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Abstract

The main focus of this thesis is the analysis of the asymptotic behavior of deter-
ministic logit dynamics in heterogeneous routing games on two-terminal directed
multigraphs. We provide three results. The first one states that this dynamics
admits a globally asymptotically stable fixed point when noise is sufficiently high.
The second result, instead, shows that the fixed points of the dynamics always
approach a subset of the Wardrop equilibria of the game, called the limit set, as
the noise vanishes and that pure strategy Wardrop equilibria, i. e., equilibria where
every population uses a single path and the other paths are strictly suboptimal,
always belong to this limit set. Finally, the last result is that every pure strategy
Wardrop equilibrium of the game is locally asymptotically stable under the logit
dynamics in the limit of vanishing noise. In other words, the fixed points of the
dynamics that converge to that equilibrium are locally asymptotically stable when
noise is sufficiently low.
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Chapter 1

Introduction

In recent years, the optimal use of transportation networks has attracted significant
interest as one of the main aspects of smart mobility. Routing games provide a pow-
erful mathematical tool to model real-world scenarios whereby a set of users com-
pete for shared resources. This class of games finds numerous applications within
socio-technical systems, in particular in transportation networks. In this setting,
the topology of the transportation network is modeled as a directed multigraph,
whose links and nodes represent roads and junctions, respectively. Congestion ef-
fects are then captured by cost functions giving the travel time on each link as a
function of the total flow along it. Users are modeled as fully rational decision mak-
ers choosing minimal cost paths from their origin to their destination. The users’
perceived costs typically correspond to a combination of the total travel time along
the route and possibly a monetary price associated to it (e. g., fuel consumption,
tolls). Links are to be considered as resources and players using them create nega-
tive externalities because of congestion effects. We focus on two-terminal networks,
in which users share the same origin and destination.

In non-atomic routing games, the users’ population is modeled as a continuum,
so that the change in the costs induced by a single individual’s route choice is in-
finitesimal. In this case, variational inequalities and convex optimization lead to
an elegant and insightful theory. Most of the interest is devoted to the analysis of
the steady configurations reached by the system. A Wardrop equilibrium is a users’
flow distribution in which every user cannot unilaterally decrease his cost by chang-
ing path [18], i. e., it is on the path with minimum cost. Assuming homogeneity of
players, meaning that the cost functions over paths are the same for all of them,
implies some significant results: the game always admits at least a Wardrop equi-
librium and if cost functions are strictly increasing, then the equilibrium is unique.
However, single population routing games are not always the most suitable models
to use and, indeed, they can often prove to be limiting.

Heterogeneous routing games represent a much broader class of models that
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allows to describe more realistic scenarios, e. g., users might have different infor-
mation on traffic [1], [3], [6], or users might perceive different route costs or have
different priorities [11], [12]. This assumption divides users into multiple popula-
tions: the population they belong to determines the link costs. In this setting,
existence of equilibria holds [16], while uniqueness does not, in general [14].

Routing games are usually equipped with learning dynamics. In this thesis, we
choose to focus our attention on deterministic logit dynamics. This dynamics aims
to describe the evolution of the system, given that users are characterized by a level
of knowledge of the game, represented by a “noise level” parameter. In the single
population case, the fixed points of the dynamics converge to the set of Wardrop
equilibria of the game, as the noise level vanishes [15]. Because of its wide use and
effectiveness, knowing if the logit dynamics might converge to a specific Wardrop
equilibrium tells us whether this point represents a realistic situation or not. The
same result holds in the heterogeneous case if we limit ourselves to consider specific
types of multigraphs, namely parallel graphs and series of parallel graphs [10].
However, the literature provides some examples of more complex settings exhibiting
bifurcation phenomena [10]. With the term “bifurcation” we identify all those
phenomena in which changing the value of one or more parameters characterizing
the dynamics influences the asymptotic behavior of the system.

To the best of our knowledge, the asympotic behavior of deterministic logit
dynamics for heteogeneous routing games was studied only in [10] for games defined
on series of simple graphs, so far. Given these motivations, this thesis aims to extend
what has been done so far by analyzing the case of non-parallel graphs.

This thesis is organized as follows. In Chapter 2 we provide the background
notions required to fully understand this thesis. Specifically, we give the definitions
of the type of network we exploit and network flow and we introduce some basic
notions on dynamical systems and their stability and some crucial results about
this, as well, that we will use in the following chapters to study the logit dynamics.
Then, in Chapter 3, after an overview on routing games, we provide the definition
of routing game and we introduce the notion of Wardrop equilibrium. We distinct
between single population and heterogenenous routing games and we show the dif-
ferent implications brought by these two different assumptions, also by providing
two significant examples. We also highlight how the network topology affects rout-
ing games. Finally, in Chapter 4 we introduce the deterministic logit dynamics.
After looking at some significant numerical simulations, we provide our original
theoretical results, which characterize the fixed points of the logit dynamics and
their stability, both in the vanishing and large noise regimes.
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Chapter 2

Preliminaries

In this chapter, we are going to provide the reader with the basic notions from
graph theory we resort to in this thesis. Specificaly, we give the definitions of two-
terminal networks and network flow. Two-terminal networks are the mathematical
tool used to model transportation networks, while network flows aim to represent
users travelling along it.

2.1 Two-terminal networks
Definition 2.1. We define a directed multigraph as a quadruple

G = (V , E , θ, κ), (2.1)

where:

• V is the finite set of nodes;

• E is the set of links;

• θ, κ : E → V are the tail and head functions, respectively.

An important implication stems from Definition 2.1. There might exist two links
sharing the same tail and head, hence two links e1, e2 ∈ E such that θ(e1) = θ(e2)
and κ(e1) = κ(e2). These two links are then called parallel. Instead, if θ(e1) = κ(e2)
and κ(e1) = θ(e2), then they are called opposite.

We now introduce the notion of reachability. Let us consider a directed multi-
graph G = (V , E , θ, κ).

• A walk from i to j is a finite sequence of links γ = (e1, e2, . . . , el) such that
κ(ei) = θ(ei+1), i = 1, . . . , l− 1. Then, we say that the walk begins at θ(e1), it
ends in κ(el) and its length is l.
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Preliminaries

• j ∈ V is reachable from i ∈ V if there exists a walk from i to j.

• A walk such that θ(eh) /= θ(el), ∀h /= k, h, k ∈ {1, . . . , l} is called path.
Basically, paths are walks with no repeating nodes.

• A path such that θ(e0) = κ(el) is called circuit, while a path with this property
is called cycle.

We now denote as Γ(i,j) the set of paths starting at i and ending at j, the i-j paths.
Let us also denote as ∆ the set of all closed paths in G, which includes self-loops,
length-2 circuits that are not repeating self-loops and cycles.

It is very useful to provide the following definitions.

Definition 2.2. Given a directed multigraph G = (V , E , θ, κ), we define its node-
link incidence matrix B ∈ RV×E in the following way:

Biej =


+1, if θ(ej) = i

−1, if κ(ej) = i

0, otherwise
. (2.2)

Then, we define its link-path incidence matrix A(i,j) ∈ RE×Γ(i,j) in the following
way:

A(i,j)
eγ =

1 if link e is along path γ
0 if link e is not along path γ

. (2.3)

Finally, we define its link-cycle incidence matrix C ∈ RE×∆ in the following
way:

Ceγ =
1 if link e is along cycle γ

0 if link e is not along cycle γ
. (2.4)

Basically, the columns of B are labelled by links. Each column has only two
entries that differ from 0. The first one is associated to the tail of the edge which
the column is labeled with and it is equal to +1, whereas the second entry is equal
to −1 and it refers to the head of the edge. Notice also that each column of A(i,j)

is a {0,1}E vector with entries equal to one corresponding to the edges belonging to
the path the column refers to. This same thing holds for the link-cycle incidence
matrix C.

We now introduce the notion of network flow, which is crucial in order to obtain
a full understanding of this thesis. Let us consider a directed multigraph G =
(V , E , θ, κ) and a vector of exogenous flows ν ∈ RV satisfying the constraint

1
′ν = 0. (2.5)

Each component νi may be interpreted as an exogenous inflow at i if it is positive
or as an external outflow at i if it is negative. In our work, we refer to nodes such
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that νi > 0 as origins and the nodes such that νi < 0 as destinations. At this
point, it is possible to define the throughput, i. e., the total flow that runs across
the network, as

τ = 1
2
∑
i∈V
|νi|. (2.6)

Definition 2.3. Given a directed multigraph G = (V , E , θ, κ) and an exogenous
flow ν ∈ RV satisfying (2.5), a network flow is a vector f ∈ RE+ whose entries fej
(flow on link ej ∈ E) are such that

νi +
∑

ej |κ(ej)=i
fej =

∑
ej |θ(ej)=i

fej , i ∈ V . (2.7)

(2.7) is basically a mass conservation law, since it prescribes that, for each node,
the amount of flow entering it must be equal to the amount of flow leaving it. (2.7)
can be rewritten in a more compact way by resorting to the node-link incidence
matrix:

Bf = ν. (2.8)

The class of network flows on which we focus our attention in this thesis is that of
o-d flows, which are network flows with a single origin-destination pair (o, d) and
satisfy the following condition:

Bf = τ
(
δ(o) − δ(d)

)
, (2.9)

Here, δ(u) ∈ RV indicates a one-hot vector such that the only non-zero component
is the one associated to node u ∈ V . Notice that in the case of o-d flows we can say
that all the mass constituting the flow enters the network at o and leaves it at d.
The notion of o-d flow is crucial, since it will be used to model flows of vehicules
travelling across a network. We now state an important result from [2] showing that
every assignment of flows to both o-d paths and cycles in the multigraph induces a
unique network flow f on the links and that, conversely, for every network flow f
on the links, there exists an assignment (possibly and tipicaly non unique) of flows
to both o-d paths and cycles in the multigraph that induces f .

Theorem 2.1 (Flow Decomposition Theorem). Let G = (V , E , θ, κ) be a directed
multigraph with link-cycle incidence matrix C. Let o /= d be two nodes in V with d
reachable from o and let A(o,d) be the associated link-path incidence matrix. Then,
for every couple of vectors z ∈ RΓ(o,d)

+ and w ∈ R∆
+,

f = A(o,d)z + Cw (2.10)

is a o-d flow of throughput 1′z = τ . Conversely, for every o-d flow with throughput
τ , there exists vectors z ∈ RΓ(o,d)

+ and w ∈ R∆
+ such that (2.10) holds true.
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We conclude this section by introducing a narrower class of directed multigraphs,
which is the one that we focused on in this thesis.

Definition 2.4. A two-terminal network (TTN) is a pair G(o,d) = (G, (o, d)) of
a directed multigraph G and two distinct nodes o, d ∈ V such that d is reachable
from o in G.

2.2 Stability of dynamical systems
In this section, we are going to talk about convergence phenomena of differential
systems of equations of the form

ẋ = g(x), (2.11)

where g(x) represents a vector field from Rm to Rm of class Cr, r ≥ 1. This chapter
heavily relies on [4], [8].

A differentiable function γ(t) : I → Rm is a solution of such that (2.11) if

γ̇(t) = g(γ(t)), ∀t ∈ I (2.12)

The result we present in the following allows to relate (2.11) with the notion of
dynamical system that we will introduce in the next section.

Theorem 2.2. Let us consider system (2.11) and a point x̄ ∈ Rm. Then, there
exists a neighborhood U of x̄, ε > 0 and a map

(t, x)→ ϕ(t, x) : (−ε, ε)× U → Rm (2.13)

such that:

• t→ ϕ(t, x) is the only solution of (2.11) in (−ε, ε), ∀x ∈ U ;

• x→ ϕ(t, x) is an invertible function of class Cr and whose inverse function is
still of class Cr such that ϕ(0, x) = x, ∀t ∈ (−ε, ε);

• it holds that

ϕ(t, ϕ(s, x)) = ϕ(t+ s, x), ∀x ∈ U, ∀ t, s, t+ s ∈ (−ε, ε). (2.14)

We now provide the definition of dynamical system.

Definition 2.5. A dynamical system over Rm is a function

ϕ(t, x) : R× Rm → Rm (2.15)

satisfying the following properties:
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1. ϕ is continuous;

2. ϕ(0, x) = x, ∀x ∈ Rm;

3. ϕ(t, ϕ(s, x)) = ϕ(t+ s, x), ∀x ∈ Rm, ∀ t, s, t+ s ∈ R.

The application t→ ϕ(t, x) is called trajectory of the dynamical system.

By looking at Theorem 2.2, it is easy to understand how system (2.11) defines
a dynamical system as we just described it. Actually, it can be shown that g must
be a complete vector field (all of its are gobally defined) in order for (2.11) to fully
correspond to a dynamical system. This is the case, for example, when g is a
Lipschitz function.

The analysis of the stability of a dynamical system consists in the research of
its equilibrium points and in determining the nature and properties of these steady
configurations.

Definition 2.6. x ∈ Rm is said to be a fixed point for the dynamical system
(2.15) if ϕ(t, x) = x, ∀t ∈ R.

Before proceeding, please notice that from now on we will use the notation
B(x, r) to indicate the ball in Rm of radius r and centered at x. Please also notice
that every notion of stability that we will provide in the following has to be intended
in the sense of Lyapunov. Moreover, let M be a compact subset of Rm.

Definition 2.7. M is said to be stable if

∀ε > 0,∃δ > 0 | ϕ(t,B(M, δ)) ⊂ B(M, ε), ∀t ≥ 0. (2.16)

Basically,M is stable when trajectories starting inside it or next to it (the level of
closeness is determined by the magnitude of δ) will stay next to it as the dynamical
system evolves in time.

Definition 2.8. M is said to be locally attractive if

∃ε > 0 | lim
t→+∞

d(ϕ(t, x),M) = 0, ∀x ∈ B(M, ε). (2.17)

B(M, ε) is said to be the basin of attraction of M . M is said to be globally
attractive when (2.17) holds ∀x ∈ Rm.

Definition 2.9. M is said to be locally asymptotically stable if it is stable
and it is locally attractive. Analogously, M is said to be globally asymtotically
stable if it stable and it is globally attractive.

Notice that points in Rm are compact sets, so the definitions provided above are
valid also for them.

The following result turns out to be crucial in order to study non-linear differ-
ential systems, since it allows us to reduce the study of a non-linear system to the
study of a linear one, simplifying things a lot.
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Theorem 2.3. Let us consider a system of the form

ẋ = Ax+ h̃(x), x ∈ Rm, (2.18)

where h̃ is a function such that

lim
‖x‖→0

‖h̃(x)‖
‖x‖

= 0.

Then, if all eigenvalues in the spectrum of A have negative real part, the origin is
a locally asymptotically stable fixed point of the system. On the contrary, if there is
an eigenvalue with positive real part, then the origin is an unstable fixed point for
the system.

Theorem 2.3 can actually be applied on (2.11). It suffices to take A = Dg(0),
the jacobian matrix of g(x) evaluated at 0. By resorting to Taylor’s first order
approximation with Peano’s remainder, one can easily see that (2.11) satisfies to
its conditions. The linear system

ẋ = Dg(0)x (2.19)

is called linear part of (2.11) in x = 0. Finally, notice that one can apply Theorem
2.3 in every equilibrium point x0 of a system just by performing a change of coor-
dinates like y = x− x0. In this case, the linear part of the system is determined by
Dg(x0).

2.3 Contractivity of dynamical systems
We are now introducing the very useful notion of contractivity. Contractivity al-
lows to prove the existence of globally asymptotically stable fixed point when a
specific set of conditions is met. In the following, we are going to provide some new
definitions and results based on contractivity that we exploit in our work.

We begin by defining the concept of matrix measure. Recall that, given a vector
norm in an eucllidean space ‖ · ‖V , the associated induced matrix norm is defined
as

‖A‖M = sup
‖x‖V =1

‖Ax‖V = sup
|x|/=0

‖Ax‖V
‖x‖V

. (2.20)

Notice that ‖·‖M corresponds to the norm of the linear map FA : x→ Ax associated
to A.

Definition 2.10. Given a matrix A ∈ Rn×n, we define its matrix measure µ(A)
as the directional derivative of the matrix norm ‖ · ‖M in the direction of A an
evaluated at In, that is:

µ(A) := lim
h→0+

‖In + hA‖M − 1
h

. (2.21)
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Matrix measure was introduced in [17]. The explicit form of this quantity de-
pends on the euclidean norm used. For example, if ‖ · ‖M corresponds to the `1
norm, then:

µ1(A) = max
j∈{1,...,n}

ajj +
n∑

i=1,i /=j
|aij|

 . (2.22)

Now that we defined what a matrix measure is, we are ready to define a contractive
system.

Definition 2.11. Let us consider the vector field g : R≥0×Rn
≥0 → Rn and suppose

that it is continuously differentiable (so that solutions exist and are locally unique)
and denote its Jacobian by Dg(t, x). Then, g is said to be

1. infinitesimally contracting on a set C ⊂ Rn if there exists a norm such
that the associated matrix measure satisfies to the following condition, for
some c > 0 (the contraction rate):

µ(Dg(t, x)) ≤ −c,∀x ∈ C, ∀t ∈ R≥0; (2.23)

2. infinitesimally weakly contracting (or non-expansive) if (2.23) holds
when c = 0.

A very useful result from [8] exploiting the concept of contractive system is now
reported.

Theorem 2.4. Let us consider a continuously differentiable vector field g and a
norm ‖ · ‖V with associated matrix measure µ(·). Assume that:

• there exists a convex, closed and g-invariant set C;

• g is infinitesimally contracting with contraction rate c > 0 on the set C with
respect to ‖ · ‖V .

Then:

• there exists a unique equilibrium point x∗ in C;

• x∗ is exponentially stable with region of attraction containing C;

• x→ ‖x− x∗‖ e x→ ‖g(x)‖ are global Lyapunov functions.
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Chapter 3

Routing games

In this chapter, we provide an overview on routing games. Then, we introduce the
notion of Wardrop equilibrium, a flow distribution in which none of the network
users is interested in modifying its choice on the path, since he is already travel-
ling on the one of minimum cost. We discuss existence and uniqueness of Wardrop
equilibria, making a distinction between single population and heterogeneous games
and highlight that in the latter case uniqueness does not hold, in general. Neverthe-
less, the network topology plays an important role and we show how, under certain
assumptions, uniqueness is guaranteed also for heterogeneous games. We conclude
the chapter with two significant examples.

3.1 Routing games
What routing games aim to do is modeling the congestion phenomena arising on a
transportation network exploited by one or more population of users that want to
move from one place to another. Players of a routing game correspond to the users
of a transportation network. The set of adoptable strategies, instead, correspond to
the set of paths and the associated cost functions represent the path travel times. In
most applications, cost functions are non-decreasing with respect to the quantity of
users resorting to the link they refer to: by choosing a path, every player increases
the cost of all players choosing the same strategy. Notice that, in general, cost
functions might also include other types of cost, such as monetary tolls or fuel
consumption.

Routing games belong to the broader class of population games defined in [15].
Here, we do not formally define population games: rather, we just list the features
we need to complete our introduction of routing games. Specifically, the aspects
we are interested in are the following.

• Populations: each agents belongs to a specific population determining its cost
functions, so the strategy it is going to adopt. An agent can belong to one
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and only one population.

• Non-atomicity: each population is modeled as a continuum, meaning that
changes induced in the game by the actions of a single player are negligible.
This assumption is equivalent to suppose that each population consistsin a
very large number of agents.

• Anonimity: the congestion effects arising on the transportation network de-
pend only on the empirical frequencies of users resorting to the available strate-
gies and not on who uses them.

Before proceeding to define the model analyzed in this thesis, it should be noted
that given the assumptions made up to now, it is also usual to suppose that the
cost functions are continuous, coherently with the non-atomicity feature. We are
now ready to describe the model we used in this thesis.

Let us consider a TTN G(o,d). Let P be the set of populations, with P = |P|
and let us assume that all populations share the same origin-destination pair (o, d).
Let the p-th population have throughput τ p, p ∈ P and let τ = ∑P

p=1 τ
p be the

aggregate throughput. Each of the P populations is characterized by a different set
of continuous, non-decreasing cost functions over the set E . Let Dp

e(x) : R+ → R+
be the cost perceived by population p users when travelling along link e ∈ E .
This choice allows us to model a situation where populations are all affected by
the congestion phenomenon, but possibly users from different populations react
differently. Let D denote the vector containing all cost functions associated to a
different pair (e, p) ∈ E ×P . It is crucial to keep in mind that we are assuming that
individual users are negligible and they are playing the game anonymously. Also,
observe that we are assuming separability, meaning that the cost on each edge is
influenced by the amount of flow on that edge only. Finally, the set of possible
actions corresponds to the set of o-d paths and does not depend on populations.
Then, let R = Γ(o,d) be the path set and let V , E and R be the cardinalities of V ,
E and R, respectively.

Now, for each population p ∈ P we can define an admissible path distribution as
a vector zp ∈ RR

+ satisfying the throughput constraint ∑r∈R z
p
r = τ p. We can then

obtain the associated edge flow distribution vector

fp = A(o,d)zp. (3.1)

Unlike in (2.10) in Theorem 2.1, edge flow distribution vectors can be retrieved
just by considering path flow distributions and neglecting flows on the cycles of the
network. This is due to the fact that no rational player would pass through the
same node more than once if its objective is to go from o to d. We can then retrieve
the aggregate version of both these vectors in the following way:

f agg =
∑
p∈P

fp, zagg =
∑
p∈P

zp. (3.2)
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3.1 – Routing games

Notice that the cost function on link e ∈ E will be determined by the same aggregate
flow quantity f agg

e , for every population p ∈ P . This is due to the fact that every
population suffers from the same congestion effects of the other populations on
every link of the network. Finally, we also assume the cost to be additive, meaning
that the cost of each path for population p is simply defined as the sum of the costs
for that population of the edges that compose the path:

cpr(z) =
∑
e∈E

A(o,d)
er Dp

e(f agg
e ). (3.3)

We are now ready to provide the following definition.

Definition 3.1. A quadruple (G(o,d),P , {τ p}Pp=1, D) is called routing game.

The distinction between the single population case (P = 1) and the hetero-
geneous one, where each population is provided with a distinct set of cost func-
tions,represents a crucial aspect that we will better investigate in the following.
Now, in a routing game each player wants to minimize its perceived cost, accord-
ingly to the cost functions.

Definition 3.2. Given a routing game (G(o,d),P , {τ p}Pp=1, D), a Wardrop equi-
librium z∗ ∈ RP·R is an admissible path flow distribution such that for every
population p ∈ P and path r ∈ R

(z∗)pr > 0 ⇒ cpr(z∗) ≤ cps(z∗), ∀s ∈ R. (3.4)

Wardrop equilibria actually correspond to Nash equilibria from game theory.
The reason why they are named differently in the context of routing games is
that they were named after J. G. Wardrop, the first who devoted his attention to
this kind of problems in [18]. We are going to provide a classification of a Wardrop
equilibrium based on the number of paths it involves and how populations distribute
on them. Let Rp

opt(z∗) be the set of optimal paths for population p ∈ P at Wardrop
equilibrium z∗.

Definition 3.3. Given a routing game (G(o,d),P , {τ p}Pp=1, D) and one of its Wardrop
equilibria z∗, we say that z∗ is pure strategy when |Rp

opt(z∗)| = 1, ∀p ∈ P , i. e.,
every population has a single optimal path on which it travels along.

Now, population games always admit at least one Nash equilibrium [15]. Then,
since routing games are population games and Wardrop equilibria are Nash equilib-
ria, it follows that routing games always admit at least one Wardrop equilibrium.
Hence, existence of equilibrium configurations in these models is always guaran-
teed. Uniqueness, instead, turns out to be a much more delicate aspect. We want
to anticipate that uniqueness, in general, does not hold and homogeneity and het-
erogeneity represent a major concern in this case.
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3.2 Single population routing games
In the single population case, the following result guarantees uniqueness of the
Wardrop equilibrium of the game by associating every single population routing
games to a specific convex program with convex objective function.
Theorem 3.1 ([7]). Let us consider the single population routing game. Then, a
o-d flow f ∗ of throughput τ is a Wardrop equilibrium if and only if it is an optimal
solution of the following minimization problem:

min
f≥0

Bf=τ(δ(o)−δ(d))

∑
e∈E

∆e(fe), (3.5)

where
∆e(fe) :=

∫ fe

0
De(s)ds. (3.6)

Then, f ∗ is unique if the cost functions in D are strictly increasing.
First of all, notice that Theorem 3.1 is stated in terms of the link flow distribution

f ∗. When referring to f ∗ as Wardrop equilibrium, we are actually saying that all
z∗ such that f ∗ = A(o,d)z∗ are Wardrop equilibria. This result might be restated
in an equivalent form in terms of z by substituting fe with (A(o,d)z)e in (3.5).
Nevertheless, the problem is only convex in z. Hence, it might be that the game
admits a continuum of equilibrium route flow distributions that induce the same
network flow f ∗. Therefore, uniqueness of the Wardrop equilibrium with strictly
increasing cost functions holds only from a link-perspective point of view.

Theorem 3.1 states that finding a Wardrop equilibrium in the single population
case is equivalent to minimizing a convex potential function with linear constraints.
Basically, what this result is saying is that single population routing games are
actually potential games.
Definition 3.4. A routing game is said to be potential if there exists a function
V : Z → R such that

cpr(z)− cps(z) =
(
∂

∂zpr
− ∂

∂zps

)
V (z), ∀p ∈ P , ∀r, s ∈ R. (3.7)

The function V is called the potential of the game.
The objective function in (3.5) is the potential of the single population routing

game (G, τ,D). Potential will turn out to be particularly useful in the next chapter
when analyzing the asymptotic behavior of the deterministic logit dynamics in
single population routing games. Please refer to [15] for more details on potential
games and notice that Definition 3.4 is valid also for the broader class of population
games.

In many cases, single population routing games do not describe real-word prob-
lems well, since homogeneity basically consists in the assumption that all users
perceive link costs in the same way.
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3.3 Heterogeneous routing games
The heterogeneity assumption allows us to model more realistic and complex sys-
tems. The main difficulty that arises when dealing with heterogeneous routing
games is that they are not associated to a potential function. The lack of po-
tential has several implications on the properties of the game, for instance on the
uniqueness of the equilibria. In fact, we will see that the Wardrop equilibrium in
heterogeneous routing games is in general not unique, in contrast with the single
population case.

Definition 3.5. Let us consider a heterogeneous routing game (G(o,d),P , {τ p}Pp=1, D)
and let Z∗ be the set of its Wardrop equilibria. We say that the game admits an
essentially unique Wardrop equilibrium if all its Wardrop equilibria have the
same aggregate link flow distribution, i. e.,

A(o,d)zagg = A(o,d)wagg, ∀z, w ∈ Z∗. (3.8)

In [14], the author shows that the largest class of TTN for which essential unique-
ness holds is that of series of nearly parallel graphs. Notice that the definitions that
will follow were originally provided in [14] for the more general case of undirected
graphs. Nevertheless, the same article shows how they can be easily adapted to the
special case of directed graphs.

Definition 3.6. A TTN is said to be nearly parallel when one of the following
conditions is satisfied:

• it has a single o-d path;

• it has two parallel o-d paths;

• it derives from a TTN with two parallel paths added with one or more parallel
paths with common end nodes.

A series of nearly parallel graphs, instead, is a TTN consisting in concatenation
in series of two or more nearly parallel graphs, where two consecutive graphs are
connected so that the first one has as destination node the origin node of the
following. Notice that from now on, we will use the term path to denote an o-d
path of a given TTN.

All typologies of nearly parallel graphs are shown in Figure 3.1. It is worth to
mention the fact that nearly parallel graphs might also be defined as TTNs that do
not embed none of the graphs reported in Figure 3.3, where the notion of embedding
is provided in the following definition.

Definition 3.7 ([14]). A TTN G ′(o′,d′) is said to be embedded in the wide sense
in another TTN G ′′(o′′,d′′) if the latter can be derived from G ′(o′,d′) by applying one or
more of the following operations (displayed in Fig 3.2) any number of times:
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Figure 3.1: Sub-classes of nearly parallel graphs.

1. subdivision of an existing link;

2. addition of a new link;

3. subdivision of a terminal node (o or d).

Figure 3.2: Embedding operation: subdivision of an existing edge (bottom left),
addition of an existing edge (bottom center) and subdivision of a terminal node
(bottom right).

Therefore, being a (series of) nearly parallel graph(s) and embedding one of the
graphs in Figure 3.3 are mutually exclusive conditions. Let us call TTNs satisfying
the second condition non-parallel graphs.

In [14], the author also proved that a TTN has the essential uniqueness property
if and only if it is a (series of) nearly parallel graph(s). As a consequence, all TTNs
that do not belong to this class of graphs admit a heterogeneous routing game
on them with multiple Wardrop equilibria. We now report a significant example
from [10]. Then, we dedicate a subsection to analyze a heterogeneous routing game
defined on a non-parallel graph. This last example was originarly presented in [13]:
here we show that there is an additional Wardrop equilibria that was not mentioned
in the previous article.
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Figure 3.3: The prohibited graphs.

Example 1 Let us consider a TTN such that E = (e1, e2) and θ(ei) = o, κ(ei) =
d, i = 1,2. Let |P| = P = 2 and τ 1, τ 2 throughputs of population 1 and 2,
respectively. It is straightforward that if D is such that

D1
1(f ∗1 ) = D1

2(τ − f ∗1 ), D2
1(f ∗1 ) = D2

2(τ − f ∗1 ), (3.9)

for some aggregate link flow distribution f ∗ = (f ∗1 , τ − f ∗1 ), then every link flow
distribution satisfying

f 1
1 + f 2

1 = f ∗1 , f 1
2 + f 2

2 = τ − f ∗1 , f 1
1 + f 1

2 = τ 1, f 2
1 + f 2

2 = τ 2, (3.10)

is a Wardrop equilibria for the heterogeneous routing game (G,P , {τ p}2
p=1, D). It is

interesting to notice that the Wardrop equilibrium is essentially unique, since the
aggregate link flow distribution is always the same, although population-wise the
game admits a continuum of Wardrop equilibria.

3.3.1 An example of non essential uniqueness
Let us consider the TTN in Figure 3.4. We have that V = {o, a, b, d}, where

Figure 3.4: Example of non-parallel graph.

o and d are, respectively, the origin node and the destination node, and E =
{e1, e2, e3, e4, e5, e6}. Let also R = {r1, r2, r3, r4} be the set of paths from o to

21



Routing games

d, where r1 = (e1, e2), r2 = (e1, e3), r3 = (e4, e5), r4 = (e4, e6). Finally, let R = |R|.
The throughputs of the populations are the following:

τ 1 = 1.2, τ 2 = 1, τ 3 = 1. (3.11)

Let us also assign the following cost functions to the edges of the TTN. Here, Dp
e(x)

quantifies the cost that an user of the p-th population experiences when it travels
along the e-th edge, given that the flow that runs across it is equal to x:

D1
1(x) = D1

2(x) = D1
4(x) = D1

6(x) = 19 + x,

D2
1(x) = D2

4(x) = D3
1(x) = D3

4(x) = 19 + x,

D1
3(x) = D1

5(x) = D2
3(x) = 100 + x,

D2
6(x) = D3

2(x) = D3
5(x) = 100 + x,

D2
2(x) = D3

6(x) = 20x,
D2

5(x) = D3
3(x) = 21 + x.

(3.12)

In this case, the link-path incidence matrix is

A(o,d) =



1 1 0 0
1 0 0 0
0 1 0 0
0 0 1 1
0 0 1 0
0 0 0 1


. (3.13)

The path costs for each population involved in the game for the network taken into
consideration are the following:

c1
1 = 2zagg

1 + zagg
2 + 38, c1

2 = zagg
1 + 2zagg

2 + 119,
c1

3 = τ − zagg
1 − zagg

2 + zagg
3 + 119, c1

4 = 2τ − 2zagg
1 − 2zagg

2 − zagg
3 + 38,

c2
1 = 21zagg

1 + zagg
2 + 19, c2

2 = zagg
1 + 2zagg

2 + 119,
c2

3 = τ − zagg
1 − zagg

2 + zagg
3 + 40, c2

4 = 2τ − 2zagg
1 − 2zagg

2 − zagg
3 + 119,

c3
1 = 2zagg

1 + zagg
2 + 119, c3

2 = zagg
1 + 2zagg

2 + 40,
c3

3 = τ − zagg
1 − zagg

2 + zagg
3 + 119, c3

4 = 21τ − 21zagg
1 − 21zagg

2 − 20zagg
3 + 19.

(3.14)
They can be computed resorting to (3.3) and (3.12). Notice that they are expressed
as functions depending on the components of the aggregate route flow distribution.

Proposition 3.1. The only equilibria of the heterogeneous routing game on network
in Fig. 3.4 with cost functions (3.12) and throughputs (3.11) are the flow vectors

•
fagg

1 =
(6

5 ,
6
5 ,0,2,1,1

)
, (3.15)
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•
fagg

2 =
(

2,1,1, 6
5 ,0,

6
5

)
, (3.16)

•
fagg

3 =
(8

5 ,
113
105 ,

11
21 ,

8
5 ,

11
21 ,

113
105

)
, (3.17)

associated to the the following route distributions:

•
z1 =

(6
5 ,0,0,0

)
,

z2 = (0,0,1,0),
z3 = (0,0,0,1);

(3.18)

•
z1 =

(
0,0,0, 6

5

)
,

z2 = (1,0,0,0),
z3 = (0,1,0,0);

(3.19)

•
z1 =

(3
5 ,0,0,

3
5

)
,

z2 =
(10

21 ,0,
11
21 ,0

)
,

z3 =
(

0, 11
21 ,0,

10
21

)
.

(3.20)

Proof. The proof is contained in Appendix A.

Therefore, the game admits three distinct Wardrop equilibria, each of them as-
sociated to a different aggregate link flow distribution. Hence, essential uniqueness
does not hold in this case. Notice also that two of them are pure strategy Wardrop
equilibria.

We showed that much more complex scenarios might arise when dealing with
heterogeneous routing games defined on non-parallel graphs. This is the framework
which we focus on in the next chapter and the results in it refer to.
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Chapter 4

Logit learning in
heterogeneous routing
games

As outlined in [15], routing games provide a relatively simple framework to describe
strategic multi-agent systems, making a certain number of assumptions in order to
facilitate the construction of a model. Among all these assumptions, the equilibrium
knowledge assumption is probably the most significant one. Under this hypothesis,
we are basically saying that players have full knowledge of the game they are taking
part to and they are able to choose the correct strategy to adopt by anticipating
what other players will do, in fact. Many times it is more appropriate to build
dynamical systems where, starting from a certain initial condition, players are free
to change their choice over time and see where this evolution leads.

We are now going to describe a framework in which players may decide to change
their strategy over time in order to minimize their perceived cost. By doing so, they
may modify the current perceived costs of the other players who might also decide to
change strategy and so on. The system will eventually converge to a configuration
in which none of the players has a reason to make another change [15]. Specifically,
in this chapter we devote our attention to the so called deterministic logit dynamics
and we will equip heterogeneous routing games with this new tool in order to create
a more realistic model. Actually, the main results provided in this thesis concern
the asymptotic behavior of the aforementioned dynamical system.
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4.1 Dynamics description
Deterministic logit dynamics belongs to the family of evolutionary dynamics. Evo-
lutionary dynamics are continuous-time systems where players can adapt their de-
cision depending on the current system configuration.
Definition 4.1. The deterministic logit dynamics reads as

żpr = τ p · exp (−η · cpr (z))∑
s∈R exp (−η · cps (z)) − z

p
r , (4.1)

where η is the inverse of the noise level.
Basically, this dynamics aims to describe the evolution of the system given that

users are characterized by a level of knowledge of the game, η. The higher is η, the
lower is the noise level and the better are the choices based on the current state
made by players. We also introduce the jabobian matrix of the logit dynamics
Jη(z) ∈ RR·P×R·P , whose entries have the following form:

∂żpr
∂zqv

= τ pη exp(−η · cpr(z))
∑
s∈R

∂
∂zqv

(cps(z)− cpr(z)) exp(−η · cps(z))
(∑s∈R exp(−η · cps(z)))2 − δp,qr,v =

= η

τ p
(żpr + zpr )

(∑
s∈R

∂

∂zqv
(cps(z)− cpr(z)) (żps + zps )

)
− δp,qr,v .

(4.2)

In the last equality, we used:
żpr + zpr
τ p

= exp (−η · cpr (z))∑
s∈R exp (−η · cps (z)) , ∀r, p.

Our main goal is to find the fixed points of (4.1) and to study their stability.
Stability of the equilibria is important, since it indicates if an equilibrium point
will persist even if perturbations of the system will occur. Another important
objective is to understand whether there is a connection between these fixed points
and the Wardrop equilibria of the associated routing game. Specifically, we are
interested in investigating if the system converges to one of the Wardrop equilibria
when noise vanishes. This would tell us which of the Wardrop equilibria of the
game represent a concrete possibility that the system might reach in a real-world
application. Therefore, in this section we will show what is the asymptotic behavior
of the logit dynamics both in the case of a single population and a heterogeneous
routing game, highlighting the differences between the two.

4.2 Single population case
In Section 3.2 we said that single population routing games are potential games
and, as such, they admit a unique Wardrop equilibrium. We now report a result
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determining the asymptotic behavior of (4.1) in single population routing games.
Before stating this result, we need to introduce the so called entropy function:

H(z) := −
∑
s∈R

zs log
(
zs
τ

)
(4.3)

Entropy is measure borrowed from Information Theory. In this particular case, it
quantifies how varied the choices of the paths to be used by the users are. When
all agents choose the same path, H(z) = 0. Then, as users start to travel along
altenative paths, H(z) increases: it will attain its maximum when z will coincide
with the uniform distribution onR. Thanks to the fact the single population games
are potential games and result 7.1.4 in [15], it is possible to prove the following
result and to illustrate how the logit dynamics admits a globally asymptotically
stable fixed point which converges to the set of Wardrop equilibrium of the single
population routing game, as noise vanishes.

Proposition 4.1. Let us consider a single population routing game (G, τ,D) with
potential function

V (z) =
∑
e∈E

∫ (A(o,d)z)e

0
De(s)ds (4.4)

and the associated logit dynamics (4.1). Let us define the following function:

Vη(z) = V (z)− 1
η
H(z) (4.5)

Then:

1. Vη(z) is a strictly convex function with respect to z;

2. for every initial condition z(0), we have that

lim
t→+∞

z(t) = zη, (4.6)

where zη is the unique minimizer of Vη.

3. zη → Z∗, where Z∗ is the set of Wardrop equilibria of the single population
routing game.

In Section 3.2 we already pointed out that, since the potential is only convex in
z, a single population routing game admits a continuum of Wardrop equilibria Z∗.
However, since the entropy Vη is a strictly convex function, it is possible to prove
the uniqueness of a globally asymptotically stable fixed point, ∀η ≥ 0. Finally, we
highlight that Proposition 4.1 does not state that each z∗ ∈ Z∗ is approached by
the fixed points of the dynamics, as noise vanishes.
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4.3 Heterogeneous case
In [10], the authors show that on (series of) simple graphs, a sub-class of (series
of) nearly parallel graphs, the logit dynamics (4.1) associated to a heterogeneous
routing game admits a globally asymptotically stable fixed point which approaches
the set of Wardrop equilibria, as the noise vanishes. Therefore, in this case both
uniqueness and stability of the fixed point hold. In the following sections, we
address a more general setting in which we do not make any assumption on the the
TTN topology. We establish theoretical results that apply also to heterogeneous
games for which the essential uniqueness of the equilibrium does not hold, as the
one presented in Section 3.3.1.

4.3.1 Numerical experiments
We are going to discuss the results obtained from some of the numerical simulations
we performed. The experimental phase of our work was very useful in obtaining
guidelines to orient the theoretical research.

Our tests focus on the example previously analyzed in Section 3.3.1. In [10], the
authors already highlighted that the logit dynamics associated to the game admits
a bifurcation point. Our aim is to provide more insightful observations on numerical
simulations. Finally, in the next sections, we will discuss theoretical results.

Experiment analysis

As already discussed, the noise level represents a measure of the knowledge of the
game of the players. The larger the noise, the less users’ strategy is influenced by
the perceived path costs. On the contrary, the user will tend to make more ratio-
nal choices, as noise vanishes. Figure 4.1 shows two trajectories corresponding to
different initial conditions, with different values of η. The simulations suggest that
the dynamics presents a bifurcation point: as η is small, the system converges to a
unique asymptotically stable fixed point, while as η increases the two trajectories
converge to different fixed points, which approach the two pure strict equilibria of
the game as η increases. In particular, through various simulations it was possible
to estimate that these two asymptotically stable branches originate starting from
the approximate value η∗ = 3.225.

The simulations show that this is a pitchfork bifurcation. For this reason, we
looked for a third fixed points curve depending on η, specifically the one associated
to the unstable fixed points characterizing this type of bifurcation. To this end, we
performed again some numerical simulations. After a few attempts, we were able
to identify this fixed points curve. The associated plots are reported in Figure 4.2.

The numerical simulations are based on the idea that both the asymptotically
stable fixed points have an attraction basin. Therefore, the feasible path flow
distribution space Z must divide into the two of them. The curve of unstable fixed
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Figure 4.1: Two trajectories of the logit dynamics for different values of η. The
trajectories are projected in the space of the aggregate flows.

points will therefore be placed, if exists, among them. Hence, we decided to test the
asymptotic behavior of some convex combination of the two known fixed points:

zηα = αzη1 + (1− α) zη2 , α ∈ [0,1] ,

where zη1 e zη2 are the two asymptotically stable fixed points of (4.1) when the noise
level is 1/η. Notice that for linearity it also holds that:

f ηα = Azηα = A (αzη1 + (1− α) zη2) = αAzη1 + (1− α)Azη2 =
= αf η1 + (1− α) f η2 , α ∈ [0,1] ,

The rightmost plots in Figure 4.2 were obtained by fixing as initial condition the
convex combination of the stable fixed points corresponding to α = 1/2. The in-
stability of this fixed point is suggested by some other simulations we performed,
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Figure 4.2: The rightmost panel shows the behavior of the dynamics corresponding
to initial condition equivalent to the unstable equilibrium of the game.

whose results are reported in Figure 4.3. Here, one can see that by slightly per-
turbing the initial condition (δα = 0.001), the system deviates towards one of the
other two fixed points.

Figure 4.3: The plots show how small perturbations can deviate the system from
the unstable fixed point (grey lines) towards one on the two asymptotically stable
fixed points.

At this point, we determined the nature of these fixed points by studying the
eigenvalues of the jacobian matrix (4.25) of the dynamics. From Theorem 2.3, we
know that if one of the eigenvalues of Jη(z̄) has positive real part, then z̄ is an
unstable fixed point. The tests we performed told us that this curve of fixed points
has an eigenvalue which switches is sign when η overpasses the η∗ threshold. This
fact further confirms our hypothesis that the bifurcation phenomena originates in
a neighborhood of η∗. Figure 4.4 shows the bifurcation phenomenon for each link
of the network.

The aspects of main interest exhibited by this example are the following:
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Figure 4.4: Evolution of the fixed points of the dynamics as noise decreases. These
figures depict very well the bifurcation phenomenon and suggest that it might be
the case of a pitchfork bifurcation.

• the system admits a unique globally asymptotically stable fixed point on the
right neighborhood of η = 0;

• as noise vanishes, the fixed points curve converges towards one of the Wardrop
equilibria of the heterogeneous routing game associated to the dynamics;

• asymptotical stability occurs when the fixed point converges to one of the pure
strategy Wardrop equilibria.
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Figure 4.5: The evolution of the real part of the three eigenvalues with the largest
magnitudes. The third plot shows how the real part of the third eigenvalue switches
sign in the neighborhood of η∗ = 3.225.

Inspired by the results obtained from these experiments, we channeled our efforts
in their direction. As a result, in the following we are able to prove that:

• every routing game admits a unique globally asymptotically stable fixed point
when the level of noise is very large (η → 0);

• fixed points of logit dynamics converge to the set of Wardrop equilibria of the
routing game when noise vanishes (η → +∞), even if the game is heteroge-
neous;

• fixed points of (4.1) are locally asymptotically stable when they converge to a
pure strategy Wardrop equilibria, for a sufficiently high noise level.

4.3.2 Large noise regime
When noise tends to infinity (η → 0), the system converges to an uniform distribu-
tion over all paths, i. e., each population randomizes among all routes. This is due
to the fact that the high value of η makes costs irrelevant in (4.1). We report the
following result.
Theorem 4.1. There exist η̄ such that the deterministic logit dynamics (4.1) admits
a unique globally asymptotically stable fixed point, ∀η ∈ [0, η̄).

Proof. First of all, let us assume η = 0. In this case, (4.1) becomes the following
linear system of differential equations:

żpr = τ p

R
− zpr , r = 1, . . . , R, p = 1, . . . , P. (4.7)
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The general solution of (4.7) is given by

zpr = e−t
(∫ τ p

R
et
)

= Ce−t + τ p

R
, r = 1, . . . , R, p = 1, . . . , P, (4.8)

and by imposing the initial condition zp0 , for every p ∈ P we get:

zp =
(
zp0 −

τ p

R
1

)
e−t + τ p

R
1, 1 ∈ RP . (4.9)

Hence, the dynamics converges to the unique asymtotically stable fixed point con-
sisting in the uniform route flow distribution.

We now want to show that this holds true also in a right neighboorhood of η = 0.
Matrix measures can be exploited in order to show existence and uniqueness of a
globally asymptotically stable fixed point for this dynamical systems. The matrix
measure associated to the `1 norm of our dynamics is given by:

µ(Jη(z)) = max
r∈R

(Jη(z))r,r +
∑

s∈R\{r}
|(Jη(z))s,r| =

= max
r∈R

η
P∑
p=1

τ p exp (−η · cpr(z))
∑
h∈R

∂
∂zr

(cph(z)− cpr(z)) (exp (−η · cph(z)))
(∑h∈R exp (−η · cph(z)))2 − 1

+
∑

s∈R\{r}

∣∣∣∣∣∣η
P∑
p=1

τ p exp (−η · cps(z))
∑
h∈R

∂
∂zr

(cph(z)− cps(z)) (exp (−η · cph(z)))
(∑h∈R exp (−η · cph(z)))2

∣∣∣∣∣∣ .
(4.10)

Notice that µ(Jη(z)) is continuous, since all the functions at denominator are strictly
positive and continuous functions and all the functions involved in sums or products
are continuous, too. Moreover, the pointwise maximum of a set of continuous
functions is a continuous function, as well. Now, it holds that J0(z) = −In, for
every z in the simplex, and it is easy to see that µ(−IR·P) = −1 . Now, by applying
the Theorem of the permanence of sign [9], it follows that there must exists a right
neighborhood of η = 0 in which µ(Jη(z)) remains strictly negative, for every z in
the simplex. Therefore, in this neighborhood it is still possible to apply Theorem
2.4. Hence, existence and uniqueness of the fixed point still holds and its region of
attraction contains the whole set defined by the throughput constraints.

4.3.3 Vanishing noise regime
We are now going to show that the fixed points of the dynamics approach the
Wardrop equilibria of the associated heterogeneous routing game in the limit of
zero noise (η → +∞).

Before continuing, we need to introduce the notion of convergence of a set and
the famous result know as Brouwer’s fixed point Theorem.
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Definition 4.2. Let X be a compact set and let {Xn}n∈N be a sequence of compact
sets. Then, we say that {Xn}n∈N converges to X and we indicate it as

lim
n→+∞

Xn = X

if:

• for every x ∈ X , there exists a sequence {xn}n∈N such that xn ∈ X , ∀n, and
limn→+∞ xn = x ∈ X ;

• for every converging sequence {xn}n∈N, we have that xn ∈ Xn, ∀n, and
limn→+∞ xn = x ∈ X .

Theorem 4.2 ([5]). Let f : K → K a continuous map, where K is a convex and
compact subset of a Euclidean space. Then f admits at least a fixed point, i. e.,
there exists x ∈ K such that f(x) = x.

We can now provide the main results of this section.

Theorem 4.3. Consider a heterogeneous routing game (G(o,d),P , {τ p}Pp=1, D), where
G is an arbitrary TTN. Let us assume that D is characterized by non-decreasing
cost functions and let Z∗ ⊂ Z be the set of Wardrop equilibria of the routing game.
Finally, let us associate the dynamics (4.1) to the routing game and let Ωη ⊂ Z be
the set of its fixed points. Then:

1. Ωη is a non-empty and compact set, ∀η > 0;

2. there exists a non-empty and compact set Z̄∗ ⊂ Z∗, called limit set, such that

lim
η→+∞

Ωη = Z̄∗, (4.11)

in the sense of Definition 4.2;

3. every pure strategy Wardrop equilibrium belongs to Z̄∗.

Proof. 1. Consider the function Fη : Z → Z, defined by

(Fη)pr(z) = τ p
exp(−η · cpr(z))∑
s∈R exp(−η · cps(z)) (4.12)

Fη is a continuous map and it maps Z to itself. Since Z is a convex and
compact set, we can apply Theorem 4.2 that guarantees the existence of at
least one fixed point for the dynamics (4.1) in Z. Hence, Ωη is non-empty,
∀η > 0. Notice also that Ωη is compact for every η, since it is a level set of a
continuous function on a compact set.
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2. Theorem 4.2 ensures that the logit dynamics admits at least one fixed point,
∀η ≥ 0. Then, it is possible to consider a map of fixed points z̃(η) de-
pending on η. Let us also consider a sequence ηn, such that limn→+∞ ηn =
+∞. Then, it follows that {z̃(ηn)}n∈N ⊂ Z admits a subsequence such that
limnk→+∞ z̃(ηnk) = z∗ ∈ Z. Since all the elements of the sequence are fixed
points, it holds that:

˙̃zpr (ηnk) = 0, ∀r ∈ R, ∀p ∈ P , ∀k ∈ N. (4.13)

It follows that (z∗)pr also satisfies to this condition and it will be a fixed point of
the dynamics, in the limit of η →∞. Let us now rewrite (4.1) in the following
way:

˙̃zpr (ηnk) = (Fη)pr(z̃(ηnk))− z̃pr (ηnk),

(Fη)pr(z̃(ηnk)) = τ p · exp (−η · cpr (z̃(ηnk)))∑
s∈R exp (−η · cps (z̃(ηnk)))

.

(4.14)

From (4.13), it follows that all the fixed points satisfy to the following equation:

z̃pr (ηnk) = (Fη)pr(z̃(ηnk)), ∀r ∈ R, ∀p ∈ P , ∀k ∈ N. (4.15)

By rewriting Fη as

(Fη)pr(z̃(ηnk)) = τ p · 1
1 +∑

s∈R exp (−η(cps(z̃pr (ηnk))− c
p
r(z̃pr (ηnk)))

, (4.16)

it can be seen that the components of z̃(ηnk), for each population p, that are
not associated to the minimum cost will drop to 0, as η → ∞. In fact, let
us consider the limits attained by the cost functions as η diverges, namely
cpr(z̃∗), r ∈ R, p ∈ P . Then, it holds that:

cpr(z∗) ≥ min
v∈|R|, q∈|P|

cqv(z∗) = cph(z∗). (4.17)

This means that for all paths for which this inequallity holds strictly, there
will be k̄ ∈ N such that:

cpr(z̃(ηnk)) > cph(z̃(ηnk)), ∀k > k̄. (4.18)

This implies that the exponential term in (4.16) will diverge for all those paths
that are not associated to the minimum cost when there is no noise and the
right-hand side of (4.16) will go to zero.
Finally, since

(z∗)pr = lim
η→+∞

(Fη)pr(z∗), (4.19)
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we find that:
(z∗)pr > 0⇒ cpr (z∗) ≤ cps (z∗) , ∀s ∈ |R|. (4.20)

By definition, z∗ is a Wardrop equilibrium for the heterogeneous routing game.

3. Let us consider a pure strategy Wardrop equilibrium z∗ and denote by r∗(p)
the optimal path for population p under flow z∗. By definition of pure strategy
equilibrium, all the throughput of population p flows through link r∗(p). Then,
for any ε ≥ 0, let us define

Oε := {z ∈ Z | zpr∗(p) ≥ τ p(1− ε), ∀p ∈ P}. (4.21)

Basically, Oε is the set containing all route flows distributions such that at
least a fraction 1− ε of every population travels along its optimal route r∗(p)
under z∗. Notice that z∗ ∈ Oε,∀ε ≥ 0. Now, let us define

α := min
p∈P

min
s∈R

s/=r∗(p)

(
cps(z∗)− c

p
r∗(p)(z∗)

)
. (4.22)

Note that alpha is strictly positive. This is due to the fact that z∗ is a pure
strategy Wardrop equilibrium. Let us also define

ε̄ = max
{
ε ≥ 0

∣∣∣∣∣min
z∈Oε

min
p∈P

min
s∈R

s/=r∗(p)

(
cps(z)− cpr∗(p)(z)

)
≥ α

2

}
(4.23)

Similarly to α, ε̄ > 0, since z∗ is pure strategy and the cost functions are
continuous. We now want to show that there exists η̄ such that Fη maps Oε

to itself, for every η ∈ [η̄,+∞) and ε ∈ [0, ε̄]. First of all, notice that for
every ε ∈ [0, ε̄] and population p, r∗(p) is still the strictly optimal path and
this holds true for every path flow distribution in Oε. So, let us now pick an
arbitrary z ∈ Oε. What we just said implies that by keeping the route flow
configuration z fixed and by letting η go to infinity, we find that

lim
η→+∞

(Fη)pr(z) =
τ p, if i = r∗(p),

0, otherwise
, ∀r ∈ R, ∀p ∈ P . (4.24)

Hence, limη→+∞ Fη(z) = z∗, for every z ∈ Oε, for every ε > 0. Notice that
z∗ is contained in the internal part of Oε, ∀ε > 0. We conclude by pointing
out that, by continuity of Fη with respect to η, there exists η̄ such that, for
η ∈ [η̄,+∞), Fη maps Oε to itself, ∀ε ∈ [0, ε̄]. We can now show that there
exists a sequence of fixed points of Fη converging to z∗. Firstly, observe that
Oε is a compact and convex set, so Theorem 4.2 guarantees that at least a
fixed point of Fη in Oε exists if η ∈ [η̄,+∞], for all ε ∈ [0, ε̄]. By noticing
that Oε collapse onto z∗ as ε → 0, we can then find a sequence {εn}n∈N such

36



4.3 – Heterogeneous case

that there exists a family of set {Oεn}n∈N such that Oεn+1 ⊆ Oεn , each of them
containing a fixed point zεn . Then, this sequence of fixed points converges to
z∗: limn→+∞ zεn = z∗. Finally, since there exists a sequence of fixed point of
(4.1) converging to z∗ , then z∗ ∈ Z̄∗.

We now investigate the local stability of the fixed points of the dynamics when
η is large.

Theorem 4.4. Consider a heterogeneous routing game (G(o,d),P , {τ p}Pp=1, D), where
G(o,d) is an arbitrary TTN. Let {ηn}n∈N be a sequence of inverse noise paramaters
such that limn→+∞ ηn = +∞, and for every n let z̃n ∈ Ωηn be a fixed point of the
corresponsing logit dynamics (4.1). If limn→+∞ z̃n = z∗ and z∗ is a strict Wardrop
equilibrium, then, for large enough n, z̃n is locally asymptotically stable for (4.1).

Proof. Note that for every pure strategy equilibrium z∗, a sequence of fixed points
{z̃n}n∈N that converges to z∗ always exists due to Theorem 4.3. Now, notice that
at equilibrium, since żpr = 0, ∀r, p, (4.2) becomes:

∂żpr
∂zqv

= η

τ p
zpr

(∑
s∈R

∂

∂zqv
(cps(z)− cpr(z)) zps

)
− δp,qr,v . (4.25)

Notice that all the entries of Jη(z) are continuous in η. Now, we can rewrite Jη(z)
in the following way:

Jη(z) = ηM(z(η))− IR·P , M(z(η)) ∈ RR·P×R·P , (4.26)

where the entries of M at equilibrium are of the form:

M(p−1)·R+r,(q−1)·R+v(z(η)) = zpr
τ p

(∑
s∈R

∂

∂zqv
(cps(z)− cpr(z)) zps

)
. (4.27)

We now want to show that as η → +∞, Jηn(z̃n) converges to −IR·P . This boils
down to show that ηnM(z̃n) → 0, η → +∞, which is equivalent to show that the
entries of M(z̃n) converges to 0 faster than linearly. (4.14) and (4.16) describe the
evolution of the fixed point z̃n as a function of η and (4.17) and (4.18) tell us how
a population moves on the minimum cost path. Using the same notation of (4.17),
we can see that:

• when r = h, (z̃n)pr converges exponentially fast to τ p;

• when r /= h, (z̃n)pr converges exponentally fast to 0.

Now, if we look at (4.27), we can notice that:

• if (z̃n)pr → 0, then alsoM(p−1)·R+r,(q−1)·R+v(z̃n) approaches 0 exponentially fast;
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• if (z̃n)pr → τ p, then:

– all the terms containing (z̃n)ps, r /= s, will go to 0 exponentially fast;
– the term contaning (z̃n)ps, r = s, is always zero.

Therefore, all the entries of M(z̃n) will approach zero exponentially fast, thus
ηnM(z̃n) → 0, η → +∞. Finally, this means that limη→+∞ Jηn(z̃n) → −IR·P .
Hence, for a sufficiently low level of noise, all the eigenvalues of the jacobian ma-
trix will have negative real part. The application of Theorem 2.3 concludes the
proof.

Remark. It is worth to mention that the author in [15] shows a very similar result
for a broader class of Wardrop equilibria. We are now going to restate in terms of
our notation the definition of this class of equilibria and we will then highlight the
difference between the two results. Before proceeding, let us indicate as C(z) the
vector containing all costs, as DC(z) ∈ RR·P×R·P the matrix containing all the cost
derivatives with respect to the components of the path flow distribution vector z
and let Z be the space of feasible path flow distribution vectors. Consider a routing
game (G(o,d),P , {τ p}Pp=1, D). We say that z∗ is a regular Taylor evolutionarily stable
state (ESS) for the game if:

• z∗ is a quasi-strict equilibrium:

zpr > 0, zps = 0 ⇒ cpr(z∗) < cps(z∗); (4.28)

• the following condition is fulfilled:

(y − z∗)′C(z∗) = 0, y ∈ Z \ {z∗} ⇒ (y − z∗)′DC(z∗)(y − z∗) < 0. (4.29)

Notice that pure strategy Wardrop equilibria are regular Taylor ESS. The afore-
mentioned result in [15] states that regular Taylor ESS admit a neighborhhod in
which the logit dynamics (4.1) has a unique asymptotically stable fixed point and
that this point actually converges to the ESS in the limit of zero noise. Although
this result seems to be identical to Proposition 4.4, we want to underline that the
latter does not require the the regular Taylor ESS to belong to int(Z) (internal
region of Z). Actually, pure strategy Wardrop equilibria lay on the border of Z.
This implies that our result is original.
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Chapter 5

Conclusion

In this thesis, we provided three results about the asymptotic behavior of the de-
terministic logit dynamics associated to heterogeneous routing games. The interest
behind this type of models is due to their ability in describing real-word scenarios
in which users on a trasportation network may choose the route to travel by con-
sidering different criteria, such as travel time, fuel consumption, payment of tolls,
etc.

The first result we proved guarantees the existence and uniqueness of a globally
asymptotically stable fixed point for the dynamics, in the limit of infinite noise.
While this result holds for every value of noise for single population routing games
and for heterogeneous routing games on (series of) simple graph(s), we stress the
fact that for heterogeneous routing games on arbitrary graphs the results holds only
in the limit of vanishing noise.

The second theorem shows that the fixed points of the logit dynamics approach a
subset of the set of Wardrop equilibria of the game and that pure strategy Wardrop
equilbria are always included in it.

Finally, the third and last result provides additional information on the stability
of the fixed points of the logit dynamics, for a sufficiently low noise level, when they
are converging to a pure strategy Wardrop equilibria of the heterogeneous routing
game.

There are several other paths that might be explored in order to continue this
thesis and to extend our knowledge about heterogeneous routing games and the
asymptotic behavior of the deterministic logit dynamics associated to it. The most
natural follow-up to this thesis would be to understand if and how uniqueness of
the Wardrop equilibria depends on the number of populations involved in the game
and the network topology. Moreover, it would be interesting to understand whether
it is possible to extend Theorem 4.4, in order to be able to deduce stability of fixed
points of the dynamics also when they are converging to other types of Wardrop
equilibria (non pure strategy).

Additional results about the logit dynamics might be provided for heterogeneous
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routing games. For example, an in-depth analysis of the behavior of the determin-
istic logit dynamics in the case of multiple origin-destination pairs would allow the
description of even more realistic scenarios.

Finally, it would also be very interesting to associate heterogeneous routing
games to other types of learning dynamics and to study the same problems we
treated in this thesis in these new settings.
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Appendix A

Proof of Proposition 3.1

First of all, we can find for each population the routes that it will never travel
along. This routes are the whose cost is always higher than the one of another
route, for every configuration of the aggregate route flow distribution. This can
be done by resorting to the cost functions in (3.14). Let us consider population 1.
This population will never run across r2 and r3 at a Wardrop equilibrium. In fact:

2z1 + z2 + 38 ≤ z1 + 2z2 + 119, z1 − z2 ≤ 81,

where for simplicity of notation we omit the index agg to indicate aggregate flows.
By looking at the throughput constraints, one can see that this condition always
stritly holds. Hence, c1

1 ≤ c1
2,∀z. Analogously, for r3 holds that:

2z1 + z2 + 38 ≤ τ − z1 − z2 + z3 + 119, 3z1 + 2z2 − z3 ≤ τ + 81.

This condition always strictly holds, hence c1
1 ≤ c1

3,∀z. Moreover, it turns out that
r2 and r3 will always be more expensive of r4, too:

z1 + 2z2 + 119 ≤ 2τ − 2z1 − 2z2 − z3 + 38
3z1 + 4z2 + z3 ≤ 2τ − 81 = −373

5 < 0
⇒ c1

4 < c1
2, ∀z.

τ − z1 − z2 + z3 + 119 ≤ 2τ − 2z1 − 2z2 − z3 + 38
z1 + 2z2 + 2z3 ≤ τ − 81 = −389

5 < 0
⇒ c1

4 < c1
3, ∀z.

Let us now consider population 2. This population will never travel along r2 and
r4 at a Wardrop equilibrium. In fact:

21z1 + z2 + 19 ≤ z1 + 2z2 + 119,
20z1 − z2 ≤ 100
⇒ c2

1 < c2
2, ∀z.
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21z1 + z2 + 19 ≤ 2τ − 2z1 − 2z2 − z3 + 119,
23z1 + 3z2 + z3 ≤ 2τ + 100

⇒ c2
1 < c2

4, ∀z.

z1 + 2z2 + 119 ≤ τ − z1 − z2 + z3 + 40,
2z1 + 3z2 − z3 ≤ τ − 79 = −379

5 < 0
⇒ c2

3 < c2
2, ∀z.

2τ − 2z1 − 2z2 − z3 + 119 ≤ τ − z1 − z2 + z3 + 40,
τ + 79 ≤ z1 + z2 + 2z3
⇒ c2

3 < c2
4, ∀z.

Finally, population 3 will never run across r1 and r3 at a Wardrop equilibrium:
2z1 + z2 + 119 ≤ z1 + 2z2 + 40,

z1 − z2 ≤ −79,
⇒ c3

1 > c3
2, ∀z.

z1 + 2z2 + 40 ≤ τ − z1 − z2 + z3 + 119,
2z1 + 3z2 − z3 ≤ τ + 79,
⇒ c3

3 > c3
2,∀z.

2z1 + z2 + 119 ≤ 21τ − 21z1 − 21z2 − 20z3 + 19,
23z1 + 23z2 + 20z3 ≤ 21τ − 100 = −164

5 < 0,
⇒ c3

1 > c3
4,∀z.

τ − z1 − z2 + z3 + 119 ≤ 21τ − 21z1 − 21z2 − 20z3 + 19,
20z1 + 20z2 + 21z3 ≤ 20τ − 100 = −36 < 0,

⇒ c3
3 > c3

4, ∀z.

Therefore, we find out that a Wardrop equilibrium must satisfy to the following
condition:

z1
2 = 0 ∧ z1

3 = 0, z2
2 = 0 ∧ z2

4 = 0, z3
1 = 0 ∧ z3

3 = 0, (A.1)
Then, the cost functions may be written as follows thanks to (A.1) (for every pop-
ulation, we consider only the costs associated to the paths that might be travelled
at a Wardrop equilibrium):

c1
1 = 2(z1

1 + z2
1) + z3

2 + 38,
c1

4 = 2τ − 2(z1
1 + z2

1)− 2z3
2 − z2

3 + 38,
c2

1 = 21(z1
1 + z2

1) + z3
2 + 19,

c2
3 = τ − (z1

1 + z2
1)− z3

2 + z2
3 + 40,

c3
2 = z1

1 + z2
1 + 2z3

2 + 40,
c3

4 = 21τ − 21(z1
1 + z2

1)− 21z3
2 − 20z2

3 + 19.

(A.2)

Let us assume z1
4 = 0, so that the entire population 1 travels along r1. Then:
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• population 2:

c2
1 = 21(z1

1 + z2
1) + z3

2 + 19 ≤ τ − (z1
1 + z2

1)− z3
2 + z2

3 + 40 = c2
3,

22z2
1 + 2z3

2 − z2
3 ≤ τ − 22τ 1 + 21 = −11

5 < 0.

Notice that this constraint is infeasible, since 0 ≤ z2
3 ≤ 1. This means that if

population 1 entirely runs across r1, then population 2 will use only r3.

• population 3:

c3
2 = z1

1 + z2
1 + 2z3

2 + 40 ≤ 21τ − 21(z1
1 + z2

1)− 21z3
2 − 20z2

3 + 19 = c3
4,

22z2
1 + 23z3

2 + 20z2
3 ≤ 21τ − 22τ 1 − 21,

23z3
2 ≤ 21τ − 22τ 1 − 41 = −1

5 < 0.

Notice that this constraint is infeasible, since z3
2 ≥ 0. Hence, if populations 1

and 2 use only r1 and r3, respectively, then population 3 will entirely travel
along r4.

Therefore, we obtained the following Wardrop equilibrium:

z1 =
(6

5 ,0,0,0
)
,

z2 = (0,0,1,0),
z3 = (0,0,0,1),

which corresponds to (3.18).
Let us now assume z1

1 = 0, so that the entire population 1 travels along r4.
Then:

• population 2:

c2
1 = 21(z1

1 + z2
1) + z3

2 + 19 ≤ τ − (z1
1 + z2

1)− z3
2 + z2

3 + 40 = c2
3,

22z2
1 + 2z3

2 − z2
3 ≤ τ + 21 = 121

5 .

Notice that this condition always holds, since 22z2
1 + 2z3

2 − z2
3 ≤ 24 ≤ 121/5.

Then, if population 1 flows entirely along r4, population 2 will use only r1.

• population 3:

c3
2 = z1

1 + z2
1 + 2z3

2 + 40 ≤ 21τ − 21(z1
1 + z2

1)− 21z3
2 − 20z2

3 + 19 = c3
4,

23z3
2 ≤ 21τ − 22τ 2 − 21 = 121

5 .

This constraint is always respected, since z3
2 ≤ 1 < 121/115. Then, if popula-

tions 1 and 2 entirely run across on r4 and r1, respectively, population 3 will
flow entirely on r2.
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Therefore, we obtained the following Wardrop equilibrium:

z1 =
(

0,0,0, 6
5

)
,

z2 = (1,0,0,0),
z3 = (0,1,0,0),

which corresponds to (3.19). Finally, by plugging z in the cost functions of pop-
ulation 1, we see that both configurations (3.18) and (3.19) are minimum cost
solutions.

Now, we show that the game admits a third equilibrium in which all the popu-
lations uses both their allowed paths at Wardrop equilibrium, hence:

• r1 and r4 for population 1;

• r1 and r3 for population 2;

• r2 and r4 for population3.

First of all, let us write the condition such that both accessible paths share the
same cost, for every population:

• population 1:

c1
1 = 2(z1

1 + z2
1) + z3

2 + 38 = 2τ − 2(z1
1 + z2

1)− 2z3
2 − z2

3 + 38 = c1
4,

4(z1
1 + z2

1) + 3z3
2 + z2

3 = 32
5 .

Now, since τ 2 = 1 and population 2 can only use r1 and r3, it holds that
z2

1 = τ 2 − z2
3 . Therefore:

4z1
1 + 3z2

1 + 3z3
2 = 27

5 . (A.3)

• population 2;

21(z1
1 + z2

1) + z3
2 + 19 = τ − (z1

1 + z2
1)− z3

2 + z2
3 + 40,

22(z1
1 + z2

1) + 2z3
2 − z2

3 = 121
5 .

Since z2
1 = τ 2 − z2

3 , then:

22z1
1 + 23z2

1 + 2z3
2 = 126

5 . (A.4)

• population 3:

z1
1 + z2

1 + 2z3
2 + 40 = 21τ − 21(z1

1 + z2
1)− 21z3

2 − 20z2
3 + 19,

22(z1
1 + z2

1) + 23z3
2 + 20z2

3 = 231
5 .

44



Proof of Proposition 3.1

Thanks to z2
1 = τ 2 − z2

3 , we find that:

22z1
1 + 2z2

1 + 23z3
2 = 131

5 (A.5)

Now, (A.3), (A.4) and (A.5) define a linear system in three variables, whose unique
solution is given by (z1

1 = 3/5, z2
1 = 10/21, z3

2 = 11/21). Therefore, we find that
the following route flow ditribution is a Wardrop equilibrium:

z1 =
(3

5 ,0,0,
3
5

)
,

z2 =
(10

21 ,0,
11
21 ,0

)
,

z3 =
(

0, 11
21 ,0,

10
21

)
,

which corresponds to (3.20).
We now want to show that (3.18), (3.19) and (3.20) are the only equilibria of

the game. To do this we first of all observe that population 1 dominates the others,
in the sense that when this is distributed on one of the two roads available to it,
it is automatically determined which are the roads that the other two populations
will travel. Then, it suffices to prove that when population 1 uses both its available
path, then the other populations do the same. Let us now assume that population
2 entirely run across r1 (z2

1 = 1). Let us verify whether populations 1 and 3 can
flow on both the paths available for them. By resorting to (A.2), we obtain the
following linear system: 4z1

1 + 3z3
2 = 12

5
22z1

1 + 23z3
2 = 121

5

The solution of this linear system does not satisfy to the throughput constraints,
hence it is infeasible. Let us now assume z2

3 = 1. The associated linear system is
the following: 4z1

1 + 3z3
2 = 12

5
22z1

1 + 23z3
2 = 131

5

Also in this case we got an infeasible solution. Let us now consider population 3
and assume that it entirely flows across r2 (z3

2 = 1). In order for the populations
1 and 2 to be distributed on both available paths, the following system must be
satisfied: 4z1

1 + 3z3
2 = 12

5
22z1

1 + 23z3
2 = 116

5

As before, the solution of this linear system does not satisfy to the throughput
constraints, hence it is infeasible. The same thing holds when we consider the
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linear system associated to the condtion z3
4 = 1:4z1

1 + 3z3
2 = 27

5
22z1

1 + 23z3
2 = 126

5

Finally, we show that when populations 2 and 3 entirely run across one of the
available paths we get (3.18) and (3.19).

• z2
1 = z3

2 = 1:

c1
1 = 2z1

1 + 41
c1

4 = 203
5 − 2z1

1

It turns out that population 1 cannot use both paths in this configuration,
since it does not exist z1

1 satisfying to the throughput constraints such that
c1

1 = c1
4. Moreover, it holds that c1

1 > c1
4,∀z1

1 ∈ [0,6/5]. Therefore, we obtain
(3.19).

• z2
1 = z3

4 = 1:

c1
1 = 2z1

1 + 40
c1

4 = 232
5 − 2z1

1

By equaling the two costs, we obtain that:

4z1
1 = 32

5

There are no feasible values of z1
1 satisfying this equation. Nevertheless, it

holds that c1
1 < c1

4, ∀z1
1 ∈ [0,6/5]. Hence, z1

1 = 1, z1
4 = 0. This implies that

c2
1 > c2

3, which is impossible, since we assumed z2
1 = 1, z2

3 = 0. Therefore, it
cannot exist a route flow distribution such that z2

1 = z3
4 = 1.

• z2
3 = z3

2 = 1:

c1
1 = 2z1

1 + 39
c1

4 = 207
5 − 2z1

1

By equaling the two costs, we obtain that:

4z1
1 = 12

5

This equation is satisfied when z1
1 = z1

4 = 3/5. Nevertheless, by plugging
this values into the cost functions c3

2 and c3
4, we get that c3

2 > c3
4, which is in

contrast with the initial assumptions. Moreover:
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– if z1
1 = 1, z1

4 = 0, thenc1
1 > c1

4, which is impossible;
– if z1

1 = 0, z1
4 = 1, then c1

1 < c1
4, which is impossible.

Hence, it cannot exist a configuration such that z2
3 = z3

2 = 1.

• z2
3 = z3

4 = 1:

c1
1 = 2z1

1 + 38
c1

4 = 217
5 − 2z1

1

By equaling the two costs, we obtain that:

4z1
1 = 27

5

There are no feasible values of z1
1 satisfying this equation. Moreover, within

such configuration it holds that c1
1 < c1

4,∀z1
1 ∈ [0,6/5]. Hence, we obtain (3.18).
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