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Summary

Machine Learning (ML) is increasingly being leveraged in business processes to make auto-
mated decisions. Nevertheless, a decision is rarely made by a standalone model. Concretely,
the reality of business decision services is an orchestration of models, each predicting key
quantities for the problem at hand, combined by decision rules to produce the final deci-
sion. Applying decision rules on top of ML-based predictions or classifications is typically
performed by companies to deliver better conformance, adaptability, and transparency.

Interpretability is a pressing question in these situations. While the field of interpretable
ML is full of open challenges in itself, when trying to explain a decision that relies on both
business rules and multiple ML models, a number of additional challenges arise. First,
the business rules surrounding the models carry non-linearities that cause problems for
attribution-based interpretability methods like LIME [Ribeiro et al., 2016] and SHAP [Lund-
berg and Lee, 2017]. Second, the already transparent business rules represent knowledge
that unless exploited will cause problems for sampling-based explanation methods [Jan et al.,
2020]. Third, machine learning models with overlapping features will produce conflicting ex-
planation weights. As a result, applying current methods to these real-world decision systems
produce unreliable and brittle explanations. In this configuration, there is knowledge that
we can exploit to make our explanations process-aware [Jan et al., 2020]. We know which
variables are involved in the decision policy and we know its rules. We surmise that it is
worth exploiting this information instead of treating the whole system as a black-box and
being completely model-agnostic.

In this thesis, we present SMACE - Semi-Model-Agnostic Contextual Explainer, a new
interpretability method that combines a geometric approach (for business rules) with existing
interpretability solutions (for ML models) to generate feature importance based explanations.
We show that while LIME and SHAP produce poor results when applied to such a decision
system, SMACE provides intuitive feature ranking, tailored to business needs.
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Chapter 1

Introduction

Our main interest is the interpetability of decision-making systems that include multiple
machine learning models aggregated through decision rules in the form

if <premise> then <consequence> .

premise is a logical conjunction of conditions on input attributes (e.g., age and income of
a customer) and outputs of machine learning models (e.g., the churn risk of a customer).
consequence is a decision concerning a user (e.g., to make or not to make an offer to a
customer). A (simplified) example of a phone company’s decision-making policy for proposing
a new offer to a customer is

if age ≤ 45 and churn risk ≥ 0.5 then propose an offer .

Most state-of-the-art models in machine learning are not interpretable on their own and
when several of them are aggregated, explainability is even more challenging. Although very
popular in business process automation, the aggregation of machine learning models using
business rules is still unexplored in the interpretability literature. Our aim is to propose
a method that provides explanations in this setting. In particular, we build a measure of
feature importance that responds to some of the open challenges in the business context.

The rest of the chapter is organized as follows. In Section 1.1 we briefly present the
historical context of our study, introducing the business setting in which we operate. In
Section 1.2 we discuss the motivation for this work, highlighting the business side needs,
while in Section 1.3 we set out the direction of the legislation. In Section 1.4 we precise our
definition of interpretability. In Section 1.5 we identify the problems we are trying to solve.
Finally, we present the structure of the thesis document in Section 1.7.

1.1 A brief historical overview
Business processes are key elements in all industries: they represent the way in which an
organisation creates value, by transforming its resources into the final product or service.
The way these processes are managed is crucial for a company, which has to maximize its
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revenue from limited resources and thus find the most efficient process for its needs. Studies
in Business Process Management date back to the first industrial revolution: in 1776 Adam
Smith described business processes with the popular example of the production of a pin
[Smith, 1827]:

“One man draws out the wire; another straights it; a third cuts it; a fourth points
it; a fifth grinds it at the top for receiving the head; to make the head requires two
or three distinct operations; to put it on is a peculiar business; to whiten the pins
is another, . . . , and the important business of making a pin is, in this manner,
divided into about eighteen distinct operations, which, in some manufactories, are
all performed by distinct hands, though in others the same man will sometimes
perform two or three of them.”

In the second half of the twentieth century, several specific business tasks found solutions in
early work on artificial intelligence and decision theory. Alan Turing provided many of the
theoretical foundations on which these new fields are based, particularly with his studies to
model the human brain [Turing, 1950]. Turing worked on the Entscheidungsproblem (decision
problem) posed by David Hilbert in 1928, thus building what is now known as the “Turing
machine”: a mathematical model of computation that defines an abstract machine that
manipulates symbols according to a table of rules. Decision-making programs are in fact
domain-specific expert systems: designed to solve complex problems by reasoning through
bodies of knowledge, represented mainly as (deterministic) if-then rules.

Towards the end of the 20th century, the economic environment changed further, driven
by technological development, and so did the problems to be managed. For instance, a very
popular application of machine learning to business problems is now the automatic reading
of documents. LeCun et al. [1998] proposed the use of convolutional neural networks to
develop optical character recognition systems for bank checks. The time-consuming work of
manually writing down digits and codes from one document to another was thus (partially)
automated. Optical character recognition (OCR) systems are now used daily by organisations
and businesses with several advantages in terms of time, cost, security and accuracy. Other
examples of business processes today are loan applications, insurance claims processing, or the
evaluations of whether to propose a retention offer to a customer. In all of these situations,
decision-making processes are sets of specific tasks (decisions, predictions, classifications, etc.)
orchestrated in sequence. Machine learning models are used daily by companies to perform
these individual tasks.

1.2 Motivation
Business Process Management is now a growing field dealing with companies operation to
discover, model, analyze, measure, improve, optimize, and automate business processes. It
has benefited from recent technological advances, especially artificial intelligence (AI). The
massive use of the internet and computer tools, together with improvements in the computing
power of electronic devices, make it possible today to process huge amounts of data by
automated algorithms. The literature is therefore rich of machine learning solutions to reduce
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costs and provide better customer experience, for instance with predictive maintenance [Susto
et al., 2014] or movie recommendation systems [Reformat and Yager, 2014].

On the other hand, state-of-the-art models are often black-box and even a data scientist
can have difficulties to explain why a decision-making system made a specific decision. In
addition to the complexity of machine learning models, in practice companies rarely make
decisions using a single model. Instead, the reality of decision-making services is that of a
collection of models, each predicting key quantities for the problem at hand, which are then
agglomerated by a decision tree to produce the final decision. In this context, it is crucial
for business users to understand why a certain decision has been made and, possibly, to have
information simple enough to be able to provide explanations to the customer in a way he or
she can understand.

The massive adoption of AI in business automation is hindered by mistrust and risk-
aversion [Jan et al., 2020]. This is mainly due to the lack of explanation of specific model
predictions, which makes the results difficult to trust for business users, who are typically
experts in their domain, but not data scientists. This is the so-called “Last Mile Problem”1

in data science.

The spread of artificial intelligence in critical contexts has rapidly increased the need
for transparent models that provide a clearer view of the mechanism that led to a certain
decision. In particular, life-or-death applications, such as in healthcare or self-driving cars,
require interpretability to be able to promptly detect anomalous decisions and ensure that
they are taken for the right reasons.

For example, Syed et al. [2019] used deep learning for a diagnostic study to predict en-
teropathy (a disease of the intestines) and celiac disease (an immune reaction to gluten con-
sumption) in children. A small neural network was trained on duodenal biopsy image data,
demonstrating excellent results in terms of accuracy. However, accuracy gives information on
the overall performance, but does not give any explanation on an individual decision. To be
reliable in such sensitive contexts, an automated system should provide evidence to support
its decision. In this way, it can be analyzed by an expert in the field and then challenged or
validated.

In contrast, applications in sensitive domains, such as justice, mortgage application, or
job application, have often shown discriminatory behaviour towards minority groups, due to
bias in the training dataset. Concerns about bias and correctness in machine learning and
artificial intelligence in general have in fact motivated many recent studies and debates (see
Mehrabi et al. [2021] for a recent survey). Again, having explanations to support a decision
can help promptly detect these anomalies, even before the model is deployed in production.

1Greger Ottosson. Solving machine learning’s “Last Mile Problem” for operational decisions, 2019.
Towards Data Science. https://towardsdatascience.com/solving-machine-learnings-last-mile-problem-for-
operational-decisions-65e9f44d82b
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1.3 Right to explanation
Interpretability is deeply linked to trust and, as a result of growing public concern, has also
recently become a regulatory issue. In 2016 the European Union Parliament approved the
General Data Protection Regulation (GDPR) [EU, 2016], an important collection of rules
concerning data protection and privacy. Recital 71 of the GDPR states

“The data subject should have the right not to be subject to a decision, which may
include a measure, evaluating personal aspects relating to him or her which is based
solely on automated processing and which produces legal effects concerning him
or her or similarly significantly affects him or her, such as automatic refusal of an
online credit application or e-recruiting practices without any human intervention.

[. . .]

In any case, such processing should be subject to suitable safeguards, which should
include specific information to the data subject and the right to obtain human
intervention, to express his or her point of view, to obtain an explanation of the
decision reached after such assessment and to challenge the decision.

[. . .]

Automated decision-making and profiling based on special categories of personal
data should be allowed only under specific conditions.”

The way this article is worded makes it controversial and in fact does not impose a legal obli-
gation, as outlined by Wachter et al. [2017], but outlines a clear direction of regulation. In
2019 the EU High-Level Expert Group on AI presented Ethics Guidelines [EU, 2019] propos-
ing seven keys requirements that AI systems should meet in order to be deemed trustworthy.
One of them is Transparency:

“The data, system and AI business models should be transparent. Traceability
mechanisms can help achieving this. Moreover, AI systems and their decisions
should be explained in a manner adapted to the stakeholder concerned. Humans
need to be aware that they are interacting with an AI system, and must be informed
of the system’s capabilities and limitations.”

In 2021, the European Commission published a proposal for a Regulation “laying down
harmonised rules on artificial intelligence” [EU, 2021]. This aims to introduce a requirement
for explainability in applications considered to be high risk.

In the United States, the Federal Trade Commission guidelines dictate that if consumers
are denied something of value (i.e., a loan) based on AI, they are entitled to an explanation
and they state that when assigning risk scores to consumers, the key features affecting said
scores ought to be disclosed in rank order of importance [Smith, 2020].

However, it is important to note that there is no agreement on a precise mathematical or
legal definition of what an “explanation” is. The research field of interpretability is very young
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and the literature is not yet mature enough. The crucial year was 2016, when DARPA (the
US Defense Advanced Research Projects Agency) published a call for funding for Explainable
Artificial Intelligence (XAI) projects2:

“DARPA is soliciting innovative research proposals in the areas of machine learning
and human-computer interaction. The goal of Explainable Artificial Intelligence
(XAI) is to create a suite of new or modified machine learning techniques that
produce explainable models that, when combined with effective explanation tech-
niques, enable end users to understand, appropriately trust, and effectively manage
the emerging generation of Artificial Intelligence (AI) systems. Proposed research
should investigate innovative approaches that enable revolutionary advances in
science, or systems. Specifically excluded is research that primarily results in evo-
lutionary improvements to the existing state of practice.”

1.4 Context
The lack of agreement in the scientific community about what a good explanation should be
makes explainability even more challenging, because different needs can lead to conflicting
implications. A very popular non-mathematical definition by Miller [2019] is “Interpretabil-
ity is the degree to which a human can understand the cause of a decision.” There is also
disagreement on the relationship between the terms “explainability,” “interpretability,” and
“explanation.” We follow Molnar [2020] and we use “interpretable” and “explainable” inter-
changeably, while “explanation” refers to the outcome of the explainability of an individual
prediction.

State-of-the-art decision-making services in the industry are still largely partially rule-
based and therefore we have to take this specific structure into account when trying to
explain these systems. In fact, one could think that this trend is disappearing, because the
entire decision-making system can be managed by a single machine learning model. We argue
that this is not necessarily true, for two main reasons.

Firstly, decision rules are crucial for expressing policies that can change (even very quickly)
over time. For example, depending on the economic results in the last quarter, a company
might be more or less risk-averse and therefore have a more or less conservative policy. With
one large machine learning model, it would have to be trained all over again with new data
to which the new policy is applied. Instead, with a rule-based system it is possible to manage
risk appetite by changing just one parameter.

In addition, machine learning models are not suitable for incorporating strict rules. Indeed,
while often a policy may represent only a soft preference, in many cases we may have strict
rules, due to application domain needs or regulation. For example, we may have to require
the age of a customer to be greater than 18 in order to be able to offer them a certain deal.

2DARPA Broad Agency Announcement. Explainable Artificial Intelligence (XAI).
https://www.darpa.mil/attachments/DARPA-BAA-16-53.pdf
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Machine learning relies mainly on probabilistic methods, which makes it difficult for it to
accurately adhere to strict deterministic rules. Applying decision rules after machine-learning
based predictions or classifications will typically deliver better conformance, adaptability and
transparency.

As we mentioned, different needs and contexts can lead to opposing interpretability re-
quirements. The final identified aim of interpretability is what characterizes a method and
its explanations, as we will se in Chapter 2 and in Chapter 4. In the case of feature impor-
tance based explainability methods, Bénard et al. [2021b] distinguish between two cases. The
first, which we might say is engineering-oriented, is to find a small number of variables that
maximize the accuracy of a system. This is for instance the case of an optimization model
used in an industrial automation process. To make the model more flexible and faster, the
engineers would like to use as few variables as possible, while still ensuring good performance.
The second possible aim, which we say is more business-oriented, is to rank all directly and
indirectly influential variables so that they can be analyzed with a fair priority by a domain
expert.

These two cases, which may seem similar, require different explanations for each other.
For example, if two variables are correlated, one should be neglected in the first case, while
it should show up as an influential variable in the second. In fact, in the first case having
both variables is wasteful and does not bring additional useful information to the model. In
the second case, instead, a good method of interpretability must evidence to the expert of
the domain (the business user) both the variables in order to be able to validate, to contest
or to modify the decision.

Our aim falls completely into the second case, with an additional requirement due to
the interaction between decision rules and machine learning. The framework in which we
work is characterized by two levels. Level 1 is the one accessible by the business user, who
manages or knows the decision policy (i.e., the decision rules), the data of the customer under
consideration, and the values for predicted by the models internally in the company. The
end user (e.g., consumer) only perceives Level 2 : based on the data provided, the company
makes a decision, and the end user is the recipient of that decision. Explanations about this
decision must be based solely on this data. The end user does not know the internals of the
decision-making, such as the machine learning models used by the company and the company
does not want to reveal its decision policy.

1.5 Challenges
The field of interpretable machine learning is full of open challenges in itself. To date, it is
very difficult to interpret the predictions taken by most models. The methods mainly used
for explainability also have several drawbacks in various aspects, that we will discuss further
in Chapter 2, and in any case do not always meet the needs of the user.

In addition, when trying to explain a decision that relies in part on multiple machine
learning models, a number of other problems arise:

• Rule-induced non-linearities: decision rules will cause sharp borders and non-linearities
in the decision space. For example: a car rental rule might state “age of renter must be
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above 25.” Explanations for a machine learning based risk assessment close to the border
of decision boundary age = 25, e.g., must accurately indicate age as an important
feature.

• Out-of-distribution sampling: the business process or decision rules surrounding a ma-
chine learning model will eliminate a large portion of the decision space. Explanatory
methods based on sampling are known to distort explanations because of this (see Sec-
tion 2.8.1).

• Combinations of decision rules and machine learning: for a specific decision, a sub-
set of decision rules triggered and a machine learning-based prediction was gener-
ated. How do we compose a prediction based on both sources? For example, let us
say we predict risk with a machine learning model, and we then consider the rule
if risk > 80% then decline application. How would we combine and present
feature importance with the risk rule? Would a risk of 81% (close to rule boundary)
indicate we should scale the machine learning explanations differently from a case where
risk is 99% (far from rule boundary)?

• Multiple machine learning models: when we have multiple machine learning models used
for a decision, we also need to be able to aggregate attribution weights from multiple
models (in addition to combining with rules). What is an accurate way of normalizing
and aggregating (partially overlapping) feature weights from multiple models? For ex-
ample, one classification model predicts churn risk for a customer, which a probability
in [0,1]. Another regression model predicts life-time value, which is a quantity mea-
sured in some currency with values in (−∞,+∞). If we apply an explanatory method
to both models individually, what is an accurate way of combining these importance
weights?

1.6 Contributions
Our interest in this thesis is the interpretability of hybrid decision systems used in business
contexts. Our contributions are as follows:

• A literature review of interpretability methods, decision systems, and machine learning
algorithms used by companies. We identify the methods, systems, and models closest
to our framework and analyze their strengths and weaknesses. To the best of our
knowledge, no one method is satisfactory for the problem we want to tackle.

• The proposal of a new method, SMACE, to address all of the challenges described above
by providing local contextual explanations based on feature importance.

• Implementation of SMACE in Python package, available on Github at https://github.
com/gianluigilopardo/smace.

• Evaluation of SMACE vs some popular methods showing that the latter perform poorly
in our business context (due to complications brought by the business rules), and that
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SMACE deliver better on the challenges described in Section 1.5. The evaluation re-
ported in the thesis can be found at https://github.com/gianluigilopardo/smace/
evaluation and all experiments are reproducible.

1.7 Structure
The thesis is organized as follows. First, we present some related work and its relation to the
problem at hand. In Chapter 2 we present the state-of-the-art of post-hoc methods for the
interpretability of individual black-box machine learning models, discussing their limitations
and drawbacks. In Chapter 3 we present some studies of rule-based systems that work
in contexts similar to ours, but without accounting for machine learning components. In
Chapter 4 we list some popular machine learning models that are used in practice on a daily
basis in business. They are usually simple models based on tree-ensembles, fast to train, and
do not require large training sets. However, in more complex cases, companies develop ad-
hoc machine learning methods tailored to their needs: we will see a few examples. SMACE
is presented in Chapter 5, where we also show how it works on some small examples. In
Chapter 6 we apply SMACE to use-cases of increasing complexity, comparing it to some of
the more common interpretability methods. We will highlight how methods that do not tend
to account for the structure of the decision system actually fail to capture information and
thus fail to provide useful explanations. We draw our conclusions in Chapter 7, discussing
the results of this thesis and presenting some points we aim to work on in the future.
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Chapter 2

Interpretable machine learning

2.1 Introduction

Artificial Intelligence has entered nearly every scientific field and every economic or social con-
text. Machine learning is the popular framework at the moment, as the algorithms developed
within this framework tend to perform better than humans in classification and prediction
tasks. Even when they perform just as well or slightly worse, there are still huge advantages
when using these methods in terms of speed, reproducibility, and scalability. For example,
in the case of OCR mentioned in the previous chapter, a human operator could possibly
achieve better accuracy than an automated system. However, if the operator takes about one
second to transcribe a word, while the OCR takes one millisecond, the automated solution is
preferred. This has allowed machine learning algorithms to be intensively used nowadays in
various domains and in many business.

On the other hand, the complexity of the state-of-the-art models makes it impossible to
understand why a particular decision has been made. We can distinguish two main situations.
In the first, there is no access to the model, so no knowledge of how it works. This is very
common when a company buys a model externally. The second situation is when one has
total access to the model, but its complexity does not allow the understanding of individual
predictions. For example, the popular convolutional neural network AlexNet [Krizhevsky
et al., 2012] used in image classification has 60 million parameters.

In some cases, this is not an issue: we just want to know that a system works well. This
happens in low-risk problems (like movies recommender) or in well-studied fields (like optical
character recognition systems). However, in critical contexts and for different reasons (we may
want to ensure the model’s fairness, to know why a loan has been refused, etc.), interpretation
can be crucial: we also care about why a prediction has been made, not only which one. In
practice, there is a trade-off between interpretability and accuracy. Explaining machine
learning models can help us ensuring fairness, robustness, causality and trust. Depending
on the objective and needs, there are different types of methods. In fact, interpretability
methods can be used for different purposes, there are methods for explaining complex black-
box models, methods for creating white-box (intrinsically interpretable) models, methods
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that promote fairness and restrict the existence of discrimination, methods for analysing the
sensitivity of model predictions.

A comprehensive literature review is presented in an online book by Molnar [2020], an
excellent introduction to the field. The surveys of Guidotti et al. [2018] and Adadi and
Berrada [2018] attempt to bring order to the taxonomy by classifying different interpretation
methods and them according to the purpose of the explanations. The most up-to-date review
paper is by Linardatos et al. [2021], making distinction among the terms “interpretability”
and “explainability.” A popular definition of interpretability is “the ability to explain or to
present in understandable terms to a human,” but, as already mentioned, there are no formal
mathematical definitions. The subtle difference is that interpretability refers to the relation-
ship between the input and the output, while explainability is related to the understanding
of the model’s mechanism.

2.2 Taxonomy
Different criteria are generally admitted by the community to classify interpretability methods
[Molnar, 2020]:

• Intrinsic or post-hoc: intrinsic refers to models that are interpretable thanks to their
simple structures (e.g., simple linear models and small decision trees), while post-hoc
methods analyze models after training.

• Model-specific or model-agnostic: the first refers to methods restricted to a particular
class of models; the second can be used post-hoc to any model seen as a black-box.

• Local or global: according to whether explanations apply to individual predictions or to
the entire model.

• Results of the interpretation: can be statistics, visualizations, example of points, model
internals.

Concerning interpretability methods for machine learning models, in this thesis we focus
on post-hoc, model-agnostic, local methods, providing feature importance. In fact, we
want SMACE to be applicable to an already structured decision-making system whose models
are already trained. We want it to be robust to model changes and adaptable to any type of
model. We focus on local explanations because we are interested in explaining individual de-
cisions made for a user. Note that we are not completely model-agnostic: we know the graph
structure of the decision system and can call the models individually. Model-agnosticity refers
only to machine-learning models. We therefore say that SMACE is semi-model-agnostic.

2.3 Overview
Practically, the simplest way to have good explanations is to use intrinsically interpretable
models, like linear models with few parameters and small decision trees. We can easily
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understand the behaviour of a model obtained by linear regression by looking at the weight
of each feature (assuming they are standardized). For instance, let us consider the problem
of computing a credit score from historical data with 5 parameters:

• x1 = character,

• x2 = capital,

• x3 = collateral,

• x4 = capacity,

• x5 = condition.

Let us image the linear model is f(x) = 0.1x1 + 5x2 + 3x3 + 10x4 + x5. This easily tells us
that that increasing collateral by one unit increases credit score by 3 units.

Likewise, small decision trees like the one in Figure 2.1 produce very simple and short
rules of the type if x1 > v1 and x2 > v2 then y. Unfortunately there are drawbacks: in
general, intrinsically interpretable models do not achieve a good accuracy, especially if we try
to keep them as simple as possible.

x1 ≥ 0.5

x3 ≥ 3

0 1

x2 ≥ 25

1 0

Figure 2.1. A small decision tree for binary classification with three attributes. For example,
point ξ = (0.8, 12, 4)> is classified as 1 because ξ1 = 0.8 ≥ 0.5 and ξ2 = 12 < 25.

For example, we can easily explain a prediction made by a decision tree if it involves five
parameters, but generally this will be less accurate than a model with dozens of parameters,
which would be difficult to interpret.

Model-agnostic methods are very flexible, both in terms of model, of explanation and of
representation. They give post-hoc explanations regardless of the model. The point is not
only that we can use it with each kind of algorithm, but often multiple models are combined
in a machine learning system or several of them are evaluated to solve the same task. Some
techniques provide global explanations, meaning that we can understand the global behaviour
of a model. The simplest idea to do this is through feature importance: we rank features
by measuring the impact on the model’s outcome when permuting them. Better methods
also keep into account features interaction. Other techniques such as the locally interpretable
methods explain individual predictions. This is what LIME [Ribeiro et al., 2016] and SHAP
[Lundberg and Lee, 2017] do for example: by perturbing data, they approximate complex
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black-box models with intrinsically interpretable models. In Section 2.5 and Section 2.3 we
explain them in more detail. Anchors [Ribeiro et al., 2018] also provides local explanations,
with the added benefit of taking global coverage and precision into account, as we discuss in
Section 2.7. Therefore, anchors provide local explanations that also make sense globally. The
drawback is that the method is complex with respect to (the general structure of) LIME: it
uses reinforcement learning, graph search algorithm, and optimization methods. All of the
above are perturbation-based methods.

Gradient-based methods are an alternative. They analyze the impact that small changes
in the input have on the output. As intuitive, there is a deep connection between these two
classes of methods. This connection is illustrated by Agarwal et al. [2021], showing that (with
proper assumptions) methods of the two different classes converge to the same explanation.
However, we do not treat this class: the decision rules make the system piecewise flat the
gradient is always zero.

Another general framework are example-based explanations, where instances of the dataset
are used to explain the model. An idea of this approach is given by the k-nearest neighbours
algorithm. We can explain a prediction by looking at its k closest neighbours: we see that an
instance is classified in a certain way because it is similar (in a sense defined by the underlying
metric) to other instances that we know to belong to that class.

2.4 User-friendly Explainable AI
Despite today’s relative immaturity of methods of explainability, due to the growing demand
on the business side, many large companies have started to incorporate them into products
and toolkits.

In Arya et al. [2020], IBM presented AI Explainability 360: “an extensible toolkit for
understanding data and machine learning models”. The paper also gives a taxonomy to
make order in the field. The toolkit implements different explainability methods in order
to provide the best suitable information to each type of user and according to the phase of
the modeling. The increasing use of AI applications and their permeability in all type of
industries have caused demand for explanations to spread. Despite the huge work of the
community, there is still a big gap between the solutions provided and the needs of the users.
This is also due to the fact that there is no common definition of what an explanation should
be, because AI consumers have a very large variability in their needs and backgrounds. As a
response, the tool includes persona-specific explanations.

For instance, in the case of a loan application Arya et al. [2020] distinguish three types of
personas, with different needs:

• the data scientist, who must ensure that the model works appropriately before deploy-
ment and would ideally like to understand the behavior of the model as a whole, not
just on specific loan applicants;

• the loan officer, who needs to assess the model’s prediction and make final judgement:
she wants to understand how and why the model came to that prediction in order to
make an informed and trusted decision;
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• the bank customer, who want to understand the reason for the application result: how
and why the decision was made to accept or reject their loan application.

Each of these users is presented with explanations in a different format, generated by different
methods.

Chari et al. [2020] analyze future direction for user-friendly explainable AI, stating that
researchers in explainable AI have been guided by the capabilities of the models, instead
of focusing on the users, who should have the right to understand the results provided by
systems. Instead, they should be adapted “to the end user’s understanding, context, and
current needs.”

To go this way, it is worth to look at results of social sciences and psychology and find links
with the explainable AI state-of-the-art. By combining the classification of explanations in the
two areas, we can provide a more comprehensive taxonomy. The outputs of the explanations
can be

• Case-based: shows actual (similar) prior cases for which the same apply;

• Contextual: refers to information about user, situation and environment;

• Contrastive: put in evidence differences between the actual input and output and the
event that should have generated the output of interest;

• Counterfactual: what results if other inputs would be provided;

• Everyday: real-world general (basic) common knowledge;

• Scientific: on a rigorous proof based on the scientific method;

• Simulation-based: results generated by an implemented imitation of the system of in-
terest;

• Statistical: evidence based on data statistics;

• Trace-based: the decision path followed to reach the decision.

Chari et al. [2020] also state that, regardless of approach, good user-centric explanations
should be personalized, trustworthy, and context-aware. It is important to point out that
“different situations, contexts, and user requirements demand explanations of varying com-
plexities, granularities, levels of evidence, presentations, etc.” The choice of the method to
use strictly depends on the application: whether the task is classification or regression and if
we deal with tabular data, images, or texts. We focus on tabular data, that is, data lying
in Rn×d. In other words, an orderly arrangement of n rows and d columns. In our notation,
each row represents an instance, vector or point. The columns are parameters, attributes, or
features. Below we introduce LIME and SHAP, focusing on tabular data. These are two local
post-hoc methods that are very popular right now, and are the building blocks of SMACE.
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2.5 LIME — Local Interpretable Model-agnostic Ex-
planations

LIME [Ribeiro et al., 2016] stands for Local Interpretable Model-agnostic Explanations and
it is a very popular method that includes three different versions depending on whether the
data is image, text or tabular. Many extensions and improvements have been proposed.
For example, Kovalev et al. [2020] presented SurvLIME: an extension of LIME to survival
models. We focus on the standard tabular data version. The general idea is to approximate
the black-box model in the neighborhood of the example ξ to explain with an instrinsically
interpretable local linear surrogate.

In fact, one can see every complex machine learning model operating on tabular data as
a function f : RD → R and a local surrogate for model f and instance x is defined as

e(x) ∈ arg min
g∈G

{L(f, g, πx) + Ω(g)} , (2.1)

where G is the set of linear functions, L a loss function, πx a proximity measure and Ω(g) is
the complexity of the surrogate model, that we want to keep low. LIME only requires the
access to a training set X and the possibility to query the model.

Let us say we have tabular data in Rd and we want to explain the instance ξ. The default
tabular version performs five sequential steps:

1. binning: create p boxes long each coordinate corresponding to the quantiles. This step
splits each axis in p (p = 4 by default) range, each with equal number of observations
and these are the interpretable features. This binning procedure lays the foundation for
producing explanations of the form a < x1 < b;

2. bin sampling, sample box IDs at random: for each new example i, a vector of boxes
IDs bi ∈ {1, . . . , p}d is sampled uniformly random. Let b∗j be the box on coordinate j
containing ξj , then the interpretable features are defined as zi,j = 1 ⇐⇒ bi,j = b∗j .

3. data generation: sample truncated Gaussian x1, . . . , xn ∈ Rd in the boxes, whose µ
and σ parameters are derived from the training set X ;

4. weight: define positive weights πi depending on the distance between each xi and ξ;

5. surrogate model: fit a linear model on each zi with ridge regression:

β̂n ∈ arg min
β∈Rd+1

{
n∑
i=1

πi(yi − β>zi)2 + λ‖β‖2
}
. (2.2)

The result is a linear model and the contribution of each coordinate j ∈ {1, . . . , d} to the
prediction is simply given by coefficient β̂j .

It is important to note that the choice of the weights π is crucial and it really changes
the outcome. Although simple, this method has several shortcomings from various points of
view. A comprehensive analysis of this method for tabular data has been made by Garreau
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and von Luxburg [2020] in a simplified setting, extended to the default implementation in
Garreau and Luxburg [2020a]. Most of the problems with this method are due to sampling,
which causes very unstable explanations. This will be discussed in Section 2.8.1.

2.6 Shapley values and SHAP – SHapley Additive ex-
Planation

The problem of fairly finding features importance in the prediction of a machine learning
model can be addressed from a Game Theory perspective. We consider a D-players game
where each feature j ∈ {1, . . . , D} is a player and we want to value their contribution. There
are 2D possible coalitions and each coalition S is associated with a characteristic function

v : 2D → R .

The Shapley value [Shapley, 1953] of player j is

φj(v) =
∑

S⊆{1,...,d}\{j}

|S|!(D − |S| − 1)!
D! [v(S ∪ j)− v(S)] . (2.3)

The idea is that if player j plays much better than the other, then v(S ∪ {j}) is consistently
higher than v(S) and therefore φj(v)� 0.

The general idea shared by several explanation methods is to locally approximate the
original model with an “explanation model,” which is simpler to interpret. SHAP (Shapley
Additive Explanations) [Lundberg and Lee, 2017] is a framework unifying some of these
interpretability methods in the class of “additive feature attribution methods” and providing
feature importance measures, based on a solid theory.

Let us say we want to explain the prediction f(x) made by model f for instance x. We
consider a simplified instance x′ and a mapping function x = hx(x′), such that if x′ ≈ z′, then
g(z′) ≈ f(hx(z′)) and g(x′) = f(hx(x′)) = f(x). The class of additive feature attribution
methods is defined having an explanation models in the form

g(z′) = φ0 +
M∑
j=1

φjz
′
j , (2.4)

with z′ ∈ {0,1}M , so that φj is the importance of attribute j. We can rewrite Eq. (2.3) as

φi =
∑

S⊆F\{i}

|S|!(|F | − |S| − 1)!
|F |! [fS∪i(xS∪i)− fS(xS)] , (2.5)

where fS is the model (re)trained on the subset S of the total attributes F . Obviously this
is extremely expensive: we would have to train 2|F | models. In practice, approximations are
used and these characterise a method.

Lundberg and Lee [2017] defines three desirable properties for this class of methods and
identify a unique solution with these properties:
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• Local accuracy: when approximating f in x, the explanation model g must at least
equal it in the simplified instance x′ corresponding to x: f(x) = g(x′);

• Missingness: if a feature is missing, its attribute is null: x′i = 0⇒ φi = 0;

• Consistency: if a model changes so that some simplified input’s contribution increases
or stays the same regardless of the other inputs, that input’s attribution should not
decrease.

The model in the class of additive feature attribution methods satisfying these properties is

φj(f, x) =
∑
z′⊆x′

|z′|!(M − |z′| − 1)!
M ! [fx(z′)− fx(z′ \ j)], (2.6)

where |z′| is the number of non-zero entries in z, and z′ ⊆ x′ represents all z′ vectors where
the non-zero entries are a subset of the non-zero entries in x′.

SHAP values is presented as the Shapley values of a conditional expectation function of
the original model, meaning fx(z′) = E[f(z)|zS ]. In the case of a linear model in the form
f(x) =

∑M
j=1 ωjxj + b, SHAP values are

φj(f, x) = ωj(xj − E[xj ]). (2.7)

2.6.1 KernelSHAP
A popular implementation of this approach is the KernelSHAP (SHapley Additive exPlana-
tions) algorithm. It “provides model-agnostic, human interpretable explanations suitable for
regression and classification models applied to tabular data.” This method is a member of
the additive feature attribution methods class; feature attribution refers to the fact that the
change of an outcome to be explained (e.g., a class probability in a classification problem)
with respect to a baseline (e.g., average prediction probability for that class in the training
set) can be attributed in different proportions to the model input features.

For each instance x, KernelSHAP performs 5 steps:

1. sample coalition: z′k ∈ {0,1}M ;

2. get prediction for each z′k by applying f(hx(z′k));

3. compute the weight for each z′k with the SHAP kernel;

4. fit weighted linear model;

5. return Shapley values φk the coefficients from the linear model.

The function hx : {0,1}M → Rd is such that hx(z′) = z. It maps 1 to the corresponding
value from the instance x that we want to explain and 0 to the values of another instance
that we sample from the dataset. The linear surrogate model g of Eq. (2.6) is then obtained
by minimizing the loss function

L(f, g, πx) =
∑
z′∈Z

[f(hx(z′))− g(z′)]2πx(z′) . (2.8)
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Note that this formula is similar to that of LIME. The great difference stands in the weight
function:

πx(z′) = (M − 1)(M
|z′|
)
|z′|(M − |z′|)

.

In addition to SHAP, several works have followed this approach. Lipovetsky and Conklin
[2001] applied Shapley values to explain multiple regression models, while Štrumbelj and
Kononenko [2014] analyzed them from a sensitivity analysis perspective. Datta et al. [2016]
introduced the family of Quantitative Input Influence measures to capture the degree of
influence of inputs on outputs of systems. Merrick and Taly [2019] perform an in-depth study
of various Shapley-value-based model explanation methods, showing how the formalization of
the underlying game has a strong impact on explanations. Frye et al. [2020] exploit Shapley
values to incorporate causal knowledge into model-agnostic explainability. Aas et al. [2021]
extend the KernelSHAP method to handle dependent features.

2.7 Anchors: High-Precision Model-Agnostic Explana-
tions

Anchors [Ribeiro et al., 2018] is a model-agnostic local explainability method for Text and
Tabular data that extracts sufficient conditions for a certain prediction, in the form of rules.
Like LIME, this method is also perturbation based, but while LIME locally approximates a
black box model with a linear function, Anchors looks for high precision rules that better
explain a prediction. An anchor is an if-then rule that “that sufficiently anchors the pre-
diction locally – such that changes to the rest of the feature values of the instance do not
matter.”

Formally, let us consider the black-box model f : X → Y , and let us say we want to
explain the prediction for instance x ∈ X, i.e., f(x). A rule A is a set of predicates such that
A(x) = 1 if all the predicates are satisfied for x. Let D(·|A) be the conditional distribution
when A applies, such that, for each sample z from D(·|A), A(z) = 1. A is therefore an
anchor for x if A(x) = 1, and A is a sufficient condition for f(x) with high probability.
Mathematically, we say that A is an anchor if

EDx(z|A)[1f(x)=f(z)] ≥ τ and A(x) = 1 , (2.9)

where the hyperparameter τ is desired level of precision. For example, τ = 0.9 means that we
require the anchor to have an accuracy of at least 90%. Once τ is fixed, the method searches
for the anchor with the higher coverage, aiming to find rules that apply to a preferably large
part of the model’s input space. Formally, the coverage is defined as cov(A) = ED(z) [A(z)] .

In general, there is a trade-off between accuracy and coverage. A good explanation needs
to be locally accurate, but in order to make predictions about the behavior of the model, you
also need to have more general knowledge, hence more coverage.

As an Example of explanation, using the popular dataset Titanic - Machine Learning
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from Disaster1, Anchors gives

if sex=female
and class=first
then predict survived=true
with precision 97%
and coverage 15% .

The usability of the method is finally evaluated in Ribeiro et al. [2018], with a series of
experiments. The principle guiding this evaluation is that a good explanation should make
the user able to accurately predict the behavior of the model on new, unseen instances.

Anchors is an innovative method, but it has a number of shortcomings in common with
other perturbation-based methods. It requires a tuning step for choosing parameters, which
can lead to different explanations. The choice of the desired precision, is very delicate,
because it can generate too complex explanations with low coverage, or explanations that are
too trivial.

2.8 Problems with existing methods
The problem of interpretability of machine learning models is far from being solved and even
the most common methods still have many critical issues. Knowing their limitations and
shortcomings is important as we build our approach on the basis of these methods.

2.8.1 Problems with perturbation-based methods
Slack et al. [2020] highlight problems in perturbation-based methods in “Fooling LIME and
SHAP: Adversarial Attacks on Post hoc Explanation Methods.” Post-hoc methods based on
input perturbation such as LIME and SHAP are very popular, however, the paper shows that
these methods are not reliable. It proposes a framework which could be used by an adversary
to hide the bias of its model from customers or regulators.

The main idea behind this framework is that instances generated using perturbation could
be out-of-domain (for instance, a negative age value) or out-of-distribution (e.g., many ul-
tracentarians). This is often the case, and makes it possible to distinguish between original
and perturbed instances and act differently on them. Let us say that real world data X on
which the classifier f could be applied follows a distribution P . The adversary could design
an adversarial classifier that applies the original biased classifier on instances sampled from
P and an unbiased classifier ψ on instances that do not. So that, the adversarial classifier e
takes the form

f̃(x) =
{
f(x) if x was drawn according to P ,
ψ(x) otherwise .

1Titanic - Machine Learning from Disaster. https://www.kaggle.com/c/titanic
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To create such a classifier, we need a way to decide whether a given instance x comes from P
or not. A classifier is_OOD is build, such that is_OOD(x)=True if x ∈ X and it is true if x is
out-of-distribution (OOD). This classifier is trained on the combined dataset X ∪ Xp, where
X is the real-word dataset and Xp is generated by perturbing data in X and we add a class
label indicating whether the instance comes from the original data or it is a perturbation
sample. The unbiased classifier ψ is build on synthetic uncorrelated features that have zero
correlation with the sensitive attributes (race, gender).

Both LIME and SHAP can get fooled with this approach, even if there are some differences
in the behaviour due to their internal structure. LIME is very vulnerable to these attacks
once the is_OOD is well performing, while SHAP starts responding to attacks with a less
accurate classifier, but then the explanations deteriorate more gradually. The effectiveness of
this approach is based on the ability to distinguish between real-world and sampled instances,
which is by no means simple. However, if this classification is well performing, the adversarial
classifier completely hide the bias.

Another major problem with perturbation-based methods is that of instability. With each
use, explanations can change, even in contradictory ways. This is due to the random nature
of sampling. Even though taking a large number of samples should stabilize things [Garreau
and Luxburg, 2020a], it is not always doable (larger computational cost), and the speed of
convergence seems very low. Visani et al. [2020] analyzed this problem in LIME, providing a
solution to alleviate it based on stability indicators.

2.8.2 Specific problems with LIME
Normalization problem. As detailed above, LIME explains any machine learning model
by approximating it locally with an instrinsically interpretable model. The default implemen-
tation uses a linear regression model. In the one-box version (p = 1), the importance of an
attribute is given by the beta coefficient of the respective regressor. However, we claim that
the results provided by the original implementation2 user interface are not what one would
intuitively expect from reading the paper [Ribeiro et al., 2016] and especially seeing Figure 3
therein. We show with a simple example that this is due to an internal standardization of
the data.

Let us consider a simple linear model in the form y = β0 + β1x, with β0 = 0 and β1 = 30,
i.e., y = 30x. We generate a uniform random sample in [0,1] of size 1000. Let us say we want
to explain the prediction for the example ξ = 0.42. The model output is

y = β0 + β1ξ = 30ξ = 12.6 .

Fitting the data with linear regression from the sklearn library we obtain{
Intercept: β̂0 = 0.0 ,
Coefficient: β̂1 = 30 ,

2LIME: Explaining the predictions of any machine learning classifier. https://github.com/marcotcr/
lime
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so that y = β̂0 + β̂1ξ = 12.6. sklearn manages to derive the intercept and the coefficient of
the model. We expect the same results from LIME.

LIME user interface with the verbose=True option returns
Intercept: 15.02 ,
Prediction_local: 12.6 ,
Right: 12.6 .

Prediction_local gives the right result, but what does Intercept represent? We go deeper
using attributes of the object Explanation:{

Intercept: β̂0 = 15.02 ,
Coefficient: β̂1 = 8.64 .

The model would be y = β̂0 + β̂1ξ = 18.65. This is not what expected: we show that it is
due to the fact that the data is scaled.

We standardize the original data and fit a linear regression with sklearn as above, showing
that this gives the same results that LIME gives with the original data.

We scale the data as follows:
x̃i = xi − µx

σx
,

where µx is the mean value of the dataset and σx is the standard deviation. We now fit scaled
data x̃ with a sklearn linear regression model:{

Intercept: β̂0 = 15.02 ,
Coefficient: β̂1 = 8.65 .

We recover: y = β̂0 + β̂1ξ = 18.65, i.e., the same results obatined by applying LIME to the
original data x.

Plain sampling problem in 2D. Let us consider a two-dimensional problem, so we use
LIME to explain a model with only two features. The training set points are as shown in
the left panel of Figure 2.2, where clearly the data is not uniform in space [0,1]2. Applying
LIME with two boxes (p = 2), the quantiles correspond with the median value along the
two axes (middle panel of Figure 2.2). In each of the four quadrants thus generated, LIME
will sample according to a normal distribution of the same size, regardless of the initial data
densities within them. The right panel of the Figure 2.2 shows the density of points generated
by LIME: it is markedly different from the initial distribution. This sampling problem can
greatly distort explanations; it queries the model in regions of the input space in which it
could be poorly trained.

Bandwidth cancellation. We mentioned earlier that the choice of weights π in Eq. (2.5)
is critical because it can change the results. The default is

πi = exp
(
−‖1− zi‖2

2ν2

)
,
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Figure 2.2. LIME plain sampling problem in 2D. LIME will sample within the boxes
indistinctly, despite a clear inhomogeneous pattern. The figure shows the p = 2 boxes
version. Left panel: training data, middle panel: quantiles on each feature, right panel:
density of the LIME sampling.

where ν is the bandwidth, free parameter of LIME. For tabular data, the default value is
ν =
√

0.75d, where d is the number of attributes. However, Garreau and von Luxburg [2020]
show that the explanations change a lot as a function of this parameter. This change can lead
to the phenomenon of “bandwidth cancellation”: as the parameter changes, a coefficient can
be unexpectedly cancelled; it can also change in magnitude and even sign in counter-intuitive
ways.

2.8.3 Specific problems with Shapley values
Kumar et al. [2020] consider the Shapley values to be inadequate in themselves for explain-
ability. Game-theoretic approaches have indeed become popular in Explainable AI thanks to
their desirable mathematical properties and their formulation of feature importance. Shapley
value is a method for additively attributing value among players of a cooperative game: in
this setting, features are the players and the game is the prediction of the model in hand.
Several methods have been implemented to approximate Shapley values and they are used to
provide feature importance; the paper makes a classification according to the value function
involved. SHAP, for instance, belongs to the class of conditional methods, as its value function
is the conditional expected model output on a data point when only features in S are known:

vf,x(x) = E[f(X)|XS = xS ] = EXS̄ |XS [f(xS , XS̄)] ,

where S̄ is the set of feature not presents in S. Other methods use ideas from causal inference
to simulate intervention on features not in S. These are the interventional methods and their
value function is defined as

vf,x(x) = ED[f(xS , XS̄)] ,
where the distribution D is derived from the product of the marginal distributions of the
features in S̄. However, the paper shows that Shapley-value-based explanations for feature
importance “fail to serve their desired purpose in general.” Criticism is presented on two
fronts: one of mathematical formalism and one that looks at the explanations from a human-
centric position.

31



Interpretable machine learning

Mathematical issues. The different behaviour of these two classes is shown through the
indirect influence debate: choosing between one class or the other will lead to completely
different results. In general, interventional methods induce an out-of-distribution problem,
as shown by Slack et al. [2020]. On the other hand, conditional methods require additional
modeling of features interrelations. For example, it is not clear if two statistically related
features should be considered as separate players or not: a proposed solution is to express
this relation by means of causal knowledge and attribute all the importance to the “ancestor”
feature. The problem is that these methods are very sensitive with respect to the amount
of prior knowledge which is infused. In addition, the additivity constraints used to define
Shapley values is only considered “mathematically convenient” and it is not an innocuous
property: Shapley value is conceptually limited for non-additive models. Furthermore, the
algorithms used to estimate Shapley values are only an approximation, although they are
becoming increasingly efficient (see Covert and Lee [2021] for recent advances).

Human-centric issues. The mathematical formulation of the Shapley values does not
guarantee certain desirable properties of the explanations. While one can interpret these
values to provide contrastive explanations, they fail to make the user understand how to
achieve a desired result (counterfactual explanations): observing that a feature has a large
positive influence does not necessarily imply that increasing its value will lead to a better
result, especially for non-linear cases. One more point of Kumar et al. [2020] is that surveys
show that data scientist and Shapley value users do not really understand what these values
represent, so “over-trusting and misusing” Shapley tools.

2.9 Extending LIME for Business Process Automation
Business processes can be very complex as they combine multiple models and rules in different
patterns to get a decision. The most common techniques in explainable AI such as LIME
and SHAP cannot be applied directly to business automation systems, as their complexity
leads to virtually all of the problems discussed above and thus to misleading explanations.
As seen in Section 2.8.2, in LIME many problems are due to local neighborhood sampling,
which is done by perturbing features independently. Feature independence is never satisfied
in practice, and in a business process this is certainly not the case, as there are features
that are calculated or estimated based on others (e.g., through machine learning models).
The feature independence assumption causes LIME to generate samples which are out of
distribution (see Figure 2.2): improbable or even impossible and thus lead to meaningless
explanations.

For instance, let us consider the simplified loan approval scenario presented by Upadhyay
et al. [2021], where the features credit and risk have a correlation coefficient ρ = −0.9.
LIME would sample the two features independently, generating applicants with credit and
risk both very high (or very low), thus querying the model in spaces where it is not (or not
enough) trained. Upadhyay et al. [2021] propose to extend LIME sampling by taking into
account features correlations. The approach of this extension is to formulate the model to
be explained in such a way that it is highly accurate on samples that conform to the real
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distribution D and random on samples that do not conform to D. Let x be an instance of
data and y be the output of the model on it. In a two variables case the formulation of the
extended model M is therefore

M(x) =
{
y if p(x) ≥ 0.01 ,
B(0.5) if p(x) < 0.01 ,

(2.10)

where B(0.5) is the Bernoulli distribution with parameter 0.5 and p is the density function
of the original distribution D. By locally approximating the extended M model, LIME can
produce more meaningful and accurate results on real data.

This process-aware approach has been shown to provide better results than the standard
LIME and, because it achieves fixed accuracy with less samples, it is also more computation-
ally efficient. On the other hand, it requires the full relationship between the features to be
known. In addition, it should be considered that when the link between variables is given by
a machine learning model, the correlation is unlikely to capture sufficient information.
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Chapter 3

Rule-based decision systems

Artificial Intelligence spread into corporate environments in the early 1980s due to the com-
mercial success of expert systems. These are domain-specific decision systems designed to
emulate the ability of a human expert, mostly through if-then rules [Russell and Norvig,
2002]. The branch of artificial intelligence based on human-readable representations of sym-
bolic problems is the Symbolic AI. Decision systems then evolved into business rule man-
agement systems: software programs used to manage and monitor (even complex) business
operations. Business rules give logic to these systems, allowing the business policy for a given
task to be infused into an automated system.

Symbolic AI was the dominant paradigm of artificial intelligence research from the mid-
1950s until the late 1980s, when it was eventually supplanted by Statistical Learning. The
data-hungry framework of Machine Learning seems to provide practical solutions to business
problems and indeed the literature is rich of business applications, with promising models
for predictions, decision-making, etc. However, not a lot of machine-learning innovation are
adopted in business context.

Business automation processes are often built by combining models and rules in sequence
or in complex graphical structures. If we apply interpretability methods to the entire system,
using all of the variables involved in the decision-making policy (policy variables), we com-
pletely neglect this process and can obtain meaningless results. A “process-aware” method
could keep into account the process structure and overcome these issues, by augmenting
explanation methods with causal relationships, by knowing the admissible values for each
attribute, etc.

The approach of applying interpretability methods to policy variables is defined by Jan
et al. [2020] as Level 1. Level 2 brings process-awareness, including knowledge of the business
process, business rules, models and all features. The simplest case of a decision system in
our context is a set of rules that apply to certain known attributes. To interpret at Level 1 a
specific decision made by such a system, we can look at the set of rules that are satisfied by
the instance under consideration. We call this set the trace and in the case of a decision tree
it corresponds to the path followed by a point from the first node to the leaf. An example of
trace is reported in Figure 3.1.

To have trust in business processes based on artificial intelligence models, companies need
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x1 ≥ 0.5

x3 ≥ 3

0 1

x2 ≥ 25

1 0

Figure 3.1. A small decision tree for binary classification with three attributes. The trace
in the decision tree for point ξ = (0.8, 12, 4)>, predicted as 1, is shown in red. It represents
the path that the point follows within the tree.

process-aware explanations. In fact, decision-making systems can be extremely diverse, in
purpose, structure and complexity. Below we show two studies applied to two different
frameworks of decision-making systems.

3.1 A study of explanation generation in a rule-based
system

Decision theory and artificial intelligence have common roots and, more and more, a lot
of intersections. However, rule-based systems are a field of study in itself: the thesis from
El Mernissi [2017] does not deal with machine learning algorithms or Explainable AI methods
but it focuses on IBM Operational Decision Manager, market leader in the sector. As these
systems are needed to be used real-time, computational constraints must be kept into account,
for the system itself and also for the explanatory method.

“Business Rule Management System” (BRMS) refers to series of tools to formulate busi-
ness policies in automated processes. Decision making systems must provide good perfor-
mances, but also the need for explainability is growing: businesses want transparent and
flexible systems that can efficiently and reliably satisfy their needs.

A rule typically takes form a if-then expression. However, a rule-based system is typically
made up of several of these expression, which makes it difficult to be interpretable. Different
ways to classify explanation exist, according to the temporal context (when it is needed:
during or after the decision process), the type of the question (how, why, why not, what,
etc.), the content type, and so on. El Mernissi [2017] presents a method which try to exploit
causal rules that may actually exists among the features in the industrial context of the
application. This approach is not applicable in our setting, because it is not designed to
take machine learning models into account. However, some insights may be useful and be
extended to our case.

IBM BRMS. In IBM Operational Decision Manager, decisions are entirely taken auto-
matically. The system stores the trace of this process in a database and then it should show
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these information in a representative way. There are two main problems in this context:

• the process involves a large number of decisions, so we need to filter the trace and take
only the most useful (in some sense) information;

• explanations have to be provided real-time (or very quickly), so there are strong con-
straints on the additional computational effort needed.

What is more, the explanation system must be as general as possible, avoiding project-specific
requirements, for maintainability purposes. But, at the same time, it should take into account
the type of user and its needs. Explanations here are so intended to be feedbacks, as they
came after the whole decision process, justification and terminological knowledge, as we need
causality and information about concepts and methods used. They need to answer to both
qualitative and quantitative questions and to different users, which can be business, engineers,
end-users.

Causal model for rule-based systems. Business rules are statements in the form if
<premises> then <consequent>, where premises is a “disjunction of conjunction of
conditions,” and the consequent is a set of actions:

if (c1 and . . . and cm) or . . . or (c1 and . . . and cm) then (a1, . . . , an) .

Once rules are defined, the rule engine execute them, according to the algorithm used, the
priorities among rules and the ruleflow. Then, we need to construct the trace of the process,
providing enough information to show causal dependencies: we must know which rules have
been triggered, which parameters were used in that rules, what were their consequences and
at which order these rules have been triggered.

Extract causal relations can help reducing the trace and providing useful understandable
information to the user. This causal structure guarantees to keep all the information needed
to provide a complete causal model. After that, we can find the “minimal decision trace”
by removing from the original trace all the nodes that have no path to a rule modifying an
output parameter.

3.2 Explaining Multi-Criteria Decision Aiding Models
with an Extended Shapley Value

Decision-making systems can be affected by the presence of conflicting criteria. Multi-Criteria
Decision Aiding (MCDA) is a sub-field which attempts to propose solution for this kind of
issues, mainly based on hierarchical rules priority. Labreuche and Fossier [2018] studied this
context as summarized here. In order to trust the system, a decision-maker has three main
needs:

• Interpretability: a general knowledge of the model behaviour, e.g.: feature importance;

• Explicability: deeper analysis to understand the relationship between input and output;
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• Sensibility Analysis: ask what changes in the data changes the results the most.

How these three requirements are met characterizes the system’s explainability, which is
crucial for users trust. However, most users do not look for complete and formal explanations,
like a mathematical proof. Instead, they need quick and simple explanations, even if they are
incomplete. For this purpose, an influence index is designed as an extension of the Shapley
values [Shapley, 1953], that we discussed in Section 2.6, to measure features impact.

Model and Notations. A MCDA model represents a Decision Maker (DM) over a set
of criteria N = {1, . . . , n}, each associated to an attribute Xi, where i ∈ N . We define
X = X1× · · · ×Xn the set of alternatives. The preference of the DM over X are represented
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6

Figure 3.2. Example of MCDA from Labreuche and Fossier [2018]. Each node
represents a decision criteria.

by a utility function U : X → R, decomposable in

U(x) = H(u1(x1), . . . , un(xn)) ∀x ∈ X. (3.1)

To reduce the number of criteria, which can be large, it is common to hierarchically decompose
the aggregation function H. Let MT be the set of nodes of the tree T , ChT (`) the set of the
children of node `, NT ⊆ MT the set of leaves of T , sT ∈ MT the root node of T , τT the
set of subtrees having the same root node, T[j] the particular subtree when a node j ∈ MT

becomes a leaf.
For instance, in the example of Figure 3.2, MT = {1, · · · ,10}, ChT (8) = {4,5}, NT =

{1,2,3,4,5,6}, sT = {10} and so on.
We assume that the leaves of T define exactly the criteria: NT = N . Two cases are

considered: flat organizations, whereMT = N ∪st (i.e., no feature interactions) and coalition
structures, where leaves are at depth 2.

The definition of Shapley values given by Eq. (2.3) in Game Theory has four useful prop-
erty: additivity, null player, symmetry, efficiency.

Axiomatic Properties. The aim is to identify the attributes carrying the main contributes
in order to reduce the number of criteria. We need an index Ii(x, y, T, U) ∈ R, measuring
the influence of attribute i in the difference of scores U(y)−U(x). The axiomatic properties
to be satisfied are:
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1. Restricted Values: I(x, y, T ′, U) depends only on {U(yS , x−S), S ⊆ NT ′}. We measure
the influence of attributes in x and y by analyzing the consequence of going from xi to
yi, for each attribute i, keeping all the others as fixed.

2. Null Attribute: if an attribute i ∈ NT ′ is null for x, y, U , then Ii(x, y, T ′, U) = 0.
Attribute i is null when U(yS∪{i}, x(−S∪{i})) = U(yS , X−S), meaning that changing
value xi to yi has no impact on the utility.

3. Restricted Equal Treatment: if k, l ∈ NT ′ have the same parent and k ∼ l, then
Ik(x, y, T ′, U) = Il(x, y, T ′, U). k ∼ l when U(yS∪{k}, x(−S∪{k})) = U(yS∪{l}, x(−S∪{l})),
meaning that attribute k is as desirable as l.

4. Additivity: I(x, y, T ′, U + U ′) = I(x, y, T ′, U) + I(x, y, T ′, U ′), so that the influence for
a sum of two utilities is equal to the sum of the influences for the two utilities.

5. Generalized Efficiency: IsT (x, y, T ′, U) = U(y)− U(x) and

∀l ∈MT ′\NT ′ ,
∑

i∈ChT ′ (l)
Ii(x, y, T ′, U) = Il(x, y, T ′, U).

6. Consistency with Restricred Tree: let i, j ∈ MT ′ such that i /∈ DescT ′(j) and j /∈
DescT ′(i), then Ii(x, y, T ′, U) = Ii(xT

′
[j] , y

T ′
[j] , T ′[j], UT ′

[j]
). Note that this condition is only

valid when i and j do belong to the same part of the tree.

Expression of the Influence Index. The influence index is based on Shapley value. The
difficulty to measure the contribution of each attribute in U(y)−U(x) is that x and y are in
general different on all the attributes. So, we change one attribute at a time according to an
ordering π and measure the influence:

δπ(i) := U(ySπ(i), x−Sπ(i))− U(ySπ(i)\{i}, x−Sπ(i)\{i}), (3.2)

where Sπ(π(k)) = {π(1), . . . , π(k)}. The influence index of i is the average value of δπ(i) on
all orderings π: this is exactly the Shapley value φi of v : 2N → R, with

v(S) = U(yS , x−S)− U(x) .

Note that not all orderings are possible and the admissible ones have to be well defined. The
problem is that the computational cost of this calculation is exponential with the number on
nodes.

This approach is indeed suitable for a particular structure of decision-making system.
However, it requires a priori knowledge of how each node works and how all values are
combined. In our case, the decision rules do not necessarily involve all variables directly.
Above all, we seek a solution to the case where models are black-boxes.

The interpretability of hybrid decision systems seems to be understudied. To the best of
our knowledge, there is no solution to our problems in the literature.
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Chapter 4

Machine Learning in business
context

Deep learning is now the-state-of-the-art in artificial intelligence for specific and complicated
tasks: neural networks achieve outstanding performance in various areas [Schmidhuber, 2015].
Nevertheless, there are some caveats. First, it requires a large amount of data. For example,
the success of neural networks in computer vision is largely due to the availability of large
datasets such as ImageNet, which now has more than 14 million hand-annotated images.
Most companies, especially small and medium-sized ones, don’t have that amount of data at
their disposal, making it difficult to rely on neural networks for day-to-day tasks. We note
that this might change: Kadra et al. [2021] show that by applying an optimal combination of
regularization techniques, a small neural network can compete with state-of-the-art machine
learning models on tabular data. Second, even if there is enough data, a great computing
capacity is required to process it. Neural networks are very expensive in the training phase
and, consequently, so are the validation of parameters and the choice of the right architecture.
This means higher costs for hardware equipment and more effort on the software. Third, this
usually comes with longer development cycles than traditional models. In companies, time
can be crucial and translates into higher costs, or even least opportunities.

For these reasons, neural networks are not always suitable for the needs of companies,
especially small and medium-sized ones. In their daily work they often have little tabular
data available and need predictions in several small problems instead of a large system,
where deep learning would have been more appropriate. Simple, established models, often
tree-based, are preferred. As simple as they are, decision trees are still very popular due to
their good properties (they are fast, non-parametric, no demanding preprocessing), including
interpretability. We will discuss this in Section 4.1. Tree ensembles models, such as random
forest, are used particularly often in these contexts: they are a way to capitalize on the
benefits of decision trees by reducing their tendency to overfit. Boosting is perhaps the
approach that has contributed most to their popularity. For instance, XGBoost is a scalable
machine learning system for tree boosting, widely recognized in a number of machine learning
and data mining challenges [Chen and Guestrin, 2016]. The system is available as an open
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source package and is popularly used in business settings [Brownlee, 2019]. Brief overviews
of Boosting and XGBoost can be found in Section 4.2 and Section 4.3. Other times, machine
learning models are modified to better fit the specific needs of the application area. Many
models are built ad-hoc to ensure interpretability: this is the case of Sobol-MDA and SIRUS,
which we will discuss in Section 4.4 and Section 4.5.

4.1 Explaining the result of a Decision Tree
Decision trees [Breiman et al., 1983] are widely used in decision-making, providing good
results in different domains. In order to evaluate the result of a tree, users usually look at
the trace, that is the path followed in the tree, with the list of the tests passed by the case.
However, at the end of the process it is not that easy to understand the relevance of a result:
a small change in one parameter could completely change the result, while (relatively) strong
changes in several values could leave the result, and even the trace, intact. Alvarez [2004]
propose the following for explaining the result of a decision tree to the end-user.

The point is that the trace does not take into account the sensitivity of the decision
tree to small changes. The paper presents a geometric approach, studying the position of
the instance point in the partition generated by the decision tree in the feature space. In
particular, this analysis focuses on the distance between the point and the decision surface,
defined as the union of the boundaries of the different areas corresponding to the different
classes. This approach allows to evaluate decision tree tests that are more sensitive to small
changes, and these tests can also be ordered according to their sensitivity.

In the case of linear decision trees, the decision surface consists in pieces of hyperplanes,
so binary linear decision tree tests consist in computing the distance h of a case point P to
a hyperplane H. Tests are in the form h(P,H) > 0, so the area classified by each leaf is
the intersection of halfspaces and the decision surface Γ is piecewise affine, so that at each
point y ∈ Γ, the decisions surface is defined by a list of hyperplanes L. Assuming we work
with a complete metric space E, we consider the projection of each point x ∈ E on the
decision surface p(x) ∈ Γ. In this point, the decision surface is defined by the unique list
of hyperplanes L(x) = (Hi)i∈I , such that p(x) ∈ ∩i∈IHi. The sensitive test of a point x is
defined as the tests h(x,H) verified by x, for each hyperplane H ∈ L(x). This definition
satisfies good properties of uniqueness, robustness, ordering relation [Alvarez, 2004] and it
is even more robust in the case of decision trees defined by hyperplanes with axis-parallel
normal vector (the NDT case). In the latter, the number of sensitive tests for a point is at
most equal to the number of attributes d and each test is on exactly one attribute, so it is
very easy to understand.

The list of tests grows as the dimension d, and if this is large, it difficult to visualize all
of them. We need to prune the list in order to provide understandable information to the
user: this is very straightforward since sensitive tests can be easily ordered according to the
distances: Let T (H1) and T (H2) be two sensitive tests of point x. We say that T (H1) is
more sensitive than T (H2) if and only if the margin of T (H1) is greater than the margin of
T (H2) (T (H1) � T (H2) ⇐⇒ d(x,H1) ≥ d(x,H2)). By choosing a metric, the distance to
the decision boundary can be easily shown for each result as a measure of its relevance and
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we can extract and sort the list of attributes actually relevant for the tests.
Alvarez and Martin [2009] extended this idea in classification problem, being either ma-

chine learning or deterministic, based on the fact that the “decision boundary always ex-
ists, even implicitly,” with the restriction to the numerical state space, since a metric must
be defined. Let us consider the decision c(x) made for a point x of the input space E.
The method defines the robustness s of c(x) as the distance d such that each point in
B(x, d) = {ξ : ‖x − ξ‖ ≤ d} (i.e., the closed ball centered at x with radius d) belong to
the same class of x:

s(x) = max{d ≥ 0, ∀y ∈ B(x, d), c(y) = c(x)} .

We can also define a sensitive move as the smallest vector v such that the the robustness at
x+ v is zero:

m(x) ∈ arg min
δ∈E

{‖δ‖, s(x+ δ) = 0} .

This method is not directly applicable to our case either, because we have nodes composed
of machine learning models. However, we will use ideas from this approach for partial expla-
nations about the decision tree generated by the rules component.

4.2 Boosting
The idea of boosting approach [Schapire, 1990] in machine learning for classification problems
is to create highly accurate predictions by combining several low-accurate rules. A wide and
strong theory has been developed around boosting and some implementations have found a
great success in practice, too. One example of these is AdaBoost, presented in the seminal
work of Freund and Schapire [1997]. Wisdom of the crowds is the basis concept behind
boosting, which takes a large amount of its foundations in the game theory field.

Boosting assumes the availability of a base or weak classifier that can be called repeatedly.
This classification algorithm has to be at least better than making random predictions (weak
learning assumption). A boosting algorithm learns by repeatedly calling the base learning
algorithm, but if this always works with the same data and in the same way, we cannot expect
anything interesting. The key idea is to choose training sets for the base classifier in such a
way to infer something new each time it is called.

As an example, let us consider AdaBoost (Algorithm 1) from Schapire and Freund [2013],
assuming a two-classes (−1,+1) classifier. At each round t, it uses the distribution Dt

over data, so that the weight assigned to example i at round t is Dt(i). At t = 0, all
weights are equals, then, on each round, the weights of incorrectly classified examples are
increased so that the importance of harder examples is bigger for the classifier. The weighted
error εt =

∑
i:ht(xi)/=yi Dt(i) represents the chance for the classifier of ht misclassifying a

random example selected according to Dt, which is the sum of the weights of the misclassified
examples. For what we said about the “weak learner,” we do not expect the error εt to be
zero, neither very close to it. Considering the two-class example, a random classifier has an
error probability of 1

2 , so we just need the assumption that the error of a weak classifier is
bounded away from 1

2 .
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Algorithm 1: AdaBoost algorithm [Schapire and Freund, 2013]
Input: (x1, y1), . . . , (xm, ym) where xi ∈ X , yi ∈ {−1,+1};
Initialize: D1(i) = 1/m for i = 1, . . . ,m;
for t = 1, . . . , T do

Train weak learner using distribution Dt;
Get weak hypothesis ht : X → {−1,1};
Aim: select ht to minimalize the weighted error: εt = Pi[ht(xi) /= yi];
Choose αt = 1

2 log(1−εt
εt

);
Update, for i = 1, . . . ,m do

Dt+1(i) = Dt(i)
Zt
·
{
e−αt , if ht(xi) = yi

eαt , if ht(xi) /= yi
= Dt(i) · exp(−αtyiht(xi))

Zt
;

where Zt is a normalization factor so that Dt+1 is a distribution.
end

end
Output: final hypothesis:

H(x) = sign
(

T∑
t=1

αtht(x)
)
.

AdaBoost stand for “Adaptive Boosting algorithm,” because it adjusts and adapts to the
errors εt, in the sense that weak learners are tweaked in favor of those instances misclassified
by previous classifiers. It turns out to have good performances in minimizing both the training
data and the generalization error and it has good algorithmic characteristics, too: it has no
parameters to tune, except for the number of rounds T . The consistency of AdaBoost has
been intensively analyzed by Bartlett and Traskin [2007], providing an optimal range for the
number of iterations.

XGBoost is an evolution of AdaBoost, and is much more used in practice thanks to its
popular open-source software library.

4.3 XGBoost
XGBoost is a scalable gradient boosting system presented by Chen and Guestrin [2016].
It stands for “eXtreme Gradient Boosting.” It is a scalable, fast and well-performing tree
boosting system, widely used in the data science community. It is designed for optimizing
computational resources as it performs different optimization improvements which make it
better than other boosting technique.

Gradient boosting involves a loss function, a weak learner, and a model to add new
weak learners to reduce the loss function. The procedure builds iteratively a sequence of
approximations ft : Rd → R , t = 0,1, . . . , T in a greedy fashion. The final prediction for
example xi is then computed as ŷi =

∑T
t=0 ft(xi). The gradient descent procedure is used

to update parameters in the direction of negative gradient. The loss function to minimize at
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step t is in the form

L(t) =
n∑
i=1

{
`(yi, ŷ(t−1)

i + ft(xi))
}

+ Ω(ft) , (4.1)

including a classification loss ` and a regularization function Ω that penalizes the complexity
of the model. XGBoost calculates the value of the loss function for ft(xi) using second-order
Taylor approximations, that is

`(yi, ŷ(t−1)
i + ft(xi)) ≈ `(yi, ŷ(t−1)

i ) + ∂`(yi, ŷ(t−1)
i )

∂ŷ
(t−1)
i

ft(xi) + 1
2
∂2`(yi, ŷ(t−1)

i )
∂(ŷ(t−1)

i )2
f2
t (xi) . (4.2)

Renaming the first and second derivatives respectively as gi and hi, we can reformulate:

L(t) ≈
n∑
i=1

{
`(yi, ŷ(t−1)) + gift(xi) + 1

2hif
2
t (xi)

}
+ Ω(ft) . (4.3)

Note that the term `(yi, ŷ(t−1)) does not depend by ft, is a constant term independent of any
choice of function. We can therefore define a new loss function

L̃(t) :=
n∑
i=1

{
gift(xi) + 1

2hif
2
t (xi)

}
+ Ω(ft) , (4.4)

and pick ft(xi) ∈ arg min
ft

L̃(t) .

The main types of improvements [Brownlee, 2019] to apply to avoid overfitting and increase
performances are

• Tree Constraints: number of estimators, maximum depth, number of leaves, number of
observation per split and minimum improvement to loss.

• Shrinkage (Weighted updates): predictions are added sequentially and each contribution
is weighted to slow down the learning, so that more trees are required. This allows the
contribution of each weak learner to be small and allows the model to continue learning.
However, the smaller the learning rate, the more the trees: we have to find a trade-off.

• Random Sampling: stochastic gradient boosting makes the trees less correlated by sub-
sampling either the rows and the columns of the training set.

• Penalized learning: standard regularization methods, like L1 or L2, are used to penalize
the complexity of the model.

Some of the additional innovation included in XGBoost are:

• “Sparse-aware” implementation: making it able to deal with missing values, zero en-
tries or inconsistent instances, e.g. by letting trees to take a default direction while
encountering them.
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• “A block structure” for parallel learning: the system is designed in such a way to
optimize the memory using and to facilitate parallel computing.

• Continued Training so that further boosting of an already fitted model on new data is
allowed.

XGBoost is a complex algorithm that combines decision trees and it provides several mea-
sures of feature importance based on the splitting criteria of the underlying trees. However,
these measures are not fully satisfactory: for example, they all show importance in absolute
terms, without giving information on the sign of the contribution of each. Depending on the
application domain, the requirements of interpretability are different. As mentioned, ad-hoc
interpretable methods are often constructed. We now see two tree-based examples of these.

4.4 Sobol-MDA
The most popular variable importance measure for random forest is the Mean Decrease Ac-
curacy (MDA): it measures the decrease of accuracy in the prediction when the values of an
input variable are permuted to break its relation to the output. However, several implemen-
tations of this idea exists and Bénard et al. [2021b] prove that the different implementations
actually have different limit behaviours when n → ∞ and are therefore estimating different
things.

They specify two main final aims of variable importance:

• find a small number of variables with a maximized accuracy (objective 1);

• rank all influential variables to focus on further exploration with domain experts (ob-
jective 2);

and they state that different methods should be used according to the case. For instance,
if two variables are correlated, one must be disregarded in the first case, while it should
result as an influential variable in the second. However, it is proved that the most popular
implemented versions of MDA are not well suited for the first case when there is interaction
and dependence among the features.

The paper also identifies the unnormalized Total Sobol Index [Sobol, 1993] as the desired
theoretical counterpart of MDA. The Total Sobol Index of variable X(j) for the model m,
with Y = m(X) is defined as

ST (j) = E[Var(X)|X(−j)]
Var(Y ) . (4.5)

This quantity gives the proportion of the explained output variance lost when variable X(j)

is removed from the model.
In theory, this would require re-training a new model each time a variable is removed. This

is too onerous and in fact unfeasible in practice. Removal is usually simulated by permuting
the values of the variable within the corresponding column in the entry table. This breaks
the relationship of the variable with both the output and the other features.
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However, this procedure adds a component due to permutation to the asymptotic result,
thus fooling the MDA. To solve this, Bénard et al. [2021b] proposes a method to calculate
the Solol-MDA that approximates the Total Sobol Index without relying on permutation.

This is achieved by ignoring splits on the variable j under consideration, making each tree
predict the quantity E[m(X)|X(−j)] to finally recover the unnormalized Total Sobol index
E[V(m(X)|X(−j))]. Geometrically, considering the partition generated by a tree on the input
space, this is analogous to projecting the point X into the subspace span by X(−j).

As mentioned above, this method works in the case of measuring the importance of vari-
ables (objective 1 ). For our purpose, objective 2, the paper mentions Shapley values as a
good theoretical measure. In fact, we follow this way.

4.5 SIRUS - Stable and Interpretable RUle Set
SIRUS (Stable and Interpretable RUle Set) [Bénard et al., 2021a] is another tree-based clas-
sification model based on random forests, improved to be more interpretable. Like neural
networks, random forests can be considered black-boxes, since due to the high number of
operations involved in their mechanism, it is not easy to explain their prediction.

As discussed above, in machine learning there is a clear trade-off between accuracy and ex-
plainability. SIRUS achieves the same accuracy as random forests, but provides explanations
that are very stable with respect to perturbations in the form of simple rule if condition
on x then response, else default response.

These rules are extracted and pruned according to the probability that a certain node
is contained in a random tree. The higher the probability, the more robust and therefore
important the rule. For a binary classifier this is mainly achieved by the following steps:

1. Rule generation: SIRUS relies on the original implementation of random forests
[Breiman, 2001]: each tree in the forest is grown with an algorithm that partition
the input space. The modification is that SIRUS select the splits among the empirical
q-quantiles (by default, q = 10). This slight modification is central to the method:
all trees in the forest will choose for each coordinate the best split among the same q
admissible ones. In the end, for each tree, a rule is associated with each path.

2. Rule selection: the most important rules are more shared. The proportion of trees
in the forest that share the same rule is an estimate of the probability p that that rule
belongs to a tree. The rules that have a probability greater than a certain threshold p0
(the only parameter of the model) are then selected.

3. Rule post-treatment: some of the selected rules are redundant: the paths associated
with them overlap. If two rules are linearly dependent, the one with the higher frequency
is removed.

4. Rule aggregation: the set of rules extracted so far defines a rule classification model,
which associates 1 with a certain point x if the probability of the rules exceeds a certain
threshold, 0 otherwise.
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This model has many desirable properties. In particular its stability is extensively analyzed
by Bénard et al. [2021a] and the accuracy of its predictions is shown in a wide range of
classical datasets.

The SIRUS approach is to build an intrinsically interpretable model that provides a few
simple rules and also achieves good accuracies. This method therefore operates in contexts
other than our own, but the ideas used for specific tasks are interesting and applicable.

None of the methods presented here are satisfactory in our setting. We therefore move to
the description of a new method, adapted to business needs and built ad-hoc for this setting.
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Chapter 5

SMACE – Semi-Model-Agnostic
Contextual Explainer

5.1 Introduction

In our framework, there are a few (typically two or three) machine learning models computing
quantities based on input data, which are then agglomerated by means of decision rules. An
example is shown in Figure 5.1. These rules may refer both to the outputs of the machine
learning models and to the input values. In this configuration, there is knowledge that we can
exploit to make our explanations process-aware, as discussed at the beginning of Chapter 3.
We know which variables are involved in the decision policy and we know its rules. It is
worth exploiting this information instead of treating the whole system as a black-box and
being completely model-agnostic. In fact the direct application of model-agnostic methods
produces poor results, as we show in Chapter 6.

In this chapter, we present SMACE - Semi-Model-Agnostic Contextual Explainer. It pro-
vides local post-hoc explanations based on feature importance. We built this method to meet
the challenges presented in the previous chapters for such a decision system that combines
any type of machine learning model. Specifically, SMACE is a method for feature importance
that provides two levels of explanation, for the different users involved in the decision-making
process. The first level, which is useful for the business user, must provide a ranking of im-
portance for all the variables used, whether they are input attributes or values calculated
in-house. This is useful, for example, to the sales representative, who has access to and
knowledge of company policies. By interpreting the process, the business user can explain,
modify, override or validate the specific decision. The second level is necessary for the end
customer. She does not have access to the internal policy rules, nor to the way in which
decision-making processes are managed. It therefore requires explanations based solely on
information that she is aware of, i.e., input features, such as her personal details or service
usage values.

In the following example we present a simple but realistic use case, typical of a business
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decision problem: business management is often a question of balancing risk and expected re-
turn.

decision

decision rules

cr ltv

customer data subscription data

Figure 5.1. Retention offer use-case. Structure of a decision system with two data sources (in
blue) and two machine learning models (in orange). The system takes as input the customer’s
personal data (customer data) and their subscription data (subscription data). The
models cr and ltv predict the churn risk and the lifetime value, respectively. The arrows
indicate the passage of information. Both models take both data sources as input, but
while customer data is also used directly in decision rules, subscription data is not.
This means that the information contained in the second data source is used exclusively to
calculate new values on which decision rules are applied.

Example 5.1.1 Retention offer
A mobile phone company wants to predict if a customer is going to leave for a competitor,
and to decide if a retention offer should be made, while not spending more on retention than
the value of retaining the customer. The decision process relies on different components:

• Input features, describing:

– the customer, i.e., age, income, etc.;
– the current subscription, i.e., the number of monthly minutes and text messages

used, etc.;

• Two Machine Learning models trained on past customers data:

– XGBoost Classifier, predicting the churn risk cr, i.e., the likelihood that the cus-
tomer will drop out for another company;

– XGBoost Regressor, predicting the life time value ltv of the customer, i.e., the
expected revenue generated by the customer if it is maintained.

There are three types of retention offers: special, super, and basic. If a user is not eligible
for any of them, he/she gets no offer.

These components, shown in Figure 5.1, are finally aggregated by means of decision rules:
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if cr ≥ 0.5 then
if ltv ≥ 300 then

decision ← 1: make super offer.
else

decision ← 2: make basic offer.
end if

else
if ltv ≥ 750 then

decision ← 3: make special offer.
else

decision ← 4: no offer.
end if

end if

Therefore, depending on the estimates of the propensity to churn and the lifetime value,
the company decides whether to make an offer to the customer and, if the case, the type of
the offer.

In this example, it is fundamental for the sales representative to know, even roughly, why
this prediction was made. It is also crucial to have explanations that refer to the input data,
so that the customer can understand them. Indeed, it may not be informative to provide
explanation to the user by showing her some internal values predicted with machine learning
and, as mentioned in Section 1.4, it may soon became a legal requirement.

The final agglomeration by means of rules allows the company to express the business
policy and they are necessary because policies may quickly change over time. In the example
above, according to the economic performances of the company in the last quarter, it may
require higher or lower level of propensity to churn for a customer to receive a retention offer.
What is more, while in some cases these decision rules represent just soft preferences, they
are often hard rules, potentially due to regulation (for instance, age ≥ 18 may be required
by law to get a certain offer). Therefore, they cannot be easily incorporated into machine
learning models; it is challenging for these to adhere strictly to deterministic policies and
rules.

SMACE is a new explanatory method that combines a geometric approach with existing
interpretability solutions to generate feature importance based explanations. In the rest of
the chapter we present SMACE step-by-step, taking Example 5.1.1 further for the whole
Section 5.2.

5.2 Definition of the explanatory method

5.2.1 Assumptions
Before describing SMACE, we present the main hypotheses, underlying their limitations. The
method is based on three assumptions, which limit possible applications but are necessary
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for operation. Ideas for solving in future work some of these limitations are discussed in
Chapter 7.

A1: Decision rules only refer to numerical values. This restricts the area of appli-
cability of SMACE significantly; categorical values may be very important. For instance,
in the Example 5.1.1, a decision policy might take into account the payment method of a
customer in order to apply a certain offer. However, this assumption allows us to take a
simple geometric approach for the explainability of the decision tree. Since it is generally not
straightforward to assign a metric to categorical variables, we restrict to decision policies that
do not use them. Note that this does not imply any restriction on the input of the machine
learning models.

A2: Each decision rule is related to a single variable, without keeping into account
variable interactions. For instance, this assumption excludes rules like if cr ≥ ltv. Geo-
metrically, this implies decision trees with the splits parallel to the axes, similar to CART
trees [Breiman et al., 1983].

A3: The machine learning models only use input features to make predictions:
we disregard the case in which a machine learning model takes as input the output of other
machine learning models. This case would induce a graph structure, to which SMACE would
be theoretically extensible, but would make the explanations less stable. Note that this is a
very reasonable assumption that covers most real-world applications that we know of.

Note that A1 and A2 refer to the decision rules, while A3 is the only assumption on the
machine learning models and does not concern their nature.

5.2.2 Notation
Let x ∈ RD be input data, where D is the number of input features and let f (1), . . . , f (N)

(N is typically 2 or 3) be the machine learning models. We will refer to their outputs
f (1)(x), . . . , f (N)(x) as the running features, whose values we also denote y(1), . . . , y(N) when
there is no ambiguity.

The union of numerical input features and running features (x1, . . . , xD, y
(1), . . . , y(N))

defines the set of the D +N variables to which the decision rules are applied.
A decision rule R is formally defined by a set of conditions, and each condition is a triple

(variable, operator, cut-off), where operator may be >,<,≥ or ≤ and cut-off is the threshold
to be applied. For example, if we apply to churn risk (cr) the condition if cr ≥ 0.5, this
is defined by (cr, ≥, 0.5).

5.2.3 Overview
The intuition behind this approach is that we need to agglomerate the explanations of individ-
ual models with a mechanism similar to that in which the model themselves are agglomerated.
Making the above assumptions, we can see a decision-making system as a linear decision tree
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where some of the nodes refer to machine learning models. We therefore combine an ad-hoc
method for the interpretability of the (intrinsically interpretable) decision tree, with a model-
agnostic method for the machine learning components. To do this, for each case at hand, we
first perform two parallel steps:

• Explain the results of the models: for each machine learning model f (k), we derive
the importance φ̂(k)

j that each of its input features j has in the prediction. By default,
we rely on Shapley values [Shapley, 1953] to allocate these importance values fairly;

• Explain the rule-based decision: measure the contribution r(1)
j or r(2)

k of each vari-
able (that is, each input feature j and each model f (k)) actively involved in the decision
policy. We use a geometric approach extending the work of Alvarez [2004] for the
explainability of decision trees.

Then, to get the Overall explanations, we combine these partial explanations in order to
fairly attribute them to the input features by weighing the importance of these features for
a model with the importance of the output of that model in the decision rules. The total
contribution of the input feature j to the decision for a given instance as

ej = r
(1)
j +

N∑
k=1

r
(2)
k φ̂

(k)
j . (5.1)

5.3 Explaining the results of the models
In the process of explaining the decision rules, we considered the input and output values of
the models at the same level, because the decision policy does not distinguish between them.
However, as discussed above, explanations based on running features may not be informative,
as neither the end user nor the business user necessarily knows their meaning or the process
that generates them. In parallel, we compute the importance of each variable involved in the
business rules, included running features. We need to “project” these importance measures to
their input features. To put it differently, we need a way to fairly distribute the importance
of the output of a machine learning model among its input values: this is what the Shapley
values [Shapley, 1953] do, as discussed in Section 2.6 and Section 3.2.

We rely on the Kernel SHAP implementation, discussed in Section 2.6. So, we get the im-
portance φ(k)

j (given by Eq. (2.7)) of each input feature j for each machine learning model f (k).
The problem is to compare these importance measures. Two models k and h, in fact,

might give results y(k) and y(h) on very different scales, for instance because they do not
have the same unit. In the Example 5.1.1, before normalization, we have models computing
churn risk and life time value. The first value is a probability, so it belong to [0,1],
while the second is the expected economic return that the company may get from a customer,
and it could be a quantity scaling as thousands of dollars. In general, if f (k) predicts the
churn risk and f (h) predicts the life time value, for a certain variable j as input to both
models, we might expect |φ(h)

j | � |φ
(k)
j |.
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In order to have a sensical comparison between the models, we therefore need to scale
the φ values. We use as scale factor the empirical standard deviation σ̃k of the model output
in the dataset of size n:

σ̃k =

√√√√ 1
n

n∑
i=1

(
y

(k)
i − y(k)

)2
.

Subsequently, we define the contribution of input feature j for model f (k) as

φ̂
(k)
j =

φ
(k)
i

σ̃k
if σ̃k /= 0 ,

0, otherwise .
(5.2)

The quantities φ̂ are thus of the same order of magnitude and dimensionless and can be
aggregated. Note that the empirical standard deviation σ̃k is zero if and only if model k
predicts the same value for each item i in the dataset. In that case, we would also get
φ

(k)
i = 0 ∀i, which implies φ

(k)
i

σ̃k
= 0

0 and we adopt the convention 0
0 = 0.

As shown in Lundberg and Lee [2017], almost all perturbation-based method belong to
the same class and they can all be used as well. For instance, the LIME approach is very
close to SHAP. On the other hand, some studies are critical of the use of these methods, as
discussed in Section 2.8.1 and Section 2.8.3, thus we prefer SHAP as a default.

Anyway, SMACE requires a feature importance measure for all of the input features, but
not necessarily relying on SHAP, nor LIME. Any other method of obtaining measures of
significance is possible.

5.4 Explaining the rule-based decision
We stated in Chapter 3 that the collection of decision rules used by a decision system can
be interpreted as a decision tree classifier. A first, naive approach to explain its decision
may be to analyze the trace followed by the point within the tree. However, as discussed in
Section 4.1, the trace does not contain enough information to understand the situation: a
large change in some rules may have no impact on the result, whereas a very small increase in
one value may lead to a completely different classification, if we are close to a critical value.
In addition, there may be many rules in a decision-making system, and simply listing them
all would make it difficult to understand the decision correctly.

We present a method to explain rule-based decisions that provides features importance
through a geometric approach inspired by Alvarez [2004] and Alvarez and Martin [2009].
In fact, each decision rule is a split in the decision tree and each split produces a decision
boundary. The collection of decision boundaries generated by the tree induces a partition
of the input space and we call decision surface the union of the boundaries of the different
areas corresponding to the different classes. In the case of linear decision trees, the decision
surface S is piecewise-affine, consisting in pieces of hyperplanes. At each point y ∈ S, the
decision surface consists of a list of hyperplanes, each referring to one variable. By projecting
an instance point x onto S, it is thus possible to obtain the list of variables that actively
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contribute to its classification. The explainability problem is therefore addressed by studying
the decision surface generated by the tree.

However, to properly compare these contributions, we must first normalize the variables.
We must then query the models on the training set in order to obtain the values y(1), . . . , y(N).
We thus apply a min-max normalization on both input features and running features, respec-
tively

x′i = xi −min(xi)
max(xi)−min(xi)

, ∀ i ∈ {1, . . . , D} ,

y′(k) = y(k) −min(y(k))
max(y(k))−min(y(k)) , ∀ k ∈ {1, . . . , N} .

In this way, the values of each variable are scaled in [0,1]. For the sake of convenience, we
continue to denote the variables x′i and y′(k) as xi and y(k), but from now on we consider
them as scaled.

We can now define the distance between two points x and ξ as the Euclidean distance

d(x, ξ) = ‖x− ξ‖2 .

The projection pS(x) of point x onto the subspace S is

pS(x) ∈ arg min
z∈S

‖x− z‖2 .

The distance between a point x and a subspace S is

d(x, S) = min
ξ∈S
‖x− ξ‖2 = d(x, pS(x)) = ‖x− pS(x)‖2 .

We call S(`) the decision surface of leaf ` and S(`)
j its j-th component.

Clearly, if a point x falls into leaf `, we have p(`)(x) = x: the projection is already in the
decision space of `, so its projection is the point itself. Let L be the set of leaves and let us
define the active leaf and active boundary for point x and leaf ` as

ν̂ = arg min
ν∈L\`

‖p(ν)(x)− x‖2 , and

b(`)(x) = p(ν̂)(x) .
For instance, the decision tree and the partition it generates in Example 5.1.1 (after

normalization) for two customers A and B are shown in Figure 5.4.
Customer A has cr = 0.6 and ltv = 0.4, while customer B has cr = 0.6 and ltv = 0.75

(values are scaled in [0,1] for fair comparison). Both points are classified as 1, so they are going
to receive an offer of the same type. They belong to the same leaf and their trace, defined by
cr ≥ 0.5 and ltv ≥ 0.3, is exactly the same. However, the sensitivity of their classification
is different and an end-user wold not consider the two decisions in the same way, despite the
same outcome. Both A and B are indeed very sensitive to changes in cr (along the horizontal
axis), while B is much more robust with the respect to A to changes in ltv (vertical axis).
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cr≥0.5
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Figure 5.2. A decision tree for the assignment of telephone offers. cr and ltv are the
expected churn risk and customer lifetime value, respectively. On the right, the partition
generated by the tree in space (cr, ltv). A and B are instance points of two distinct
customers eligible for the same offer since they both belong to leaf 1 (cr ≥ 0.5 and ltv ≥ 0.3).
However, the sensitivities of their decisions are very different.

Their sensitivity with respect to cr is the same, since d(A, S(1)
cr ) = d(B, S(1)

cr ) = 0.6− 0.5 =
0.1, they are very different with respect to ltv, indeed d(A, S(1)

ltv) = 0.4 − 0.3 = 0.1 and
d(B, S(1)

ltv) = 0.75− 0.3 = 0.45. For the classification of point B, we state that the horizontal
axis is more important than the vertical one, while with respect to A they have the same
importance. What is more, even if the two points have the same sensitivity with respect
to cr, moving them to the left by, say, 0.2 would end up in different leaves: A would be
classified as 1 and receive no offer, while B would be in class 2.
We compute the contribution r(`)

j of a variable j for the classification of point x in leaf ` as

r
(`)
j (x) =

{
−(1− |xj − p(`)

j (x)|) if xj /∈ ` ,
1− |xj − b(`)j (x)| if xj ∈ ` ,

(5.3)

where p(`)
j (x) and b(`)j (x) are the j-th components of respectively the projection and the active

boundary of x on leaf `.
In the case detailed above, this means{

r
(1)
cr (A) = 1− |0.6− 0.5| = 1− 0.1 = 0.9 ,
r

(1)
ltv(A) = 1− |0.4− 0.3| = 1− 0.1 = 0.9 ;{

r
(1)
cr (B) = 1− |0.6− 0.5| = 1− 0.1 = 0.9 ,
r

(1)
ltv(B) = 1− |0.75− 0.3| = 1− 0.45 = 0.55 .
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Table 5.1. Contribution of cr and ltv for the classification of customers A and B.

Customer A value projection boundary contribution
cr 0.60 0.60 0.50 0.90
ltv 0.40 0.40 0.30 0.90

Customer B value projection boundary contribution
cr 0.60 0.60 0.50 0.90
ltv 0.75 0.75 0.30 0.55

Table 5.1 shows the contribution of each variable in the classification of our two customers.
We can see that for Customer A, the variables cr and ltv have the same contribution: to
change the classification we have to move one or the other by the same amount. Instead, for
Customer B, the contribution of cr is higher: the minimum shift along cr to change the
classification is much lower than that along ltv.

5.5 Overall explanations
Finally, once the partial explanations have been obtained, they can be agglomerated. We
define the total contribution of the input feature j to the decision for a given instance as

ej = r
(1)
j +

N∑
k=1

r
(2)
k φ̂

(k)
j , (5.4)

where the quantities involved are

• r
(1)
j : the contribution of input feature j for the business policy computed in Eq. (5.3);

• r
(2)
k : the contribution of running feature k for the business policy computed in Eq. (5.3);

• φ̂
(k)
j : the (normalized) importance of the input feature j for model f (k) derived from

Eq. (5.2).

We thus obtain a measure of the importance of features for a specific decision made by a
system combining rules and machine learning models. Our measure of importance highlights
the most critical variables, those therefore most involved in the decision. In this way, a
business user can analyse a decision by focusing on these variables to make his or her own
qualitative assessment.

Computational complexity. The SMACE algorithm consists of solving a convex opti-
mization problem and applying SHAP to machine learning models. First, the rule to be
explained is read, scrolling through the list of its conditions. The cost is then linear in the
number of conditions, which can be at most 2 times the number of variables. The convex

57



SMACE – Semi-Model-Agnostic Contextual Explainer

optimization problem is then constructed: we rely on the cvxpy1 library, using the ECOS
[Domahidi et al., 2013] solver. Next, a call is made to SHAP for each of the N models in-
volved in the decision policy. Naming D the number of input features, KernelSHAP needs
by default 1000D calls to the model to be explained, corresponding to the number of samples
used to estimate shap values.

5.6 Side information
Note that these explanations are based on the distance between a point x and the decision
boundary for a certain leaf. This allows three types of question to be answered:

1. Why the point fell in a certain leaf (contextual explanation);

2. Why the point did not fall in a certain other leaf (contrastive explanation);

3. Which leaves are closest to the point.

Let us consider again now the partition in Figure 5.4. Both A and B are classified as 1
and above we answered the first question, by providing the contribution of each variable to
this classification. Let us consider a new customer C, having cr = 0.3 and ltv = 0.4 and
so being classified as 4. We wonder now why those three customers are not classified as 3

ltv

cr

1

1

0.75

0.5

3

1
4

2

X

Z

0.3
A

B

C

Figure 5.3. Partitions generated by a decision tree in space (cr, ltv). The point
X is the projection on the decision boundary of leaf 3 for points A and B, while Z
is the projection of point C.

(question of type 2), or, equivalently, why they do not belong to the subspace of the domain

1CVXPY library, https://www.cvxpy.org/index.html.
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defined by [0,0.5] × [0.75,1] ∈ [0,1]2. In Figure 5.6, X = p(3)(A) = p(3)(B) is the projection
onto the decision surface of class 3 for both A and B, while the point Z = p(3)(C) is the
projection of C.

By applying Eq. (5.3) to A, B and C for leaf 3, we get{
r

(3)
cr (A) = −(1− |0.6− 0.5|) = −0.9 ,
r

(3)
ltv(A) = −(1− |0.4− 0.75|) = −0.65 ,{
r

(3)
cr (B) = −(1− |0.6− 0.5|) = −0.9 ,
r

(3)
ltv(B) = −(1− |0.75− 0.75|) = 0 ,{

r
(3)
cr (C) = 1− |0.3− 0.5| = 0.8 ,
r

(3)
ltv(C) = −(1− |0.4− 0.75|) = −0.65 .

Table 5.2. Contribution of cr and ltv for customers A, B and C to the classification in leaf 3.

Customer A value projection boundary contribution
cr 0.60 0.50 0.50 −0.90
ltv 0.40 0.75 0.75 −0.65

Customer B value projection boundary contribution
cr 0.60 0.50 0.50 −0.90
ltv 0.75 0.75 0.75 0.00

Customer C value projection boundary contribution
cr 0.30 0.30 0.50 0.80
ltv 0.40 0.75 0.75 −0.65

For customer A, both cr and ltv contribute negatively to the classification in 3: both
components are outside the decision boundaries. This means that you have to move them
both to reach leaf 3. cr has the same behaviour for customer B, while ltv has a null
contribution: it is exactly on the decision boundary. In the case of customer C, ltv makes
a negative contribution, cr positively contribute: is inside the boundary.

To answer the questions of the third type, for each leaf ` ∈ L we use the formula:

r(`)(x) =
{
−‖x− p(`)(x)‖2, if x /∈ ` ,
‖x− b(`)(x)‖2, if x ∈ ` .

(5.5)

Note that if x ∈ `, Eq. (5.5) measures the robustness of the classification. If x /∈ `, it tells
how much point x should be moved to reach class `. For customers A, B and C, results are
shown in Table 5.3.
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Table 5.3. Distance of each leaf from points A, B and C.

A class robustness
1 0.10
2 -0.10
3 -0.10
4 -0.36

B class robustness
1 0.10
2 -0.45
3 -0.10
4 -0.10

C class robustness
1 -0.20
2 -0.22
3 -0.35
4 0.20
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Chapter 6

Evaluation of SMACE

What makes interpretability in these contexts even more challenging is the lack of adequate
metrics to measure the quality of explanations. In this section we compare the results obtained
with SMACE and those obtained by applying SHAP and LIME on the whole decision system.
We designed SMACE to have two desirable properties: (1) the contribution associated with
a feature must be positive if it satisfies the rule, negative otherwise; (2) the magnitude of the
contribution associated with a feature must be greater the closer its value is to the decision
surface. We now show empirically that SHAP and LIME do not satisfy these properties and
we therefore argue that they are not suitable methods in this context. We will use both the
default version of LIME, with p = 4 boxes, and a version with p = 1 developed by us to
overcome the problem discussed in Section 2.8.2. The latter will be indicated as LIME-1. For
completeness, we also report the explanations obtained with Anchors, although, as mentioned
in Section 2.7, it is not a feature importance method. When a rule is not satisfied, we expect
Anchors to identify only one of the conditions in the decision rule. In that case, each in fact
is deterministically sufficient. On the other hand, when the rule is satisfied, Anchors should
identify a subset of the conditions, which jointly provide some precision.

The input data used for Section 6.1 and Section 6.2 consist of 1000 instances x(1), . . . , x(1000),
each with three randomly generated components x1, x2, x3 as uniform in [0,1].

6.1 Rules only
Let us first evaluate these properties in the case of a decision system consisting of only three
simple conditions applied to only three input features. The decision-making system consists
of the rule

if x1 ≤ 0.5 and
x2 ≥ 0.6 and
x3 ≥ 0.25
then TRUE
else FALSE .
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Note that there are no models, the rule is based solely on the input data. The method
then reduces to the application of Eq. (5.3), discussed in Section 5.4.

Random example. Let us pick an example at random:

ξ = (0.30, 0.15, 0.09)> .

The decision-making system classifies ξ as FALSE, since conditions ξ2 < 0.6 and ξ3 < 0.25
are violated. We want to know why ξ is not classified as TRUE and the contributions of the
three variables to that decision.

Table 6.1. Evaluation in the case of three conditions on three input features.

variable boundary example SMACE SHAP LIME LIME-1
x1 ≤ 0.50 0.30 0.802 0.063 0.177 0.021
x2 ≥ 0.60 0.15 −0.546 −0.102 −0.213 −0.082
x3 ≥ 0.25 0.09 −0.842 −0.102 −0.213 −0.054

The comparison is shown in Table 6.1. The results of SMACE are computed as
r

(1)
1 = 1− |0.5− 0.30| = 0.80 ,
r

(1)
2 = −(1− |0.6− 0.15|) = −0.55 ,
r

(1)
3 = −(1− |0.25− 0.09|) = −0.84 .

In this case, we see that the results of the four methods agree in their signs. However, SHAP
and LIME attribute the same contribution to x2 and x3 even though the sensitivities of the
values are different.

In the case of LIME, this behavior is well studied by Garreau and von Luxburg [2020]. The
point is that the sampling is done in a space away from the boundary, and so by perturbing
the example in a small neighborhood, the output does not change. Since SHAP belongs to
the same class of methods as LIME [Lundberg and Lee, 2017], the same happens with it.
SMACE and LIME-1 manage to capture the sign, but the latter does not satisfy property (2):
the contribution of x3 should be higher than that of x2, since it is closer to its boundary. In
particular, one attribute at a time is perturbed, so whenever you need to move more than
one to change the results, LIME and SHAP fails.

Anchors give
Anchors: x2 ≤ 0.52
Precision: 1
Coverage: 0.50 .

In fact, this is a sufficient condition to not satisfy the decision rule and get deterministically
(with precision 1) false as result. The coverage is 0.50 because we generated data as uniform
in [0,1]3: almost half of the data points have x2 smaller than 0.52.
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Example exactly on the decision boundary. Let us now compare the results in the
case of an example exactly on the decision surface, so where the sensitivity is maximum:

ξ = (0.5, 0.6, 0.25)> .

This is a borderline case that can happen in the real way. A company might reserve a special
offer for customers under the age of 26. If a user is exactly 26 years old, this information
should stand out. The decision-making system classifies ξ as TRUE. All values are extremely
sensitive to small variations and all variables are equally critical to the decision. Table 6.2
shows that SMACE assigns a high uniform value to all variables, while the others assign dif-
ferent values and in LIME there are negative contributions even if all conditions are satisfied.

Table 6.2. Evaluation in the case of three conditions on three input features, with
example on decision boundary.

variable boundary example SMACE SHAP LIME LIME-1
x1 ≤ 0.50 0.50 1.00 0.355 −0.196 0.334
x2 ≥ 0.60 0.60 1.00 0.370 0.114 −0.335
x3 ≥ 0.25 0.25 1.00 0.135 −0.197 −0.312

Anchors give
Anchors: x2 > 0.52 and x1 ≤ 0.75
Precision: 0.43
Coverage: 0.38 .

The anchors try to minimize the number of attributes within the explanations, but sometimes
this turns out poorly. In this case, the conditions on x1 and x2 are necessary but not sufficient.
However, working on the parameters could yield more accurate results.

Slight violation on one attribute. In the example above, applying a small variation on
an attribute changes the result. Let us consider:

ξ = (0.51, 0.6, 0.25)>

The decision-making system classifies ξ as FALSE for a slight violation of the rule on the
first attribute. In Table 6.3 we see that SMACE highlights the slight violation of the rule
on x1.

Anchors give
Anchors: x3 ≤ 0.25
Precision: 1
Coverage: 0.25 .

Violation on two attributes. Let us now analyze the case where the conditions on two
variables are violated. This means that in order to bring the result into true it is necessary
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Table 6.3. Evaluation in the case of three conditions on three input features, with example
that slightly violates the rule on the first attribute.

variable boundary example SMACE SHAP LIME LIME-1
x1 ≤ 0.50 0.51 −0.99 −0.290 −0.214 0.357
x2 ≥ 0.60 0.60 1.00 0.115 0.124 −0.338
x3 ≥ 0.25 0.25 1.00 0.035 −0.215 −0.349

to move two variables simultaneously.

ξ = (0.6, 0.1, 0.8)>

From Table 6.4, the behaviour of SHAP is particularly interesting. No change on x1 or x2
alone can change the outcome and therefore the two variables have equal importance for it.

Table 6.4. Evaluation in the case of three conditions on three input features, with
example that violates two conditions.

variable boundary example SMACE SHAP LIME LIME-1
x1 ≤ 0.5 0.6 −0.90 −0.078 −0.193 0.053
x2 ≥ 0.6 0.1 −0.50 −0.078 −0.201 −0.110
x3 ≥ 0.25 0.8 0.45 0.017 0.059 −0.003

Anchors give
Anchors: x2 ≤ 0.52
Precision: 1
Coverage: 0.5 .

Violation on each attribute. The above case also applies with the example:

ξ = (0.65, 0.59, 0.14)>

The comparison is shown in Table 6.5. SHAP distributes the importance evenly over the
three variables. SMACE captures information on the sensitivity of each value.

Anchors give
Anchors: x3 ≤ 0.25
Precision: 1
Coverage: 0.25 .

6.2 Simple hybrid system
To evaluate the complete method, we now add two simple linear models f (1) and f (2), con-
sidering the example ξ = (0.6, 0.48, 0.1)>.
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Table 6.5. Evaluation in the case of three conditions on three input features, with example
that slightly violates each condition.

variable boundary example SMACE SHAP LIME LIME-1
x1 ≤ 0.50 0.65 −0.85 −0.047 −0.193 0.219
x2 ≥ 0.60 0.59 −0.99 −0.047 0.120 −0.150
x3 ≥ 0.25 0.14 −0.89 −0.047 −0.197 −0.178

Case 1: The functions are defined as{
f (1)(x) = −3x1 + 1x2 + 2x3 ,

f (2)(x) = +700x1 − 500x2 + 1000x3 .

decision

decision rules

f (1) f (2)

x1x1x1 x2x2x2 x3x3x3

Figure 6.1. Decision-making system structure for Case 1.

Note that the coefficients of the three variables are non-zero for both functions. We now
apply a simple rule to all variables, both input features and model outputs:

if x1 ≤ 0.5 and
x2 ≥ 0.6 and
x3 ≥ 0.25 and
f (1)(x) ≥ 1 and
f (2)(x) ≤ 600
then TRUE
else FALSE .

Considering the example ξ, we obtain f (1)(ξ) = −1.12 and f (2)(ξ) = 280. Not all condi-
tions are met and we want to know the contributions of the three input features, also taking
into account their impact on the f (1) and f (2). Following Section 5.2, let us start by applying
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SHAP to explain the models. Recall that SHAP approximates Eq. (2.7). The expected values
for model f (1) are 

φ
(1)
1 = −3 · (0.6− 0.5) = −0.3 ,
φ

(1)
2 = 1 · (0.48− 0.5) = −0.02 ,
φ

(1)
3 = 2 · (0.1− 0.5) = −0.8 .

For model f (2) we get 
φ

(2)
1 = 700 · (0.6− 0.5) = 70 ,
φ

(2)
2 = −500 · (0.48− 0.5) = 100 ,
φ

(2)
3 = 1000 · (0.1− 0.5) = −400 .

The values obtained by applying KernelSHAP and scaling by empirical standard devia-
tions σ1 ≈ 1.1065 and σ2 ≈ 382.9165 are shown in Table 6.6.

Table 6.6. KernelSHAP values for Case 1 and Case 2.

variable φ(1) φ(2)

x1 −0.207 0.134
x2 −0.058 0.081
x3 −0.748 −1.040

Secondly, we get the contribution of each variable involved in the rule as discussed in
Section 5.4. The results obtained are in Table 6.7.

Table 6.7. Contribution of each variable for the rule in Case 1.

variable boundary example contribution
x1 ≤ 0.50 0.60 −0.900
x2 ≥ 0.60 0.48 −0.880
x3 ≥ 0.25 0.1 −0.850

f (1)(x) ≥ 1 −0.88 −0.595
f (2)(x) ≤ 600 280 0.840

However, we want to attribute these contributions to the input variables, since we generally
do not know the models involved in the decision-making system. We therefore apply the
aggregation formula according to Eq. (5.4). Comparison with SHAP and LIME in Table 6.8

Anchors give
Anchors: x3 ≤ 0.25
Precision: 1
Coverage: 0.24 .
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Table 6.8. Overall contribution of input features for Case 1.

variable example SMACE SHAP LIME LIME-1
x1 0.60 −0.664 −0.027 −0.046 0.060
x2 0.48 −0.778 −0.027 0.037 −0.042
x3 0.01 −1.278 −0.027 0.026 −0.050

Case 2. Now consider the same example ξ as above and the same two models f (1) and f (2),
but change the rule to

if x2 ≥ 0.6 and
x3 ≥ 0.25 and
f (1)(x) ≥ 1 and
f (2)(x) ≤ 600
then TRUE
else FALSE .

decision rules

decision rules

f (1) f (2)

x1x1 x2x2x2 x3x3x3

Figure 6.2. Decision-making system structure for Case 2.

i.e., we remove the rule on the first attribute.
The models and the example do not change: the KernelSHAP values are exactly the same

as in the Table 6.6. The contributions of the variables to the rule are listed in Table 6.9,
which is the same as the previous table except for x1 that has zero contribution as it is not
directly involved in the rule. Finally, we report the overall contribution of input features in
Table 6.10 and we see that the contribution of x1 is the average of its importance to the
models weighted by the models contributions to the decision, i.e.

e1 = r
(1)
1 + r

(2)
1 φ̂

(1)
1 + r

(2)
2 φ̂

(2)
1 = 0 + (−0.595) · (−0.207) + 0.84 · 0.134 ≈ 0.236 .
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Table 6.9. Contribution of each variable for the rule in Case 2.

variable boundary example contribution
x1 / 0.600 0.000
x2 ≥ 0.6 0.48 −0.880
x3 ≥ 0.25 0.1 −0.850

f (1)(x) ≥ 1 −0.88 −0.595
f (2)(x) ≤ 600 280 0.840

Table 6.10. Overall contribution of input features for Case 2.

variable example SMACE SHAP LIME LIME-1
x1 0.60 0.236 −0.027 −0.089 0.059
x2 0.48 −0.778 −0.027 −0.086 −0.042
x3 0.01 −1.278 −0.027 −0.086 −0.049

Anchors give
Anchors: x3 ≤ 0.25
Precision: 1
Coverage: 0.24 .

Case 3. Lastly, we reuse the rule from Case 1 and change the models:{
f (1)(x) = 1x2 + 2x3 ,

f (2)(x) = −500x2 + 1000x3 .

decision

decision rules

f (1) f (2)

x1 x2x2x2 x3x3x3

Figure 6.3. Decision-making system structure for Case 3.
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Note that models do not use x1. KernelSHAP values are in Table 6.11: φ̂(1)
1 = φ̂

(2)
1 = 0.

Variables contribution are exactly as in Table 6.7, while the final aggregation is in Table 6.12.
In the latter we see that the final contribution of variable x1 is exactly the same as that
obtained for the rule. The variable x1 was in fact not involved in the models.

Table 6.11. KernelSHAP values for Case 3.

variable φ(1) φ(2)

x1 0.000 0.000
x2 −0.097 0.095
x3 −1.257 −1.228

Table 6.12. Overall contribution of input features for Case 3.

variable example SMACE SHAP LIME LIME-1
x1 0.60 −0.900 −0.047 −0.179 0.129
x2 0.48 −0.746 −0.047 −0.173 −0.137
x3 0.10 −0.341 −0.047 −0.175 −0.152

Anchors give
Anchors: x3 ≤ 0.25
Precision: 1
Coverage: 0.24 .

6.3 Real-world use case
Now we apply SMACE to the more realistic, though simple, retention offer use case of Ex-
ample 5.1.1. We maintain the structure of Figure 5.1, where the two data sources Customer
data and Subscription data are shown in Table 6.13 and Table 6.14, respectively.

In this section we use the realistic churn dataset DSX Local Telco Churn demo used by
IBM in demo products.1 It contains information about the customers of a telephone company.
Categorical features are present in the dataset. Recalling what was expressed in Section 5.2.1,
we cannot address the case where categorical variables are directly present in the decision
policy, but they do not pose a problem when used as input to machine learning models.
The goal is to analyze customer behavior and apply a retention policy, based on predicting
churn risk and lifetime value. As described in the Example 5.1.1, from the available dataset,
we train an XGBoost Classifier to predict churn risk (cr) and an XGBoost Regressor to
predict lifetime value (ltv). Note that as cr we use the churn risk likelihood obtained via

1DSX Local Telco Churn demo. https://github.com/IBMDataScience/DSX-DemoCenter/tree/
master/DSX-Local-Telco-Churn-master
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Table 6.13. Personal customer features for Retention offer use case.

feature type
ID categorical
Gender boolean
Status categorical
Children boolean
Est. Income numerical
Car Owner numerical
Age numerical

Table 6.14. Subscription features for Retention offer use case.

feature type
LongDistance numerical
International numerical
Local numerical
Dropped boolean
Paymethod categorical
LocalBilltype categorical
LongDistanceBilltype categorical
Usage numerical
RatePlan categorical

the predict_proba function of XGBoost. This is a value is a value in [0,1] and since default
threshold is set to 0.5, the condition cr ≥ 0.5 (respectively, cr < 0.5) equals churn == 1
(respectively, churn == 0).

We apply a simple rule to easily visualize the results:

if age ≤ 50 and
ltv ≥ 500 and
cr ≥ 0.5 and
usage ≥ 200 and
local > 200
then make offer .

Let us consider as example customer ξ, whose input values are shown in Table 6.15.
Models predict cr(ξ) = 0.35 and ltv(ξ) = 908.71. The decision is not to make a retention
offer to the client: conditions on churn risk, usage and local are not satisfied.

The (normalized) SHAP values for cr and ltv are shown in Table 6.16 and Table 6.17.
We note that the input feature rankings for the two models are very different from each other.
Indeed, the attribute age is the most important for the prediction of lifetime value, while
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6.3 – Real-world use case

Table 6.15. Input values of customer ξ for Retention offer use case.

feature value
Gender M
Status M
Children 2
Est. Income 29616
Car Owner N
Age 49.43
LongDistance 29.78
Intenational 0
Local 45.5
Dropped 0
Paymethod CH
LocalBilltype FreeLocal
LongDistanceBilltype Standard
Usage 75.29
RatePlan 2

Table 6.16. SHAP values for churn risk model and customer ξ in Retention offer use case.

feature φ(cr)

Status −0.42
Children −0.40
LongDistance 0.21
Paymethod 0.14
LocalBilltype 0.08
LongDistanceBilltype 0.07
RatePlan −0.06
Gender 0.05
Est. Income 0.05
Usage −0.05
Car Owner 0.04
International −0.03
Dropped 0.02
Local 0.02
Age 0.02

it is the least important for the churn risk model. Rule contribution are in Table 6.18.
Obviously, only the variables directly involved in the rule make a direct contribution (positive
or negative). For all others, the first-level contribution is zero. Regarding the rule, age is
the most important value, and is in fact the most sensitive one: the customer’s age is 49.43
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Table 6.17. SHAP values for lifetime value model and customer ξ in Retention offer use case.

feature φ(ltv)

Age −0.16
LongDistance 0.10
International −0.05
Usage 0.04
Paymethod −0.04
Status −0.04
Est. Income 0.03
LocalBilltype 0.02
Dropped −0.02
Gender 0.01
Local 0.01
Car Owner −0.01
LongDistanceBilltype 0.01
Children 0.01
RatePlan 0.00

Table 6.18. Rule contribution for customer ξ in Retention offer use case.

feature contribution
Age 0.99
cr −0.84
ltv 0.78
Usage −0.66
Local −0.53

and on this attribute the rule is ≤ 50. Both churn risk and lifetime value have a very
strong impact, the former negatively, the latter positively. The overall contribution reported
in Table 6.19 highlights age as the most relevant input feature, with a positive impact.
The three input features directly involved in the decision rule turn out to be the three most
important variables overall in this case. This is because policy decision-making involves few
attributes, and they all turn out to be very important for the specific customer at hand. In
contrast, the two models take more features as input and the contribution to the model is
more homogeneously shared among them, especially for the lifetime value model.

The experiments reported in Section 6.1 and Section 6.2 confirm that the main inter-
pretability methods are not suitable for the specific framework of our interest. The decision
rules add non-linearities that cause LIME and SHAP to fail. In particular, we have seen that
in several cases these provide flat explanations, without distinguishing between different fea-
tures, even when their sensitivities with respect to the decision boundary are very different.
As mentioned above, for LIME this behavior is known and has been analyzed by Garreau
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6.3 – Real-world use case

Table 6.19. Overall Contribution of input features for customer ξ in Telco use-case.

feature contribution
Age 0.85
Usage −0.58
Local −0.55
Children 0.34
Status 0.32
Paymethod −0.16
LongDistance −0.10
RatePlan 0.06
LongDistanceBilltype −0.05
LocalBilltype −0.05
Dropped −0.04
Car Owner −0.04
Gender −0.04
Est. Income −0.01
International −0.01

and von Luxburg [2020]. Regarding the application of Anchors to this framework, we note
that in the case where a rule is not satisfied it manages to identify with sufficient accuracy
a condition, thus giving meaningful results. However it does not give any information about
the contribution of other features. In the case in which the rule is satisfied, instead, we
believe that Anchors is not very reliable: when the parameters change the boundaries vary
significantly and in any case it is not always able to reach the required precision. On the other
hand, SMACE provides a measure of feature importance aligned with operational interests,
pursuing the goal of ranking variables according to contribution.
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Chapter 7

Conclusion

7.1 Discussion
In this thesis, we focused on methods for the interpretability of business decision-making
systems. Traditionally, expert systems based solely on decision rules in the form

if <premise> then <consequence>

have been used in these contexts. Since the late 1990s, Machine Learning is increasingly
being leveraged in business processes to make automated decisions. Indeed, despite the
advancement of machine learning models, it is still useful and often necessary to manage them
with decision rules, instead of entrusting the entire decision to a specific model. Decision rules
are crucial for expressing policies that can change over time. Using machine learning alone
could result in retraining the model every time the policy is updated.

Considering that automated decision-making systems are used every day in virtually ev-
ery industry, from medicine to finance, from sports to business, understanding why a certain
decision was made has become crucial. We mentioned in Section 1.2 that as a result of
public concern, many institutions are working on regulating artificial intelligence, having
interpretability as one of the central points. Although very popular in business process au-
tomation, this framework is understudied in the Explainable AI literature. As far as we
know, there is no method available to address our setting. We performed an exhaustive lit-
erature review on interpretability methods (Chapter 2) for machine learning and on business
rule management systems (Chapter 3). As shown in Section 2.8, interpretability methods
for machine learning still present many problems and thus we are not always able to ap-
propriately explain a prediction. We also discussed in Section 1.5 that in addition to this,
decision rules bring additional difficulties, for instance, by causing non-linearities that cause
problems for attribution-based interpretability methods like LIME [Ribeiro et al., 2016] and
SHAP [Lundberg and Lee, 2017]. As a result, applying current methods to business decision
systems produce unreliable and brittle explanations: we provided examples in Chapter 6. We
exploited knowledge about the structure of such decional systems: the variables involved in
policy decision-making and the conditions applied to them. We believe it is worth to exploit
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this information instead of treating the whole system as a black-box and being completely
model-agnostic.

In Chapter 5 we presented SMACE - Semi-Model-Agnostic Contextual Explainer, a new
interpretability method that combines a geometric approach inspired by Alvarez [2004] (for
business rules) with existing interpretability solutions (for machine learning models) to gen-
erate feature importance based explanations. SMACE provides two levels of explanation, for
the different users involved in the decision-making process. The first, useful for the business
user, provides a ranking of importance for all the variables used, whether they are input
attributes or values calculated in-house. This is useful, for example, to the sales represen-
tative, who has access to and knowledge of company policies. By interpreting the process,
the business user can explain, modify, override or validate the specific decision. The sec-
ond level is necessary for the end customer. He or she does not have access to the internal
policy rules, nor to the way in which decision-making processes are managed. The Eval-
uation reported in Chapter 6 shows that while LIME, SHAP and Anchors produce poor
results when applied to such a decision system, SMACE provides intuitive feature ranking,
tailored to business needs. SMACE has been implemented in a Python package available in
https://github.com/gianluigilopardo/smace, where all the experiments reported in the
Evaluation are present and reproducible.

7.2 Future work

7.2.1 Including categorical variables
We recognize as a major limitation of SMACE that it cannot deal with categorical variables
within decision rules. A categorical variable takes on discrete values within a set of categories,
which are not comparable to each other in terms of distance and are often not sortable. In
future work we may get rid of the A1 assumption (see Section 5.2.1). In fact, there are
solutions in the literature to be able to treat categorical variables as numerical. A popular
solution is one-hot encoding, that consists in adding a new binary variabile (that is, a new
column) for each category. This is a very straightforward, but problematic technique: it easily
leads to an unsustainable number of new variables. A particularly interesting approach to
this problem is included in CatBoost (Categorical Boosting) [Prokhorenkova et al., 2018], a
gradient boosting toolkit. The idea is to group categories by target statistics, so that any
categorical value xik of categorical variable i for instance k can be replace by a numerical
value x̂ik. The commonly used target statistic is the expected target value y in each category:
x̂ik = E[y|xi = xik]. In this way we overcome all the problems arising from categorical variables
and in fact using target statistics seems to be the most efficient way to treat categories with
minimum information lost.

7.2.2 Investigating the link between Anchors and LIME
In Chapter 2 we discussed LIME [Ribeiro et al., 2016] and Anchors [Ribeiro et al., 2018].
Conceptually, there is a relationship between these two methods: the former approximates any
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7.2 – Future work

complex model with a linear one, while the latter does so with a rule composed of conditions
on attributes. But how are the explanations provided by the two methods related? Using the
original implementations1 with the default parameters, the features that are most important
to LIME are not always those extracted from the Anchors. However, we believe these can be
derived using a sparsity inducing penalty: we want to find a regularization function to apply
to LIME that ties the two methods together.

7.2.3 Extending LIME for hybrid decision-making systems
We showed in the Evaluation that LIME standard with p = 4 boxes is particularly unsuitable
for interpreting decisions made by systems using rules. As mentioned above, this is largely
due to the nonlinearities added by the rules. In addition, the relative position of the rule-
defined areas to the boxes identified by LIME affects the explanations. This behavior is easy
understandable by Figure 10 in Garreau and von Luxburg [2020]. By default LIME identifies
boxes with quantiles. In our case, for all variables directly involved in decision making, we
already know a partition of the space that can be used to define boxes. By doing so, within
each box, the problematic rule-induced linearity is no longer present: the decision boundaries
correspond to LIME boxes. We believe that modifying the binning step in this way can make
LIME extensible to our framework.

1LIME: https://github.com/marcotcr/lime, Anchors: https://github.com/marcotcr/anchor.
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