
POLITECNICO DI TORINO

Master degree course in
Mathematical Engineering

Master Degree Thesis

Heuristics for the solution of Mixed-Integer Linear
Programming problems

Supervisor Candidate
Prof. Paolo Brandimarte Lorenzo Bonasera

Academic year 2020-2021

Alla mia famiglia

Summary

Many discrete optimization problems can be reframed as Integer Linear Programming
(ILP) problems, whose complexity class is NP-Hard. Due to its NP-hardness, solving
a ILP problem to optimality often requires a huge computational effort. Therefore, it’s
necessary to adopt greedy algorithms and heuristics that are capable of finding satisfy-
ing solutions at a lower cost. The most common heuristics don’t require a mathematical
model and they are based on local search, e.g. tabu search, or population search, like
genetic algorithms or particle swarm optimization. Those heuristics are not easy to apply
in case of complicated constraints and/or when dealing with optimization problems that
contain both continuous and discrete decision variables, known as Mixed-Integer Linear
Programming (MILP) problems, hence the need of more adaptable and general heuristics.
Thus, different algorithms have been proposed, like fix-and-relax, iterated local search
and kernel search, based on mathematical models which impose proper forms of restric-
tion on decision variables. This work aims to investigate and apply the kernel search
framework on a specific case of study, in order to propose a reliable and well-performing
problem-specific variation of the heuristic. The chosen case study is a stochastic version
of the classical multi-item Capacitated Lot-Sizing Problem (CLSP), in which demand
uncertainty is modelled through a scenario tree, resulting in a multi-stage mixed-integer
stochastic programming model.

4

Acknowledgements

I miei ringraziamenti vanno alle persone che hanno contribuito, direttamente o indiret-
tamente, ad arricchire e rendere migliori i giorni dei miei anni universitari, dei quali la
scrittura di questa tesi rappresenta la degna conclusione.

Ringrazio innanzitutto il Prof. Paolo Brandimarte per aver accettato di essere il mio
relatore, e per aver impartito durante questi anni preziosi insegnamenti, spesso volti a far
cadere dal piedistallo, giustamente, noi studenti di ingegneria matematica.
Ringrazio i miei più cari amici, coloro che sono entrati a far parte della mia vita e dalla
quale non sono più usciti. I miei compagni del collegio, in particolare: Laura, Simona,
Mattia, Rosalinda e Adele, i quali hanno riso con gusto persino alle mie peggiori battute;
Francesca, per aver fatto luce nei momenti più bui a ritmo di bachata; Davide Falcone,
che grazie alla sua fantasia è riuscito a tirarmi su di morale in qualsiasi contesto; Luciana,
perché è stata in grado di ridimensionare il mio ego; Michele, lui che le euristiche le ha
sempre sapute, per il suo incrollabile supporto; Davide Rossetti, per essere sempre stato
al mio fianco durante le nostre indimenticabili avventure, pandemia o meno.
Ringrazio i miei due pupilli, Sebastiano ed Emiliano, che non hanno mai smesso di essere
presenti e vicini a me, pronti a teorizzare l’impossibile.
Ringrazio i miei due maestri: Francesco, perché gli devo veramente tutto, e Sabrina, per
avermi aiutato a comprendere meglio me stesso.
Ringrazio Luca, che mi ha sostenuto di fronte alle incertezze della vita. Salvatore, con
il quale ho affrontato le assurdità della stessa. Luigi, perché un lontano giorno alla villa
Farina decidemmo di collezionare i nostri aneddoti più divertenti, e da quel momento non
abbiamo più interrotto.
Ringrazio infine i miei genitori, mia sorella e i parenti più stretti, a cui questa tesi è
dedicata, per aver creduto in me più di ogni altra cosa.

5

Contents

List of Tables 8

List of Figures 9

1 Introduction 11

2 Mixed-Integer Linear Programming 13

2.1 LP relaxation . 14

2.2 Branch and Bound . 16

2.3 Case study: Capacitated Lot-Sizing Problem 17

2.3.1 Uncertainty representation . 19

3 Kernel Search 23

3.1 Basic Kernel Search . 23

3.1.1 Initialization phase . 24

3.1.2 Extension phase . 25

3.2 Adaptive Kernel Search . 25

3.2.1 Feasibility step . 26

3.2.2 Adaptation phase . 26

3.3 Time allocation . 28

4 Experimental analysis 31

4.1 Comparison between different frameworks 31

4.2 Case study: experiments and results . 35

5 Conclusions and future works 39

6

A Kernel Search implementation 41

A.1 Initialization phase code . 41

A.2 Adaptation phase code . 42

A.3 Extension phase code . 44

B Experimental results 45

B.1 Adaptive Kernel Search vs Branch and Bound 45

7

List of Tables

4.1 Description of the first 50 MIPLIB problems. 31

4.1 Description of the first 50 MIPLIB problems. 32

4.2 (Adaptive) Kernel Search parameters setting. 33

4.3 Gurobi parameters setting for pure Branch and Bound algorithm. 33

4.4 Kernel Search versus Branch and Bound experimental results. 34

4.5 Kernel Search versus Branch and Bound performance comparison. 34

4.6 Experimental results on Monte Carlo-simulated SCLSP instances. 36

4.7 Adaptive Kernel Search best performing parameters for SCLSP. 36

B.1 Experimental results with tMax = 60 and tEasy = 10 seconds (1) 46

B.2 Experimental results with tMax = 60 and tEasy = 10 seconds (2) 47

B.3 Experimental results with tMax = 60 and tEasy = 10 seconds (3) 48

B.4 Experimental results with tMax = 60 and tEasy = 10 seconds (4) 49

B.5 Experimental results with tMax = 60 and tEasy = 10 seconds (5) 50

8

List of Figures

2.1 The binary MILP problem admits only four values as feasible solutions,
while its LP relaxation has an enlarged dense feasible set, that is also convex. 15

2.2 Relationship between optimal value of the LP relaxation, optimal value of
the MILP problem and objective function value of the rounded solution. . . 15

2.3 Example of search tree for a toy problem. 16

2.4 Tree-based scenario with 5 time periods and branching structure (1, 2, 3, 1, 1). 21

4.1 Pie charts representing different problem difficulty assessment policies. . . . 35

9

10

Chapter 1

Introduction

Discrete optimization problems are ubiquitous in almost every engineering field, since the
real world is not granted to be continuous. Those problems are involved in many of the
fundamental models of Operational Research: application domains are often related to
logistics, which includes a very broad collection of optimization models, finance, networks
and optimal transportation. Indeed, discrete variables in mathematical linear models are
useful to represent binary decisions, e.g. if setup of industrial machinery is carried out or
not, and to express integer quantities, for example in purchase or production decisions.
The discipline of Mathematical Programming provides a set of tools to deal with discrete
linear optimization problems, that are formulated through Integer Linear Programming
(ILP) models.

The presence of discrete variables in optimization models makes problems very chal-
lenging, since it introduces nonconvex feasible regions, significantly complicating solution
processes. In a very restricted number of cases, such as some network flow problems
and linear assignment problem, it is possible to solve the continuous relaxation of the
optimization model obtaining an integer solution. Otherwise, computationally expensive
exact algorithms, e.g. Branch and Bound, are needed to solve ILP problems to optimality:
those algorithms perform a tree-based search in order to explore through an enumeration
process the whole feasible region, requiring a computing time which grows exponentially
with the dimension of the problem, in the worst case. Hence, greedy algorithms and
heuristic strategies are usually performed when dealing with very complex problems, aim-
ing to achieve satisfying suboptimal solutions with a tolerable computational effort. Those
heuristics are often based on searching processes that restrict the whole feasible set to lo-
cal regions: in order to contrast the exponential growth of different solutions, it is indeed
necessary to freeze a certain number of discrete variables, making the problem easier to
solve at the expense of a controllable degree of suboptimality.

Mathematical Programming can also model optimization problems that contain both
discrete and continuous variables, formulating them as Mixed-Integer Linear Programming
(MILP) models. The most common heuristics, such as tabu search, genetic algorithms
or particle swarm optimization, are not based on mathematical models and they struggle
to tackle those mixed problems. Therefore it is necessary to adopt alternative strategies
that can handle MILP problems in a flexible and efficient way, e.g. fix-and-relax or beam
search, properly imposing specific restrictions to integer variables that can evolve during
the solution process. This work aims to investigate, develop and test a general heuristic
framework known as Kernel Search, comparing its different versions to standard and solid
approaches, and to apply it to a challenging case study related to Operational Research.

11

Introduction

The case study we propose is a stochastic variation of the well known dynamic lot-
sizing problem, that was first formulated in Brandimarte [2006]. It consists of a multi-
item Capacitated Lot-Sizing Problem (CLSP) in which demand uncertainty of items is
modeled through a scenario tree over different time periods, constructed with discrete
probabilities. Such fixed-charge lot-sizing problem is formulated through a model based
on plant-location, in order to tighten big-M constraints and reducing the integrality gap,
by disaggregating each item production over different time periods. Due to its dynamic
and stochastic nature, this strong reformulation of the lot-sizing problem contains a huge
number of discrete and continuous variables, proving to be an effective case study to test
properties and features of the Kernel Search heuristic framework.

This thesis is organized as follows. In Chapter 2 we shortly expose the general math-
ematical theory behind Mixed-Integer Linear Programming models, including the most
common solving techniques and approaches. In Chapter 3 we introduce the Kernel Search
heuristic framework, giving an exhaustive presentation of different implementations and
related algorithms. In Chapter 4 we present the testing environment and our performance
evaluation policy, comparing heuristics to exact methods and analysing experimental re-
sults in an extensive manner. Finally, in Appendix A and B we extensively report code
and tables.

12

Chapter 2

Mixed-Integer Linear
Programming

We define a general Mixed-Integer Linear Programming problem in the following way:

minimizex z = cᵀx

subject to Ax ≥ b,
xj ≥ 0 j ∈ C,
xj ∈ {0, 1} j ∈ B,
xj ∈ Z≥0 j ∈ I

(2.1)

where x ∈ Rn is the vector of decision variables, c ∈ Rn is the vector of objective
coefficient, A ∈ Rm×n is the matrix containing inequality constraints coefficients and
b ∈ Rm is the right-hand side coefficients vector. Indices of decision variables vary on
three different sets: C represents the set of continuous variables, B denotes the set of
binary variables and C stands for the set of integer variables. This formulation is based
on the canonical form of a Linear Programming (LP) model. The optimization problem
is called Mixed-Integer because it contains both continuous and integer decision variables.
It is said to be a binary 0-1 MILP problem whether I = ∅, while it is called a pure Integer
Linear Programming problem when C = ∅.

For sake of simplicity and without loss of generality, we restrict our dissertation to
binary 0-1 MILP problems, thanks to the following

Observation. Every MILP problem can be reformulated as a binary 0-1 MILP problem.

Indeed, given a general MILP problem in the form 2.1, it is possible to reframe it as
a binary 0-1 MILP problem through properly transforming each integer decision variable
Liberti et al. [2009]. We first suppose that every integer variable xj , j ∈ I has domain
Dj = {Lj , . . . , Uj} in the set of positive integer numbers Z≥0, where Lj , Uj are its lower
and upper bound respectively. Then, we apply the following transformation ∀ j ∈ I:

1. ∀ i ∈ Dj , add a binary variable x(i)
j to B;

2. add a constraint
∑
i∈Dj

x
(i)
j = 1 to the original problem;

3. replace all occurrences of xj in the original problem with the expression
∑
i∈Dj

ix
(i)
j .

13

Mixed-Integer Linear Programming

The presence of integrality requirements on decision variables implies the following
limitations: the problem is not convex and it is not possible to make use of instruments
belonging to real analysis, such as local derivatives and gradient methods. Moreover, LP
standard solving techniques like the simplex algorithm cannot guarantee a feasible integer
solution, and it is not possible to verify optimality of a solution by simply checking its
reduced costs. When dealing with MILP problems, in order to verify optimality of a given
solution it is necessary to explore the whole feasibility region through an enumeration
approach, facing an exponential complexity in the worst case. For these reasons, MILP
problems are classified as NP-Hard.

In order to tackle such difficulties, it is necessary to relax some integrality constraints
of the original problem, and to generate simpler subproblems, hopefully reducing the
computational effort.

2.1 LP relaxation

We define the LP relaxation of a given Mixed-Integer Linear Programming problem in the
form 2.1 as the following optimization problem:

minimizex z̃ = cᵀx

subject to Ax ≥ b,
xj ≥ 0 ∀ j

(2.2)

where all the integrality constraints are dropped. This reformulation allows us to ex-
ploit all the advantages of the methods available for the solution of standard LP problems,
gaining convexity. Such problem admits a feasible set S̃ that contains the feasible set S
of the MILP problem: by solving the LP relaxation we find a lower bound on the optimal
value of the original objective function. More rigorously:

Remark. Given two feasibility sets S ⊆ S̃ and an objective function f(x), it holds that

z̃∗ = min
x∈S̃

f(x) ≤ min
x∈S

f(x) = z∗

For example, if we consider a binary MILP problem with only two decision variables
x1 and x2, it’s easy to see that its LP relaxation admits a larger solution space 2.1,
that possibly contains a better optimal value. A first and immediate consequence is
represented by the following theorem, that establishes an important relationship about
feasibility regions of a general MILP problem and its continuous relaxation:

Theorem (LP infeasibility). Given a general MILP problem in the form 2.1, if its LP
relaxation is infeasible, then the original MILP problem is also infeasible.

Proof. We have that the feasible set of the continuous relaxation is empty, that is S̃ = ∅.
We also know that S ⊆ S̃, since S̃ contains all the feasible solutions of the original MILP
problem. So it follows that S ⊆ S̃ = ∅ =⇒ S = ∅, that means the MILP problem does
not admit a feasible solution.

The converse of the above Theorem is not true in general: proving infeasibility of a
MILP problem does not provide useful informations about its continuous relaxation.

14

2.1 – LP relaxation

x1

x2

0
0

1

1

•

•

•

•

Figure 2.1: The binary MILP problem admits only four values as feasible solutions, while
its LP relaxation has an enlarged dense feasible set, that is also convex.

Assuming that a given MILP problem is feasible and limited, it is needful to note that
the optimal solution of the corresponding LP relaxation x̃∗ is not necessarily integral, and
any rounding approach does not guarantee feasibility for the starting problem. Indeed,
finding a feasible solution for a MILP problem through rounding procedures for x̃∗ is not
an easy task. A method that has proven to be successful is the Feasibility Pump, which is
a heuristic created by Fischetti et al. [2005]. This method aims to minimize the L1-norm
distance between a feasible but not necessarily integer solution of the LP relaxation x̃ ∈ S̃
and a point in the solution space obtained by rounding xI , but not necessarily feasible
for the LP relaxation. In this way, the heuristic searches for a integer feasible solution for
the MILP problem by iteratively reducing such distance.

If the rounded solution of the LP relaxation bx̃∗e 1 is feasible for the MILP problem,
the corresponding value of the objective function z̃∗I is not too distant from the MILP
optimal value z∗. Let us clarify the most general relationship between those three values
through the following picture:

f(x)
z̃∗ z∗ z̃∗I

Figure 2.2: Relationship between optimal value of the LP relaxation, optimal value of the
MILP problem and objective function value of the rounded solution.

It is easy to see that z̃∗ provides a lower bound for the optimal value of the integer
problem, while the latter acts as a lower bound for the value of the rounded solution z̃∗I .
The following Theorem states the relationship between those values in a specific case,
when solving the LP relaxation already provides an optimal integer solution:

Theorem (LP integrality). Given a general MILP problem in the form 2.1 and the cor-
responding LP relaxation in the form 2.2, if the optimal solution of the LP relaxation x̃∗
is feasible for the original problem, then it is optimal also for the MILP problem, and it
holds that z̃∗ = z∗.

Proof. We distinguish two cases: S = S̃ and S ⊂ S̃. In the first case, the two feasibility

1We denote with b·e the function that rounds each vector component to the nearest integer.

15

Mixed-Integer Linear Programming

regions coincide, so do the two problem formulations 2.1 and 2.2, and it holds that z̃∗ = z∗.
In the second case, we have that x̃∗ is the optimal solution within the set S̃. We also have
that x̃∗ ∈ S, since it is feasible for the MILP problem by hypothesis. Then, x̃∗ must be
optimal for the problem having S as feasibility region, that is the original MILP problem:
it follows that z̃∗ = z∗.

LP relaxation is, thus, a crucial technique to solve MILP and ILP problems, and it is
a fundamental step of almost every algorithm and heuristic.

2.2 Branch and Bound

The first and most general solution approach to discrete optimization problems is called
Branch and Bound. It is based on a recursive decomposition principle, used in conjunction
with a standard non-integer solution method. The way this approach works is based on
its name, and we will describe it focusing on binary minimization problems without loss
of generality.

Given a 0-1 MILP, it is necessary to explore its whole set of feasible solutions by
enumerating it, in order to find the optimal one: it’s natural to consider the solution
space as a binary search tree, that starts at the root node with the original problem. At
the root node, the solution of the corresponding LP relaxation x̃∗ is computed. Then,
the tree branches on a binary variable xj , j ∈ B, whose component in the solution vector
is continuous, by fixing its value, generating a left node that contains the subproblem
with xj = 0, and a right node that contains the symmetric subproblem with xj = 1.
Again, the corresponding LP relaxation of each subproblem is solved, obtaining a partial
continuous solution x̃j . The branching process is recursively applied until every component
of vector x̃j associated with a binary variable has an integer value, generating leaf nodes
that represent every candidate solution. The picture 2.3 describes the branching process
applied to a toy binary problem that contains three decision variables.

P0 : x̃∗ = (1, 0.56, 0.93)

P1 : x̃1 = (1, 0, 0.42)

P11 : x̃11 = (1, 0, 0)

x3 = 0

P12 : x̃12 = (1, 0, 1)

x3 = 1

x2 = 0

P2 : x̃2 = (0.5, 1, 0.27)

P21 : x̃21 = (0.3, 1, 0)

P211 : x̃211 = (0, 1, 0)

x1 = 0

P212 : x̃212 = (1, 1, 0)

x1 = 1

x3 = 0

P22 : x̃22 = (1, 1, 1)

x3 = 1

x2 = 1

Figure 2.3: Example of search tree for a toy problem.

The number of generated leaves in the worst case is 2|B|, showing the exponential
complexity of a MILP problem. In order to reduce computational effort, the Branch and
Bound method prunes some nodes of the tree. This pruning process is done by exploiting
the optimal value of the LP relaxation z̃∗j of each node, that works as a lower bound for
all the integer solutions that correspond to its children nodes.

16

2.3 – Case study: Capacitated Lot-Sizing Problem

If an integer solution of the LP relaxation at a certain node is found, the value of
its objective function becomes the incumbent solution ν∗, that is updated every time an
integer solution with a better value is met. If another node in the tree presents a lower
bound that is greater than the current incumbent solution, that is z̃∗j ≥ ν∗, that node
is pruned, since its branching cannot contain better solutions. Is it possible to reduce
the computational time guaranteeing a defined grade of suboptimality, relaxing the above
condition in absolute terms:

z̃∗j ≥ ν∗ − ε

introducing a threshold ε representing the minimal absolute improvement over the
incumbent solution, or in relative terms:

z̃∗j ≥ ν∗(1− ε)

where ε represents the maximum percentage suboptimality. If the LP relaxation at
a certain node proves to be infeasible, the algorithm prunes that node by Theorem LP
infeasibility. There are several exploration rules that this method can follow in order
to choose the branching node. A simple strategy is knows as depth first, in which the
algorithm branches until it arrives to a leaf, exploring the depth of the tree: in this way,
it easier to find feasible solutions, at the risk of exploring a subtree that is not promising.
Another strategy is called best first, in which the algorithm chooses the most promising
node, that is the one with the lowest LP relaxed objective value: this reduces the total
number of branches, at the cost of slowing down the search for a feasible solution. Different
mixed strategies are also found in literature, and they are beyond the purpose of our work.

The Branch and Bound method is over when all the partial solutions are branched or
pruned. In this case, if an incumbent solution ν∗ is found, it coincides with the optimal
feasible solution for the MILP problem by Theorem LP integrality, otherwise such problem
is declared infeasible. Is it possible to terminate the algorithm at a proper node by
imposing another suboptimality condition:

ν∗ − z̃∗j
1
2 |ν∗ + z̃∗j |

≤ σ

where σ is a given threshold representing the minimum improvement required, in terms
of distance between incumbent solution and the value of the found LP relaxed solution.
Thanks to its reliability and accuracy, the Branch and Bound approach works as a basis for
many other solution methods for discrete optimization problems, such as exact algorithms
like Branch and Cut and various heuristics contained in commercial MILP/ILP solvers.

2.3 Case study: Capacitated Lot-Sizing Problem

We state our MILP case study as follows, basing our work on Brandimarte [2006]: a
stochastic version of the multi-item Capacitated Lot-Sizing Problem (CLSP), in which
demand uncertainty is represented by means of a scenario tree containing discrete prob-
abilities. The proposed problem is modeled through a plant-location strong formulation,
in order to reduce the integrality gap and make the optimization problem less computa-
tionally intensive: in this way, lower bounds obtained through the LP relaxation are more
informative and related underestimation of the true objective value is less impacting for

17

Mixed-Integer Linear Programming

Branch and Bound pruning. The plant location formulation is based on disaggregating
items production on future time periods, rather than producing items only to meet the
current demand: the optimization model can be thought as a network flow problem, in
which supply and demand nodes have different time indexes. The idea is to ship com-
modities and products in time instead of in space, at the expense of inventory costs rather
than transport ones. We assume that the most strict capacity is fixed and coincides with
the bottleneck resource.

The deterministic formulation of the CLSP model is the following one:

minimize
∑
i

∑
t

∑
p≥t

hi(p− t)yitp +
∑
i

∑
t

fisit (2.3a)

subject to
∑
t≤p

yitp ≥ dip ∀ i, p, (2.3b)

yitp ≤ dipsit ∀ i, t, p ≥ t, (2.3c)∑
i

∑
p≥t

riyitp +
∑
i

r′isit ≤ R ∀ t, (2.3d)

yitp ≥ 0, (2.3e)
sit ∈ {0, 1} (2.3f)

and each term is described as follows:

• yitp is a decision variable, representing the amount of item i that is produced during
time period t in order to meet demand in current or future time period p;

• sit is a decision variable, representing the binary setup variable of item i produced
in time period t;

• dip stands for the deterministic demand of item i during current of future time period
p;

• hi and fi are respectively the inventory and setup costs for item i;

• R represents the capacity of the bottleneck resource;

• ri and r′i denote unit processing time and setup time for item i.

The objective function 2.3a contains two terms: the first one represents the overall
inventory cost that is protracted over time, and the second one stands for the total setup
cost. The aim is to satisfy demand at minimum cost. Constraints are explained in the
following manner:

• 2.3b ensures that demand is always satisfied through present and past production;

• 2.3c is the big-M constraint and is related to binary setup decisions;

• 2.3d limits the total cost in terms of total processing and setup time;

• 2.3e and 2.3f stand for the non-negativity condition of production amount and binary
nature of setup decision variables, respectively.

18

2.3 – Case study: Capacitated Lot-Sizing Problem

Plant location formulation has an evident benefit: the big-M constraint is more tight
since it coincides with the demand in only one time period, resulting in more useful lower
bounds to be computed in LP relaxation and a consequently better pruning for Branch
and Bound-based solving methods. However, there are a few downsides. First of all,
the model is not elastic: in extreme scenarios, it may happen that the problem becomes
infeasible, leaving the user without any result. Secondly, it disregards nonlinearities in
transportation costs and uncertainty in demand and capacity. Finally, this model does not
take into account any end-of-horizon effects: the end inventory is always zero in optimal
solutions, and this can contrast with some concrete applications. Furthermore, possible
leftover inventory is not optimized. The solution adopted in Brandimarte [2006] is to equip
the above model with a parsimonious but effective representation of demand uncertainty,
reformulating the optimization problem to make it more elastic and to partially overcome
end-of-horizon effects.

2.3.1 Uncertainty representation

A simple and functional way to represent demand uncertainty is to adopt a tree-based
scenario generation, equipped with a discrete probability distribution of items demand,
making the problem multi-stage. The unique root node of the tree represents the current
state, in which demand value becomes realized and first-stage decision must be taken. For
each future time period, the tree branches creating other nodes and modeling uncertain
scenarios. Then, future planning decisions are made depending on expected values of the
successive branching nodes. In Figure 2.4 we depict an example of a tree-based scenario.
Each branch in the tree contains a conditional probability that is used to compute expected
value of total costs, forming the objective function of the extended model. By considering
the expected value of costs we are assuming a risk-neutral attitude of the user, which
needs not to represent the most general case. The branching structure of the tree can be
useful to partially mitigate end-of-horizon effects: it is indeed possible to add a branching
factor equal to 1 to the end in order to add other nodes, eliminating the uncertainty factor
but extending the time horizon without generating other scenarios.

We remark that the stochastic structure of this model is non-anticipative: the demand
value is only realized during the current time bucket (root node at the beginning), while
future demand is completely unknown, except its expected value. In this way, it is possible
to separate the single-stage decision into multi-stage different decisions. The addiction of
this stochastic structure makes the plant-location reformulation three-dimensional: items
are shipped between different time periods, so the same amount of items must be trans-
ported to all the nodes belonging to target period, in order to match the worst case
demand scenario.

The stochastic model can be further enriched. Introducing leftover inventory as a new
set of decision variables it is possible to manage over-hedging situations, in which future
demand is overestimated and there is an amount of unsold items, making the model more
elastic: we assume that products are not perishable and that unsold items can satisfy
future demand. Another useful addiction is to permit lost sales, implementing another set
of decision variables to control the amount of loss with a suitable penalization, making the
model elastic to extreme demand scenarios and allowing the user to also manage under-
hedging situations. The following notation is used to describe the stochastic tree-based
structure, where n is a generic node of the scenario tree N :

• T is the set of leaves in the tree;

• T (N) returns the time period of the input node;

• a(n) returns the immediate predeccessor for the input node;

19

Mixed-Integer Linear Programming

• Ω(n, t) returns the unique ancestor of node n at time period t;

• Σ(n, t) returns the collection of successor nodes of the input node at time period t.

We formulate the extended stochastic multi-stage version of the optimization problem
2.3 (SCLSP) as follows:

minimize
∑
n∈N

p[n]
[∑

i

(
fis

[n]
i + hiI

[n]
i + giz

[n]
i

)]
+

∑
n∈N\T

p[n]

∑
i

∑
τ>T (n)

hi (τ − T (n)) y[n]
iτ


(2.4a)

subject to I
[a(n)]
i +

∑
t<T (n)

y
[Ω(n,t)]
i,T (n) + y

[n]
i,T (n) = d

[n]
i + I

[n]
i − z

[n]
i ∀ i, n, (2.4b)

y
[n]
iτ ≤

(
max

j∈Σ(n,τ)
d

[j]
i

)
s

[n]
i ∀ i, n, τ > T (n),

(2.4c)

y
[n]
i,T (n) ≤ d

[n]
i s

[n]
i ∀ i, n, (2.4d)∑

i

∑
τ≥T (n)

riy
[n]
iτ +

∑
i

r′is
[n]
i ≤ R ∀n, (2.4e)

y
[n]
iτ , I

[n]
i , z

[n]
i ≥ 0, (2.4f)

s
[n]
i ∈ {0, 1} (2.4g)

where there are mode decision variables, each one indexed through the corresponding
node of the tree. More in detail:

• y
[n]
iτ represents the amount of item i that is produced in node n in order to meet
demand in time period τ ≥ T (n);

• s
[n]
i stands for the binary setup variable for item i produced in node n;

• I
[n]
i represents the leftover inventory of unsold item i in node n;

• z
[n]
i is the decision variable related to unmet demand, that is lost sales of item i at
node n;

with the additional coefficients:

• p[n] is the unconditional probability of node n;

• gi is the penalty for unmet demand of item i;

The objective function 2.4a contains two terms. The first one expresses the expected
value of the overall cost, including inventory leftover, setup and unmet demand. The
second one is the expected value of the inventory costs over time, where the set of leaves
is not considered. Constraints are explained as follows:

• 2.4b acts as a balance equation a given node n. Indeed, the left side including past
leftovers, previous and current production towards a given time period t has to match
the right side, containing demand of node n, planned inventory leftover and unmet
demand;

20

2.3 – Case study: Capacitated Lot-Sizing Problem

• 2.4c is the future big-M constraint, since it is related to binary setup decisions for
future demand nodes. Note that only the maximum of future demands is considered,
making the integrality gap stricter;

• 2.4d is the current big-M constraint, for setup decision of the same time bucket of
demand nodes;

• 2.4e is the same of the simpler model, expressing the limit of capacity;

• 2.4f and 2.4g stand for the non-negativity condition of production amount, inventory
leftovers and unmet demand, whereas setup variables are once again constrained to
be binary.

1

2

4 10 16

5 11 17

6 12 18

7 13 19

8 14 20

9 15 21

3

Figure 2.4: Tree-based scenario with 5 time periods and branching structure (1, 2, 3, 1, 1).

It becomes evident how the Stochastic reformulation of the multi-item CLSP (SCLSP)
may result in very complex and hard to solve optimization problems, especially depending
on the branching structure of the tree: the larger is the number of nodes, the larger
becomes the number of continuous and binary variables. For this reason, it constitutes a
challenging problem for MILP solving methods.

21

22

Chapter 3

Kernel Search

The Kernel Search was first introduced in Angelelli et al. [2012] and it is a heuristic
framework that can be applied to any MILP problem with binary variables. As a heuris-
tic, Kernel Search is able to solve problems whose complexity cannot be tackled by an
exact algorithm, providing high-quality solutions in a practicable amount of time. The
fundamental idea of Kernel Search it’s suggested by its name: to decompose the original
problem by properly restricting its feasibility region into a kernel, and to progressively
expand it by searching for different feasible solutions. The framework relies on a general-
purpose LP and MILP solver, in order to optimally solve each restricted sub-problem
that is obtained: solutions found by the solver provide useful informations about decision
variables and accordingly lead the exploration of feasibility region. In this work, we base
our own Kernel Search implementation on a commercial mathematical optimization solver
called Gurobi Gurobi Optimization, LLC [2021].

There are three major features that make Kernel Search framework reliable and effec-
tive. First of all, it is structured as a very intuitive and flexible greedy algorithm: being
a heuristic approach, it tackles hard problems in a clever and easily customizable way,
shredding their complexity to a simpler level, as a human mental process. Secondly, it
relies on a well performing optimization solver that tackles the most demanding part of
the search, thus requiring an easier implementation than other heuristics. Last but not
least, Kernel Search is very adaptable according to the given problem: indeed, it can
either perform as a general-purpose heuristic and as a task-specific method. The way in
which the heuristic explores solution space is based on a trade-off between quality of the
solution and spent execution time, that can be tuned through a set of parameters: hence,
the algorithm can easily be adapted to a specific problem by properly adjusting its explo-
ration policy. This adaptation process can also be automatic: the heuristic can assess by
itself the difficulty of the problem, and it can suitably change its solving strategy.

3.1 Basic Kernel Search

In this section we describe the basic implementation of Kernel Search applied to binary
MILPs. Our baseline of this heuristic is based on revisited versions of the works of
Angelelli et al. [2010] and Guastaroba and Speranza [2012]. We implement our version of
the heuristic by using Python as programming language, that works very well with the
Gurobi interface. The main procedure is divided into two steps: initialization phase and
extension phase.

23

Kernel Search

3.1.1 Initialization phase

During the first step, the LP relaxation of the original MILP problem is solved: if it
proves to be infeasible, then by Theorem LP infeasibility the query problem is declared
infeasible, and the algorithm stops. Otherwise, the heuristic exploits the found optimal
solution vector x̃ to define the initial kernel K, that is the starting set of variables on
which the original problem is restricted: if a binary variable xj , j ∈ B takes a strictly
positive value in the LP relaxed solution vector x̃, it is added to the set K. In this way,
the heuristic tries to identify which binary variable is more promising, hopefully reducing
the problem dimension. Since MILPs may contain continuous variables xj , j ∈ C, those
are automatically added to the initial kernel. The idea is to reduce problem dimension by
restricting the total number of integer variables, obtaining a subproblem MILP(K)1 that
is easier to solve using Gurobi.

If MILP(K) is feasible and it is solved, the found feasible and possibly optimal solution
is memorized and its value is saved as the cut-off value ν∗: it works as a lower bound
to be reached for each successive subproblem. If the problem is infeasible, ν∗ is set to
+∞. Since MILP(K) may either be infeasible or may provide a low-quality solution with
respect to the original problem, the inclusion of unused variables in the restricted problem
can improve both situations. After defining the elements belonging to K, the algorithm
ranks remaining variables depending on their reduced costs in the LP relaxed solution: the
lesser the reduced cost of a variable xj /∈ K is, the more promising the variable becomes.
Thus, variables are ordered according to their expected goodness and they are passed
to the next step, along with kernel K and cut-off value ν∗. The algorithm Initialization
phase summarizes the mentioned procedure in pseudocode, and the corresponding Python
code can be found in the Appendix A through listing Initialization phase code.

Algorithm 1: Kernel Search inizialization phase
Data: MILP problem and set X of n variables.
Result: Kernel K, set of remaining variables X , solution x∗ and cut-off value ν∗.
1: Solve the LP relaxation of the MILP problem;
if LP relaxation is infeasible then

STOP;
else

Get LP relaxed optimal solution x̃ = (x̃i, . . . , x̃n);
end
2: K ← ∅;
for i← 1 to n do

if x̃i > 0 then
K ← K ∪ {xi};
X ← X \ {xi};

end
end
3: Compute reduced costs of each variable x ∈ X ;
4: Sort variables x ∈ X in non-decreasing order of their reduced costs;
5: ν∗ ← +∞;
6: Solve the restricted problem MILP(K);
if MILP(K) is feasible with optimal solution x and value z then

ν∗ ← z;
x∗ ← x;

end

1We denote with MILP(·) the starting MILP problem constrained to contain only the input set of
variables.

24

3.2 – Adaptive Kernel Search

3.1.2 Extension phase

During the second phase, sorted variables outside the kernel are partitioned into buckets
of a given length Lb, generating a total number Nb = dn−|K|Lb

e of buckets Bi, i = 1, . . . , Nb.
The goal is to afterwards expand the initial kernelK through the inclusion of variables that
are contained in one bucket at time, solving a collection of subproblems MILP(K ∪ Bi),
i = 1, . . . , Nb. The parameter Lb controls the total number and the difficulty of those
subproblems: a lower value corresponds to a higher number of simpler subproblems to be
solved, since each one has a lower dimension. A higher value of Lb, instead, decreases the
total number of subproblems, but each one becomes more complex.

Buckets {Bi}Nb
i=1 are iteratively explored during the extension phase. It is possible to

introduce a parameter N b < Nb that controls the maximum number of buckets to be
explored: the lower N b is, the faster Kernel Search becomes, at the cost of a worse quality
solution. Buckets are explored accordingly to the ranking that is assigned to variables
during the previous phase: the first bucket to be explored contains the most promising
variables, whereas the last bucket contains the least favourable ones. Each time a bucket
Bi is processed, a new subproblem MILP(K∪Bi) is created, with the following additional
constraints:

∑
j∈Bi

xj ≥ 1 (3.1)

Cut-off value set to ν∗ (3.2)

The first constraint ensures that at least one variable of the bucket is included in the
solution, whereas the second constraint establishes a bound to be reached, since we are
interested only in those solutions that improve the current best one: if MILP(K ∪ Bi)
is feasible, it means that the value of the found solution is greater that ν∗, so the latter
and the current best solution x∗ are updated. If a variable belonging to the processed
bucket xj ∈ Bi has a non-zero value in the solution of a feasible MILP(K ∪Bi), it proves
to be useful and it is permanently added to the kernel. If after processing all buckets no
feasible solution has been found, that is ν∗ = +∞, the algorithm stops and the original
problem remains unsolved. Otherwise, the current best found solution x∗ and its value ν∗
are returned as final output. The algorithm Extension phase summarizes the mentioned
procedure in pseudocode, and the corresponding Python code is situated in the Appendix
A through listing Extension phase code.

3.2 Adaptive Kernel Search

One of the issues of the basic implementation of Kernel Search heuristic is that the algo-
rithm does not directly search for a feasible solution of the initial restricted problem: if
the complete MILP is feasible but the first MILP(K) proves to be infeasible, it is neces-
sary to explore and include non-kernel variables before the generation of buckets, in order
to hopefully obtain feasibility. One possible example of a worst case scenario is when
feasibility is only achieved with the simultaneous presence of two variables belonging to
different buckets: in that case, the algorithm will fail and the original problem will re-
main unsolved. The solution adopted by Guastaroba et al. [2017] is to properly expand
the initial kernel K before the generation of buckets {Bi}Nb

i=1, until a feasible solution
is found. A further enlargement of the kernel before the generation of buckets can also
be performed accordingly to the difficulty of the given instance: those features are what
makes Kernel Search a reliable, efficient and flexible heuristic. After getting a feasible

25

Kernel Search

Algorithm 2: Kernel Search extension phase
Data: MILP problem, kernel K, set of sorted variables X , current best solution

x∗ and cut-off value ν∗.
Result: Optimal solution x∗ and its value ν∗.
1: Partition X into buckets {Bi}Nb

i=1 of length Lb;
for i← 1 to min{N b, Nb} do

2: Process bucket Bi;
3: Add constraint

∑
j∈Bi

xj ≥ 1 to MILP(K);
4: Set cuf-off value ν∗ to MILP(K);
5: Solve augmented problem MILP(K ∪Bi);
if MILP(K ∪Bi) is feasible with (possibly optimal) solution x and value z
then
for j ∈ Bi do

if xj > 0 then
K ← K ∪ {xj};
ν∗ ← z;
x∗ ← x;

end
end

end
6: Remove constraint

∑
j∈Bi

xj ≥ 1 from MILP(K);
end

solution, the heuristic computes how much time was consumed to obtain such solution,
and it automatically assesses the difficulty of the original problem as consequence. This
variation is called Adaptive Kernel Search (AKS). The aforementioned procedures are ap-
plied after the Initialization phase and right before the Extension phase, and we describe
them in detail in the following subsections.

3.2.1 Feasibility step

The idea is to iteratively increase the size of the initial kernel until the restricted problem
MILP(K) admits a feasible and possibly optimal solution, by permanently including a
fixed amount of sorted variables. The number of variables that can be added to the kernel
during each iteration is proportional to its initial size, and it is equal to w · |K|, where
w > 0 is a parameter set by the user. If there are remaining variables, they are passed
to the successive phase; otherwise, since the kernel K contains all possible variables, the
heuristic stops. The algorithm Feasibility step summarizes the mentioned procedure in
pseudocode, and the corresponding Python code can be found in the Appendix A in the
first part of listing Adaptation phase code.

3.2.2 Adaptation phase

During this phase, the heuristic firstly assess the difficulty of the original problem de-
pending on how much time tMILP(K)

2 was spent solving the last feasible MILP(K), also
considering the Feasibility step. An instance is classified in the following way:

• Easy if: tMILP(·) ≤ tEasy

2We denote with tMILP(·) the time spent on solving the input problem.

26

3.2 – Adaptive Kernel Search

Algorithm 3: Adaptive Kernel Search feasibility step
Data: MILP problem, kernel K, set of sorted variables X .
Result: Kernel K, set of sorted variables X , solution x∗ and cut-off value ν∗.
while MILP(K) is not feasible do

1: Extract from X the first w · |K| variables;
2: Add to K extracted variables;
3: Solve the restricted problem MILP(K);
if MILP(K) is feasible with (possibly optimal) solution x and value z then

ν∗ ← z;
x∗ ← x;

end
if X = ∅ then

STOP;
end

end

• Hard if: tMILP(·) ≥ tHard with no optimal solution

• Normal otherwise

where tEasy and tHard are parameter specified by the user. If a problem is classified
as Easy, the kernel is augmented by permanently adding to K a set of excluded integer
variables K+ of fixed size q · |K|, where q > 0 is a given parameter, generating a new
subproblem MILP(K ∪K+). Kernel enlargement is repeated until tMILP(K ∪K+) ≤ tEasy.
During each iteration, the following constraints are added to each new restricted problem:

∑
j∈K+

xj ≥ 1 (3.3)

Cut-off value set to ν∗ (3.4)

that are equivalent to 3.1 and 3.2. If MILP(K ∪K+) is solved to optimality, a better
optimal solution x∗ is found as consequence, with corresponding value z∗ that updates
the current cut-off value. We remark that the aim of this phase is not to get a feasible
solution, because this task is accomplished by the previous one. The goal is to exploit the
easiness of the current instance in order to expand kernel as much as possible, reducing
the computational effort in the successive phase and hopefully obtaining better solutions.
After this procedure, if there are no remaining variables, the algorithms stops: kernel K
contains all variables and there is no point in executing the heuristic. Otherwise, left
variables are partitioned into buckets as usual. Algorithm Easy instance summarizes the
described procedure, and its corresponding Python code is situated in the Appendix A,
in the second part of listing Adaptation phase code.

If an instance is classified as Hard, that is the last feasible MILP(K) was not solved
to optimality within tHard and only a feaasible solution was found, it means that the di-
mension of the restricted problem is too difficult to handle through the commercial solver:
the goal is to decrease the size of subproblems in the Extension phase by permanently
fixing the value of some integer variables that are not in the kernel. More in detail, binary
variables outside K are fixed according to the following criterion, that is based on the LP
relaxed solution of the starting problem:

if x̃j > 1− ε =⇒ xj = 1, ∀ j ∈ B (3.5)

27

Kernel Search

Algorithm 4: Adaptive Kernel Search easy instance
Data: Easy MILP problem, kernel K, set of sorted variables X , current best

solution x∗ and cut-off value ν∗.
Result: Kernel K, set of sorted variables X , solution x∗ and cut-off value ν∗.
1: K+ ← ∅;
while tMILP(K) ≤ tEasy do

2: K+ ← the first q · |K| variables from X ;
3: K ← K ∪K+;
4: Add constraint

∑
j∈K+ xj ≥ 1 to MILP(K);

5: Solve the restricted problem MILP(K);
if MILP(K) is feasible with (possibly optimal) solution x and value z then

ν∗ ← z;
x∗ ← x;

end
if X = ∅ then

STOP;
end
6: Remove constraint

∑
j∈K+ xj ≥ 1 from MILP(K);

end

where ε > 0 is a user-defined parameter that controls the sensitivity of such condition:
higher values of ε imply a more nervous heuristic, fixing more variables and thus obtaining
quicker but possibly worse solutions. Lower values of ε, instead, lead the heuristic to
explore more different variables, hopefully enhancing the quality of solutions, at the cost of
a slower algorithm. If there are integer non-binary variables in the MILP original problem,
those variables are fixed to the nearest integer in their corresponding value in the solution
of the LP relaxation. Algorithm Hard instance summarizes the above procedure, and its
corresponding Python code is situated in the Appendix A, in the second part of listing
Adaptation phase code.

Algorithm 5: Adaptive Kernel Search hard instance
Data: Hard MILP problem, kernel K, set of sorted variables X , current best

solution x∗ and cut-off value ν∗.
Result: Kernel K, set of sorted variables X , solution x∗ and cut-off value ν∗.
for j ∈ X do

if x̃j > 1− ε then
1: Add constraint xj = 1 to MILP(K);

end
end

Finally, if an instance is classified as Normal, none of those algorithms is executed
and the Extension phase takes place.

3.3 Time allocation

A proper allocation of computing time is a relevant point, for different reasons. First
of all, it is necessary to balance the available total computing time between the three
main phases: an unbalanced allocation may interfere with the exploration of other feasible
solutions, or it may even prevent the heuristic to find a starting feasible solution. Secondly,
it is mandatory to properly set available computing time in order to fairly compare Kernel
Search to other heuristics or algorithms in terms of performance: since Kernel Search

28

3.3 – Time allocation

actively exploits a commercial solver, it is required to limit the portion of time allocated
to each call to the ILP/LP solver, and the total number of calls is not known from the
beginning. Lastly, the Adaptation phase is specifically based on how much time is spent
on solving different MILP(K) problems, so it becomes necessary to set parameters tEasy
and tHard accordingly to the available computing time. We thus present in detail our time
allocation policy, based on the work of Guastaroba et al. [2017], for each step of Adaptive
Kernel Search:

1. The user specifies the total available computing time tMax for Adaptive Kernel
Search.

2. The entire available time is allocated to the solution of the LP relaxation, updating
the remaining available time tAvailable. If the very first step of the heuristic consumes
all the time without obtaining a relaxed solution, the algorithm stops.

3. Then, a fraction of time tAvailable is spent solving the first restricted problemMILP(K).
The time limit is set equal to tAvailable / (1 + Nb), where the number of buckets Nb

is initially computed dividing the number of non-kernel variables by the size of the
inizial kernel: that coincides with the number of subproblems to be solved without
executing the Adaptation phase.

4. If the given instance requires the Feasibility step, then for each restricted problem to
be solved in Algorithm 3 the time limit is set as twice the time allotted for the first
MILP(K), or if that is exceeds the overall computing time tMax, it is set to tAvailable.

5. Time thresholds of the Adaptation phase are set as follows: for Easy instances,
tEasy can be either set to a fixed value, e.g. 10 seconds, or to a fraction of total
computing time, e.g. tMax/1800, and it coincides with the amount of time allocated
to each MILP(K) in Algorithm 4. Instead, for any Hard instance tHard is set equal
to the time limit that was allocated to the most recent solved MILP(K): in this
way, if Gurobi cannot obtain an optimal solution, but only a feasible one, for the
last restricted problem within the imposed time limit, the heuristic classifies such
instance as Hard, properly reducing the dimension of the problem. This implies that
Kernel Search automatically assesses the difficulty of a MILP problem depending on
tAvailable. For Normal instances, the Adaptation phase simply does not take place.

6. Lastly, the remaining time tAvailable is equally distributed for each restricted problem
in the Extension phase. If a subproblem does not consume all of its allotted time,
that unused time is distributed among the successive restricted problems.

If the basic version of Kernel Search is performed, steps 4 and 5 are not taken into
account. A possible improvement of the Extension phase related to our time allocation
policy is to extend each constraint 3.1 added to restricted problems in the following way,
if ν∗ < +∞:

∑
j∈Bi∪K0

xj ≥ 1 (3.6)

where K0 = {j ∈ K : x∗j = 0}, that corresponds to the set of unused kernel variables
in the current best found solution vector. This variation allows Adaptive Kernel Search to
find an improving solution in which every variable in the current bucket is equal to zero:
if MILP(K ∪ Bi−1) has not been solved to optimality within its assigned time limit, it
can happen that a better solution is found by solving MILP(K ∪Bi), without considering
bucket variables.

29

Kernel Search

It is easy to see that our time allocation policy favors the achievement of an initial
feasible solution. In fact, tasks in points 2 and 4 are allowed to consume all the available
time, because it is essential to either obtain LP feasibility and to consequently search for
a possible MILP feasible solution: the purpose of our heuristic is indeed to attack very
complex problems, initially aiming to obtain a suboptimal solution within a reasonable
computing time. If a problem proves to be easily solvable, the Adaptive Kernel Search
accordingly reduces the optimality gap of the current solution, whereas it shrinks the
dimension of hard but feasible problems, resulting in a very flexible and efficient heuristic.

30

Chapter 4

Experimental analysis

In this chapter we discuss in detail the case study and our computational experiments.
Firstly, we describe the testing environment used to compare different implementations
of the Kernel Search heuristic framework and the Brand and Bound exact algorithm on
a broad collection of MILPs, discussing obtained results. We also expose the structure of
our testing environment and experimental plan, discussing benchmark and measures of
quality. Models are then applied to our case study discussed in Section 2.3, that repre-
sents a very challenging test for our heuristic framework and the exact solving method.
We then discuss a second set of experiments related to the case study. Every experi-
mental test was conducted in the following testing environment: HP Probook G7-440
personal computer, equipped with a Intel Core i5-10210U with a base frequency of 2.11
GHz processor, 16 gigabytes of RAM and Windows 10 64-bit as operating system. The
implementation of every algorithm was written in Python, and the corresponding Python
API of Gurobi version 9.1.1. was used to solve every optimization problem. Settings of
the commercial solver Gurobi were set to default values. During computational exper-
iments, the computing time was traced within the implementation code, exploiting the
Python-based performance counter perf_counter(), which includes time elapsed during
sleep and is system-wide. Different values for the overall available computing time tMax

were tested, and different time allocation settings for the Adaptive Kernel Search as well.

4.1 Comparison between different frameworks

In order to test and compare different models, we applied them on the Benchmark Set
of The Mixed Integer Programming Library (MIPLIB) provided by Gleixner [2021], that
represents a standard test set used to compare the performance of mixed integer solving
algorithms. This problem set contains 240 MILP problems having different dimension and
complexity, of which 8 are not feasible. In the following table we describe the dimension
of some problems contained in the aforementioned benchmark set, specifying the number
of binary, integer and continuous variables, and the number of constraints:

Table 4.1: Description of the first 50 MIPLIB problems.

Instance name Binaries Integers Continuous Constraints
30n20b8 18318 62 0 576
50v-10 1464 183 366 233
academictimetablesmall 28926 0 0 23294
air05 7195 0 0 426
app1-1 1225 0 1255 4926

31

Experimental analysis

Table 4.1: Description of the first 50 MIPLIB problems.

Instance name Binaries Integers Continuous Constraints
app1-2 13300 0 13571 53467
assign1-5-8 130 0 26 161
atlanta-ip 46667 106 1965 21732
b1c1s1 288 0 3584 3904
bab2 147912 0 0 17245
bab6 114240 0 0 29904
beasleyC3 1250 0 1250 1750
binkar10_1 170 0 2128 1026
blp-ar98 15806 0 215 1128
blp-ic98 13550 0 90 717
bnatt400 3600 0 0 5614
bnatt500 4500 0 0 7029
bppc4-08 1454 0 2 111
brazil3 23874 94 0 14646
buildingenergy 0 26287 128691 277594
cbs-cta 2467 0 22326 10112
chromaticindex1024-7 73728 0 0 67583
chromaticindex512-7 36864 0 0 33791
cmflsp50-24-8-8 1392 0 15000 3520
CMS750_4 7196 0 4501 16381
co-100 48417 0 0 2187
cod105 1024 0 0 1024
comp07-2idx 17155 109 0 21235
comp21-2idx 10792 71 0 14038
cost266-UUE 171 0 3990 1446
cryptanalysiskb128n5obj14 47830 1120 0 98021
cryptanalysiskb128n5obj16 47830 1120 0 98021
csched007 1457 0 301 351
csched008 1284 0 252 351
cvs16r128-89 3472 0 0 4633
dano3_3 69 0 13804 3202
dano3_5 115 0 13758 3202
decomp2 14387 0 0 10765
drayage-100-23 11025 0 65 4630
drayage-25-23 11025 0 65 4630
dws008-01 6608 0 4488 6064
eil33-2 4516 0 0 32
eilA101-2 65832 0 0 100
enlight_hard 100 100 0 100
ex10 0 17680 0 69608
ex9 0 10404 0 40962
exp-1-500-5-5 250 0 740 550
fast0507 63009 0 0 507
fastxgemm-n2r6s0t2 48 0 736 5998
fhnw-binpack4-4 481 0 39 620

The following experimental plan involves the comparison between Kernel Search heuristibc
framework and pure Branch and Bound exact algorithm on the aforementioned well diversified
collection of MILP problems. Parameters of the former were set to values reported in Table
4.2. Those values are more oriented towards high-quality solutions, and they ensures that every
bucket is explored during the Extension phase. The length of each bucket coincides with the size
of the initial kernel, and kernel enlargements during Feasibility step and Adaptation phase were
set respectively to the 30% and 35% of the initial kernel size, whereas the threshold ε was set
to 10 times the default integrality tolerance of Gurobi: an integrality restriction on a variable
is considered satisfied when the variable’s value is less than the aforementioned threshold from
the nearest integer value, in the same way the Adaptive Kernel Search operates in case of Hard

32

4.1 – Comparison between different frameworks

instances. Pure Branch and Bound algorithm was applied directly by using Gurobi, disabling all
of its presolving methods and internal heuristics through the Gurobi parameters setting showed
in Table 4.3.

Lb N b w q ε

|K| +∞ 0.30 0.35 10−5

Table 4.2: (Adaptive) Kernel Search parameters setting.

Cuts 0
Heuristics 0
RINS 0
Presolve 0
Aggregate 0
Symmetry 0
Disconnected 0

Table 4.3: Gurobi parameters setting for pure Branch and Bound algorithm.

Results obtained on the Benchmark set during the experimental comparison between Adap-
tive Kernel Search and Branch and Bound with tMax = 60 are exposed in the Appendix B,
where we report the following quantities through complete tables:

• the total available time for both algorithms tMax

• the name of the specific instance

• the value of the best solution found by Adaptive Kernel Search zAKS

• the value of the best solution found by Branch and Bound zBB

• the elapsed computing time for both methods CPUAKS and CPUBB (seconds)

• the difficulty of the instance assessed during the Adaptation phase

• the gap in percentage between the best solution found by Kernel Search and the optimal
one GapAKS

• the gap in percentage between the best solution found by Branch and Bound and the
optimal one GapBB

where each optimality Gap percentage is computed as 100 × z∗−z
|z∗| , where z∗ is the optimal

solution reported by MIPLIB and z is the found solution of a given method. If a given instance
is infeasible, Gap is reported as N/A. Difficulty tags are the following ones: E if the instance is
classified as Easy, N as Normal and H as Hard. If the Adaptive Kernel Search fails to obtain
any feasible solution, the reported tag is U (unsolved).

If one method fails to find a feasible solution within the time limit, the best found solution
reports the wording Inf and the Gap is reported through the wording Fails, whereas AKS
computing time is set to N/A. Whether GapAKS < GapBB or Adaptive Kernel Search manages
to find a solution while Branch and Bound fails, the percentage is reported in bold. If GapAKS =
GapBB , the former percentage is reported in bold if AKS solution was found in lesser time.

Tables in Appendix B are only related to the first experiment, for sake of simplicity and
elegance. For different experimental settings we report only relevant results: the number of solved
instance over 240 problems, the average optimality gap and the worst case optimality gap. In
order to avoid presenting misleading results, we also computed the clean avegare optimality gap,
by removing every percentage that exceeds the value 300% from acquired data. The following
Table 4.4 summarizes the performance we measured from distinct algorithms and for different
values of tMax.

33

Experimental analysis

Algorithm tMax Solved Average Worst case Clean avg.
(s) instances gap gap gap

Branch and Bound 60 145 692.77% 96190.48% 12.81%
Kernel Search 60 105 144.73% 8900.0% 14.89%
AKS with tEasy = 10 60 127 104.48% 8900.0% 8.26%
AKS with tEasy = 0.03 60 127 97.61% 8900.0% 12.46%
Branch and Bound 600 189 2939.44% 553400.0% 4.17%
Kernel Search 600 142 106.77% 8900.0% 11.25%
AKS with tEasy = 10 600 173 68.45% 8900.0% 3.49%
AKS with tEasy = 0.33 600 171 59.44% 8900.0% 5.08%

Table 4.4: Kernel Search versus Branch and Bound experimental results.

The outcome is significantly interesting: in general, pure Branch and Bound method has
proven to be capable of solving more instances, at the cost of scoring some extremely high
optimality gaps in the worst cases. This means that the algorithm is still very strong at attacking
very complex MILPs obtaining feasible solutions, but with a tight bound on computing time it
struggles to find good quality ones. Instead, Kernel Search framework has proven to obtain a
much lower average optimality gap, but leaving a relevant amount of problems unsolved: chosen
parameters in Table 4.2 lead the heuristic to chase high quality solution, at the expense of
loosing feasibility in the worst cases. Another notable result is that the Adaptive version of
Kernel Search clearly obtained much better scores than its basic implementation: being able
to fit itself to instances of different difficulty proves to be a remarkably effective feature. It’s
interesting to notice how distinct values of tEasy affect the heuristic results: a proportionally
large value causes the algorithm to score a slightly better clean average gap, meanwhile the
overall mean gap is a bit higher. This means that kernel enlargements can actually favors the
heuristic in the worst cases, making the algorithm more robust. In Figure 4.1 we describe how
difficulties assessed by Adaptive Kernel Search are spread over the Benchmark set, depending
on time allocation policy and tMax: higher values of tEasy correspond to a larger portion of
Easy problems as expected, while a less strict time limit can significantly reduce the portion of
unsolved problems.

Removing outlying data values makes the analysis clearer: clean average optimality gaps
show how AKS and Branch and Bound obtained comparable performances, whereas the basic
implementation of Kernel Search falls behind, especially when the total available time becomes
larger. We remark that reported values of tMax are very strict: this means that Kernel Search
framework can be extremely useful in situations with a limited amount of available computing
time, e.g. for the stochastic facility location in a humanitarian disaster setting discussed in Turkeš
et al. [2021], so we consider satisfied of obtained performance. More in detail, we report in Table
4.5 the number of times, for each implementation of the Kernel Search heuristic framework, a
model scored a better and a worse optimality gap than Branch and Bound, and the number of
times a model obtained the same result in lesser and in more time than the exact algorithm.

Algorithm tMax # better # better # worse # worse
(s) gap time gap time

Kernel Search 60 42 13 97 11
AKS with tEasy = 10 60 57 8 77 27
AKS with tEasy = 0.03 60 51 24 82 14
Kernel Search 600 44 23 115 10
AKS with tEasy = 10 600 61 15 71 37
AKS with tEasy = 0.33 600 60 29 78 24

Table 4.5: Kernel Search versus Branch and Bound performance comparison.

34

4.2 – Case study: experiments and results

(a) tMax = 60, tEasy = 10 (b) tMax = 60, tEasy = 0.033

(c) tMax = 600, tEasy = 10 (d) tMax = 600, tEasy = 0.33

Figure 4.1: Pie charts representing different problem difficulty assessment policies.

It is one more time evident how the basic version of Kernel Search performed significantly
worse than its refined variation. The above comparison reveals how setting tEasy proportionally
to tMax can notably improve heuristic performance: an improper kernel enlargement can actually
slow down the entire solving process, obtaining worse results. The comparison reveals that the
exact Branch and Bound method is still hard to surpass, and that the Kernel Search framework
proves to be a valid tool to tackle generic MILP problems, obtaining better results if we consider
average cases, especially when there is lack of computational resources.

4.2 Case study: experiments and results

The following experimental plan refers to the chosen case study. The strategy is to explore
and test different parameters of the Adaptive Kernel Search heuristic in order to find the most
suitable ones for SCLSP of different dimensions and number of time periods: our goal is to
obtain a set of good performing parameters for each different dimension of the MILP problem,
in order to suitably shape various AKS versions depending on the problem complexity, and to
better understand their impact on performance. Experiments were conducted on a dataset of
SCLSP models of various dimensions, generated through Monte Carlo simulations. The dataset
was split into a train set and a test set in proportion 70/30: the best performing parameters
on the former are then evaluated on the latter. Since Branch and Bound does not need a
proper parameters tuning, we performed an in-sample comparison between different models and
algorithms. The testing environment is the same of the previous experimental plan, while Monte
Carlo simulations and scenarios generation were implemented in MATLAB.

35

Experimental analysis

Dataset contains various instances of the Stochastic Capacitated Lot-Sizing Problem, each
one named through its branching structure, as reported in Table 4.6. Larger numbers of time
periods were not considered, since they made instances too difficult to solve in less than 3 hours.
A first collection of runs of Adaptive Kernel Search on the specified instances with tMax equal
to 3600 seconds immediately revealed their notable complexity, since bigger problems were not
solved to optimality: thus, the amount of tMax allocated for each of those instances was set to
7200 seconds. Adaptive Kernel Search parameters w, q and lbuck were tuned for each bucket
of time periods as exposed in Table 4.7, while tEasy was set to tMax/1800, since it performed
well during the previous comparison. Results are exposed in Table 4.6 with the same notation
of tables in Appendix B, expect for the optimality gap.

Instance name zAKS zBB CPUAKS CPUBB Difficulty

1-4-1-1 16960.59 16960.59 4.70 3600.12 E
1-5-1-1 21199.17 21199.17 2.66 3600.09 E
1-6-1-1 19848.5 19848.5 5.16 3600.42 E
1-7-1-1 18005.49 18005.49 8.64 3600.03 E
1-8-1-1 21180.85 21180.85 16.28 3601.11 N
1-9-1-1 21611.49 21611.49 23.2 3600.08 N
1-2-2-1-1 28367.65 28367.65 5.03 7200.57 E
1-2-3-1-1 28719.94 28556.28 6.21 7200.09 N
1-3-4-1-1 24780.68 24949.5 850.92 7200.29 N
1-5-2-1-1 27753.94 27753.94 553.09 7201.03 N
1-6-2-1-1 27442.01 27533.65 441.74 7200.12 N
1-3-3-1-1 29148.16 29337.51 16.2 7200.38 N
1-4-4-1-1 27639.14 27862.18 786.55 7200.41 N
1-3-2-2-1-1 31880.42 32163.96 39.95 7200.45 N
1-3-3-2-1-1 32385.19 36498.76 1766.78 7200.95 N
1-4-2-2-1-1 Inf 31864.44 N/A 7200.79 U
1-4-3-2-1-1 Inf 36276.97 N/A 7200.28 U
1-4-4-2-1-1 Inf 33645.16 N/A 7200.11 U
1-3-2-2-2-1-1 Inf N/A Inf N/A U
1-3-3-2-2-1-1 Inf 36498.76 N/A 7200.56 U
1-4-4-2-2-1-1 Inf N/A Inf N/A U
1-4-3-3-2-1-1 Inf 27752.59 N/A 7201.13 U

Table 4.6: Experimental results on Monte Carlo-simulated SCLSP instances.

Time periods q w lbuck
4 0.75 0.50 |K|
5 0.30 0.15 0.75 ∗ |K|
6 0.30 0.05 0.5 ∗ |K|
7 0.30 0.01 0.25 ∗ |K|

Table 4.7: Adaptive Kernel Search best performing parameters for SCLSP.

Almost every instance with 4 time periods was classified as Easy, making q the most im-
portant parameter, that is the percentage of enlargement of the kernel size during the Adaptive
step: larger values implied a slight but notable reduction in computing time, since the algo-
rithm was able to reduce the amount of time spent during the searching phase. The length of
buckets, in those cases, is useless, since the remaining non-kernel variables are very few. Every
4-periods instance was solved by AKS to optimality and in less than one minute, whereas Branch
and Bound required almost the entire available time. Due to the lower dimension of 4-periods
instances, both methods achieved the same optimal solution as expected.

36

4.2 – Case study: experiments and results

Instances with 5 periods were mostly classified as Normal, making the q parameter irrel-
evant. Instead, the parameter w that regulates the Feasibility step has proven to be the most
sensitive one, being very impacting on the achievement of a feasible solution: larger values of
w made each restricted problem in Algorithm 4 more difficult to solve within its time limit,
causing a decrease in computing performance of AKS. In fact, lowering the value of w remark-
ably increased the needed computing time. The length of each bucket remained an unimportant
parameter, due to the number of non-kernel variables. AKS managed to solve every 5-period
instance within an order or even two less of magnitude of computing time than the exact algo-
rithm, sometimes obtaining a better objective value: in case of simpler problems and very strict
time limits, Kernel Search heuristic outshines Branch and Bound, confirming our analysis in the
previous section.

All the instances containing 6 and 7 time periods revealed themselves extremely hard to
solve within two hours. In particular, AKS did not managed to solve any of the 7-periods
instances, while it did solve some of the 6-periods ones, achieving a better objective value than
Branch and Bound, in two order less of magnitude computing time. On the contrary, Branch
and Bound algorithm was able to obtain a feasible solution for all the 6-periods instances and
some of the 7-periods ones, consuming all the available time: thus, it still represents a reliable
and valuable solving method to tackle discrete problems with such complexity, obtaining feasible
solutions that can be very distant from the optimal value, as we deduced from results of the first
experimental plan.

It is necessary to remark that the chosen case study has no dramatic consequences when a
feasible solution is not obtained: in the worst cases, the user will incur in lost sales. Instead, it
becomes significantly more risky to fail obtaining a feasible solution when it comes to optimiza-
tion problems of very delicate applications: for example, in a facilities location problem during
a humanitarian disaster, failing to obtain a solution within a rigid time limit may cost in human
lives. In such dangerous situations, can be more useful to operate with a heuristic algorithm
that can provide a good-quality solution in few seconds, if the optimization problem is not huge.

37

38

Chapter 5

Conclusions and future works

This thesis work aimed on studying, implementing and applying heuristic algorithms for the so-
lution of discrete optimization problems. The Kernel Search heuristic framework has proven to
be an efficient and effective solving method to tackle Mixed-Integer Linear Programming prob-
lems, thanks to a clever problem restriction strategy and the huge improvements of commercial
solvers. In particular, the Adaptive version of the heuristic can successfully tackle problems of
different dimensions, being more efficient and flexible than its basic version and exact Branch
and Bound. Experimental results have been quite positive, proving that Adaptive Kernel Search
performs, on average, better than Branch and Bound, although the latter still constitutes a very
effective solving method, being able to obtain feasible solutions in the worst cases where AKS
failed. The chosen case study has proven to be extremely challenging, since the dimension of
generated instances required a large amount of available computing time, but the heuristic man-
aged to find the optimal solution in way less time than Branch and Bound when facing easier
problems.

Our results suggest that the Kernel Search framework is remarkably well-performing when
time limits are very strict, e.g. when optimization models are related to emergency problems:
in such cases, obtaining a good solution within a time limit of, for example, ten minutes can be
game-changing. A possible future work is to experiment a specific variant of the Kernel Search
heuristic for humanitarian disasters, taking as example the work of Turkeš et al. [2021].

Another future work is to explore other automatic features of the Adaptive Kernel Search
heuristic, thanks to its highly customizable structure. For example, it would be interesting to
investigate a more dynamic time allocation policy. Obtained results suggest that the amount
of available time for each restricted problem is crucial: a even more adaptive version of the
algorithm could decide to allocate a different amount of time depending on the number of
variables or constraints. In fact, the latter is not considered by the heuristic, and it may provide
useful informations about the problem difficulty. A further adaptive feature can be the automatic
setting of the most sensitive parameters, like w and q, exploiting the assessed difficulty of the
given instance.

39

40

Appendix A

Kernel Search implementation

Here we present the Python code of the implementation of our Kernel Search version. The entire
code listing is divided into three sections, one for each phase of the heuristic.

A.1 Initialization phase code

1 import numpy as np
2 import pandas as pd
3 import math
4 import time
5 import sys
6 import more_itertools as mit
7 import gurobipy as gb
8

9 # Functions
10 def prepareModel (model , var , kernel , bucket =None , unused =None):
11 varRemove = set(var). difference (set(kernel))
12

13 # Restrict model variables to kernel
14 if len(varRemove) > 0:
15 maxVar = model. addVar (ub =0.0 , name=" maxVar ")
16 model. addGenConstrMax (maxVar , varRemove , name=" maxConstr ")
17 model. update ()
18

19 # Consider at least one variable from bucket
20 if bucket is not None and unused is None:
21 orVar = model. addVar (lb =1.0 , name="orVar")
22 model. addGenConstrOr (orVar , bucket , name=" orConstr ")
23 model. update ()
24

25 # Consider at least one variable from bucket and unused variables
26 if bucket is not None and unused is not None:
27 enlarged_bucket = bucket + unused
28 orVar = model. addVar (lb =1.0 , name="orVar")
29 model. addGenConstrOr (orVar , enlarged_bucket , name=" orConstr ")
30 model. update ()
31

32

33 def resetModel (model , var , kernel , bucket =None):
34 varRemove = set(var). difference (set(kernel))
35

36 # Remove previously added constraints
37 if bucket is not None:
38 model. remove (model. getVarByName ("orVar"))
39 model. remove (model. getGenConstrs () [-1])

41

Kernel Search implementation

40 model. update ()
41

42 if len(varRemove) > 0:
43 model. remove (model. getVarByName (" maxVar "))
44 model. remove (model. getGenConstrs () [-1])
45 model. update ()
46

47 # Parameters
48 NBmax = 20
49 Tmax = 600
50 Teasy = Tmax /1800
51 q = 0.30
52 w = 0.35
53 eps = 10^ -5
54 file = "MPS/file.mps"
55

56 # Read model
57 model = gb.read(file)
58 model. Params . OutputFlag = 0
59 N = model. NumVars
60 m = model. NumConstrs
61 var = model. getVars ()
62 index = dict(zip(var , range (0, N)))
63

64 # LP - relaxation
65 relaxed = model.relax ()
66 relaxed . optimize ()
67 Tavailable = max (0, Tmax - relaxed . Runtime)
68 if relaxed . Status == 3:
69 sys.exit("LP - relaxation is infeasible !")
70

71 # Kernel and buckets initialization
72 kernel = [v for (x, v) in zip(relaxed .X, var) if x>0 or v.VType ==’C’]
73 C = len(kernel)
74

75 # Sorting reduced costs of LP - relaxation
76 reduced_cost = relaxed .RC
77 for v in kernel :
78 reduced_cost [index[v]] = math.inf
79 reduced_cost = np. argsort (reduced_cost)
80 pre_bucket = [var[i] for i in reduced_cost [:N-C]]

A.2 Adaptation phase code

1 print(" Getting feasible solution for MILP(K)...")
2 hardness = ’N’
3 get_feasible = round(w * C)
4 first_time = Tavailable /(1+ math.ceil(len(pre_bucket)/C))
5 failure = 1
6 flag = 0
7

8 # Searching for a feasible solution of MILP
9 while failure == 1:

10

11 # Assess time limit
12 if flag == 0:
13 model. Params . timeLimit = first_time
14 flag = 1
15 elif first_time * 2 < Tavailable :
16 model. Params . timeLimit = first_time * 2
17 else:
18 model. Params . timeLimit = Tavailable
19 prepareModel (model , var , kernel)

42

A.2 – Adaptation phase code

20 model. optimize ()
21 Tavailable = max (0, Tavailable - model. Runtime)
22

23 # Check solution
24 if model. Status == 2 or model. Status == 13:
25 best_sol = model.X
26 best_objval = model. ObjVal
27 model. Params . Cutoff = best_objval
28 failure = 0
29

30 # Recognize hard instances
31 if model. Runtime >= model. Params . timeLimit and \
32 model. Status == 13:
33 hardness = ’H’
34

35 resetModel (model , var , kernel)
36

37 if len(kernel) == len(var):
38 print(" Solution found: ", best_objval)
39 print(" Elapsed time: ", round(time. perf_counter ()))
40 sys.exit(" Kernel contains all variables .")
41

42 # Enlarging kernel if not feasible
43 else:
44 resetModel (model , var , kernel)
45 kernel . extend (pre_bucket [: get_feasible])
46 pre_bucket = pre_bucket [get_feasible :]
47

48 # Check remaining time
49 if Tavailable == 0:
50 sys.exit(" Timeout : no feasible solution found.")
51

52 # Perform adaptive step
53 print(" Performing adaptive step ...")
54

55 # Hard instance : fix binary and integer variables to nearest integer
56 if hardness == ’H’:
57

58 # Integer variables
59 for var in [v for (x, v) in zip(relaxed .X, var) \
60 if (int(round(x))-eps) <= x <= (int(round(x))+eps) \
61 and v.VType == ’I’ and v in pre_bucket]:
62 model. addConstr (var == int(round(relaxed .X[index[var]])))
63 model. update ()
64

65 # Binary variables
66 for var in [v for (x, v) in zip(relaxed .X, var) \
67 if x > 1 - eps and v.VType == ’B’ and v in pre_bucket]:
68 model. addConstr (var == 1)
69 model. update ()
70

71 # Easy instance
72 instance_easy = round(q * C)
73

74 while model. Runtime <= Teasy and hardness != ’H’:
75 hardness = ’E’
76

77 bucket = pre_bucket [: instance_easy]
78 kernel . extend (bucket)
79 pre_bucket = pre_bucket [instance_easy :]
80

81 prepareModel (model , var , kernel , bucket)
82 model. Params . timeLimit = Teasy
83 model. optimize ()
84

85 Tavailable = max (0, Tavailable - model. Runtime)

43

Kernel Search implementation

86 # Check solution
87 if model. Status == 2 or model. Status == 13:
88 best_sol = model.X
89 best_objval = model. ObjVal
90 model. Params . Cutoff = best_objval
91 if len(kernel) == len(var):
92 print(" Solution found: ", best_objval)
93 print(" Elapsed time: ", round(time. perf_counter ()))
94 sys.exit(" Kernel contains all variables .")
95

96 resetModel (model , var , kernel , bucket)
97

98 # Check remaining time
99 if Tavailable == 0:

100 print(" Solution found: ", best_objval)
101 print(" Elapsed time: ", round(time. perf_counter ()))
102 sys.exit(" Timeout : feasible solution found.")

A.3 Extension phase code
1 # Generate buckets
2 lbuck = C
3 buckets = list(mit. chunked (pre_bucket , lbuck))
4 NB = len(buckets)
5

6 # Iterate over buckets
7 print(" Iterating over buckets ...")
8 for i in range (0, min(NB , NBmax)):
9

10 new_kernel = kernel + buckets [i]
11

12 # Force also unused kernel variables , may improve current solution
13 if best_sol is not None:
14 unused = [v for v in kernel if best_sol [index[v]] == 0]
15 prepareModel (model , var , new_kernel , buckets [i], unused)
16 else:
17 prepareModel (model , var , new_kernel , buckets [i])
18

19 model. Params . timeLimit = Tavailable / (NB - i)
20 model. optimize ()
21 Tavailable = max (0, Tavailable - model. Runtime)
22

23 # Check solution
24 if model. Status == 2 or model. Status == 13:
25 best_sol = model.X
26 best_objval = model. ObjVal
27 model. Params . Cutoff = best_objval
28 kernel . extend ([v for v in buckets [i] if best_sol [index[v]] > 0])
29

30 resetModel (model , var , new_kernel , buckets [i])
31

32 # Check remaining time
33 if (Tavailable == 0):
34 print(" Solution found: ", best_objval)
35 print(" Elapsed time: ", round(time. perf_counter ()))
36 sys.exit(" Timeout : feasible solution found.")
37

38 # Ending of Kernel Search
39 kernel_time = round(time. perf_counter ())
40 print("Best value obtained (KS):", best_objval)
41 print(" Elapsed time (KS):", kernel_time)

44

Appendix B

Experimental results

In this appendix we report all the entire results obtained during computational experiments.

B.1 Adaptive Kernel Search vs Branch and Bound

The following tables contain the computational comparison between Adaptive Kernel Search and
pure Brand and Bound algorithm, with tMax = 60 and tEasy = 10. The AKS parameters were
set as in Table 4.2, while Gurobi settings were set to the values specified in Table 4.3, in order
to get an almost pure Branch and Bound algorithm.

45

Experimental results

Table B.1: Experimental results with tMax = 60 and tEasy = 10 seconds (1)

Instance name zAKS CPUAKS zBB CPUBB Difficulty GapAKS GapBB

30n20b8 302 36,48 302 56,21 E 0.0% 0.0%
50v-10 4618,18 60 3475,89 60,01 E 39.47% 4.97%
academictimetablesmall Inf N/A Inf 60,03 U Fails Fails
air05 26374 60 26374 10,83 E 0.0% 0.0%
app1-1 -3 4,82 -3 3,2 E 0.0% 0.0%
app1-2 Inf N/A Inf 60,05 U Fails Fails
assign1-5-8 Inf N/A 212 60 U Fails 0.0%
atlanta-ip 94,01 57,06 Inf 60,04 E 4.44% Fails
b1c1s1 Inf N/A 26208,82 60,04 U Fails 6.78%
bab2 Inf N/A Inf 62,41 U Fails Fails
bab6 Inf N/A Inf 60,07 U Fails Fails
beasleyC3 754 8,57 829 60,03 E 0.0% 9.95%
binkar10_1 6742,2 5,69 6746,76 60,03 E 0.0% 0.07%
blp-ar98 6361,5 60 6592,55 60,04 E 2.52% 6.24%
blp-ic98 4508,9 60 4942,96 60,03 E 0.39% 10.05%
bnatt400 Inf N/A Inf 60,03 U Fails Fails
bnatt500 Inf N/A Inf 60,03 U N/A N/A
bppc4-08 57 60 55 60 E 7.55% 3.77%
brazil3 Inf N/A Inf 60,01 U Fails Fails
buildingenergy Inf N/A Inf 60,11 U Fails Fails
cbs-cta 0 0,88 0 0,78 E 0.0% 0.0%
chromaticindex1024-7 4 16,11 Inf 60,01 E 0.0% Fails
chromaticindex512-7 4 13,18 Inf 60,07 E 0.0% Fails
cmflsp50-24-8-8 Inf N/A Inf 60,03 U Fails Fails
CMS750_4 252 19,15 252 7,52 N 0.0% 0.0%
co-100 5962512,73 60 6064254,52 60,49 E 125.86% 129.71%
cod105 Inf N/A Inf 60,06 U Fails Fails
comp07-2idx Inf N/A 13 60,04 U Fails 116.67%
comp21-2idx Inf N/A 121 60,04 U Fails 63.51%
cost266-UUE Inf N/A 25280712,46 60,04 U Fails 0.52%
cryptanalysiskb128n5obj14 Inf N/A Inf 60,02 U N/A N/A
cryptanalysiskb128n5obj16 Inf N/A Inf 60 U Fails Fails
csched007 Inf N/A 374 60,01 U Fails 6.55%
csched008 173 43,72 174 60,03 E 0.0% 0.58%
cvs16r128-89 Inf N/A -92 60 U Fails 5.15%
dano3_3 576,34 29,65 576,34 36,78 N 0.0% 0.0%
dano3_5 Inf N/A 576,99 60,01 U Fails 0.01%
decomp2 -160 60 -160 2,66 E 0.0% 0.0%
drayage-100-23 103333,87 60 103333,87 1,01 E 0.0% 0.0%
drayage-25-23 101282,65 60 101282,65 60,04 E 0.0% 0.0%
dws008-01 Inf N/A 41559,42 60,04 U Fails 11.08%
eil33-2 Inf N/A 934,01 3,95 U Fails 0.0%
eilA101-2 Inf N/A Inf 60,09 U Fails Fails
enlight_hard 37 60 37 2,06 E 0.0% 0.0%
ex10 Inf N/A Inf 60,06 U Fails Fails
ex9 81 60 Inf 60,02 E 0.0% Fails
exp-1-500-5-5 65887 11,29 68671 60,01 E 0.0% 4.23%
fast0507 Inf N/A Inf 60,03 U Fails Fails
fastxgemm-n2r6s0t2 2327 11,63 527 60,04 E 911.74% 129.13%
fhnw-binpack4-4 Inf N/A Inf 60 U N/A N/A
fhnw-binpack4-48 0 40,51 0 7,52 N 0.0% 0.0%
fiball 138 60 Inf 60,03 E 0.0% Fails

46

B.1 – Adaptive Kernel Search vs Branch and Bound

Table B.2: Experimental results with tMax = 60 and tEasy = 10 seconds (2)

Instance name zAKS CPUAKS zBB CPUBB Difficulty GapAKS GapBB

gen-ip002 -4762,94 60 -4772,4 60 E 0.43% 0.24%
gen-ip054 6840,97 21,85 6847,25 60,01 E 0.0% 0.09%
germanrr Inf N/A Inf 60,02 U Fails Fails
gfd-schedulen180f7d50m30k18 Inf N/A Inf 60,04 U Fails Fails
glass-sc Inf N/A 23 60,03 U Fails 0.0%
glass4 1200012600 35,61 1600014267 60 E 0.0% 33.33%
gmu-35-40 -2406613,22 28,2 -2406157,69 60,01 E 0.0% 0.02%
gmu-35-50 -2607797,05 39,62 -2605748,52 60,01 E 0.01% 0.08%
graph20-20-1rand -7 60 -8 60,02 E 22.22% 11.11%
graphdraw-domain 24141 60 19857 60,01 E 22.63% 0.87%
h80x6320d 6437,53 52,78 7343,01 60,05 E 0.87% 15.06%
highschool1-aigio Inf N/A Inf 60,06 U Fails Fails
hypothyroid-k1 -2851 27,74 -2851 29,74 N 0.0% 0.0%
ic97_potential Inf N/A 3953 60,02 U Fails 0.28%
icir97_tension 6376 60 6386 60,01 N 0.02% 0.17%
irish-electricity Inf N/A Inf 60,08 U Fails Fails
irp Inf N/A 12159,49 0,81 U Fails 0.0%
istanbul-no-cutoff Inf N/A 204,08 60,04 U Fails 0.0%
k1mushroom Inf N/A Inf 60,07 U Fails Fails
lectsched-5-obj Inf N/A 39 60,06 U Fails 62.5%
leo1 411539933,3 60 471859930,1 60,02 E 1.81% 16.73%
leo2 411520245,6 60 Inf 60,05 E 1.84% Fails
lotsize Inf N/A 1760543 60,01 U Fails 18.94%
mad 0,34 60 0,09 60,01 E 1033.33% 200.0%
map10 Inf N/A Inf 60,12 U Fails Fails
map16715-04 Inf N/A Inf 60,05 U Fails Fails
markshare2 90 60 22 60,01 E 8900.0% 2100.0%
markshare_4_0 1 60 1 7,39 E 0.0% 0.0%
mas74 11877,69 30,07 11801,19 60,01 E 0.65% 0.0%
mas76 40005,05 60 40005,05 12,17 E 0.0% 0.0%
mc11 11702 25,96 12848 60,05 E 0.11% 9.92%
mcsched 214786 16,67 211950 60,02 E 1.36% 0.02%
mik-250-20-75-4 -43679 60 -52287 60,02 E 16.49% 0.03%
milo-v12-6-r2-40-1 328802,32 10,19 Inf 60,02 E 0.71% Fails
momentum1 Inf N/A Inf 60,03 U Fails Fails
mushroom-best 0,06 26,25 Inf 60,03 E 0.0% Fails
mzzv11 -21608 32,63 -21638 60,04 E 0.51% 0.37%
mzzv42z -20500 60 -20540 34,88 E 0.19% 0.0%
n2seq36q 52600 60 52200 11,92 E 0.77% 0.0%
n3div36 140800 60 Inf 60,04 E 7.65% Fails
n5-3 8105 5,97 8465 60,03 E 0.0% 4.44%
neos-1122047 161 60 161 5,61 E 0.0% 0.0%
neos-1171448 -309 4,54 -309 2,87 E 0.0% 0.0%
neos-1171737 -195 21,38 -195 31,44 E 0.0% 0.0%
neos-1354092 Inf N/A Inf 60,02 U Fails Fails
neos-1445765 0 10,12 -17783 23,75 E 100.0% 0.0%
neos-1456979 177 40,31 177 60,02 E 0.57% 0.57%
neos-1582420 91 60 91 51,55 E 0.0% 0.0%
neos-2075418-temuka Inf N/A Inf 60,29 U N/A N/A
neos-2657525-crna Inf N/A Inf 60,01 U Fails Fails
neos-2746589-doon Inf N/A Inf 60,11 U Fails Fails

47

Experimental results

Table B.3: Experimental results with tMax = 60 and tEasy = 10 seconds (3)

Instance name zAKS CPUAKS zBB CPUBB Difficulty GapAKS GapBB

neos-2987310-joes -607702988,3 4,72 -607702988,3 3,61 E 0.0% 0.0%
neos-3004026-krka Inf N/A 0 9,28 U Fails 0.0%
neos-3024952-loue Inf N/A 29266 60,04 U Fails 9.38%
neos-3046615-murg 1600 60 1612 60,01 E 0.0% 0.75%
neos-3083819-nubu 6308067 60 6307996 14,99 E 0.0% 0.0%
neos-3216931-puriri Inf N/A Inf 60,03 U Fails Fails
neos-3381206-awhea 453 60 Inf 60,01 E 0.0% Fails
neos-3402294-bobin 0,33 60 Inf 60,27 E 371.43% Fails
neos-3402454-bohle Inf N/A Inf 60,21 U N/A N/A
neos-3555904-turama Inf N/A Inf 60,04 U Fails Fails
neos-3627168-kasai 988585,62 10,43 989725,33 60,02 E 0.0% 0.12%
neos-3656078-kumeu Inf N/A Inf 60,04 U Fails Fails
neos-3754480-nidda Inf N/A 13128,62 60 U Fails 1.44%
neos-3988577-wolgan Inf N/A Inf 60,07 U N/A N/A
neos-4300652-rahue 2,14 60 3,28 60,07 N 0.0% 53.27%
neos-4338804-snowy 1720 60 1484 60,07 E 16.93% 0.88%
neos-4387871-tavua 36,56 60 147,95 60,04 E 9.53% 343.23%
neos-4413714-turia 48,93 60 Inf 60,14 E 7.85% Fails
neos-4532248-waihi Inf N/A Inf 60,05 U Fails Fails
neos-4647030-tutaki Inf N/A Inf 60,25 U Fails Fails
neos-4722843-widden 25532,13 16,44 Inf 60,01 E 2.09% Fails
neos-4738912-atrato 383978456,9 10,3 283627956,6 48,35 E 35.38% 0.0%
neos-4763324-toguru 1689,59 60 Inf 60,05 E 4.75% Fails
neos-4954672-berkel 2896853 17,1 2775590 60,02 E 10.88% 6.23%
neos-5049753-cuanza Inf N/A Inf 60,39 U Fails Fails
neos-5052403-cygnet 182 60 Inf 60,17 E 0.0% Fails
neos-5093327-huahum Inf N/A 6714 60,12 U Fails 7.25%
neos-5104907-jarama Inf N/A Inf 60,02 U Fails Fails
neos-5107597-kakapo 27243 60 3681 60,05 H 647.41% 0.99%
neos-5114902-kasavu Inf N/A Inf 65,1 U Fails Fails
neos-5188808-nattai Inf N/A 0,12 60,04 U Fails 9.09%
neos-5195221-niemur Inf N/A 0,02 60,06 U Fails N/A
neos-631710 289 60 Inf 60,19 E 42.36% Fails
neos-662469 Inf N/A 264827,5 60,09 U Fails 43.63%
neos-787933 32 60 Inf 60,16 E 6.67% Fails
neos-827175 112 5,1 112 2,67 E 0.0% 0.0%
neos-848589 Inf N/A 2264174,31 60,47 U Fails 96190.48%
neos-860300 3313 51,48 3201 51,92 E 3.5% 0.0%
neos-873061 146,18 60 Inf 60,02 E 28.61% Fails
neos-911970 56,36 60 56,51 60,01 E 2.92% 3.2%
neos-933966 318 60 318 6,42 E 0.0% 0.0%
neos-950242 4 58,96 4 60,07 E 0.0% 0.0%
neos-957323 -229,77 60 -237,76 14,59 E 3.36% 0.0%
neos-960392 -236 60 -238 11,11 E 0.84% 0.0%
neos17 0,15 60 0,15 15,02 E 0.0% 0.0%
neos5 15 52,97 15 60,01 E 0.0% 0.0%
neos8 -3627 60 -3719 5,38 E 2.47% 0.0%
net12 214 41,52 255 60,09 H 0.0% 19.16%
netdiversion Inf N/A 242 24,64 U Fails 0.0%
nexp-150-20-8-5 365 60 Inf 60,04 E 58.01% Fails
ns1116954 Inf N/A Inf 60,02 U Fails Fails

48

B.1 – Adaptive Kernel Search vs Branch and Bound

Table B.4: Experimental results with tMax = 60 and tEasy = 10 seconds (4)

Instance name zAKS CPUAKS zBB CPUBB Difficulty GapAKS GapBB

ns1208400 2 60 Inf 60,03 E 0.0% Fails
ns1644855 Inf N/A Inf 60,74 U Fails Fails
ns1760995 Inf N/A Inf 60,05 U Fails Fails
ns1830653 Inf N/A 23622 60,02 U Fails 14.55%
ns1952667 Inf N/A 0 19,41 U Fails 0.0%
nu25-pr12 53905 60 53905 4,02 E 0.0% 0.0%
nursesched-medium-hint03 Inf N/A Inf 60,04 U Fails Fails
nursesched-sprint02 58 60 58 33,39 E 0.0% 0.0%
nw04 Inf N/A 16862 7,91 U Fails 0.0%
opm2-z10-s4 Inf N/A Inf 60,02 U Fails Fails
p200x1188c 15078 60 17133 60,03 E 0.0% 13.63%
peg-solitaire-a3 Inf N/A Inf 60,03 U Fails Fails
pg -8674,34 60 -8511,74 60 E 0.0% 1.87%
pg5_34 -14339,35 34,71 -14339,35 46,12 H 0.0% 0.0%
physiciansched3-3 Inf N/A Inf 60,1 U Fails Fails
physiciansched6-2 49324 60 Inf 60,11 E 0.0% Fails
piperout-08 125055 60 125055 6,76 E 0.0% 0.0%
piperout-27 8124 60 8124 37,25 E 0.0% 0.0%
pk1 14 15,61 11 11,01 E 27.27% 0.0%
proteindesign121hz512p9 Inf N/A Inf 60,8 U Fails Fails
proteindesign122trx11p8 Inf N/A Inf 60,09 U Fails Fails
qap10 340 60 340 24,01 E 0.0% 0.0%
radiationm18-12-05 Inf N/A 25049 60,07 U Fails 42.6%
radiationm40-10-02 155341 48,54 Inf 60,29 H 0.01% Fails
rail01 Inf N/A Inf 60,01 U Fails Fails
rail02 Inf N/A Inf 60,02 U Fails Fails
rail507 Inf N/A Inf 60,04 U Fails Fails
ran14x18-disj-8 3735 60 4029 60,01 N 0.62% 8.54%
rd-rplusc-21 Inf N/A Inf 60,19 U Fails Fails
reblock115 Inf N/A -36505377,44 60,02 U Fails 0.8%
rmatr100-p10 423 13,95 423 9,22 N 0.0% 0.0%
rmatr200-p5 Inf N/A Inf 60,05 U Fails Fails
rocI-4-11 -6020203 60 -5050303 60,05 H 0.0% 16.11%
rocII-5-11 Inf N/A -0,63 60,06 U Fails 90.57%
rococoB10-011000 30095 60 21909 60,05 E 54.74% 12.65%
rococoC10-001000 16008 60 11908 60,03 E 39.69% 3.91%
roi2alpha3n4 -55,17 60 -58,51 60,06 E 12.72% 7.44%
roi5alpha10n8 Inf N/A -20,3 60,14 U Fails 61.2%
roll3000 12890 24,03 14021 60 E 0.0% 8.77%
s100 Inf N/A Inf 60,03 U Fails Fails
s250r10 Inf N/A Inf 60,03 U Fails Fails
satellites2-40 Inf N/A 31 60,03 U Fails 263.16%
satellites2-60-fs Inf N/A Inf 60,05 U Fails Fails
savsched1 Inf N/A Inf 60,05 U Fails Fails
sct2 -230,99 44,66 -229,93 60,01 E 0.0% 0.46%
seymour Inf N/A 426 60 U Fails 0.71%
seymour1 410,76 60 410,76 60,01 N 0.0% 0.0%
sing326 7794681,99 60 Inf 60,05 E 0.53% Fails
sing44 8151205,18 60 Inf 61,34 E 0.28% Fails
snp-02-004-104 Inf N/A Inf 60,29 U Fails Fails
sorrell3 Inf N/A -5 60,07 U Fails 68.75%

49

Experimental results

Table B.5: Experimental results with tMax = 60 and tEasy = 10 seconds (5)

Instance name zAKS CPUAKS zBB CPUBB Difficulty GapAKS GapBB

sp150x300d 69 60 69 60 E 0.0% 0.0%
sp97ar Inf N/A Inf 60,02 U Fails Fails
sp98ar 534807380,8 54,51 Inf 60,05 E 0.96% Fails
splice1k1 Inf N/A 0 60,12 U Fails 100.0%
square41 Inf N/A Inf 60,34 U Fails Fails
square47 Inf N/A Inf 60,61 U Fails Fails
supportcase10 Inf N/A Inf 60,02 U Fails Fails
supportcase12 Inf N/A Inf 60,24 U Fails Fails
supportcase18 51 60 51 60,04 E 6.25% 6.25%
supportcase19 Inf N/A Inf 60,08 U Fails Fails
supportcase22 Inf N/A Inf 60,15 U N/A N/A
supportcase26 Inf N/A 1768,26 60,02 U Fails 1.33%
supportcase33 Inf N/A -315 60,05 U Fails 8.7%
supportcase40 25539,18 15,48 24735,96 60,06 E 5.29% 1.98%
supportcase42 8 20,09 8 60,07 N 3.09% 3.09%
supportcase6 Inf N/A 51906,48 47,8 U Fails 0.0%
supportcase7 -1132,22 60 -1132,22 42,23 E 0.0% 0.0%
swath1 379,07 60 379,07 7,37 E 0.0% 0.0%
swath3 397,76 17,84 397,76 49,08 N 0.0% 0.0%
tbfp-network Inf N/A Inf 60,13 U Fails Fails
thor50dday 204179 60 Inf 60,01 E 405.18% Fails
timtab1 Inf N/A 816413 60 U Fails 6.75%
tr12-30 Inf N/A 139929 60,04 U Fails 7.15%
traininstance2 Inf N/A Inf 60,04 U Fails Fails
traininstance6 28290 60 30850 60,02 E 0.0% 9.05%
trento1 17936029,04 60 Inf 60,03 N 245.62% Fails
triptim1 22,87 60 22,87 41,14 E 0.0% 0.0%
uccase12 12339,49 16,91 11507,76 41,65 E 7.23% 0.0%
uccase9 Inf N/A 12076,28 61,03 U Fails 9.85%
uct-subprob Inf N/A 327 60,05 U Fails 4.14%
unitcal_7 19635617,2 28,17 19642524,39 60,05 N 0.0% 0.04%
var-smallemery-m6j6 Inf N/A -141,12 60,06 U Fails 5.53%
wachplan Inf N/A -8 60,03 U Fails 0.0%

Solved 127(6) 145(3)
Average 104.48% 692.78%

Worst 8900.0% 96190.48%
Clean 8.26% 12.81%

50

Bibliography

Enrico Angelelli, Renata Mansini, and M. Grazia Speranza. Kernel search: A general heuristic
for the multi-dimensional knapsack problem. Computers & Operations Research, 37(11):2017–
2026, 2010. ISSN 0305-0548. doi: https://doi.org/10.1016/j.cor.2010.02.002. Metaheuristics
for Logistics and Vehicle Routing.

Enrico Angelelli, Renata Mansini, and M.Grazia Speranza. Kernel search: A new heuristic
framework for portfolio selection. Computational Optimization and Applications, 51:345–361,
01 2012. doi: 10.1007/s10589-010-9326-6.

Paolo Brandimarte. Multi-item capacitated lot-sizing with demand uncertainty. International
Journal of Production Research, 44(15):2997–3022, 2006. doi: 10.1080/00207540500435116.

Matteo Fischetti, Fred Glover, and Andrea Lodi. The feasibility pump. Mathematical Program-
ming, 104(1):91–104, 2005.

Ambros et al. Gleixner. Miplib 2017: Data-driven compilation of the 6th mixed-integer
programming library. Mathematical Programming Computation, 2021. doi: 10.1007/
s12532-020-00194-3. URL https://doi.org/10.1007/s12532-020-00194-3.

G. Guastaroba and M.G. Speranza. Kernel search: An application to the index tracking problem.
European Journal of Operational Research, 217(1):54–68, 2012. ISSN 0377-2217. doi: https:
//doi.org/10.1016/j.ejor.2011.09.004.

G. Guastaroba, M. Savelsbergh, and M.G. Speranza. Adaptive kernel search: A heuristic for
solving mixed integer linear programs. European Journal of Operational Research, 263(3):
789–804, 2017. ISSN 0377-2217. doi: https://doi.org/10.1016/j.ejor.2017.06.005.

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2021. URL https://www.
gurobi.com.

Leo Liberti, Sonia Cafieri, and Fabien Tarissan. Reformulations in Mathematical Programming:
A Computational Approach, pages 153–234. Springer Berlin Heidelberg, Berlin, Heidelberg,
2009. ISBN 978-3-642-01085-9. doi: 10.1007/978-3-642-01085-9_7.

Renata Turkeš, Kenneth Sörensen, and Daniel Palhazi Cuervo. A matheuristic for the stochastic
facility location problem. Journal of Heuristics, 27(4):649–694, August 2021. doi: 10.1007/
s10732-021-09468-.

51

https://doi.org/10.1007/s12532-020-00194-3
https://www.gurobi.com
https://www.gurobi.com

	List of Tables
	List of Figures
	Introduction
	Mixed-Integer Linear Programming
	LP relaxation
	Branch and Bound
	Case study: Capacitated Lot-Sizing Problem
	Uncertainty representation

	Kernel Search
	Basic Kernel Search
	Initialization phase
	Extension phase

	Adaptive Kernel Search
	Feasibility step
	Adaptation phase

	Time allocation

	Experimental analysis
	Comparison between different frameworks
	Case study: experiments and results

	Conclusions and future works
	Kernel Search implementation
	Initialization phase code
	Adaptation phase code
	Extension phase code

	Experimental results
	Adaptive Kernel Search vs Branch and Bound

