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Summary

Over the years, interest in studying the evolution of social dynamics over graphs has
greatly increased: different models and types of dynamics have been proposed to analyze
how the nodes of a graph interact. These nodes can be conceivable as human individ-
uals interacting, animals, cells or any other element whose behavior can be understood
if placed inside a network and analysed through some sort of dynamics on this network.
This thesis aims at reviewing many of the models proposed to describe opinion forma-
tion under some social influence, hence analysing a recent model of social influence in
which the real opinions are concealed to the other nodes of the network and only seen
through a filter, a quantizer. Indeed, in many situations, individuals may not be able
to fully show their opinion which can only be assessed through their displayed behaviors
(social networks posts, people followed, tweets, etc.). The difficulty in this last dynamics
arises as the dynamics involves a discontinuous vector field coming from the quantization
of the individual opinions. First of all, the problem of how to generalize solutions for
these discontinuous dynamics will be addressed, then some properties of the solutions will
be analyzed with the aim of analytically extending current results to different graphs.
Simulating these dynamics has got a great part in the analysis: numerical simulations
may lead to some results and may for instance suggest convergence properties but they
might also fail in capturing all the possible solutions. In our case numerical methods have
shown solutions compatible with the theory which had not been found analytically. These
solutions show periodic patterns and may not converge to consensus and in general may
not converge at all. Generalised solutions which have been considered are Carathéodory
and Krasovskii, the latter requiring some theory about differential inclusions, has been
briefly retrieved in the dissertation. The study about the dynamics follows a microscopic
approach, whether it must be stated that another approach to social dynamics is often
considered: the macroscopic one, in which the study doesn’t focus on the single individ-
ual’s opinion evolution. In the macroscopic setting, the evolution of some statistic upon
the entire network (the total mean of vote preference for instance) is studied and not the
single individual votes.
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The essence of mathematics
lies in its freedom.
[G. Cantor]



Introduction

This master thesis develops over four chapters: the first chapter of preliminaries, the
second chapter of review of classical dynamics over networks, the third chapter, on which
this work focuses, with a complete description of a particular quantized dynamics and
the analysis of some properties of the dynamics, and the last chapter, with the aim of
giving the reader some convergence properties and present some directions towards which
pointing the future research. The first chapter aims at establishing the notation that
will be used over this work and at reviewing some fundamentals related to graph theories
and some important theorems that shall be used during the dissertation. The aim of
the first chapter is therefore that of giving the tools for a good comprehension of the
dissertation. The second chapter has been written to gain a complete overview of which
models have been proposed to describe social interactions and the phenomenon of people’s
opinions evolution. Despite some models being not quite recent, the second chapter is
fundamental to gain an insight to what are the differences between the classical models
and the quantized model which will be presented later. This second chapter gives some
classical model for people interactions and some extensions in order to generalize those
models. Properties will be discussed and some results will be presented, with the help of
numerical simulations to observe the trajectories for these models applied through simple
examples. The third chapter provides a complete description of this more recent dynamics
often referred to as "quantized dynamics", as people’s opinions are observed through a map
q from real to integer numbers. In this chapter, the dynamics will be introduced, discussed
and the main differences with respect to the classical ones presented in chapter two will be
discussed. Then a numerical part will be briefly discussed to understand how MATLAB
has been used in the drafting of the thesis. A brief discussion over generalised solutions
will be carried out as in this new dynamics classical solutions cannot exists in the majority
of the cases. Some results on particular graphs will be eventually discussed and we will
present some solutions which had not been found analytically. In the last chapter some
convergence results, mainly found in [3], will be discussed, with a quick overview of what
directions could be explored in some successive work and some questions which are still
unanswered in the literature of the field.
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Chapter 1

Preliminaries

This chapter reviews some preliminaries about graph theory to pave the way towards a full
understanding of the definitions and properties used in the following parts of the paper.
This chapter has also the aim of making the reader familiar with the notation that will
be used later in the dissertation.

1.1 Graphs
We start from the definition of a graph, to later recall the definition of adjacency matrix
and laplacian of a graph. The definitions and the main preliminaries to be covered are
essentially taken from [2]. A graph is essentially a set of nodes called vertices which are
connected with edges. These may be oriented (directed graph) or not (undirected graph).
More formally:

Definition 1.1.1 (Graph). A graph is a pair G = (V, E), with V = (v1, v2, . . . , vn) and
E ⊆ V × V .

Observation 1. To reduce the notation, in the following, the n vertices of a graph will
always be denoted by only the indexes 1,2, . . . , n.

This abstract definition allows this instrument to be a powerful tool in different models.
The set of nodes can indeed represent individuals, factories, warehouses, cities, etc. while
edges can model interactions, traffic routes, influence, road fees, etc. Our interpretation is
that of nodes as individual social agents interacting with other agents. The edges represent
this interaction. It should be observed that in the following we will be considering finite
graphs, therefore the sets V and E are finite. To define a graph just an adjacency matrix
is necessary. This contains all the information to define the graph. In concrete:

Definition 1.1.2 (Adjacency Matrix). Given the graph G = (V, E), a matrix A =
(aij)i,j∈V with nonnegative entries (aij ≥ 0) is called weighted adjacency matrix for G if

aij

I
> 0 if (i, j) ∈ E

= 0 if (i, j) /∈ E
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Preliminaries

In this way, to any graph G can be associated a representation given by the adjacency ma-
trix A. The following examples show some graphs which will be considered in the analysis
of the discontinuous dynamics and will also be used in the numerical simulations. Given
the adjacency matrix, it is natural to draw a diagram of the nodes and the connecting
edges. An edge is drawn starting at node j and ending at node i if aij > 0, i.e. (i, j) ∈ E.

We do need graphs because they are a powerful instruments to keep track of the inter-
actions between social individuals, animals, robotic sensors and so on. In our dissertation
we shall think of nodes as individuals whose interactions are marked by the connecting
edges.

When the edge starting at node j and ending at node i is drawn, an interaction
between two individuals is modelled and the strength of the interaction is measured by
the aij coefficient. It means that node j influences node i, or, alternatively, that i receives
information about the opinion of node j. For a better visualization we’ll use a binary
adjacency matrix with:

aij =
I

= 1 if (i, j) ∈ E

= 0 if (i, j) /∈ E.

Observation 2. In literature sometimes the matrix A with entries 1 or 0 is referred to
adjacency matrix while the more general one with aij ≥ 0 is known as weighted adjacency
matrix

Observation 3. We highlight that if aij > 0 we’ll draw an edge from j to i, meaning that
j has influence over node i.

Example 1.1.1 (Complete Graph). If the matrix is

A =



0 1 1 . . . 1
1 0 1 . . . 1
... 1 . . .
...

... . . .
1 1 . . . 0

 (1.1)

then we have aij > 0 for i /= j. In this graph all nodes are therefore connected to all
others without self-connections (selfloops). A graph associated with this adjacency matrix
is called complete. In this network every individual observes the behaviors of any other
individual.
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1.1 – Graphs

(a) (b) (c)

Figure 1.1: Complete graphs with respectively 3,5,10 nodes

Example 1.1.2 (Path Graph). If the matrix is in the form

A =



0 1 0 . . . 0
1 0 1 . . . 0
0 1 . . . 1 0
... . . . 1 0 1
0 . . . . . . 1 0

 (1.2)

then the graph is called path. In this kind of interaction any individual observes the
behaviors only of two people (i.e. his two best friends, two people taken as model), except
for the first and the last, which are only influenced by one person.

(a) (b) (c)

Figure 1.2: Path graphs with respectively 3,5,10 nodes.
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Preliminaries

Example 1.1.3 (Cycle Graph). If the matrix is in the form

A =



0 1 0 . . . 1
1 0 1 . . . 0
0 1 . . . 1 0
... . . . 1 0 1
1 . . . . . . 1 0

 (1.3)

then the graph is called cycle. This interaction is similar to that considered in (1.1.2)
with a direct interaction between the last node and the first node. For this graph, each
node "sees" the behaviors of two other individuals.

(a) (b) (c)

Figure 1.3: Cycle graphs with respectively 3,5,10 nodes

Without explicitly stating it, in the previous examples we have only seen undirected
graphs, i.e. a graphs where all edges where bidirectional. For an undirected graph:

(i, j) ∈ E ⇐⇒ (j, i) ∈ E.

In the following also directed graphs will be considered, i.e. graphs with also monodi-
rectional edges, for example. To gain intuition with directed graphs we present the path
graph of 1.1.2 in its directed counterpart.

Example 1.1.4 (Directed Path). If the matrix is in the form

A =



0 1 0 . . . 0
0 0 1 . . . 0
... 0 . . . 1 0
... . . . 0 0 1
0 . . . . . . . . . 0

 (1.4)
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1.1 – Graphs

(a) (b) (c)

Figure 1.4: Directed paths with respectively 3,5,10 nodes

then the graph is called a directed path. It is easily noticeable than one can build
an incredible number of examples of graphs while here we have presented only three of
the most well-known in the sector literature.

1.1.1 Degree Matrix and Laplacian of a graph
We are now recalling two matrices which are connected to a great part of dynamics

over graphs: the degree matrix and the laplacian matrix. The first one contains in its
diagonal elements dii the degree of a certain node, that is the number of edges having i
as extremity.

Definition 1.1.3 (Degree Matrix). A diagonal matrix D = dij is called degree matrix
of a graph G if:

dij =
Iq

j /=i aij if i = j

0 if i /= j.

For a directed graph either the in-degree or the out-degree matrices can be considered.

OUT-DEGREE dij =


q
j /=i aij if i = j

0 if i /= j.
IN-DEGREE dij =


q
i /=j aij if i = j

0 if i /= j.

Definition 1.1.4 (Laplacian Matrix). For a weighted graph G = (V, E, A), its Lapla-
cian matrix is defined by:

L[A] = D − A

where D is the degree matrix and A is the adjacency matrix. For brevity we’ll denote
this matrix with L when it will be evident from the context that the laplacian is referred
to matrix A.

In particular, the components of Lij are:

lij =
I

−aij , i /= jq
j /=i aij , i = j
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Preliminaries

After recalling the definition of path,cycle and walk in a graph, we also give the defi-
nition of strong graph, which will be useful in the next chapter.

Definition 1.1.5 (Walk). A walk of length k connecting node i to node iÍ is a sequence
of nodes i0, . . . , ik ∈ V , where i0 = i and ik = iÍ and adjacent nodes are connected by
arcs: (im−1, im) ∈ E for any m = 1, . . . , k.

Definition 1.1.6 (Cycle). A walk from a node i = i0 to itself (iÍ = i0) is called a cycle.

Definition 1.1.7 (Path). A walk without self-intersections (im /= il, form /= l) is a path.

Definition 1.1.8 (Periodic Graph). A graph is periodic if it has at least one cycle and
the length of any cycle is divided by some integer h > 1. The maximal h which divides
the length of any cycle is called the period of the graph.

Definition 1.1.9 (Strong Graph). A graph is called strongly connected or strong if a
walk between any two nodes exists.

Without explicitly stating it, in the previous examples we have only considered undi-
rected graphs, i.e. graphs where all edges were bidirectional. For an undirected graph:

(i, j) ∈ E ⇐⇒ (j, i) ∈ E.

In the dissertation also directed graphs will be considered, i.e. graphs with monodi-
rectional edges, for instance.

To introduce these kind of graphs let us start with an example.

Example 1.1.5 (Directed Path). If the matrix is in the form

A =



0 1 0 . . . 0
0 0 1 . . . 0
... 0 . . . 1 0
... . . . 0 0 1
0 . . . . . . . . . 0

 (1.5)

then the graph is called a directed path. It is easily noticeable than one can build
an incredible number of examples of graphs while here we have presented only some of
the most well-known in the sector literature.

1.1.2 Degree Matrix and Laplacian of a graph
We are now recalling two matrices which are connected to a great part of dynamics

over graphs: the degree matrix and the laplacian matrix. The first one contains in its
diagonal elements dii the degree of a certain node, that is the number of edges having i
as extremity.
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1.2 – Properties and Theorems

Definition 1.1.10 (Degree Matrix). A diagonal matrix D = dij is called degree matrix
of a graph G if:

dij =
Iq

j /=i aij if i = j

0 if i /= j.

For a directed graph either the in-degree or the out-degree matrices can be considered.

OUT-DEGREE dij =


q
j /=i aij if i = j

0 if i /= j.
IN-DEGREE dij =


q
i /=j aij if i = j

0 if i /= j.

Definition 1.1.11 (Laplacian Matrix). For a weighted graph G = (V, E, A), its Lapla-
cian matrix is defined by:

L[A] = D − A

where D is the degree matrix and A is the adjacency matrix.
In particular, the components of Lij are:

lij =
I

−aij , i /= jq
j /=i aij , i = j

1.2 Properties and Theorems
Here we analyze some useful definitions and theorems which will help us through the

analysis of convergence of some simple continuous time dynamics, such as Abelson’s. The
exposition follows the approach of [2].

Definition 1.2.1 (M-Matrix). A square matrix Z is an M-matrix if it admits a decom-
position Z = sI A, with s ≥ ρ(A) and where the matrix A is nonnegative.

For example, if A is a stochastic matrix (matrix with non negative entries and either
rows or columns summing up to one), then ρ(A) = 1 and any matrix Z = sI − A, with
s ≥ 1 is an M − matrix.

As it is often done, we give a characterization of Mmatrices on the base of the following
lemma.

Lemma 1.2.1 (Characterization of an M-matrix). If a matrix Z = (zij) satisfies the
following two conditions:

1. zij ≤ 0 when i /= j;

2. zii ≥
q
j /=i |zij | ,

then, Z is an M-matrix; more precisely, A = sI − Z is nonnegative and ρ(A) ≤ s
whenever s ≥ maxizii.
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Preliminaries

Proof. If s ≥ maxizii then, by the first requirement A = sI − Z is nonnegative and

ρ(A) ≤ max
i

s − zii +
Ø
j /=i

|zij |

 ≤ s

thanks to Gershgorin Disc Theorem.

By noticing that the eigenvalues of Z and A are in the following one-to-one correspon-
dence λ → s − λ it is possible to state the following:

Corollary 1.2.1 (Eigenvalues of an M-matrix). Any M-matrix Z = sI − A has a
real eigenvalue λ = s − ρ(A) ≥ 0, whose algebraic and geometric multiplicities coincide.
For this eigenvalue there exist nonnegative right and left eigenvectors v and p:

Zv = λ0v

and
pÛZ = λ0pÛ.

These vectors are positive if the graph G[−Z] is strongly connected. For any other eigen-
value λ one has Reλ > λ0, hence Z is non-singular if and only if s > ρ(A).

We have seen the definition of Laplacian matrix of a graph (1.1.11). This is an M-
matrix due to (1.2.1): indeed its non-diagonal entries are all negative and lii =

q
j /=i aij =q

j /=i |lij | =
q
j /=i |aij |.

We observe that λ0 = 0 is always an eigenvalue of L, in fact

L✶n = (D − A)✶n = 0.

Furthermore we give three equivalent conditions which will be useful in the study of some
continuous-time dynamics.

Lemma 1.2.2 (Equivalent Conditions for the Laplacian Matrix).

1. λ0 = 0 is an algebraically simple eigenvalue of the matrix L,

2. if Lv = 0, v ∈ Rn then v = c✶n for some c ∈ R, i.e. 0 has geometric multiplicity 1.

3. The graph G[A] is quasi-strongly connected.

This previous lemma, which we state without proof, will be used in the following
chapter.
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Chapter 2

Opinion Dynamics over a
graph: review of the classical
models

In this chapter we analyse some classic dynamics which have been already studied and
are well characterized. This will be useful to understand the limitations of these but also
the difficulties in passing to the quantized dynamics that will be presented in the next
chapter. Here, in the first section, we’ll briefly mention the French-De Groot discrete
dynamical model for opinions to get an intuition of how the model is created and how
it changes from the discrete to the continuous case. In the second section the Abelson
model, a continuous counterpart of the French-De Groot model, will be considered and
examined in detail.

2.1 Discrete Dynamic over a graph: the French-DeGroot
opinion pooling dynamics

In this section we briefly introduce a discrete-time dynamics that will help us for the
intuition and understanding of the continuous-time version.

French-De Groot Opinion Pooling 1

Everyone agrees that the French-DeGroot model has been a pioneeristic representation of
social interactions in a mathematical language. It was proposed by the social psychologist
French in [7], in which he tried to bind social network analysis and system theory. The
model, generalised by DeGroot [6] allows for reaching consensus under quite mild hy-
potheses. The goal of French was actually to model the social power rather than finding

1The analysis follows that of [2]
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Opinion Dynamics over a graph: review of the classical models

an hyper-realistic model of how opinions evolve over a group of individuals. The social
power of an individual or a node (if we think to the World Wide Web for instance) is a
measure of the influence of the node over the net. This model has connected the two side
of the coin: opinion formation and influence measures.

The Model

We consider a group of n agents, whose opinions are scalars denoted by x1, . . . , xn.
The parameters of the model are the influence weights, collected in a matrix (W )ij . The
weight wij measures how the agent i is influenced by j and the wij sum up to one along
j, i.e.

qn
j=1 = wij = 1.

Example 2.1.1. For example, we may imagine a group of 4 individuals communicating
according to the following graph:

x1 x2

x3 x4

2

4
4 2

Building a normalized matrix of influence

In the graph above, the numbers on each edge represent the reciprocal influence that
nodes have. a13 = a31 = 4 is a way of stating that the reciprocal influence of 1 and 3
and 1 and 4 are the strongest within all nodes. To normalize all the influence measures
aij , the matrix W representing the dynamics is often built as W = D−1A where A is the
adjacency matrix and D = diag(w), where wi =

q
j = wij is the (out) degree of the i-th

node.
In the example above (2.1.1) the weighted matrix W would be:

W =


0 2

10
4
10

4
102

4 0 2
4 0

1 0 0 0
4
6

2
6 0 0

 . (2.1)

2.1.1 The DeGroot Dynamics
The mechanism is quite simple: the opinion at time k +1 is given by a weighted sum of

the opinions of the "neighbours" of a node with weights wij . In matrix form the dynamics
obeys the law:

x(k + 1) = Wx(k), k = 0,1, . . . (2.2)
where we have denoted by x(k) = (x1(k), . . . , xn(k))Û the vector of opinions at time k.
Therefore, the DeGroot dynamics for the i-th individual is:

xi(k + 1) =
nØ
j=1

wijxj(k), ∀i, k = 0,1, . . . , n. (2.3)
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2.1 – Discrete Dynamic over a graph: the French-DeGroot opinion pooling dynamics

The meaning of self-influence wii

The weight wii can be seen as a measure of openness towards other opinions/behaviors.
When wii = 1 the node is referred to as stubborn node and never changes opinion during
the dynamics; from (2.3) one would get for the stubborn node i:

xi(k + 1) = wiixi(k) = xi(k)
therefore the opinion of the stubborn agent xi is constant. A node with wii = 0 is
conceivable as a node who completely relies on external opinions, a completely open-
minded person.

One might look for a definition of convergence of a dynamics, in the sense that one
might ask if the opinion of the individuals "stabilize", "converge" to a limit opinion. In
this context we’ll use the following:
Definition 2.1.1 (Convergence). The model (2.3) is said to be convergent if for any
initial condition x(0) it exists the limit:

x (∞) =̇ lim
k→∞

x (k) = lim
k→∞

W kx(0).

Definition 2.1.2 (Consensus). A convergent model is said to reach consensus if
x1(∞) = x2(∞) = · · · = xn(∞).

It is possible to prove that the discrete-time dynamics defined in (2.1.1) reaches con-
vergence and the convergence is a consensus configuration with x∞ ≈

!12
10 , 12

10 , 12
10 , 12

10
"
.

For this dynamics, convergence and consensus criteria are well known and we only
state the main results of convergence without proving them. We’ll see more details for
the continuous-time counterpart of this model, as it will be useful to compare it to the
quantized model.
Lemma 2.1.1 (Convergence and Consensus). The DeGroot pooling model (2.2) reaches
convergence if and only if λ = 1 is the only eigenvalue of W on the unit circle: {λ ∈ C :
|λ| = 1}. The model (2.2) reaches consensus if and only if the eigenvalue λ = 1 is simple.

The consensus criterion can also be stated as:
Lemma 2.1.2. If the graph G = G[W ] is strong, then the model (2.2) reaches consensus if
and only if the graph G is aperiodic. Otherwise the model is not convergent and opinions
oscillate for almost all x(0).

As already affirmed, we’ll give the details for the continuous time case. Here we
show two dynamics: the first over the strong graph of example (2.1.1) which reaches
convergence, and the second, built on a periodic graph, which doesn’t converge.
Example 2.1.2. For the graph of (2.1.1)

x1 x2

x3 x4

2

4
4 2
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Opinion Dynamics over a graph: review of the classical models

the dynamics x(k + 1) = Wx(k), with initial opinion vector [0,0,5,0]Û has the following
trajectories:

Figure 2.1: Trajectories for the DeGroot dynamics in example (2.1.1)

Example 2.1.3. For the following dynamics on the periodic graph of period 3

x1 x2

x3x4

1

1

1

1

Figure 2.2: Trajectories for a DeGroot dynamics over a periodic graph

20



2.2 – Continuous Models

The trajectories shown in figure 2.1 and 2.2 show continuous trajectories just for visu-
alization reasons, opinions actually change only at discrete steps.

It’s indeed easy to see that a dynamics with a W of the form of example (2.1.3) cannot
converge as W is a periodic matrix with period 4, i.e.

W 1 =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

W 2 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

W 3 =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

W 4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

W 5 =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0


Indeed W 4 is the identity matrix and the dynamics keeps oscillating. At each time instant
each individual i observes that of i + 1mod n-th individual and "copies" its opinion.

Given the idea of how each individual updates its opinion, it is now necessary to see
how a continuous model can be built.

2.2 Continuous Models

2.2.1 Abelson Model
Abelson proposed in [1] a continuous counterpart of the DeGroot model. Let’s build

this continuous time model from DeGroot’s with the following reasoning:
Just recalling that 1 − wii =

q
j /=i wij we arrive to:

xi(k+1)−xi(k) =
Ø
j /=i

wijxj(k)+wiixi(k)−xi(k) =
Ø
j /=i

wijxj(k)−(1−wii)xi(k) =
Ø
j /=i

wij(xj(k)−xi(k)).

We have arrived to:

xi(k + 1) − xi(k)ü ûú ý
∆xi(k)

=
Ø
j /=i

wij [xj(k) − xi(k)]ü ûú ý
∆(j)xi(k)

, ∀i.

Supposing that the time of this variation is small, we can justify the continuous model:

ẋi(t) =
Ø
j /=i

aij (xj(t) − xi(t)) , i = 1, . . . , n (2.4)

Here A = (Ai,j) describes the influence weight related to the link which connects j to i
and again is interpretable as the measure of change dxi(t) = ẋi(t)dt corresponding to an
instantaneous distance in opinions aij(xj(t) − xi(t), hence how the node j’s opinion influ-
ences node i’s. In Abelson’s model the aij are used, therefore the stochasticity requirement
is not required.

We could also define dynamics with time-dependant weights of the form

ẋi(t) =
Ø
j /=i

aij(t) (xj(t) − xi(t)) , ∀i.
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Opinion Dynamics over a graph: review of the classical models

Which would describe systems in which the measure of influence between nodes varies
over time. This leads to non autonomous systems, which will not be analysed in this
dissertation. In general many changes are possible for dynamics of this type: we shall see
some other changes in some of the following paragraphs.

We are now interested in the analysis of (2.4) which could easily be rewritten in the
form:

ẋ(t) = −Lx(t)
in fact from (2.4)

ẋi(t) =
Ø
j /=i

aij (xj(t) − xi(t))

ẋi(t) =
Ø
j /=i

aij(xj(t)) −
Ø
j /=i

aij(xi(t))

ẋi(t) = ai,·x − dixi(t) = [(A − D)x]i

As stated by [2], this dynamics has been rediscovered in multi-agent control theory as a
continuous-time consensus algorithm.

Properties of the model

We now analyse some properties of Abelson model, such as stability, convergence and
consensus, depending on the characteristics of the graph G.

We recall the definition of Lyapunov stability and show that this property holds for
the Abelson Dynamics.

Definition 2.2.1 (Lyapunov Stability). An equilibrium x0 for a vector field f : D ⊂
Rn → Rn, is said to be Lyapunov stable if for every neighbourhood U of x0 there exists
a neighbourhood V ⊂ U such that orbits starting from points inside V , stay inside U for
all t > 0.

More formally: An equilibrium x0 is said to be Lyapunov stable if

∀ε > 0, ∃δ > 0s.t. ëx(0) − x0ë < δ ⇒ ëx(t) − x0ë < ε, ∀t > 0.

We also recall the definition of asymptotic stability below.

Definition 2.2.2 (Asymptotic Stability). An equilibrium x0 is said to be asymptoti-
cally stable if it is Lyapunov stable and

∃δ > 0 such that if ëx(0) − x0ë < δ, and lim
t→∞

ëx(t) − x0ë = 0.

In easier terms, an asymptotic stable equilibrium is an equilibrium and, if the initial
condition x(0) is in a neighborhood of the equilibrium, the the system reaches asymptot-
ically the equilibrium x0
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2.2 – Continuous Models

We talk of global Lyapunov stability and global asymptotic stability whenever δ can be
chosen arbitrarily in R. If the δ is a real number then we talk of local asymptotic stability.

Without giving a detailed dissertation of stability for dynamical systems, we recall that
for linear systems, if the matrix describing the linear dynamics is Hurwitz, then Lyapunov
stability and asymptotic stability holds.

Theorem 2.2.1 (Stability). The model (2.4) on a quasi-strongly connected graph is
Lyapunov stable.

Proof. It sufficient to observe from (1.2.1) that since λ0 = 0 has algebraic multiplicity
equal to the geometric multiplicity, all Jordan blocks associated to λ0 are trivial and
every other eigenvalue is such that Reλ > 0.

Observation 4. The model (2.4) is not asymptotically stable (as there are eigenvalues λ
such that |λ| = 0)

Corollary 2.2.1 (Convergence of Abelson Model). For any nonnegative matrix A, the
limit P ∞ = limt→∞ e−Lt exists and the vector of opinions x(t) converges to x(t) −→

t→∞
x∞ = P ∞x(0).

Proof. It is sufficient to observe that all eigenvalues of −L are nonpositive, therefore
limt→+∞ e−Lt exists and therefore it also exists x∞ = P ∞x(0).

Let us consider again the two examples (2.1.1) and (2.1.3), to complete the intuition of the
differences in the convergence properties: For the dynamics of the (2.1.1), the Abelson’s
dynamics

ẋ(t) = −Lx(t),

with same initial condition as before x(0) = [0,0,5,0]Û produces the following trajectories

Figure 2.3: Abelson Dynamics over the graph of example (2.1.1)
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Opinion Dynamics over a graph: review of the classical models

We now see that also in the case of the graph in (2.1.3), convergence is reached: as the
trajectories for the continuous-time dynamics in the figure 2.4 below show.

Figure 2.4: Trajectories for an Abelson Dynamics over the graph of example (2.1.3)

Consensus for a continuous time dynamics

The definition of consensus is analogous to that of the discrete case

Definition 2.2.3 (Consensus for a continuous dynamics). A continuous dynamics
reaches consensus if the final opinions coincide:

x∞
1 = . . . = x∞

n for any initial condition x(0).

We again give a characterization of consensus in the case of an Abelson dynamics. For
the Abelson dynamics, the condition under which convergence is reached is quite simple:
the dynamics always reaches consensus if the graph has a directed spanning tree. We shall
see that this behaviour of the dynamics fails to capture the persistence of dissensus between
individuals, while the dynamics we’ll see in the following chapter shows a persistence of
disagreement even on strong graph (those with a directed spanning tree). We state this
in the following theorem.

Theorem 2.2.2. The Abelson Model reaches consensus if and only if G[A] is quasi-
strongly connected (i.e. has a directed spanning tree). The opinions, in this case, converge
to the limit:

lim
t→∞

x1(t) = . . . = lim
t→∞

xn(t) = pÛ
∞x(0)

Proof. Reaching consensus means that the following condition must hold:

P ∞x0 = x∞ = c✶n. (2.5)
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2.2 – Continuous Models

Therefore all the columns of P ∞ are a multiple of the unitary column ✶n. In other
words, the following condition is a consequence of (2.5):

P ∞ = ✶npÛ
∞. (2.6)

Now, by using the fact that ✶n is an equilibrium we arrive to:

1✶n = P ∞
✶n = ✶npÛ

∞✶n =⇒ ✶npÛ
∞ = 1. (2.7)

Therefore:

P ∞x0 = ✶npÛ
∞x0. (2.8)

The (2.8) component-wise reads:

lim
t→∞

xi(t) = pÛ
∞x(0), ∀i ∈ 1, . . . , n.

We conclude by showing an example of a graph without the property of quasi-strongly
connection and we show that trajectories do not converge to a consensus.

Example 2.2.1. We now consider a dynamics over a graph of the form represented below.

x1

x2

x3

x4

x5

x6

1

1

1

1

1
1

We see that in this case there exists an initial condition s.t. consensus is not reached.
To explain why consensus may not be reached for all initial conditions x0 we observe
that the nodes x2 and x5 are not influenced by any other node’s opinion, therefore never
change their state xi (in fact ẋ2(t) = 0 and ẋ5(t) = 0. So for every initial condition with
x2(0) /= x5(0), the dynamics doesn’t reach consensus. Indeed taken the two nodes x2 and
x5 it doesn’t exist one node from which they are both reachable.

What is surprising is that in such dynamics it is sufficient to have a graph spanned by
a directed tree (i.e. one node which can influence, albeit indirectly, any other node) to
gain consensus. The Abelson model therefore doesn’t explain the persistence of dissensus.
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Opinion Dynamics over a graph: review of the classical models

Figure 2.5: Trajectories for Abelson Dynamics on graph of example (2.2.1)

2.3 Unreality of consensus: Generalisations of Abel-
son and Taylor’s model

Reaching a total agreement in a group of n individuals is quite unreal and in everyday
life the persistence of disagreement between individuals is often observed. Looking for
social cleavage has lead to generalisations of Abelson’s model and the introduction of new
models.

2.3.1 Taylor’s model: social cleavage and prejudices
In [8] , Taylor generalised Abelson’s model proposing the introduction of nodes with

static opinion si. They would be interpretable as communication sources, for example the
mass media.

The model (2.4) is easily generalised to

ẋi(t) =
nØ
j=1

aij (xj(t) − xi(t)) +
mØ
k=1

bik (sk − xi(t)) (2.9)

where m is the number off communication sources and bik measures how the i-th node
is influenced by the k-th source.

In this model we have the nonnegative matrix A = (aij) containing the influence
weights of arcs between individuals and the nonsquare n × m matrix B = (bik) of external
static influence, also known in literature ([8] ) as matrix of persuasibility constants. An
agent is free of external influence if bi1 = · · · = bim = 0, while agents with

qm
k=1 bik > 0

are influenced by communication sources.
To see how the evolution of the dynamics is changed let us consider again our examples

(2.1.1) and (2.1.3), with the introduction of two communication sources, i.e. the new
graphs become:
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x1 x2

x3 x4

s1 s2

2

4
4 21

1

A =


0 2 4 4
2 0 2 0
4 0 0 0
4 2 0 0

B =


1 0
0 0
0 0
0 1

 .

Figure 2.6: Taylor Dynamics over graph
of example (2.1.1)

x1 x2

x3x4

s1 s2

1

1

1

11
1

A =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

B =


1 0
0 0
0 1
0 0

 .

Figure 2.7: Taylor Dynamics over graph
of example (2.1.3)

In [8], Taylor showed the asymptotically stability of model (2.9) and characterised the
only equilibrium in terms of s1, . . . , sk.

Here we only prove the result for the existence of the equilibrium in Taylor’s model.

Theorem 2.3.1. Taylor dynamics is always convergent:

For any x(0) and s1, . . . , sk there exists x(∞) = lim
t→∞

x(t).

Proof. Taylor’s model can be considered as an Abelson model with n + k agents, where
the last k never update their opinion, therefore xn+i = si, for i = 1, . . . , k. Here, corollary
(2.2.1) can be applied and model (2.9) is always convergent.

2.3.2 Prejudiced Agents
To conclude the chapter we introduce one last generalization of Abelson dynamics. It

is similar to the introduction of communication sources, but in this kind of dynamics each
agent has got its own "prejudice", i.e. some self belief.
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Opinion Dynamics over a graph: review of the classical models

The introduction of prejudice is carried out through this model:

ẋi(t) =
nØ
j=1

aij (xj(t) − xi(t)) + γi (ui − xi(t)) ∀i ∈ {1, . . . , N}. (2.10)

This model can be obtained by (2.9) just defining:

γi ,
kØ

m=1
bim ≥ 0 and ui , γ−1

i

kØ
m=1

bimsm,

with ui = 0 if γi = 0.
In literature an agent is called prejudiced if γi > 0. The eternal inputs ui are referred

to in literature as prejudices. Of course an individual can be totally close to other people
influence, therefore having aij = 0 with dynamics:

ẋi = γi(ui − xi(t)).

It is immediate that in this case its opinion converges to its prejudice:

xi(t) −→
t→∞

ui

If its prejudice coincides with its initial opinion ui = xi(0) the agent is stubborn and never
changes its opinion (it works as a communication source).

We prove stability for Taylor model following the same argument used in [2]. This will
also help to see how proving stability results for the dynamics described in the following
chapter will require some more effort.

2.3.3 Stability in Taylor’s Model
To analyse the stability properties for system (2.9) we just consider (2.10) obtained by

the former one.
We define Γ = diag (γ1, . . . , γn) and rewrite model (2.10) as

ẋ(t) = −(L + Γ)x(t) + Γu. (2.11)

To determine the stability properties of the system we split the agents in two classes:
those with a prejudice or influenced by a prejudiced agent, called P-dependent and all
the others P-independent. By just renumbering the agents we obtain agents 1, . . . , r P-
dependent and agents r + 1, . . . , n P-independent (and it may happen r = n. Since
P-independence constitutes a partition in the opinion vector x(t), denoting with x1(t) and
x2(t) the P-dependent and P-independent nodes opinions we can decompose (2.10) as:

ẋ1(t) = −
1
L11 + Γ11

2
x1(t) − L12x2(t) + Γ11u1 (2.12)

ẋ2(t) = −L22x2(t). (2.13)
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where the dynamics is evidently described by −L22 for the P-independent nodes while
for a P-dependent node the dynamics is

ẋi =
Ø
j /=i

j∈P-indep

aij(x1
j (t)−xi(t))+

Ø
j /=i

j∈P-dep

aij(x2
j (t)−xi(t))+γi(ui−xi(t)) = −[L11+Γ11x1(t)]i−[L12x2(t)]i.

Observation 5. The matrix L22 is a laplacian matrix of size (n − r) × (n − r), while
matrix L11 is not in general a laplacian matrix, having L11

✶r ≥ 0.

Having decomposed the dynamics within this partition of nodes we may state and
prove the theorem below.

Theorem 2.3.2 (Convergence for a Taylor Dynamics). Let the set of individuals be
partitioned into r ≥ 1 P-dependent nodes and n − r ≥ 0 P-independent nodes. Then the
dynamics (2.12) is asymptotically stable, i.e. the matrix −(L11 + Γ11) is Hurwitz. The
limit opinion to which the P-dependent vectors coincide is

x1(∞) = M

5
u1

x2(∞)

6
, with M ,

1
L11 + Γ11

2−1 #
Γ11 L12 $ (2.14)

Proof. The proof follows from the properties of M-matrices. Indeed, using (1.2.1), we
may state that L11 + Γ11 is an M-matrix (we recall that Γ11 is diagonal). We now have
to prove that the eigenvalue λ0 of (1.2.1) is > 0. Let us suppose λ0 = 0 and let p be the
nonnegative left eigenvalue pÛ(L11 + Γ11) = 0. By multiplying by ✶r and observing that
L11✶r ≥ 0 we arrive to

pÛΓ11
✶r = 0 ⇒ pÛΓ11 = 0 ⇒ pi = 0 when γi > 0,

hence pi = 0 for all prejudiced agents.
Since pÛL11 = 0 for any j such that pj = 0 we getØ

i /=j
piaij = pj

Ø
j /=i

aji.

which is pi = 0 whenever aij > 0. If node j is connected to node i and pj = 0 then pi = 0.
This clearly implies p = 0 which contradicts the choice of p. We conclude that choosing
λ0 = 0 leads to a contradiction, therefore it must be λ0 > 0.

We shall now discuss how the final opinion in (2.10) is composed by stating without
proof (which can be found in [2]) the following theorem.

Theorem 2.3.3. The Matrix M is stochastic, therefore the final opinion in model (2.10)
is a convex combination of u1 and x2(∞), i.e. of the prejudice and on the final opinions
of the P-independent agents.
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Chapter 3

Discontinous Dynamics:
Quantized Behaviour

3.1 Introduction
In the previous chapter we dealt with dynamics of the form

ẋi (t) =
Ø

j∈N (i)
aij [xj (t) − xi (t)] , i ∈ I = {1, . . . , N},

where aij ∈ R+ were somehow measures of the strength of the influence of the node
j over i and we denote with N (i) the set of neighbors of node i. We considered the
main known generalisations of this model with the introduction of prejudiced agents and
communication sources, reaching Taylor’s model. It has also been observed that in the
basic version of Abelson model (2.4), when an individual can influence all the others
(although indirectly) then, consensus is asymptotically achieved, where we have defined
consensus as the situation in which

∃α ∈ R : xi(t) t→+∞−−−−→ α, ∀i ∈ I,

namely the situation in which the state vector tends to a constant vector of the form
α✶T = {α, . . . , α}T . We are now introducing a new model first presented in [3], where
opinions (or behaviors) can be thought as displayed only through a filter which is modelled
through a function q : R → Z called quantizer, as it values only integer behaviors.
Therefore this model describes how people are influenced by the discrete behaviors of
other individuals.

Let us introduce more formally the definition of a quantizer and present the model:
Definition 3.1.1 (Quantizer). A quantizer q : R → Z is a map taking real valued
values and transforming them into integers.

Ideally, any function f : R → Z can be considered a quantizer. In our dissertation we
choose

q(s) =
7
s + 1

2

8
. (3.1)
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In this dynamics j can only influence i (with strength proportional to the weight aij as
before) but the node i observes only the filtered q(xj(t)) behavior at time t. We therefore
define:

Definition 3.1.2 (Quantized Dynamics). A dynamics of the form

ẋi (t) =
Ø

j∈N (i)
aij [q(xj (t)) − xi (t)] , i ∈ I = {1, . . . , N}, (3.2)

is called quantized dynamics.

Alternative forms of the Quantized Dynamics

It might be useful rephrase the dynamics (3.2) in matrix form: this is easily accom-
plished. From (3.2):

ẋi(t) =
Ø
j

aij [q (xj(t)) − xi(t)]

=
Ø
j /=i

aij (q (xj(t)) − xj(t) + xj(t) − xi(t))

=
Ø
j /=i

aij (xj(t) − xi(t)) +
Ø
j /=i

aij (q (xj(t)) − xj(t))

= −Lx + A (q(x) − x) (3.3)

The dynamics can easily also be seen as

ẋ = −Dx + Aq(x) (3.4)

by just recalling that L = D − A.
We give one last interpretation of (3.3) by writing:

ẋ = −Lx + A(q(x) − x)
= −L (x − xa1) + A(q(x) − x) (3.5)

where xa(t) = 1
N 1Ûx(t) is the average of the vector of opinions x(t). This just follows from

the fact that L✶ = 0 and the dynamics (3.2) can be seen as a classical consensus system
which is perturbed by the other states’ quantization errors.

To see how the quantized dynamics (3.2) differs from the classical ones presented in the
previous chapter, we could start by investigating what happens to the state of opinions
on two particular undirected graphs: the complete and the path graphs (1.1.1 and 1.1.2)
by looking at two numerical simulations.
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Complete Graph

x2

x1

x3

x5

x4

x6

Starting with random initial conditions
in [0,10] we obtain this evolution of be-
haviors/opinions.

Figure 3.1: Evolution of Quantized Dy-
namics on Complete Graph with 6 nodes

Path Graph

x1

x2

x3

x4

x5

x6

Starting with random initial conditions
in [0,10] we obtain this evolution of be-
haviors/opinions.

Figure 3.2: Evolution of Quantized Dy-
namics on Path Graph with 6 nodes

Despite both graphs being strongly connected, consensus is reached only in the case of
the complete graph, while in the case of the dynamics on the path graph, consensus
is not reached. The interaction chosen for this model then leads to the persistence of
disagreement without the need for introduction of either stubborn agents with static
opinions or prejudiced agents.

3.2 Generalised solutions for discontinuous ODEs
It is easily noticeable that the vector field beneath the dynamics in (3.2) is discontinu-

ous. Let’s consider the simplest example of graph and define the quantized dynamics over
it.
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Example 3.2.1 (Bidirectional Interaction). Let’s consider the following dyadic interac-
tion:

x1 x2
1

The vector field for this simple dynamics is discontinuous along the set: {(x1, x2) ∈ R2

s.t. x1 = k1
2 or x2 = k2

2 , being ki integers}.

Figure 3.3: Vector field for the quantized dynamics of (3.2.1)

The nice property of this vector field is its affinity in Rn hypercubes; more precisely,
if we define

Sk =
;

x ∈ RN : ki − 1
2 ≤ xi < ki + 1

2 , i = 1, . . . , N

<
. (3.6)

we observe that for every k ∈ Zn, q(xi) is constant on Sk.
From now on we’ll denote with q(x) the vector whose components are q(xi), being

q(s) =
%
s + 1

2
&
as defined before. Let’s state these considerations in:

Observation 6. The system (3.2) is affine if restricted to each set Sk and its right-hand
side is discontinuous on the set ∆ =

t
k∈ZN ∂Sk, having denoted by ∂Sk the boundary of

Sk.
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Here we have to face a countable infinite union of hyperplanes over which the vector
field is not continuous. Indeed whenever xi = ki + 1

2 we have an hyperplane over which
the vector field f is discontinuous. For those value of xi we have a discontinuity in the
ith component of the vector field.

Here the dynamics, in the form ẋ = f(x) is described by first order ODEs which, in a
classical context with a continuous vector field would require C1([t0, +∞) solutions, but
this kind of solutions cannot solve the ODEs in the classical sense, as we’ll see in the
following paragraph. Then we have to introduce generalized solutions. We introduce two
notions and then try to whether such generalized solutions exist.

3.3 Generalised Solutions
We now follow the approach of [3] in describing the definitions of generalised solutions

for a discontinuous dynamics. Some of the examples are again inspired by [3] and [5].
We shall start by explaining why it is not enough to look for solutions in a distributional
sense and therefore why we need to find a way to somehow "extend" our vector field
in correspondence of discontinuities points, moving towards the definition of Krasovskii
solutions.

Before going through the paragraph we recall the definition of classical solution of an
ODE which will be mentioned in various considerations. We limit to ODEs of the first
order.

Definition 3.3.1 (Classical solution of an ODE). Given a differential equation of the
first order

F (t, x, ẋ) = 0,

a function xsol(t) : I ⊆ R → R is a classical solution if it is of class C1(I) and

F (t, x, ẋ) = 0 ∀x ∈ I.

Solutions for a discontinuous ODE

Observing the dynamics (3.2) we might wonder if classical solutions satisfy the equa-
tions in (3.2) in a classical sense. By Darboux theorem, if x(t) is a classical solution the
ẋ(t) cannot have jump discontinuities.

Let’s consider the following simple example :
Example 3.3.1 (Non-existence of classical solutions to a discontinuous ODE).

ẋ =
I

1 x ∈ [1,2)
2 x ∈ [2,3].

(3.7)

If a C1([1,3]) solution x(t) existed, then this should satisfy Darboux theorem, i.e.
∀z ∈ [f Í(1), f Í(3)], there should exist t ∈ [1,3] s.t. ẋ(t) = z. This contradicts the dif-
ferential equation (3.7). When introducing discontinuous RHS we must therefore extend
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the search for solutions to generalised solutions. The class of function which is natural to
consider is that of the absolutely continuous functions, whose definition we briefly recall
from [9].
Definition 3.3.2 (Absolutely Continuous Function). A function f defined on an
interval I = [a, b] is said to be absolutely continuous on I, if for every Ô > 0 there exists
δ > 0 such that:

kØ
i=1

|f (bi) − f (ai)| < ε (3.8)

for any finite collection of nonoverlapping intervals [a1, b1] , [a2, b2] , . . . , [ak, bk] in I satis-
fying

qk
i=1 |bi − ai| < δ.

The definition may seem a bit abstract but it can be shown that these are the most
general function which satisfy the fundamental theorem of calculus which we recall below,
as in [9].
Theorem 3.3.1 (Fundamental Theorem of Calculus). A function f : [a, b] → R is abso-
lutely continuous if and only f Í exists almost everywhere on (a, b), f Íis integrable on (a, b),
and

f(x) − f(a) =
Ú x

a
f Í(t)dλ for x ∈ [a, b]. (3.9)

we use dλ to indicate the Lebesgue integral of f with respect to a measure λ.
The importance of this theorem relies in the fact that the widest class of functions

for which the fundamental theorem of calculus holds is that of the absolutely continuous
ones. For this reason the first type of solutions we introduce for the dynamics in (3.2) is
that of Carathéodory solutions.
Definition 3.3.3 (Carathéodory Solution). Let I ⊂ R be an interval of the form
(0, T ). An absolutely continuous function x : I → RN is a Carathéodory Solution of
ẋ = f(x) if satisfies the equation almost everywhere, or equivalently, if it is a solution of
the following integral equation:

x(t) = x0 +
Ú t

0
f(x(s))ds. (3.10)

where we have substituted the generic measure λ with the Lebesgue measure on R.

Let us consider again (3.7): we have observed that if a classical solution existed, it
would obey at the some moment the ODE and Darboux theorem, but this leads to an
absurd as ẋ(t) can only attain the values 1 or 2 and no value between the two.

However we get that the function

x(t) =
I

t t ∈ [1,2)
2t t ∈ [2,3]

(3.11)

is a Carathéodory solution as it solves the differential equation in the integral form of
definition 3.3.3.
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Example 3.3.2 (Carathéodory Solutions for a discontinuous dynamics). Another exam-
ple that can be consdiered is the following one:

ẋ =


1 − x, x > 1

21
2 , x = 1

2
−x, x < 1

2

(3.12)

We observe that no classical solution satisfying x(0) = 1
2 exists in a neighborhood

of t = 0 as left and right derivatives would be different, but x(t) = −1
2e−t + 1 is a

Carathéodory solution of (3.12) starting from x0 = 1
2 and x(t) = 1

2e−t is a Carathéodory
solution of (3.12) starting from x0 = 1

2 . We also notice that both these solutions are
defined over the interval I = [0, +∞], i.e. are complete.

We have to further notice that solutions of this kind, albeit being quite intuitive and
rather simple, may lead to strange phenomenons, for instance they might converge to point
which are not equilibria of the vector field as we shall see in a more elaborate example
(3.4.1).

Another question which comes natural is why not introducing distributional solutions,
well known in the field of discontinuous ODEs thanks to the solid theory about distribu-
tional derivatives.

3.3.1 Distributional Solutions
We briefly recall the definition of a distribution to understand in what sense it could

be a solution to the ODE in (3.2).

Definition 3.3.4 (Space of test functions). Let Ω ⊆ Rn an open set, then

D(Ω) = {φ ∈ C∞(Ω) : supp(φ) = K ⊂ Ω is compact}
is called space of test functions.

In the above definition we have formally stated that the space of test functions D(Ω)
consist of all the infinitely times derivable (smooth) functions having a compact support
in Ω.

Given this definition we are ready to introduce the space of distributions DÍ(Ω) as:

Definition 3.3.5 (Space of distributions). The space of distributions on Ω, denoted
by DÍ(Ω) is the set of all the linear and continuous functionals T : D(Ω) → R.

Recalling all the properties of the distributions would not be inherent to the dissertation
and we refer to [9] for a more complete overview on distributions. What it is important
here is that when facing discontinuous ODEs we could think the equation in DÍ. Let’s
make an example:

Example 3.3.3 (Discontinuous ODE). Let’s imagine we want to solve the differential
equation

xÍ(t) = H(t) =
I

0, t < 0
1, t > 0

. (3.13)
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We can affirm that the solution of this ODE is x(t) = t · H(t) thought as distributions,
more specifically we mean that:Ú

R
[s · H(s)]Íφ(s)ds = −

Ú
R

s · H(s)[φ(s)]Íds = −
Ú +∞

0
sφÍ(s)ds (3.14)

=
Ú
R

H(s)φ(s)ds, ∀φ ∈ D(R). (3.15)

Therefore the derivative of x(s) = s · H(s) in DÍ is H(s) and the ODE is solved.

The need to look for new solutions

The problem in looking for distributions as solutions to the ODE in (3.2) is that we
would still end up with function distributions by solving the ODE. Let’s indeed recall the
following theorem as stated in [9] (345.1).
Theorem 3.3.2. Suppose x ∈ L1

loc(a, b). Then x is equal almost everywhere to an abso-
lutely continuous function if and only if the derivative of the distribution corresponding to
x is a function.

The consequence of this theorem is that solutions in the distributional sense of (3.2) are
almost everywhere equal to functions solving the ODE. Therefore the functions solving the
dynamics in the Carathéodory sense are the same distributions which solve the dynamics
in the distributional sense.

We now give a sketch of the proof of theorem (3.3.2).

Proof. It is easy to see that if x is (equal almost everywhere to) an absolutely continuous
function then, integrating by parts as done in (3.3.3):

T Í
x(ϕ) = −

Ú b

a
ϕÍxdλ =

Ú b

a
ϕxÍdλ (3.16)

where the steps follow by the compactness of the support of the ϕ functions and the usual
integration by parts. Therefore the distribution T Í is a function. This first part of the
proof shows that if x is (equal almost everywhere to) an absolutely continuous function
then its derivative is again a distribution corresponding to a function.

The converse follows by supposing that the derivative of the distribution is a function,
hence T Í =

s b
a ϕxÍ(t)dt, ∀φ ∈ D. We now define:

h(y) =
Ú y

a
x(t)dt (3.17)

and observe that h(y) is an absolutely continuous function (it follows by the definition of
Lebesgue integral and the definition in 3.3.2. By calling S the distribution corresponding
to h:

Sh =
Ú

h(y)φ(y), ∀φ ∈ D,

then
SÍ
h = −

Ú
h(y)φÍ(y) =

Ú
hÍ(y)φ(y) =

Ú
x(y)φ(y).
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3.3 – Generalised Solutions

therefore SÍ = x in the distributional sense. From the theory of distributions it holds true
that since SÍ = x and T Í = x then T = S + k in the distributional sense and this implies:Ú

x(t)ϕ(t)dt = Tx = S(ϕ) +
Ú

k(t)ϕ(t)dt

=
Ú

h(t)ϕ(t) + k(t)ϕ(t)dt

=
Ú

(h(t) + k(t))ϕ(t).

(3.18)

We have then proved that x(t) is equal almost everywhere to the absolutely continuous
function h(t) + k

3.3.2 Carathéodory Solutions
Carathéodory solutions are a natural extension of classical solutions: we just require

a function solving a dynamics ẋ = f(x) almost everywhere. Let us be more formal and
state this as a definition.

3.3.3 Krasovskii Solutions
The idea behind these solutions is that, whenever a discontinuity is met, the behaviour

of the function at the discontinuity point is determined by the derivatives of the function
in the nearby points. We therefore extend the vector field at a discontinuity point, con-
sidering the directions in a neighbourhood of the discontinuity point.

Stating it in a more formal way:

Definition 3.3.6 (Krasovskii Solution). An absolutely continuous function x : I → RN
is a Krasovskii solution of ẋ = f(x) if, for almost every t ∈ I, it satisfies

ẋ(t) ∈ Kf(x(t)), (3.19)

where:
Kf(x) =

Ü
δ>0

co({f(y) : y such that ëx − yë < δ}). (3.20)

Let us consider a simple example to see how Krasovskii solutions work. The example
is taken from [4].

Example 3.3.4. If we consider the vector field for the dynamics ẋ = f(x):

f (x1, x2) =
; (0,0) if (x1, x2) = (0,0)

(1,0) if (x1, x2) /= (0,0)

With t0 = 0 and x0 = (0,0). Looking for a Krasovskii solution we notice that the admissible
vector field at (0,0) is the set of all the convex combinations of (0,0) and (1,0), i.e. (1,0),
hence x(t) = (t,0) is a Krasovskii solution.
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Sometimes in mathematical literature Philippov Solutions are considered. In our set-
tings, for the specific dynamics (3.2), the two solutions coincide. We also observe that
in general any Carathéodory solution is also a Krasovskii solution. Before going through
examples and building results for the dynamics (3.2), we investigate whether existence
and uniqueness of solutions exist.

3.3.4 Properties of solutions
We state the following theorem to be able to guarantee existence, boundedness and

completeness for the system described in (3.2).

Theorem 3.3.3 (Properties of Solutions). The following properties of solutions
hold:

(i) (Existence) For any initial condition x0 there exists a Carathéodory solution and a
Krasovskii solution of (3.2)

(ii) (Boundedness) Any Carathéodory solution of (3.2) is bounded on its domain.

(iii) (Completeness)Any Carathéodory or Krasovskii solution starting at t0 ∈ R is defined
on the set [t0, +∞).

The theorem 3.3.3 confirms the well posedness of the problem as Carathéodory and
Krasovskii solutions for a dynamics of the form (3.2) do always exist. Furthermore these
solutions cannot explode (see also proposition 3.3.1). Any (Carathéodory or Krasovskii)
solution of (3.2) is also defined on set of the form [t0, +∞], a quite good property.

Observation 7 (Uniqueness of solutions). We have already seen in (3.12) that unique-
ness of solutions is lost. In general, Carathéodory or Krasovskii solutions are not unique.

If we extend example (3.12) to the following dyadic dynamics:

ẋ1 = q (x2) − x1,

ẋ2 = q (x1) − x2,

Considering as initial condition (x1(0), x2(0))Û = (1
2 , 1

2)Û, the solutions

x(t) =
3

1 − 1
2e−t,1 − 1

2e−t
4

x(t) =
31

2e−t,
1
2e−t

4
both satisfy the equation in the Carathéodory sense, start at x0 = (1

2 , 1
2)Û and are

complete. The former asymptotically tends to x1
lim = (1,1) while the latter reaches

x2
lim = (0,0). This example shows that uniqueness is not guaranteed and in general,

taking initial conditions on the set ∆ =
t

k∈ZN ∂Sk, the dynamics leads to multiple solu-
tions.
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3.3 – Generalised Solutions

When considering a dynamics, results of boundedness and monotonicity for the smallest
and largest components of x(t) are stated and proved. For example it often happens that
the smallest component is nondecreasing while the largest component is nonincreasing.
Here we give a property of monotonicity and a limit for the minimum and maximum
quantization level for Carathéodory solutions of (3.2).

Proposition 3.3.1 (Monotonicity and limit for minimum and maximum quantization
lever for Carathéodory solutions). Let x(t) be a Carathéodory solution and define

xm(t) = min {xi(t), i ∈ I} (3.21)
xM (t) = max {xi(t), i ∈ I} (3.22)

the minimum and the maximum component in the opinion vector x(t) and let’s define

qm(t) = q (xm(t)) (3.23)
qM (t) = q (xM (t)) (3.24)

the quantized levels corresponding to xm(t) and xM (t). Then:

• qm is nondecreasing

• qM is nonincreasing

• both qm and qM are definitively constant

The proof follows that of [3].

Proof. Let’s consider a Carathéodory solution x(t) of the dynamics in (3.2) and let m be
any index such that

xm(t) = min {xi(t), i ∈ I} ,

then for any i ∈ I, xi(t) ≥ xm(t).
It is now just necessary to consider the lowest quantization level related to xm(t), i.e.

q(xm(t)). Now:

• if xm(t) ∈
#
qm(t) − 1

2 , qm(t)
$
then: q(xi(t)) ≥ xm(t), ∀ i ∈ I, hence ẋm(t) =q

j amj [q (xj(t)) − xm(t)] ≥ 0. It follows that the solution is non decreasing and
qm is non decreasing.

• if xm(t) ∈
#
qm(t), qm(t) + 1

2
$
then xm(t) may be decreasing but only up to a certain

point as when it decreases down to xm(t) = qm(t) we fall in the case on the left and
ẋm(t) ≥ 0.

We have then found out that xm(t) is bounded below by min{xm(0), qm(x0)}. The
same happens with a likewise proof for the index M such that xM (t) ≥ xi(t), ∀i ∈ I.

This also means that xm(t) cannot reach the quantized level below and can only reach
the above one and xM (t) cannot reach the quantized level above and can only reach the
below one.
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We have proved that the smallest quantization level qm(t) can only be nondecreasing
and the biggest quantization level qM (t) can only be nonincreasing. Furthermore qm(t) is
bounded and takes values in Z, therefore it must be definitively constant, i.e. there must
exist a T ∗ ∈ R and a q∗

m ∈ Z such that for any t ≥ T ∗ we have

min{q(xi(t), i = 1, . . . , N} = q∗
m.

The same must similarly hold for xM (t).

The importance of the proposition stays in the important fact that the number of
quantization levels assumed during the dynamics is finite, fixed an initial condition. In
particular the number of all the possible quantization levels is

qM (0)−qm(0)+1 for each component i and the number of possible vector fields followed
by the dynamics with n individuals is [qM (0) − qm(0) + 1]n.

Considering a dynamics of the form (3.2), with three nodes having initial opinions
x(0) = (0,1,2)Û and corresponding quantization q(x(0)) = (0,1,2)Û, we know that at most
the dynamics will be described by 33 = 27 different affine vector fields.

3.4 Equilibria
In the classical setting an equilibrium is defined as:

Definition 3.4.1 (Equilibrium of ẋ = f(x)). A point x∗ is said to be a Carathédory
(Krasovskii) equilibrium for ẋ = f(x) if x(t) ≡ x∗ is a Carathéodory (Krasovskii) solution
of ẋ = f(x).

In the following we’ll denote by EC the set of Carathéodory equilibria and by EK the
set of Krasovskii equilibria.

We look for Carathéodory equilibria by finding constant function satisfying f(x∗) = 0
while Krasovskii equilibria are points such that 0 ∈ Kf (x∗): indeed starting from x∗ if
the possible null direction is admissible, then x(t) ≡ x∗ is a Krasovskii solution for the
dynamics.

We observe that consensus points are always Carathéodory and Krasovskii equilibria
of (3.2). It is indeed easy to see that starting from a point x̄ = k✶ the vector field at x̄
reduces to

ẋ = −D k✶+ A k✶ (3.25)

which leads to the null vector by the definitions of D and A. We briefly
Furthermore all equilibria are locally asymptotically stable as all the points of the form

x∗ = k✶ belong to the interior of Sk✶. It happens indeed that, in correspondence of these
points (which belong to the interior of Sk✶), the system (3.2) is in the form:

ẋ = −Dx + Ak✶ (3.26)

and since −D is Hurwitz, locally asymptotic stability follows as recalled in chapter 2.

42



3.4 – Equilibria

Observation 8. Since, in general, Carathéodory solutions are also Krasovskii solution, it
holds that any Carathéodory equilibrium is also a Krasovskii equilibrium, i.e. EC ⊂ EK .

The inverse doesn’t necessarily hold, i.e. there are Krasovskii equilibria which are
not Carathéodory equilibria. We just need to consider the dynamics (3.2) with initial
condition x∗ =

!
k0 + 1

2 , k0 + 1
2 , . . . , k0 + 1

2
"Û and observe that x(t) ≡ x∗ cannot be a

Carathéodory solution of (3.2) while 0 ∈ Kf(x∗).
Let’s gather intuition of the properties and observations stated by considering an ex-

ample on a 6-node graph.

Example 3.4.1. Let us suppose that 6 agents interact according to the graph below:

x1 x2

x3x4x5

1 11
1

1

1

and let’s explicitly write the quantized dynamics for these group of individuals:

ẋ1 = q(x3) + q(x4) − 2x1

ẋ2 = q(x3) − x2

ẋ3 = q(x2) − x3

ẋ4 = q(x1) + q(x3) − 2x4

ẋ5 = q(x1) + q(x4) − 2x5

We immediately see that x∗ = (k, . . . , k) are Carathéodory and Krasovskii equilibria.
The point x∗ =

!1
2 ,0,0, 1

2 ,1
"Û is a Carathéodory equilibrium which lies on the boundary

of S(1,0,0,1,1) since x1 = 1
2 , x4 = 1

2 . We might investigate whether the Carathéodory
equilibrium is Lyapunov stable and we immediately see that for a small perturbation in
the initial condition x̃1(0) = 1

2 − α and x̃1(0) = 1
2 + α with α > 0 the solution follows

the vector field f(x) = (1 − 2x1, −x2, −x3, −2x4,1 − 2x5) towards the point
!1

2 ,0,0,0, 1
2
"Û

which is not a Carathéodory equilibrium.

Within this example we have shown that:

• We find Carathéodory solutions which converge to points that are not Carathéodory
equilibria.

This has lead the authors of [3] to introduce the notion of extended equilibrium, pre-
sented in the definition below.
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Definition 3.4.2. [Extended Equilibrium] Let k ∈ Z. and fk be the vector field whose
components are

(fk)i (x) =
Ø
j /=i

aij (kj − xi)

which coincides with f on the set Sk. We define the point x∗ ∈ Rn an extended equilibrium
of the dynamics (3.2) if there exists k ∈ Zn such that fk(x∗) = 0 and x∗ ∈ Sk.

It is evident that EC ⊂ Ee ⊂ EK , having denoted

• EC the set of Carathéodory equilibria

• Ee the set of extended equilibria

• EK the set of Krasovskii equilibria

If we consider again example (3.4.1) we have that:

x∗
ext =

31
2 ,0,0,

1
2 ,

1
2

4
is an extended equilibrium since

x∗
ext ∈ S(1,0,0,0,1)

and
f(1,0,0,0,1) (x∗

ext) = 0,

but it cannot be a Carathéodory equilibrium as

f5(x∗
ext) = 2 − 2x5 = 1

which is not 0. It also holds that

xK =
31

2 ,
1
2 ,

1
2 ,

1
2 ,

1
2

4Û

is a Krasovskii solution, as it can be shown that 0 ∈ Kf (xK) but this point is neither
a Carathéodory equilibrium (as f(xK) /= 0) nor an extended equilibrium as it should
happen that both x2K

and x3K
should be integers, while they are both 1

2 .
The example we have considered shows that there exist extended equilibria like x∗

ext

which are not consensus points. It also happens that there exist Carathéodory solutions
which converge to extended equilibria. In our example it is sufficient to consider any
initial condition x0 ∈ S(1,0,0,1,1) and, since f(x0) = (1 − 2x1, −x2, −x3, −2x4,1 − 2x5) and
there are Carathéodory solutions issuing from an initial condition in S(1,0,0,1,1) converging
to x∗

ext, for instance the Carathéodory solution:

x(t) =
31

2 − 1
2e−2t,0,0,

1
2 − 1

2e−2t,
1
2 + 1

2e−2t
4
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converges to the extended equilibrium x∗
ext =

!1
2 ,0,0, 1

2 , 1
2
"

.
To gather confidence with the Krasovskii solution we also consider the differential in-

clusion related to Krasovskii solution in correspondence of the point x∗
ext =

!1
2 ,0,0, 1

2 , 1
2)
"

:

Kf (x∗
ext) = co




0
0
0
0
0

 ,


−1
0
0
−1
1

 ,


−1
0
0
0
1

 ,


0
0
0

−1
0

 ,


−1
0
0

−1
0

 ,


0
0
0
0
1

 ,


−1
0
0
0
0

 ,


0
0
0

−1
1




(3.27)

and observe that 0 ∈ Kf(x∗
ext), therefore the extended equilibrium is also Krasovskii’s.

3.5 Numerical Simulations
In this section we briefly discuss the approach used to simulate the quantized dynamics

(3.2), implemented in MATLAB from scratch.

3.5.1 The solve_dynamics and solve_dynamics_adams_bashforth
functions

In the MATLAB function solve_dynamics we have implemented the explicit Euler
method to build the solution of the dynamics. Using the article the is improper as we
have seen that in general the solution for this kind of dynamics is not unique. We then
briefly recall the Euler Method to understand how the discontinuity is handled in the
numeric approach.
Definition 3.5.1 (Euler’s Method). This method is built for the construction of the
solution to a Cauchy problem of the form:

yÍ(t) = f(t, y(t)) y (t0) = y0.

By a discretization of the t variable we may define tn = t0 + nh and approximate yn+1 =
yn + hf (tn, yn) which requires an evaluation of the vector field at a point computed in a
previous step.

The Adams-Bashforth method is similar to the one described above but uses a further
approximation: to be more precise we refer to the following definition:
Definition 3.5.2 (Adams-Bashforth’s method). This method is built for the con-
struction of the solution to a Cauchy problem of the form:

yÍ(t) = f(t, y(t)) y (t0) = y0.

The recursive formula for the construction of the points giving the numerical solution is:

yn+2 = yn+1 + 3
2hf (tn+1, yn+1) − 1

2hf (tn, yn) .

From the recursive formula in (3.5.2) it is easy to see that the two previously computed
approximations are needed to compute the n + 2-th approximation.
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3.5.2 Matlab Implementation
The two methods have been implemented in the two MATLAB functions already men-

tioned, solve_dynamics and solve_dynamics_adams_bashforth. This last function has
been used as a second order test to confirm the solutions obtained with the first order
method in (3.5.1).

These two methods have been fed with the vectorial field f describing the quantized
dynamics as presented in (3.1). All the commented scripts can be found in
https://github.com/lucacat97/quantized_behaviors_thesis or by scanning the following
QR code:

Figure 3.4: QR code to access all the code developed for the numerical simulations in this
thesis.

3.5.3 The quantized dynamics app
To ease the process related to the numerical simulations, a MATLAB app has been

created. In this paragraph we briefly present the user-friendly interface of the app.
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The pictures above show the interface and the options which can be selected by the
user. In particular, the interface contains:

• Graph dropdown menu: allows for the selection of the graph type.

• Number of Nodes box: here the user can type how many agents are interacting

• Random Initial State tick box: when ticked the initial conditions are chosen randomly
in the range 0 − 10

• Initial State box: when the "random initial state tick box" is not ticked here the user
can specify the agents initial opinions in the form x01, x02, . . .

• Time box: the user can type the time up to which simulate the dynamics

• Plot Dynamics button: when clicking on this button the dynamics is simulated

• Clear button: it clears the options specified in a previous simulation and allows for
a new one to be performed.

and the plot interface is characterized by three panels:

• Upper Central: here the trajectories for individual opinions of the nodes are shown

• Lower Central: here the quantized trajectories for the individual opinions (i.e. q(xi(t)))
are shown

• Right: the graph topology is displayed through nodes ad oriented edges.

3.5.4 Some final considerations of the numeric approach
As already suggested to the reader, numerical solutions for this kind of dynamics must

be considered with "analytical wisdom". When the dynamics is described by a continuous
vector field f , the Euler method has got a local truncation error which decreases with
the decrease of the step h. When simulating dynamics described by a discontinuous field,
uniqueness is in general lost. The numerical solution obtained is one and is often one of
the many obtained for a particular vector field (as we shall see in the elaborate case of the
graph cycle). Let’s consider the simple of two nodes interacting as in 3.2.1. The system
reduces to

ẋ1(t) = q(x2) − x1(t) (3.28)
ẋ2(t) = q(x1) − x2(t) (3.29)

by starting at x0 = (1
2 ,1) we get that

x1(t) = −1
2e−t + 1 (3.30)

x2(t) = e−t (3.31)
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is a Carathéodory solution which is not found analytically. Indeed the numerical simula-
tion only gives an approximation for the following solution:

x1(t) = −1
2e−t + 1 (3.32)

x2(t) = 1 (3.33)

Figure 3.6: The only numerical solution found for the dyadic interaction example. The
solution shown is both a Carathéodory and Krasovskii solution, but it is not the only one

3.6 Equilibria on specific Graphs
In this section we look for equilibria on specific graphs, with a double aim: it will be

useful to see how numerical simulations differ in finding such equilibria and it shows how
the quantized dynamics may somehow be tricky when using such microscopic approach
consisting of following each node’s opinion xi(t).

3.6.1 Directed Line

3.6.2 Carathéodory Equilibria
Let’s start by considering a directed line:

x1 x2 x3 ... xn

For this graph topology the dynamics is of the form:

49



Discontinous Dynamics: Quantized Behaviour


ẋ1 = q(x2) − x1

...
ẋn−1 = q(xn) − xn−1

ẋn = 0

Carathéodory equilibria are points which have to satisfy f(x∗) = 0, hence, for a generic
point x∗ ∈ Sk it must hold that: 

x∗
1 = k2

x∗
2 = k3

...
x∗
n−1 = kn

x∗
n = xn(0)

By imposing the condition x∗ ∈ Sk, it must hold that:
k1 − 1

2 ≤ x∗
1 < k1 + 1

2
k2 − 1

2 ≤ x∗
2 < k2 + 1

2
...

kn−1 − 1
2 ≤ x∗

n−1 < kn−1 + 1
2

(3.34)

Combining (3.6.2) into (3.34) we arrive to:
k1 − 1

2 ≤ k2 < k1 + 1
2

k2 − 1
2 ≤ k3 < k2 + 1

2
...

kn−1 − 1
2 ≤ kn < kn−1 + 1

2

(3.35)

which leads to 
k1 = k2

k2 = k3
...

kn−1 = kn

being all the ki integers. Observing that xn(t) ≡ x0
n we get that

x∗
1 = q(x0

n)
x∗

2 = q(x0
n)

...
xn = x0

n
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Therefore the only extended equilibria are of the form

(q(x0
n), q(x0

n), . . . , q(x0
n), x0

n)

which are consensus if and only if x0
n ∈ Z.

3.6.3 Extended Equilibria
In the setting of extended equilibria, we replace the condition x∗ ∈ Sk with the

condition x∗ ∈ S̄k, therefore, condition (3.34) is the same with a ≤ for the second
inequality which leads to k1 = k2 = · · · = kn but here a difference arises as when
xn = h + 1

2 , for some h ∈ Z we have that both k = (h, . . . , h) and k = (h + 1, . . . , h + 1)
are such that:

x∗ =
3

h, . . . , h, h + 1
2

4
belongs to S(h,...,h) and f(h, . . . , h, h + 1

2) = 0 but it also holds true that:

x∗ =
3

h + 1, . . . , h + 1, . . . , h + 1
2

4
belongs to S(h+1,...,h+1,h) and f

!
h + 1, . . . , h + 1, h + 1

2
"

= 0. We lastly observe that the
points of the form:

x∗ =
3

h + 1, . . . , h + 1, . . . , h + 1
2

4
are not Carathéodory equilibria as ẋn−1 = h − (h + 1) = −1.

3.6.4 Krasovskii Equilibria
In the case of Krasovskii equilibria we observe that for points which are not of the

form
x = (x1, . . . , xn), s.t.xi = h + 1

2 , for some h ∈ Z,

we have Kf(x) = f(x) therefore and in this case we only have Krasovskii equilibria of the
form:

(q(x0
n), q(x0

n), . . . , q(x0
n), x0

n), xn(0) /= h + 1
2 , for some h ∈ Z.

For all the other case we consider the case with 3 nodes to gather intuition. If we
consider a point of the form

x = (h + 1
2 , h, h)

then Kf(x) = f(x) and x cannot be an equilibrium, while if we consider points of the
form

x = (h, h + 1
2 , h)

, then
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Kf (x) = co


 (h + 1) − h

h −
!
h + 1

2
"

0

 ,

 h − h
h −

!
h + 1

2
"

0

 = co


 1

−1
2

0

 ,

 0
−1

2
0

 (3.36)

and 0 /∈ Kf(x) which happens as the third component is not h + 1
2 .

But also by considering points of the form: (h, h + 1
2 , h + 1

2) we have that:

Kf (x) = co


 1

3
2
0

 ,

 0
3
2
0

 ,

 1
1
2
0

 ,

 0
1
2
0

 (3.37)

and it is easily noticeable that 0 /∈ Kf(x).
To obtain the null vector 0 as a vector of the convex combination we need x1, x2 ∈ ❩

and also x1 = x2 = h, with only the last component equal to either h or h − 1
2 , or h + 1

2 .

3.7 Undirected Line
We now analyse the directed version of the precedent graph and observe how introduc-

ing bidirectional observations can lead to different equilibria and increase the difficulty of
the dynamics.

Let us consider an undirected line:

x1 x2 x3 ... xn

Supposing again unitary weights, the dynamics for this graph topology is the following:



ẋ1 = q(x2) − x1

ẋ2 = q(x1) + q(x3) − 2x2
...

˙xn−1 = q(xn−2) + q(xn) − 2xn−1

ẋn = q(xn−1) − xn−1.

3.7.1 Carathéodory Equilibria
Carathéodory equilibria are points satisfying the two conditions:

I
x∗ ∈ Sk

f(x∗) = 0.
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3.7 – Undirected Line

Hence it must hold that: 

x∗
1 = k2

x∗
2 = k1+k3

2
...

x∗
n−1 = kn−2+kn

2
x∗
n = kn−1

(3.38)

and also (from x∗ ∈ Sk):
k1 − 1

2 ≤ x∗
1 < k1 + 1

2
k2 − 1

2 ≤ x∗
2 < k2 + 1

2
...

kn−1 − 1
2 ≤ x∗

n−1 < kn−1 + 1
2

(3.39)

leading to something similar to (??):

k1 − 1
2 ≤ k2 < k1 + 1

2
k2 − 1

2 ≤ k1+k3
2 < k2 + 1

2
k3 − 1

2 ≤ k2+k4
2 < k3 + 1

2
...

kn−1 − 1
2 ≤ kn−2+kn

2 < kn−1 + 1
2

kn − 1
2 ≤ kn−1 < kn + 1

2

(3.40)

From the first two inequalities, being k1 and k2 integers we obtain k1 = k2, therefore
the second inequality becomes:

1
2k1 − 1

2 ≤ k3

2 <
1
2k1 + 1

2
leading to either

k3 = k1 or k3 = k1 − 1.

By recursively applying this reasoning we arrive to this following characterization of
Carathéodory equilibria for a directed line:

q1 = h (3.41)
qi = qi−1 − 1 or qi = qi−1 (3.42)

(3.43)

For example, for the case of 4 nodes we have the following quantization states and
corresponding equilibria: I

qeq = (h, h, h, h)
xeq = (h, h, h, h)
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and I
qeq = (h, h, h − 1, h − 1)
xeq = (h, h − 1

2 , h − 1
2 , h − 1)

3.8 Complete Graph
Complete graphs are given a strong importance in interaction models as they capture

the phenomenon in which every individual somehow can observe everybody’s opinion. For
this reason we look for the equilibria of this particular graph. We use the same notation
of [3] to describe the equilibria of the dynamics on this graph.

The dynamic has the form:
ẋi =

Ø
j /=i

(q (xj) − xi) ∀i (3.44)

we now show that for this dynamics it holds that all the equilibria are of the form:

EC = Ee =
î

x ∈ ZN : ∃h ∈ Z such that xi = h∀i = 1, . . . , N
ï

. (3.45)

It is evident that all points of the form in (3.45) are Carathéodory equilibria. On
the other hand extended equilibria are points such that there exists k ∈ ZN such that
fk (x∗) = 0 and x∗ ∈ Sk.

From the first condition mentioned it follows that:Ø
j /=i

(q (xj)) − (N − 1)xi = 0

therefore x∗
i must satisfy:

x∗
i =

qN
j=1 kj − ki

N − 1 . (3.46)

By defining K =
qN
j=1 kj and from the second condition:

ki − 1
2 ≤ x∗

i ≤ ki + 1
2 (3.47)

(N − 1)
3

ki − 1
2

4
≤ K − ki ≤ (N − 1)

3
ki + 1

2

4
(3.48)

K

N
− N − 1

2N
≤ ki ≤ K

N
+ N − 1

2N
. (3.49)

these bounds show that each ki is below some number K
N + α and above K

N − α with
α < 1, which imply that k1 = k2 = · · · = kn and x∗ ∈ S(h,...,h) for some h ∈ Z.
From this it follows that the ith component of the vector field defining the dynamics is
f (x∗)i = (N − 1)h − (N − 1)x∗

i and easily x∗ = h ∀i = 1, . . . , N.

Observation 9. We observe that the equilibria found for the dynamics on the complete
graph are both Lyapunov stable and locally asymptotically stable as the vector field in a
neighborhood of an equilibrium point reduces to f(x) = −(N − 1) (x − x∗). Local asymp-
totic stability follows from the negativity of −(N − 1).
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3.9 Cycle Graph: solutions with periodic behavior

3.9.1 The Dynamics on the Cycle Graph
Simulating the dynamics with some specific initial conditions leads to numerical solu-

tions that seem periodic. We then now investigate what happens on such graph, trying
to approach some analytical result.

The directed cycle graph has the form below:

1

23

4

5 6

therefore the system (3.2) reduces to:

ẋ1(t) = q(x2) − x1(t)
ẋ2(t) = q(x3) − x2(t)
ẋ3(t) = q(x4) − x3(t)
ẋ4(t) = q(x5) − x4(t)
ẋ5(t) = q(x6) − x5(t)
ẋ6(t) = q(x1) − x6(t)

(3.50)

or, in vector form:

ẋi(t) = q(xi+1(t)) − xi(t). (3.51)

Such dynamics has a quite nice closed form solution whose i-th component reduces to:

xi(t) = (q(xi+1) − x0i) e−t + q(xi+1). (3.52)

This solution is a classical one of the ODE, up to the first point in which q(xi+1(t)) changes
its value. For this reason, since (3.52) solves (3.51) almost everywhere, we may state that
(3.52) is a Carathédory solution and a Krasovskii solution of the dynamics in (3.51).

If we run some numerical simulations, we observe the following trajectories:
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Figure 3.7: Trajectories of the dynamics simulated using the quantized behaviors app in
MATLAB over the cycle graph. The four different trajectories correspond to different
initial conditions for which the same periodic behavior occurs.

which have given the idea to look for periodic solutions.
The numeric trajectories show this behavior with specific initial conditions when the

number of agents n is even, and are all of the form:

x0 =
î

(x0)i s.t. (x0)i + (x0)i+n/2 = 2k + 1, for some k ∈ Z
ï

(3.53)

i.e. all those initial conditions for which (x0)i and (x0)i+n/2 sum to an odd number.
We observe that, unless specified otherwise, all indexes are to be intended modulo n.
We might wonder if such solutions are the results of some numerical issues or have

some analytical correspondence.
Proving the existence of periodic solutions is the aim of the following paragraph.

3.9.2 Proof that periodic Carathéodory solutions exist
Let’s consider the system (3.50) with initial conditions of the form specified in (3.53).

In particular if we consider:
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x0 =
33

2 + δ,
3
2 ,

3
2 − β,

3
2 − δ,

3
2 ,

3
2 + β

4
(3.54)

with:
δ = 1

4(
√

5 − 1) β = 1
4(3 −

√
5) (3.55)

and
q(x0) = (2,1,1,1,2,2) . (3.56)

If we define
T = log

A 1
2 + δ
1
2 − δ

B
= log

1
2 +

√
5
2

(3.57)

we get, from (3.52) that:

x1(t) =
33

2 + δ − 1
4

e−t + 1 =
31

2 + δ

4
e−t + 1

x2(t) =
33

2 − 1
4

e−t + 1 = 1
2e−t + 1

x3(t) =
33

2 − β − 1
4

e−t + 1 =
31

2 − β

4
e−t + 1

x4(t) =
33

2 − δ − 2
4

e−t + 2 =
3

−1
2 − δ

4
e−t + 2

x5(t) =
33

2 − 2
4

e−t + 2 = −1
2e−t + 2

x6(t) =
33

2 + β − 2
4

e−t + 2 =
3

−1
2 + β

4
e−t + 2

(3.58)

is a (classical, hence Carathéodory and Krasovskii) solution for every t in the open
interval 0 < t < T

3 .
We observe that q(x0) does not strictly follow the definition given in (3.1), but we

might consider either the upper or the lower quantization at discontinuities points. The
xi(t) have been chosen by substituting the value q(x02) with the value 1, a limit value for
u → 3

2
−.

We observe that, when evaluating the solutions at T
3 , we obtain a shift of the nodes

opinions, in the sense that, combining (3.58), (3.55), (3.53), we get to:
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x1

3
T

3

4
=
31

2 + δ

4
e− T

3 + 1 = 3
2 = x2(0)

x2

3
T

3

4
= 1

2e− T
3 + 1 = 1

4(3 +
√

5) = 3
2 − 3 −

√
5

4 = 3
2 − β = x3(0)

x3

3
T

3

4
=
31

2 − β

4
e− T

3 + 1 = 1
4(7 −

√
5) = 3

2 −
√

5 − 1
4 = 3

2 − δ = x4(0)

x4

3
T

3

4
=
3

−1
2 − δ

4
e− T

3 + 2 = 3
2 = x5(0)

x5

3
T

3

4
= −1

2e− T
3 + 2 = x6(0)

x6

3
T

3

4
=
3

−1
2 + β

4
e− T

3 + 2 = 1
4(5 +

√
5) = 3

2 +
√

5 − 1
4 = 3

2 + δ = x1(0)

(3.59)

This last computation in (3.59) shows that, with the T defined in (3.57), at each
Tk = k T3 , k ∈ N there is a switch in the initial condition and the system obeys to the
same differential equations with initial conditions:

xi

3
k

T

3

4
= xi+k(0). (3.60)

It must be observed that, up to a switch time, the vector field does not change. This
follows by the monotonicity of the solutions in (3.58) which we have in explicit form and
lead to a change in the quantization level only at Tk.

We also have got a numerical confirm of what stated above. Let’s consider the trajec-
tories below:

Figure 3.8: Numerical Solutions Corresponding to the Dynamics on the Cycle Graph with
x0 as in (3.54)

If we let the system start with initial conditions analogue to the one of the proof, the
numerical simulations confirm what proved before as at each of the k T3 , a switch in the
nodes opinions occur.
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We also observe, when zooming in, that after each interval of time of T3 a switch occurs.

Figure 3.9: Switch in individual opinions - zoom

This last construction paves the way towards an important question an its relative
answer: does a quantized dynamics (even if a continuous-time one) converge in any case?
As this last paragraph has shown, the answer is no. We leave to the next paragraph the
discussion about convergence for the quantized dynamics (3.2) and some results about
convergence.

59



60



Chapter 4

Convergence Results for
quantized dynamics

We have witnessed weird behaviors for the quantized dynamics of the form (3.2). We
have produced examples showing solutions converging to consensus, which are (Carathéodory
and Krasovskii) equilibria of the vector field, but also (see example (3.4.1) Carathéodory
solutions converging to points which are not Carathéodory equilibria. In addition we have
built an example of dynamics not converging at all, as in the cycle dynamics (3.50), we
have constructed a solution with a limit cycle. We might then wonder whether under some
conditions or on some particular graphs, convergence can be guaranteed analytically or
not. The aim of this chapter is that of presenting some convergence results which have
been found mainly in [3]. We retrieve here the results they presented to complete our dis-
cussion about a dynamics of quantized type, with the awareness that these results cannot
fully characterize the graphs over which convergence can be obtained and only refer to
some graphs in particular or are valid under specific hypotheses.

4.1 Main Convergence Results

4.1.1 Convergence of the dynamics to a set
As we already stated, convergence is a strong requirement when discussing about

opinions evolution and in this dynamics it is not reached in general. This reflect human
behaviors: it is quite difficult that at the of some discussion both individuals share a
common intermediate opinion. What might happen also in the real world is that somehow
individuals opinion "get closer". We have seen that, as one expects, the minimum and
maximum level of quantization are definitively constant and individual opinions cannot
overcome these two barriers definitively but also a more specific result holds. It is the
following, as stated in [3]:

Theorem 4.1.1 (Convergence to a set). Assume that the graph with adjacency matrix
A is weight balanced and weakly connected. If x(t) is any Carathéodory or Krasovskii

61



Convergence Results for quantized dynamics

solution of (3.2) and we define λ∗ as the smallest nonzero eigenvalue of Sym(L) = L+LT

2
s.t.

xÛLx ≥ λ∗ ëx − xa1ë2 , ∀x ∈ RN .

M as:

M =
I

x ∈ RN : inf
α∈R

ëx − α1ë ≤ ëAë
λ∗

√
N

2

J
(4.1)

then dist(x(t), M) → 0, as t → +∞.

The importance of this theorem relies in the fact that it is possible to obtain a sort
of "distance to consensus", in fact the set M represents a sort of "neighborhood" of a
consensus and the theorem states that, as t approaches higher values, the trajectories
approach this set M .

On some special graphs this result gives interesting bounds. Let’s consider a complete
graph.

Example 4.1.1 (Convergence to M on a complete graph). On complete graphs,
the quantized dynamics is:

ẋi =
Ø
j /=i

(q (xj) − xi) ∀i (4.2)

and, the matrix of the graph is as in 1.1.1, therefore ëAë = N − 1 and λ∗ = N , so, for
t → +∞:

1√
N

.....x − 1
N

NØ
i=1

xi1
..... ≤ 1

2 (4.3)

therefore, the dynamics asymptotically moves towards points which are close to consensus.
In the next section we shall actually state a stronger result: it holds that these limit points
are actually consensus points.

This bound can be tighter or looser. Let’s consider for instance a path graph. We
carry out the same reasoning performed in [3] to show the minor efficacy of this bound in
some case.

It holds that λ∗ = 1 − cos
!
π
N

"
and ëAë ≤ 2 by Gershgorin’s disk lemma.

Therefore, from 4.1.1,

1√
N

.....x − 1
N

NØ
i=1

xi1
..... ≤ 2

2
!
1 − cos π

N

"
= 1

π2

2N2 − π4

4N4 + o
! 1
N4

"
= 2

π2
N2

1 − π2

2N2 + o
! 1
N2

" = 2
π2 N2 + O(1) as N → ∞.

(4.4)

This is just an approximation for the bound of 4.1.1.
As anticipated after theorem 4.1.1, a convergence result has been found in [3] in the

form we state below:
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Theorem 4.1.2 (Convergence on Complete Graph). Any Carathéodory or Krasovskii
solution of the dynamics (4.2), converges to a consensus point. Furthermore, if x(t) is
Carathéodory, then the limit point is necessarily of the form (h, . . . , h)Û with h ∈ Z. If x(t)
is instead a Krasovskii solution, then the limit may be of the form

!
h + 1

2 , . . . , h + 1
2
"Û

.

Finding these results of convergence is not easy as the proofs rely on the special struc-
ture of these graphs. However convergence properties complete somehow the theory about
the quantized dynamics (3.2) as finding the (Carathéodory or Krasovskii) equilibria does
not tell us anything about the trajectories. It depends on the graph structure whether the
xi(t) converge to equilibria or not. As already mentioned, obtaining convergence results
can be quite challenging. For this reason we limit to state another result of convergence
again found by [3].

The results is about convergence for the quantized dynamics over the complete bipartite
graph.

We recall the definition of a complete bipartite graph, write down how the dynamics
reads on this graph and finally state the convergence result.

Definition 4.1.1. A graph whose vertices can be partitioned into two subsets V1 and
V2 where no edge has both endpoints in the same subset, and all the edges connecting
vertices in the two subsets do exist, is called complete bipartite graph.

A graph like the one in the example below is a complete bipartite graph

1

2

3

4

5

6

7

8

9

U

V

The dynamics on graphs of the form above reduces to:

ẋi =
Ø
h∈V∞

[q (xh) − xi] ẋh =
Ø
i∈V∈

[q (xi) − xh] . (4.5)

Theorem 4.1.3 (Convergence on Complete Bipartite). Any Carathéodory or Krasovskii
solution of (4.5) converges to a consensus point.
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We have stated two important convergence results about some well known graphs but
the reader may have understood that it is a more difficult task producing results that
adapt to more general graphs, for example based on the degrees of their nodes or some
connectivity measure.

4.2 Open Questions,Generalisations and Future Re-
search

The careful reader might have noticed that this work has brought to the attention
some quite interesting results on some graphs but lacks of general results valid for very
general graphs. For the writing of this thesis, a quite powerful numerical tool, the quan-
tized_behavior_app, has been developed, but we must highlight that this tool only sim-
ulates the dynamics on special predefined graphs and can only value some solutions, not
every solution, in general. Without any doubt the numerical tool has helped to build
results about the existence of periodic solutions and has confirmed some converge prop-
erties presented in this chapter without leading to very general results though. This is
one direction of possible future research, looking for properties of the graph (number of
nodes, connectivity, completeness properties of sub-graphs) under which this field can be
extended. Throughout all the paper, the approach adopted has been a microscopic one,
as we have been following the individual nodes’ opinions trajectories. Another strategy
might be pursued: that of finding macro quantities (the mean opinion, the mean of two
opposite agents opinion in a cycle) which are preserved for instance. The thesis also has
not investigated the limits of the feasibility of the quantized model proposed: the reader
might argue under with circumstance the quantized model for social interactions can be
applied and, in the case, how to statistically predict the measures of interactions (the
aijs) between two nodes. There is not a lot in the literature of the field about this more
predictive aspect and it could be interesting investigating in that sense. Last but not least,
all these discontinuous dynamics, for example in the form (3.4), find many applications
in the branch of neural network and artificial intelligence which might exploit nonlinear
functions and discontinuous ones to train the networks in image recognition and data
pattern extraction, for example.

64



Bibliography

[1] R. Abelson. Mathematical models of the distribution of attitudes under controversy.
Contributions to Mathematical Psychology, Holt Rinehart Winston, pages 142–160,
1964.

[2] R. T. Anthon V. Proskurnikov. A Tutorial on Modeling and Analysis of Dynamic
Social Networks.Part I. 2017.

[3] F. Ceragioli and P. Frasca. Consensus and Disagreement: the Role of Quantized
Behaviors in Opinion Dynamics. Society for Industrial and Applied Mathematics,
2018.

[4] F. M. Ceragioli. Discontinuous ordinary differential equations and stabilization. Ph.
D. Thesis Pure and Applied Mathematics, pages 9–19, 2000.

[5] J. Cortés. Discontinous dynamical systems,a tutorial on solutions, nonsmooth analysis,
and stability. IEEE Control Syst., 28, 2008.

[6] M. D. Groot. Reaching a consensus. Journal of the American Statistical Association,
69:118–121, 1974.

[7] J. F. Jr. A formal theory on social power. Psychol. Rev. 63, pages 181–194, 1956.

[8] R. A. P. Chebotarev. Towards a mathematical theory of influence and attitude change.
Human Relations 21 (2), pages 121–139, 1968.

[9] W. P. Ziemer. Modern Real Analysis. Springer, 2017.

65


	Preliminaries
	Graphs
	Degree Matrix and Laplacian of a graph
	Degree Matrix and Laplacian of a graph (1)

	Properties and Theorems

	Opinion Dynamics over a graph: review of the classical models
	Discrete Dynamic over a graph: the French-DeGroot opinion pooling dynamics
	The DeGroot Dynamics

	Continuous Models
	Abelson Model

	Unreality of consensus: Generalisations of Abelson and Taylor's model
	Taylor's model: social cleavage and prejudices
	Prejudiced Agents
	Stability in Taylor's Model


	Discontinous Dynamics: Quantized Behaviour
	Introduction
	Generalised solutions for discontinuous ODEs
	Generalised Solutions
	Distributional Solutions
	Carathéodory Solutions
	Krasovskii Solutions
	Properties of solutions

	Equilibria
	Numerical Simulations
	The solve_dynamics and solve_dynamics_adams_bashforth functions
	Matlab Implementation
	The quantized dynamics app
	Some final considerations of the numeric approach

	Equilibria on specific Graphs
	Directed Line
	Carathéodory Equilibria
	Extended Equilibria
	Krasovskii Equilibria

	Undirected Line
	Carathéodory Equilibria

	Complete Graph
	Cycle Graph: solutions with periodic behavior
	The Dynamics on the Cycle Graph
	Proof that periodic Carathéodory solutions exist


	Convergence Results for quantized dynamics
	Main Convergence Results
	Convergence of the dynamics to a set

	Open Questions,Generalisations and Future Research


