it is essential to consider and evaluate the 

intricate relationships between fault networks, fractures, and stratigraphy. As a 

result, one of the critical steps in hydrocarbon exploration and production is the 

detection and delineation of faults. 

In this project we mainly focus on the systematic literature review of the fault 

detection using ML methods, and the goal is to provide solutions to questions that 

are initially arranged to define the scope and overall objectives of the review. Our 
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two main questions are: RQ 1: What are the current ML research trends in fault 

detection (yearly, publication sources, application fields in detail)? And RQ 2: 

Which ML models were frequent in the research papers (data type, large data, 

model usage frequency, application in the field)? A search method is then 

developed to efficiently collect research papers on research questions and set 

criteria to choose appropriate studies from search results. The abstracts and results 

of the articles are then reviewed to assess their relevance in the field of research. 

Following that, data is extracted from the paper to differentiate and structure the 

relevant details. 

The main objective of this review is to provide an update on the current state of ML 

in seismic fault detection. The research questions were determined based on the 

purpose. The aim of RQ 1 is to describe the current state of ML study in the field. 

It refers extensively to the present state of the annual publication and its field-

related implementations. RQ 2 lists the ML model used in the analysis. It expressly 

refer to the learning data type, the use of a large volume of data, the frequency of 

use of the model, and its extensive use in the field. At the end of this project, we 

expect to identify more effective methods for Machine Learning applied to fault 

detection. 
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Chapter 2 

2. Fault Detection Methods 

A geological fault is characterized as a plane surface over which the relative 

movement of tectonic units take place. According to the filling of the fractured 

zone, a fault may represent either a preferential path for fluid flow or an 

impermeable boundary that can contribute to build hydrocarbon structural traps or 

act as reservoir compartmentation. Therefore, for hydrocarbon exploration, faults 

have significant geological impacts, and for future field development, 

understanding and analyzing the complicated connections between fault networks 

and fractures is necessary. The development process defines two features of the 

faults. One is the geological feature that is the discontinuity of the horizon. The 

other is a geometric feature, like linear and curved forms in 2D seismic sections 

that appear as curved surfaces in 3D seismic volumes. Methods of fault detection 

are generally built based on these two features. Figures 2.1a and 2.1b contain 

single and multiple faults, respectively. 

 
 (a) Single fault (a) Multiple faults 

Figure 2.1: Examples of seismic sections containing single and multiple faults 
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Faults in seismic images (Figure 2.2) are frequently identified as laterally high 

discontinuity or low continuity of reflections. Based on this fact, various 

approaches for highlighting faults by computing attributes that measure reflection 

continuity have been proposed. Several seismic attributes including curvature, 

(Roberts, 2001), similarity (Tingdahl & de Rooij, 2005), variance (van Bemmel & 

Pepper, 2000), coherence (Bahorich & Farmer, 1995), flexure (Haibin Di & Gao, 

2017), and entropy (Cohen et al., 2006) could characterize the discontinuity of 

faults. Amongst these, coherence is most common to highlight faults. On the other 

hand, by comparing the dissimilarity of local regions on both sides of a fault, 

Marfurt et al. (Marfurt et al., 1998) calculated semblance. 

 
Figure 2.2: A 2D seismic image (a) displayed with 1-semblance 

(b), fault likelihood (c), and CNN fault probability (d) (X. Wu, Shi, Fomel, & Liang, 2019) 
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Later, Gersztenkorn and Marfurt (Gersztenkorn & Marfurt, 1999) presented 

eigenstructure-based coherence (known as C3 coherence), which analyses the 

eigenstructure of windowed seismic traces' covariance matrices. Instead of 

computing eigenvalues of the covariance matrix, Yang et al. (T. Yang et al., 2015) 

proposed a computationally efficient coherence technique based on a normalized 

information divergence criterion. To map discontinuities at different scales, Li and 

Lu (F. Li & Lu, 2014) have employed a combination of spectral decomposition and 

complex coherence computation. Sui et al. (Sui et al., 2015) suggested a coherence 

method for steeply dipping structures that evaluates the eigenstructure of seismic 

spectral amplitudes to prevent inaccurate low-coherence values. The generalized-

tensor-based coherence (GTC) characteristic was suggested by Alaudah and 

AlRegib (Y. K. Alaudah & Alregib, 2016), and it develops covariance matrices 

from the unfolding matrices of a seismic analysis tensor along multiple modes 

corresponding to time, inline, and crossline directions. GTC enhances the details of 

discontinuity in seismic data, in contrast to C3 coherence. Using a directional 

Gaussian preprocessing kernel and applying a 3D rotational matrix to the associated 

covariance matrix, Alaudah and AlRegib (Y. Alaudah & AlRegib, 2017) employed 

GTC to develop directional selectivity. While likely fault regions can be highlighted 

in attribute maps, labeling faults cannot achieve acceptable accuracy due to noise. 

Enhancement methods such as non-linear mapping (Zhen Wang & Alregib, 2014) 

and structure-oriented filtering (Fehmers & Höcker, 2003; Hale, 2013)  have 

therefore been employed to strengthen the contrast between faults and surrounding 

structures. Furthermore, since 2000, researchers have suggested a few interactive 

fault identification algorithms based on seismic attributes to identify fault surfaces 

in seismic volumes or faults in 2D sections, intending to improve accuracy and 

reliability. By assuming that a fault is continuous and slightly curved, Peterson et 

al. (Pedersen et al., 2002) suggested using an ant-tracking or ant-colony 

optimization approach to identify fault surfaces. Similarly, Silva et al. (Silva et al., 

2005) used the antitracking algorithm to detect fault surfaces on seismic attributes 

of chaos and variance (Randen et al., 2000). AlBinHassan et al. (Nasher M. 
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AlBinHassan et al., 2006) used a smoothing operator on coherence cubes to reduce 

noise and improve fault detection. With the suggested directional filters, Cohen et 

al. (Cohen et al., 2006) work improved the contrast of normalized differential 

entropy and used the skeletonization method (Pavlidis, 1980) to extract one-pixel 

width fault surfaces from probable fault zones. The cascade Hough was proposed 

to identify fault surfaces in seismic volumes by Jacquemin and Mallet (Jacquemin 

& Mallet, 2005). In contrast to the global detection of fault surfaces mentioned 

above, Gibson et al. (Gibson et al., 2005)  created a multi-stage method that 

highlights fault points in modified semblance cubes, generates local planar patches 

from clustered fault points, and then merges small patches into large fault surfaces. 

Wang and AlRegib (Zhen Wang & AlRegib, 2014) employ the 3D Hough transform 

to identify small patches from clouds of probable fault locations, which are 

subsequently combined to outline the entire fault surface. To construct complete 

fault surfaces, Wu and Hale (X. Wu & Hale, 2016) have proposed using a simple 

linked data structure that includes fault likelihood, dip, and strike Figure 2.3 and 

Figure 2.4. Due to the use of 3D information, seismic fault surfaces show global 

fault structures that are more accurate than those identified by 2D sections. 

However, the methods used for interpreting faults on the entire seismic volume are 

often highly time-spatially complex and need strong computer resources. 
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Figure 2.3: A 3D synthetic seismic image (a) with 
four faults manually interpreted in panel (b). The 
dashed lines in panel (b) represent normal faults, 

whereas the solid line represents a reverse fault (X. 
Wu & Hale, 2016) 

Figure 2.4: A 3D seismic image with (a) fault 
likelihoods, (b) strikes, and (c) dips displayed in 

color. The dashed white circle in each image 
indicates one location at which fault F-A 
intersects fault F-B (X. Wu & Hale, 2016) 

 

Researchers have used image processing and computer vision techniques to detect 

faults from seismic or time sections to overcome computational power constraints 

and simplify detection. To detect faults in meshed temporal sections, Hale and 

Emanuel (Hale & Emanuel, 2003) recommended employing conventional image 

segmentation methods such as normalized cuts (J. Shi & Malik, 2000) and 
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stochastic clusters (Gdalyahu et al., 2001). Hale (Hale, 2013) improved semblance 

maps with directional Gaussian filters, then chose fault points with the greatest 

semblance values and linked them to label faults in another study. False features in 

identified faults reduce labeling accuracy, even though this method is reliable and 

automated. Zhang et al. (B. Zhang et al., 2014) have employed a biometric approach 

to detect faults in temporal sections, based on the idea that faults are remarkably 

similar to human capillary veins. Wang et al. (Zhen Wang, Temel, et al., 2014) 

created RGB color images by combining the semblance maps of every three 

adjacent time parts. By investigating the human visual system's influence on 

seismic interpretation, the proposed technique transforms RGB color images to 

other color spaces, extracts likely faults from corresponding luminance 

components, and integrates likely faults under geological and connectivity 

constraints. AlBinHassan and Marfurt (N M AlBinHassan & Marfurt, 2003)  

employed the Hough transform to detect all lines in coherence maps derived from 

seismic amplitude maps because of the line shapes of faults in 2D seismic sections. 

However, this approach only identifies the raw forms of faults without noise 

rejection. Wang and AlRegib (Zhen Wang & Alregib, 2014) have therefore 

suggested a fault detection approach to address this limitation, which extracts the 

line characteristics of faults with the Hough transformation and eliminates noisy 

features with geological constraints. 

All of the problem mentioned above detection methods are based on conventional 

image processing techniques, which generally contain a set of parameters. The 

performance of interpretation is determined by parameter selection. These 

algorithms struggle to attain high recall and precision while extracting faults 

concurrently given the presence of parameters. 

An aggressive scenario with high recall (most/all true faults retrieved) but poor 

precision (many artifacts introduced) or a conservative scenario with high precision 

(few artifacts introduced) but low recall (few true faults extracted) is the most 

common conclusion (Haibin Di, Limited, et al., 2017). 
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Chapter 3 

3. Literature of Machine Learning 
in Fault Detection 

Introduction 

Fault Detection and Fault Interpretation  
Fault detection is performed by manually interpreting seismic data and picking 

horizons. This technique primarily relies on the interpreter's expertise and regional 

geological knowledge, which is inefficient and has shown to be inaccurate. With 

the fast growth of seismic attributes, a variety of fault detection approaches, such 

as semblance and coherency, have developed. These approaches detect faults as 

lateral reflection discontinuities in a 3D seismic map. These seismic attributes, 

however, are sensitive to noise and stratigraphic features, which correspond to 

reflector discontinuities in a seismic profile. This means that simply measuring the 

continuity or discontinuity of seismic reflection is insufficient for detecting faults. 

In recent years, an increasing number of academics have tried to use Machine 

Learning in seismic interpretation and fault detection that we explain in the 

following sections (J. Wu et al., 2021). 

Fault Mapping 
Manual picking on horizontal and vertical portions of seismic amplitude has 

traditionally been used to interpret faults, and the accuracy of manual interpretation 

is highly dependent on the interpreter's knowledge and expertise. Fault 

enhancement attributes are now assimilated into fault interpretation by co-rendering 
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them with the original amplitude, which helps to pick faults that are not easily 

noticeable from amplitude due to weak waveform and/or amplitude variations, 

thanks to recent developments in seismic attribute analysis and multi-attribute 

visualization, see figure 3.1, (Haibin Di, Limited, et al., 2017). 

 
Figure 3.1: Manual fault interpretation (light blue) from post-stack amplitude (Haibin Di, et al., 2017) 

Various forms of seismic features, such as faults, have been successfully detected 

using semi-automatic object detection. Three stages are frequently used in semi-

automated fault identification. To highlight faults and suppress non-fault objects, 

the seismic data is first scanned, and a set of seismic attributes is computed. Then, 

on a few sections of seismic amplitude and/or characteristics, faults are manually 

selected. Finally, a computer program learns the hand picking and applies it to the 

entire cube, creating 3D patches throughout the entire volume, see figure 3.2, 

(Haibin Di, Limited, et al., 2017). 

 
Figure 3.2: Semi-automatic fault extraction as shown in two seismic sections (Zhen Wang, Long, et al., 

2014) 
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In comparison to manual picking and semi-automatic extraction, automatic seismic 

object recognition eliminates manual picking, which is time-consuming and 

susceptible to interpretational bias, and is thus superior in both efficiency and 

accuracy. The automated fault detection process is likewise divided into three 

phases. First, the seismic dataset is preconditioned by filtering and/or smoothing as 

needed, and discontinuity characteristics are generated from the amplitude volume, 

which might be the above-mentioned or alternative derivations. The discontinuities 

are then reduced to one pixel thick using fault-enhancement techniques, and the 

thinned lineaments allow computers to uniquely characterize basic features about a 

fault, such as its location, geometry, and size. Finally, fault patches are recovered 

from the thinned lineaments, with each patch representing a subsurface fault 

(Haibin Di, Limited, et al., 2017). 

 
Figure 3.3: Manual fault interpretation (light blue) from post-stack amplitude (Haibin Di, Limited, et 

al., 2017) 

 

New Fault Detection Methods 
In general, the exploration process is divided into two components: technological 

tools and labor. The advancement of tools, as well as the inclusion of high-

performance computation, has aided in the reduction of turnaround times for 

seismic imaging (Rastogi, 2011; Rubio et al., 2009). Even in the most extreme 
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situation, when processing tools execute in near-zero time, the issue of manpower 

persists; there is no logical method for domain experts to interpret and analyze all 

incoming data. The optimal solution must exchange domain-expert time for 

computing time. As a result, part of that domain knowledge must be codified and 

integrated into existing and future capabilities. One possible approach is to use 

algorithms that learn, for example, from old data that has been well verified. We 

can use machine learning to take advantage of new algorithms, software 

ecosystems, and specialized hardware (Araya-Polo et al., 2017). 

Machine Learning in Fault Detection 
Although a comprehensive understanding of geophysics and field training have 

long been seen as prerequisites for developing efficient interpretation procedures, 

recent advancements in machine learning have shed new light on its role in this 

domain-specific issue. Machine-learning models trained on input data can produce 

consistent, reliable seismic interpretation results, relieving two key challenges that 

interpreters may face: understanding huge amounts of data and grasping the 

relationship of several types of data at the same time. For machine-learning-based 

interpretation techniques, there are two primary approaches. Numerous seismic 

characteristics are extracted from interpreters' domain expertise and experience and 

trained using standard supervised or unsupervised machine-learning models like as 

the self-organizing map, multilayer perceptron, and K-means clustering. The other 

employs deep-learning models, specifically the convolutional neural network 

(CNN). With the massive growth in computing power and data accessible in recent 

years. The CNN motivated by the visual cortex in the brain is one form of deep-

learning model that consists of one or more convolutional layers. Because 2D 

kernels in convolutional layers are trained to gather spatial and structural features 

from input images, the CNN is better suited for visual tasks. The CNN's first 

convolutional layer collects low-level visual features including edges, lines, and 

corners. In contrast, higher convolutional layers extract more abstract high-level 
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features like as shapes and patterns. Unlike standard machine-learning models, 

which rely on predetermined features, the CNN takes 2D amplitude images as input, 

builds mapping connections between poststack amplitude and structure spaces, and 

automatically extracts features during the training process. The CNN-based process 

is entirely dependent on the availability of geologic structures in the data set and, 

to some extent, simulates interpretation behavior without the assistance of 

interpreters (Zhen Wang et al., 2018). 

We analyzed all the studies for the classification of work and grouped them in four 

categories, and a map of ML methods in fault detection was created figure 3.4.  

 
Figure 3.4: Research application 

The first category included eight topics of fault detection, fault interpretation, 

challenge of seismic image processing tasks, pattern recognition, simultaneous 

interpretation of seismic patterns, simultaneously estimate fault probabilities, 

strikes, and dips, interpretability of the CNN, and big data Platform. Each item was 

explained in detail. The second category consisted of training dataset, training 

dataset problem, and  Synthetic dataset Problem. The constraints category was 

classified as geologic constraints for ML and CNN constraints. The uncertainties 

and resolution category was divided into subtle fault detection, uncertainties in the 

fault identification, quantification of the fault model uncertainty, enhance data 

quality, performance of a deep learning model, and Prediction accuracy. 
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3.1. . ML methods and technologies 
3.1.1. Fault detection 
In (Gao et al., 2021), design a new machine-based fault-detection technique using 

a U-shaped multi-scale connection-fusion neural network (MCFU). The most key 

part of this MCFU approach is that it connects feature maps of different spatial 

resolutions using skip connections and generates the final fault map using a fusion 

operation. 

Authors in (J. Wu et al., 2021) develop a FCN-based method to automatically detect 

faults in  sandstone reservoirs. The architecture of FCN is a modified version of the 

VGGNet. The FCN model is trained by using only 300 pairs of 3D synthetic seismic 

and fault volumes, which were all automatically generated. 

(Zhu et al., 2021) propose a workflow to use instance segmentation algorithm to 

detect different fault lines. A modified CNN is trained using automatically 

generated synthetic seismic images and corresponding labels. Then the trained 

CNN, tested using both synthetic and field collected seismic data.   

A Foundation Network was developed to identify faults in a seismic cube, in (J. 

Lowell & Szafian, 2021). In this network the Artificial Intelligence is closely 

aligned with the interpreters’ way of working, allowing tightly coupled interaction 

as appropriate for the dataset and the individual interpreter’s workflow.   

To differentiate adjacent faults and remove the jamming of seismic noise, (D. Yang 

et al., 2020) propose a method based on 3D U-net++ to detect faults. To extract 

faults from 3D seismic images, they design a 3D U-net++ structure with dense 

connection and focal loss. The obtained results indicate high accuracy, clean 

background, and clear fault edges on synthetic seismic data and seismic survey data.   

Faults are usually detected in seismic data by seismic attributes, which require a 

complex mathematical calculation such as a dip-steered cube. In (Noori et al., 

2020), the Gaussian process regression model (GPR), a nonparametric probabilistic 
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model based on Bayesian statistics, is used in this analysis to detect faults as global 

anomalies on 3D seismic data. In order to detect fault locations a Gaussian process 

(GP) model was trained on 3D seismic data to characterize seismic amplitude data 

as a multivariate Gaussian model. GP regression, on the other hand, fails to explain 

seismic data at fault locations adequately. As a result, the GP's failure in the 

regression phase was investigated to identify possible fault points, which were 

highlighted by measuring the variance of the GPR results. Finally, a consistent 

reconstruction morphological algorithm was used to improve the detected probable 

fault points and extract them from the context data. 

Considering the fault interpretation as an image segmentation problem, (N. Liu et 

al., 2020) add residual units to U-Net (Res U-Net). Using the Res U-Net model, 

they develop a fault-versus-azimuth analysis based on offset vector tile data, which, 

as common-azimuth seismic data, provide more detailed and helpful information 

for interpreting seismic faults. To avoid manual picking, they use synthetic seismic 

data with a random number of faults with different locations and throws as the 

training and validation data sets. Res U-Net is finally trained using only synthetic 

data and tested on field data. 

(Qi et al., 2020) have introduced a U-Net architecture to fault detection and 

compared it to a more conventional attribute-based image processing fault 

enhancement workflow. The CNN model was trained using synthetic seismic 

amplitude and fault labels computed for normal faults. Based on the results, the U-

Net architecture CNN performed well on automatic fault detection.  

(C. Yuan et al., 2021) propose a novel network (GCS-Net) which includes a global 

context block (GC) and channel attention module together with spatial attention 

module (CS) between the encoder and decoder, instead of the U-Net-based 

convolutional neural network. The GC block captures the long-range dependencies, 

and the CS block is utilized to integrate local features with their global 
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dependencies further adaptively. The proposed approach was trained on synthetic 

seismic data and tested by the real data.   

(B. Wang & Ma, 2020) have suggested a framework for seismic fault recognition 

that combines an improved VGG convolutional neural network with a multi-scale 

fusion attention mechanism. The useful features from the seismic attributes are 

extracted using the improved VGG network. Furthermore, by utilizing the attention 

mechanism, local features can be better learned, resulting in a smoother and more 

continuous predicted fault curve. 

In (Y. Zheng et al., 2019), a CNN model is trained for 3D automated fault 

classification.  The model predicts the fault probability, dip, and azimuth 

simultaneously.  Applications on real data show that the CNN model can produce 

reliable fault picks in various seismic images.  

(D. Li et al., 2019) proposed an automatic interpretation method of coalfield 

structures based on machine learning. This paper focuses on the backpropagation 

(BP) neural network, radial basis function (RBF) neural network, SVM, decision 

tree, and random forest, and it applies them for the identification of collapsed 

columns and fault structures. The seismic attributes were sensitive to the structure 

used as the input layer data in the prediction network model to predict the geologic 

structure. 

(Philit et al., 2019) present an optimized processing method for automatic fault 

detection. Our workflow is based on the Fault Plane attribute obtained from the 

variance, the creation of a Thinning volume, and, finally, the extraction and creation 

of 3D fault patches. The method allows intercepting most of the seismic faults, with 

coherent positions and fairly capturing the structural complexities of fault 

interactions.   

(Q. Zhang et al., 2020) developed a deep CNN model trained on synthetic data for 

3D automatic fault picking. The model outputs the fault probability, dip, and 

azimuth simultaneously. 
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(Lapteva et al., 2019) test different CNN models for fault detection and derive the 

critical neural network parameters that influence the faults' localization. The goal 

is to derive the CNN parameters from detecting thin areas of the fault and balanced 

detection of the unmarked faults.   

Coherence-detected faults can be contaminated by other discontinuities, 

necessitating the use of processing methods to increase coherence's accuracy and 

performance. By incorporating adaptive spectral decomposition and SR deep 

learning into fault detection, (Z. Yuan et al., 2019) suggested a framework for 

improved fault detection. To obtain a dominant-frequency-optimized amplitude 

spectrum, adaptive spectral decomposition is first applied to seismic data. To 

delineate fault discontinuities, eigenstructure-based coherence with dip correction 

is determined. A convolutional neural network (CNN) model is built to obtain 

improved performance and then given fault-detection images as input. 

The residual neural network (ResNet) is used to build the U-net model for seismic 

fault detection in (D. Chang et al., 2019), and multi-scale and multi-level features 

are extracted from seismic data. The field dataset is used to train the U-net model 

in the training stage. 

(Xiong et al., 2018) introduce the CNN for detecting faults from 3D seismic images 

in this paper. In a supervised learning approach, raw seismic images sampled on 

3D grids or voxels are used to train a CNN model. The training data set is made up 

of real data from seven annotated seismic cubes, with one seismic cube serving as 

validation. 

Using the CNN, (H. Di et al., 2018) propose a new approach for attribute-free fault 

detection. Instead of using attributes as input, the CNN-based approach uses local 

seismic reflection patches, which have been classified as fault or non-faulting areas 

depending on where the central point is located. The mapping relationship between 

seismic signals and fault structures is established by training the predefined CNN 

on local patches. 
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(Maniar et al., 2019) pose the fault interpretation task as a supervised pixel 

classification problem and use a deep neural network to solve it. They explain 

various neural network architectures to address this fault detection problem. 

(Dekuan Chang et al., 2018) propose a new seismic fault detection method based 

on depth learning (SFDU-net), which employs the CNN to extract multi-scale and 

multi-level fault features from seismic data. The network training efficiency can 

be improved by using the pre-training model to initialize the SFDU-net 

parameters and dynamic learning rate. 

(Haibin Di, Shafiq, & AlRegib, 2019) proposes a method for seismic fault detection 

based on semi-supervised classification of multiple attribute patches through the 

multi-layer perceptron (MLP) technique. Such a method consists of five 

components: (a) attribute selection, (b) training sample labeling, (c) attribute patch 

retrieval, (d) MLP model training, and (e) volumetric processing. 

(Ma et al., 2018) and (Ma et al., 2019) developed a convolutional neural network 

(CNN) method to generate a fault-probability attribute for highlighting fault zones 

in seismic amplitude images. The proposed method detects faults directly from 

seismic amplitude cubes, so that precomputed attributes are not required. In the 

training step, a CNN model is trained with annotated real seismic image cubes, 

where each point is labeled as fault or non-fault. In the prediction step, the trained 

network is applied to compute the fault probability at each location in the new 

image cubes.  

(B. Guo et al., 2019) and (B. Guo et al., 2018) build a CNN-based method for 

detecting faults automatically from 3D seismic amplitude images. Human-labeled 

2D images sliced from 3D cubes are used to train the network, with each pixel 

labeled as fault or non-fault. The CNN predicts fault probabilities at any location in 

the image after training. The experiments' findings on synthetic and field data 

images indicate that the CNN correctly predicts fault locations. 
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(Araya-Polo et al., 2017) propose a solution to the multistep seismic model building 

problem. It uses raw seismic recordings as input to train a deep learning algorithm 

to map out a fault network in the subsurface. The use of the Wasserstein loss 

function, which is well-suited to problems with outputs that are spatially layout 

oriented, is a defining feature of the solution. On synthetic data sets with simple 

fault networks, they demonstrate the system's performance. 

For fault detection, (Haibin Di, Shafiq, et al., 2017) presents a workflow based on 

a multi-attribute support vector machine (SVM) analysis of a seismic volume 

consisting of four steps. First, three groups of seismic attributes are selected and 

computed from the volume of seismic amplitude, including edge-detection, 

geometric, and texture, all of which clearly highlight the seismic faults in the 

attribute images. Second, two sets of training samples are prepared by manually 

picking on the faults and the non-faulting zones, respectively. Third, the SVM 

analysis is performed on the training datasets that build an optimal classification 

model for volumetric processing. Finally, applying the SVM model to the whole 

seismic survey leads to a binary volume, in which the presence of a fault is labeled 

as ones. 

In the study (Guitton et al., 2017), a supervised machine learning algorithm 

highlights faults in 3D seismic volumes. An automatic fault-picking system is used 

to label the faults. Two object recognition algorithms, Histograms of Oriented 

Gradients (HOG) and Scale Invariant Feature Transforms (SIFT), are used to create 

feature vectors for the training and classification steps. A Support Vector Machine 

classifier with Gaussian kernels was used to train and classify seismic data. When 

both SIFT and HOG are used together, the false positive rate is reduced, resulting 

in better fault images. 

When no seismic data has been migrated, (C. Zhang et al., 2014) implemented a 

method to assist interpreters during the initial stages of velocity model building 
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(VMB). The approach uses machine learning methods to automatically classify and 

locate faults in seismic data that has not been migrated. 

In (Z. H. Zheng et al., 2014), by using a neural network-based fault detection 

system, attributes that have the capacity to highlight faults and fractures are grouped 

into a single fault likelihood attribute. When compared to individual attributes, this 

attribute predicts improved results. The distinction between faults and their 

environments is improved, and noise has less of an effect on interpretation. 

(Tingdahl & de Rooij, 2005) demonstrate that an artificial neural network can 

effectively combine many different attributes, including similarity, frequency, and 

curvature, all of which can theoretically improve the visibility of faults. As 

compared to single-attribute cubes, this results in a fault 'probability' cube with 

more continuous faults and less noise. 

3.1.2. Fault interpretation 
Accurate mapping of structural faults and stratigraphic sequences is essential to the 

success of subsurface interpretation, geologic modeling, reservoir characterization, 

stress history analysis, and resource recovery estimation. In the past decades, 

manual interpretation assisted by computational tools — i.e., seismic attribute 

analysis — has been commonly used to deliver the most reliable seismic 

interpretation. Because of the dramatic increase in seismic data size, the efficiency 

of this process is challenged. The process has also become overly time-intensive 

and subject to bias from seismic interpreters.  

(Haibin Di, Truelove, et al., 2020) implement deep convolutional neural networks 

(CNNs) for automatic interpretation of faults and stratigraphies. In general, both 

the fault and stratigraphy interpretation are formulated as image segmentation 

problems, and each workflow integrates two deep CNNs. Their specific 

implementation varies in the following three aspects. First, the fault detection is 

binary, whereas the stratigraphy interpretation targets multiple classes depending 

on the sequences of interest to seismic interpreters. Second, while the fault CNN 
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utilizes only the seismic amplitude for its learning, the stratigraphy CNN 

additionally utilizes the fault probability to serve as a structural constraint on the 

near-fault zones. Third and more innovatively, for enhancing the lateral consistency 

and reducing machine prediction artifacts, the fault workflow incorporates a 

component of horizontal fault grouping, while the stratigraphy workflow 

incorporates a component of feature self-learning of a seismic data set.  

In (Oke et al., 2020) demonstrate how Machine Learning (ML) can aid with fault 

perception in complex fault systems with subtle throws. Input data was standard 

amplitude volume with minimal user-end conditioning. PSTM time and PSDM 

depth seismic volumes were used in separate runs to confirm that applied ML 

technology is domain agnostic. The ML-Assisted workflow included: Generating 

a fault prediction cube based on user-supplied fault interpretation labels made on 

six training lines; Creation of fault planarity and azimuth cubes; Parameterization 

of automated extraction function; Extraction of segmented 3D fault pointsets; 

Creation of fault framework and fault sticks that can be integrated into traditional 

methods in seismic and geological modeling domains.   

In this study (Bhattacharya & Di, 2020), the convolutional neural network (CNN) 

is used to classify and predict the complex normal fault network system on the 

North Slope, Alaska. This is a binary image classification problem for a focused 

geologic study. In this study, the authors use two 3D seismic surveys 

for fault classification. The results show that a few original seismic sections with 

labeled faults can be directly used in the CNN model for automated fault 

classification throughout the 3D volumes with high accuracy and in limited time.   

(X. Wu, Liang, Shi, & Fomel, 2019) have discussed using an end-to-end CNN to 

effectively detect faults from 3D seismic images, where fault detection is 

considered as a binary segmentation problem. To save GPU memory and 

computational time, this neural network is a simplified U-Net. We use a balanced 

loss function to optimize the CNN model parameters since the distribution between 
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fault and non-fault samples is heavily biased. We use 3D synthetic seismic and fault 

volumes to train the neural network, which are all created automatically by 

randomly adding folding, faulting, and noise to the volumes. 

(Egorov, 2019) presented application of convolutional neural networks 

for fault interpretation from seismic data.   

(Lin et al., 2017) consider using a machine-learning detection approach to extract 

subsurface geologic features automatically. To increase computing performance 

and memory use, a data reduction technique was used in combination with the 

conventional kernel ridge regression method. They use a randomized numerical 

linear algebra technique to minimize the dimensionality of the feature space while 

preserving the information content needed for effective detection. 

3.1.3. Challenge of seismic image processing tasks  
The identification of faults in a seismic image is an essential aspect of structural 

interpretation. Structure-oriented smoothing with edge-preserving removes noise in 

a seismic image while optimizing seismic structures and sharpening structural 

edges, making seismic structural interpretation easier and faster. Many other 

seismic data processing tasks include the calculation of seismic normal vectors or 

reflection slopes. Since they both include the study of seismic structural elements, 

the three seismic image processing tasks are related. However, in traditional seismic 

image processing systems, these three tasks are often done separately by various 

algorithms, and challenges remain in each of them (X. Wu, Liang, Shi, Geng, et al., 

2019). 

Using a single convolutional neural network (CNN), (X. Wu, Liang, Shi, Geng, et 

al., 2019) proposes to execute all three tasks simultaneously. Thousands of 3-D 

noisy synthetic seismic images and corresponding ground truth of fault images, 

clean seismic images, and seismic normal vectors are generated automatically to 

train the network. The network learns to correctly perform all three image 
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processing tasks in a general seismic image while only being trained with synthetic 

data sets. 

3.1.4. Pattern recognition 
In this paper (Xu et al., 2021), a fault and fracture network characterization method 

based on 3D convolutional autoencoder is proposed. First, in the autoencoder 

training frame, 3D prestack data are used as input, and the 3D convolution operation 

is used to mine the spatial structure information to the maximum and gradually 

reduce the spatial dimension of the input. Then, the residual network is used to 

recover the input’s details and the corresponding spatial dimension. Lastly, the 

hidden features extracted by the encoders are recognized via k-means, SOM, and 

two-step clustering analysis. 

3.1.5. Simultaneous interpretation of seismic patterns  
(Y. Guo et al., 2020) developed a CNN model training method focused on structural 

geological modeling, which allowed for the rapid and accurate identification of 

fault and horizon labels. The findings revealed that CNNs are capable of correctly 

forecasting both faults and horizons at the same time. 

(Alfarhan, Maalej, et al., 2020) introduce a framework for delineating salt 

boundaries and faults simultaneously using a Res-Net with U-Net DL architecture 

in this paper. Despite the limited number of labeled data available for testing, the 

proposed segmentation-based DL model should distinguish all events with 

reasonable accuracy when validated on real-world seismic images. 

Using an improved U-Net with Res-Net DL architecture, (Alfarhan, Deriche, et al., 

2020) proposed a novel approach for concurrent detection of multiple seismic 

events. The proposed system has two advantages: first, it uses the well-known U-

Net architecture combined with Res-Net to address seismic interpretation as a 

general segmentation-based problem, allowing accurate separation of salt domes 

and faults from other seismic structures. Second, domain adaptation was used to 

make using a pre-trained Res-Net model for transferring learning from natural 
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images to seismic images easier. Despite using a limited volume of labeled data to 

train the model, it achieves a detection accuracy of more than 96 percent. 

(Haibin Di, Gao, et al., 2019) provided a seismic texture database (StData-12) with 

12 common seismic patterns to aid in applying and testing machine learning in the 

seismic domain and a seismic texture interpretation network (StNet) to aid in the 

discrimination and classification of 3D seismic features. The StNet's main benefit 

is its ability to quickly screen and recognizes several typical seismic patterns in a 

seismic volume. Aside from its computational efficiency, the StNet provides the 

base architecture for modern seismic interpretation networks that are more task-

oriented and cover various seismic textural patterns. 

(Y. Shi et al., 2021) design a deep learning workflow to track seismic geobodies 

interactively. The algorithm is based on a flood-filling network, which performs 

iterative segmentation and moves the view (FoV). The proposed network takes the 

previous mask output and the seismic image in a new (FoV) as a combined input to 

predict the mask at this FoV. The flood filling algorithm guides the movement of 

the FoV in order to visit and segment the full extent of a geobody. Unlike 

conventional seismic image segmentation methods, the proposed workflow can 

detect geobodies and track individual geobody instances. 

(Hami-Eddine et al., 2017) propose a fast-track machine learning method applied 

to probabilistic fault detection, AVO analysis, and geobody detection. 

(Meldahl et al., 2001) develop a seismic-object detection method that produces 

more accurate results and does not require expert knowledge. The method 

recombines multiple attributes into a new attribute that gives the optimal view of 

the targeted object. Including specific spatial knowledge about the targeted object 

allows us to separate objects of different geologic origins with similar attribute 

characteristics. The method comprises an iterative processing workflow using 

directive seismic attributes, a neural network, and image processing techniques. 
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3.1.6. Simultaneously estimate fault probabilities, strikes, and dips 
Instead of predicting only fault probabilities as in the previous CNN-based fault 

classification methods, (X. Wu, Shi, Fomel, Liang, et al., 2019) have proposed to 

use a single CNN to simultaneously estimate fault probabilities, strikes, and dips 

from an input seismic image, which is formulated as a classification problem. 

(X. Wu, Shi, Fomel, & Liang, 2019) proposed an automatic fault interpretation 

method by using convolutional neural networks (CNN). In this method, a 7-layer 

CNN is built for estimation of fault orientations (dips and strikes) within small 

image patches that are extracted from a full seismic image. They then construct 

anisotropic Gaussian functions with the estimated fault orientations that mainly 

extend along with the estimated fault dips and strikes. Finally, all the locally fault-

oriented Gaussian functions are stacked to generate a fault probability image. 

Although trained using only synthetic seismic images, the CNN model can 

accurately estimate fault orientations within real seismic images. The fault 

probability image, computed from the estimated fault orientations, displays cleaner, 

more accurate, and more continuous fault features than those in the conventional 

fault attribute images. 

3.1.7. Interpretability of the CNN 
Determining the location of the seismic fault is a crucial step in seismic 

interpretation. Convolutional neural networks (CNNs) have proved to be more 

efficient for automatically learning effective representations as compared to 

traditional approaches that construct a variety of hand-crafted features based on the 

observed characteristics of the seismic fault. However, in the training and inference 

process, the CNN is often used as a black box, which may contribute to confidence 

problems. Humans' inability to comprehend the CNN will be more troublesome, 

particularly in sensitive areas such as seismic exploration (Z. Liu et al., 2020). 

(Z. Liu et al., 2020) suggest a way to convey domain information using CAMs to 

match the CNN's interpretation with geological understanding from human experts. 



61 
 

The CNN's generalization potential and interpretability have vastly improved by 

jointly improving prediction accuracy and consistency between the interpretability 

of the CNN and domain knowledge. 

The visual interpretation of deep neural networks is the research's focus by (W. 

Yang et al., 2021). For visual interpretation, a qualified seismic fault detection 

network was chosen as an example. The fault detection process is visualized using 

visual intermediate activation, visual convolution kernels, and a visual class 

activation map. They then attempt to interpret these three visual effects to explain 

that the network can detect faults.   

(James Lowell & Erdogan, 2019) explain an innovative AI environment that can be 

used in conjunction with conventional seismic interpretation methods. The 

framework provides a more accurate risk assessment, allowing for better 

exploration, appraisal, and development decision-making. The utterly flexible 

workflow, which puts the interpreter at the center of the process, guarantees that 

the interpreter can choose the most suitable resources to produce the most 

successful result when addressing the question at hand.   

(Z. Liu et al., 2019) introduce a technique, Smooth-Grad, to provide visual 

explanations from a convolutional neural network (CNN) that is trained 

for fault detection. This technique highlights the regions of an input that are 

particularly influential to the final classification, which is often called the sensitivity 

map. By analyzing the sensitivity map generated by the CNN trained 

for fault detection, they find that the CNN does learn some useful features 

for fault detection, but the way a CNN gives its interpretation is still far from human 

interpretation. 

3.1.8. Big data Platform 
(Huang et al., 2017) have implemented a cloud-based seismic data analytics 

platform that can manage seismic volumes, calculate seismic attributes, conduct 

feature extraction and selection, and apply machine learning, including deep 
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learning models, to infer geologic features to facilitate the seismic interpretation 

process. The platform provides a seismic data analytics SDK with deep learning 

package, a web-based data management tool and workflow interface for interacting 

with the computing platform, and a remote visualization capability for viewing 

massive seismic volume data sets using a web browser. The seismic analytics 

platform is introduced in three parts: seismic software development kit (SDK), 

workflow, and visualization. In a Spark environment with Hadoop distributed file 

system, these are coupled with other data analytics and infrastructure technologies. 

3.2. Training data 
3.2.1. Training dataset 
In this paper (An et al., 2021), authors open-source a multi-gigabyte expert-labelled 

field dataset in response to the challenge of accessing large-scale expert-labelled 

field datasets. They show that 2D fault recognition within this dataset is an image 

segmentation or edge detection problem in the computer vision field, that can be 

expressed as a pixel-level fault/non-fault binary classification. Both types of 

DCNNs are compared, and authors propose a novel fault recognition workflow, 

which involves processing and screening of seismic images and labels, training 

DCNNs and automatic numerical evaluation.  

With the introduction of deep learning techniques, the complex task of automated 

seismic fault detection has recently increased efficiency. Those approaches 

effectively make use of a large amount of seismic data and have much promise for 

fault interpretation assistance. They are, however, computationally costly and 

necessitate a substantial amount of time and effort to create the dataset and tuning 

the models (Cunha et al., 2020). 

(Cunha et al., 2020) propose to use Transfer Learning (TL) on a pre-trained model 

so that we can work with small datasets, tune a few hyper-parameters, and adapt to 

various types of data. TL techniques apply the information gained from a trained 
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model to a similar learning mission. On the Dutch offshore F3 block, we test various 

TL strategies using a CNN trained on synthetic seismic data as the base model. 

(X. Wu et al., 2020) simulate structural features in a 3D model using a series of 

parameters in this workflow, based on certain assumptions about typical folding 

and faulting patterns. It is possible to create various structure models with practical 

and varied structural features by arbitrarily selecting parameters from predefined 

ranges. They produce various synthetic seismic images and the corresponding 

ground truth of structural labels to train CNNs for structural interpretation in field 

seismic images based on these structure models with known structural information. 

(Hu et al., 2020) suggest a workflow that uses a limited training set to interpret 

faults using a CNN-based semantic segmentation. To be qualified to predict faults 

in the whole region, all that is needed is to collect some 2D seismic sections from 

seismic volume data for interpretation and labeling. The VGG16 model has been 

simplified and improved to minimize training time and increase performance. To 

implement end-to-end classification of seismic images, convolution layers were 

used instead of fully connected layers at the network's end, and dilation convolution 

was used to improve the receptive field and hybrid dilation convolution to prevent 

issues. To further improve segmentation results, the authors used the atrous spatial 

pyramid pooling (ASPP) module. After that, the data was refined using 

postprocessing. On a set of real seismic results, the proposed method's promising 

output was verified. 

Unlike traditional deep learning methods that use very large datasets to train neural 

networks, (S. Li et al., 2019) propose a seismic fault detection method based on 

encoder-decoder CNN that needs only a small training set. 

With basic fault geometries, (Pochet et al., 2019) developed a synthetic data set. 

The network's only input is seismic amplitude; the process would not necessitate 

calculating any seismic attributes. A patch classification technique was applied to 
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the images, requiring only simple postprocessing to obtain the precise fault 

position. 

3.2.2. Training dataset Problem 
Convolutional neural networks (CNNs) have received great success in detecting 

faults in seismic data. However, to achieve good fault detection results, a neural 

network model needs high-quality and quantity training data, usually from legacy 

interpretation.  

(Zhao, 2020) present a 3D CNN-based workflow for detecting faults and estimating 

fault properties from seismic data that does not require human interpretation in 

training.   

3.2.3. Synthetic dataset Problem 
For network training, convolutional neural network (CNN)-based methods 

necessitate a significant number of labeled data. Generating synthetic seismic 

images with corresponding fault labeling is one way to produce labeled data. 

However, it is difficult to guarantee that the synthetic data and field data have the 

identical fault feature distributions, which may lead to inconsistent and unreliable 

prediction results. Another choice is to manually label the faults, which takes time 

and is subjective (Zirui Wang et al., 2020). 

In order to reduce the in influence caused by the difference between synthetic 

seismic data and real seismic data on fault detection, authors in (Zhou et al., n.d.) 

combine the adversarial idea in transfer learning and the deep learning model U-net 

to propose U-net based on DANN: they extract common knowledge between 

synthetic seismic data and real seismic data, which makes deep transfer learning 

model more suitable for real data.  

Authors in (Zirui Wang et al., 2020) use knowledge distillation (KD) in this letter 

to enhance fault detection efficiency by incorporating features from a large number 

of synthetic samples and a limited number of field samples. The authors use 
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distill knowledge from an ensemble of two teacher CNNs to train a student CNN 

for seismic fault detection (which is then applied to the final target). One CNN 

segmentation teacher is trained on synthetic samples with defined ground truth fault 

labels, while another CNN classification teacher is trained on field samples with 

manually selected labels. Then, using samples created by voting the results of two 

teacher models, a classification student network is trained. The student CNN learns 

the general fault characteristics in the synthetic data and the relevant fault 

characteristics in the target field data. According to field results, the student CNNs 

highlight seismic faults more accurately and with higher resolution than the teacher 

CNNs. 

3.3. Constraints 
3.3.1. Geologic constraints for ML 
Emerging machine learning approaches, such as convolutional neural networks 

(CNNs), have been extensively applied to the field of seismic structural and 

stratigraphic interpretation to replicate the intelligence of experienced seismic 

interpreters to annotate subsurface geology reliably and effectively. However, most 

CNN architectures used in these applications are relatively basic, relying solely on 

the original seismic amplitude, and therefore fail to account for the critical geologic 

constraints that an interpreter would (Haibin Di, Li, et al., 2020). 

With fault and stratigraphy interpretation, this thesis proposes constraining machine 

learning-assisted seismic interpretation (MLSI) by adding commonly known 

geologic fundamentals and/or the interpretation objective (Haibin Di, Li, et al., 

2020). 

Authors (Haibin Di et al., 2021) have developed a generally applicable framework 

for integrating a seismic interpretation CNN with such commonly used knowledge 

and rules as constraints. 
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3.3.2. CNN constraints 
The CNN has proven its efficiency in utilizing such local seismic patterns to assist 

seismic fault interpretation, but it is quite computationally intensive and often 

demands higher hardware configuration (e.g., graphics processing unit). 

(Haibin Di, Shafiq, Wang, et al., 2019) have devised a novel method for improving 

seismic fault detection by combining computationally efficient SVM/MLP 

classification algorithms with local seismic attribute patterns, called super-

attribute-based classification. 

 

3.4. Uncertainties and Resolution 
3.4.1. Subtle fault detection 
Since faults may shape baffles or conduits that regulate how a petroleum reservoir 

is swept, subtle fault identification is critical in reservoir development analysis. 

Seismic amplitude data can ignore small throw faults. Seismic attributes help in the 

mapping of small faults, but dozens of seismic attributes have been created over the 

years to provide interpreters with additional enticing but daunting features (M. 

Hussein et al., 2021). 

Using the 3D seismic data, (Marwa Hussein et al., 2020) have generated seismic 

attributes for fault detection. They find that multi-attribute analysis provides greater 

geologic information than individual attribute volumes. They extract the geologic 

content of multiple attributes in two ways: interactive co-rendering of different 

seismic attributes and the unsupervised machine learning algorithm self-organizing 

maps (SOM). They suggest eight combinations of 16 various attributes for fault and 

fracture detection. They use principal component analysis and SOM techniques to 

integrate the geologic information contained within many attributes efficiently.   
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(M. Hussein et al., 2021) discovered that analyzing multiple attribute volumes 

produced more geological evidence than analyzing individual attribute volumes. 

Principal component analysis (PCA) and an unsupervised machine learning 

algorithm, Self-Organizing Maps (SOM), are used to derive the geological content 

of multiple simultaneous attributes. Integrating the geological context, four seismic 

attributes combined in one classification volume were helped by adding relevant 

seismic attributes that show anomalous features at the same seismic voxel with PCA 

and SOM analyses. 

3.4.2. Improving the continuity of fault detection 
(Zhou et al., 2020) proposes an iterative deep learning architecture to improve the 

continuity of fault detection: after building a neural network and training the 

network to learn the basic fault features, the continuity of fault prediction results is 

improved by automatic image processing with geological expert experience, the 

features extracted by depth learning are iteratively corrected through seismic data 

examples and image processing results. 

3.4.3. Uncertainties in the fault identification 
The interpretation of faults within a geological basin or reservoir from seismic data 

is a time-consuming and often manual task associated with high uncertainties. 

Recently, numerous approaches using machine learning, especially various types 

of convolutional neural networks, have been presented to automate the process of 

identifying fault planes within seismic images, which have been shown to 

outperform traditional fault detection techniques. While these proposed methods 

show good performance, many of these approaches do not investigate the associated 

uncertainties that arise in the fault identification process (Mosser et al., 2020).  

(Mosser et al., 2020) present a method for detecting faults in seismic datasets using 

Bayesian deep convolutional neural networks. A Bayesian deep neural network was 

trained on a large dataset of synthetic faulted seismic images using an approximate 

Bayesian inference method. The model is then used to detect fault planes and 
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investigate the resulting uncertainty in the predictive distribution using a 

benchmark dataset and a particular data case. 

3.4.4. Quantification of the fault model uncertainty 
The goal of this paper (Feng et al., 2021) is to quantify the fault model uncertainty 

that is generally not captured by deep-learning tools. We have used the dropout 

approach, a regularization technique to prevent overfitting and coadaptation in 

hidden units, to approximate the Bayesian inference and estimate the principled 

uncertainty over functions. Particularly, the variance of the learned model has been 

decomposed into aleatoric and epistemic parts. 

3.4.5. Enhance data quality 
It is quite difficult to image geological features in highly deformed and complicated 

sedimentary basins. Poor data quality is one of the most serious issues. Unwanted 

noise is usually linked with seismic data, masking geological features. As a result, 

to increase data quality, undesired noise must be reduced. Data conditioning is a 

crucial step in reducing noise and emphasizing geological structures. In (Ramu et 

al., 2021) study, the detection of geological features by using multi-seismic attribute 

calculations and artificial neural networks has effectively improved the detection of 

faults and chimneys. 

3.4.6. Performance of a deep learning model 
Faults and horizons are thin geologic boundaries (1 pixel thick on the image) for 

which a small prediction error could lead to inappropriately large variations in 

common metrics (precision, recall, and intersection over union). 

(Guillon et al., 2020) suggest new metrics for evaluating a deep learning model's 

performance in seismic interpretation tasks like fault and horizon extraction. They 

change their metrics by introducing a tolerance feature, showing their ability to 

handle seismic interpretation uncertainties.   
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(Sarajaervi et al., 2020) recommend using a robust Jaccard metric for fault 

segmentation in seismic data because it allows for minor lateral fault positioning 

inaccuracies. In fact, this is accomplished by using metrics to compare machine 

learning results to manual interpretations and applying new variants of the 

convolutional neural network to field data. 

3.4.7. Prediction accuracy 
Fault identification in seismic data is a vital but time-consuming step in the seismic 

interpretation workflow. Recent studies demonstrate how deep-learning techniques, 

such as convolutional neural networks (CNN), can be used to identify these faults 

with high accuracy automatically. However, different levels of signal-to-noise 

ratios in seismic data can degrade prediction accuracy. A low resolution of 

predicted faults can cause multiple issues, such as failing to identify potential 

drilling hazards. 

A multichannel U-Net architecture was used by (Jiang & Norlund, 2021) to boost 

the prediction accuracy of fault probability maps for this abstract. The most 

important attributes were identified as additional channels to feed into the network 

using a decision-tree-based analysis of feature importance. The approach 

successfully improved prediction results by identifying more continuous fault 

segments and predicting missing fault segments that are not estimated using a 

seismic-only trained model by training with seismic and multiple attributes 

simultaneously. Implementing a GANs-based reconstruction method clarifies fault 

locations and aids in eliminating low probability blurred zones, resulting in a 

higher-quality fault probability map. 
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Chapter 4 

4. Result of the Literature of 
Machine Learning in Fault 
Detection 

4.1. Introduction  
Machine learning is a branch of computer science dealing with developing 

algorithms that depend on a series of observations of a phenomenon to be helpful. 

These examples can be found in nature, created by humans, or generated by another 

algorithm. ML simulates human learning by allowing computers to recognize and 

gain information from the real world, allowing them to do well on those tasks 

depending on the newly learned knowledge. Precisely, ML is defined as follows: 

"A computer program is said to learn from experience E concerning some class of 

tasks T and performance measure P, if its performance at tasks in T, as measured 

by P, improves with experience E." (Anderson, 1990). ML was deemed an 

independent discipline in the 1990s, despite its origins in the 1950s (Anderson, 

1990). ML methods are used in different fields of computer (Handelman et al., 

2019; Malhotra, 2015), environment (Bellinger et al., 2017), health (Spasic & 

Nenadic, 2020), medicine (Senders et al., 2018), and energy (Mosavi et al., 2019). 

In (Alregib et al., 2018; Dramsch, 2020; Zhen Wang et al., 2018), ML applications 

have been reviewed for Data-driven Geophysics and soft computing technology in 

Subsurface Structure Analysis. However, there is no systemic review of the 



84 
 

research of machine learning applications in fault detection and interpretation. As 

a result, the approaches used by ML research projects and their applications of fault 

interpretation are reviewed in detail in this article. The ML research trends, and ML 

models used in research projects are mainly examined.  

4.2. Methods for Systematic Review 
A systematic literature review (also known as a systematic review) allows 

identifying, analyzing, and interpreting all of the existing research on a specific 

research question, topic, or phenomenon (Budgen et al., 2007). The review's aim is 

to provide solutions to research-related questions.  The research questions in this 

study were initially arranged to define the scope and overall objectives of the 

review. A search method was then developed to efficiently collect research papers 

on research questions and set criteria to choose appropriate studies from search 

results. The abstracts and results of the articles were then reviewed to assess their 

relevance in the field of research. Following that, data was extracted from the paper 

in order to differentiate and structure the relevant details as follows: 

RQ 1: What are the current ML research trends in fault detection (yearly, 

publication sources, application fields in detail)? 

RQ 2: Which ML models were frequent in the research papers (data type, large 

data, model usage frequency, application in the field)?  

The main objective of this review is to provide an update on the current state of ML 

in seismic interpretation. The research questions were determined based on the 

purpose. The aim of RQ 1 was to describe the current state of ML study in the field. 

It refers extensively to the present state of the annual publication and its field-

related implementations. RQ 2 listed the ML model used in the analysis. It expressly 

referred to the learning data type, the use of a large volume of data, the frequency 

of use of the model, and its extensive use in the field. 
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4.3. Search Method 
We used Google, Scopus, and the web of science to find the most related articles. 

We extracted search keywords relevant to the review's subject: fault, seismic 

interpretation, machine learning, deep learning. The "machine learning" and "deep 

learning" were considered as keywords to identify papers that use ML and deep 

learning techniques among available research methods. Only research projects 

undertaken between January 2010 and March 2021 were considered to analyze 

research patterns over the last decade. Using the mentioned process, we were able 

to secure several candidate papers. 

4.4. Selection Criteria 
Originality, high impact, and high standards may all be considered qualifications 

for published articles. This is because such manuscripts are evaluated by experts 

and then revised before being published. Consequently, we have selected papers 

that have already been published. The following were the selection criteria: (1) 

research papers; (2) full text; (3) stratigraphic interpretation exclusion.  These 

factors were chosen for the following reasons: only research papers were used to 

assess the current state of ML, and full text allowed for a thorough examination of 

the paper's content. The stratigraphic interpretation was excluded because a few 

recent studies had reviewed and reported ML applications' topic. 

4.5. Results/Exploratory analysis 
An SLR is a systematic and coordinated method for investigating research on a 

subject or functional field and understanding the research's benefits (Ressing et al., 

2009). The result also aids in the long-term advancement of approaches and models. 

This provides an overall perspective of the research and helps to pave the way for 

further research on a particular subject. An SLR goes through several steps to 

ensure that all information is gathered and presented efficiently. Exploratory 
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analysis is a step in the process that relies on information about research articles 

such as publication growth, influential publications, most productive countries, and 

most frequently used keywords (Ahmed et al., 2020). 

4.6. RQ 1: Machine Learning Research Trends in the 
fault detection  

4.6.1. Publication Growth 
The figure 1 shows the distribution of research from January 2010 to March 2021. 

It has been steadily increasing over the last four years.  It could be said that only 

two of the 79 articles were reviewed before 2018. The number of studies published 

in 2018, 2019, 2020, and March 2021 was 14, 19, 25, and 11, respectively. The 

number of articles published in 2018 was 2 times higher than the previous year. 

Research conducted in the last four years accounted for approximately 97 percent 

of the total research conducted in the last twelve years. 

 
Figure 1: Publications per year 

4.6.2. Publication Source  
Several academic papers have appeared in peer-reviewed journals. The table 1 

summarizes the publication details of top journals and the total number of published 
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papers. Most papers were found in The Leading Edge, Geophysics, SEG Technical 

Program Expanded Abstracts 2018, Interpretation, followed by others. 

Table 1: Summary of top publications 

 

 

4.6.3. Paper type  
In the figure 2, the research papers were categorized on the basis of types of the 

article as original, methodological, case study, review, and conference papers. 

Conference papers were found to have the largest share of documents (40.49%), 

followed by original papers (20.24%). 
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Figure 2: Type of publication 

4.6.4. Influential authors and publications 
In this section, we explore the influential authors and published journals. The top 

authors published from 2010 to 2021 are shown in the table 2. The top-three most-

cited articles were written by (Meldahl et al., 2001), (Huang et al., 2017), (Araya-

Polo et al., 2017), table 3. The Co-citation network analysis is shown by figure 3. 

Table 2: Influential authors 

 



89 
 

 

Table 3: Influential publications 

 

 

 
Figure 3: Co-citation network analysis 
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4.6.5. Productive countries 
The table 4 shows the research work performed and the frequency of the publication 

by country. In terms of the number of publications (NP), China, the USA, and 

Norway have published 28, 28, and 3, respectively. China's NP and USA's NP are 

the same, whereas the difference between the second-and third-ranked countries is 

about 9.3.  

Table 4: Productive countries 

 

 

4.6.6. Most frequently used keywords 
The keywords used in a research field are an indication of the concentrated nature 

of the field. Accordingly, 415 keywords were recorded in this study. The figure 4 

shows the co-occurrence network of the most frequently used keywords. The 

distinct color represents the density of the clusters, whereas the relative font size 

indicates their frequencies of occurrences. The relative font size could be an 

indication of their significance and relative advancement. 
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Figure 4: Frequently used author’s keywords 

4.6.7. Detailed Fields of Application/ content analysis 
The breakdown of the research objective is shown in the table 5. Based on the 

research objectives, 53.2% of the research papers fall into the fault detection and 

fault interpretation category, which shows that it is indeed a favorable topic in 

seismic interpretation. The remaining 56.8% of the papers are distributed among 

the simultaneous pattern interpretation, training dataset problems, etc. The detailed 

table of the papers and their purposes can be found in the appendix. 

 



92 
 

Table 5: Summary of research objective 

 

 

4.7. RQ 2: Machine Learning Models  

4.7.1. Dataset types  
In ML research, a variety of data sets were used. The dataset was acquired either 

from publicly available open sources, individually in the case of private data, and 

synthetic datasets.  Therefore, figure 5, the papers were classified based on the 

synthetic dataset and real dataset that was used for the training of the models. 
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Figure 5: Dataset type 

4.7.2. seismic dataset 
Due to the vast number of ML and deep neural networks parameters, these methods 

usually require a large amount of data for training. The figure 6 shows the 

distribution of studies based on the type of seismic dataset. The figure indicates that 

the seismic amplitudes were the most common inputs for the training and evaluation 

steps. 

 
Figure 6: Type of seismic dataset 
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4.7.3. Machine Learning Models 
Based on the selected paper, the ML model was classified. As a result of analyzing 

the studies, the models were categorized into a total of 6 types: Deep Neural 

Network (DNN), Convolutional Neural Network (CNN), Neural Network (NN), 

Multi-Layer Perceptron (MLP), Machine Learning (ML) methods such as decision 

tree, random forest, self-organizing maps (SOM), principal component analysis 

(PCA), Support Vector Machine (SVM), Kernel Ridge Regression (KRR), Kernel 

Regularized Least Squares (Kernel RLS). Figure 7 represents the classification 

details of the ML technique. The figure indicates the usage frequency of all models 

in the study. The most frequently used model was the convolutional neural network 

(65%).  

 
Figure 7: Usage frequencies of ML models 
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4.7.4. Learning mechanisms 
The figure 8 below shows the distribution of studies based on the learning methods. 

Learning can be supervised, semi-supervised, unsupervised, and reinforcement. As 

it is clear, supervised learning is the most used method (55 studies). 

 

 
Figure 8: Type of ML algorithm 

 

4.7.5. Deep Model Training  
Shortlisting many network architectures, also known as network topologies, is the 

first step in model training. When dealing with image data, for building a 

convolutional neural network (CNN) model from scratch, at least one convolutional 

layer, followed by a max-pooling layer, and one fully connected layer may be the 

default topology choice. The figure 9 indicates the usage frequency of architectures 

in neural network-related studies. The most frequently used architecture was the 

typical one (19 studies). 



96 
 

 
Figure 9: Neural network architectures 

4.8. Conclusion  
Systematic reviews were conducted to examine the current trends of machine 

learning techniques in fault detection and analyze previous studies in detail. The 

review provides an overview of the research conducted so far and assistance for 

future research. The answers to research questions are summarized as follows: 

• Several studies have been conducted since 2010, and the highest number of 

studies have been conducted only in developing new ML techniques for fault 

detection. 

• The research was conducted using convolutional neural networks (CNN) 

predominantly.  

• The ML models were trained and evaluated primarily using real datasets.  

• Since 2016, several studies have been conducted on ML techniques in fault 

detection, demonstrating the increased attention ML-related research has been 

receiving. 
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