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Summary

One of the core functions of a bank is the credit risk management and one
of the most important tool for it is credit score analysis. The purpose of
the latter is to improve the procedure assessing creditworthiness during the
credit evaluation process of a client. The foremost objective is to discrimi-
nate the lending customers on the basis of their likelihood to default, that
is to identify which customers have an high likelihood of default and thus
could be insolvent, and instead which customers have a lower likelihood of
defaulting, being more likely to pay their financial obligations. The most
commonly used credit score analysis is logit regression analysis.
In this study, we devote to use Machine Learning models in the prediction
of private residential mortgage defaults. This study employs various single
classification Machine Learning methodologies including Logistic Regression,
K-Nearest Neighbors, Decision Trees, AdaBoost, XGBoost, Random Forest
and Support Vector Machine. To further improve the predictive power, a
Deep Learning technique, known as Convolutional Neural Network, widely
applied to many image processing tasks, is applied to consumer credit scoring
to see whether it still works well.
Two different data samples were used for the study: a public data sample
and a private data sample from a Swiss bank. The study of models applied
to a public data set was necessary because of the high degree of confiden-
tiality attached to the bank’s private data, and was used during the writing
of the thesis to prepare and present the work carried out at the bank as an
example. The private sample for this study, as we mentioned, is provided by
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a private data set from a Swiss bank and an oversampling technique called
SMOTE was implemented in order to treat the imbalance between classes
for the response variable.
The aim of this work is to examine which method from the mentioned set
exhibits the best performance in default prediction with regards to the cho-
sen model evaluation parameters. The results on private data showed that
by modelling the Deep Learning approach, we achieve a significant improve-
ment in the predictability performance of the model. On the other hand, the
results on public data showed that the model with the best predictive ability
is Adaptive Boosting.
The thesis is structured as follows: the first chapter is entitled "Foundations
and Basic knowledge" and presents first of all the problem of credit scoring,
after which it moves on to a theoretical description of the structure of the
Machine Learning models, illustrating mainly the concepts of Empirical Risk
Minimization, Loss function and the Bias-Complexity trade-off. The second
chapter is entitled "Theoretical presentation of the models" and its aim is a
complete theoretical treatment of each model examined during the work, as
well as the method of Feature Selection chosen, the treatment of the unbal-
ancing of the data set and the metrics of evaluation of the performance of
the models. The fourth and fifth chapters, entitled respectively "Application
Example on public data" and "Application Example on private data" con-
tain the description of the respective data sets and comments on the results
obtained from the implementation of the models. The fifth chapter, enti-
tled "Economic evaluation of model performance" contains considerations
on the misclassification costs associated with the use of the models. Finally,
the sixth chapter, "Conclusions", contains possible future work and draws
conclusions from the work done.



Chapter 1

Foundations and Basic knowledge

1.1 Credit scoring economic setting

The critical role of the mortgage market in triggering several past global
financial crises has led to a surge in policy interest, bank regulation and
academic research in credit risk modeling. Encouraged by regulators, banks
now devote significant resources in developing internal credit risk models to
better quantify expected credit losses and to assign the mandatory economic
capital. Rigorous credit risk analysis is not only of significance to lenders
and banks but is also of paramount importance for sound economic policy
making and regulation as it provides a good check on the health of a financial
system and at large, the health of economies [11],[12].
For banks to be able to weight the risk of their prospective borrower being
able to fulfill their repayments, they collect very specific information both on
the borrower, and the underlying property of the mortgage. The outcome of
these gathered data is referred to Credit Scoring, a concept emerged about 70
years ago with [13], which indicates the creditworthiness of loan applicants.
These applicants are then ranked according to their credit score for the de-
termination of their default probability and the subsequent classification into
either high default likely applicant or low default likely one [14]. Banks then
catalogue the gathered information to decide between providing a mortgage
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6 CHAPTER 1. FOUNDATIONS AND BASIC KNOWLEDGE

or not [15]. It is important to underline the fact that behind this method of
decision-making there are broader concepts such as risk aversion on the part
of the financial institution, and the opportunity cost to the institution if it
makes the wrong decision in providing the loan. Risk aversion is to some
extent governed by the capital requirements that the bank must meet. The
definition of opportunity cost, on the other hand, is the forgone benefit that
would have been derived by an option not chosen. In this specific setting
the option is designed as to provide or not a mortgage by the bank. So if
the bank, through its credit score analysis, classifies a customer incorrectly,
especially if it assigns a high probability of default to a customer who would
actually have a low one, it loses the opportunity to give a loan to a perform-
ing customer.
[16] stated that “the process of modelling creditworthiness by financial insti-
tutions is referred to as credit scoring”. Credit scoring is based on statistical
or operational research methods. Historically, linear regression has been
the most widely used techniques for building clients’ scorecards. A detailed
overview of credit scoring was presented by [17] including evaluation of pre-
vious published work on credit scoring and a review of discrimination and
classification techniques.
The regulatory changes brought by the revised Basel Accords (subsequently
adopted by national legislation in many countries and regions) introduced
stronger risk management requirements for banks. The main instruments of
these regulations are the minimum capital requirements, the supervisory con-
trol mechanisms and the market discipline. Under this new regulation, the
capital requirements are tightly coupled to estimated credit portfolio losses.
According to the Basel II/III “internal ratings-based” (IRB) approach, finan-
cial institutions are allowed to use their own internal risk measures for key
drivers of credit risk as key inputs in providing loss estimates for the mort-
gage book and in computing capital requirements [18]. To assess the bank’s
credit risk exposure and provide appropriate loss estimates for the mortgage
book, three risk measures are required: (i) the size of exposure at default,
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(ii) the probability of default and (iii) the loss given default.
Since the 70s, regulators forced financial institutions to hold minimum capital
requirements specified in the frameworks Basel I and Basel II, after which
banks were motivated to adopt a forward-looking approach to determine
credit risk. Nowadays, with the high availability of the enormous compu-
tational power, Machine Learning methodologies provides a framework that
can be used. During the era before the highly ranked computational systems
and the introduction of machine learning, credit analysts used pure judg-
mental approach to accept or reject applicant’s form, which was tended to
be based upon the view that what mattered was the 5Cs: character of the
person, capital, ie how much is being asked for, collateral, ie what is the
applicant willing to put up from their own resources, capacity, ie what is
customer repaying ability and conditions in the market.
Traditional credit scoring models applying single-period classification tech-
niques (e.g., logit, probit) to classify credit customers into different risk
groups and to estimate the probability of default are among the most popular
data mining techniques used in the industry. Classical scoring models such as
the logit regression can only provide an estimate of the lifetime probability
of default for a loan. However they cannot identify the existence of cures
and or other competing transitions and their relationship to loan-level and
macro covariates. Furthermore they do not provide insight on the timing of
default, the cure from default, the time since default and time to collateral
repossession ([19]).
Nowadays, because of the revolution of big data and its uncontroversial pos-
itive effect, machine learning approach, which mainly refers to a set of al-
gorithms designed to tackle computationally intensive pattern-recognition
problems in extremely large data sets, is definitely a very powerful tool.
The most widely algorithms used are Bagging, Boosting, and recently Deep
Learning. However, it must be kept in mind that banking institutions do not
use artificial intelligence for their credit score analysis, because regulations
do not allow it. This is because those types of models are black box models
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that do not allow to explain why a good predictive power is obtained and
therefore the most used credit score analysis tool is still logit regression.

1.2 Statistical learning framework

Machine learning is an application of Artificial Intelligence (AI) that provides
systems the ability to automatically acquire a model from data or experience,
basically building a learner, and then making this learner able to adapt to
new data without human intervention.
In this work based on supervised learning, a binary classification task was
tackled. In order to understand the meaning of these two concepts, let us
briefly describe the statistical learning framework, which consists of an input,
an output, a data-generation model and a measure of success.
With reference to [3] for the whole theoretical treatment, in the basic statis-
tical learning setting, the learner has access to the following sets:

• Domain set: it is an arbitrary set X that contains the objects that
we may wish to label. Usually, these domain points will be represented
by a vector of features and we could refer to them as instances and to
X as instance space.

• Label set: since we have dealt with supervised binary classification,
we restrict the label set to be a two-element set, usually {0, 1} or some-
times {−1, 1}. Let Y denote our set of possible labels. For our scopes,
let Y be {0, 1}, where 1 represents a client who belongs to the default
category and 0 a client who belongs to the non-default category.

• Training data: S = {(x1, y1), . . . , (xm, ym)} is a finite sequence of
pairs in X × Y , that is a sequence of labeled domain points, often
called training examples or training set. This represents the input that
the learner has access to.
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Then the learner is requested to output a prediction rule h : X → Y , which
is also called hypothesis or classifier and it can be used to predict the label
of new domain points.
It should also be explained what is ideally the process to obtain training
data. First, we assume that the instances are generated by some probability
distribution over X , whose functional form we do not know and that we call
D. It is important to highlight that the learner knows anything about this
distribution. As to the labels, in our work we assume that there exists some
"correct" labeling function f : X → Y , which is unknown to the learner, and
such that yi = f(xi) for all i. This unknown labeling function is properly
what the learner is trying to figure out and, summing up, we want to say
that each pair in the training data S is generated by first sampling a point
xi according to D and then labeling it by f .
Finally, regarding the measures of success of our classifier, we define the
error of a classifier to be the probability that it does not predict the correct
label on a random data point generated by the aforementioned underlying
distribution. Namely, the error of h is the probability to draw a random
instance x, according to the distribution D, such that h(x) does not equal
f(x). Formally, given a domain subset A ⊂ X , the probability distribution
D assigns a number D(A), which determines how likely it is to observe a
point x ∈ A. In many cases, we refer to A as an event and express it using
a function π : X → {0, 1}, that is, A = {x ∈ X : π(x) = 1}. In that case, we
also use the notation PxvD[π(x) = 1] to express D(A).
We define the error of a prediction rule, h : X → Y , to be

(1.1) L(D,f)(h)
.
= PxvD[h(x) 6= f(x)]

.
= D({x : h(x) 6= f(x)}).

That is, the error of such h is the probability of randomly choosing an exam-
ple x for which h(x) 6= f(x). The subscript (D v f) indicates that the error
is measured with respect to the probability distribution D and the correct
labeling function f . LD,f (h) is also called generalization loss, the true risk,
or the true error of h.
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1.3 Empirical Risk Minimization

As just stated, a learning algorithm receives as input a training set S, sampled
from an unknown distribution D and should output a predictor hS : X → Y ,
aiming to find the hS that minimizes the error with respect to the unknown
D and f .
Since the learner does not know what D and f are, the true error is not
directly available to the learner. Thus, the only error that can be calculated
by the learner is the training error, that is the error the classifier incurs over
the training sample:

(1.2) LS(h)
.
=
|{i ∈ {1, . . . ,m} : h(xi) 6= yi}|

m
.

The terms training error, empirical error and empirical risk are all inter-
changeable and the learning paradigm of coming up with a predictor h that
minimizes LS(h) is called Empirical Risk Minimization (ERM).
Altough the ERM rule seems very natural, this approach may fail. This
happens when the phenomenon of overfitting occurs. The definition of over-
fitting refers to the situation when our predictor has excellent performance
on the training set, but its performance on the true "world" is very poor.
So, intuitively, overfitting occurs when our hypothesis fits the training data
"too well". Then we would find conditions under which there is guarantee
that ERM does not overfit, namely conditions under which when the ERM
predictor has good performance with respect to the training data, it is also
higly likely to perform well over the underlying data distribution.
A common solution to rectify the ERM rule is to apply it over a restricted set
of predictors, called hypothesis class and denoted by H, where each h ∈ H is
a function mapping from X to Y . Such a restriction is determined before the
learner sees the training data, so it should be based on some prior knowledge
about the problem to be learned. For a given class H and a training sample
S, the ERMH learner uses the ERM rule to choose a predictor h ∈ H with
the lowest possible error over S, that is:

(1.3) ERMH(S) ∈ arg min
h∈H

LS(h).
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The simplest type of restriction on a class is imposing an upper bound on its
size, that is imposing an upper bound on the number of predictors h in H.
In such a setting, we can make the following simplifying assumption:

Definition 1.1. (The Realizability Assumption)
There exists h? ∈ H such that L(D,f)(h

?) = 0. This assumption implies that
with probability 1 over random samples S, where the instances of S are
sampled according to D and are labeled by f , we have LS(h?) = 0.

Thus the realizability assumption implies that for every ERM hypothesis
we have that, with probability 1, LS(hS) = 0. However, we are interested in
the true risk of hS , L(D,f)(hS), rather then its empirical risk and it reasonable
to assume that any guarantee on the error with respect to the underlying dis-
tribution D for our algorithm hS should depend on the relationship between
D and S. So it is common to make the following assumption:

Definition 1.2. (The i.i.d. assumption)
The examples in the training set are independently and identically distributed
(i.i.d.) according to the distribution D. That is, if m is the size of S, we
denote this assumption with S v Dm and we mean that every xi in S is
freshly sampled according to D and then labeled according to the labeling
function f .

Now we notice that since L(D,f)(hS) depends on the training set S, and
this training set is picked by a random process, both the predictor hS and
the risk L(D,f)(hS) are random variables. It is not realistic to expect that
with full certainty S will suffice to direct the learner toward a good classifier
from the point of view of D, as there is always some probability δ that the
sampled training data happens to be very nonrepresentative of the underlying
D. Then denoting with 1 − δ the confidence parameter of our prediction
and with ε the accuracy parameter, we address the probability to sample a
training set for which L(D,f)(hS) is not too large. The following result applies
in this respect.
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Corollary 1.3. Let H be a finite hypothesis class. Let δ ∈ (0, 1) and ε > 0

and let m be an integer that satisfies

(1.4) m ≥ log(|H|/δ)
ε

.

Then, for any labeling function f , and for any distribution D for which
the realizability assumption holds (that is, for some h ∈ H, L(D,f)(h) = 0),
with probability of at least 1− δ over the choice of an i.i.d. sample S of size
m, we have that for every ERM hypothesis hS it holds that

(1.5) L(D,f)(hS) ≤ ε.

Proof. We define HB = {h ∈ H : L(D,f) > ε} as the subset of the "bad"
hypothesis.
(1.6)
P[L(D,f)(hS) > ε] ≤ P[∃h ∈ H : LS(h) = 0, L(D,f) > ε] (A ⊂ B ⇒ P(A) ≤ P(B))

= P[∃h ∈ HB : LS(h) = 0] (by definition of HB)

= P
[ ⋃
h∈HB

{LS(h) = 0}
]

≤
∑
h∈HB

P[LS(h) = 0] (Union bound: P[A ∪B] ≤ P[A] + P[B])

=
∑
h∈HB

m∏
i=1

P[h(xi) = yi]

≤
∑
h∈HB

(1− ε)m = |HB|(1− ε)m,

since h ∈ HB ⇒ P[h(x) 6= y] > ε. So we have obtained that

(1.7)

P[L(D,f)(hS) > ε] ≤ |HB|(1− ε)m

≤ |H|(1− ε)m (HB ⊂ H)

≤ |H|e−εm (1− x ≤ e−x)

≤ |H|e−ε
log(|H|/δ)

ε = δ.

Then we can conclude that P[L(D,f)(hS) ≤ ε] ≥ 1− δ. �
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The preceding corollary tells us that for a sufficiently large m, the ERMH
rule over a finite hypothesis class will be probably (with confidence 1− δ) ap-
proximately (up to an error of ε) correct. We can formalize this concept with
the following definition of Probably Approximately Correct (PAC) learning.

Definition 1.4. (PAC Learnability)
A hypothesis class H is PAC learnable if there exists a function

mH : (0, 1)2 → N

and a learning algorithm with the following property:
for every ε, δ ∈ (0, 1), for every distribution D over X , and for every labeling
function f : X → {0, 1}, if the realizable assumption holds with respect
to H,D, f , then when running the learning algorithm on m ≥ mH(ε, δ) i.i.d.
samples generated by D and labeled by f , the algorithm returns a hypothesis
h such that, with probability of at least 1−δ (over the choice of the samples),
L(D,f)(h) ≤ ε.

The function mH : (0, 1)2 → N determines the sample complexity of
learning H, that is it tells us how many examples are required to guarantee
a probably approximately correct solution. Thus, we can summarize the
previous concepts in the following:

Corollary 1.5. Every finite hypothesis class is PAC learnable with sample
complexity

mH(ε, δ) ≤
⌈

log(|H|/δ)
ε

⌉
.

We now remark the fact that our goal is to find some hypothesis h : X →
Y that (probably approximately) minimizes the true risk LD(h). However it
exists an optimal predictor whose true risk is equal to zero : this is the Bayes
classifier.

Definition 1.6. (The Bayes Optimal Predictor)
Given any probability distribution D over X×{0, 1}, the best label predicting
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function from X to {0, 1} will be:

fD(x) =

1 if P[y = 1|x] ≥ 1/2

0 otherwise.

It can be proved that for every probability distribution D, the Bayes
optimal predictor fD is optimal, in the sense that no other classifier, g : X →
{0, 1} has a lower error. This means that, for every classifier g, we have
LD(fD) ≤ LD(g).
Although, we do not know D, so we cannot utilize this optimal predictor fD;
we have only access to the training sample. Thus, as natural consequence of
this fact, we can extend the definition of PAC learnability to a more realistic,
non realizable learning setup.

Definition 1.7. (Agnostic PAC learnability)
A hypothesis class H is agnostic PAC learnable if there exists a function
mH : (0, 1)2 → N and a learning algorithm with the following property: for
every ε, δ ∈ (0, 1) and for every distribution D over X × Y , when running
the learning algorithm on m ≥ mH(ε, δ) i.i.d. examples generated by D, the
algorithm returns an hypothesis h such that, with probability at least 1− δ
(over the choice of the m training samples),

LD(h) ≤ min
h′∈H

LD(h′) + ε.

Therefore, under the definition of agnostic PAC learning, a learner can still
declare success if its error is not much larger than the best error achievable
by a predictor from the class H.

1.4 Generalized Loss Functions

Since in many practical problems the realizability assumption does not hold,
we can relax it by replacing the "target labeling function" with a more flexible
notion: a data-labels generating distribution.
For a probability distribution D over X × Y we want to measure how likely
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h is to make an error when labeled points are randomly drawn according to
D. Thus we can redefine, with respect to the definition given in (5.1), the
true error (or risk) of a prediction rule (or hypothesis) h to be

(1.8) LD(h)
.
= P(x,y)vD[h(x) 6= y]

.
= D({(x, y) : h(x) 6= y}).

We would like to find a predictor h : X → Y for which the true risk LD(h)

will be minimized.
In order to accommodate a wide range of learning tasks we can generalize
our formalism of the measure of success in the following way. Given any set
H (that plays the role of our hypothesis, or models) and some domain Z let
l be any function from H × Z to the set of the non negative real numbers,
l : H × Z → R+. We call such functions loss functions and in the case of
prediction/classification problems we have that Z = X × Y .
We now define the risk function to be the expected loss of a classifier h ∈ H,
with respect to a probability distribution D over Z, namely,

(1.9) LD(h)
.
= EzvD[l(h, z)].

We mean that we consider the expectation of the loss of h over objects
z picked randomly according to D. Similarly, we define the empirical risk to
be the expected loss over a given sample S = (z1, . . . , zm) ∈ Zm, namely,

LS(h)
.
=

1

m

m∑
i=1

l(h, zi).

Moreover, when we are dealing with a classification task we use the 0-1 loss,
that has the following form:

l0−1(h, (x, y))
.
=

0 if h(x) = y

1 if h(x) 6= y.

We can note that, for a random variable α taking the values {0, 1}, it holds
that EαvD[α] = PαvD[α = 1]. Consequently, for this loss function, the defi-
nition of LD(h) given in Equation (1.9) and Equation (1.8) coincide.
If instead we handle a prediction task the loss function is

(1.10) lsq(h, (x, y))
.
= (h(x)− y)2.
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1.5 The Bias-Complexity Tradeoff

We know that unless one is careful, that training data can mislead the learner
and result in overfitting. To overcome this problem, we restricted the search
space to some hypothesis class H, that can be also viewed as reflecting some
prior knowledge that the learner has about the task. Although we can ask
ourselves: is such prior knowledge really necessary for the success of the
learning ? Maybe there exist some kind of universal learner, that is a learner
without prior knowledge about a certain task, that we can use for challenging
any task. In other words, we know that a specific learning task is defined by
an unknown distribution D over X ×Y and the goal of the learner is to find
a predictor h : X → Y whose risk LD(h) is small enough: we are wondering
if there exist a learning algorithm A and a training set size m, such that for
every distribution D, if A receives m i.i.d. samples from D, there is a high
chance it outputs a predictor h that has a low risk.
A formal way to address this question is through the No-Free-Lunch theo-
rem, which states that no such universal learner exists. More precisely, the
theorem states that for binary classification tasks, for every learner there
exists a distribution on which it fails, that is it has a large risk.

Theorem 1.8. (No-Free-Lunch)
Let A be any learning algorithm for the task of binary classification with
respect to the 0-1 loss over a domain X . Let m be any number smaller than
|X |/2, representing a training set size. Then, there exists a distribution D
over X × {0, 1} such that:

1. There exists a function f : X → {0, 1} with LD(f) = 0.

2. With probability of at least 1/7 over the choice of S v Dm we have that
LD(A(S)) ≥ 1/8.

A further question we should address is the following: how does the No-
Free-Lunch theorem result relate to the need for prior knowledge? Let us
consider an ERM predictor over the hypothesis class H of all the functions
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f such that f : X → {0, 1}. This class represents lack of prior knowledge,
since every possible function from the domain to the label set is considered
a good candidate. according to the No-Free-Lunch theorem, any algorithm
that chooses its output from hypotheses in H, and in particular the ERM
predictor, will fail on some learning task. Therefore, this class is not PAC
learnable, as formalized in the following corollary:

Corollary 1.9. Let X be an infinite domain set and let H be the set of all
functions from X to {0, 1}. Then, H is not PAC learnable.
Proof. Assume, by way of contradiction, that the class is learnable, and
choose some ε < 1/8 and δ < 1/7. by the definition of PAC learnability,
there must be some learning algorithm A and an integer m = m(ε, δ), such
that for any data-generating distribution over X ×{0, 1}, if for some function
f : X → {0, 1}, LD(f) = 0, then with probability greater than 1− δ when A
is applied to samples S of size m, generated i.i.d. by D, LD(A(S)) ≤ ε. How-
ever, applying the No-Free-Lunch theorem, since |X |> 2m, for every learning
algorithm (and in particular for the algorithm A), there exists a distribution
D such that with probability greater than 1/7 > δ, LD(A(S)) > 1/8 > ε,
which leads to the desired contradiction. �

Since we can escape the hazards foreseen by the No-Free-Lunch theorem
by using our prior knowledge about a specific learning task to avoid the
distributions that will cause us to fail when learning that task, we can express
such prior knowledge by restricting our hypothesis class.
In order to choose a good hypothesis class we decompose the error of an
ERMH predictor into two components: the approximation error and the
estimation error. Let hS be an ERMH hypothesis. Then we can write:

(1.11) LD(hS) = εapp + εest

where: εapp = min
h∈H

LD(h) and εest = LD(hS)− εapp.

The approximation error is the minimum risk achievable by a predictor in
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the hypothesis class and it measures how much risk we have because we re-
strict ourselves to a specific class, that is it measures how much inductive
bias we have. The approximation error does not depend on the sample size
and is determined by the hypothesis class chosen. Moreover, enlarging the
hypothesis class can decrease the approximation error. The estimation error,
instead, is the difference between the error achieved by the ERM predictor
and the approximation error. The estimation error results because the em-
pirical risk, that is the training error, is only an estimate of the true risk,
and so the predictor minimizing the empirical risk is only an estimate of the
predictor minimizing the true risk. The quality of this estimation depends
on both the training set size and the complexity of the hypothesis class.
Since our aim is to minimize the total risk, we face a trade off called bias-
complexity trade off. On one hand, choosing H to be a very rich class de-
creases the approximation error but simultaneously might increase the es-
timation error, as a rich H might lead to overfitting. On the other hand,
choosing H to be a very small set reduces the estimation error but might in-
crease the approximation error, that is might lead to underfitting. Of course,
a great choice forH is the class that contains the Bayes optimal classifier, but
unfortunately this optimal classifier depends on the underlying distribution
D, which is unknown to us.

1.6 Cross Validation technique

In practice we usually have one pool of examples and we split them into three
sets:

• Training set: we apply the learning algorithm with different parame-
ters on the training set S = {(x1, y1), . . . , (xm, ym)} to produce H =

h1, . . . , hr, where each model hi contains a different value for the hyper-
parameters that we want our model to learn

• Validation set: we choose h∗ from H based on the validation set and
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Figure 1.1: K-fold Cross Validation algorithm for Model Selection.

according to the validation error

• Test set: we estimate the true error of h∗ using the test set
It is important to highlight the fact that we cannot avoid the use of a test
set, as the error on the validation set is negatively biased. Moreover, if the
number of samples in the test set is too small we cannot reliably estimate the
true error of our "best" classifier h∗, thus the training-validation-test split is
to be done by choosing appropriate proportions.
One of the most widely used cross validation techniques is k-fold Cross Vali-
dation, the algorithm of which is shown in the figure 1.1. When K = |S| we
have the Leave-One-Out Cross Validation.
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Chapter 2

Theoretical presentation of the

models

2.1 Logistic Regression model

This section is developed with reference to [20]. We know that if the target
variable is categorical and takes only two values (binary classification task),
we may think of encoding it with values 0 and 1 and applying linear regres-
sion, Y = βTx + ε, where Y ∈ {0, 1} in the training set.
For a new observation x0, the predicted value will not be 0 or 1, but this
is not necessarily a issue, as we could interpret a non integer value of Y as
a probability. The actual difficulty is that we might get predictions outside
the interval [0, 1]. So in order to overcome this problem we may adopt a
nonlinear transformation mapping the output into the interval [0, 1]. This is
exactly what the logistic classifier do: it uses the logistic function

f(x) =
ex

1 + ex
,

which is a nonlinear transformation, to express the conditional probability
pi as

(2.1) P(Yi = 1|Xi = xi) =
eβ

Txi

1 + eβTxi
=

1

1 + e−βTxi
.

21
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Solving the previous equation for the exponential we gain a better inside into
the meaning of parameters βj:

eβ
Tx =

pi
1− pi

.

Then taking the logarithms of both sides and adding an error term, we obtain
the statistical model

log

(
pi

1− pi

)
= βTx + ε.

The ratio pi/(1 − pi) provides us with equivalent information in terms of
odds. The logarithm of the odds is known as a logit function, that is linear
in x in case of the logistic model.
Now we need to find a way to fit the regression coefficients against a set of
observations xi and Yi ∈ {0, 1}, i = 1, . . . , n.
The nonlinear transformation operated by the logistic function precludes
the application of straightforward least squares. So we may fit the logistic
regression model by maximum- likelihood.
The target variable Yi, which can take values yi in the set {0, 1}, may be
regarded as the realization of a Bernoulli variable, whose density probability
function is

P(Yi = yi) = pyii (1− pi)1−yi .

From the expression 2.1 for the probability pi we know that pi depends on
the regressors xi and the vector of parameters β.
Assuming independence of errors, observations are independent as well, and
the likelihood function is just the product of individual probabilities:

L =
n∏
i=1

pyii (1− pi)1−yi =
n∏
i=1

(
1

1 + e−βTxi

)yi( e−β
Txi

1 + e−βTxi

)1−yi
.

The task of maximizing L with respect to the vector of coefficients β can be
simplified by taking its logarithm and by logarithm’s properties we obtain:
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L = logL =
n∑
i=1

log

(
1

1 + e−βTxi

)
yi +

n∑
i=1

log

(
e−β

Txi

1 + e−βTxi

)
(1− yi)

=
n∑
i=1

yi

[
log

(
1

1 + e−βTxi

)
− log

(
e−β

Txi

1 + e−βTxi

)]
+ log

(
e−β

Txi

1 + e−βTxi

)
=

n∑
i=1

yi log

(
1/1 + e−β

Txi

e−βTxi/(1/1 + e−βTxi)

)
+ log

(
e−β

Txi

1 + e−βTxi

)
=

n∑
i=1

yi[log(eβ
Txi)] + log

(
e−β

Txi

1 + e−βTxi
× eβ

Txi

eβTxi

)
=

n∑
i=1

yiβ
Txi + log

(
1

1 + eβTxi

)
=

n∑
i=1

yiβ
Txi − log(1 + eβ

Txi)

(2.2)

Thus the goal is to find the vector of coefficients β that maximizes this log-
likelihood function, namely to solve this optimization problem:

β = arg max
β

L.

This is a nice optimization problem, since our objective function is con-
vex, being combination of convex functions, as we can see rewriting the
log-likelihood function in a more compact form:

L = logL =
n∑
i=1

log(pi)yi +
n∑
i=1

log(1− pi)(1− yi).

So we can apply the first-order optimality conditions :

∇βLβ = 0

and, according to the gradient descent method, obtain a solution when a
minimum is reached.



24 CHAPTER 2. THEORETICAL PRESENTATION OF THE MODELS

2.2 K-Nearest Neighbors

This section is developed with reference to [3]. Nearest Neighbor (NN)
algorithms are among the simplest of all machine learning algorithms. The
idea behind the NN model is that the model needs to store all the training
examples and then it tries to predict the label of any new instance on the
basis of the label of its closest neighbors in the training set. The rationale
behind such a method is based on the assumption that the features that are
used to describe the domain points are relevant to their labelings in a way
that makes close-by points likely to have the same label.
In short, the concept of the KNN algorithm is as follows: given a positive
integer K and a test observation x0, the KNN classifier first identifies the K
points in the training data that are closest to x0, represented by N0. It then
estimates the conditional probability for class j as the fraction of points in
N0 whose response values equal j:

(2.3) P(Y = j|X = x0) =
1

K

∑
i∈N0

I(yi = j).

Finally, KNN applies Bayes rule and classifies the test observation x0 to the
class with the largest probability.
Let us now look at the KNN algorithm from a more generalized perspective.
We assume that our instance domain, X , is endowed with a metric function
ρ. That is, ρ : X × X → R is a function that returns the distance between
any two elements of X . For example, if X = Rd then ρ can be the Euclidean
distance, ρ(x, xi) = ‖x − x′‖ =

√∑d
i=1(xi − x′i)2. However, depending on

the type of data we have, there are other popular distance measures, like the
Hamming distance, which computes the distance between binary vectors, the
Manhattan distance, which computes the distance between real vectors using
the sum of their absolute difference and finally the Minkowski distance, which
is a generalization of the previous ones.
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Figure 2.1: In this example we can see that the closest (K = 1) observation
to the new one is the blue square, so the new instance will be classified as a
blue square and not as a red triangle.

Let S = {(x1, y1), . . . , (xm, ym)} be a sequence of training samples. For each
x ∈ X , let π1(x), . . . , πm(x) be a reordering of {1, . . . ,m} (this set sometimes
will be also denoted with [m]) according to their distance to x, ρ(x, xi). That
is, ∀i < m,

ρ(x, xπi(x)) ≤ ρ(x, xπi+1(x)).

For a number K, the KNN rule for binary classification is defined as fol-
lows:

input: a training sample S = {(x1, y1), . . . , (xm, ym)}
output: for every point x ∈ X ,
return the majority label among {yπi(x) : i ≤ k}.

When k = 1, we have the 1NN rule, represented by the classifier h:

hS(x) = yπ1(x).

A geometric illustration of the 1NN rule is given in Figure 2.1.
It is also important to highlight the following aspects: the first one is that
despite the fact that it is a very simple approach, KNN can often produce
classifiers that are surprisingly close to the optimal Bayes classifier, even
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though the true distribution is not known by the KNN classifier.
The second important fact is that the choice of K has a severe effect on the
KNN classifier obtained; in fact when K = 1 the decision boundary is overly
flexible and finds patterns in the data that do not correspond to the Bayes
decision boundary. This corresponds to a classifier that has low bias but very
high variance. As K grows, the method becomes less flexible and produces a
decision boundary that is close to linear. This corresponds to a low-variance
but high-bias classifier. Thus choosing the correct level of flexibility for the
model requires to solve the bias-variance tradeoff by means, for example,
cross validation.
In order to support and prove the validity of the first statement above, we
now provide a finite-sample analysis of the 1NN rule, showing how the error
decreases as a function of the sample sizem and how it depends on properties
of the distribution. We will also explain how the analysis can be generalized
to KNN rules for arbitrary values of K. In particular, the analysis specifies
the number of examples required to achieve a true error of 2LD(h∗)+ε, where
h∗ is the Bayes optimal hypothesis.

2.2.1 A Generalization Bound for the 1NN rule

We now study the true error of the 1NN rule for binary classification task
with the 0-1 loss, that is we have Y = {0, 1} and l(h, (x, y)) = I[h(x)6=y]. We
also assume that X = [0, 1]d and ρ is the Euclidean distance.
Let us introduce some notation. Let D be a distribution over X × Y . Let
DX denote the induced marginal distribution over X and let η : Rd → R be
the conditional probability over the labels, that is

η(x) = P[y = 1|x].

Note that from a formal point of view we have that

P[y = 1|x] = lim
δ→0

D({(x′, 1) : x′ ∈ B(x, δ)})
D({(x′, y) : x′ ∈ B(x, δ), y ∈ Y})
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where B(x, δ) is a ball of radius δ centered around x.
We know that the Bayes optimal rule in a two-class problem, (that is, the
hypothesis that minimizes LD(h) over all functions h) is

h∗(x) = I[η(x)>1/2]

which corresponds to predicting class 1 if P[y = 1|x] > 0.5, and class 0
otherwise.
We assume that the conditional probability function η is c−Lipschitz for
some c > 0: namely we mean that ∀x, x′ ∈ X , |η(x) − η(x′)|≤ c‖x − x′‖.
In other words, this assumption means that if two vectors (observations) are
close to each other then their labels are likely to be the same.
The following Lemma applies the Lipschitzness of the conditional probability
function to upper bound the true error of the 1NN rule as a function of the
expected distance between each test observation and its nearest neighbor in
the training set.

Lemma 2.1. Let X = [0, 1]d, Y = {0, 1}, and D a distribution over X × Y
for which the conditional probability function η is a c-Lipschitz function.
Let S = {(x1, y1), . . . , (xm, ym)} be an i.i.d. sample and let hS be its corre-
sponding 1NN hypothesis.
Let h∗ be the Bayes optimal rule for η. Then,

ES∼Dm [LD(hS)] ≤ 2LD(h∗) + cES∼Dm,x∼D[‖x− xπ1(x)‖]

The next step is to bound the expected distance between a random ob-
servation x and its closest element in S. We first need the following general
probability lemma, which bound the probability weight of subsets that are
not hit by a random sample as a function of the size of that sample.

Lemma 2.2. Let C1, . . . , Cr be a collection of subsets of some domain set X .
Let S be a sequence of m points sampled i.i.d. according to some probability
distribution mathcalD over X . Then,

ES∼Dm
[ ∑

i:Ci∩S=∅

P[Ci]
]
≤ r

me
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Equipped with the preceding lemmas we are now ready to state and prove
the initial statement regarding the upper bound on the expected error of the
1NN learning rule.

Theorem 2.3. Let X = [0, 1]d, Y = {0, 1}, and D be a distribution over X ×
Y for which the conditional probability function η ia s c-Lipschitz function.
Let hS denote the result of applying the 1NN rule to a sample S ∼ Dm. Then,

ES∼Dm [LD(hS)] ≤ 2LD(h∗) + 4c
√
dm−

1
d+1 .

Proof. Fix some ε = 1
T
, for some T ∈ N, let r = T d and let C1, . . . , Cr be

the cover of the set X using boxes of length ε: namely, for every (α1, . . . , αd) ∈
[T ]d, there exists a set Ci of the form {x : ∀j, xj ∈ [(αj − 1)/T, αj/T ]}.
We can observe that: for each x,x′ in the same box we have ‖x−x′‖ ≤

√
dε,

otherwise, if x,x′ do not belong to the same box, we have ‖x− x′‖ ≤
√
d.

Therefore,

Ex,S [‖x− xπ1(x)‖] ≤ ES
[
P
[ ⋃
i:Ci∩S=∅

Ci

]√
d+ P

[ ⋃
i:Ci∩S6=∅

Ci

]
ε
√
d

]

and by combining the result of Lemma 2.2 with the trivial bound

P[∪i:Ci∩S6=∅ Ci] ≤ 1

and by the linearity of the expected value we get that

Ex,X [‖x− xπ1(x)‖] ≤
√
d

(
r

me
+ ε

)
.

Since the number of boxes is r = T d = (1/ε)d we get that

Ex,X [‖x− xπ1(x)‖] ≤
√
d

(
2dε−d

me
+ ε

)
.

Combining the preceding result with Lemma 2.1 we obtain that

ES [LD(hS)] ≤ 2LD(h∗) + c
√
d

(
2dε−d

me
+ ε

)
.
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Finally, setting ε = 2m−1/(d+1) and noting that

2dε−d

me
+ ε =

2d2−dmd/d+1

me
+ 2m−1/(d+1)

= m−1/(d+1)(1/ε+ 2) ≤ 4m−1/(d+1)

we conclude the proof. �

We can conclude that the theorem implies that if we first fix the data-
generating distribution and then let m go to infinity, then the error of the
1NN rule converges to twice the Bayes error. The analysis could also be gen-
eralized to larger values of K, showing that the expected error of the KNN
rule converges to (1 +

√
8/K) times the error of the Bayes classifier.

2.3 Decision Trees

This section is developed with reference to [3]. Within the classification
setting, a decision tree is a predictor

h : X → Y = {0, 1},

that predicts the label associated with an instance x by travelling from a root
node of a tree to a leaf. At each node of the root-to-leaf path, the successor
child is chosen on the basis of a splitting of the input space. Usually, the
splitting is based on one of the features of x or on a predefined set of splitting
rules and each leaf contains a specific label.
One of the main advantages of decision trees is that the resulting classifier is
very simple to understand and graphically interpret, as we can see from the
Figure 2.2.
We now present a general framework for growing a decision tree. We start
with a tree with a single leaf (the root) and assign this leaf a label according
to a majority vote among all labels over the training set. Then we perform
a series of iterations: on each iteration, we examine the effect of splitting a
single leaf. We define some "gain" measure that quantifies the improvement
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Figure 2.2: Decision Tree model to classify credit customer’s creditworthi-
ness.

due to this split. Thus, among all possible splits, we either choose the one
that maximizes the gain and perform it, or choose not to split the leaf at all.
In the following we provide a possible implementation, based on the popular
decision tree algorithm known as "ID3" ("Iterative Dichotomizer 3").The
algorithm is described for the case of binary features, namely, X = {0, 1}d,
and therefore all splitting rules are of the form I[xi=1] for some feature i ∈ [d].
Later on we also discuss the case of real valued features.
Tha algorithm works by recursive calls, with the initial call being ID3(S, [d])

and return a decision tree. In the pseudocode contained in Figure 2.3, we use
a call to a procedure Gain(S, i), which receives a training set S and an index
i and evaluates the gain of a split of the tree according to the ith feature.

2.3.1 Implementations of the Gain Measure

Now we present three different implementations of Gain(S, i).
Notation: PS[F ] denotes the probability that an event F holds with respect
to the uniform distribution over S.
Train Error: The simplest definition of gain is the decrease in training
error. Formally, let C(a) = min{a, 1 − a}. Note that the training error
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Figure 2.3: Decision Tree algorithm ID3

before splitting on feature i is

C(PS[y = 1]) = min{PS[y = 1], 1− PS[y = 1]} = min{PS[y = 1],PS[y = 0]},

since we took a majority vote among labels. Similarly, the error after splitting
on binary feature i is

PS[xi = 1]C(PS[y = 1|xi = 1]) + PS[xi = 0]C(PS[y = 1|xi = 0]).

Therefore, we can define Gain to be the difference between the two, namley,

C(PS[y = 1])−
(
PS[xi = 1]C(PS[y = 1|xi = 1])+PS[xi = 0]C(PS[y = 1|xi = 0])

)
.

Information Gain: Another popular gain measure is the information gain,
which is the difference between the entropy of the label before and after the
split, and is achieved by replacing the function C in the previous expression
by the entropy function,

C(a) = −a log(a)− (1− a) log(1− a).

Gini Index: Yet another definition of a gain is the Gini index, obtained by
means of the following function

C(a) = 2a(1− a).
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We observe that both the information gain and the Gini index are smooth and
concave upper bounds of the training error. When building a classification
tree, either the Gini index or the information gain are typically used to
evaluate the quality of a particular split , since these two approaches are
more sensitive to node purity than is the classification training error.

2.3.2 Pruning

The ID3 algorithm described previously still suffers from a big problem: the
returned tree will usually be very large. Such trees may have low empirical
risk, but their true risk will tend to be high.
However it holds that, with probability of at least 1− δ over a sample of size
m, for every n and for every decision tree h ∈ H with n nodes, we have the
following bound on the true risk associated with the classifier:

(2.4) LD(h) ≤ LS(h) +

√
(n+ 1) log2(d+ 3) + log(2/δ)

2m
,

where d is the feature space dimension.
One solution is to limit the number of iterations of ID3, leading to a tree
with a bounded number of nodes. However, an other common solution is to
prune the tree after is built, hoping to reduce it to a much smaller tree, but
still with a similar empirical error. Theoretically, according to the bound in
(2.4), if we can make n much smaller without increasing LS(h) by much, we
are likely to get a decision tree with a smaller true risk.
Usually, the pruning is performed by a bottom-up walk on the tree, in the
sense that: each node might be replaced with one of its subtrees or with a
leaf, based on some bound or estimate of LD(h) (for example, we could use
the bound in (2.4)).
A pseudocode of a common tree pruning procedure is given in Figure 2.4.
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Figure 2.4: Generic tree pruning procedure.

2.3.3 Threshold-Based Splitting Rules for real-valued

features

In the previous discussion we have described an algorithm for growing a
decision tree assuming that the features are binary and the splitting rule
are of the form I[xi=1]. We can extend this result to the case of real-valued
features and threshold-based splitting rules, that is, I[xi<θ].
The main idea is to reduce the problem to the case of binary fetures as follows.
Let x1, . . . ,xm be the instances of the training set, whose dimension is m.
for each real-valued feature i, we sort the instances so that x1,i ≤ · · · ≤ xm,i.
Then we define a set of thresholds θ0,i, . . . , θm+1,i such that θj,i ∈ (xj,i, xj+1,i)

(with the convention x0,i = −∞ and xm,i = +∞). Finally, for each i and j
we define the binary feature I[xi<θj,i]. Once we have constructed these binary
features, we can run the ID3 algorithm escribed above. To conclude, it can
be shown that for any decision tree with threshold-based splitting rules over
the original real-valued features exists a decision tree over the constructed
binary features with the same training error and the same number of nodes.
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2.4 Random Forests

This section is developed with reference to [3]. The decision trees discussed
in the previous section suffer from high variance in their results. This means
that if we split the training data into two parts at random, and fit a deci-
sion tree to both halves, the results that we get could be quite different. In
contrast, a procedure with low variance will yield similar results if applied
repeatedly to distinct data sets; for example, linear regression tends to have
low variance if the ratio of n (number of observations) and d (number of
features) is moderately large.
Bootstrap aggregation, or bagging, is a general-purpose procedure for reduc-
ing the variance of a statistical learning method. In fact we know that, given
a set of n independent observations Z1, . . . , Zn, each with variance σ2, the
variance of the mean Z̄ of the observations is given by σ2/n. In other words,
averaging a set of observations reduces variance. Hence a natural way to
reduce the variance and then increase the prediction accuracy of a statistical
learning method is to take repeated samples, we say J, from our training
set, build a separate prediction model using each bootstrapped training set,
and take a majority vote, since we are in the classification setting. In other
words, we could calculate ĥ1(x), ĥ2(x), . . . , ĥJ(x) using J separate training
sets, where ĥj(x) is the classifier (in our case a classification tree) trained us-
ing the j-th bootstrapped training set, and then take a majority vote among
all the J predictions. This means that for a given test observation, we can
record the class predicted by each of the J trees, and take a majority vote:
the overall prediction is the most commonly occurring class among the J
predictions.
Random forests provide an improvement over bagged trees by way of a small
tweak that decorrelates the trees. As in bagging, we build a number of
decision trees on bootstrapped training samples; but when building these
decision trees, each time a split in a tree is considered, a random sample of
m predictors is chosen as split candidates from the full set of d predictors.
The split is allowed to use only one of those m predictors. A fresh sample of
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m predictors is taken at each split, and typically we choose m ≈
√
d.

In other words, in building a random forests, at each split in the tree, the
algorithm is not even allowed to consider a majority of the available predic-
tors. In order to understand the reason of this concept, suppose that there is
one very strong predictor in the data set, along with a number of moderately
strong predictors. Then in the collection of bagged trees, most or all of the
trees will use this strong predictor in the top split. Consequently, all of the
bagged trees will look quite similar to each other. Hence the predictions from
the bagged trees will be highly correlated. Unfortunately, taking a majority
vote among many highly correlated quantities does not lead to as large of
a reduction in variance as taking a majority vote among many uncorrelated
quantities. In particular, this means that bagging will not lead to a substan-
tial reduction in variance over a single tree in this setting.
Random forests overcome this problem by forcing each split to consider only
a subset of the predictors. Therefore, on average (d−m)/d of the splits will
not even consider the strong predictor, and so other predictors will have more
of a chance. We can think of this process as decorrelating the trees, thereby
making the majority vote among the resulting trees less variable and hence
more reliable.
The main difference between bagging and random forests is the choice of
predictor subset size m: for instance, if a random forest is built using m = d,
then this amounts simply to bagging.
In the following a pseudocode for the Random forests algorithm is shown.
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Let D = {(x1, y1, . . . , xn, yn)} denote the training data, with
xi = (xi,1, . . . , xi,d)

T . For j = 1 to J :

1. Take a bootstrap sample Dj of size n from D.

2. Using the bootstrap sample Dj as the training data, fit a tree using
binary recursive partitioning:

(a) Start with all observations in a single node.

(b) Repeat the followuing steps recursively for each unsplit node
until the stopping criterion is met:

i. Select m predictors at random from the d availabale pre-
dictors.

ii. Find the best binary split among all binary splits on the
m predictors from step above.

iii. Split the node into two descendant nodes using the split
from previous step.

To make a prediction at a new point x, use a majority vote:

f̂(x) = arg max
y

J∑
j=1

I(ĥj(x) = y)

where ĥj(x) is the prediction of the response variable at x using the j-th
tree.

2.5 Boosting

This section is developed with reference to [3] and [20].Boosting is an-
other (with respect to the bagging) algorithmic approach for improving the
predictions resulting from a decision tree.
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Recall that bagging involves creating multiple copies of the original training
data set using the bootstrap method, fitting a separate decision tree to each
copy, and then combining all of the trees in order to create a single predictive
model. Notably, each tree is built on a bootstrap data set , independent on
the the other trees. Boosting works in a similar way, except that the trees
are grown sequentially:each tree is grown using information from previously
grown trees. Boosting does not involve bootstrap sampling; instead each tree
is fit on a modified version of the original dataset.
This approach uses a generalization of linear predictors to address two spe-
cific issues: the bias-complexity trade off and the computational complexity
of learning.
We can say that a boosting algorithm amplifies the accuracy of weak learn-
ers. Intuitively, a weak learner can be thought of as an algorithm that uses a
simple "rule of thumb" to output a hypothesis that comes from an easy-to-
learn hypothesis class and performs just slightly better than a random guess.
When a weak learner can be implemented efficiently, boosting provides a
tool for aggregating such weak hypotheses to approximate gradually good
predictors for larger, and harder to learn, classes. It is thus useful to give the
following definition:

Definition 2.4. (γ-Weak-Learnability)
• A learning algorithm A is a γ-weak-learner for a class H if there exists

a function mH : (0, 1) → N such that for every δ ∈ (0, 1), foe every
distribution D over X , and for every labeling function f : X → {±1},
if the realizable assumption holds with respect to H, D, f , then when
running the learning algorithm on mH(δ) i.i.d. samples from D and
labeled by f , the algorithms returns a hypothesis h such that, with
probability of at least 1− δ, L(D,f)(h) ≤ 1/2− γ.

• A hypothesis classH is γ-weak-learnable if there exists a γ-weak-learner
for that class.

In this section we present two boosting models: AdaBoost (which stands
for Adaptive Boosting) and XGBoost (which stands for Extreme Gradient



38 CHAPTER 2. THEORETICAL PRESENTATION OF THE MODELS

Boosting).

2.5.1 AdaBoost

The AdaBoost algorithm has access to a weak learner and outputs a low em-
pirical risk hypothesis that is a linear combination of simple hypotheses: we
mean that it relies on the family of hypothesis classes obtained by composing
a linear predictor on top of simple classes.
In more formal terms, the AdaBoost algorithm receives as input a train-
ing set of samples S = {(x1, y1), . . . , (xm, ym)} where for each i, yi = f(xi)

for some labeling function f . The boosting process proceeds in a sequence
of consecutive rounds. At round t, the booster first defines a distribution
over the samples in S, denoted D(t), that is it is such that D(t) ∈ Rm

+ and
m∑
i=1

D
(t)
i = 1. Then, the booster passes the distribution D(t) and the sample S

to the weak learner, in such a way that the weak learner can construct i.i.d.
samples according to D(t) and f . The weak learner is assumed to return a
"weak" hypothesis ht, whose error

(2.5) εt
.
= LD(t)(ht)

.
=

m∑
i=1

D
(t)
i I[ht(xi)6=yi],

is at most 1/2 − γ (obviously, there is a probability of at most δ that the
weak learner fails). Then, AdaBoost assigns a weight for ht as follows: wt =
1
2

log( 1
εt
−1). We can observe that the weight of ht is inversely proportional to

the error of ht. At the end of the round, AdaBoost updates the distribution
so that the samples on which ht errs will get a higher probability mass while
samples on which ht is correct will get a lower probability mass: intuitively,
this will force the weak learner to focus on the problematic samples in the
next round. The output of AdaBoost algorithm is a "strong" classifier that
is based on a weighted sum of all the weak hypotheses.
The pseudocode of AdaBoost is presented in the following:
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input:
training set S = {(x1, y1), . . . , (xm, ym)}
weak learner WL
number of rounds T
initialize D(1) = ( 1

m
, . . . , 1

m
).

for t = 1, . . . , T :
invoke weak learner ht = WL(D(t), S)

compute εt =
m∑
i=1

D
(t)
i I[ht(xi)6=yi]

let wt = 1
2

log( 1
εt
− 1)

update D(t+1)
i =

D
(t)
i exp(−wtyiht(xi))

m∑
j=1

D
(t)
j exp(−wtyjht(xj))

for all i = 1, . . . ,m

output: the hypothesis hS(x) = sign(
∑T

t=1wtht(x)).

2.5.2 XGBoost

XGBoost is an abbreviation of eXtreme Gradient Boosting. One of the ev-
ident advantages of XGBoost is its scalability and faster model exploration
due to the parallel and distributed computing [4].In order to understand
XGBoost’s algorithm, some basic introduction to how tree boosting methods
works will be presented.
Letm be the number of samples in the dataset with p features S = {(xi, yi)}mi=1

(|S|= m, xi ∈ Rd and yi ∈ {0, 1}). To predict the output, M additive label-
ing functions are being used

(2.6) φ(xi) =
M∑
k=1

fk(xi), fk ∈ F , F = {f(x) = wq(x)},

where F is the classification trees’ space, q represents the structure of each
tree that maps an example to the corresponding leaf index, that is q : Rd →
T , w ∈ RM . Further, T is the number of leaves in the tree, each fk cor-
responds to an independent tree structure q and leaf weights w, which can
also be viewed as a score for ith leaf, wi. Learning is being executed by
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minimization of the following regularized objective:

(2.7) L(φ) =
m∑
i=1

l(yi, φ(xi)) +
K∑
k=1

Ω(fk),

where Ω(fk) is defined as follows

(2.8) Ω(fk) = γT +
1

2
λ

T∑
j=1

w2
j .

Here l is a differentiable convex loss function that measures the difference
between the prediction φ(xi) and the target yi. Instead the second term Ω

penalizes the complexity of the model by the parameter γ, which penalizes the
number of leaves, and by the parameter λ, which penalizes the leaf weights
and helps to avoid overfitting. Intuitively, the regularized object will tend to
select a model employing simple and predictive functions.
The tree ensemble model in Eq. 2.7 includes functions as parameters and
cannot be optimized using traditional optimization methods in euclidean
space. Instead the model is trained in an additive manner. formally, let
φ(xi)

(t) be the prediction of the ith observation at the tth iteration, then we
will need to add ft to minimize the following objective

(2.9) L(t) =
m∑
i=1

l(yi, φ(xi)
(t−1) + ft(xi)) + Ω(ft)

where ft is chosen greedily so that it improves the model the most. Second-
order approximation can be used to quickly optimize the objective in the
general setting

(2.10) L(t) '
m∑
i=1

[l(yi, φ(xi)
(t−1)) + gift(xi) +

1

2
hif

2
t (xi)] + Ω(ft)

where gi = ∂φ(xi)(t−1)l(yi, φ(xi)
(t−1)) and hi = ∂2

φ(xi)(t−1)l(yi, φ(xi)
(t−1)) are the

second order gradient statistics on the loss function. We can remove the
constant terms to obtain the following simplified objective at step t

(2.11) L̃(t) =
m∑
i=1

[gift(xi) +
1

2
hif

2
t (xi)] + γT +

1

2
λ

T∑
j=1

w2
j .
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Define Ij = {i|q(xi) = j} as the instance set of leaf j. We can rewrite the
equation above as follows

(2.12) L̃(t) =
m∑
i=1

[(
∑
i∈Ij

gi)wj +
1

2
(
∑
i∈Ij

hi + λ)w2
j ] + γT.

Now, the expression for the optimal weight w∗j can be derived from 2.12

(2.13) w∗j = −
∑

i∈Ij gi∑
i∈Ij hi + λ

.

Thus, the optimal value is given by

(2.14) L̃(t)(q) = −1

2

T∑
j

(
∑

i∈Ij gi)
2∑

i∈Ij hi + λ
+ γT.

Eq. 2.14 can be used as a scoring function to measure the quality of a tree
structure q. This score is like the impurity score for evaluating decision trees,
except that it is derived for a wider range of objective functions.
Normally it is impossible to enumerate all the possible tree structures q. A
greedy algorithm that starts from a single leaf and iteratively adds branches
to the tree is used instead. Assume that IL and IR are the instance sets of left
and right nodes after the split. Letting I = IL ∪ IR, then the loss reduction
after the split is given by

(2.15) Lsplit =
1

2

[
(
∑

i∈IL gi)
2∑

i∈IL hi + λ
+

(
∑

i∈IR gi)
2∑

i∈IR hi + λ
−

(
∑

i∈I gi)
2∑

i∈I hi + λ

]
−γ.

This formula is usually used in practice for evaluating the split candidates.

2.6 Support Vector Machines

This section is developed with reference to [1]. The Support Vector Ma-
chine paradigm is a very useful machine learning tool for learning linear
predictors in high dimensional feature spaces. The high dimensionality of
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the feature space addresses both sample complexity and computational com-
plexity challenges. The former challenge is takcled by searching for "large
margin" separators, that is we mean the following concept: a halfspace sep-
arates a training set with a large margin if all the examples are not only on
the correct side of the separating hyperplane but also far away from it. Re-
stricting the algorithm to output a large margin separator can yield a small
sample complexity even if the dimensionality of the feature space is high.
The latter challenge instead is tackled exploiting the idea of kernels.

2.6.1 Margin and Hard-SVM

Let S = {(x1, y1), . . . , (xm, ym)} be a training set of examples, where each
xi ∈ Rd and yi ∈ {±1}. The training set is said linearly separable if there
exists a halfspace, (w, b), such that yi = sign(<w, xi> + b) for all i. An
alternative way to write this condition is the following

(2.16) ∀i = 1, . . . ,m yi(<w, xi>+ b) > 0.

All halfspaces (w, b) that satisfy this condition are ERM hypotheses; for any
separable training sample, there are many ERM halfspaces: the margin is
the key idea to understand how the learner chooses which of them to pick.
The margin of a hyperplane with respect to a training set is defined to be the
minimal distance betweeen a point in the training set and the hyperplane.
If a hyperplane has a large margin, then it will still separate the training set
even if we slightly perturb each instance.
Hard-SVM is the learning rule in which we return an ERM hyperplane that
separates the training set with the largest possible margin. To formally define
Hard-SVM, we first state and demonstrate the following claim:

Proposition 2.5. The distance between a point x and the hyperplane defined
by (w, b) where ||w|| = 1 is |<w, x>+ b|.
Proof. We can define the distance between a point x and the hyperplane as

min{||x− v|| : <w, v>+ b = 0}.
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Taking v = x− (<w, x>+ b) we have that

<w, x>+ b = <w, x>− (<w, x>+ b)||w||2 + b = 0,

and
||x− v|| = |<w, x>+ b|||w|| = |<w, x>+ b|.

Hence, the distance is at most |<w, x> + b|. Now, taking any other point u
on the hyperprlane, thus a point such that <w, u>+ b = 0, we have that

||x− u||2 = ||x− v + v − u||2

= ||x− v||2 + ||v − u||2 + 2<x− v, v − u>

≥ ||x− v||2 + 2<x− v, v − u>

= ||x− v||2 + 2(<w, x>+ b)<w, v − u>

= ||x− v||2,

where the last equality is beacuse <w, v> = <w, u> = −b. Hence, the dis-
tance between x and u is at least the distance between x and v, which con-
cludes our proof. �

On the basis of the preceding proposition, we can conclude that the
closest point in the training set to the separating hyperplane is given by
mini=1,...,m|<w, xi>+ b|. Therefore, the Hard-SVM rule is

argmax(w,b):||w||=1 min
i=1,...,m

|<w, xi>+ b| s.t. ∀i, yi(<w, xi>+ b) > 0.

We add the fact that whenever we are in the separable case, we can write an
equivalent problem:

(2.17) argmax(w,b):||w||=1 min
i=1,...,m

yi(<w, xi>+ b).

Furthermore, we can give another equivalent formulation of the Hard-SVM
rule as a quadratic optimization problem:

(2.18) (w0, b0) = argmin(w,b) ||w||2 s.t. ∀i, yi(<w, xi>+ b) ≥ 1
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where the ouput is represented by ŵ = w0

||w0|| and b̂ = b0
||b0|| . At this point we

can show that the output of Hard-SVM is indeed the separating hyperplane
with largest margin. Intuitively, the algorithm searches for w of minimal
norm among all the vectors that separate the data and for which |<w, xi>+

b|≥ 1, ∀i. In other words, finding the largest margin halfspace boils down to
finding w whose norm is minimal.Thus it holds that:

Lemma 2.6. The output of Hard-SVM is a solution of the optimization
problem (2.17).
Proof. Let (w∗, b∗) be a solution of the optimization problem (2.17) and
define the margin achieved by (w∗, b∗) to be γ∗ = mini=1,...,m yi(<w

∗, xi>+b∗).
Therefore, for all i we have that

yi(<w
∗, xi>+ b∗) ≥ γ∗

which is equivalent to

yi

(
<
w∗

γ∗
, xi>+

b∗

γ∗

)
≥ 1.

Hence, the pair
(
w∗

γ∗
, b
∗

γ∗

)
satisfies the conditions of the quadratic optimization

problem (2.18). Therefore, ||w0|| ≤
∣∣w∗
γ∗

∣∣= 1
γ∗
. It follows that for all i,

yi(<ŵ, xi>+ b̂) =
1

||w0||
yi(<w0, xi>+ b0) ≥

1

||w0||
≥ γ∗.

Finally, knowing that ||ŵ|| = 1 we obtain that (ŵ, b̂) is an optimal solution
of Eq.(2.17). �

2.6.2 Soft-SVM and Norm Regularization

The strong assumption that is made by the Hard-SVM formulation is that
the training set is linearly separable: Soft-SVM can be viewed as a relax-
ation of the Hard-SVM rule that can be applied even if the training set is
not linearly separable.
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Since the optimization problem in (2.18) enforces the hard constraints yi(<w, xi>+

b) ≥ 1, ∀i, a natural relaxation is to allow the constraint to be violated for
some of the examples in the training dataset. We can model this idea by intro-
ducing nonnegative slack variables, ξ1, . . . , ξm, and replacing each constraint
yi(<w, xi>+ b) ≥ 1 by the constraint yi(<w, xi>+ b) ≥ 1− ξi. The meaning
of ξi is the measurement of how much the constraint yi(<w, xi> + b) ≥ 1 is
being violated. Soft-SVM jointly minimizes the norm of w (representing the
margin) and the average of ξi (representing the violations of the constraints).
The trade off between the two terms is controlled by a parameter λ, so that
the overall optimization problem, whose output is always the pair (w, b), has
the following form:

(2.19) min
w,b,ξ

(
λ||w||2 +

1

m

m∑
i=1

ξi

)
s.t. ∀i, yi(<w, xi>+ b) ≥ 1− ξi, ξi ≥ 0.

2.6.3 Duality

For simplicity we consider homogeneous halfspaces, that is halfspaces that
pass through the origin and are thus defined by sign(<w, x>), where the
bias term b is set to zero. Hard-SVM for homogeneous halfspaces amounts
to solving the following problem:

(2.20) min
w
||w||2 s.t. ∀i, yi<w, xi> ≥ 1.

Note that we can reduce the problem of learning nonhomogeneous halfspaces
to the problem of learning homogeneous halfspaces by adding one more fea-
ture to each instance of xi, thus increasing the dimension to d+ 1.
Now we want to derive the dual problem of Eq. (2.20) to prepare for the
discussion of the kernel trick concept.
We start by rewriting the problem in an equivalent form, considering first
the function

g(w) = max
α∈Rm:α≥0

m∑
i=1

αi(1− yi<w, xi>) =

0 if ∀i, yi<w, xi> ≥ 1

∞ otherwise
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and then rewriting Eq.(2.20) as

(2.21) min
w

(||w||2 + g(w)).

Rearranging the preceding we obtain another formulation of Eq.(2.20)

(2.22) min
w

max
α∈Rm:α≥0

(
1

2
||w||2 +

m∑
i=1

αi(1− yi<w, xi>)

)
.

Supposing we flip the order of min and max and knowing that this can only
decrease the objective value, we have that

min
w

max
α∈Rm:α≥0

(
1

2
||w||2 +

m∑
i=1

αi(1− yi<w, xi>)

)
≥ max

α∈Rm:α≥0
min
w

(
1

2
||w||2 +

m∑
i=1

αi(1− yi<w, xi>)

)
.

This inequality is called weak duality and it holds that in this specific case,
since the problem is convex and Slater’s conditions hold, the strong dual-
ity also holds, thus the inequality holds with equality. Therefore the dual
problem is

(2.23) max
α∈Rm:α≥0

min
w

(
1

2
||w||2 +

m∑
i=1

αi(1− yi<w, xi>)

)
.

We notice that we can simplify the dual problem: once α, which is actually
a Lagrangian multiplier, is fixed, the optimization problem with respect to
w is unconstrained and the objective function is differentiable. Thus, taking
the gradient with respect to w of the Lagrangian function, we obtain that at
the optimum the gradient equals zero:

w −
m∑
i=1

αiyixi = 0 ⇒ w =
m∑
i=1

αiyixi.

This show us that the solution must be in the linear span of the examples
and this fact is the key concept for the kernel trick.
Finally, plugging the previous result into Eq.(2.23) we can rewrite the dual
problem as

(2.24) max
α∈Rm:α≥0

(
1

2

∣∣∣∣∣∣∣∣ m∑
i=1

αiyixi

∣∣∣∣∣∣∣∣2+ m∑
i=1

αi

(
1− yi<

m∑
j=1

αjyjxj, xi>

))
.
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Rearranging yields the dual problem

(2.25) max
α∈Rm:α≥0

( m∑
i=1

αi −
1

2

m∑
i=1

m∑
j=1

αiαjyiyj<xj, xi>

)
.

Note that the dual problem and its solution as well only involve inner prod-
ucts between instances and does not require direct access to specific elements
within an instance. This property is essential to introduce kernels for SVM.

2.6.4 SVM with Kernels

The support vector classifier described so far finds linear boundaries in the
input feature space. Although we can make the procedure more flexible by
enlarging the feature space using basis expansions such as polynomials or
splines. Generally linear boundaries in the enlarged space achieve better
training-class separation and translate nonlinear boundaries in the original
space. Once the basis functions hk(x), k = 1, . . . , K are selected, the pro-
cedure is always the same: we fit the SVM classifier using input features
h(xi) = (h1(xi), . . . , hk(xi)), for i = 1, . . . ,m, and produce the (nonlinear)
function f̂(x) = <w, h(x)>+ b.

Recalling the fact that the optimization problem (2.25) and its solution only
involve the input features via inner products, we can directly enter the trans-
formed feature vectors h(xi) in turn of xi in the problem formulation, ob-
taining a generalization of the previous inner product. Thus the objective
function of (2.25) now becomes

(2.26)
m∑
i=1

αi −
1

2

m∑
i=1

m∑
j=1

αiαjyiyj<h(xj), h(xi)>.

the advantage of this trick is that, since h(xi) is involved only through inner
products, we need not specify the transformation h(xi) at all, but require
only knowledge of the kernel function

K(xi, xj) = <h(xi), h(xj)>
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that computes inner products in the transformed space. We can think of a
kernel as a function that quantifies the similarity of two observations. Three
popular choices for K in the SVM literature are

• dth-Degree polynomial : K(xi, xj) = (1 +<xi, xj>)d

• Radial basis: K(xi, xj) = exp(−γ||xi − xj||2)
• Neural Network: K(xi, xj) = tanh(k1<xi, xj>+ k2).

Finally, let us emphasise what the advantage of using kernels is: we have a
computational advantage, as using kernels one only need to computeK(xi, xj)

for all
(
m
2

)
distinct pairs i, j and this can be done without explicitly working

in the enlarged feature space, as instead we should do if we simply enlarged
the feature space using functions of the original features.

2.7 Convolutional Neural Network

Computer vision is a subfield of deep learning which deals with images on
all scales and it allows the computer to process and understand the content of
a large number of pictures through an automatic process. the main architec-
ture behind Computer vision is the Convolutional Neural Network, which is
a derivative of feedforward neural networks. Its applications are very various
such as image classification, object detection, neural style transfer and so on.
In particular in this study, as in [21], we want to transform the training data
matrix into a grey scale image and then implement a binary classification.
More details on this procedure will be given later, for now let us see the
theoretical description of CNN, with reference to [22].

2.7.1 Filter processing

The first processing of images was based on filters which allowed, for instance,
to get the edges of an object in an image using the combination of vertical-
edge and horizontal-edge filters.
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Figure 2.5: We apply a vertical edge filter to a greyscale 6x6 image. We carry
out the elementwise multiplication on the first 3x3 block of the matrix and
then we consider the following block on the right. We repeat the procedure
until we have covered all the potential blocks.

From a mathematical point of view, the vertical edge filter, VEF, is defined
as follows:

V EF =


1 0 −1

1 0 −1

1 0 −1

 = HEFT

where HEF stands for the horizontal edge filter.
To give a simple example, we consider grayscale 6x6 image A, represented
by a 2D matrix where the value of each element represents the amount of
light in the corresponding pixel. In order to extract the vertical edges from
this image, we carry out a convolutional product (?), which is basically the
sum of the elementwise product in each block. We carry out the elementwise
multiplication on the first 3x3 block of the matrix A and then we consider
the following block on the right. We repeat the filter application until we
have covered all the potential blocks. A graphic representation of this idea
is given in the Figure 2.5.
We can sum up the previous process in the following steps:

Image −→ Specific filter −→ Edges.
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Figure 2.6: Diagram of a neural network which takes the image as an input,
learns the parameters wi and outputs a defined target.

Given this example, we can think of using tha same process for any objective
where the filter is learned in by neaural network as represented in the diagram
in Figure 2.6. The main intuition behind a convolutional neural network is to
set a neural network which takesthe image as an input and outputs a defined
target to classify it. The parameters wi are learned using backpropagation
technique.

2.7.2 Definition of convolutional neural network

A convolutional neural network is a serie of convolutional and pooling layers
which allow extracting the main features from the images responding the
best to the final objective, which is in our specific task, binary classification.
Convolution product

Before we explicitly define the convolution product, we first start by defining
some basic operations such as the padding and the stride.

Padding
As we have seen in the convolutional product using the vertical edge filter,
the pixels on the corner of the image, which is our 2D matrix, are less used
than the pixels in the middle of the picture and this means that the infor-
mation from the edges is thrown away. To solve this problem, we often add
a padding around the image in order to take the pixels on the edges into
account. In convention, we padde with zeros and denote with p the padding
parameter, which represents the number of elements added on each of the
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Figure 2.7: We zero pad the image with 1 pixel border.

four sides of the image.
Figure 2.7 illustrates the padding of a greyscale image where p = 1.
Stride
The stride is the step taken in the convolutional product and it holds that a
large stride allows to shrink the size of the output and vice-versa. We denote
with s the stride parameter. For instance, we can observe that in Figure 2.5
the convolutional product is applied with a stride s = 1.
Convolution
Once we have defined the stride and the padding we can define the convo-
lution product between a tensor and a filter. So far we have defined the
convolution product on a 2D matrix as the sum of the elementwise product;
now we can formally define the convolution product on a volume.
An image, in general, can be formally represented as a tensor with the fol-
lowing dimensions:

dim(image) = (nH , nW , nC)

where nH is the size of the Height, nW is the size of the Width and nC is the
number of Channels.
In case of a RGB image, for instance, we have nC = 3, Red, Green and Blue.
In convention, we consider the filter K to be squared and to have an odd
dimension denoted by f which allows each pixel to be centered in the filter
and thus consider all elements around it. Furthermore, when operating the
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convolutional product, the filter, namely the kernel K, must have the same
number of channels nC as the image, so that we apply a different filter to
each channel. Thus the dimension of the filter is as follows:

dim(filter) = (f, f, nC).

From a mathematical point of view, for a given image I and filter K, their
convolutional product has the form

(I ? K)x,y =

nH∑
i=1

nW∑
j=1

nC∑
k=1

Ki,j,kIx+i−1,y+j−1,k

We also obtain that the filter dimension is as follows:

dim((I ? K)) =

(⌊
nH + 2p− f

s
+ 1

⌋
,

⌊
nW + 2p− f

s
+ 1

⌋)
; s > 0

= (nH + 2p− f, nW + 2p− f); s = 0

where bxc is the floor function of x. There are some special types of convo-
lution:

• Valid convolution: p = 0.
• Same convolution: output size=input size and p = f−1

2
.

• 1x1 convolution: f = 1, it might be useful in some cases to shrink the
number of channels nc without changing the other dimensions (nH , nW ).

In Figure 2.8 is represented the convolutional product between the image and
the filter as a 2D matrix where each element is the sum of the elementwise
multiplication of the filter, which is a cube and the submatrix of the given
image, which is in turn a subcube.

Pooling
Pooling is the step of downsampling the image’s features through summing
up the information. This operation is carried out through each channel and
thus it only affects the dimensions (nH , nW ) and keeps nC intact.
The pooling operation consists of: given an image, we slide a filter without
parameters to learn, follwing a certain stride, and we apply a function on the
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Figure 2.8: The convolutional product between the image and the filter is a
2D matrix where each element is the sum of the elementwise multiplication
of the cube (filter) and the subcube of the given image.

selected elements. We have:

dim(pooling(image)) =

(⌊
nH + 2p− f

s
+ 1

⌋
,

⌊
nW + 2p− f

s
+ 1

⌋
, nC

)
; s > 0

= (nH + 2p− f, nW + 2p− f, nC); s = 0

where, in convention, we consider a squared filter with size f and we usually
set f = 2 and consider s = 2. We often apply the following functions on the
resulting elements after the filter application:

• Average pooling: we average on the elements present on the filter
• Max pooling: given all the elements in the filter, we return the maxi-

mum.

In Fig. 2.9 is illustrated how the average and max pooling work.

Now we explain how to construct a convolutional neural network layer per
layer.
One layer of a CNN

The convolutional neural network contains three types of layers:

• Convolutional layer - CONV- followed with an activation function
• Pooling layer -POOL
• Fully connected layer -FC- layer which is basically a layer similar to
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Figure 2.9: We can see that the average pooling takes the average on the
elements present on the filter, instead the max pooling takes their maximum.

one from a feedforward neural network.

Convolutional layer
As we have seen before, at the convolutional layer level, we apply convolu-
tional products using different filters, on the input followed by an activation
function ψ. In particular, at the lth layer, we denote:

• Input: a[l−1] with size (n
[l−1]
H , n

[l−1]
W , n

[l−1]
C ). Let be a[0] the image in the

input

• Padding: p[l], stride: s[l]

• Number of filters: n
[l]
C , where each filter K(n) has the dimension

(f [l], f [l], n
[l−1]
C )

• Bias of the nth convolution: b[l]n

• Activation function: ψ[l]

• Output: a[l] with size (n
[l]
H , n

[l]
W , n

[l]
C )

Thus the output a[l] for the lth layer is obtained as follows: we apply the non
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linear activation function to the sum of the convolutional product between
the filter and the input image and the bias term, so we have that

∀n ∈ [1, 2, . . . , n
[l]
C ]

(a[l−1] ? K(n))x,y =

n
[l−1]
H∑
i=1

n
[l−1]
W∑
j=1

n
[l−1]
C∑
k=1

K
(n)
i,j,ka

[l−1]
x+i−1,y+j−1,k + b[l]n

dim(a[l−1] ? K(n)) = (n
[l]
H , n

[l]
W )

a[l] = [ψ[l](a[l−1] ? K(1)), ψ[l](a[l−1] ? K(2)), . . . , ψ[l](a[l−1] ? K(n
[l]
C ))]

dim(a[l]) = (n
[l]
H , n

[l]
W , n

[l]
C )

where

n
[l]
H/W =

⌊
n
[l−1]
H/W + 2p[l] − f [l]

s[l]
+ 1

⌋
; s > 0

= (n
[l−1]
H/W + 2p[l] − f [l]); s = 0

n
[l]
C = number of filters

So, the learned parameters at the lth layer are the filters, for which we have
to learn (f [l]× f [l]×n[l−1]

C )×n[l]
C parameters, and the bias, for which we have

to learn (1× 1× 1)× n[l]
C broadcasting parameters.

In Fig.2.10 we show a graphic representation of how the convolutional layer
works.

Pooling layer
The function of the pooling layer is to progressively reduce the spatial size
of the representation to reduce the amount of parameters and computation
in the network, and hence to also control overfitting. It is important to
emphasise that no learning takes place on the pooling layers.
When we consider the lth pooling layer, we refer to the following notation:

• Input: a[l−1] with size (n
[l−1]
H , n

[l−1]
W , n

[l−1]
C ). Let be a[0] the image in the

input
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Figure 2.10: Convolutional layer graphic representation.

• Padding: p[l], but is rarely used, stride: s[l]

• Pooling function: φ[l], which can be a max-pooling or an average
pooling function

• Output: a[l] with size (n
[l]
H , n

[l]
W , n

[l]
C = n

[l−1]
C ), since the pooling layer

aims at downsampling the features of the input without impacting the
number of the channels.

We can assert that:

pool(a[l−1])x, y, z = φ[l]((a
[l−1]
x+i−1,y+j−1,z)(i,j)∈[1,2,...,f [l]]2)dim(a[l]) = (n

[l]
H , n

[l]
W , n

[l]
C )

with

n
[l]
H/W =

⌊
n
[l−1]
H/W + 2p[l] − f [l]

s[l]
+ 1

⌋
; s > 0

= (n
[l−1]
H/W + 2p[l] − f [l]); s = 0

n
[l]
C = n

[l−1]
C .

In Fig.2.11 we show a graphic representation of how the pooling layer works.

Fully connected layer
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Figure 2.11: Pooling layer graphic representation.

A fully connected layer is a finite number of neurons which takes in input a
vector a[i−1] and returns a vector a[i]. In general, considering the jth node of
the ith layer we have the following equations:

z
[i]
j =

ni−1∑
l=1

w
[i]
j,la

[i−1]
l + b

[i]
j

a
[i]
j = ψ[i](zij)

where w[i]
j,l are the standard weights of a Multi Layer Perceptron, b[i]j is the bias

term and ψ[i] is the activation function. The input a[i−1] might be the result
of a convolutional or a pooling layer with the dimensions (n

[i−1]
H , n

[i−1]
W , n

[i−1]
C ).

Furthermore, in order to be able to plug the input into the fully connected
layer we flatten the tensor to a 1D vector having dimension
(n

[i−1]
H × n[i−1]

W × n[i−1]
C , 1), namely ni−1 = n

[i−1]
H × n[i−1]

W × n[i−1]
C .

Thus, the learned parameters at the lth layer are:

• Weights wj,l with nl−1 × nl parameters

• Bias with nl parameters.

In Figure 2.12 we sum up the structure of the fully connected layer.
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Figure 2.12: Fully connected layer graphic representation.

Finally, to summarise how a CNN works, we can say that in general, a
convolutional neural network is a serie of operations: after repeating a serie
of convolutions followed by activation function, we apply a pooling fucntion
and repeat this process a certain number of time (specified at training time).
These operations allow to extract features from the image which will be fed to
a neural network described by the fully connected layers, which are regulary
followed by activation function as well. The main idea behind the process
is to decrease nH and nW and increase nC when going deeper through the
network. In Figure 2.13 is shown the synthetic structure of a CNN.
To conclude, convolutional neural networks enable the state of the art re-
sults in image processing for two main reasons: the first is parameter sharing
property, since a feature detector in the convolutional layer which is useful
in one part of the image, might be useful in other ones, and the second is
the sparsity of connections property, since in each layer, each output value
depends only on a small number of inputs.
In this study, we design a method to transfer every instance of our data set
into a pixel matrix, which can be seen as a grey scale image. For each obser-
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Figure 2.13: CNN structure graphic representation.

vation xi = {xi1, xi2, ..., xid}, where d is the number of features in the feature
space, we first discretize the continuous variables into categorical ones with
k values. Then we reshape every xij into a binary value vector {l1, l2, ..., lk}.

(2.27) li =

1, when xij fall into the ith category

0, otherwise.

After the transformation, every observation corresponds to a labeled grey
image withe the dimension k × d:

(2.28) yi +


0 . . . 1
... . . . ...
1 . . . 0


Thus, the CNN receives the input image and performs the classification task.

2.8 Feature Selection Methods

Often, in a high dimensional dataset, there remain some entirely irrelevant,
insignificant and unimportant features. It has been seen that the contribu-
tion of these types of features is often less towards predictive modeling as
compared to the critical features or even they may have zero contribution.
these features cause a number of problems which in turn prevents the process
of efficient predictive modeling, for example:

• Unnecessary resource allocation for these features.
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• These features act as a noise for which the machine learning model can
perform terribly poorly.

• The machine model takes more time to get trained.
Thus the solution is to exploit Feature Selection techniques. Feature Selection
in the process of selecting out the most significant features from a given
dataset and, in many of the cases, it can enhance the performance of a
machine learning model, reducing overfitting and the model’s complexity,
making it easier to interpret.
There are several types of feature selection methods and they can be classified
into: Filter methods, Wrapper methods and Embedded methods. Given the
large size of the dataset under study, we have chosen to use a filter method,
which by definition does not incorporate a machine learning model in order
to determine if a feature is good or bad, unlike wrapper methods, and for this
reason is much faster compared to a wrapper method as it does not involve
training a model. Among the different filter methods we chose to use the
SelectKBest method.
SelectKBest selects features according to the k highest scores obtained from a
specific univariate statistical test. Both the value of the parameter k and the
statistical test are specified by the user. Due to our classification purposes,
as score function we used the Mutual Information.
In general the Mutual Information between two random variables is a non-
negative value which measures the dependecy between the variables: it is
equal to zero if and only if two random variables are independent, and it
holds that higher values mean higher dependency. This property is due to
the mathematical definition of the Mutual Information, that involves the
Kullback-Leibler divergence. We have that:

Definition 2.7. Let (X, Y ) be a pair of random variables with values over the
space X×Y . If their joint distribution is P(X,Y ) and the marginal distributions
are PX and PY , the Mutual Information is defined as

(2.29) I(X, Y ) = DKL(P(X,Y )||PX · PY )

where DKL is the KullBack-Leibler divergence.
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Let P and Q be two (discrete) probability distributions defined on the
same probability space X . The Kullback-Leibler divergence is a measure of
how the first probability distribution is different from the second one and it
is defined as the relative entropy of P with respect to Q:

(2.30) DKL(P||Q) =
∑
x∈X

P(x) log

(
P(x)

Q(x)

)
or, in other words, it is the expectation of the logarithmic difference between
the two probability distributions, also called information gain in machine
learning.

2.9 Treatment of imbalanced data with SMOTE

In the data provided, a heavy class imbalance exhibits. An imbalanced data
set contains of observations where the classes of the response variable are not
approximately equally represented. The imbalance causes a problem when
training machine learning algorithms since one of the categories is almost
absent, hence poor predictions of new observations of the minority class are
expected. In order to increase the performance of the algorithms there are
different sampling techniques that can be used. We chose to use SMOTE,
which stands for Synthetic Minority Over-sampling Technique. This is an
over-sampling approach in which the minority class is over-sampled by cre-
ating "synthetic" examples rather than by over-sampling with replacement
[5]. In SMOTE algorithm the minority class is over-sampled by taking each
minority class sample and introducing synthetic examples along the line seg-
ments joining any/all of the k minority class nearest neighbors. Depending
upon the amount of over-sampling required, neighbors from the k nearest
neighbors are randomly chosen. Synthetic samples are generated in the fol-
lowing way:

1. Take the k nearest neighbors (that belong to the same class) of the
considered sample
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Figure 2.14: Example of a result using SMOTE algorithm.

2. Randomly choose n samples of these k neighbors. The number n is
based on the requirement of the over-sampling, for example if 200% is
required, then n=2

3. Compute differences between the feature vector of the considered sam-
ple and each of the n neighbor feature vectors

4. Multiply each of the differences with a random number between 0 and
1

5. Add these numbers separately to the feature vector of the considered
sample in order to create n new synthetic samples

6. Return new synthetic samples.

A graphical example of a result using the SMOTE algorithm is shown in
Figure 2.14. The advantage of using the SMOTE algorithm is that the syn-
thetic examples cause the classifier to create larger and less specific decision
regions rather than smaller and specific ones. More general regions are thus
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learned for the minority class samples rather than those being subsumed by
the majority class samples around them. The effect is that the classifier is
able to generalize better, so also the model’s performances will be better.

2.10 Model evaluation techniques

2.10.1 Confusion Matrix

A common way to evaluate the performance of a classification model with bi-
nary responses is to use a confusion matrix. In our project the observed cases
of default are defined as positives and non-default as negatives, like in [6].
The possible outcomes are then true positives (TP) if defaulted customers
have been predicted to be defaulted by the model. True negatives (TN ) if
non-default customers have been predicted to be non-default. False posi-
tives (FP) if non-default customers hve been predicted to be defaulted, and
false negatives (FN ) if defaulted customers have been predicted to be non-
default. A confusion matrix can be represented as in the Figure 2.15. From

Figure 2.15: Confusion matrix.

a confusion matrix there are certain evaluation metric that can be taken in
consideration. The most common metric in a classification task is accuracy,
which is defined as the fraction of the total number of correct classifications



64 CHAPTER 2. THEORETICAL PRESENTATION OF THE MODELS

and the total number of observations. It is mathematically defined as

(2.31) Accuracy =
TP + TN

TP + TN + FP + FN
.

The issue with using the accuracy as a metric is when applying it for im-
balanced data. In fact if the data contains 99% of one class it is possible to
get an accuracy of 99%, if all the predictions are made from the majority
class. This can distort our conclusions about the goodness of the model per-
formance and therefore it is not recommended to use this metric in cases of
unbalanced data sets.
A metric that is more relevant in the context of this project, where the data
set is severely unbalanced, is the specificity. It is defined as

(2.32) Specificity =
TN

FP + TN
,

and will be used for explaining the theory behind the receiver operator char-
acteristic curve and its area under the curve in next section.
In terms of business sense, the aim is to achieve a trade-off between loosing
money on non-performing customers and opportunity cost caused by declin-
ing of a potentially performing customer. Thus, there is a high relevance to
analyze how sensitivity and precision metrics are affected by various methods
applied, as sensitivity, also named recall, is a measure of how many defaulted
customers are captured by the model, while precision relates to the potential
opportunity cost. Sensitivity and precision are defined as follows [7] :

(2.33) Sensitivity =
TP

TP + TN
,

(2.34) Precision =
TP

TP + FP
.

Since sensitivity and precision are of equal importance for our scopes, a
trade-off between these metrics is considered. The F-score is the weighted
harmonic average of precision and sensitivity. The definition of F-score can
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be expressed as

(2.35)
F = (1 + β2)

Precision · Sensitivity
Sensitivity + β2 · Precision

=
(1 + β2)TP

(1 + β2)TP + β2FN + FP
,

where β is a weight parameter. Since in our discussion both measures of
precision and sensitivity are equally relevant, the weight is set to β = 1.
Furthermore, since the F-score takes into account both of these measures, we
decided that the performance of every method will be primarily evaluated
and compared with the regards to this metric.

2.10.2 Receiver Operator Characteristic Curve

A further way to evaluate results from the models is to analyze the receiver
Operating Characteristic (ROC) curve and its Area Under the Curve (AUC).
In this section we provide the definition of ROC and then we explain the
meaninig of AUC.
Let V0 and V1 denote two independent random variables with cumulative
distribution functions F0 and F1, respectively. The random variables V0 and
V1 describe the outcomes predicted by a model if a customer has defaulted
or not. Let c be a cut-off value for the default classification such that if
the value from the model is greater or equal to c, a customer is classified as
default and non-default otherwise. Further, in this setting, sensitivity and
specificity are defined in this following alternative way [8]:

(2.36) Sensitivity(c) = P(V1 ≥ c) = 1− F1(c),

(2.37) Specificity(c) = P(V0 < c) = F0(c).

The ROC curve is a graphical plot that illustrates the performance of a binary
classifier system as its discrimination threshold is varied. By considering all
possible values of the cut-off c, the ROC curve can be constructed as a plot of
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sensitivity versus 1−specificity. Let m express 1− F0(c), then the following
definition for the ROC curve is obtained

(2.38) ROC(m) = 1− F1{F−10 (1−m)},

where 0 ≤ m ≤ 1 and F−10 (1 − m) = inf{z : F0(z) ≤ 1 − m}. The ROC
curve is a monotone increasing function mapping (0, 1) to (0, 1). An uninfor-
mative test is one such that Sensitivity(c) = (1− Specificity)(c) for every
threshold c and this situation is represented by ROC curve ROC(m) = m,
which is a line with unit slope. A perfect test completely separates the de-
faulted customers and non-default customers, i.e. Sensitivity(c) = 1 and
(1− Specificity)(c) = 1 for some threshold c. This ROC curve is along the
left and upper borders of the positive unit quadrant, as we can see in Fig.
2.16.

The most important numerical index used to describe the behavior of the
ROC curve is the area under the ROC curve (AUC), defined by

(2.39) AUC =

∫ 1

0

ROC(m)dm.

Referring to Fig. 2.16, line A represents a perfect test with AUC = 1, curve
B represents a typical ROC curve (for example AUC = 0.85), and a diagonal
line (line C) corresponding to uninformative test with AUC = 0.5. As test
accuracy improves, the ROC curve moves toward A, and the AUC approaches
1.

2.11 Cross-validation

Taking up the discussion made on cross validation in the section 1.6 we will
now look at this issue in more detail. We know that in order to prevent
using the same information in the training phase and the evaluation phase of
models, which makes the results less reliable, the data is divided into training
set, validation set and test set [9]. We use the training and validation test
to find the best model, instead we use the test set only for calculating the
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Figure 2.16: Three hypothetical ROC curves representing the accuracy of an
ideal test (line A) on the upper and left axes in the unit square, a typical
ROC curve (curve B), and a diagonal line corresponding to an uninformative
test (line C). As test accuracy improves, the ROC curve moves toward line
A.

prediction performance of the best model. The data will therefore be held
out until the best model is obtained and indeed this is called the holdout
method. The technique for choosing the best model from a set of models is
called K-fold cross validation (CV).
K-fold CV involves the procedure where the data set is divided in K roughly
equalized sets or folds. One of them is set to be a validation set and the
rest are the training set that a model is being fitted on. the procedure is
repeated K times and the validation error is being estimated for each time.
For example, in Figure 2.17, we have that K = 5, where K is a parameter
specified by the user, and it means that there have been 5 iterations of the
procedure. Let be m the size of the training set and let κ : {1, . . . ,m} →
{1, . . . , K} be a mapping function that shows an index of the partition to
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Figure 2.17: K-fold cross validation performed on a given data set.

which observation i is assigned by randomization and k = 1, 2, . . . , K. For
the k-th fold, the model is fitted on the K − 1 parts and the prediction error
is calculated for the k-th part. We denote the fitted model with f̂−k(x) with
the k-th part of the data removed, then the CV error is defined as follows:

(2.40) CV =
1

m

m∑
i=1

L(yi, f̂
−κ(i)(xi)),

where L(·) is the loss function for the respective model. Given a set of com-
peting models f(x, α), with α denoting the index of the model, an exhaustive
search for the best α-th model can be performed. Let the α-th fitted model
be f̂−k(xi, α) with the k-th part of the data removed, then the CV error
becomes

(2.41) CV (α) =
1

m

m∑
i=1

L(yi, f̂
−κ(i)(xi, α)).

The objective is to find the α that minimizes the validation error, denoted as
α̂. This is also known as a hyperparameter search and will be implemented
by looping through every combination of a chosen set of hyperparameter
values for each machine learning method. When the final model f(x, α̂) is
obtained, where α̂ represents the best combination (that is the combination
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that provides the lowest CV error) of hyperparameters, the performance of
f(x, α̂) will be calculated when predicting on the test set.
In this project, due to the class imbalance problem, K-fold stratified CV has
been used in order to preserve proportional representation of the two classes
in each fold. In binary classification problem, stratification in cross validation
is a technique which rearrange data in a way that each fold contains roughly
the same representation of classes between folds.

2.11.1 Cross-validation and SMOTE

When using CV and applying an oversampling technique such as SMOTE
we must be careful. We know that in general an oversampling technique
duplicates observations of the minority class. However, when we want to
use CV to find the best model by applying an oversampling technique to
the training data, we have to be very careful about the order in which we
implement the procedures. If the oversampling is performed before CV, then
the probability of getting duplicate observations in the validation set and
the training set is fairly high [11]. The point of the validation set is to
calculate the performance of the method on unseen observations. Thus if
oversampling is performed before CV there is a possibility that the model
has already seen observations and therefore cause biased results. SMOTE
is an oversampling technique that does not duplicate the observations but
rather synthetically creates new ones. Even if the synthetic new data points
generated by SMOTE are not duplicates of an observation, they are still
based on an original observation and will therefore cause biased results when
predicting on them. So the correct way to proceed is to implement a k fold
CV that includes oversampling of the training observations and not the other
way around. An example of a correct way of oversampling and use of CV
following with an example of an incorrect way is visualized in Figure 2.18.
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Figure 2.18: Combination of sampling and CV methods. CV includes Sam-
pling (first row) constitutes the correct approach, while Sampling followed by
CV (second row) is the incorrect approach. The samples included in the orig-
inal data set are indicated using upper cases, while their copies are indicated
with lower cases.



Chapter 3

Application Example on public

data

3.1 Data set description

First of all, we will give an example of applying the previously described
models on a public data set. The data set under consideration comes from
the Geekbrains AI/Big Data Loan Default Prediction competition, which is a
Kaggle InClass competition provided free to academics. Kaggle is an online
community of data scientists and Machine Learning enthusiasts. Founded
back in 2010, it has become a reference point for anyone approaching this
discipline.
The data set studied contains data of customers who have taken out a loan
with an unspecified financial institution and based on the characteristics of
the customers we want to classify the probability of default (high or low)
that these customers have. The data set contains 7’500 observations and 17
columns, of which 16 are the customer features and one is the classification
target variable, which takes value 0 if the default probability for a customer
is low and value 1 if the default probability is high. More specifically, we will
assign label 0 to customers who do not default and label 1 to customers who
do default.The table 4.2 shows the names and descriptions of the features.

71
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Variable Data type Description

home ownership categorical to check if the borrower owns a
house or stays in rent

annual income numeric amount of borrower’s annual in-
come

years in current job categorical how many years the client has
been practising the current pro-
fession

tax lines numeric how many tax liens the client has
against him

number of open accounts numeric how many accounts the costumer
has

years of credit history numeric how long all of the borrower’s
credit accounts have been open

maximum open credit numeric amount of the maximum open
credit

number of credit problems numeric how many problems the client has
had during his credit history

months since last delinquent numeric how many months have passed
since the last delinquency

bankruptcies numeric how many times the client has
gone bankrupt

purpose categorical purpose for which the loan was re-
quested

term categorical short- or long- term loan indicator

current loan amount numeric borrower’s current loan amount

current credit balance numeric borrower’s current credit balance

monthly debt numeric amount of borrower’s monthly
payment

credit score numeric indicator of the customer’s credit-
worthiness, the higher the better

credit default categorical target variable indicating if the
customer will default or not

Table 3.1: Data dictionary
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As can be seen from the 4.2, the data set has four categorical independent
variables and one dependent variable, i.e. our target variable, which is also
categorical (since our task is to perform a binary classification). We therefore
give below the description of the labels of each categorical variable.

• home ownership has following labels: have Mortgage, home Mort-
gage, own Home, rent;

• years in current job has the following labels: 10 + years, 9 years, 8
years, 7 years, 6 years, 5 years, 4 years, 3 years, 2 years, 1 year, < 1 year;

• purpose has the following labels: debt consolidation, other, home im-
provements, business loan, buy a car, medical bills, major purchase,
take a trip, buy house, small business, wedding, moving, educational
expenses, vacation;

• term has the following labels: short term, long term.

Since we found that the interpretability of the credit score variable was un-
clear, as the score scale was outside the usual ranges commonly used by
financial institutions for credit scoring (e.g. FICO credit scores, which range
from 300 to 850), we decided to ignore it in our further analysis.
The data set also had a certain amount of missing values in the features, the
amount of which is shown in table 3.2. We know that the handling of missing
values for quantitative and qualitative variables is different. For quantitative
variables it is usual to replace the missing values by a standard value, the
mean or the median. However, although there are three different options,
the most correct one to use is undoubtedly the median, as the mean suffers
from the presence of outliers and can affect the goodness of fit of the model.
Therefore we have replaced the missing values of the variables annual income,
years in current job and months since last delinquent with the median. For
the qualitative variables, on the other hand, it is usual to replace the missing
values by the mode or by adding a new label to indicate the missing value.
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Here, choosing to interpret the bankruptcies variable as a qualitative vari-
able, since it has a finite number of integer values that we can interpret as
levels, we decided to replace the missing values with the mode.

Feature name Number of null values

home_ownership 0

annual_income 1557

years_in_current_job 371

tax_liens 0

number_of_open_accounts 0

years_of_credit_history 0

maximum_open_credit 0

number_of_credit_problems 0

months_since_last_delinquent 4081

bankruptcies 14

purpose 0

term 0

current_loan_amount 0

current_credit_balance 0

monthly_debt 0

credit_default 0

Table 3.2: Number of null values for each feature considered in our analysis.

3.2 Exploratory analysis

Let us now proceed with an initial exploratory analysis of the data set. Data
visualisation is very useful in the early stages of analysis, helping to explain
content by organising data in a more understandable way and highlighting
trends and outliers. Effective visualisation helps to expose content by re-
moving the superfluous from the data and bringing useful information to the
fore.
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First of all, let’s see how many default customers are present in the data
set, as figure 3.1 shows. Counting the values, we see that there are 5,387
non-defaulting customers and 2,113 defaulting customers, i.e. about 72%

of the data set consists of customers who will repay their obligations while
about 28% of the data set consists of customers who have defaulted on their
payments.

Figure 3.1: Number of default and non-default clients.

Let us now look at the frequencies of the different labels in the categorical
variables with respect to the credit default target variable. As we can see
from figure 3.2, the most frequent label for non-default customers is having
a mortgage on their house or renting, while only a small percentage of them
own their own house. Interestingly, the number of defaults is almost the
same for home mortgage holders and renters. This trend in the data is quite
reasonable as in addition to the payments due to the credit obtained, the
customer has to pay the house mortgage or rent and therefore may fall into
financial difficulties.
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Figure 3.2: Labels of home ownership variable with respect to the target
variable.

Looking at the bar plot of the bankruptcies versus credit defaults variable
in figure 3.3, we see that the vast majority of the observations had no financial
problems in their credit history, and only a small proportion of the clients
suffered from serious financial problems. However, within the customers who
have never been bankrupt, half are in default and the same is true for those
who have been bankrupt.

Figure 3.3: Labels of bankruptcies variable with respect to the target vari-
able.

In figure 3.4 we see that the trend observed above for the variable bankrupt-
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cies is repeated for the variable number of credit problems when we look at
it in relation to the variable credit defaults. Here too, the majority of cus-
tomers have never had credit problems, although within this set we also find
the highest number of customers in default.

Figure 3.4: Labels of number of credit problems variable with respect to the
target variable.

Looking then at the term plotted against the credit default variable in
figure 3.5, we see that the number of defaulting customers is very similar
in the two groups of customers with a long or short term loan. We could
therefore assume that the default of a customer does not depend strongly on
whether the loan obtained is short or long term.

Figure 3.5: Labels of term variable with respect to the target variable.
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Figure 3.6: Labels of purpose variable with respect to the target variable.

From the figure 3.6 we see that most defaults come from customers who
need to consolidate a debt. In second place we find defaults from other
purposes than those listed in the figure and finally we find defaults from cus-
tomers seeking credit for home improvements. We also note that applicants
whose purpose of the loan is business lending are almost equally payment
compliant and non-payment compliant. We can therefore conclude that the
main purpose for borrowing is to consolidate another debt, thus increasing
one’s personal debt. As can be seen from the graph, this is not always a
successful economic strategy, since if you do not have sufficient finances you
risk defaulting on at least one of the two debt fronts.
Box plots of the following quantitative variables are shown in figure 3.7:
annual income, maximum open credit, current loan amount, current credit
balance and monthly debt. We can observe that the data of these variables
are rather symmetrical, as the median is in the middle of each box. Annual
income is the variable with the narrowest interquartile range, while current
credit balance is the one with the widest interquartile range. All the vari-
ables considered, as we can see, present a considerable number of outliers.
In particular, there is a client who presents a value equal to zero for the
variables maximum open credit, current credit balance and monthly debt: it
was decided to remove this anomalous observation from the data set.
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Figure 3.7: Box plot of some quantitative variables.

Finally, we comment on the correlation matrix in figure 3.8. We observe
that number of credit problems and tax liens report a correlation of 0.6.
This seems to be quite reasonable, as the tax lien is a first degree credit,
issued by the county to recover unpaid property taxes and therefore it makes
sense that it is strongly correlated with more general credit problems. We
find that the bankruptcies variable is also strongly correlated (correlation of
0.73) with the number of credit problems, as a bankruptcy can be counted as
a credit problem. With lower positive correlations, but still considerable, we
find the variable monthly debt and annual income (correlation 0.58) and the
same variable monthly debt and the number of open accounts (correlation
0.41). Finally, the correlation between credit default and credit score is quite
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high (0.44). This is more than justified, as the credit score could be the
target variable in itself, as it completely reflects the creditworthiness of the
client. At this point, the target variable credit default would only be a further
redundant encoding of the customer’s creditworthiness. For this reason, and
because of problems with the interpretability of the credit score variable, we
decided to exclude the credit score variable from our analysis.

Figure 3.8: Correlation Heatmap.



3.3. RESULTS FROM MODELS 81

3.3 Results from models

Below in table 3.3 are the results obtained by training and testing the mod-
els on the data set under analysis. The evaluation metrics considered are
precision, recall, F-score and Area Under Roc Curve (AUC). We will use the
F-score metric as the main metric to decide the best model from the point of
view of our econometric analysis. However, we will also consider the AUC as
a metric for evaluating the performance of our models, following the common
practice of model evaluation in data science.

Model Precision Recall F-score AUC

Decision Trees 0.63 0.64 0.64 0.641
KNN 0.75 0.61 0.62 0.726
CNN 0.70 0.64 0.65 0.735
Random Forest 0.76 0.62 0.63 0.758
Support Vector Classifier 0.88 0.59 0.59 0.692
AdaBoost 0.80 0.64 0.66 0.778
Logistic Regression 0.76 0.61 0.61 0.759
XGBoost 0.82 0.63 0.64 0.776

Table 3.3: Results from models with respect the evaluation metrics.

From the table we can see that the highest Precision results were achieved
by the Support Vector Classifier (0.88) and Extreme Gradient Boosting
(0.82), while Decision Trees achieved the lowest score (0.63). As far as the
Recall scores are concerned, we can see that the highest value reached is 0.64
and this is the same for the Decision Trees, the Convolutional Neural Net-
work and AdaBoost. Remembering that the F-score is the harmonic mean
between Precision and Recall and represents our primary metric for evalu-
ating the performance of models from a business point of view, we observe
that AdaBoost has the highest F-score of all (0.66) and after it we find the
Convolutional Neural Network (0.65). Finally, if we look at the AUC values
of the various models under examination, we can see that in first place we
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find AdaBoost and in second place we find XGBoost, with respective AUC
scores of 0.778 and 0.776. We can therefore conclude that the model with the
best out-of-sample performance is AdaBoost, and the optimal parameters of
the model are given below:

• base estimator : it is the base estimator from which the boosted ensem-
ble is built. In our case it is Decision Tree Classifier.

• n estimators : it is the maximum number of estimators at which boost-
ing is terminated. in case of perfect fit, the learning procedure is
stopped early. In our case the maximum number of estimators is set to
100.

• learning rate: it is the weight applied to each classifier. There is a trade-
off between the learning rate and the maximum number of estimators
parameters. Our optimal value for the learning rate is equal to the
default one, i.e. equal to 1.

• loss : it is the loss function to use when updating the weights after each
boosting iteration. We set a linear loss.

Figure 3.9: ROC curves of models implemented.
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In Figure 3.9ROC curves of the analysed classifiers are shown. We know
that the ROC curve plots 1 minus specificity (the false positive rate) and
sensitivity (true positive rate) when a threshold is varied. We remind that
the true positive rate is the fraction of defaulters that are correctly identified,
using a give threshold value. The false positive rate instead is the fraction
of non-defaulters that we classify incorrectly as defaulters, using the same
threshold value. ROC curves are useful for comparing different classifiers,
since they take into account all possible thresholds. Also, an ideal ROC
curve will hug the top left corner, indicating a high true positive rate and a
low false positive rate, so the larger the AUC the better the classifier.
From Figure 3.9 we can see that the Decision Trees, with the lowest AUC
score of 0.641, have the worst ROC curve, being furthest from the top left
corner. On the other hand, the AdaBoost and XGBoost classifiers are those
that report ROC curves that are closest to the upper left corner, reflecting
their respective good AUC scores. If we look closely, however, we can see that
the ROC curve of AdaBoost, although very close to that of XGBoost, domi-
nates it for every threshold value. This once again confirms that AdaBoost
is the model with the greatest predictive power.
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Chapter 4

Application Example on real data

4.1 Data set description

In this section we present the data set used in our work, which comes from a
private database of a Swiss bank. The data set covers approximately 54.669
private residential mortgages originated between December 31, 2019 and De-
cember 31, 2020 and it consists of 32 columns, including the target variable.
The features include personal information about the client, such as national-
ity, age, professional occupation, quantitative information about the amount
of the loan and the client’s financial situation, and finally information about
the property the client intends to purchase through the loan, such as the size
in square metres, the condition of the building and others.
The target variable was feature engineered, i.e. in the original data set there
was a feature representing the credit score of each customer, so we chose a
threshold to discriminate between defaulting and non-defaulting customers.
The credit scores were on a descending scale of creditworthiness from 1 to 18,
with the default status being the last: we chose to put the default threshold at
the tenth credit score, thus assigning the default status to any customer with
a credit score greater than or equal to 10. We therefore created the binary
target variable, named "Default", which takes value 0 when the customer has
a rating lower than 10, i.e. when the customer is financially reliable, while it
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takes value 1 when the customer has a rating higher than 10 and is therefore
not considered a creditworthy customer.

4.2 Results from models

In this chapter, results obtained from different models will be presented and
discussed.
The results were obtained with the data set provided by a private database
from a Swiss bank. Three different data sets were studied, where one of them
is the data set containing all the features, while the others were obtained by
a feature selection technique, called SelectKBest, iterated 2 times, thus con-
taining 16 and 9 variables respectively.
To compensate for the significant data imbalance, a minority class oversam-
pling technique called SMOTE was applied: the minority class was oversam-
pled until its magnitude corresponded to 50% of the majority class.
As mentioned in section 2.10, performance of the methods is evaluated by
sensitivity, precision, F-score and AUC-score with the F-score as the primary
metric. All of the results are presented in Table 4.2.

The analysis of the results is divided as follows: first, for each dataset
obtained, we will comment on the models with the best performance with re-
spect to the metrics considered. Then we will comment on the best model for
each metric. Finally, we will give an idea of the scale of goodness of the mod-
els and comment, with respect to each metric, on the impact of the feature
selection method. With respect to the dataset on which no feature selec-
tion method was applied, we can say the following: KNN and CNN achieved
the best precision and f-score scores (0.6637 and 0.6867 for CNN and 0.7177
and 0.2537 for KNN), while for recall the highest values were obtained with
Logistic Regression (0.6969) and CNN (0.7112). Finally, KNN and XGB ob-
tained the best AUC scores, 0.95 and 0.73 respectively. Considering then the
dataset produced by the 16 features selected by the SelectKbest method with
K=16, we can say that KNN and CNN reached again the best performances
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in precision,0.5555 and 0.6938 respectively, while CNN and Logistic Regres-
sion reached the highest F- scores (0.6150 and 0.1654, respectively) and recall
(0.5223 and 0.6969, respectively). Finally, CNN and XGB had the highest
AUC values of 0.71 and 0.72. Finally, considering the dataset composed of 9
features, produced by the feature selection method SelectKBest setting K=9,
we observe that the highest precision value was reached by CNN (0.6938) and
second to it are RandomForest (0.1793) and AdaBoost (0.1718). The same
applies to the F-score, where the Logisic Regression score (0.1938) is also
remarkable. Observing instead the recall scores we can see that the Logistic
Regression obtained the highest score of all (0.6521), surpassing also that of
the CNN (0.5523). Finally, in terms of AUC score, CNN and the boosting
methods AdaBoost and XGBoost are quite close, one being 0.71 and the
other two 0.69.
Analysing now the best model with respect to each evaluation metric con-
sidered, the following observations can be made. The KNN model on the
dataset to which feature selection was not applied reported the best preci-
sion value (0.7177), even higher than that reported in general by CNN. As for
the F-score, which is our primary metric, the best model is definitely CNN
on the original dataset (0.6867). However, in second place after the CNN, we
find again the KNN model applied to the whole dataset, whose F-score value
is equal to 0.2537 and differs considerably from all the other F-score values
of the remaining Machine Learning models. The highest recall value was
reached by the CNN applied to the original dataset (0.7112). However, the
recall score reached by the Logistic Regression model applied to the whole
dataset and to the dataset containing 16 features (it seems that the logistic
regression did not benefit in terms of recall from the feature selection) is not
very different from this value (0.6969). Finally, in terms of AUC score, the
highest score of all is reached by the KNN model applied to the whole dataset
(0.95) and in second place after it is the XGBoost model applied both to the
whole dataset and to the dataset containing 16 features.
Discussing then the impact of the feature selection method applied to the
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data set, from table 4.2 we can observe the following. The feature selection
of 16 features had a slight positive impact in terms of mean precision. Fea-
ture selection of 9 features had a significant positive impact on the average
F-score and recall scores. Finally, the average AUC score, as we can see, did
not benefit from the feature selection, as it became lower and lower as the
number of features included in the data set decreased.
To conclude, we can say that CNN applied to the entire data set turns out to
be the model with the highest predictive power and in second place we have
the KNN model applied to the entire data set. These results say a lot about
the great predictive power that Deep Learning methods have, in particular
the Convolutional Neural Network applied to the unusual setting represented
by the prediction of defaults in the credit score analysis. Therefore, although
compared to other Machine Learning models whose interpetability is greater,
it has been experimentally proven that in our study CNN outperforms the
other models considered and therefore could provide considerable support
and improvement in the credit score analysis .
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Model Precision F-score Recall AUC

Models without FS

LogisticRegression 0.0938 0.1654 0.6969 0.63
KNN 0.7177 0.2537 0.1514 0.95
DecisionTrees 0.1476 0.1670 0.1923 0.63
RandomForest 0.1408 0.1336 0.1270 0.65
AdaBoost 0.19 0.1109 0.0783 0.68
XGBoost 0.3035 0.0417 0.0233 0.73
SupportVectorMachine 0.0669 0.0613 0.0566 0.57
CNN 0.6637 0.6867 0.7112 0.72

Model with 16 features

LogisticRegression 0.0938 0.1654 0.6969 0.63
KNN 0.5555 0.0130 0.0065 0.86
DecisionTrees 0.1050 0.1342 0.1857 0.51
RandomForest 0.1448 0.1541 0.1646 0.67
AdaBoost 0.2184 0.1537 0.1185 0.69
XGBoost 0.4166 0.0935 0.0527 0.72
SupportVectorMachine 0.0974 0.1262 0.1791 0.59
CNN 0.6938 0.6150 0.5223 0.71

Model with 9 features

LogisticRegression 0.1138 0.1938 0.6521 0.68
KNN 0.1057 0.1635 0.3610 0.60
DecisionTrees 0.0983 0.1656 0.5243 0.57
RandomForest 0.1793 0.1886 0.1989 0.67
AdaBoost 0.1718 0.1997 0.2384 0.69
XGBoost 0.2309 0.1578 0.1198 0.69
SupportVectorMachine 0.1196 0.1715 0.3030 0.61
CNN 0.6938 0.6150 0.5523 0.71

Table 4.1: Final results from the models investigated.
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Nbr of features Average precision Average F-score Average recall Average AUC

23 0.2871 0.202 0.254 0.695
16 0.290 0.181 0.240 0.672
9 0.21 0.2319 0.3687 0.652

Table 4.2: Average results of evaluation metrics considered.
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Economic evaluation of model

performance

This section is developed with reference to [23] and it is a theoretical discus-
sion of the economic evaluation of the model performance.
An important question for a credit risk manager is to what extent the statis-
tical performance gains obtained by implementing various machine learning
methods have a positive financial impact for the bank. One economic val-
uation method is to estimate the amount of regulatory capital induced by
the estimated probabilities of default. A similar comparison approach has
been proposed by [24] for loss-given-default (LGD) models. However, this
approach requires the calculation of other Basel risk parameters, in partic-
ular LGD and exposure to default (EAD), and therefore requires specific
information on consumers and loan conditions, which is not in the scope.
An alternative approach is to compare the costs of misclassification [25].
From the confusion matrix, it can be clearly seen that the number of False
Positives represents a Type I statistical error, while the number of False Neg-
atives represents a Type II statistical error. The misclassification cost can
be estimated from Type I and Type II errors weighted by their probability
of occurrence.
Formally, let CFN be the cost associated with a Type I error (the cost of
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granting credit to a bad customer) and CFP be the cost associated with a
Type II error (e.g., the cost of rejecting a good customer). Thus, the mis-
classification error cost (MC) is defined as

(5.1) MC = CFP · FPR + CFN · FNR,

where FPR is the false positive rate and FNR is the false negative rate. There
is no consensus in the literature about how to determine CFN and CFP . Two
alternatives have been proposed. The first method fixes these costs by cali-
bration based on previous studies [26]. For example, [27] set CFN to 5 and
CFP to 1. In figure 5.1 we give an example of the calculation of the misclas-
sification function of the errors (setting the parameters such that CFN is 5
and CFP is 1) on the public data set provided by the Kaggle platform, with
respect to the various models under examination. We can observe how the
Decision Tree is the method that presents the lowest cost of misclassification
while the Support Vector Classifier is the method whose error is the most
expensive of all.
The second method evaluates misclassification costs for different values of
CFN to test as many scenarios as possible [28]. Although there is no consen-
sus on how to determine these costs, it is generally acknowledged that the
cost of granting credit to a bad customer is higher than the opportunity cost
of rejecting a good customer [29],[27].
We could also consider a second measure of performance, namely, the ex-
pected maximum profit (EMP) introduced by [30], to compare the models
from an economic viewpoint. The EMP takes into account the profits re-
ceived by the non-defaulters and the losses caused by the defaulters. This
allows us to compute an EMP value that is expressed as a percentage of
the total loan amount and measures the incremental profit relative to not
building a credit scoring model. The EMP is based on the following utility
function of the decision maker, which is in our case the bank:

(5.2) P (t; b, c, c∗) = (b− c∗) · π0 · F0(t)− (c+ c∗) · π1 · F1(t)
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where t is a cutoff; b is the benefit associated with a true positive; c is the
cost associated with a false positive; c∗ is the cost associated with an indi-
vidual case; π0 and π1 are the prior probabilities of non-default and default,
respectively; and F0(t) and F1(t) are the corresponding cumulative density
functions.The parameters b and c are calibrated using the LGD and return
on investment (ROI, see [30] for more details), which is basically the differ-
ence between the current value and the cost of the credit provided, divided
by the cost of the same credit.

Figure 5.1: Graph of the misclassification function calculated on the data
of the public data set under consideration and with respect to the methods
considered in the work.
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Chapter 6

Conclusions

The research question attaining to answer in this work was: For a chosen
set of Machine Learning and Deep Learning techniques, which technique ex-
hibits the best performance in predicting default against a specific model
evaluation metric?
For the sake of brevity, but also for reasons of relevance and priority, we will
only comment on the results obtained from the models implemented on the
private data set. The overall results showed that the Convolutional Neu-
ral Network applied to data sets containing all the features under analysis,
16 features and 9 features respectively, performed best against the F-score.
However, due to the complexity of the model, the data set containing 9 vari-
ables is preferred and therefore recommended in the context. This is because,
according to the well-known principle of Occam’s razor, whereby "all factors
being equal, the simplest explanation is preferred", it is convenient to choose
a mathematical approach that balances the explanatory power and the sim-
plicity of the model. We also point out that the use of the oversampling
technique called SMOTE was necessary in the training phase, as the original
data set was so heavily unbalanced that the analysis could not have been
conducted otherwise.
Potential future work could include the analysis of other features in addi-
tion to those considered here, such as time series that track the status of
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the customer’s bank account, or the creation of new features that reflect the
interaction between variables. In addition, an alternative feature selection
method could be experimented with, using either another filter method or a
wrapper or embedded method, and comparing them. A dimensionality re-
duction technique could also be implemented, using a Principal Component
Analysis (PCA), because first of all it would be interesting to study the vari-
ability of the features themselves and then select the main components on
the basis of these considerations.
It would also be interesting to make a study concerning what metrics are
the most relevant for this type of problem. As mentioned previously, in this
project the main metric all evaluations were analyzed by was F-score, because
the aim was to achieve a trade-off between the sensitivity and the precision.
If a deeper analysis could be performed regarding the most relevant metric
for this type of problem, then potentially a weight function could be imple-
mented if one of the metrics explored turned out to be of more importance.
The example of a weight function can be to use a weighted F-score, where
β is not set to 1, but the value of interest. One could also engage in a
cost-sensitive learning approach, which is a subfield of machine learning that
takes into account the costs of prediction errors (and potentially other costs)
when training a machine learning model. It is a field of study that is closely
related to the field of unbalanced learning that deals with classification on
datasets with an asymmetric distribution of classes.
It would be worth also pursuing the analysis of the economic impact of choos-
ing one model over another when a bank has to decide whether or not to give
a loan to a client, that is dealing with the model risk concept. Thus, one
could calculate the misclassification error cost for each model and make a
comparative analysis of the results at varying false positive and false nega-
tive cost settings, respectively. To this study it would be interesting to add
the calculation of the expected maximum profit as a utility function for the
bank. Finally, it would be interesting to study the optimisation of the mort-
gage decision process by the bank, looking for the optimal trade-off between
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the misclassification error cost and the maximum profit.





Bibliography

[1] Shai Shalev-Shwartz and Shai Ben-David, Understanding Machine
Learning: From Theory to Algorithms, Cambridge University Press,
2014.

[2] Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning,
https://www.deeplearningbook.org/.

[3] Trevor Hastie, Robert Tibshirani, Jerome Friedman, The Elements of
Statistical Learning, Second Edition, Springer.

[4] Tianqi Chen, Carlos Guestrin, XGBoost: A Scalable Tree Boosting Sys-
tem

[5] Chawla Nitesh v. et al., SMOTE: Synthetic Minority Over-sampling
Technique in Journal of Artificial Intelligence Research 16 (2002)

[6] Jean D. Gibbons, Nonparametric Measures of Association, Thousand
Oaks, California: SAGE Publications, Inc.

[7] Cyril Goutte and Eric Gaussier, it A probabilistic interpretation of pre-
cision, recall and F-score, with implication for evaluation, in European
Conference on Information Retrieval, Springer 2005.

[8] Camilla Calì and Maria Longobardi, Some mathematical properties of
the ROC curve and their applications, in Ricerche di Matematica 64
(Oct. 2015).



100 BIBLIOGRAPHY

[9] Stuart J. Russell and Peter Norvig, Artificial Intelligence: A Modern
Approach , Upper Saddle River, New Jersey 07458: Pearson Education,
Inc, 2010.

[10] Rok Blagus and Lara Lusa, Joint use of over- and under-sampling tech-
niques and cross validation for the development and assessment of pre-
diction models, in BMC Bioinformatics 16 (2015).

[11] Chamboko, R., Bravo, J. M. (2016), On the Modelling of Prognosis from
Delinquency to Normal Performance on Retail Consumer Loans, Risk
Management 18 (4)

[12] Chamboko, R., Bravo, J. M. (2018c), A multi-state approach to mod-
elling intermediate events and multiple mortgage loan outcomes, Work-
ing Paper, submitted to Journal of Banking and Finance.

[13] Durand, D. (1941). Risk Elements in Consumer Instalment Financing.
(D. Durand, Ed.). National Bureau of Economic Research. Retrieved
from http://www.nber.org/books/dura41-1

[14] Thomas, L., Edelman, D. Crook, J. (2002).Credit Scoring and Its Appli-
cations. Mathematical Modeling and Computation. Society for Industrial
and Applied Mathematics.

[15] Banasik, J., Crook, J. N. Thomas, L. C. (1999). Not if but when
will borrowers default. Journal of the Operational Research Soci-
ety, 50(12), 1185–1190. https://doi.org/10.1057/palgrave.jors.2600851
https://doi.org/doi:10.1137/1.9780898718317

[16] Hand D.J Jacka S. (1998). Statistics in Finance. Hand D.J. and Jacka
S. (eds.) Statistics in finance, Edward Arnold

[17] Henley, W.E. (1995) Statistical Aspects of Credit Scoring. Ph.D. Thesis,
Open University, Milton Keynes.



BIBLIOGRAPHY 101

[18] Basel Committee on Banking Supervision, An Explanatory Note on the
Basel II IRB Risk Weight Functions, Bank for International Settlements

[19] Gaffney et al, A transitions-based framework for estimating expected
credit losses,Financial Stability Division Central Bank of Ireland.

[20] G. James, D. Witten, T. Hastie, R. Tibshirani, An Introduction to Sta-
tistical Learning, Springer 2017.

[21] B. Zhu, W. Yang, H.Wang, Y. Yuan, A Hybrid Deep Learning Model for
Consumer Credit Scoring, 2018 International Conference on Artificial
Intelligence and Big Data

[22] J. Wu, Introduction to Convolutional Neural Networks, National Key
Lab for Novel Software Technology, Nanjing University, China.

[23] Elena Dumitrescu, Sullivan Hué, Christophe Hurlin, Sessi Tokpavi. Ma-
chine Learning or Econometrics for Credit Scoring: Let’s Get the Best
of Both Worlds., 2020. ffhal-02507499v2f

[24] Hurlin, C., Leymarie, J., and Patin, A. (2018). Loss functions for loss
given default model comparison. European Journal of Operational Re-
search

[25] Viaene, S. and Dedene, G. (2004). Cost-sensitive learning and decision
making revisited. European Journal of Operational Research.

[26] Akkoc, S. (2012). An empirical comparison of conventional techniques,
neural networks and the three stage hybrid adaptive neuro fuzzy in-
ference system (ANFIS) model for credit scoring analysis: The case of
Turkish credit card data. European Journal of Operational Research

[27] West, D. (2000). Neural network credit scoring models. Computers Op-
erations Research, 27(11-12)



102 BIBLIOGRAPHY

[28] Lessmann, S., Baesens, B., Seow, H.-V., and Thomas, L. C. (2015).
Benchmarking stateof-the-art classification algorithms for credit scoring:
An update of research. European Journal of Operational Research

[29] Thomas, L., Crook, J., and Edelman, D. (2017). Credit scoring and its
applications. SIAM

[30] Verbraken, T., Bravo, C., Weber, R., and Baesens, B. (2014). Devel-
opment and application of consumer credit scoring models using profit-
based classification measures. European Journal of Operational Research


