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Abstract

Glioblastoma Multiforme (GBM) is one of the most malignant types of brain
cancer and it exhibits a strong resistance to common therapies. Therefore, it
is crucial to investigate its progression, in order to acquire more details about
its anisotropic nature, which follows the orientation of surrounding white matter
tracts. Mathematical models of cerebral tumour growth can help in understanding
the physiology and the progression of this disease, for the purpose of predicting
the evolution of tumour shape and volume and quantifying its aggressiveness.

The aim of the present work is to reproduce the evolution of this highly malignant
brain tumour evaluating its mechanical impact on the surrounding healthy tissue.
A mathematical multiphase model for GBM, based on Continuum Mechanics,
is developed, where both the healthy and the diseased regions are treated as a
saturated biphasic mixture, comprising a solid and a fluid phase. Moreover, it is
considered the region occupied by the tumour as separated from the host tissue
by a sharp moving interface. The cell phase is supposed to behave as a Mooney-
Rivlin hyperelastic solid, with different material parameters between the healthy
and the diseased zone. Instead, the liquid phase is considered constitutively as an
ideal fluid. With the aim to describe the mechanical effect of tumour growth onto
tissue deformation, theory for materials with evolving natural configurations and
the multiplicative decomposition of the deformation gradient tensor are employed.
For what concerns the growth tensor, which appears in this decomposition, we
focus on its anisotropic evolution, in order to enforce the different cases of monodi-
rectional, planar and spherical growth. Furthermore, it is necessary to introduce
in the model an equation describing the evolution of nutrients in the domain,
since their amount affects the cells capability to duplicate. The preferential di-
rections for nutrient diffusion and cancer cell motion and growth are obtained,
at the initial time step, through DTI imaging. Then, in order to take into ac-
count the modification of the preferred directions according to the brain tissue
deformation, a push-forward of the corresponding Lagrangian tensor is performed.

After having set the mechanical model for Glioblastoma growth, we solve it
through numerical simulations. For this purpose, the Lagrangian formulation
is derived from the Eulerian model. Later, a weak formulation of the Lagrangian
model is obtained in order to numerically solve the model using FEniCS, a Python-
based PDE finite element solver. At the beginning, the code is tested on a simpli-
fied geometry in order to verify its stability and effectiveness. Afterwards, the nu-
merical simulations on the real three-dimensional brain geometry are performed,
using available data from MRI and DTI to build the computational domain and
account for patient-specific anisotropy. From a numerical point of view, the ob-
tained algorithm is stable and it allows to represent discontinuous deformation
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gradients, through the use of a mesh conforming to the material host-tumour
interface. On the other hand, from a modelling point of view, with respect to
available models in the literature, the anisotropy has also been included in tu-
mour growth and the model is able to describe how the brain tracts are modified
due to the tumour mass expansion.
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Chapter 1

Biological background

In this chapter, a biological background of the problem at hand is provided.
For this reason, in the first section the most important features of cancer and
carcinogenesis are described. After this introduction, we focus on brain tumours
and in particular on Glioblastoma Multiforme, which is the main subject of our
study.

1.1 Cancer Basics

1.1.1 Cancer classification

Cancer remains the number two cause of death in the world, second only to heart
disease. It describes an enormous spectrum of diseases, which all originate from
uncontrolled cellular growth. Commonly divided into benign tumours (unable to
metastasize) or malignant tumours (able to invade normal tissues), cancers are
further defined and classified by their cell type, tissue or organ of origin. Following
this last partition, four main types of cancer to mention are [1]:

• Carcinomas. A carcinoma originates in the skin or the tissue that covers
the surface of internal organs and glands. Carcinomas are the most common
type of cancer and they usually form solid tumours.

• Sarcomas. A sarcoma originates in the tissues that support and connect the
body. A sarcoma can develop in fat, muscles, nerves, tendons, joints, blood
vessels, lymph vessels, cartilage or bone.

• Leukemias. Leukemia is a cancer of the blood. Leukemia begins when
healthy blood cells change and grow uncontrollably.

• Lymphomas. Lymphoma is a cancer that begins in the lymphatic system,
i.e. a network of vessels and glands that help fight infection.

1.1.2 Cancer biology

It is important now to understand which is the process leading to tumour forma-
tion.
Cells are the basic units that make up the human body. Cells grow and divide to
make new cells as the body needs them. Usually, cells die when they get too old
or damaged. After this organic process, new cells take their place [1].
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Tumour development begins when some cell within a normal population sustains
a genetic mutation that increases its propensy to proliferate, especially when it
would normally rest. The altered cell and its descendand continue to appear nor-
mal, but they reproduce so quickly. This condition is called hyperplasia. After
years, one in a million of these cells suffers another mutation and so it further
loosens control on cell growth. In this new phase, the offspring of this cell appear
abnormal in shape and in orientation. The tissue is now said to exhibit dysplasia.
The affected cells become increasingly abnormal in growth and appearance. If the
tumour has not yet broken through any boundaries between tissues, it is called
in situ cancer. This tumour may remain contained indefinitely [2].

Although not all solid tumours share the same features, two common macro-
stages are usually identified [2, 3]: an avascular and a vascular phase. During
the former, which has been described above, the tumour remains localized with
dimensions of a few millimeters in diameter and it can only receive nutrients by
diffusion. At this stage, tumours form three-dimensional avascular nodules called
multicell spheroids, in which an external layer of proliferating cells surrounds a
region composed of quiescent cells. Meanwhile, cells located at the centre of the
spheroid begin to die and progressively form a necrotic core, because they are
deprived of vital nutrients and oxygen. During the avascular phase, tumour cells
have not yet spread to other tissues.

Figure 1.1: Different type of spheroids [4]

The vascular phase starts when cancer cells begin to spread from the place
where they originally formed to other parts of the body. At first, the neoplasm
starts to break the healthy host tissue and to drive angiogenesis. Angiogenesis is
the formation of new blood vessels from existing capillaries and it is normally a
physiological mechanism because oxygen and nutrients are crucial for cell func-
tion and survival. However, angiogenesis becomes a pathological phenomenon
when exploited by a growing tumoural mass suffering from hypoxia, i.e. a lack
of oxygen. In this way the tumour induces new blood vessels from the surround-
ing tissue to sprout towards itself, with the aim to provide itself an adequate
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nutrient supply. Going into detail, tumour cell hypoxia triggers the secretion
by tumour cells of a number of chemicals, collectively called Tumour Angiogenic
Factors (TAFs), among which the Vascular Endothelial Growth Factor (VEGF)
plays a fundamental role. TAFs diffuse through the surrounding tissue until they
reach the nearby vasculature. In response to these stimuli, nearby endothelial
cells (EC) of blood vessels proliferate and migrate following the chemical gradient
towards the tumour. Later, angioproteins promote the migration of muscle cells
that form the intermediate layer around the new endothelial one, leading to the
complete formation of a new vessel. The process continues with the formation
of additional sprouts and loops until the development of a new vascular network
which penetrates the tumour, providing it a supply of oxygen and nutrients [5].

One of the most relevant and simultaneously most dangerous consequences of
tumour vascularization is the occurrence of metastases, i.e. secondary tumours
arising from the primary mass at distant locations. Once it has become malig-
nant, cancer spreads out and invades other tissues exploiting the vasculature. One
of the first places a cancer often spreads is to the lymph nodes. Lymph nodes
are tiny and bean-shaped organs that help fight infection. They are located in
clusters in different parts of the body, such as the neck and groin area. Cancer
may also spread through the bloodstream to distant parts of the body. These
parts may include the bones, liver, lungs or brain. Even if the cancer spreads, it
is still named for the area where it began [1].
To sum up, metastatic progression of solid tumours can be divided into five major
steps [6]:

1. invasion of the basement membrane and cell migration;

2. intravasation into the surrounding vasculature or lymphatic system;

3. survival in the circulation;

4. extravasation from vasculature to secondary tissue;

5. colonization at secondary tumour sites

Each stage of metastasis imposes harsh conditions and energetically taxing chal-
lenges for the cancer cells to complete.

Figure 1.2: Metastatic progression of solid tumours [6]
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Metastatic cancer is a signal that the malignant tumour has become invasive:
as a consequence, its complete removal or cure becomes harder.

1.1.3 Hallmarks of cancer

The hallmarks of cancer comprise six biological capabilities acquired during the
multistep development of human tumours. The idea was coined by Douglas Hana-
han and Robert Weinberg in their paper The Hallmarks of Cancer [7]. They
continue to provide a solid foundation for understanding the biology of cancer. It
is suggested that the vast catalog of cancer cell genotypes is a manifestation of six
essential alterations in cell physiology that collectively dictate malignant growth:

• Self-sufficiency in growth signals. Typically, cells of the body require hor-
mones and other molecules that act as signals for them to grow and divide.
Instead, cancer cells have the ability to grow without these external signals.
There are multiple ways in which cancer cells can do this: by producing
these signals themselves (this is known as autocrine signalling), by perma-
nently activating the signalling pathways that respond to these signals or by
destroying ’off switches’ that prevents excessive growth from these signals
(negative feedback).

• Insensitivity to anti-growth signals. Within a normal tissue, growth-inhibitory
signals act to maintain cellular quiescence and homeostasis. These processes
are orchestrated by proteins known as tumour suppressor genes. However,
cancerous cells develop the ability to circumvent such signals. As a conse-
quence they continue to grow and divide, regardless of their surroundings.

• Evasion of programmed cell death. Cells have the ability to ’self-destruct’,
a process also known as apoptosis. This is required for organisms to grow
and develop properly and for maintaining tissues of the body. It is also
initiated when a cell is damaged or infected. Cancer cells, however, lose this
ability. In fact, even though cells may become grossly abnormal, they do
not undergo apoptosis.

• Limitless replicative potential. Cells of the body have not the ability to
divide indefinitely. They have indeed a limited number of divisions before
the cells become unable to divide (senescence) or die (crisis). Cancer cells
escape this limit and are apparently capable of indefinite growth and divi-
sion. However, those immortal cells have damaged chromosomes, which can
become cancerous.

• Sustained angiogenesis. Normal tissues of the body have blood vessel going
through them in order to provide oxygen from the lungs. Cells should be
near these vessels to get sufficient oxygen for them to survive. An extending
tumour requires new blood vessels to deliver adequate oxygen to its cells
and subsequently takes advantage of this typical physiological process for
its advantage.

• Tissue invasion and metastasis. The ability to create distant settlements
and invade other tissues is a peculiarity of a malignant tumour, as mentioned
before.
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Figure 1.3: Hallmarks of cancer [7]

In 2011, two additional hallmarks have been identified [8]:

• Reprogramming of energy metabolism. Most cancer cells use alternative
metabolic pathways to generate energy. In fact they modify their metabolism
in order to sustain uncontrolled proliferation.

• Ability of evading immune destruction. Despite cancer cells cause increased
inflammation and angiogenesis, they also appear to be able to avoid inter-
action with the body’s immune system.

1.2 Brain Tumours and Glioblastoma Multiforme

1.2.1 Brain anatomy and functions

The human brain is the most complex organ in the human body. It is made up of
billions of neurons and it also has a number of specialized parts that are involved
in important functions. Understanding the anatomy and the composition of the
brain can help give a better idea of how disease and damage may affect its ability
to function.
The brain is made up of many specialized areas that work together [9]:

• The cortex is the outermost layer of the brain. Thinking and voluntary
movements start in the cortex.

• The brain stem is between the spinal cord and the rest of the brain. Basic
functions like breathing and sleep are controlled here.

• The basal ganglia are a cluster of structures in the center of the brain. The
basal ganglia coordinate messages between other brain areas.

• The cerebellum is at the base and the back of the brain. The cerebellum is
responsible for coordination and balance.

The brain is also divided into several lobes:

• The frontal lobes are responsible for problem solving and judgment and
motor function.

12



• The parietal lobes manage sensation, handwriting and body position.

• The temporal lobes are involved with memory and hearing.

• The occipital lobes contain the brain’s visual processing system.

Figure 1.4: Different parts of the brain [9]

To look instead at the smaller components that make up the human brain, they
are called neurons. The neuron is one of two basic types of cells in the nervous
system. The other type is the neuroglial cell [10].
Neurons are electrically excitable cells that are the main functional units of the
nervous system. Their function is to transmit nerve impulses. Most neurons
consist of a soma, which corresponds to the cell body and contains the nucleus,
and many dendrites branching from the soma. The dendrites receive and transmit
information to and from other neurons through the synapses. The information
read out at the origin of the axon, the portion of the nerve cell specialized for signal
conduction to the next site of synaptic interaction. It is a long and slender tube
which carries the action potential, a brief electrochemical impulse that permits
communication between nerve cells.

Figure 1.5: The structure of a typical neuron [10]
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In addition to neurons, nervous tissues also consist of neuroglia, also called
glial cells. There are several different types of neuroglia, each with a different
function. In general, neuroglia provide support for neurons and help them carry
out the basic function of nervous tissues, which is to transmit nerve impulses.
There are several types of glial cells: the most important ones in the central
nervous system are astrocytes, oligodendrocytes, microglia and ependymal cells.
Astrocytes are star-shaped cells which provide physical support and nourishment
to neurons. They also control the chemical composition of the fluid surrounding
the neurons by taking up or releasing substances whose concentration must be
kept within critical levels.
The principal function of oligodendrocytes is to provide support to axons and to
produce the myelin sheath, which surrounds and insulates axons from one another.
Microglia cells act as cleaners of the nervous system, removing dead and dying
neurons. They protect the brain from invading micro-organisms and they are also
responsible for the inflammatory reaction in response to brain damage.
Finally, ependymal cells take part in the production of the cerebrospinal fluid and
promote its circulation.

1.2.2 Types of brain tumours

A brain tumour occurs when abnormal cells form within the brain. The brain
and nervous system tumours constitute about 1.6% of all new cases of cancer
diagnosed every year. They also cause 2% of all deaths from cancer [11].
A first classification splits them into two major groups: primary and secondary
tumours [12]:

• Primary brain cancer refers to malignant tumours that form either in the
brain or in the nerves originating in the brain. Brain cancer does not fre-
quently metastasize to outside of the central nervous system (CNS).

• Secondary brain cancer refers to malignant tumours that originated else-
where but have spread to the brain. Secondary brain cancer is more common
than primary brain cancer.

There are over 100 types of cancer that can affect the central nervous system
(CNS). It is necessary to remember that cancers that arise in other locations
(breast, lung, etc.) and spread to the brain are still treated as the cancers of the
original site. So it becomes important to discuss primary brain cancers and their
classification [13]:

• Gliomas: they are the most common and deadly brain cancers. They origi-
nate in the glial cells of the central nervous system (CNS). Gliomas can be
divided into 3 main categories:

– Astrocytomas: they develop in astrocytes and are found in the cere-
brum and the cerebellum. Astrocytomas make up approximately 50%
of all primary brain tumours. It is significant to stress that Glioblas-
toma multiforme is an astryocytoma subtype.

– Oligodendrogliomas: they are tumours that develop in oligodendro-
cytes, i.e. glial cells that produce myelin, a component of the brain
that increases impulse speed.
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– Ependymomas: they are tumours that develop in the ependymal cells,
i.e. the cells in the brain where ceribrospinal fluid (CSF) is created and
stored. Ependymoma tumours are usually found in ventricle linings,
the spinal cord or the regions near the cerebellum.

• Nongliomas: they are tumours that do not arise from glial cells. More
prevalent examples of nongliomas are:

– Meningiomas: they are tumours that develop in the meninges, mem-
branes covering the brain and spinal cord. Meningioma tumours are
frequently formed from arachnoid cells. These cells are responsible for
the absorption of the cerebrospinal fluid (CSF). Most meningiomas are
benign as malignant meningiomas are extremely rare.

– Medulloblastomas: they arise in the posterior fossa, i.e. a specific
region of the space inside the intracranial cavity that contains the
brainstem and the cerebellum.

Furthermore, WHO (World Health Organization) classify gliomas also by their
behaviour and malignity [14]:

• Grade I : circumscribed tumours with low proliferative potential, biologically
benign and often curable through surgical resection alone;

• Grade II : low-grade malignancies that may follow long clinical courses, but
the early diffuse infiltration of the surrounding brain makes them incurable
by only surgery;

• Grade III : tumours that are malignant and present abnormal cells. They
are very likely to spread into nearby tissues and tend to come back;

• Grade IV : the most malignant tumours, they spread very quickly and show
both pathological angiogenesis and necrosis. They are invasive and resistant
to common therapies.

1.2.3 Glioblastoma Multiforme

Glioblastoma Multiforme (GBM), also referred to as a grade IV astrocytoma, is a
fast-growing and aggressive brain tumour. It invades the nearby brain tissue but
generally does not spread to distant organs. Glioblastoma Multiforme accounts
for 47.7% of all malignant brain tumours [15]. Glioblastoma has an incidence of
3.21 per 100 000 population. Median age of diagnosis is 64 years and it is more
common in men as compared to women. Survival is poor with approximately 40%
survival in the first year post diagnosis and 17% in the second year. In fact, GBM
can result in death in less than six months, if untreated.
In adults, GBM occurs most frequently within the cerebral hemispheres, especially
in the frontal and temporal lobes of the brain. It presents unique treatment
challenges due to:

• Localization of tumours in the brain

• Inherent resistance to conventional therapy

• Limited capacity of the brain to repair itself
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• Migration of malignant cells into adjacent brain tissue

• The variably disrupted tumour blood supply, which inhibits effective drug
delivery

• Tumour capillary leakage, resulting in an accumulation of fluid around the
tumour and intracranial hypertension

• Tumour-induced seizures

• The resultant neurotoxicity of treatments directed at gliomas

The first recorded reports of this malignant glioma were given in British scientific
reports, by Berns in 1800 and by Abernety in 1804 [16]. After, the first com-
prehensive histomorphological description was given in 1865 by Rudolf Virchow.
For many years it was known as spongioblastoma multiforme, until Bailey and
Cushing in 1926 proposed the name Glioblastoma Multiforme. Between 1934 and
1941 the most prolific researcher in glioma research was Hans-Joachim Scherer,
who postulated some of the clinico-morphological aspects of GBM. Only with the
introduction of molecular and genetic tests the true multifomity of GBM has been
established, as it shows different genotypes bearing the same histomorphological
and it may appear very different from an individual to another.

As far as treatment care, brain tumours and GBM in particular are extremely
resistant to therapies. The standard of treatment for a GBM is neurosurgery.
However, complete removal is almost impossible because of infiltration, so this
type of cancer is very likely to appear again. The surgery is followed by daily ra-
diation and oral chemotherapy for six and a half weeks, then a six-month regimen
of oral chemotherapy given five days a month. Even with this complete treatment,
almost all patients experience tumour progression with nearly universal mortality
and a median survival of less than 16 months.

1.3 Imaging techniques used in brain tumour detection

In this section, a description of the characteristics of the main imaging techniques
used in brain tumour detection, namely Magnetic Resonance Imaging (MRI) and
Diffusion Tensor Imaging (DTI), is presented. Medical images obtained through
these techniques are employed to provide a computational reconstruction of the
brain, helping to build a realistic geometry and to account for anisotropy of the
brain environment. A more detailed description of imaging physics is reported in
[17, 18].
Magnetic Resonance Imaging (MRI) is a non-invasive imaging technology that
produces three dimensional detailed anatomical images. It is often used for dis-
ease detection, diagnosis and treatment monitoring. It works through the detec-
tion of magnetic dipoles in the atomic nuclei of the organism. More specifically,
protons placed into a static magnetic field B behave like spinning magnets and
tend to align to this field in spite of their thermal motion. However, since protons
possess an intrinsic magnetic dipole moment due to their spin, the combination of
the external field with the spin results in a precession around the direction of B,
increasing the magnetization M of the tissue which, under normal conditions, will
be a vector aligned with the external magnetic field. The magnetization is said to
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be fully longitudinal, i.e. directed as the magnetic field, while the transverse mag-
netization, i.e. the one in the direction orthogonal to the magnetic field, is null.
However, if an electromagnetic radiation with a specific frequency is directed to
the tissue irradiated by the magnetic field, some protons can absorb energy thanks
to the resonance phenomenon and rotate their spin of 90 degrees. In this way, the
protons come into phase with the external electromagnetic pulse, and therefore
into phase with each other. This results in a decrease in the longitudinal mag-
netization, with a simultaneous increase in the transverse magnetization, which
is not null anymore. At the time when the pulse is switched off, the protons
will gradually recover their original configuration and it is postulated to happen
exponentially and to be governed by two characteristic time constants [17]:

M1(t) = M0

(
1− e−t/T1

)
(1.1)

M2(t) = M0e
−t/T2 (1.2)

where M1 denotes the magnitude of the longitudinal magnetization and M2 the
magnitude of the transverse magnetization, assuming that the magnetization vec-
tor was rotated by 90◦ at t = 0. The time constant T1 is called longitudinal relax-
ation time and quantifies the time required for M1 to recover, while T2 is known
as transverse relaxation time, related to the time that the transverse magnetiza-
tion needs to disappear. By exploiting the differences in T1 and T2 into different
tissues, it is possible to acquire signals from theM1 andM2 curves. Furthermore,
two more parameters called Time to Recover, i.e. the time between two consecu-
tive pulses, and Time to Echo, i.e. the time between the pulse and the acquisition
of the signal, allow to associate the magnetization intensity to a colour, obtaining
an MRI image.
The main problem of MRI is that it does not provide any information concerning
the direction of the fibers. A possible way to overcome this limitation is to use
Diffusion Weighted Imaging (DWI), and in particular Diffusion Tensor Imaging
(DTI). DWI is a form of MRI imaging based upon measuring the random Brow-
nian motion of water molecules within a voxel of tissue. If we apply a pulsed
field gradient to a uniform magnetic field in MRI, it will cause a phase shift in
protons which depends on the position of protons themselves. However, if another
pulse with the same magnitude but opposite direction is applied, phase alignment
between protons should be recovered, and the original signal should be captured
again. If this does not happen, it means that some molecules have moved during
the time interval between the two opposite gradients due to diffusion. In this way
the diffusion coefficient of water molecules in a specific region of the brain can be
estimated. Stejskal and Tanner [19] proposed an equation in order to quantify
the signal loss due to diffusion in a zone:

S = S0e
−bD (1.3)

where S0 is the MRI signal intensity when no diffusion-field gradient is imposed,
D is the diffusion coefficient and b is a parameter, called diffusion weighting factor,
that includes all the quantities characterizing the field gradient. From equation
(1.3) we want to evaluate D: this can be made carrying out two measurements,
one with b = 0 and the other one with b 6= 0, and calculating the signal intensities:

D = −1

b
ln
S

S0
(1.4)
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In this way, we can assign values of D to each portion of the image, building a
map of diffusion coefficients inside the brain. It is important to underline that
what we have measured by doing so is not properly the diffusion coefficient, since
it depends on many other factors, for this reason it is often more correctly referred
to as apparent diffusion coefficient (ADC).
If a certain tissue is isotropic and so there are not preferential directions in it, the
quantification of the ADC fully describes diffusion properties. On the other hand,
if we consider anisotropic tissues like white matter, where preferential directions
are present, a single measurement of the ADC along a certain direction does
not completely characterize diffusion. Actually, performing measurements with
different directions of the field gradient leads to different results. In order to
overcome this problem, Diffusion Tensor Imaging (DTI) is employed. Using this
technique, we do not characterize diffusion by a single coefficient but rather by a
second-order symmetric tensor, called diffusion tensor :

D0 =

 Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

 (1.5)

In this way, we can modify equation (1.3) as follows:

S = S0e
−B:D0 (1.6)

where the diffusion-weighting factor B is a tensor as well. As a consequence, in
order to estimate the components of the diffusion tensor seven measurements are
now requested: one in order to obtain S0 and six for the independent components
of D0. The Figure 1.6 shows an example of a representation of the diffusion tensor
(DTI).

Figure 1.6: Diffusion tensor imaging [20]
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Chapter 2

Brain mechanics

The human brain is still a subject of extensive investigation aimed at understand-
ing its behavior and function. Today it is known that mechanical factors play an
important role in regulating brain activity. Unfortunately researchers are far from
having a deep knowledge of them because the mechanical behavior of brain tissue
is one of the most demanding and complicated to model. Nonetheless, the last
decade has seen fundamental advances in different areas of brain mechanics, since
a more detailed understanding of brain tissue mechanics is required to develop
proper constitutive models.
In this chapter firstly the basic concept of kinematics and dynamics of continua
are exposed. In a second moment the theory of mixtures is introduced. After that
it is summarized how tissue growth could be mechanically described, by means of
a multiplicative decomposition of the deformation gradient. Then a mechanical
characterization of brain tissue is presented, where the main characteristics that
have to be taken into consideration when constructing a mechanical model are
highligthed. Lastly a list of used constitutional models is reported, specifying the
advantages and disadvantages of each of them.

2.1 Continuum mechanics background

In this section it is reported a summary of important concepts of continuum
mechanics which are used in the following. These notions are mainly taken from
[21] and [22].
A finite deformation χ(X, t) assigns to each material point X ∈ B∗ its position x
in three-dimensional Euclidean space E :

B∗ 3 X −→ x = χ(X, t) ∈ E

The image of B∗ through deformation χ(X, t) is called a deformed configuration,
and it is indicated by B. It is assumed that χ(X, t) is a diffeomorphism, meaning
that it is C1, globally invertible and its inverse is C1.
The tensor field

F := Grad χ, FLi =
∂χi
∂XL

is called deformation gradient. Its determinant, also called Jacobian, is denoted
by J := detF and it needs to be strictly positive in order to avoid unphysical
effects.
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The deformation gradient and its determinant allow to describe how vectors, area
and volume elements deforms from the initial configuration to the deformed one:

dx = FdX (2.1)

dΣ = JF−TdΣ∗ (2.2)
dV = JdV∗ (2.3)

where dΣ∗ and dV∗ are an element of area and an element of volume in the
reference configuration B∗, respectively, and dΣ and dV are the corresponding
elements in B.
The deformation of a continuum from the reference configuration B∗ to the de-
formed one B can be described using the displacement field u(X), defined through:

x(X) = X + u(X)

Differentiating the previous equation with respect to the material coordinates, we
obtain the relation:

F = I + Grad u (2.4)

where I is the second order identity tensor and

Grad u :=
∂u

∂X
, (Grad u)ij :=

∂ui
∂Xj

We now introduce some other useful quantities that will be used in the model.
The right Cauchy-Green deformation tensor is the symmetric tensor defined as:

C := FTF

It is usually referred to as the displacement gradient. It is also useful to define
the left Cauchy-Green deformation tensor:

B := FFT

It is possible to note that C operates from the configuration of reference B∗ in itself,
while B operates from B in itself. Furthermore the two tensors are symmetric and
positive definite and they have the same eigenvalues λi, i = 1, 2, 3.
The first, second and third principal invariant of C are defined as:

IC = trC = λ1 + λ2 + λ3

IIC =
1

2

[
(trC)2 − trC2

]
= λ1λ2 + λ1λ3 + λ2λ3

IIIC = detC = λ1λ2λ3

The three invariants of C coincide with the ones of B.

It is important to focus on the kinematics of a continuum body. To do that
it is considered a reference configuration B∗ and the coordinates in this config-
uration are called material or lagrangian coordinates. The set of positions Bt
occupied by the body at time t is the actual configuration of the body and the
coordinates in this configuration are called spatial or eulerian coordinates. Each
variable q associated with the motion of the body can be expressed in Lagrangian
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form or in Eulerian form depending on whether it is expressed in variables (X, t)
or (x, t):

q = q̃(X, t) = q(x, t)

q(x, t) = q̃(χ−1(x; t), t)

The variation of q̃ in time keep the material point fixed, while ∂q
∂t (x, t) keeps the

spatial coordinate fixed. To link these two quantities:

dq

dt
(x(t), t) =

∂q

∂t
(x(t), t) +

∂q

∂xj
(x(t), t)

dxj

dt
(x(t), t)

=
∂q

∂t
(x(t), t) + v(x(t), t) · ∇q(x(t), t)

where
v :=

∂x
∂t

(X, t)

is the velocity. In this way we define the acceleration (in Lagrangian form):

a(X, t) :=
∂2x
∂t2

(X, t)

while the acceleration in Eulerian form:

a(x, t) =
∂v
∂t

(x(t), t) + v(x(t), t) · ∇v(x(t), t)

It is important to remark now some important theorems widely employed in Con-
tinuum Mechanics.
The Reynolds’ transport theorem plays a fundamental role: if Vt is a spatial volume
that convects with the body and ψ is a scalar field of class C1 then

d

dt

∫
Vt

ψdV =

∫
Vt

(
∂ψ

∂t
+∇ · (ψv)

)
dV (2.5)

If the set Vt is not convecting, Reynolds’ relation needs to be modified considering
the velocity of the boundary ∂Vt, vΣ, relative to the boundary of the body v, i.e.
wn := (vΣ − v) · n

d

dt

∫
Vt

ψdV =

∫
Vt

(
∂ψ

∂t
+∇ · (ψv)

)
dV +

∫
∂Vt

ψwndΣ (2.6)

Another very important theorem is the Cauchy’s theorem: if t denotes the traction
per unit area of the body, there exists a tensor field T, called Cauchy’s stress
tensor, such that:

t(n) = Tn

At this point it is possible to introduce the mass balance equation. If ρ(x, t)
represents the mass density and mass conservation principle is assumed, it takes
the following integral form:

d

dt

∫
Vt

ρ(x, t)dV = 0

that is equivalent to this system of local conditions:

∂ρ

∂t
+∇ · (ρv) = 0 in Bt \ St
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[|ρwn|] = 0 su St
where St is the boundary of the actual configuration Bt.
It is exposed now the momentum balance equation:

d

dt

∫
Vt

ρvdV =

∫
Vt

bdV +

∫
∂Vt

tdΣ

where b represents the resultant of all forces which act on volume elements of
material and t denotes the traction per unit area of the body, as said above. In
local form is:

ρ

(
∂v
∂t

+ v · ∇v
)

= ∇ · T + b

Balance laws for angular momentum leads instaed to the symmetry of Cauchy’s
stress tensor: T = TT

2.1.1 Constitutive equations and hyperelasticity

It is important here to remark some concept that will be useful in the follow-
ing. The previously mentioned mass, momentum and angular momentum bal-
ance equation are quite general and they are common to any continuous system,
independently of the material of which it is constituted. It is therefore necessary
to introduce into the mechanics of the continuous systems the notion of response
of a body to external stresses for the purpose of take into account the nature of
the material of which it is composed.
In this section the main results related to hyperelasticity are presented. A con-
tinuum is said to be hyperelastic if there exists a function σ(F) such that:

T(F) = ρ
∂σ

∂F
FT

where T is the Cauchy stress tensor, ρ is the material density and F is the de-
formation gradient. This condition can be expressed also in another way. In fact
a continuum is hyperelastic if there exists a strain energy density function W(F)
such that:

T(F) =
1

J

∂W
∂F

FT

where J =detF. These two conditions presented are equivalent. Moreover, in
order to satisfy the objectivity axiom, the constitutive equation for the tensor
T must be independent of the rigid reference adopted. In hyperelsticity this is
equivalent to saying that :

σ(F) = σ̂(C)

Furthermore a solid is isotropic hyperelastic and its constitutive equation satisfies
the principle of objectivity if and only if with respect to the natural configuration
it results:

σ(F) = σ̂(C) = σ̃(IB, IIB, IIIB)

In conclusion it is valid the following relation:

T̂(B) = 2ρ
∂σ̃(IB, IIB, IIIB)

∂B
B

that is:

T̂(B) = 2ρ
∂σ̃

∂IB
B + 2ρ

∂σ̃

∂IIB
(IBI− B)B + 2ρ

∂σ̃

∂IIIB
(B2 − IBB + IIBI)B
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using Cayley-Hamilton theorem, this is equivalent to

T̂(B) = 2ρIIIB
∂σ̃

∂IIIB
I + 2ρ

(
∂σ̃

∂IB
+

∂σ̃

∂IIB
IB

)
B− 2ρ

∂σ̃

∂IIB
B2

2.2 Mixture theory

Mixture theory allows to describe mathematically a continuum composed by an
arbitrary number of phases interacting with each other. A fundamental assump-
tion in the theory of mixtures is that each point in the space occupied by the
mixture is filled by a particle belonging to each constituent. Thus, in essence, the
space occupied by the mixture is made of several co-existent continua. In this way
it is possible to generalize the basic concepts of a unique continuum to several
co-existent continua. For contents of this section, refer to [23].
It is considered a mixture of n constituents. It is denoted by Xα, α = 1, ..., n, a
typical particle belonging to each constituent in the reference state. At time t,
these typical particles occupy the position:

x = χα(Xα, t) α = 1, ..., n

The velocity of each of these particles is given by

vα =
∂χα
∂t

α = 1, ..., n

In order to define the mean velocity of the mixture, let denote as ρα the mass
density of the α−th constituent in the mixed state, that is the ratio between the
mass of the α-th component and the total volume. The total mass density of the
mixture is so defined as:

ρ =
n∑

α=1

ρα

and so the mean velocity is given by:

v =
1

ρ

n∑
α=1

ραvα

The deformation gradient Fα associated with the α-th constituent is given by:

Fα := Grad χα α = 1, ..., n

So it is possible to define also the right and left Cauchy-Green stress tensor:

Cα = (Fα)TFα, Bα = Fα(Fα)T

and their principal invariants:

ICα = trCα, IICα =
1

2

[
(trCα)2 − tr(Cα)2

]
, IIICα = detCα

Let q be any quantity (scalar, vector or tensor) defined at the point x in the
mixture at time t. Thus

d(α)q

dt
=

∂

∂t
q(x, t) + vα(x, t) · ∇q(x, t)
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So it is possible to define the variation of q with respect to time as noted by an
observer at x moving with the mean velocity of the mixture:

d(α)q

dt
=

∂

∂t
q(x, t) + v(x, t) · ∇q(x, t)

The acceleration aα of the α-th constituent is defined through

aα =
∂2χα
∂t2

For what concerns Cauchy’s stress tensor:

tα(n) = Tαn

and

t =

n∑
α=1

tα, T =

n∑
α=1

Ti

so it is still valid the following:

t(n) = Tn

The theory of mixtures takes into account the possible transformation of mass
due to thermal interactions or chemical reactions between the constituents. So
Γα represents the production of the α-th constituent due to these actions. If V
is any fixed volume in the mixture, the balance of mass of a component requires
that:

d

dt

∫
V
ραdV =

∫
V

ΓαdV

In this way the local form is:

∂ρα
∂t

+∇ · (ραvα) = Γα

The balance of mass for the mixture as a whole should have the same form as
that for a single constituent continuum. In order to have that it is requested that:

n∑
α=1

Γα = 0

which states that there is no net production of mass.
It is important to define now the concept of volume fraction, that is, the volume
occupied by the α-th constituent over the total volume:

φα(x, t) :=
Vα(x, t)
V (x, t)

In the case of a saturated medium, the constraint

n∑
α=1

φα = 0

has to hold. Furthermore it is defined the true mass density for the α-th phase
γα as the ratio between the mass of the α-th component and its volume (not the
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total volume), so that ρα = φαγα. By inserting it in the mass balance equation
and assuming that all phases are incompressible, that is dγα

dt = 0, it becomes:

∂φα
∂t

+∇ · (φαvα) =
Γα
γα

Moreover each component of a mixture must satisfy its own momentum balance
equation:

ρα

(
∂vα
∂t

+ vα · ∇vα
)

= ∇ · Tα + ραbα + mα

where Tα is the partial Cauchy stress tensor of the α-th phase, bα is the body
force acting on the α-th constituent and the term mα is the momentum supply
that accounts for the interaction between different phases [24].

2.3 Multiplicative decomposition of the deformation
gradient

In classical Continuum Mechanics a body is seen as a collection of particles [25].
Each particle should have its counterpart in a certain reference configuration of
the body. One way of describing the growth of a body is to imagine that new par-
ticles appear even if they were not present in the original configuration. Clearly
an approach like this has the problem that it is impossible to define a motion
that maps the original configuration onto the current one. A possible way to
overcome this difficulty is to consider as an increase of the mass of the already
existing particles. In such a case it is possible to define a motion that connects all
these configurations because the number of particles does not change. However
the total mass of the body in going from the original to the current configuration
may change because the mass of the particles may have changed.
Let a body be in the configuration B0 at time t = 0. Suppose that the body has
undergone growth or resorption together with the possible application of loads,
so that at current time t the configuration is Bt.
In the scientific papers [25, 26, 27, 28, 29, 30] it is presented how to decom-
pose the deformation assuming multiple natural configurations. The concept of
evolving natural configurations consists in splitting the evolution in pure elas-
tic deformations and deformations subsequent to anelastic distortions, such as
growth and remodelling. Following the modelling background proposed in [25,
28], in this section it is summarized how this multiplicative decomposition of the
deformation gradient can be done. It is assumed to cut a generic particle out of
the body and to relieve its state of stress while keeping its mass constant. In this
way the body will reach a state that is in general different from the one it had in
B0 and also from the one achieved in Bt. This is the natural state of that particle
at time t, while the natural configuration of the body at time t is the collection of
all the particles in their natural states at time t and it is indicated by Bg. In this
way it is possible to measure the deformation from the natural configuration Bg
through the tensor Fe, which is connected to the stress response of the material,
while the path from B0 to the natural configuration is described by the tensor Fg,
which is directly connected to growth and it is therefore named growth tensor.
This decomposition is graphically shown in Figure 2.1. The deformation gradient
F indicates how the body is deforming locally in going from B0 to Bt, while, in
an analogous way, Fe tells how the body is deforming locally in going from the
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Figure 2.1: Multiplicative decomposition of the deformation gradient (from
Lubarda, 2004 [30] and Ambrosi and Mollica, 2002 [25]).

natural configuration Bg to Bt, while Fg tells how the body is growing locally. It
is valid this relation:

F = FeFg

Furthermore, since the deformation gradient F is invertible, it follows that Fe and
Fg are invertible too. Moreover the determinant of the deformation gradient is
expressed as:

J = Je · Jg
If Jg > 1 the body is subject to growth, on the contrary if Jg < 1 the body is

subject to resorption.
It is necessary then to prescribe a constitutive equation for the path Bg to Bt,
and independently, an evolution equation for the path B0 to Bg. It is important
to remark that, if necessary, these parts can then be subdivided further, in this
way the constitutive model can be constructed from multiple building blocks
that represent the key physical features of the tissue. For example in [26] it is
multiplicatively decomposed the deformation gradient F into an elastic part Fe
and a viscous part Fv. In [27] the deformation gradient of the cellular population
Fc is decomposed as

Fc = FeFpFg

where Fe is the purely elastic contribution to the overall deformation gradient,
whereas Fg and Fp represent the inelastic distortions related to growth and to the
plastic reorganisation of the tissue’s internal structure.

2.4 Mechanical characterization of brain tissue

It is now presented the continuum of interest: the brain tissue. It is fundamental
to characterize it in order to construct a model as accurate as possible.
Brain tissue consists of gray and white matter and is covered with the thin layer
of pia and arachnoid membranes. The gray matter is made up of neuronal cell
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bodies, which are distributed at the surface of the cerebral cortex which does not
seem to have any directional preference, while the white matter is composed of
bundles of myelinated nerve cell processes (or axons), that can be highly oriented.
However, the analysis made by Budday et al. (2017) reported in [32] has estab-
lished that the microstructural anisotropy due to the alignment of nerve fibers in
the tissue does not result in an anisotropic elastic response. Therefore in a first
moment it is neglected a possible anisotropic response in the elastic part of the
deformation and it is assumed that brain tissue is isotropic. On the other hand,
the anisotropic orientation of fibers highly influence anelastic distortions, such as
growth and remodelling.
Another important issue could be whether the brain tissue should be treated as
solid or as fluid. An answer arrives from [33], which reports that brain tissue sam-
ples, immersed in saline, return to a clearly defined shape after being deformed,
which indicates a need for a solid model. But, viewed as a solid, the brain is ex-
tremely soft and its mechanical response is heavily influenced by the fluid phase.
Therefore a mechanical analysis requires a coupled multi-field theory. Neverthe-
less it is important to underline that, as reported in [26], most constitutive models
for the brain tissue only consider the solid phase, i.e. they are monophasic, either
purely elastic or viscoelastic. Biphasic and triphasic models are used when the
effects of the other phases are non-negligible.
Moreover the issue of compressibility of brain tissue warrants careful investigation
because the tissue may behave incompressibly in impact situations while it may
be effectively compressible in long duration processes, as reported in [34]. So the
choice should be done depending on the situation one wants to study.
Furthermore the vast majority of experimental results agree upon the nonlinear
and viscous nature of brain tissue. It is evident also in the experiments made in
[35, 36, 37] which subject the brain to compression, tension or shear. Moreover
experiments on brain samples under multiaxial loading have shown that human
brain tissue is characterized by a peculiar elastic response under combined shear
and compression/tension: there is a significant increase in shear stress with in-
creasing axial compression compared to a moderate increase with increasing axial
tension. So it is extremely important to derive constitutive models that manage
to capture this characteristic response.

2.5 Constitutive models for human brain tissue

Computational simulations are a powerful tool to predict the mechanical behavior
of the human brain in health and disease. Of course the success of these simula-
tions depends critically on the underlying constitutive model and on the reliable
identification of its material parameters. Constitutive modeling consists in con-
sidering and choosing families of models with desirable properties. In fact it is
important to find a functional form that both enforces particular properties of
the considered material and is general enough to be adapted for specific systems.
In order to do this is fundamental to have deeply understood the defining charac-
teristics of brain tissue. Moreover it has to be said that the mechanical behavior
of brain tissue may be modeled in different ways based on the specific conditions
of interest and in particular on the magnitude of the strain rate. Hence, differ-
ent constitutive relations may be needed for the same material depending on the
particular condition.
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In [26] the authors categorize the different features of existing models into time-
independent, time-dependent, and history-dependent contributions. To model
the time-independent and elastic behavior of the brain tissue, most existing mod-
els adopt a hyperelastic approach. To model the time-dependent response, most
models either use a convolution integral approach or a multiplicative decomposi-
tion of the deformation gradient. In the following some models of each type are
presented.
An important fact that is taken into consideration is the viscoelastic response
of brain tissue. The data shows clearly that the response of brain tissue has
a viscous component indicated by a different response in loading and unloading.
Constitutive relations for viscoelastic materials consist of a time-independent elas-
tic contribution and a time-dependent viscous contribution. In [38] the authors
prove that the non-linear viscoelastic model, based on the strain energy function
in polynomial form with time-dependent coefficients, is suitable for description of
brain tissue deformation behaviour under compression, typical for surgical proce-
dures. The strain energy function of the following form is used:

W =

∫ t

0


N∑

i+j=1

Cij(t− τ) · d
dτ

[
∂

∂λz
((I1 − 3)i(I2 − 3)j)

] dτ

where I1,I2 and I3 are strain invariants and λz is a stretch in vertical direction. In
[39] it is developed a finite deformation, linear viscoelastic model of brain tissue
by the same authors. The polynomial strain energy function of the hyperelastic,
linear viscoelastic medium is written in the following form:

W =

∫ t

0


N∑

i+j=1

[
Cij0

(
1−

n∑
k=1

gk

(
1− e−

t−τ
τk

))] d

dτ

[
(I1 − 3)i(I2 − 3)j

] dτ

where τk are characteristic times, gk are relaxation coefficients and N is the order
of polynomial in strain invariants. The model developed here has a number of
advantages over the previously proposed. Firstly it requires only four material
parameters to be identified. Furthermore it is known that the major deficiency of
most of the models is the fact that they were identified using experimental data
obtained in vitro and there is no certainty whether they can be applied in the
realistic in vivo setting. In [40] it is shown that the previously proposed model can
be applied in finite element simulation of brain deformation in vivo for moderate
strain rates, and consequently, to neurosurgical simulation.
However it is also important to focus on the tissue’s effective elastic response under
small strain rate. Following what was made in [32], this response is obtained as
the average between the loading and the unloading paths, assuming that this
corresponds to the case when the strain rate approaches zero. The attention
is so restricted to hyperelastic isotropic materials, that fall into the category of
time-independent models. One of the first models that have been found in good
agreement with the experimental data, both in single and multiaxial loading, is
Ogden-type hyperelastic incompressible isotropic models [41]:

WOgd(C) =
N∑
i=1

µi
αi

(λαi1 + λαi2 + λαi3 − 3)

where N , µi and αi are the material parameters. In [32] it is shown that the
models with higher order terms (i.e. high values of N) are more successful in
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approximating the data than the ones with lower order terms. Unfortunately the
fact that a relatively large number of parameters may be required to approximate
the data to the desired accuracy makes them less attractive to users.
In [32, 35, 36, 37] it is shown that the isotropic modified one-term Ogden model
is suitable to represent the hyperelastic behavior under combined shear, compres-
sion, and tension loadings. The strain energy density function is:

WOgd(C) = 2
µ

α2
(λα1 + λα2 + λα3 − 3)

where µ = 1
2µ1α1 corresponds to the classical shear modulus and α1 = α is able

to capture the compression-tension asymmetry and the elastic behaviour of the
brain with multiple loading modes simultaneously. It is also emphasized that the
parameter α needs to adopt a negative value to represent the effect that stresses
are higher in compression than in tension. A positive value for a would yield
the opposite trend, which is inappropriate for brain tissue. The strength of this
model consist in the fact that less parameters are involved. On the other hand
in [42] is underlined that this constitutive model fails to simultaneously capture
the constitutive response of brain tissue at different stretch levels when using the
calibration approach. To overcome this problem it is presented a new model by
combining the Mooney–Rivlin model with the one-term Ogden model.
The Mooney-Rivlin model has the following form:

WMR(λ1, λ2, λ3) =
c1

2
(λ2

1 + λ2
2 + λ2

3 − 3) +
c2

2
(λ−2

1 + λ−2
2 + λ−2

3 − 3)

where c1 and c2 are constant parameters. The final model takes on the form:

W(λ1, λ2, λ3) =
c0

2α
(λ2α

1 +λ2α
2 +λ2α

3 −3)+
c̄1

2
(λ2

1+λ2
2+λ2

3−3)+
c̄2

2
(λ−2

1 +λ−2
2 +λ−2

3 −3)

in terms of four global parameters. This proposed model is an hyperelastic model
to date calibrated simultaneously to experimental data for brain tissue under finite
simple shear superposed on varying axial tension or compression.
Since it will be the one used in our model, it is useful to rewrite the Mooney-Rivlin
model taking into account the notions of frame indifference and isotropy:

Ŵsn (Ce) =
1

2
µ1 (ICe − 3) +

1

2
µ2 (IICe − 3) (2.7)

where ICe and IICe are, respectively, the first and the second invariant of Ce.
Lastly there are also history-dependent models of brain tissue. Various experi-
ments have shown that preconditioning has a significant effect on the mechanical
properties of brain tissue, which implies that the tissue response depends crit-
ically on the loading history. One example of this type of models can be the
Franceschini model, described in [26].

29



Chapter 3

Mathematical models for
Glioblastoma

Mathematical models for cerebral tumour growth can help in understanding the
physiology of tumour growth, in order to predict future tumour shape and volume
and to quantify its aggressiveness. Furthermore they can be useful to study the
response of the tumour to therapy. During the last decade theoreticians have
developed a great variety of tumour models covering various morphological and
functional aspects of tumour growth. In this chapter the most popular brain
tumour models are summarized, analyzing the results that have been obtained so
far in this field. Lastly it is presented the mathematical model taken into account.

3.1 Overview on mathematical models of brain tumour

Tumour growth models can be divided according to what level they focus their
study: microscopic or macroscopic levels. As it is reported in [43] the former
models study the observations at microscopic level by describing the interactions
between healthy tissues and tumour cells. These models study tumour growth at
different levels: avascular, angiogenesis and vascular. On the contrary, the latter
models utilize medical imaging techniques and mathematical formulae to simulate
the tumour cells diffusion, proliferation and the induced mass effect.

3.1.1 Microscopic models

The microscopic scale refers to phenomena that occur at the sub-cellular level and
to the activities that take place within the cell. These types of models keep track
of the single cell behaviour and its interactions with other agents. As stated in
[44], microscopic models of brain tumour proliferation mainly fulfill two objec-
tives: the first is to reproduce the early growth of gliomas at the very beginning,
when the tumour is still in its avascular phase, the second is to investigate the
cancer invasive behaviour.
The used models are mostly cellular automata (CA), cellular Potts model (CPM)
or agent-based models (ABMs). A cellular automaton (CA) consists of a regular
grid of cells, each in one of a finite number of states. The grid can be in any
finite number of dimensions. For each cell, a set of cells called its neighborhood
is defined relative to the specified cell. An initial state is selected by assigning a
state for each cell. A new generation is created (advancing t by 1), according to
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some fixed rule that determines the new state of each cell in terms of the current
state of the cell and the states of the cells in its neighborhood. On the other hand,
cellular Potts model (CPM) is a computational model of cells and tissues. It is
used to simulate individual and collective cell behavior, tissue morphogenesis and
cancer development. CPM describes cells as deformable objects with a certain
volume, that can adhere to each other and to the medium in which they live.
The formalism can be extended to include cell behaviours such as cell migration,
growth and division, and cell signalling. Finally, agent-based models (ABMs) are
a class of microscopical models for simulating the actions and interactions of au-
tonomous agents with a view to assessing their effects on the system as a whole.
ABMs differ from cellular automata in the fact that they are usually lattice-free,
so that cells are allowed to move and change their orientation, providing a more
realistic description of the phenomenon.
Concerning early glioma tumour growth, Sander et al. [46] formulate a chemo-
taxis model (the evolution of the system is affected by the gradient of nutrient
concentration) for the GBMs complex growth patterns in vitro, in which invasive
cells organize in tenuous branches. The work of Kansal et al. [47] models the
3D evolution of gliomas by developing a cellular automaton. The system is firstly
iniziated with an initial distribution of about 1000 cells and then one can follow
the evolution to a fully developed tumour of 1011 cells. Furthermore Mansury et
al. [48] use an agent-based model in order to realistically simulate early avascular
GBM growth.
Wurzel et al. [49] presented a model that is developed simulating the invasion,
proliferation and death of tumour cells. This model aims to investigate the effect
of brain structure inhomogeneity, in fact it is modelled as an orientation gradient
field parallel to the white matter fiber tracts, which facilitates invasion/migra-
tion of the tumour cells. Glioma cell migration on a substrate of collagen was
investigated by Aubert et al. [50]. They propose a 2D CA model which indicates
that chemotaxis or cell–cell communication through gap junctions is necessary
to reproduce experimental density profiles of glioma cell distributions in tumour
spheroids. In another study, migration patterns of glioma cells in the presence of
astrocytes were studied by Aubert et al. [51]. An extended version of the model
proposed in [50] was used and it suggests that the interactions between glioma
cells and astrocytes play an important role in glioma invasion, due to the effect
of heterotypic (between glioma cells and surrounding astrocytes) gap junction
inhibition which dominates that of homotypic (between glioma cells) inhibition.
Finally, to explore the influence of the ECM on glioma cell migration, Szabò et al.
[52] considered not only cell–cell adhesion but also cell–ECM interactions. The
interplay between haptotaxis, matrix degradation and active cell movement was
investigated by means of a 2D CPM.

3.1.2 Macroscopic models

Continuum-based models focus on the evolution of cancer cell density over time.
The macroscopic models can be either diffusive or biomechanical, as reported
in [43]. Diffusive models are able to simulate the cancerous cells’ diffusion into
healthy tissues and their corresponding proliferation using the reaction-diffusion
model. On the other side, biomechanical ones mainly target studying the mass
effect of tumour bulk on the other anatomical structures of the brain using stress
and strain relationship. They focus their studies on deformation and structure
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changes (mass effect) of the brain tissue which is usually considered as elastic,
viscoelastic or hyperelastic material.

Diffusive models

The diffusive models are firstly presented. They mainly use of the reaction-
diffusion equation proposed in [53, 54, 55]:

∂c(x, t)

∂t
= ∇ · (D∇c(x, t)) + f(c(x, t)) (3.1)

The proliferation term f(c(x, t)) could be estimated by either exponential [53, 54,
55], logistic [43] or Gompertz terms [56]. The model formulation is completed by
boundary conditions which impose initial conditions c(x, 0) = c0(x) where c0(x)
defines the initial spatial distribution of malignant cells and no migration of cells
beyond the brain boundary:

D∇c · n∂Ω = 0

The diffusion coefficient is considered a constant if an isotropic growth is assumed.
However there are also other possibilities: in [54] is presented a mathematical
formulation of the model which involves spatially varying diffusion D(x), where
D(x) = DG, a constant, for x in grey matter and D(x) = DW , another constant,
for x in white matter. It has been observed that tumoral cells diffuse more rapidly
in white matter than in gray matter so it holds DW > DG. Furthermore in [57]
it is proposed to further generalize this model to take into account not only the
heterogeneity of the brain tissue but also its anisotropy, dealing with the fact
that glioma cell migration is facilitated in the direction of white matter fibers. In
this case D is a 3 × 3 symmetric positive definite matrix that models the local
anisotropy.
This model is also used to estimate the effects of treatments to which patients are
usually subjected, that can be either chemotherapy or radiotherapy. Typically,
these effects are expressed as loss (negative) terms in (3.1). In [54] it is shown how
(3.1) can be expanded to allow for chemotherapy. If G(t) defines the temporal
profile of the chemotherapy treatments, then, assuming a loss proportional to the
strength or amount of therapy at a given time, the equation model (3.1) can be
rewritten as:

∂c(x, t)

∂t
= ∇ · (D∇c(x, t)) + f(c(x, t))−G(t)c(x, t)

In [43] it is presented a model that can estimate the effect of radiation ther-
apy doses by calculating the cells survival probability after radiation dose. The
survival probability is defined as:

S = e−(αdi(c,t)+βdi(c,t)
2)

where di(c, t) is the radiotherapy dose number i in the radiotherapy course over
time while α and β are, respectively, the linear and quadratic radiobiology pa-
rameters. The loss of tumour cells can be calculated using:

r(c, t, di) =

{
0 no radiation
1− S(α, β, di(c, t)) radiation
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The model equation (3.1) can be modified adding the term:

R(x, t) = c(x, t)(1− c(x, t))r(x, t, di)

Furthermore in [54] it is shown that (3.1) can be used also to simulate surgical
resection. In order to do this the tumour cell density is set to zero inside the
resection bed. This model supports the concept that gliomas infiltrate so diffusely
that they cannot be cured by resection alone, but, increasing the size of resection,
does increase life expectancy.
In [58] it is instead presented a mathematical model for glioma and the immune
system interactions, in order to find an effective immunotherapy. In this case it
consists of a system of ODEs rather than PDEs.

Biomechanical models

The introduction of a mechanical framework allows to deal with several important
problems such as the description of the stress field inside the growing spheroid
and at the interface with the external tissues. Biomechanical models consist of
deriving mass and momentum balance equations for each cell population. When
developing the momentum balance equations, consideration of cell-to-cell mechan-
ical interactions is required and constitutive laws must be employed to describe
such interactions. The very first difficulty that is encountered is the necessity to
take into account a quite large number of cell types as well as biological effects.
Earlier models of this type, assumed the brain to consist of a single solid phase
and modeled its mechanical response using an external force proportional to the
concentration gradient of cancer cells. More comprehensive biomechanical models
have also been developed that address the biphasic (i.e. fluid and solid phase)
nature of the brain.

Ambrosi and Preziosi in [59] assume that the ensemble of cells live in a liq-
uid environment in which some chemical factors diffuse. The correct mechanical
framework for a system of this type is the theory of multicomponent continua;
namely, the authors treat tumours as deformable porous media. This descrip-
tion allows in principle to determine how the tumour uncontrolled growth may
cause compression, necrosis, collapse, or rupture of the surrounding tissues and,
in particular, collapse of immature blood vessels and infiltration and rupture of
ducts and capsules. In turn, the models allow to determine how the stresses inside
the tumour related to the compression of the external tissues can interfere with
tumour growth. Focusing on the evolution of tumour cells and of the extracellu-
lar liquid one can write the mass and momentum balance equations in the form
prevously discussed in Section 2.2:

∂φT
∂t

+∇ · (φTvT ) = ΓT

∂φl
∂t

+∇ · (φlvl) = Γl

ρTφT

(
∂vT
∂t

+ vT · ∇vT

)
−∇TT = mT

ρlφl

(
∂vl
∂t

+ vl · ∇vl

)
−∇Tl = ml
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where ΓT , Γl are the production rates of cells and liquid, respectively, TT ,Tl
are the partial stress tensor of the tumour and liquid, respectively. The momen-
tum supply ml, mT of the i-th constituent, contain both the drag due to the
local interaction between the components and the Fickian diffusion of the single
constituent. It has to be added the saturation assumption and, since there are
no external sources, conservation conditions for mass and momentum are to be
satisfied:

φT + φl = 1

ρTΓT + ρlΓl = 0

mT + ml + ρTΓTvT + ρlΓlvl = 0

Furthermore the concentration ui of some chemicals satisfy advection–diffusion
equations:

∂ui
∂t

+∇ · (uiv) = ∇ · (Qi∇ui) +Gi −Diui i = 1, ...,m

The role of the extracellular matrix is also taken into account as a development
of the basic model.
Also in [60] Byrne and Preziosi develop a model for multicell spheroids as de-
formable porous media in the theory of mixtures. They assume that the tumour
comprises two constituents only: a solid phase and a liquid phase. In addition,
the motion of the cells and the intercellular fluid is so slow that inertial terms
can be neglected. The governing equations were supplemented by constitutive
laws that enable the internal stresses and, in particular, the stress at the interface
between the tumour and its surroundings to be calculated.
In [61] Angeli et al. developed a biphasic (tumour’s solid and fluid phases) tissue
growth theory incorporating the effects of radiotherapy. The model was developed
to account for the kinematics of the growth of a spherical tumour seed surrounded
by healthy tissue. It is based on the decomposition of the total deformation gra-
dient tensor F = FeFg, where Fe is the elastic component of F used to account
for interactions with the normal tissue, and Fg was assumed to be an isotropic
tensor that accounts for tumour growth due to cancer cell proliferation. The cal-
culation of the survival fraction Sf of cancer cells post-irradiation is based on
the linear–quadratic model also expressed in [43] and the transport of oxygen
is modeled by taking into account the convection and diffusion mechanisms that
deliver oxygen in the tissue, the oxygen entering the tissue from the blood vessels
and the amount of oxygen consumed by cells.
The previous model was also used in [62] in order to take into account the in-
filtration and distant invasion of cancer cells to the surrounding tissues. This
model model incorporates the tumour biomechanical response at the tissue level
and accounts for cellular events by modeling cancer cell proliferation, infiltration
to surrounding tissues and invasion to distant locations.

As reported in [63], recently developed approach for Glioblastoma Multiforme
modeling employs multiphase diffuse interface models of Cahn-Hilliard type. From
a physical viewpoint, sharp interfaces are replaced by transition layers: this is
made by introducing a fourth-order nonlinear advection-reaction-diffusion equa-
tion analogous to the phase-field model of Cahn and Hilliard [64]. This kind
of approach avoids the need to impose interface conditions between the tumour
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and the host tissue and eliminates the necessity of tracking the interface motion
explicitely.
This approach is used in [65], where it is developed a mathematical model of
tumour growth in a dynamic microenvironments with deformable membranes.
Using a diffuse domain approach, the complex domain is captured implicitly us-
ing an auxiliary function and the governing equations are appropriately modified,
extended and solved in a larger, regular domain.
Focusing on the Glioblastoma, Colombo et al. [66] presented a diffuse interface
model for the GBM, in which no boundary conditions at the interface between
the normal and the diseased region are required. Despite the diffused nature
of the interface, the model is purely mechanical, in fact the tumour lesion and
the surrounding environment are described though incompressible binary mixture
model.
An advancement with respect to the state-of-the-art GBM models is presented
by Agosti et al. in [67, 68]. In their works it is developed a continuum mul-
tiphase diffuse-interface model of GBM accounting both for its growth and its
response to therapies. It is certainly a further step towards the ambitious goal
to provide a computational tool that support medical doctors in clinical practice.
It is necessary to point out that a drawback of diffuse-interface models is that
it is difficult to incorporate deformations. We cannot use constitutive equations
typical of solids, at least for how the problem is defined today. For this reason
the solid phase is described with an elastic liquid. It is a subject that is still to
be studied.

3.2 Eulerian model derivation

In this section a continuum, multiphase model for GlioblastomaMultiforme growth
and proliferation is presented, starting from the model derived in [63] and remov-
ing or modifying some assumptions that had been made.
The hyphothesis made is that the region occupied by the tumour (denoted by
Ωt(t)) is completely separated from the healthy host tissue (denoted by Ωh(t)), so
that the boundary between the tumour and the surrounding environment can be
described by a moving interface. Furthermore, both of these regions are treated
as saturated domains consisting of two distinct phases, which represent the cell
population (labelled with subscript "s") and the interstitial fluid (labelled with
subscript "`"). The cell phase is supposed to behave as an hyperelastic solid,
while the liquid phase is instead considered constitutively as an ideal fluid.
In this description, we assume that the cellular phase includes healthy, diseased
and necrotic cells, while the fluid phase resumes interstitial brain fluid, blood and
nutrients; the distinction between cancer and host tissue is then realized through
the use of a separating interface rather than through the introduction of different
phases for tumorous and healthy cells.
The multiphase approach employed to describe tumour growth is based on the
theory of mixtures. Indeed it consists of a set of mass and momentum balance
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equations:

∂φs

∂t
+∇ · (φsvs) = Γs (3.2)

∂φ`
∂t

+∇ · (φ`v`) = Γ` (3.3)

ρφs

(
∂vs

∂t
+ vs · ∇vs

)
= ∇ · T̃s + ρφsbs + m̃s (3.4)

ρφ`

(
∂v`
∂t

+ v` · ∇v`

)
= ∇ · T̃` + ρφ`b` + m̃` (3.5)

Both the phases are assumed to be intrinsically incompressible and external body
forces (such as the gravitational force) as well as inertial effects are negligible.
These assumptions are made in agreement with [24], which states that they are
reasonable when dealing with biological problems, since the motion of cells and
interstitial fluid is very slow. Thus, equations (3.4) and (3.5) become:

∇ · T̃s + m̃s = 0 (3.6)

∇ · T̃` + m̃` = 0 (3.7)

For each phase (α = s, `), φα denotes the volumetric fraction, vα is the velocity, T̃α
is the partial Cauchy stress tensor, Γα is the mass growth rate and m̃α represents
the rate at which the α-th phase exchanges momentum with the other phase.
Since we made the saturation assumption, the following has to hold:

φs + φ` = 1 (3.8)

Summing equations (3.2) and (3.3) over both phases, using (3.8) and assuming
the mixture to be closed with respect to mass (i.e. assuming mass exchanges
occur only among the constituents taken into account) yields:

∇ · (φsvs + φ`v`) = Γs + Γ` = 0 (3.9)

The term m̃α with α = s, ` in equations (3.6) and (3.7) contains all forces acting
on the α-th phase due to its interactions with the only other present phase. In
[27] it is shown, using thermodynamics arguments, that it is given by a dissipative
and a non-dissipative part:

m̃α = m̃(d)
α + p∇φα (3.10)

where p is the pressure of the interstitial fluid. Furthermore, the dissipative part
can be expressed as:

m̃(d)
α = mαβ (3.11)

where the term mαβ represents the force acting on the α-th phase due to the
other phase, denoted by subscript β. By invoking the action-reaction principle,
in our case it holds that:

m̃(d)
s = ms` = −m`s = −m̃

(d)
` (3.12)

Furthermore, from the theory of mixtures, we know that the Cauchy stress asso-
ciated with the α-th phase of the mixture can be written as a sum of a purely
hydrostatic contribution, which indicates the amount of pressure sustained by the
α-th phase, and an effective stress:

T̃α = −φαpI + Tα (3.13)
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Mass and momentum balance laws in Ωt(t) Firstly, we focus on the region
occupied by the tumour. We assume that, in this region, cells proliferate since
the tumour is growing: from the closed mixture assumption, it follows that the
mass exchange in the cellular phase happens at the expense of the liquid phase.
So the mass balance equations become:

∂φs

∂t
+∇ · (φsvs) = Γs (3.14)

∂φ`
∂t

+∇ · (φ`v`) = −Γs (3.15)

We focus now on the momentum balance equation. Using what we highlighted in
(3.10) and (3.13), equations (3.6) and (3.7) become:

−φs∇p+∇ · Ts + ms` = 0 (3.16)
−φ`∇p+∇ · T` + m`s = 0 (3.17)

Moreover we require that the effective stress of the fluid phase T` is negligible
with respect to the pressure gradient and to the interaction forces between fluid
and solid phase. Furthermore, we made the hypothesis:

m`s = −µφ2
`K (φ`)

−1 (v` − vs) (3.18)

As a consequence, we derive from (3.17) the famous Darcy’s law as a momentum
balance for the fluid phase:

v` = vs −
K (φ`)

µφ`
∇p (3.19)

where v` is the velocity of the fluid, vs is the velocity of the cellular phase, µ
is the dynamic viscosity of the fluid component and K (φ`) is the permeability
tensor. To account for the anisotropy in the fluid motion due to the presence of
white and gray matter fibers in the brain tissue, we can take the permeability
tensor as:

K (φ`) = K (φ`)A (3.20)

where A denotes the Eulerian preferential directions tensor. K (φ`), that for the
saturation condition (3.8) could be expressed as a function of φs, can take different
forms. In order to simplify the model, it could be also considered as a constant
term, i.e. K (φ`) = kp.
On the other hand we will discuss in Section 3.2.4 how it is possible to derive the
tensor of preferential directions.
The momentum balance for the mixture can then be obtained by summing (3.16)
and (3.17), recalling the saturation condition (3.8) and the action-reaction prin-
ciple (3.11):

−∇p+∇ · Ts = 0 (3.21)

Mass and momentum balance laws in Ωh(t) In the domain occupied by
the healthy tissue we assume that the proliferation of cells is compensated by
natural cell death, so that the rate of growth Γs is equal to 0. The closed mixture
assumption implies that also the source term Γ` must be null. Hence, the mass
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balances in the healthy region can be written as:

∂φs

∂t
+∇ · (φsvs) = 0 (3.22)

∂φ`
∂t

+∇ · (φ`v`) = 0 (3.23)

As regards momentum balance equations, they are the same as in the region
occupied by the tumour, that means equations (3.21) and (3.19).

3.2.1 Stress tensor and constitutive equations

In order to close the system of mass and momentum balance equations and to
understand how Glioblastoma Multiforme growth influences mechanically the sur-
rounding tissues, we have to determine an appropriate evolution law for the ef-
fective part of the Cauchy stress tensor Ts, associated with the cellular tumour
population, both in the diseased and in the healthy region. The definition of a
realistic constitutive equation for brain tissue is summarized in Subsection 2.1.1
and Section 2.5. Here we derive stress-deformations relationships employing the
evolving natural configurations framework [25], which are resumed in Section 2.3.

Effective stress tensor in Ωt(t) As we pointed out before we employ a mul-
tiplicative decomposition of the deformation gradient:

Fs = FeFg (3.24)

where Fe represents the elastic contribution while Fg is the part associated to
growth. A consequence of equation (3.24) is that the volumetric part of the
deformation gradient, Js = detFs, can be written as:

Js = JeJg (3.25)

where Je = detFe and Jg = detFg. Since the overall deformation gradient Fs is
assumed to be non singular, from (3.25) it follows that each tensor introduced in
(3.24) is non singular as well.

In analogy with [25], we assume that the mechanical response is hyperelastic
from the natural configuration, in order that the tumour is going to be modelled
as a hyperelastic material that is capable of growing. Of course, this is often
a simplification of the behavior of the material, which would be better approx-
imated employing a viscoelastic constitutive equation. Nevertheless, in the case
of tumour growth, which is a very slow process, the rate dependent response can
be neglected without introducing significant errors.
The assumption we made is that the strain energy density Wsn is of Mooney-
Rivlin type, described from equation (2.7). Since the solid phase is considered as
an approximately incompressible elastic material, it is better to use the theory
developed in [21], which is also based on the multiplicative decomposition of the
deformation gradient Fs. Let Ce := J− 2

3Ce be the isochoric part of the elastic
right Cauchy-Green deformation tensor. We define the strain energy density per
unit volume of the natural configuration as a function of the invariants of Ce:

Ŵsn

(
Ce

)
=

1

2
µ1t

(
ICe
− 3
)

+
1

2
µ2t

(
IICe
− 3
)

(3.26)
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where

ICe
= tr

(
Ce

)
(3.27)

IICe
=

1

2

[(
trCe

)2 − tr
(
C2

e

)]
(3.28)

and µ1t and µ2t are the material parameters of the tumour. As we pointed out in
Subsection 2.1.1, if we know the elastic energy σs (Fe) we can express the Cauchy
stress tensor of the cellular phase as:

Ts = ρs
∂σs

∂Fe
FTe (3.29)

Furthermore, the elastic energy must depend only on the right Cauchy-Green
tensor Ce = FTe Fe in order to satisfy the material indifference principle, that
means:

Ts = 2ρsFe
∂σ̂s

∂Ce
FTe (3.30)

During the pure elastic deformation defined by Fe, the typical assumption is that
the mass is preserved, so it is possible to relate the energy function to the strain
energy density function as follows:

Ŵsn = σ̂sρsn = σ̂sρsJe = σ̂sρsφ
−1
s φsn = σ̂sρ̂sφsn (3.31)

where ρ̂s denotes the true mass density of the solid phase, ρs = ρ̂sφs is the apparent
mass density and φsn is the volumetric fraction of the cell phase in the natural
state. In (3.31) we have imposed mass conservation between the natural and the
current configuration in the following way:

ρsn = Jeρs (3.32)

Then, we made the hypothesis that the solid phase is incompressible, that means
ρ̂s is a constant. In this way it is possible to rewrite (3.32) as:

φsn = Jeφs (3.33)

Finally, using (3.30), (3.31) and (3.33), we can derive the expression for the
Cauchy stress of the solid phase:

Ts = 2ρsFe
∂σ̂S

∂Ce
FTe

= 2
ρ̂sφs

ρ̂sφsn
Fe
∂Ŵsn

∂Ce
FTe

= 2
φs

φsn
Fe
∂Ŵsn

∂Ce
FTe

= 2J−1
e Fe

∂Ŵsn

∂Ce
FTe

So we obtain that the constitutive expression of the Cauchy stress tensor Ts:

Ts = 2J−1
e Fe

∂Ŵsn

∂Ce
FTe in Ωt(t) (3.34)
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Then, we have to compute:

∂Ŵsn

(
Ce

)
∂Ce

=
∂Ce

∂Ce

∂Ŵsn

∂Ce

(3.35)

We first use some tensor algebra to calculate the derivative of Ce with respect to
Ce:

∂Ce

∂Ce
=

∂

∂Ce

(
J−2/3

e Ce

)
= J−2/3

e

∂Ce

∂Ce
+ Ce ⊗

∂

∂Ce

(
J−2/3

e

)
= J−2/3

e I− 1

3
J−8/3

e Ce ⊗
∂ (detCe)

∂Ce

(3.36)

where in the last passage we have denoted by I the fourth-order identity tensor
and used the fact that:

∂J
−2/3
e

∂Ce
=

∂J
−2/3
e

∂ (detCe)

∂ (detCe)

∂Ce
=

1

2Je

∂J
−2/3
e

∂Je

∂ (detCe)

∂Ce

=
1

2Je

(
−2

3
J−5/3

e

)
∂ (detCe)

∂Ce

= −1

3
J−8/3

e

∂ (detCe)

∂Ce

Hence, going on from (3.36), we have:

∂Ce

∂Ce
= J−2/3

e I− 1

3
J−2/3

e Ce ⊗ C−1
e (3.37)

since
∂ (detCe)

∂Ce
= C2

e − ICeCe + IICeI

and by the Cayley-Hamilton theorem:

C2
e − ICeCe + IICeI = IIICeC−1

e = J2
e C−1

e

Therefore, we can write:

∂Ce

∂Ce
= J−2/3

e

(
I − 1

3
Ce ⊗ C−1

e

)
= J−2/3

e

(
I − 1

3
J2/3

e Ce ⊗ C−1
e

)
= J−2/3

e

(
I − 1

3
Ce ⊗

(
J−2/3

e Ce

)−1
)

= J−2/3
e

(
I − 1

3
Ce ⊗ C−1

e

)
(3.38)

At the end we have:

∂Ŵsn

(
Ce

)
∂Ce

= J−2/3
e

(
I − 1

3
C−1

e ⊗ Ce

)
∂Ŵsn

∂Ce

(3.39)
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For simplicity, we denote by W the right side of (3.39), i.e.

W := J−2/3
e

(
I − 1

3
C−1

e ⊗ Ce

)
∂Ŵsn

∂Ce

(3.40)

The constitutive expression of the Cauchy stress tensor Ts is then:

Ts = 2J−1
e FeWFTe in Ωt(t) (3.41)

The constitutive expression of the Cauchy stress tensor Ts should be accompanied
by equations determining Fs and Fg. By the way, the tensor Fs is entirely deter-
mined by the motion of the cell phase and for this reason it is not an additional
unknown for the model:

ḞsF−1
s = ∇vs (3.42)

So it remains to determine Fg by solving appropriate evolution equations. The
evolution of Fg can be obtained through equation (3.14), as suggested in [27,
29]. First of all, we multiply it by Js and the we rewrite it on the reference
configuration as:

˙Jsφs = JsΓs (3.43)

Secondly, we recall that ρ̂α denotes the true mass density of each phase and
ρα = ρ̂αφα the apparent mass density; in this way ρsr = Jsρs is the mass density
of the solid phase in the reference configuration, while ρsn = Jeρs is the mass
density of the solid phase in the natural configuration. Considering the cell phase
incompressible and using (3.25) and (3.33), we obtain:

φsr = Jsφs = JeJgφs = Jgφsn (3.44)

where φsr is the volumetric fraction of the solid phase in the reference configura-
tion. Then, substituting into (3.43) and recalling (3.44), we obtain:

˙Jgφsn = JsΓs (3.45)

Jgφ̇sn + φsnJ̇g = JsΓs (3.46)

If we call Lg the strain rate tensor (or velocity gradient) associated to Fg, i.e.

Lg = ḞgF−1
g (3.47)

it holds from standard calculus that

J̇g = Jgtr (Lg) (3.48)

If we introduce this result in (3.46), we obtain:

φ̇snJg + Jgφsn tr (Lg) = JsΓs (3.49)

Following what is done in [25, 27, 29], we make the assumption that the rate of
mass change of the solid phase is entirely compensated by the volume change due
to growth. This requirement leads to:

φs tr (Lg) = Γs (3.50)
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Multiplying both sides of (3.50) by Js:

Jsφs tr (Lg) = JsΓs (3.51)

which, if we recall (3.44), it is equivalent to:

Jgφsn tr (Lg) = JsΓs (3.52)

Observing (3.49) and (3.52), we can conclude that φsn is constant in time and it
can be assumed known from the outset.

We will discuss in Section 3.2.4 the assumption made for the anisotropic
growth tensor Fg and consequentely we will derive its evolution, in order to satisfy
(3.50).

Effective stress tensor in Ωh(t) We have said before that in the host healthy
tissue, the net source term Γs is null, since the death of healthy cells is compen-
sated by proliferation. This implies that the multiplicative decomposition is not
needed and so the Cauchy stress tensor for the cell phase can be derived using
a plain hyperelastic constitutive equation. We still consider that the host cell
population behaves as an approximately incompressible elastic material and we
assume a Mooney-Rivlin strain energy density function Ws in the healthy region,
expressed per unit volume:

Ŵs

(
Ce

)
=

1

2
µ1h

(
ICe
− 3
)

+
1

2
µ2h

(
IICe
− 3
)

(3.53)

where µ1h, µ2h are the material parameters of the host tissue, Fe is the elastic
deformation gradient tensor of the healthy region and Ce = J− 2

3Ce is the isochoric
part of elastic right Cauchy-Green deformation tensor.
In conclusion, the Cauchy stress tensor of the solid phase in the healthy domain
is given by:

Ts =
2

Je
Fe
∂Ŵs

∂Ce
FTe =

2

Je
FeWFTe in Ωh(t) (3.54)

with W is defined in (3.40).
In principle, the strain energy density function of the healthy tissue might be
different from the one describing the elastic behaviour of the tumour tissue, i.e.
the material parameters could not be the same.

3.2.2 Nutrients

The rate of tumour growth Γs is influenced by many different factors, but of course
the amount of nutrients plays a fundamental role, because it strongly affects the
cells capability to duplicate. Consequently, it is necessary to introduce in the
model an equation describing their evolution in the domain. We assume that
nutrients are transported by the fluid phase and they can diffuse into it. On
the other side, they are taken by the growing tumour and uniformly supplied by
the vasculature. We introduce the hypotesis that the nutrients absorbed by the
healthy tissue are immediately replaced by the vasculature, whereas the nutrients
uptake by the tumour tissue is not negligible. Following these hypothesis we can
write the mass balance equation governing the concentration of available nutrients
cn normalized with respect to the physiological concentration, so that cn ∈ [0, 1]:

∂

∂t
(φ`cn) +∇ · (φ`cnv`) = ∇ · (φ`D∇cn) + Γ`cn +Gn (3.55)
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where φ` is the volumetric fraction of the fluid phase, v` is the velocity of the same
phase, D is the Eulerian diffusion tensor and Gn is the source term which accounts
for absorption of nutrients by the tumour and increasing in concentration due to
incoming nutrients. We will discuss about D in Section 3.2.4. Using standard
calculus techniques, we can rewrite (3.55) as:

cn
∂φ`
∂t

+ φ`
∂cn
∂t

+ φ`v` · ∇cn + cn∇ · (φ`v`) = ∇ · (φ`D∇cn) + Γ`cn +Gn (3.56)

If we recall the mass balance equation of the fluid phase (3.15), (3.56) can be
rephrased as:

∂cn
∂t

+ v` · ∇cn =
1

φ`
∇ · (φ`D∇cn) +

Gn
φ`

(3.57)

In particular, we will consider the following form for the source term:

Gn = [−ζφsφ`cn + Sn (1− cn)φ`] (3.58)

This expression is valid only in the tumour domain and it describes the fact
that nutrients are consumed by the tumour with a constant rate ζ. Furthermore,
nutrients are supplied by the vasculature at a rate Sn as far as their concentration
is below the physiological value (cn < 1). The consumption and the delivery of
nutrients is also weighted with a factor φ` to mathematically assert that the
more fluid phase is available, the greater uptake or supply of nutrients can be
provided. On the other hand, in the healthy region we assume that production
and absorption of nutrients are reciprocally balanced, so in that case Gn = 0.
Considering the formulation of Gn assumed in (3.58), the final equation describing
the evolution of normalized nutrients concentration becomes:

∂cn
∂t

+ v` · ∇cn =
1

φ`
∇ · (φ`D∇cn) + [−ζφscn + Sn (1− cn)] in Ωt(t) (3.59)

∂cn
∂t

+ v` · ∇cn =
1

φ`
∇ · (φ`D∇cn) in Ωh(t) (3.60)

3.2.3 Cell net proliferation rate

We can now express the cell net proliferation rate Γs, after having introduced
the equation which describes the available nutrients. As first approximation, we
assume the following constitutive equation:

Γs = νφs (1− φs) (cn − c0)+ (3.61)

where (·)+ denotes the positive part and ν is a positive coefficient. In this constitu-
tive equation emerges that the proliferation rate depends linearly on the available
concentration of nutrients cn, provided that it is greater than a threshold c0: this
can be thought of as the hypoxia threshold, below which tumour cells stop dupli-
cating. On the other hand, as long as cn > c0, the cell phase is allowed to grow
and the proliferation is proportional to the difference between the actual nutrients
concentration and the hypoxia threshold. Moreover, the growth depends on the
fraction of cells that is already present since cell population grows by duplication.
At the end, there is a factor (1−φs), that accounts for the phenomenon of contact
inhibition, i.e. the proliferation rate is decreased as the cellular phase fills all the
available space.
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An alternative formulation consists in the introduction of a volumetric fraction
threshold φmax, as follows:

Γs = νφs (φmax − φs) (cn − c0)+ (3.62)

Of course more complicate relation exist. One example is reported in [29], which
includes explicitly the role of stresses:

Γs = νφs (φmax − φs) (cn − c0)+

(
1− δ1

(Σ)+

(Σ)+δ2

)
(3.63)

where δ1 < 1, δ2 are positive constants that account for the role of mechanical
stress on cell proliferation and Σ can be for example the isotropic part of the
Cauchy stress, namely:

Σ = −1

3
tr (Ts) (3.64)

This choice is made in order to reproduce growth inhibition due to compression,
but other forms are possible.
However, in our model, we consider the cell net proliferation rate Γs described in
(3.62).

3.2.4 Diffusion tensor D, preferential directions tensor A and
growth tensor Fg

Assuming known the initial time diffusion tensor D0, obtained through DTI imag-
ing, we can derive an expression for the diffusion tensor D, the preferential direc-
tions tensor A and the growth tensor Fg.

Diffusion tensor If we call λ1, λ2 and λ3 the eigenvalues (considered in decreas-
ing order) of D0 and e1, e2 and e3 the corresponding undeformed eigenvectors,
we can equivalently write D0 as:

D0 = λ1e1 ⊗ e1 + λ2e2 ⊗ e2 + λ3e3 ⊗ e3 (3.65)

It is important to notice that the eigenvectors e1, e2 and e3 could be supposed or-
thogonal, since D0 is symmetric. Over time, the eigenvectors will deform through
Fs, i.e. they become Fse1, Fse2 and Fse3. So we obtain the Eulerian diffusion
tensor through a push-forward of the Lagrangian D0:

D = λ1Fse1e
T
1 FTs + λ2Fse2e

T
2 FTs + λ3Fse3e

T
3 FTs = FsD0FTs (3.66)

Preferential directions tensor We can define the inital time tensor Â0 as
follows:

Â0 = a1(r)λ1e1 ⊗ e1 + a2(r)λ2e2 ⊗ e2 + a3(r)λ3e3 ⊗ e3 (3.67)

where: a1(r)
a2(r)
a3(r)

 =

r r 1
1 r 1
1 1 1

clcp
cs

 (3.68)

The parameter r ∈ R is a measure of anisotrophy (if r > 1 it gives greater weight
to the anisotrophic behaviour), while cl, cp and cs are called linear, planar and
spherical index, respectively. They are defined as follows:

cl =
λ1 − λ2

λ1 + λ2 + λ3
, cp =

2 (λ2 − λ3)

λ1 + λ2 + λ3
, cs =

3λ3

λ1 + λ2 + λ3
(3.69)
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The meaning of these coefficients can be derived from their definitions: if cl ≈ 1
there is only one preferential direction, identified by the first eigenvector of the
tensor (monodirectional growth); if cp ≈ 1 there are two dominating directions
that do not prevail over each other (planar growth); finally, if cs ≈ 1, there is no
preferential direction at all and the tensor is isotropic (spherical growth). Clearly,
it holds the condition cl + cp + cs = 1. Finally, we can define the inizial time
preferential directions tensor as:

A0 =
3Â0

tr(Â0)
(3.70)

In this way we have that tr(A0) = 3. As said before, we obtain the Eulerian
tensor through a push-forward of the Lagrangian A0:

A = a1(r)λ1Fse1e
T
1 FTs + a2(r)λ2Fse2e

T
2 FTs + a3(r)λ3Fse3e

T
3 FTs = FsA0FTs (3.71)

Anisotropic growth tensor For what concerns the growth tensor Fg, the
condition (3.50) has to hold. Remembering the equality (3.48), it becomes:

J̇g

Jg
=

Γs

φs
, where Jg = detFg (3.72)

We can express Fg in the eigenvectors basis:

Fg = g1e1 ⊗ e1 + g2e2 ⊗ e2 + g3e3 ⊗ e3 (3.73)

Now it is important to define the anisotropic evolution of g1, g2 and g3, in order
to respect the different cases of monodirectional, planar and spherical growth. We
will take into consideration the following evolution:

ġ1

g1
=

λ1a1(r)

λ1a1(r) + λ2a2(r) + λ3a3(r)

Γs

φs
, with g1(0) = 1 (3.74)

ġ2

g2
=

λ2a2(r)

λ1a1(r) + λ2a2(r) + λ3a3(r)

Γs

φs
, with g2(0) = 1 (3.75)

ġ3

g3
=

λ3a3(r)

λ1a1(r) + λ2a2(r) + λ3a3(r)

Γs

φs
, with g3(0) = 1 (3.76)

We will briefly show that the tensor (3.73), associated with the evolutions (3.74),
(3.75) and (3.76), satisfies (3.72). Since the determinant is the product of the
eigenvalues, we have:

Jg = g1g2g3 (3.77)

J̇g = ġ1g2g3 + g1ġ2g3 + g1g2ġ3 (3.78)

By replacing (3.77) and (3.78) in (3.72), we obtain:

ġ1

g1
+
ġ2

g2
+
ġ3

g3
=

Γs

φs
(3.79)

and remembering (3.74), (3.75) and (3.76), we have that (3.72) holds.
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3.2.5 The complete Eulerian model

In the following, we collect together the equations governing the evolution of the
system that we have developed in the previous sections.
The set of equations in the domain Ωt(t) is then:

∂φs

∂t
+∇ · (φsvs) = Γs (3.80a)

∂φ`
∂t

+∇ · (φ`v`) = −Γs (3.80b)

φ` + φs = 1 (3.80c)
−∇p+∇ · Ts = 0 (3.80d)

v` = vs −
K (φ`)

µφ`
∇p (3.80e)

ḞsF−1
s = ∇vs (3.80f)

∂cn
∂t

+ v` · ∇cn =
1

φ`
∇ · (φ`D∇cn) + [−ζφscn + Sn (1− cn)] (3.80g)

where

Fe = FsF−1
g (3.81a)

Wsn

(
Ce

)
=

[
1

2
µ1t

(
ICe
− 3
)

+
1

2
µ2t

(
IICe
− 3
)]

(3.81b)

Ts = 2J−1
e FeWFTe (3.81c)

K(φ`) = K(φ`)A (3.81d)
Γs = νφs (φmax − φs) (cn − c0)+ (3.81e)

Furthermore, D, A and Fg are defined as in Section 3.2.4, with the evolution
for g1, g2 and g3 presented in (3.74), (3.75) and (3.76). The tensor W has the
expression reported in (3.40). Furthermore, we will consider K(φ`) as a constant,
i.e. K(φ`) = kp.
On the other hand, the set of equations in the domain Ωh(t) is:

∂φs

∂t
+∇ · (φsvs) = 0 (3.82a)

∂φ`
∂t

+∇ · (φ`v`) = 0 (3.82b)

φ` + φs = 1 (3.82c)
−∇p+∇ · Ts = 0 (3.82d)

v` = vs −
K (φ`)

µφ`
∇p (3.82e)

ḞsF−1
s = ∇vs (3.82f)

∂cn
∂t

+ v` · ∇cn =
1

φ`
∇ · (φ`D∇cn) (3.82g)

The constitutive assumptions (3.81) still hold in the healthy domain, remembering
that in the healthy region we assume Fg = I, since there is no growth there, and
we possibly change the material parameters by considering µ1h and µ2h.
The system is closed, since it has 22 scalar unknowns (the volumetric fractions φs
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and φ`, the nine components of the deformation gradient Fs, the three components
of the velocities vs and v`, the scalar fields g1, g2, g3, p and cn) in 22 scalar
equations. Once the system has been solved, we can obtain the displacement field
through the relation (2.4):

F = I + Gradu (3.83)

Interface conditions Since the material interface ∂Ωt(t) between the tumour
and the healthy tissue moves with the tumour cells with velocity vs|∂Ωt(t), we
have to satisfy the following interface conditions on the two sides of the boundary
in order to guarantee the continuity of the displacement, stress and flux at the
interface:

Jvs · nK|∂Ωt(t) = 0 (3.84a)

Jφ` (v` − vs) · ndΣK|∂Ωt(t) = 0 (3.84b)

JpK|∂Ωt(t) = 0 (3.84c)

JcnK|∂Ωt(t) = 0 (3.84d)

JTNdΣK|∂Ωt(t) = 0 (3.84e)

J(φ`cn (v` − vs)− φ`D∇cn) · ndΣK|∂Ωt(t) = 0 (3.84f)

Furthermore, it is physically reasonable to assume not only the continuity of
the velocity vs along the normal direction, but that there are not breakage and
rotations between the tumour and the healthy tissue. This hypothesis leads to
the fact that vs is supposed continuos also along the unit tangential component
τ :

Jvs · τ K|∂Ωt(t) = 0 (3.85)

This assumption leads us to say that the displacement field us is continuous along
∂Ωt(t). This condition does not imply that also Fs and Js are continuous, but that
the areas deform in the same way at the interface. Remembering the relation:

ndΣ = JsF−T
s NdΣ∗

this conditions means that dΣ
(1)
∗ and dΣ

(2)
∗ can be imposed equal in the following

equality at the interface:

J (1)
s F−1(1)

s NdΣ
(1)
∗ = J (2)

s F−1(2)
s NdΣ

(2)
∗

and this imply:

J (1)
s F−T (1)

s N = J (2)
s F−T (2)

s N −→ JJsF−T
s NK|∂Ω∗

t
= 0 (3.86)

At the end, removing dΣ in (3.84b), (3.84e) and (3.84f) for the assumption made
above, the interface conditions that we impose are the following:

JusK|∂Ωt(t) = 0 (3.87a)

Jφ` (v` − vs) · nK|∂Ωt(t) = 0 (3.87b)

JpK|∂Ωt(t) = 0 (3.87c)

JcnK|∂Ωt(t) = 0 (3.87d)

JTsNK|∂Ωt(t) = 0 (3.87e)

J(φ`cn (v` − vs)− φ`D∇cn) · nK|∂Ωt(t) = 0 (3.87f)
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where n denotes the unit normal vector to ∂Ωt(t) pointing outwards while τ
represents the unit tangential vector.
We underline that the continuity of the effective stress Ts (3.87e) follows from the
continuity of the pressure across the surface (3.87c) and the continuity across the
interface of the total stress T = −pI + Ts (3.84e).

3.3 Lagrangian formulation of the model

Our aim is to rewrite the Eulerian equations, derived in the previous section,
using a Lagrangian description of motion. In this way the quantities of interest
are considered in terms of material coordinates. We will denote by Ω∗

t the reference
configuration of the tumour. Moreover, we will use a superscript ∗ to denote any
material element. We recall the equalities (2.2) and (2.3) that we have seen in
Section 2.1:

dΣ = JsF−T
s dΣ∗ (3.88a)

dV = JsdV∗ (3.88b)

Moreover,we will use the symbols ∇ and ∇· to denote the spatial gradient and
spatial divergence, respectively, while Grad and Div will refer to the material
gradient and divergence.

Equation 3.80a We integrate equation (3.80a) over the tumour domain Ω∗
t and

we obtain: ∫
Ωt(t)

[
∂φs

∂t
+∇ · (φsvs)

]
dV =

∫
Ωt(t)

ΓsdV (3.89)

Using Reynolds’ transport theorem (2.5), which we have reported in Section 2.1,
and recalling that the material interface ∂Ωt moves with the tumour cells, we
obtain:

d

dt

∫
Ωt(t)

φsdV =

∫
Ωt(t)

ΓsdV (3.90)

Then we write it in the reference configuration using (3.88b):

d

dt

∫
Ω∗

t

φsJsdV
∗ =

∫
Ω∗

t

ΓsJsdV
∗ (3.91)

which locally becomes:
˙Jsφs = JsΓs (3.92)

Equation 3.80b For what concerns equation (3.80b), integrating over the tu-
mour domain leads to:∫

Ωt(t)

[∂tφ` +∇ · (φ`v`)] dV = −
∫

Ωt(t)

ΓsdV (3.93)

Since the interface does not move with the fluid, we have to make use of the
generalized Reynolds’ transport theorem (2.6):

d

dt

∫
Ωt(t)

φ`dV −
∫
∂Ωt(t)

φ` (vs − v`) · dΣ = −
∫

Ωt(t)

ΓsdV (3.94)
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Using (3.88a) and (3.88b), we obtain:

d

dt

∫
Ω∗

t

φ`JsdV
∗ −

∫
∂Ω∗

t

φ` (vs − v`) · JsF−T
s dΣ∗ = −

∫
Ω∗

t

ΓsJsdV
∗ (3.95)

Using the divergence theorem:

d

dt

∫
Ω∗

t

φ`JsdV
∗ −

∫
Ω∗

t

Div
[
Jsφ`F−1

s (vs − v`)
]
dV ∗ = −

∫
Ω∗

t

ΓsJsdV
∗ (3.96)

which locally becomes:

˙Jsφ` + Div
[
Jsφ`F−1

s (v` − vs)
]

= −ΓsJs (3.97)

Equation 3.80d As regards the momentum balance of the solid phase, if we
integrate (3.80d) over the tumour domain and we remember that T = −pI + Ts

is the Cauchy stress tensor of the mixture, we obtain:∫
Ωt(t)

∇ · TdV = 0 (3.98)

Then we use the divergence theorem and we write the integral on the reference
configuration: ∫

∂Ω∗
t

JsTF−T
s dΣ∗ = 0 (3.99)

The integrand is know as the first Piola-Kirchhoff stress tensor P := JsTFTs in
continuum mechanics. Substituting P and using again the divergence theorem,
we obtain: ∫

Ω∗
t

DivPdV ∗ = 0 (3.100)

The local balance is then:
DivP = 0 (3.101)

Equation 3.80e In order to rewrite (3.80e) using the Lagrangian formulation,
we integrate over a surface:∫

S
φ` (v` − vs) · dΣ = −

∫
S

K
µ
∇p · dΣ (3.102)

Moving the integrals to the reference configuration, we get:∫
S∗

[
K
µ
F−T

s Grad p+ φ` (v` − vs)

]
· JsF−T

s dΣ∗ = 0 (3.103)

Let us assume that all the involved quantities are regular, we have then the local
form:

JsF−1
s

K
µ
F−T

s Grad p+ φ`JsF−1
s (v` − vs) = 0 (3.104)

which is equivalent to:

F−1
s (v` − vs) = − 1

µφ`
F−1

s KF−T
s Grad p (3.105)

49



and remembering (3.71), which leads to K = FsK0FTs where K0 = K(φ`)A0, we
have:

F−1
s (v` − vs) = − 1

µφ`
K0 Grad p (3.106)

Finally, if we multiply both sides by Fs, we obtain:

v` − vs = −Fs
K0

µφ`
Grad p (3.107)

Equation 3.80g If we consider now nutrients balance equation and we integrate
it over the tumour domain, recalling the closed mixture assumption, we obtain:∫

Ωt(t)

[
∂ (φ`cn)

∂t
+∇ · (φ`cnv`)

]
dV =∫

Ωt(t)

∇ · (φ`D∇cn) dV −
∫

Ωt(t)

(Γscn −Gn) dV (3.108)

Then we use Reynolds transport theorem and Gauss theorem:

d

dt

∫
Ωt(t)

φ`cndV −
∫
∂Ωt(t)

φ`cn (vs − v`) · dΣ =∫
∂Ωt(t)

φ`D∇cn · dΣ−
∫

Ωt(t)

(Γscn −Gn) dV (3.109)

Rewriting the integrals on the reference configuration:

d

dt

∫
Ω∗

t

φ`cnJsdV
∗ −

∫
∂Ω∗

t

φ`
[
cn (vs − v`) + DF−T

s Grad cn
]
· JsF−T

s dΣ∗ =

−
∫

Ω∗
t

(ΓscnJs −GnJs) dV
∗ (3.110)

and in this way the local form becomes:

˙Jsφ`cn −Div
[
Jsφ`cnF−1

s (vs − v`)
]
−Div

[
Jsφ`F−1

s DF−T
s Grad cn

]
=

− ΓscnJs +GnJs (3.111)

If we remember (3.66), we can rewrite it as:

˙Jsφ`cn −Div
[
Jsφ`cnF−1

s (vs − v`)
]
−Div [Jsφ`D0 Grad cn] =

− ΓscnJs +GnJs (3.112)

In order to rephrase it, we recall the mass balance of the fluid phase (3.97) and
so it becomes:

Jsφ`ċn + Jsφ`F−1
s (v` − vs) ·Grad cn −Div [Jsφ`D0 Grad cn] = GnJs (3.113)

which can be rephrased as:

ċn + F−1
s (v` − vs) ·Grad cn −

1

Jsφ`
Div [Jsφ`D0 Grad cn] =

Gn
φ`

(3.114)
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First Piola-Kirchhoff stress tensor Ps To close the mathematical problem,
we need to prescribe a constitutive equation for the elastic component of the first
Piola-Kirchhoff stress tensor. We have:

Ps = JsTsF−T
s

= 2JsJ
−1
e

(
Fe
∂Ŵsn

∂Ce
FTe

)
F−T

s

= 2JgJeJ
−1
e Fe

∂Ŵsn

∂Ce
FTe (FeFg)−T

= 2JgFe
∂Ŵsn

∂Ce

(
(FeFg)−1 Fe

)T
= 2JgFe

∂Ŵsn

∂Ce
F−T

g

(3.115)

So, at the end, we have:

Ps = 2JgFsF−1
g

∂Ŵsn

∂Ce
F−T

g = 2JgFsF−1
g WF−T

g (3.116)

where the tensor W has the expression reported in (3.40).

3.3.1 The complete Lagrangian model

In conclusion, the set of equations in Lagrangian form on the tumour reference
domain Ω∗

t is:

˙Jsφs = JsΓs (3.117a)
˙Jsφ` + Div

[
Jsφ`F−1

s (v` − vs)
]

= −ΓsJs (3.117b)
φs + φ` = 1 (3.117c)
DivP = 0 (3.117d)

v` = vs − Fs
K0

µφ`
Grad p (3.117e)

ċn + F−1
s (v` − vs) ·Grad cn −

1

Jsφ`
Div [Jsφ`D0 Grad cn] =

Gn
φ`

(3.117f)

where

Fe = FsF−1
g (3.118a)

Ŵsn

(
Ce

)
=

1

2
µ1t

(
ICe
− 3
)

+
1

2
µ2t

(
IICe
− 3
)

(3.118b)

P = −pI + Ps, Ps = 2JgFeWF−T
g (3.118c)

K0 = K (φ`)A0 (3.118d)
Γs = νφs (φmax − φs) (cn − c0)+ (3.118e)
Gn = −ζφ`φscn + Snφ` (1− cn) (3.118f)

and D0, A0 and Fg are defined as in Section 3.2.4, W is defined as in(3.40) and the
evolution of g1, g2 and g3 is presented in (3.74), (3.75) and (3.76). Furthermore,
we assume a constant expression for K(φ`), i.e. K(φ`) = kp.
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A similar reasoning can be used to derive the Lagrangian equations in the healthy
tissue reference domain Ω∗

h, starting from equations (3.82). At the end, we end
up with the following set of equations in the healthy domain:

˙Jsφs = 0 (3.119a)
˙Jsφ` + Div

[
Jsφ`F−1

s (v` − vs)
]

= 0 (3.119b)
φs + φ` = 1 (3.119c)
DivP = 0 (3.119d)

v` = vs − Fs
K0

µφ`
Grad p (3.119e)

ċn + F−1
s (v` − vs) ·Grad cn −

1

Jsφ`
Div [Jsφ`D0 Grad cn] = 0 (3.119f)

The constitutive assumptions (3.118) still hold, remembering that in the healthy
region we assume Fg = I, since there is no growth there, and we possibly change
the material parameters in the constitutive equation, by considering µ1h and µ2h:

Wsn

(
Ce

)
=

[
1

2
µ1h

(
ICe
− 3
)

+
1

2
µ2h

(
IICe
− 3
)]

(3.120)

The effective unknowns of the problem are the volumetric fractions φs and φ`, the
scalar fields g1, g2, g3, cn and p, the displacement field of the solid phase us and
the fluid velocity v`.

Interface conditions We need to provide appropriate conditions at the inter-
face between the tumour and the host tissue. So, starting from (3.84), we have
to consider them using a Lagrangian description of the motion. It is fundamental
to remember:

n = F−T
s N (3.121a)

ndΣ = JsF−T
s NdΣ∗ (3.121b)

dV = JsdV∗ (3.121c)

We have to integrate (3.84) and to apply the formulas (3.121), considering N to
be the unit normal field pointing outward the tumour reference domain. In this
way we obtain the following set of interface conditions:

Jvs ·
F−T

s N

|F−T
s N|

K|∂Ω∗
t

= 0 (3.122a)

Jφ`JsF−1
s (vs − v`) ·NdΣ∗K|∂Ω∗

t
= 0 (3.122b)

J
(
−JspF−T

s + Ps

)
NdΣ∗K|∂Ω∗

t
= 0 (3.122c)

JpK|∂Ω∗
t

= 0 (3.122d)

JcnK|∂Ω∗
t

= 0 (3.122e)

JJsφ`cnF−1
s (vs − v`) ·NdΣ∗ + Jsφ`D0 Grad cn ·NdΣ∗K|∂Ω∗

t
= 0 (3.122f)

Remembering the further assumption (3.85), we obtained that the displacement
field is continuous. This condition leads us to (3.86). In this way, using (3.86) and
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the Darcy’s law (3.117e), the set of interface conditions (3.122) can be rephrased
as:

JJsF−T
s NK|∂Ω∗

t
= 0 (3.123a)

JJsK0 Grad p ·NK|∂Ω∗
t

= 0 (3.123b)

JPsNK|∂Ω∗
t

= 0 (3.123c)

JpK|∂Ω∗
t

= 0 (3.123d)

JcnK|∂Ω∗
t

= 0 (3.123e)

JJsφ`cnF−1
s (vs − v`) ·N + Jsφ`D0 Grad cn ·NK|∂Ω∗

t
= 0 (3.123f)

We can modify (3.123f) remembering the Darcy’s law (3.117e). In fact, by sub-
stituting, it becomes:

J−Jscn
K0

µ
Grad p ·N + Jsφ`D0 Grad cn ·NK|∂Ω∗

t
= 0

and by (3.123b) and (3.123e), it is possible to conclude that (3.123f) can be
rephrased as:

JJsφ`D0 Grad cn ·NK|∂Ω∗
t

= 0 (3.123f)
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Chapter 4

Numerical implementation

After having developed the mechanical model for Glioblastoma growth, the aim
is to solve it through numerical simulation. In order to do this, we try to obtain
a weak formulation of the Lagrangian model. Finally, we discretize in time and
space the weak formulation and we prescribe boundary and initial conditions.

4.1 Summary of the Lagrangian model

In this section we simplify the Lagrangian model through some algebraic manip-
ulation and we prescribe boundary and initial conditions. First of all, we sum
up (3.117a) and (3.117b). Using the saturation condition and the closed mixture
assumption, and substituting (3.117e), we obtain:

J̇s = Div

[
Js

K0

µ
Grad p

]
(4.1)

We obtain the same result in the healthy domain, by summing (3.119a) and
(3.119b).
Then, if we recall the definition of φsn and the fact that it is a constant quantity,
we can rewrite the first equation of the model (3.117a) as:

Jsφs = Jgφsn ⇒ φs =
Jg

Js
φsn (4.2)

As regards the equation (3.117d), concerning the first Piola-Kirchhoff stress tensor
P, we remember that:

P = JsTF−T
s = −JspF−T

s + Ps (4.3)

where Ps is the constitutive elastic part of the first Piola-Kirchhoff stress tensor.
It follows that (3.117d) becomes:

Div
[
−JspF−T

s + Ps

]
= 0 (4.4)

Lastly, we can reformulate the equation for the nutrients (3.117f) using Darcy’s
Law in the reference configuration as follows:

Jsφ`ċn − Js
K0

µ
Grad p ·Grad cn −Div [Jsφ`D0 Grad cn] = JsGn (4.5)
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where Gn is equal to zero in the healthy domain, as defined in (3.58).
To sum up, the equations we have to solve in the reference domain Ω∗ = Ω∗

t ∪Ω∗
h

are:

J̇s = Div

[
Js

K0

µ
Grad p

]
(4.6a)

Jsφs = Jgφsn (4.6b)
Fs = I + Grad us (4.6c)
φs + φ` = 1 (4.6d)

Div
[
−JspF−T

s + Ps

]
= 0 (4.6e)

Jsφ`ċn − Js
K0

µ
Grad p ·Grad cn −Div [Jsφ`D0 Grad cn] = JsGn (4.6f)

remembering that we take Jg = 1 and J̇g = 0 in the healthy region Ω∗
h, while the

evolution of g1, g2 and g3 for the tumour region Ω∗
t is presented in (3.74), (3.75)

and (3.76).
This system allows to determine all the unknown fields, namely, the displacement
field us(X, t) and the scalar fields p(X, t), φs(X, t), φ`(X, t), g1(t), g2(t), g3(t)
and cn(X, t), ∀X ∈ Ω∗ = Ω∗

t ∪Ω∗
t and ∀t ∈ (0, T ), if we provide proper initial and

boundary conditions.

Boundary conditions Since in our simulations for Glioblastoma growth in
the brain we will deal with the cranial skull as the boundary of our domain, we
consider the following set of boundary conditions:

us = 0 on ∂Ω∗
h\∂Ω∗

t , ∀t ∈ (0, T ) (4.7a)
p = 0 on ∂Ω∗

h\∂Ω∗
t , ∀t ∈ (0, T ) (4.7b)

cn = 1 on ∂Ω∗
h\∂Ω∗

t , ∀t ∈ (0, T ) (4.7c)

We impose a null Dirichlet boundary condition for the displacement us and for
the pressure p, while for the nutrients concentration we suppose that the brain
boundary is sufficiently far from the tumour and so we can assume that on the
boundary the oxygen concentration is maintained constant at the physiological
value of 1 by the vasculature.

Initial conditions At the beginning of the GBM growth process we assume
that the displacement and the pressure are equal to zero. Furthermore, we take
the scalar fields g1, g2 and g3, related to the growth component of the deforma-
tion gradient, as equal to 1 everywhere in the domain at t = 0. We also assume
that the volumetric fraction of the cell phase is initially equal to the constant
volumetric fraction in the natural state φsn. Finally, in order to obtain the ini-
tial nutrients concentration c0

n(X), we solve the steady version of the nutrients
governing equation, neglecting advection:

−Div [Jsφ`D0 Grad cn] = JsGn (4.8)
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In conclusion, we have the following set of initial conditions:

us(X, 0) = 0 ∀X ∈ Ω∗ (4.9a)
p(X, 0) = 0 ∀X ∈ Ω∗ (4.9b)
g1(X, 0) = 1, g2(X, 0) = 1, g3(X, 0) = 1 ∀X ∈ Ω∗ (4.9c)
φs(X, 0) = φsn ∀X ∈ Ω∗ (4.9d)

cn(X, 0) = c0
n(X) ∀X ∈ Ω∗ (4.9e)

4.2 Weak formulation of the Lagrangian model

The weak form of a time-independent differential problem is:

find u ∈ V : a(u, v) = F (v) ∀v ∈ V (4.10)

where V is a proper functional space, a is a bilinear form and F is a functional.
In the same way, the weak form of a time-dependent differential problem can be
written as:

find u(t) ∈ V :

(
∂u

∂t
(t), v

)
+ a(u(t), v) = F (v) ∀v ∈ V (4.11)

We will derive now a weak formulation of our Lagrangian model. We first write
the weak form in each domain Ω∗

t and Ω∗
h separately and then we extend the

weak form to the whole domain Ω∗ = Ω∗
t ∪ Ω∗

h. It is important to remark that
∂Ω∗

h = ∂Ω∗
t ∪ ∂Ω∗

out is the boundary of the healthy domain that is composed by
the interface with the tumour ∂Ω∗

t and by the external boundary corresponding
to the cranial skull Ω∗

out. At this point it is necessary to define the test functions
space, that meets the Dirichlet conditions we impose on the external boundary
for p and cn:

H1
0,∂Ω∗

out
(Ω∗) =

{
q ∈ H1(Ω∗) : q = 0 on ∂Ω∗

out

}
(4.12)

and the vector test functions space that that meets the Dirichlet conditions we
impose on the external boundary for us:

H1
0,∂Ω∗

out
(Ω∗) =

{
q ∈ H1(Ω∗) : q = 0 on ∂Ω∗

out

}
(4.13)

In this way the weak form of our differential problem will take the form:

a(u, q) = (f, q) ∀q ∈ H1
0,∂Ω∗

out
(Ω∗) (4.14)

Equation 4.6a Wemultiply each side of (4.6a) by a test function qt ∈ H1
0,∂Ω∗

out
(Ω∗)

and then we integrate the whole equation over the Lagrangian tumour domain:∫
Ω∗

t

J̇sqtdV
∗ =

∫
Ω∗

t

Div

[
Js

K0

µ
Grad p

]
qtdV

∗ (4.15)

Integrating by parts the second order derivatives:∫
Ω∗

t

J̇sqtdV
∗ = −

∫
Ω∗

t

Grad qt · Js
K0

µ
Grad p dV ∗ +

∫
∂Ω∗

t

qt

µ
JsK0 Grad p ·NdΣ∗

(4.16)
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In the healthy domain we take as test function qh ∈ H1
0,∂Ω∗

out
(Ω∗) and we obtain:∫

Ω∗
h

J̇sqhdV
∗ = −

∫
Ω∗

h

Grad qh · Js
K0

µ
Grad p dV ∗ +

∫
∂Ω∗

h

qh

µ
JsK0 Grad p ·NdΣ∗

(4.17)
Since the test function qh is required to vanish on the boundary ∂Ω∗

out because it
belongs to H1

0,∂Ω∗
out

(Ω∗):∫
Ω∗

h

J̇sqhdV
∗ = −

∫
Ω∗

h

Grad qh · Js
K0

µ
Grad p dV ∗ +

∫
∂Ω∗

t

qh

µ
JsK0 Grad p ·NdΣ∗

(4.18)
where N is the normal vector to the interface pointing outwards of the tumour
domain Ω∗

t . If we sum up (4.16) and (4.18) and we take q ∈ H1
0,∂Ω∗

out
(Ω∗), we

obtain:∫
Ω∗
J̇sqdV

∗ = −
∫

Ω∗
Grad q · Js

K0

µ
Grad p dV ∗ −

∫
∂Ω∗

t

J
q

µ
JsK0 Grad pK ·NdΣ∗

(4.19)
that thanks to the interface condition (3.123b) can be rephrased as:∫

Ω∗
J̇sqdV

∗ = −
∫

Ω∗
Grad q · Js

K0

µ
Grad p dV ∗ −

∫
∂Ω∗

t

Js

µ
K0 Grad pJqK ·NdΣ∗

(4.20)
Furthermore, since the test function q belongs to H1

0,∂Ω∗
out

(Ω∗) and so it is continu-
ous inside the domain, we can rephrase the weak formulation of the first equation
as: ∫

Ω∗
J̇sqdV

∗ = −
∫

Ω∗
Grad q · Js

K0

µ
Grad p dV ∗ (4.21)

for all test functions q ∈ H1
0,∂Ω∗

out
(Ω∗).

We introduce now a discretization of the time using the implicit Euler method:∫
Ω∗

Jk+1
s

(
uk+1

s

)
− Jks

(
uks
)

∆t
q dV ∗ =

−
∫

Ω∗
Grad q ·

Jk+1
s

(
uk+1

s

)
(K0)k+1

µ
Grad

(
pk+1

)
dV ∗ (4.22)

where, given N time steps on the interval (0, T ), ∆t := T
N is the time step and

we use a superscript k to denote the value of a quantity at time tk = k∆t.
In order to simplify the notation, we will drop the superscript k + 1 to denote
the value of a quantity of interest at the next time step. Then, in order to write
the weak formulation properly, we multiply both sides by ∆t, isolating on the
right-hand side all terms that involve only the test functions:∫

Ω∗
Js (us) q dV

∗ + ∆t

∫
Ω∗

Grad q · Js (us)K0

µ
Grad p dV ∗ =

∫
Ω∗
Jks (uks )q dV ∗

(4.23)

Equation 4.6e Considering (4.6e), we multiply it by a vector test function
qt ∈ H1

0,∂Ω∗
out

(Ω∗) and then we integrate over the tumour reference domain:∫
Ω∗

t

Div
[
−JspF−T

s + Ps

]
· qt dV

∗ = 0 (4.24)
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Using tensor integration by parts, we get:

−
∫

Ω∗
t

(
−JspF−T

s + Ps

)
: Grad qtdV

∗+

∫
∂Ω∗

t

(
−JspF−T

s + Ps

)
N·qtdΣ∗ = 0 (4.25)

Doing the same in the healthy domain and taking qh ∈ H1
0,∂Ω∗

out
(Ω∗), the result

is:

−
∫

Ω∗
h

(
−JspF−T

s + Ps

)
: Grad qhdV

∗ −
∫
∂Ω∗

h

(
−JspF−T

s + Ps

)
N · qhdΣ∗ = 0

(4.26)
As before, since the test function qh is required to vanish on ∂Ω∗

out:

−
∫

Ω∗
h

(
−JspF−T

s + Ps

)
: Grad qhdV

∗ −
∫
∂Ω∗

t

(
−JspF−T

s + Ps

)
N · qhdΣ∗ = 0

(4.27)
Summing the two equations (4.27) and (4.25) and being q ∈ H1

0,∂Ω∗
out

(Ω∗), the
weak formulation on the whole domain is:

−
∫

Ω∗

(
−JspF−T

s + Ps

)
: Grad q dV ∗ −

∫
∂Ω∗

t

J
(
−JspF−T

s + Ps

)
N · qKdΣ∗ = 0

(4.28)
Looking at the interface conditions (3.123a), (3.123c) and (3.123d), it becomes:

−
∫

Ω∗

(
−JspF−T

s + Ps

)
: Grad q dV ∗ −

∫
∂Ω∗

t

(
−JspF−T

s + Ps

)
N · JqKdΣ∗ = 0

(4.29)
Furthermore, if we remember that q ∈ H1

0,∂Ω∗
out

(Ω∗), the jump vanishes and we
obtain:

−
∫

Ω∗

(
−JspF−T

s + Ps

)
: Grad q dV ∗ = 0 (4.30)

Union of the last two variational problems The variational problems (4.21)
and (4.30) are nonlinear and coupled: in view of the numerical implementation,
it is convenient to rewrite them into a single nonlinear variational problem by
summing them. If we do that, we obtain a discrete-time variational problem for
the displacement and the pressure, i.e. find (us, p) ∈ H1 (Ω∗) × H1 (Ω∗) such
that:

(Js (us) , qp) + ∆t

(
Grad qp, Js(us)

K0

µ
Grad p

)
+

− (P (us, p) ,Grad qu) =
(
Jks (uks ), qp

)
(4.31)

Equation 4.6f We need a weak formulation for the equation of the nutrients.
In order to do that, we multiply the equation for a test function qt ∈ H1

0,∂Ω∗
out

(Ω∗):

∫
Ω∗
t

Jsφ`ċnqtdV
∗ −

∫
Ω∗

t

Js
K0

µ
Grad p ·Grad cnqtdV

∗+

−
∫

Ω∗
t

Div [φ`JsD0 Grad cn] qtdV
∗ =

∫
Ω∗

t

JsGnqtdV
∗ (4.32)
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Integrating by parts, we obtain:∫
Ω∗

t

(
Jsφ`ċn − Js

K0

µ
Grad p ·Grad cn

)
qtdV

∗+

∫
Ω∗

t

φ` Grad qt·JsD0 Grad cndV
∗+

−
∫
∂Ω∗

t

qtφ`JsD0 Grad cn ·NdΣ∗ =

∫
Ω∗

t

JsGnqtdV
∗ (4.33)

We follow the same approach on the healthy domain and then we sum the two
equations. Taking q ∈ H1

0,∂Ω∗
out

(Ω∗), the test function vanishes on that boundary
and we finally have:∫

Ω∗

(
Jsφ`ċn − Js

K0

µ
Grad p ·Grad cn

)
qdV ∗+

∫
Ω∗
φ` Grad q·JsD0 Grad cndV

∗+

+

∫
∂Ω∗

t

Jqφ`JsD0 Grad cnK ·NdΣ∗ =

∫
Ω∗
JsGnqdV

∗ (4.34)

Also in this case, recalling the interface condition (3.123f), the previous formula-
tion becomes:∫

Ω∗

(
Jsφ`ċn − Js

K0

µ
Grad p ·Grad cn

)
qdV ∗+

∫
Ω∗
φ` Grad q·JsD0 Grad cndV

∗+

+

∫
∂Ω∗

t

φ`JsD0 Grad cnJqK ·NdΣ∗ =

∫
Ω∗
JsGnqdV

∗ (4.35)

Since q ∈ H1
0,∂Ω∗

out
(Ω∗) it becomes:

∫
Ω∗

(
Jsφ`ċn − Js

K0

µ
Grad p ·Grad cn

)
qdV ∗+

∫
Ω∗
φ` Grad q·JsD0 Grad cndV

∗ =

=

∫
Ω∗
JsGnqdV

∗ (4.36)

It is now important to introduce a time discretization of the previous equation.
We use again the implicit Euler method, which leads to:

∫
Ω∗

[
Jk+1

s

ck+1
n − ckn

∆t
−Jk+1

s

(K0)k+1

µφk+1
`

Grad
(
pk+1

)
·Grad

(
ck+1
n

)]
qdV ∗+

+

∫
Ω∗

Grad q · Jk+1
s (D0)k+1 Grad

(
ck+1
n

)
dV ∗ =

∫
Ω∗
Jk+1

s

Gk+1
n

φk+1
`

qdV ∗ (4.37)

Multiplying by ∆t, reordering the terms and dropping the superscript k + 1 we
obtain that for every q ∈ H1 (Ω∗):∫

Ω∗

[
Jscnq −∆tJs

K0

µφ`
Grad p ·Grad cnq + ∆tGrad q · JsD0 Grad cn

]
dV ∗ =

=

∫
Ω∗

(
Jsc

k
n + ∆tJs

Gn
φ`

)
qdV ∗ (4.38)

We stress that, given the displacement us and the pressure p obtained by solving
(4.31), this one is a linear variational problem to be solved with respect to the
unknown cn.
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Initial conditions for nutrients It remains to derive the variational formu-
lazion of the equation which gives us the initial nutrients concentration c0

n(X),
that means equation (4.8). Proceeding as made above, with identical passages,
we obtain: ∫

Ω∗
φ` Grad q · JsD0 Grad cndV

∗ =

∫
Ω∗
JsGnqdV

∗ (4.39)

4.3 Discrete formulation of the continuous variational
problems

We need now to introduce a spatially discrete formulation of the continuous varia-
tional problems (4.31) and (4.38). We make use of linear tetrahedron P1 elements,
so we introduce the following finite element spaces:

Vh :=
{
qh ∈

[
C0
(
Ω∗
)]3

: qh|K ∈ [P1(K)]3 ∀K ∈ Th
}
⊂H1 (Ω∗) (4.40)

Wh :=
{
qh ∈ C0

(
Ω∗
)

: qh|K ∈ P1(K) ∀K ∈ Th
}
⊂ H1 (Ω∗) (4.41)

where Th is a decomposition of the domain Ω∗ into tetrahedra K conforming to
the tumour boundary.
Furthermore, we define the discrete test functions spaces:

V h := {qh ∈ Vh : qh = 0 on ∂Ω∗
out} (4.42)

W h := {qh ∈Wh : qh = 0 on ∂Ω∗
out} (4.43)

Then, we can define the full discrete variational problem: for k = 1, ..., N ,
given

(
ukh, p

k
h, c

k
h

)
∈ Vh ×Wh ×Wh find (uh, ph, ch) ∈ Vh ×Wh ×Wh such that

∀(vh, wh, qh) ∈ V h ×W h ×W h it holds:

(Js (uh) , wh) + ∆t

(
Gradwh, Js (uh)

K0

µ
Grad ph

)
+

− (P (uh, ph) ,Gradvh) =
(
Jks

(
ukh

)
, wh

) (4.44)

(Js (uh) ch, qh)−∆t

(
Js (uh)

K0

µφ`
Grad ph ·Grad ch, qh

)
+

∆t (Grad qh, Js (uh)D0 Grad ch) =
(
Js (uh) ckh, qh

)
+ ∆t

(
Js (uh)

Gn (ch)

φ`
, qh

)
(4.45)

where we we have denoted by (·, ·) the standard scalar product on L2(Ω∗).

4.4 Discretization of the other equations involved

The last step is to introduce a proper discretization of the other equations in-
volved, namely the ordinary differential equation for g1 (3.74), g2 (3.75) and g3

(3.76), the saturation condition (4.6d) and the relation (4.6b).
Regarding (3.74), it can be easily discretized in time using a semi-implicit Euler
method, made only in the cells which belongs to the tumour domain Ω∗

t :

gk+1
1 − gk1

∆t
= gk+1

1

λ1a1(r)

λ1a1(r) + λ2a2(r) + λ3a3(r)

Γk+1
s

φk+1
s

(4.46)
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which can be immediately rephrased as:

gk+1
1 = gk1

(
1−∆t

λ1a1(r)

λ1a1(r) + λ2a2(r) + λ3a3(r)

Γk+1
s

φk+1
s

)−1

(4.47)

Similarly for (3.75) and (3.76):

gk+1
2 = gk2

(
1−∆t

λ2a2(r)

λ1a1(r) + λ2a2(r) + λ3a3(r)

Γk+1
s

φk+1
s

)−1

(4.48)

gk+1
3 = gk3

(
1−∆t

λ3a3(r)

λ1a1(r) + λ2a2(r) + λ3a3(r)

Γk+1
s

φk+1
s

)−1

(4.49)

Equation (4.6b) is discretized as follows:

Jk+1
s φk+1

s = Jk+1
g φsn ⇒ φk+1

s =
Jk+1

g

Jk+1
s

φsn (4.50)

Once we have computed φk+1
s , we can derive φk+1

` using the saturation condition:

φk+1
` = 1− φk+1

s (4.51)

It is important to underline that g1, g2, g3, φs and φ` are approximated by
piecewise-constant functions.

4.5 Parameters estimation

We have now to assess the values of the parameters that appear in the system. It
is important to underline that the choice of the parameters is fundamental to have
a realistic and reliable outcome. On the other hand, when working in the field
of mathematical biomedicine, accurate estimations of the parameters are often
difficult to obtain. Since we cannot conduce experiments, we review the literature
in order to assign a value, or at least a range of values, to the parameters intro-
duced in our model. We will use, when possible, the same values proposed in [63].

• Firstly, we deal with the material parameters µ1h and µ2h that appear in the
Mooney-Rivlin energy density for healthy tissue. In the article of Balbi et al.
[72], they consider a Mooney-Rivlin-type energy, for which they propose as a
mean value for the shear modulus of µ = 2(µ1h+µ2h) = 900±312 Pa and for
the second Mooney–Rivlin parameter µ2h = 297±189 Pa. Since we will deal
with units of the order of millimeters, we have to convert them into MPa.
Choosing the mean values within the range, we get µ1h = 1.53 · 10−4 MPa
and µ2h = 2.97 · 10−4 MPa.
For what concerns the Mooney-Rivlin parameters in the diseased tissue,
we will consider them ten times stiffer than the healthy ones, that means
µ1t = 1.53 · 10−3 MPa and µ2t = 2.97 · 10−3 MPa.

• Then, we have to estimate the values of the parameters involved in the
growth rate Γs proposed in (3.62). The cell proliferation constant ν is taken
as the inverse of typical doubling times for in vitro glioma cells, that vary
from 24 to 48 hours: for this reason, a range 0.5 − 1 day−1 can be consid-
ered appropriate for ν. As underlined in [63, 66], since proliferation depends
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significantly on nutrients availability, also smaller values seem however ad-
missible. Having said that, in the following we will consider the minimum
value inside the mentioned interval, i.e. ν = 0.5 day−1.

• The hypoxia threshold c0 is estimated in the literature [67, 73, 74, 75] as
ranging from 0.15 to 0.5. We will consider c0 = 0.30 in simulations, as done
by Agosti et al. in [67].

• Concerning the nutrients consumption rate ζ that appears in (3.58), we
follow the approach by Colombo et al. [66] and so we know it can be es-
timated indirectly through biological measurements of the oxygen diffusion
coefficient in the human brain Dn and the distance covered by an oxygen
molecule before it is uptake by a cancer cell ln. The mean value for Dn

reported in the literature is Dn = 86.4 mm2/day [66, 74], while ln is esti-
mated to be about ln = 100 µm = 10−1 mm [74]. Hence, we can take a
value of ζ = Dn

l2n
= 8640 1/day.

• The nutrients supply rate Sn that appears in (3.58) is quite difficult to
estimate: as done in [66, 67] we refer to the value of 104 1/day proposed in
[76].

• Finally, as mean diffusion coefficient of the nutrients, we consider the same
Dn previously mentioned, recalling that we consider oxygen as the main
source of nourishment for the cells.

• We need then to give an estimate of the cell volumetric fraction in the
natural state φsn. We have proved that on growth process it is a constant,
so we can assume that it is given from the outset. Different values appear
in the literature: Colombo et al. [66] and Agosti et al. [67] considered
a value of φsn = 0.39, which they derived as the complementary value
of the extra-cellular space studied in [77] and amounting at up to 61%.
Differently, in their tumour growth model, Mascheroni et al [29] employed
a quite high value of φsn = 0.8. We considered the value proposed by Agosti
and Ciarletta [78], which is φsn = 0.3.

• It remains to estimate the value kp which appears in the permeability ten-
sor expression: in the literature it is often estimated the ratio k :=

kp
µ ,

where µ is the dynamic viscosity of the fluid phase. Given its defini-
tion and the spatial and temporal scale we employ in our model, such a
ratio has units mm2/(MPa · day). Values found in the literature cover
quite a wide range: for example, Mascheroni et al. [29] consider a value
k = 4.875·10−13 m2/(Pa·s); a conversion to our framework results in a value
of k = 5.5 · 102 mm2/(MPa · day). Moreover, in their dimensional analysis,
Giverso et al. [27] consider a range of 10−15 − 10−13 m2/(Pa · s), which
corresponds to an interval of 100 − 102 mm2/(MPa · day). We consider an
higher value, that corresponds to k = 2.17 · 105 mm2/(MPa · day)

For the sake of completeness we report below the complete list of all the used
parameters:
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Parameter Description Value

µ1h Mooney-Rivlin material parameter 1.53 · 10−4 MPa
µ2h Mooney-Rivlin material parameter 2.97 · 10−4 MPa
µ1t Mooney-Rivlin material parameter 1.53 · 10−3 MPa
µ2t Mooney-Rivlin material parameter 2.97 · 10−3 MPa
ν Cell proliferation constant 0.5 day−1

c0 Hypoxia threshold 0.30
ζ Nutrients consumption rate 8640 day−1

Sn Nutrients supply rate 104 day−1

φsn Cell volume fraction in the natural state 0.30
φmax Maximum cell volume fraction 0.85
Dn Mean nutrients diffusion coefficient 86.4 mm2 · day−1

k Hydraulic conductivity 2.17 · 105 mm2 ·MPa−1 · day−1

4.6 Mesh preparation

The last step before starting with the numerical simulations is to discuss how we
get the computational brain mesh and the mesh containing the values of D0.
For what concern the brain mesh, it is constructed from DTI (Diffusion Tensor
Imaging) and MRI (Magnetic Resonance Imaging) data, collected from patients
of the Istituto Neurologico Carlo Besta in Milan. Having available the nodes and
faces of the brain contour, the mesh was constructed using the program Tetgen
[79], which is able to generate tetrahedral meshes of any 3D polyhedral domains.
Furthermore, we have constructed a tumour-conformal mesh, in order to be able to
clearly separate the healthy domain to the tumour domain. The tumour domain
was considered as a sphere of radius 5 cm. Finally, the mesh has been refined
along the the tumour, as it is around it that the results of the simulations have
the greatest variations.

Figure 4.1: External computational brain mesh and refinement

For what concern the six independent component of the tensor D0, we employ
data from DTI imaging. First of all, the six images coming from DTI medical
exams need to be aligned with the ones from MRI, since in general they are not.
This can be done thanks to automated tools. Once all the images are aligned,
one can create six different meshes, in which a diffusion value for the coefficient
Dij is assigned to each cell. Doing so, diffusion data can be integrated into the
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computational mesh. Furthermore, we treat the input diffusion images with a
particular model called multi-compartment. The fundamental hypothesis is that,
from medical MRI images, you can extract different types of images regarding
the water diffusion. In particular, the multi-compartment model tries to isolate
free water to give more weight to the one whose motion is affected by the fibers.
For this reason, initial data are 6 diffusion images, concerning only the non-free
water, and an image containing free water weights for each voxel. At the end, the
diffusion tensor should be calculated as follows:

Dtot = pFWDFW + (1− pFW )D0

where DFW , which represents the free water diffusion at 37◦, is the identity tensor
multiplied by 0.003 mm2/s = 259.2 mm2/day (the diffusivity of the water under
those conditions), while pFW and the tensor D0 are obtained directly from DTI
images as described above. The tensor Dtot is used as Lagrangian diffusion tensor
for the nutrients, which diffuse in both fibers and free water, while the tensor D0

is used to calculate A and Fg as discussed in Section 3.2.4.
A Z-normal slice of each DTI mesh, representing an independent component of
D0 extracted from DTI images, is reported in Figure 4.2.

Figure 4.2: Components of the diffusion tensor D0 reconstructed from DTI imag-
ing data of a patient. Starting from the top: Dxx, Dxy, Dxz, Dyy, Dyz and
Dzz
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Chapter 5

Numerical simulations

In this chapter, we simulate the progression of Glioblastoma Multiforme. Firstly,
we implement our model in a simplified geometry, i.e. a cube of side 50 mm.
After, we focus on the real brain since our aim is to investigate the mechanical
behaviour of Glioblastoma Multiforme in the surrounding brain tissue.

5.1 Numerical tests in a simplified geometry

After creating the mesh of a cube with side length of 50 mm, we want to simulate
Glioblastoma Multiforme progression in order to test the reliability of our code
in this simplified setting. The tumour is considered as a sphere of radious 5 mm.
Firstly, the tumour region is separated from the healthy tissue by a mollification
of the indicator function, as done in [63]. In this first case the mesh is not
conformal to the material host-tumour interface but it is refined along tumour
boundary in the Lagrangian reference domain. The fields us, p, cn, g1, g2, g3 and
φs are considered as continuous between the two zones. We take into account the
parameters values discussed in Section 4.5. At the beginning, the healthy and the
tumour tissue are considered identical from the mechanical viewpoint. This means
that the Mooney-Rivlin elastic parameters in the two regions are taken equal with
the values µ1h and µ2h reported in Section 4.5. Afterwards we distinguish the two
tissues, using the values µ1h and µ2h for the healthy one and µ1t and µ2t for the
tumour zone. We choose as time step ∆t = 0.1 days, which is nearly equal to 2
hours and a half. Furthermore, we use boundary and initial conditions described
in (4.7) and (4.9).
In this setting, we run two simulations: in the first one we consider isotropic
diffusion and permeability, the second one has instead an artificial anisotropic
behaviour.

• In the isotropic case, we take both the diffusion tensor D0 and the perme-
ability tensor K0 as multiples of the identity tensor:

D0 = DnI
µ−1K0 = kI

where Dn and k are reported in Section 4.5.

• In the anisotropic simulation, we vary the diffusion tensor and the perme-
ability tensor. In this simplified setting, we do not consider data obtained
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from DTI imaging yet. Instead, we impose a forced anisotropic diffusion
along the Y-axis, taking the diffusion tensor as

D0 = Dn · diag(0.9, 1.2, 0.9)

We observe that we preserve the same trace of the isotropic simulation.
After that, we construct the tensor of preferential directions A0 and the
anisotropic growth tensor Fg as discussed in Section 3.2.4, using the eigen-
values and the eigenvectors of D0. Consequently, in this simulation we ex-
pect to observe enhanced diffusion, fluid motion and displacement induced
by GBM proliferation along the Y-direction.

In Table 5.1 a comparison between the two simulations after a period of 20 days
is reported.

Isotropic simulation Anisotropic simulation

‖us‖

p

φs

Table 5.1: continued overleaf
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Table 5.1: continued from preceding page

Isotropic simulation Anisotropic simulation

g/g1

Js

cn

Table 5.1: Comparison between displacement magnitude, pressure, Js, the frac-
tion of solid particles φs, nutrients concentration cn and g in isotropic case and
in the anisotropic case, at time t = 20 days, in the YZ-plane.

The presence of anisotropy in diffusion and conductivity causes the tumour
to grow preferentially along the Y direction. In the isotropic case there is a uni-
form induced displacement in a circular region around the growing Glioblastoma,
while the introduction of anisotropy forces GBM to acquire a more elongated
shape. Furthermore, it is also intersting to make a comparison between displace-
ment Y- and Z-components in the isotropic case and in the anisotropic case after
a time of 20 days, reported in Table 5.2. It results that the displacement of the
anisotropic case is greater than the isotropic one along the preferential direction
(about 0.95 mm instead of 0.54 mm) and reduced on the other two directions
(about 0.33 mm each).
For what concerns all the other variables, both in the isotropic and in the anisotropic
case, the concentration of nutrients is reduced in the tumour region at the center
of the cube, since the tumour is consuming oxygen and other nutrients to sustain
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its own proliferation; at the same time, the presence of an incremented cell vol-
ume in the tumour core provokes a decrease in fluid pressure. Finally, the solid
particles fraction is equal to φsn = 0.3 outside the diseased zone and it increases
inside it due to tumour proliferation.

Isotropic simulation Anisotropic simulation

(us)Y

(us)Z

Table 5.2: Comparison between displacement components in isotropic case and
in the anisotropic case, at time t = 20 days, in the YZ-plane.

We run other simulations, both in the isotropic setting and in the anisotropic
one, distinguishing the material parameters between the tumour zone and the
healthy one. We use µ1h and µ2h as the parameters for the healthy zone, while
we use µ1t and µ2t in the tumour zone.
The results we obtain in the isotropic case after 20 days are reported in Table
5.3. The results are compared with the ones using constant material parameters.
Focusing on the displacement magnitude ‖us‖, we observe that in every direction
it is almost 5 times greater than the case where the material parameters were
supposed constant. This means that the tumour tissue is stiffer than the sur-
rounding tissue and it can expand more easily. There is a remarkable difference
also between the other quantities, especially there is more nutrients consumption
and the variable g has a stronger growth.
If we run the same simulation in the anisotropic case we obtain the results re-
ported in Table 5.4, considered always after a period of 20 days. In this case the
magnitude of displacement along the preferential direction is four times greater
than the constant parameters case. As in the isotropic case, there is also a clear
difference between the other variables: the fluid pressure has a stronger decrease,
the variable g1 has greater growth while there is an increased consumption of
nutrients in tumour zone.
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Constant material parameters Nonconstant material parameters

‖us‖

p

φs

g

Table 5.3: continued overleaf
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Table 5.3: continued from preceding page

Constant material parameters Nonconstant material parameters

Js

cn

Table 5.3: Comparison between constant and nocostant parameters after 20 days
in the isotropic case: magnitude of displacement ‖us‖, pressure p, the fraction of
solid particles φs, g, Js and nutrients concentration cn.

Constant material parameters Nonconstant material parameters

‖us‖

p

Table 5.4: continued overleaf
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Table 5.4: continued from preceding page

Constant material parameters Nonconstant material parameters

φs

g1

Js

cn

Table 5.4: Comparison between constant and nocostant parameters after 20 days
in the anisotropic case: magnitude of displacement ‖us‖, pressure p, the fraction
of solid particles φs, g1, Js and nutrients concentration cn.

It is possible to notice that little irregularities appears along the boundary
of the tumour in all previous simulations. This is due to the choice of a steep
mollification of the indicator function and to the fact that all variables are forced
to be continuous across the interface. To fix this problem we try to use a mesh
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conforming to the material host-tumour interface which manages to distinguish
which cells belong to the tumour and which are part of the healthy tissue. In
this way we manage to construct a real indicator function of the tumour. The
difference between the two meshes is shown in Figure 5.1, where the red part
highlight the tetrahedra which belong to the tumour zone.

Figure 5.1: Difference between the two cube meshes

We run two simulations with this last mesh. In the first one we consider con-
stant material parameters equal everywhere to µ1h and µ2h. The last simulation
we run in this setting is the one using different parameters between the healthy
and the diseased zone, i.e. using µ1h and µ2h for the healthy zone and µ1t and
µ2t for the tumour one. The results are compared in Table 5.5.

Constant material parameters Nonconstant material parameters

‖us‖

p

Table 5.5: continued overleaf
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Table 5.5: continued from preceding page

Constant material parameters Nonconstant material parameters

φs

g1

Js

cn

Table 5.5: Comparison between constant and nocostant parameters after 20 days
in the anisotropic case: magnitude of displacement ‖us‖, pressure p, the fraction
of solid particles φs, g1, Js and nutrients concentration cn.

It is important to notice that the irregularities which were present in the
previous simulations are not there anymore. Furthermore, in the simulations
with the mollification function, we found some numerical problems that made the
simulations stop after a certain number of iterations. Using the mesh conforming
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to the material host-tumour interface they have been solved. For this reason in
the brain simulations we will use this last framework.

5.2 Numerica tests in the brain

At this point, we run simulations about GBM progression on a realistic brain
geometry, obtained from DTI and MRI data. The preparation of the mesh have
been described in Section 4.6. In this case the mesh was constructed conformal to
the material host-tumour interface and for this reason we can use a real indica-
tor function of the tumour, which distinguishes between cells that belong to the
tumour and cells in the healthy tissue. Differently from the cubical case, the dif-
fusion tensor and the permeability tensor have been constructed through medical
data, so as to build a realistic geometry. In this simulation we consider the ma-
terial parameters which appear in the Mooney-Rivlin constitutive equation equal
to µ1h and µ2h in the healthy tissue whereas we take µ1t and µ2t in the diseased
zone. The results we obtain after a simulation of 36 days are reported in Table
5.6.

Variable XY XZ YZ

‖us‖

p

Table 5.6: continued overleaf

74



Table 5.6: continued from preceding page

Variable XY XZ YZ

g1

φs

cn

Table 5.6: continued overleaf
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Table 5.6: continued from preceding page

Variable XY XZ YZ

Js

Jg

Table 5.6: Comparison between variables during GBM growth in the brain,
clipped along three different planes, at time t = 36 days.

The results of all the variables are in agreement with tumour proliferation:
we have a negative pressure in the tumour zone, where the volumetric fraction of
the cell phase φs increases and the concentration of nutrients cn decreases. It is
important to notice the anisotropic behaviour of all this variables, in agreement
with the typical anisotropy of white matter tracts.
For what concerns the displacement, it is clearly anisotropic and the maximum
of its magnitude reaches 9.4 mm. It is evident that it is quite big and it cannot
be neglected. In Table 5.7 we collect the maximum and minimum values of the
components of the displacement vector.

X Y Z

Min -6.85 mm -4.99 mm -6.62 mm
Max 5.61 mm 4.41 mm 6.27 mm

Table 5.7: Maximum and minimum displacement values along each direction at
time t = 36 days
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Conclusions and future
developments

Glioblastoma multiforme (GBM) is an extremely aggressive and malignant type
of brain tumour. This means that there is a great interest in the scientific com-
munity to analise its progression, with the purpose of understanding what is the
most appropriate strategy to fight it. For this reason many mathematical mod-
els were developed, in order to predict future tumour shape and volume and to
quantify its aggressiveness. Recently, many efforts have been aimed to improve
the comprehension of the mechanics involved in its progression. Remaining in
this field, we have developed a multiphase model based on the framework of Con-
tinuum Mechanics and mixture theory. Our aim was to include in our model
constitutive properties of brain tissue, the role of stress and deformations exerted
by the growing tumour on the surrounding environment and on the alignment
of white matter tracts and the influence of anisotropy on tumour growth. Both
the healthy and the diseased regions are treated as a saturated biphasic mixture,
comprising a solid and a fluid phase. With this assumptions, using mass and
momentum balance laws, we obtained a Lagrangian model including seven equa-
tions, accompanied by the constitutive definition of the hyperelastic energy and
by the multiplicative decomposition of the deformation gradient, to distinguish
the elastic contribution from the inelastic one due to growth.
Once the model has been obtained, we solved it numerically using Finite Elements
Method. In order to do so, we derived a weak formulation of our Lagrangian model
and we implemented its discretized version using the open source computing plat-
form FEniCS, which provides a high-level Python and C++ interface. First of
all, we tested our code in a simplified geometry, i.e. a cube of side 50 mm, both
in isotropic and anisotropic conditions. At the beginning we used a mollified ver-
sion of the indicator function. Then, in order to solve some irregularities that we
noticed on the boundary of the tumour, we construct a mesh conformal to the
material host-tumour interface and for this reason it is not necessary any mollifi-
cation of the indicator function. In this way, we observe an improvement of the
results, especially on the boundary of the tumor. All this simulations were made
comparing the case where the material parameters are taken constant in all the
domain and the case where the tumour tissue is considered ten times stiffer than
the healthy one. We observe huge differences also between these cases. In fact,
to give an example, the displacement magnitude is more than four times bigger
in the second than the first one. This result highlights the importance of con-
sidering the correct mechanical material parameters in predicting cancer growth.
Then, we performed a simulation on a brain geometry to verify the outcome of
our model when applied to a realistic setting: we included medical data from DTI
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and MRI into the computational mesh, to account for real diffusion patterns and
for anisotropy of the fibers inside the brain. We observed how the growth of a
tumour inside the brain has a mechanical impact on the surrounding healthy tis-
sue, causing a deformation and a subsequent displacement magnitude quantified
in about 9.4 mm after 36 days. The displacements turn out to be quite big and
for this reason it cannot be neglected.
However, there are some other issues that have to be addressed in future re-
search developments. A possible improvement of the proposed model concerns
the simulation of therapies and resection. First of all, it would be interesting
to model chemotherapy and radiotherapy, in order to evaluate their effectiveness
in the treatment of this brain tumour. Furthermore, it would be important to
highlight deformations and displacements that happen after surgical removal of
Glioblastoma tumour mass. With regard to this, plastic reorganization could be
included in the model, to reproduce the mechanical behaviour of the brain as
much realistically as possible.
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Appendix A

Code documentation

In the following, we report the complete Python code that has been used for
numerical simulations of the model in the brain. In our simulations we rely on
an open source software named the FEniCS project through a Python interface.
We import the mesh, previously constructed using the program Tetgen and then
converted from the .mesh format to the .xdmf format, which is supported by
FEniCS. The conversion was made using meshio with the following code:

1 import meshio
2

3 msh = meshio.read("dominio.2.mesh")
4

5 def create_mesh(mesh, cell_type, prune_z=False):
6 cells = mesh.get_cells_type(cell_type)
7 cell_data = mesh.get_cell_data("medit:ref", cell_type)
8 out_mesh = meshio.Mesh(points=mesh.points, \
9 ... cells ={cell_type: cells }, \

10 ... cell_data={"name_to_read": [cell_data]})
11 if prune_z:
12 out_mesh.prune_z_0()
13 return out_mesh
14

15 tetra_mesh = create_mesh(msh, "tetra")
16 meshio.write("dominio2.xdmf", tetra_mesh)

Furthermore, we take as input the diffusion images. Input data are 6 diffu-
sion images Fwij.nii.gz, concerning only the non-free water, and an image Frac-
tion_fw.nii.gz containing free water weights for each voxel. At the end, the diffu-
sion tensor will be calculated as described in Section 4.6
The code we used to simulate the model is reported in the following. After import-
ing the libraries DOLFIN and FEniCS, we define all the useful kinematic variables
that appear in the variational formulations (lines 1-109). Then, we upload the
mesh and we introduce the tumour indicator function using the mesh labels (lines
111-130). After, we focus on the construction of the diffusion tensor, the tensor of
preferential directions and the growth tensor, obtained from patient-specific data
(lines 130-573). We then define the finite elements, the parameters, the model
variables, initial and boundary conditions (lines 574-751). Finally, we construct
the variational problems (lines 752-802) and the output files where the results and
data will be stored (lines 803-865). At the end, all the equations are solved inside
the time loop (lines 866-991).
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1 import dolfin
2 from dolfin import ∗
3 from fenics import ∗
4 import numpy
5 from numpy import linalg as LA
6

7 #set_log_level(LogLevel.PROGRESS)
8

9 #Form compiler options
10 dolfin .parameters["form_compiler"]["cpp_optimize"] = True
11 dolfin .parameters["form_compiler"]["representation"] = "uflacs"
12 dolfin .parameters["form_compiler"]["quadrature_degree"] = 4
13

14 ### USEFUL KINEMATICS VARIABLES ###
15

16 # Renaming grad to Grad
17 from ufl import grad as ufl_grad
18 def Grad(v):
19 return ufl_grad(v)
20

21 # Second order identity tensor
22 def SecondOrderIdentity(u):
23 d = u.geometric_dimension()
24 return variable (Identity(d))
25

26 # Deformation gradient
27 def DeformationGradient(u):
28 I = SecondOrderIdentity(u)
29 return variable (I + Grad(u))
30

31 # Determinant of the deformation gradient
32 def Jacobian(u):
33 F = DeformationGradient(u)
34 return variable (det(F))
35

36 # Right Cauchy−Green tensor
37 def RightCauchyGreen(u):
38 F = DeformationGradient(u)
39 return variable (F.T∗F)
40

41 # Left Cauchy−Green tensor
42 def LeftCauchyGreen(u):
43 F = DeformationGradient(u)
44 return variable (F∗F.T)
45

46 # Invariants of an arbitrary tensor, A
47 def Invariants(A):
48 I1 = tr(A)
49 I2 = 0.5∗(tr(A)∗∗2 − tr(A∗A))
50 I3 = det(A)
51 return [ variable (I1) , variable (I2) , variable (I3) ]
52

53 # Invariants of the ( right/ left ) Cauchy−Green tensor
54 def CauchyGreenInvariants(u):
55 C = RightCauchyGreen(u)
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56 [ I1 , I2, I3 ] = Invariants(C)
57 return [ variable (I1) , variable (I2) , variable (I3) ]
58

59 # Anisotropic growth tensor in the multiplicative decomposition
60 def AnisotropicGrowthTensor(u,g1,g2,g3,eig_1,eig_2,eig_3):
61 return variable (g1∗outer(eig_1,eig_1)+g2∗outer(eig_2,eig_2)+g3∗outer(eig_3,

eig_3))
62

63 # Elastic part of the deformation gradient
64 def ElasticPart(u, g1,g2,g3, eig_1, eig_2, eig_3):
65 F = DeformationGradient(u)
66 F_g = AnisotropicGrowthTensor(u, g1, g2, g3, eig_1, eig_2, eig_3)
67 return variable (F∗inv(F_g))
68

69 # Right Cauchy−Green tensor of the elastic part
70 def ElasticRCG(u, g1, g2, g3, eig_1, eig_2, eig_3):
71 F_e = ElasticPart(u, g1, g2, g3, eig_1, eig_2, eig_3)
72 return variable (F_e.T∗F_e)
73

74 # Determinant of the growth tensor
75 def Jg(u, g1, g2, g3, eig_1, eig_2, eig_3):
76 F_g = AnisotropicGrowthTensor(u, g1, g2, g3, eig_1, eig_2, eig_3)
77 return variable (det(F_g))
78

79 # Determinant of the elastic part
80 def Je(u, g1, g2, g3, eig_1, eig_2, eig_3):
81 F_e = ElasticPart(u, g1, g2, g3, eig_1, eig_2, eig_3)
82 return variable (det(F_e))
83

84 def ElasticCbar(u, g1, g2, g3, eig_1, eig_2, eig_3):
85 C_e = ElasticRCG(u, g1, g2, g3, eig_1, eig_2, eig_3)
86 J_e = Je(u, g1, g2, g3, eig_1, eig_2, eig_3)
87 return variable (pow(J_e,−2.0/3)∗C_e)
88

89 def Pk(u, p, g1, g2, g3, eig_1, eig_2, eig_3, mu1, mu2):
90 J_g = Jg(u, g1, g2, g3, eig_1, eig_2, eig_3)
91 J_e = Je(u, g1, g2, g3, eig_1, eig_2, eig_3)
92 F = DeformationGradient(u)
93 J = Jacobian(u)
94 I = SecondOrderIdentity(u)
95 C_e = ElasticRCG(u, g1, g2, g3, eig_1, eig_2, eig_3)
96 C_ebar = ElasticCbar(u, g1, g2, g3, eig_1, eig_2, eig_3)
97 F_g = AnisotropicGrowthTensor(u, g1, g2, g3, eig_1, eig_2, eig_3)
98 F_e = ElasticPart(u, g1, g2, g3, eig_1, eig_2, eig_3)
99 Ice , IIce , IIIce = Invariants(C_e)

100 Icbar, IIcbar , IIIcbar = Invariants(C_ebar)
101

102 #Strain Energy using C_e bar
103 psi = (mu1/2)∗(Icbar − 3) + (mu2/2)∗(IIcbar − 3)
104 gamma1 = diff(psi, Icbar) + Icbar∗diff(psi , IIcbar)
105 gamma2 = −diff(psi, IIcbar)
106

107 P_s = 2∗J_g∗F_e∗pow(J_e, −2/3)∗(gamma1∗I + gamma2∗C_ebar − 1/3∗
gamma1∗Ice∗inv(C_e) − 1/3∗gamma2∗inner(C_e,C_e)∗inv(C_e))∗inv(F_g).T
#Piola tensor using C_ebar

108 return variable (P_s − J∗p∗inv(F).T)
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109

110 # −−− Define mesh and tumour indicator function −−−#
111

112 # Brain simulations
113 mesh = Mesh()
114

115 #Creazione MeshFunction che indica le celle col tumore
116

117 mvc = MeshValueCollection("size_t", mesh, mesh.topology().dim())
118 with XDMFFile("dominio2.xdmf") as infile:
119 infile .read(mesh)
120 infile .read(mvc, "name_to_read")
121

122 mf = cpp.mesh.MeshFunctionSizet(mesh, mvc)
123

124 mfc = MeshFunction("int", mesh, mesh.topology().dim())
125 mfc.set_all(0)
126 for cell in cells (mesh):
127 if (mf.array()[ cell . index()] == 1):
128 mfc[ cell ] = 1
129

130 #− Diffusion tensor and the permeability tensor construction −#
131

132 mvc_Pfw = MeshValueCollection("double", mesh, "meshpFW.xml")
133 meshf_Pfw = MeshFunction("double", mesh, mvc_Pfw)
134 values_Pfw = meshf_Pfw.array()
135

136 mvc_FWxx = MeshValueCollection("double", mesh, "meshFWxx.xml")
137 meshf_FWxx = MeshFunction("double", mesh, mvc_FWxx)
138 values_Dxx = meshf_FWxx.array()
139

140 mvc_FWyy = MeshValueCollection("double", mesh, "meshFWyy.xml")
141 meshf_FWyy = MeshFunction("double", mesh, mvc_FWyy)
142 values_Dyy = meshf_FWyy.array()
143

144 mvc_FWzz = MeshValueCollection("double", mesh, "meshFWzz.xml")
145 meshf_FWzz = MeshFunction("double", mesh, mvc_FWzz)
146 values_Dzz = meshf_FWzz.array()
147

148 mvc_FWxy = MeshValueCollection("double", mesh, "meshFWxy.xml")
149 meshf_FWxy = MeshFunction("double", mesh, mvc_FWxy)
150 values_Dxy = meshf_FWxy.array()
151

152 mvc_FWxz = MeshValueCollection("double", mesh, "meshFWxz.xml")
153 meshf_FWxz = MeshFunction("double", mesh, mvc_FWxz)
154 values_Dxz = meshf_FWxz.array()
155

156 mvc_FWyz = MeshValueCollection("double", mesh, "meshFWyz.xml")
157 meshf_FWyz = MeshFunction("double", mesh, mvc_FWyz)
158 values_Dyz = meshf_FWyz.array()
159

160 ## Preparazione variabili
161

162 n = len(values_Dzz) # n = ncells!
163 ncells = mesh.num_cells()
164 numtrDnull = 0

82



165 numtrdnull = 0
166 numtrdnull_fisici = 0
167 numtrdnull_non_fisici = 0
168 numPfwnull = 0
169 epsilon = (1e−6)/3.0
170 r = 3 #r>1 do’ piu’ peso all’anisotropia
171 dFW = 259.2 #0.003∗86400 mm^2/day
172 numtrTnull = 0
173

174 print("Lunghezza array: ", n)
175 print("Numero di celle: ", ncells )
176

177 D11 = MeshFunction("double",mesh,3)
178 D22 = MeshFunction("double",mesh,3)
179 D33 = MeshFunction("double",mesh,3)
180 D12 = MeshFunction("double",mesh,3)
181 D13 = MeshFunction("double",mesh,3)
182 D23 = MeshFunction("double",mesh,3)
183

184 d11 = MeshFunction("double",mesh,3)
185 d22 = MeshFunction("double",mesh,3)
186 d33 = MeshFunction("double",mesh,3)
187 d12 = MeshFunction("double",mesh,3)
188 d13 = MeshFunction("double",mesh,3)
189 d23 = MeshFunction("double",mesh,3)
190

191 t11 = MeshFunction("double",mesh,3)
192 t22 = MeshFunction("double",mesh,3)
193 t33 = MeshFunction("double",mesh,3)
194 t12 = MeshFunction("double",mesh,3)
195 t13 = MeshFunction("double",mesh,3)
196 t23 = MeshFunction("double",mesh,3)
197

198 L1 = MeshFunction("double",mesh,3)
199 L2 = MeshFunction("double",mesh,3)
200 L3 = MeshFunction("double",mesh,3)
201

202 trace_d = MeshFunction("double",mesh,3)
203 trace_D = MeshFunction("double",mesh,3)
204 MD_d = MeshFunction("double",mesh,3)
205 MD_D = MeshFunction("double",mesh,3)
206 FA = MeshFunction("double",mesh,3)
207

208 E0 = MeshFunction("double",mesh,3)
209 E1 = MeshFunction("double",mesh,3)
210 E2 = MeshFunction("double",mesh,3)
211 E3 = MeshFunction("double",mesh,3)
212 E4 = MeshFunction("double",mesh,3)
213 E5 = MeshFunction("double",mesh,3)
214 E6 = MeshFunction("double",mesh,3)
215 E7 = MeshFunction("double",mesh,3)
216 E8 = MeshFunction("double",mesh,3)
217 coef1=MeshFunction("double",mesh,3)
218 coef2=MeshFunction("double",mesh,3)
219 coef3=MeshFunction("double",mesh,3)
220
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221 ## Copia o correzione della matrice D − Calcolo della matrice T
222

223 for i in range (0,n):
224

225 #questa matrice "ricomposta" viene usata solo per il nutriente
226 D11[i] = (1−values_Pfw[i])∗values_Dxx[i] + values_Pfw[i]∗dFW
227 D22[i] = (1−values_Pfw[i])∗values_Dyy[i] + values_Pfw[i]∗dFW
228 D33[i] = (1−values_Pfw[i])∗values_Dzz[i] + values_Pfw[i]∗dFW
229 D12[i] = (1−values_Pfw[i])∗values_Dxy[i]
230 D13[i] = (1−values_Pfw[i])∗values_Dxz[i]
231 D23[i] = (1−values_Pfw[i])∗values_Dyz[i]
232

233 #qui finiscono i dati presi dalle immagini fornite da Aymeric (valori SENZA
free water) −> da qui calcoliamo matT

234 d11[i ] = values_Dxx[i]
235 d22[i ] = values_Dyy[i]
236 d33[i ] = values_Dzz[i]
237 d12[i ] = values_Dxy[i]
238 d13[i ] = values_Dxz[i]
239 d23[i ] = values_Dyz[i]
240

241 trace_d[i] = d11[i] + d22[i] + d33[i]
242 MD_d[i] = trace_d[i]/3.0
243 trace_D[i] = D11[i] + D22[i] + D33[i]
244 MD_D[i] = trace_D[i]/3.0
245

246 if trace_D[i] == 0: #tr_D = (1−p_FW)∗tr_d + 3∗p_FW∗dFW
247 numtrDnull = numtrDnull + 1
248 if values_Pfw[i] == 0:
249 numPfwnull = numPfwnull + 1 #tr_D=0 e p_FW=0 => tr_d=0
250 #else: tr_d=3∗p_FW∗dFW/(p_FW−1) con 0 < p_FW < 1
251 #il caso p_FW=1 e’ escluso: non potrebbe essere che tr_D=0
252

253

254 if trace_d[i] != 0:
255 matD = numpy.matrix([[d11[i], d12[i], d13[i ]], [d12[i ], d22[i ], d23[i ]], [d13[i

], d23[i ], d33[i ]]])
256 egvl , egvc = LA.eigh(matD)
257

258 #egvl e’ un array di tre elementi con indici 0,1,2 ordinati in ordine crescente
, lambda1 e’ il piu’ grande

259 #egvc e’ una matrice dove gli elementi hanno indici 0,1,2 (prima riga) 3,4,5 (
seconda riga) 6,7,8 (terza riga);

260 #ogni colonna e’ un autovettore, la prima relativa all ’autovalore piu’ piccolo ,
poi in ordine crescente

261

262 lambda1 = egvl.item(2)
263 lambda2 = egvl.item(1)
264 lambda3 = egvl.item(0)
265

266 if lambda3 < 0:
267 lambda3 = 1e−6
268

269 L1[i ] = lambda1
270 L2[i ] = lambda2
271 L3[i ] = lambda3
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272

273 e1 = numpy.array([egvc.item(2), egvc.item(5), egvc.item(8)])
274 e2 = numpy.array([egvc.item(1), egvc.item(4), egvc.item(7)])
275 e3 = numpy.array([egvc.item(0), egvc.item(3), egvc.item(6)])
276

277 E0[i]=egvc.item(0)
278 E1[i]=egvc.item(1)
279 E2[i]=egvc.item(2)
280 E3[i]=egvc.item(3)
281 E4[i]=egvc.item(4)
282 E5[i]=egvc.item(5)
283 E6[i]=egvc.item(6)
284 E7[i]=egvc.item(7)
285 E8[i]=egvc.item(8)
286

287 c_l = (lambda1−lambda2)/(lambda1 + lambda2 + lambda3)
288 c_p = 2∗(lambda2−lambda3)/(lambda1 + lambda2 + lambda3)
289 c_s = 3∗lambda3/(lambda1 + lambda2 + lambda3)
290

291 FA[i] = numpy.sqrt(((lambda1−lambda2)∗∗2+(lambda2−lambda3)∗∗2+(
lambda3−lambda1)∗∗2)/(2∗(lambda1∗∗2+lambda2∗∗2+lambda3∗∗2)))

292

293 matR = numpy.matrix([[r, r, 1], [1, r , 1], [1, 1, 1]])
294 vecC = numpy.array([c_l, c_p, c_s])
295 vecA = numpy.dot(matR, vecC)
296

297 matT = vecA.item(0)∗lambda1∗numpy.outer(e1,e1) + vecA.item(1)∗lambda2∗
numpy.outer(e2,e2) + vecA.item(2)∗lambda3∗numpy.outer(e3,e3)

298 matT = matT∗3/(vecA.item(0)∗lambda1 + vecA.item(1)∗lambda2 + vecA.item
(2)∗lambda3)

299

300 t11[ i ] = matT.item(0) # T_index = [0 1 2
301 t22[ i ] = matT.item(4) # 3 4 5
302 t33[ i ] = matT.item(8) # 6 7 8]
303 t12[ i ] = matT.item(1)
304 t13[ i ] = matT.item(2)
305 t23[ i ] = matT.item(5)
306

307 coef1[ i]=(lambda1∗vecA.item(0))/(vecA.item(0)∗lambda1+vecA.item(1)∗
lambda2+vecA.item(2)∗lambda3)

308 coef2[ i]=(lambda2∗vecA.item(1))/(vecA.item(0)∗lambda1+vecA.item(1)∗
lambda2+vecA.item(2)∗lambda3)

309 coef3[ i]=(lambda3∗vecA.item(2))/(vecA.item(0)∗lambda1+vecA.item(1)∗
lambda2+vecA.item(2)∗lambda3)

310

311 if t11[ i ] == 0 and t22[i] != 0 and t33[i ] != 0:
312 Tmin = numpy.minimum(t22[i],t33[i])
313

314 if Tmin <= epsilon:
315 epsilon = Tmin/2.0
316

317 t11[ i ] = epsilon
318 t22[ i ] = t22[i ] − epsilon
319 t33[ i ] = t33[i ] − epsilon
320

321 if t11[ i ] != 0 and t22[i ] == 0 and t33[i] != 0:
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322 Tmin = numpy.minimum(t11[i],t33[i])
323

324 if Tmin <= epsilon:
325 epsilon = Tmin/2.0
326

327 t11[ i ] = t11[i ] − epsilon
328 t22[ i ] = epsilon
329 t33[ i ] = t33[i ] − epsilon
330

331 if t11[ i ] != 0 and t22[i ] != 0 and t33[i ] == 0:
332 Tmin = numpy.minimum(t11[i],t22[i])
333

334 if Tmin <= epsilon:
335 epsilon = Tmin/2.0
336

337 t11[ i ] = t11[i ] − epsilon
338 t22[ i ] = t22[i ] − epsilon
339 t33[ i ] = epsilon
340

341 if t11[ i ] − 3.0 == 0:
342 t11[ i ] = t11[i ] − epsilon
343 t22[ i ] = epsilon
344 t33[ i ] = epsilon
345

346 if t22[ i ] − 3.0 == 0:
347 t11[ i ] = epsilon
348 t22[ i ] = t22[i ] − epsilon
349 t33[ i ] = epsilon
350

351 if t33[ i ] − 3.0 == 0:
352 t11[ i ] = epsilon
353 t22[ i ] = epsilon
354 t33[ i ] = t33[i ] − epsilon
355

356 if t11[ i ] == 0 or t22[i] == 0 or t33[i] == 0:
357 if t11[ i ] − 3.0 == 0:
358 t11[ i ] = t11[i ] − epsilon
359 t22[ i ] = epsilon
360 t33[ i ] = epsilon
361

362 if t22[ i ] − 3.0 == 0:
363 t11[ i ] = epsilon
364 t22[ i ] = t22[i ] − epsilon
365 t33[ i ] = epsilon
366

367 if t33[ i ] − 3.0 == 0:
368 t11[ i ] = epsilon
369 t22[ i ] = epsilon
370 t33[ i ] = t33[i ] − epsilon
371

372

373 #nelle immagini fornite da Aymeric e’ stata tolta la free water −> i valori nulli
possono essere dovuti a errori

374 # di registrazione (Pfw != 1, non fisici ) oppure al fatto che in quel voxel c’e’
solo free water (Pfw = 1, fisici )

375 if trace_d[i] == 0:
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376 numtrdnull = numtrdnull + 1
377

378 if values_Pfw[i] == 1: #voxel con solo free water
379 numtrdnull_fisici = numtrdnull_fisici + 1
380

381 lambda1 = d11[i] #qui viene messo 0
382 lambda2 = d22[i]
383 lambda3 = d33[i]
384 L1[i ] = lambda1
385 L2[i ] = lambda2
386 L3[i ] = lambda3
387 FA[i] = 0.0
388

389

390 if values_Pfw[i] != 1: #voxel da correggere
391 numtrdnull_non_fisici = numtrdnull_non_fisici + 1
392

393 d11[i ] = numpy.mean(values_Dxx)
394 d22[i ] = numpy.mean(values_Dyy)
395 d33[i ] = numpy.mean(values_Dzz)
396 d12[i ] = 0.0
397 d13[i ] = 0.0
398 d23[i ] = 0.0
399

400 lambda1 = d11[i] #qui viene messa la media
401 lambda2 = d22[i]
402 lambda3 = d33[i]
403 L1[i ] = lambda1
404 L2[i ] = lambda2
405 L3[i ] = lambda3
406 FA[i] = numpy.sqrt( ((lambda1−lambda2)∗∗2 + (lambda2−lambda3)∗∗2 + (

lambda3−lambda1)∗∗2) / (2∗(lambda1∗∗2 + lambda2∗∗2 + lambda3∗∗2)) )
407

408

409 D11[i] = (1−values_Pfw[i])∗d11[i] + values_Pfw[i]∗dFW
410 D22[i] = (1−values_Pfw[i])∗d22[i] + values_Pfw[i]∗dFW
411 D33[i] = (1−values_Pfw[i])∗d33[i] + values_Pfw[i]∗dFW
412 D12[i] = 0
413 D13[i] = 0
414 D23[i] = 0
415

416 t11[ i ] = 1.0
417 t22[ i ] = 1.0
418 t33[ i ] = 1.0
419 t12[ i ] = 0
420 t13[ i ] = 0
421 t23[ i ] = 0
422

423 E0[i]=1
424 E1[i]=0
425 E2[i]=0
426 E3[i]=0
427 E4[i]=1
428 E5[i]=0
429 E6[i]=0
430 E7[i]=0
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431 E8[i]=1
432

433 coef1[ i]=1/3
434 coef2[ i]=1/3
435 coef3[ i]=1/3
436

437 # Code for construction of tensor D and T
438

439 defineMatrix_code = """
440

441 #include <pybind11/pybind11.h>
442 #include <pybind11/eigen.h>
443 namespace py = pybind11;
444

445 #include <dolfin/function/Expression.h>
446 #include <dolfin/mesh/MeshFunction.h>
447

448 class Components_DT_D : public dolfin::Expression
449

450 {
451 public :
452

453 // Create expression with 6 components
454 Components_DT_D() : dolfin::Expression(6) {}
455

456 // Function for evaluating expression on each cell
457 void eval(Eigen::Ref<Eigen::VectorXd> values, Eigen::Ref<const Eigen::

VectorXd> x, const ufc::cell& cell) const override
458 {
459 const uint topDim = cell.topological_dimension;
460 const uint cell_index = cell .index;
461 values [0] = (∗d11)[cell_index];
462 values [1] = (∗d12)[cell_index];
463 values [2] = (∗d13)[cell_index];
464 values [3] = (∗d22)[cell_index];
465 values [4] = (∗d23)[cell_index];
466 values [5] = (∗d33)[cell_index];
467 }
468

469 // The data stored in mesh functions
470 std :: shared_ptr<dolfin::MeshFunction<double> > d11;
471 std :: shared_ptr<dolfin::MeshFunction<double> > d12;
472 std :: shared_ptr<dolfin::MeshFunction<double> > d13;
473 std :: shared_ptr<dolfin::MeshFunction<double> > d22;
474 std :: shared_ptr<dolfin::MeshFunction<double> > d23;
475 std :: shared_ptr<dolfin::MeshFunction<double> > d33;
476

477 };
478

479 PYBIND11_MODULE(SIGNATURE, m)
480 {
481 py::class_<Components_DT_D, std::shared_ptr<Components_DT_D>, dolfin

::Expression>
482 (m, "Components_DT_D")
483 .def(py:: init<>())
484 .def_readwrite("d11", &Components_DT_D::d11)
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485 .def_readwrite("d12", &Components_DT_D::d12)
486 .def_readwrite("d13", &Components_DT_D::d13)
487 .def_readwrite("d22", &Components_DT_D::d22)
488 .def_readwrite("d23", &Components_DT_D::d23)
489 .def_readwrite("d33", &Components_DT_D::d33);
490 }
491

492 """
493

494 d = CompiledExpression(compile_cpp_code(defineMatrix_code).
Components_DT_D(), d11 = D11, d12 = D12, d13 = D13, d22 = D22, d23 =
D23, d33 = D33, degree=2)

495 D0 = as_matrix([ [d[0], d [1], d [2]], [d [1], d [3], d [4]], [d [2], d [4], d [5]] ])
496

497 tmat = CompiledExpression(compile_cpp_code(defineMatrix_code).
Components_DT_D(), d11 = t11, d12 = t12, d13 = t13, d22 = t22, d23 = t23,
d33 = t33, degree=2)

498 mat_T = as_matrix([ [tmat[0], tmat[1], tmat[2]], [tmat[1], tmat[3], tmat [4]], [tmat
[2], tmat[4], tmat[5]] ])

499

500 # Code for the construction of the eigenvectors
501 defineVector_code = """
502

503 #include <pybind11/pybind11.h>
504 #include <pybind11/eigen.h>
505 namespace py = pybind11;
506

507 #include <dolfin/function/Expression.h>
508 #include <dolfin/mesh/MeshFunction.h>
509

510 class Components_DT_e : public dolfin::Expression
511 {
512 public :
513

514 // Create expression with 3 components
515 Components_DT_e() : Expression(3) {}
516

517 // Function for evaluating expression on each cell
518 void eval(Eigen::Ref<Eigen::VectorXd> values, Eigen::Ref<const Eigen::

VectorXd> x, const ufc::cell& cell) const override
519 {
520 const uint topDim = cell.topological_dimension;
521 const uint cell_index = cell .index;
522 values [0] = (∗C1)[cell_index];
523 values [1] = (∗C2)[cell_index];
524 values [2] = (∗C3)[cell_index];
525 }
526

527 // The data stored in mesh functions
528 std :: shared_ptr<dolfin::MeshFunction<double> > C1;
529 std :: shared_ptr<dolfin::MeshFunction<double> > C2;
530 std :: shared_ptr<dolfin::MeshFunction<double> > C3;
531

532 };
533

534 PYBIND11_MODULE(SIGNATURE, m)
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535 {
536 py::class_<Components_DT_e, std::shared_ptr<Components_DT_e>, dolfin

::Expression>
537 (m, "Components_DT_e")
538 .def(py:: init<>())
539 .def_readwrite("C1", &Components_DT_e::C1)
540 .def_readwrite("C2", &Components_DT_e::C2)
541 .def_readwrite("C3", &Components_DT_e::C3);
542 }
543

544 """
545

546 e1v = CompiledExpression(compile_cpp_code(defineVector_code).
Components_DT_e(), C1 = E2, C2 = E5, C3 = E8, degree=2)

547 eig_1 = as_vector([e1v[0], e1v [1], e1v [2]])
548

549 e2v = CompiledExpression(compile_cpp_code(defineVector_code).
Components_DT_e(), C1 = E1, C2 = E4, C3 = E7, degree=2)

550 eig_2 = as_vector([e2v[0], e2v [1], e2v [2]])
551

552 e3v = CompiledExpression(compile_cpp_code(defineVector_code).
Components_DT_e(), C1 = E0, C2 = E3, C3 = E6, degree=2)

553 eig_3 = as_vector([e3v[0], e3v [1], e3v [2]])
554

555 coe = CompiledExpression(compile_cpp_code(defineVector_code).
Components_DT_e(), C1 = coef1, C2 = coef2, C3 = coef3, degree=2)

556 coeff = as_vector([coe[0], coe [1], coe [2]])
557

558 # Salvataggio dati
559

560 D11_file_pvd = File("D11.pvd")
561 D22_file_pvd = File("D22.pvd")
562 D33_file_pvd = File("D33.pvd")
563 D12_file_pvd = File("D12.pvd")
564 D13_file_pvd = File("D13.pvd")
565 D23_file_pvd = File("D23.pvd")
566

567 D11_file_pvd << D11
568 D22_file_pvd << D22
569 D33_file_pvd << D33
570 D12_file_pvd << D12
571 D13_file_pvd << D13
572 D23_file_pvd << D23
573

574 #−−− Define finite elements and function spaces −−−#
575

576 P2 = VectorElement("Lagrange", mesh.ufl_cell(), 1) # displacement u
577 P1 = FiniteElement("Lagrange", mesh.ufl_cell(), 1) # pressure p, concentration c_n
578 TH = MixedElement([P2, P1])
579 DGe = FiniteElement("Discontinuous Lagrange", mesh.ufl_cell(), 0)
580

581 V = FunctionSpace(mesh, TH) #(u,p)
582 W = FunctionSpace(mesh, P1) # c_n
583 U2 = FunctionSpace(mesh, P2)
584 DG = FunctionSpace(mesh, DGe) #g1, g2, g3, fraction phi_s
585
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586 #−−− Parameters definition −−−#
587

588 class Tumor(UserExpression):
589 def __init__(self, mfc, t_zone, h_zone, ∗∗kwargs):
590 super().__init__(∗∗kwargs)
591 self ._mfc = mfc
592 self ._t_zone = t_zone
593 self ._h_zone = h_zone
594

595 def eval_cell( self , values , x, cell ) :
596 if self ._mfc.array()[cell . index] == 0:
597 values [0] = self ._h_zone
598 else :
599 values [0] = self ._t_zone
600

601 def value_shape(self):
602 return ()
603

604 sharp_tumour_indicator = Tumor(mfc, 1, 0, degree=0)
605

606 # Initial and boundary values
607 c = Constant(1.0)
608 u0 = Constant((0.0, 0.0, 0.0))
609 pp = Constant(0.0)
610

611 # Simulation time and time step
612 t = float(0)
613

614 T = 90 #90 days
615 sudd_day = 10
616 num_steps = T∗sudd_day #900 steps
617 dt = T / num_steps #1e−01 days −−> 2,4 hours
618

619 phi_sn = Constant(0.3)
620 nu = 0.5 # day^−1
621 k = Constant(2.17e05) #(mm^2) / (MPa day)
622 K0 = k∗mat_T
623 cn0 = Constant(0.3) # Hypoxia Threshold (dimensionless)
624 zeta = Constant(8640) # Nutrients consumption rate (1/day)
625 Sn = Constant(1e04) # Nutrients supply rate (1/day)
626 phimax = Constant(0.85)
627

628 mu1 = Function(DG)
629 mu2 = Function(DG)
630

631 mu1t = Constant(1.53e−03)
632 mu2t = Constant(2.97e−03)
633 mu1h = Constant(1.53e−04)
634 mu2h = Constant(2.97e−04)
635

636 mu1_e = Tumor(mfc, mu1t, mu1h, degree=0)
637 mu2_e = Tumor(mfc, mu2t, mu2h, degree=0)
638

639 mu1.interpolate(mu1_e)
640 mu2.interpolate(mu2_e)
641 #−−− Define Dirichlet boundary conditions for u, p, c −−−#

91



642 def boundary(x, on_boundary):
643 return on_boundary
644

645 bcu = DirichletBC(V.sub(0), u0, boundary)
646 bcp = DirichletBC(V.sub(1), pp, boundary)
647 bcn = DirichletBC(W, c, boundary)
648

649 bcs = [bcu, bcp]
650

651 #−−− Define functions for variational problems −−−#
652

653 # Incremental displacement and pressure
654 dup = TrialFunction(V)
655 (du, dp) = split(dup)
656

657 # Test functions for displacement and pressure
658 u_, p_ = TestFunctions(V)
659

660 # Displacement and pressure (current value)
661 up = Function(V)
662 (u, p) = split(up)
663

664 # Displacement and pressure (previous iteration)
665 up_prev = Function(V)
666 (u_prev, p_prev) = split(up_prev)
667

668 # Functions for scalar field g1
669 g1 = Function(DG)
670 dg1 = TrialFunction(DG)
671 g1_prev = Function(DG)
672 q = TestFunction(DG)
673

674 # Functions for scalar field g2
675 g2 = Function(DG)
676 dg2 = TrialFunction(DG)
677 g2_prev = Function(DG)
678

679 # Functions for scalar field g3
680 g3 = Function(DG)
681 dg3 = TrialFunction(DG)
682 g3_prev = Function(DG)
683

684 # Functions for phi_s
685 phi_s = Function(DG)
686 dphi = TrialFunction(DG)
687 eta = TestFunction(DG)
688

689 # Functions for c_n
690 cn = Function(W)
691 dcn = TrialFunction(W)
692 qcn = TestFunction(W)
693 cn_prev = Function(W)
694

695 #−−− Define initial conditions −−−#
696 # Initial condition for u and p
697 up_init = Expression( ("0.0", "0.0", "0.0", "0.0"), degree=1)
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698 up_prev = interpolate(up_init, V)
699

700 #u_init = Function(U2,"out_u.xml")
701 #p_init = Function(W,"out_p.xml")
702 #assign(up_prev, [u_init, p_init])
703

704 # Initial conditions for g and phi_s
705 g1_prev = interpolate(Constant(1.0), DG)
706 #g1_prev = Function(DG, "out_g1.xml")
707 g2_prev = interpolate(Constant(1.0), DG)
708 #g2_prev = Function(DG, "out_g2.xml")
709 g3_prev = interpolate(Constant(1.0), DG)
710 #g3_prev = Function(DG, "out_g3.xml")
711

712 phi_s = interpolate(Constant(0.3), DG)
713 #phi_s = Function(DG, "out_phi_s.xml")
714

715 #−−− Definition of model variables −−−#
716

717 # Gamma_s: tumour growth term
718 cn_g = Expression("cc > c0 ? (cc−c0) : 0", cc = cn_prev, c0 = cn0, degree=1)
719

720 def Gamma_s(phi_s, cn_g):
721 return variable (nu∗phi_s∗(phimax−phi_s)∗cn_g)
722

723 # Gn: source term for nutrients
724 ### NOTA: non e’ presente phi_l perche’ qua si intende quello che nella tesi

risulta essere Gn/phi_l
725 def Gn_l(phi_s, cn):
726 return variable(−zeta∗phi_s∗cn + Sn∗(1−cn))
727

728 Gn = Gn_l(phi_s, dcn)
729

730 # Kinematics
731 d = len(u)
732 I = SecondOrderIdentity(u) # Identity tensor
733 F = DeformationGradient(u) # Deformation gradient F_s
734 C = RightCauchyGreen(u) # Right Cauchy−Green tensor of F_s
735

736 # Growth part of F_s
737 F_g = AnisotropicGrowthTensor(u, g1, g2, g3, eig_1, eig_2, eig_3)
738 # Elastic part of F_s
739 F_e = ElasticPart(u, g1, g2, g3, eig_1, eig_2, eig_3)
740 # Elastic right Cauchy−Green
741 C_e = ElasticRCG(u, g1, g2, g3, eig_1, eig_2, eig_3)
742

743 Ic , IIc , IIIc = CauchyGreenInvariants(u)
744 Ice , IIce , IIIce = Invariants(C_e) # Invariants of elastic RCG
745 J = Jacobian(u)
746 F_k = DeformationGradient(u_prev)
747 J_k = Jacobian(u_prev)
748 J_g = Jg(u, g1, g2, g3, eig_1, eig_2, eig_3)
749 J_e = Je(u, g1, g2, g3, eig_1, eig_2, eig_3)
750 P = Pk(u, p, g1, g2, g3, eig_1, eig_2, eig_3, mu1, mu2)
751

752 #−−− Variational problem for u and p −−−#

93



753 deltat = Constant(dt)
754 L = J∗p_∗dx + deltat∗inner(Grad(p_), J∗K0∗Grad(p))∗dx − inner(P, Grad(u_))∗

dx − J_k∗p_∗dx
755 j = derivative(L, up, dup)
756 problem = NonlinearVariationalProblem(L, up, bcs, J=j)
757 solver = NonlinearVariationalSolver(problem)
758

759 prm = solver.parameters
760 #info(prm, True)
761

762 prm[’nonlinear_solver’] = ’snes’
763 prm[’snes_solver’ ][ ’ line_search’ ] = ’bt’
764

765 #prm[’snes_solver’][’absolute_tolerance’] = 1E−8
766 #prm[’snes_solver’][’ relative_tolerance ’] = 1E−7
767 prm[’snes_solver’ ][ ’maximum_iterations’] = 100
768 #prm[’snes_solver’][’relaxation_parameter’] = 1.0
769

770 prm[’snes_solver’ ][ ’ linear_solver ’ ] = ’mumps’
771 #prm[’snes_solver’][’linear_solver ’] = ’gmres’
772

773 prm[’snes_solver’ ][ ’error_on_nonconvergence’] = False
774

775 #prm[’snes_solver’][’preconditioner ’] = ’hypre_amg’
776 #prm[’snes_solver’][’krylov_solver ’][’ absolute_tolerance ’] = 1E−9
777 #prm[’snes_solver’][’krylov_solver ’][’ relative_tolerance ’] = 1E−7
778 #prm[’newton_solver’][’krylov_solver’][’maximum_iterations’] = 1000
779 prm[’snes_solver’ ][ ’krylov_solver’ ][ ’monitor_convergence’] = True
780 #prm[’newton_solver’][’krylov_solver’][’nonzero_initial_guess’] = True
781 #prm[’newton_solver’][’krylov_solver’][’gmres ’][’ restart ’] = 40
782 #prm[’newton_solver’][’krylov_solver’][’preconditioner ’][’ ilu ’][’ fill_level ’] = 0
783

784 #−−− Variational problem for nutrients −−−#
785 # Steady state solution to derive initial condition
786 dcn_staz = TrialFunction(W)
787 cn_staz = Function(W)
788 ac_staz = inner(Grad(qcn), J_k∗D0∗Grad(dcn_staz))∗dx + J_k∗

sharp_tumour_indicator∗zeta∗phi_s∗dcn_staz∗qcn∗dx + J_k∗
sharp_tumour_indicator∗Sn∗dcn_staz∗qcn∗dx

789 Lc_staz = J_k∗sharp_tumour_indicator∗Sn∗qcn∗dx
790

791 solve(ac_staz == Lc_staz, cn_staz, bcn)
792 cn_prev.assign(cn_staz)
793

794 #cn_prev = Function(W, "out_cn.xml")
795

796 # Variational problem
797 Fcn = J∗dcn∗qcn∗dx − deltat∗(1/(1−phi_s))∗inner(J∗K0∗Grad(p), Grad(dcn))∗qcn∗

dx + deltat∗inner(Grad(qcn), J∗D0∗Grad(dcn))∗dx − J∗cn_prev∗qcn∗dx −
deltat∗J∗sharp_tumour_indicator∗Gn∗qcn∗dx

798

799 ac = lhs(Fcn)
800

801 Lc = rhs(Fcn)
802

803 #−−− Files for data storing −−−#
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804

805 Jp_k = project(J_k, DG)
806 Jg_k = project(J_g, DG)
807 Je_k = project(J_e, DG)
808

809 (uu, pp) = up_prev.split()
810

811 uu.rename("u", "")
812 pp.rename("p", "")
813 phi_s.rename("phi_s", "")
814 g1_prev.rename("g1", "")
815 g2_prev.rename("g2", "")
816 g3_prev.rename("g3", "")
817 cn_prev.rename("cn", "")
818

819 ### Salvataggio in file diversi pvd
820

821 displacement_file = File("u.pvd")
822 pressure_file = File("p.pvd")
823 phi_s_file = File("phi_s.pvd")
824 g1_file = File("g1.pvd")
825 g2_file = File("g2.pvd")
826 g3_file = File("g3.pvd")
827 cn_file = File("cn.pvd")
828 Js_file = File("Js.pvd")
829 Jg_file = File("Jg.pvd")
830 Je_file = File("Je.pvd")
831

832 displacement_file << (uu, t)
833 pressure_file << (pp, t)
834 phi_s_file << (phi_s, t)
835 g1_file << (g1_prev, t)
836 g2_file << (g2_prev, t)
837 g3_file << (g3_prev, t)
838 cn_file << (cn_prev, t)
839 Js_file << (Jp_k, t)
840 Jg_file << (Jg_k, t)
841 Je_file << (Je_k, t)
842

843 #−−− Salvataggio xml −−−#
844

845 out_g1 = Function(DG)
846 out_g1_file = File("out_g1.xml")
847

848 out_g2 = Function(DG)
849 out_g2_file = File("out_g2.xml")
850

851 out_g3 = Function(DG)
852 out_g3_file = File("out_g3.xml")
853

854 out_cn = Function(W)
855 out_cn_file = File("out_cn.xml")
856

857 out_phi_s = Function(DG)
858 out_phi_s_file = File("out_phi_s.xml")
859
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860 out_p = Function(W)
861 out_p_file = File("out_p.xml")
862

863 out_u = Function(U2)
864 out_u_file = File("out_u.xml")
865

866 #−−− Loop for time stepping −−−#
867 n = 1
868 d = 0 #dimezzamenti nel tempo
869

870 while(t <= T):
871 t+= dt
872 print("Iterazione", n, "−esima", "Tempo", t)
873

874 # Solution for g1
875 ag = dg1∗(1−coeff[0]∗deltat∗(Gamma_s(phi_s, cn_g)∗

sharp_tumour_indicator/(phi_s)))∗q∗dx
876 Lg = g1_prev∗q∗dx
877 solve(ag == Lg, g1)
878

879 # Solution for g2
880 ag = dg2∗(1−coeff[1]∗deltat∗(Gamma_s(phi_s, cn_g)∗

sharp_tumour_indicator/(phi_s)))∗q∗dx
881 Lg = g2_prev∗q∗dx
882 solve(ag == Lg, g2)
883

884 # Solution for g3
885 ag = dg3∗(1−coeff[2]∗deltat∗(Gamma_s(phi_s, cn_g)∗

sharp_tumour_indicator/(phi_s)))∗q∗dx
886 Lg = g3_prev∗q∗dx
887 solve(ag == Lg, g3)
888

889 # Solution of nonlinear variational problem for u and p
890 (num_iter, conv) = solver.solve()
891

892 #Caso in cui il metodo non converge
893 if conv == 0:
894 while(conv == 0 and d < 10):
895 d = d+1
896 print("Tempo dimezzato")
897 dt = 0.5∗dt
898 t = t−dt
899 deltat = Constant(dt)
900 print("Dimezzamento", d, "−esimo", "Tempo", t)
901

902 # Solution for g1
903 ag = dg1∗(1−coeff[0]∗deltat∗(Gamma_s(phi_s, cn_g)∗

sharp_tumour_indicator/(phi_s)))∗q∗dx
904 Lg = g1_prev∗q∗dx
905 solve(ag == Lg, g1)
906

907 # Solution for g2
908 ag = dg2∗(1−coeff[1]∗deltat∗(Gamma_s(phi_s, cn_g)∗

sharp_tumour_indicator/(phi_s)))∗q∗dx
909 Lg = g2_prev∗q∗dx
910 solve(ag == Lg, g2)
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911

912 # Solution for g3
913 ag = dg3∗(1−coeff[2]∗deltat∗(Gamma_s(phi_s, cn_g)∗

sharp_tumour_indicator/(phi_s)))∗q∗dx
914 Lg = g3_prev∗q∗dx
915 solve(ag == Lg, g3)
916

917 # Solution of nonlinear variational problem for u and p
918 (num_iter, conv ) = solver.solve()
919

920 if conv == 0 & d == 10:
921 print("Non si riesce a convergere")
922 exit ()
923

924 #Caso in cui il metodo converge
925 if conv == 1:
926

927 (u, p) = up.split ()
928 Jp = project(Jacobian(u),DG)
929 Jg_k = project(J_g, DG)
930 Je_k = project(J_e, DG)
931

932 # Solution for phi_s
933

934 aphi = Jp∗dphi∗eta∗dx
935 Lphi = J_g∗phi_sn∗eta∗dx
936 solve(aphi == Lphi, phi_s)
937

938 # Solution of linear variational problem for cn
939

940 solve(ac == Lc, cn, bcn)
941

942 ### Salvataggio su file
943

944 u.rename("u", "")
945 p.rename("p", "")
946 g1.rename("g1", "")
947 g2.rename("g2", "")
948 g3.rename("g3", "")
949 cn.rename("cn", "")
950

951 if (t % 1 <= 1e−5) or (t % 1 > 0.999):
952 g1_file << (g1, t)
953 assign(out_g1, g1)
954 out_g1_file << out_g1
955

956 g2_file << (g2, t)
957 assign(out_g2, g2)
958 out_g2_file << out_g2
959

960 g3_file << (g3, t)
961 assign(out_g3, g3)
962 out_g3_file << out_g3
963

964 displacement_file << (u, t)
965 pressure_file << (p, t)
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966 Js_file << (Jp, t)
967 Jg_file << (Jg_k, t)
968 Je_file << (Je_k, t)
969 assign(out_p, p)
970 out_p_file << out_p
971 assign(out_u, u)
972 out_u_file << out_u
973

974 phi_s_file << (phi_s, t)
975 assign(out_phi_s, phi_s)
976 out_phi_s_file << out_phi_s
977

978 cn_file << (cn, t)
979 assign(out_cn, cn)
980 out_cn_file << out_cn
981

982 # Assegnazione variabili tempo precedente
983

984 g1_prev.assign(g1)
985 g2_prev.assign(g2)
986 g3_prev.assign(g3)
987 up_prev.assign(up)
988 cn_prev.assign(cn)
989

990

991 n = n+1
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