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ABSTRACT 

Given the unquestionable urgency of predictive and quantitative urban organization theory 

and sustainable development, this dissertation aims to identify the power-law relationship 

between CO2 emissions and city size in terms of population in the Netherlands. The multiple 

regression analysis was conducted with cross-sectional data with respect to the year 2018. 

The results indicated a significant association between population size, income per capita, 

and carbon dioxide emissions in the Netherlands. The analysis revealed a nearly linear 

scaling behavior, with a 1 percent increase in population size associated with a 1.03 percent 

increase in CO2 emissions. It is also observed that there is a negative relationship between 

income per capita and CO2 emissions. The results do not display neither economies nor 

diseconomies of scale concerning population size and CO2 emissions.
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CHAPTER 1: INTRODUCTION 

1.1 Background 

	 As a result of rapid urbanization, climate change is accelerating the intensity of 

many of the consequences that are already present, towards the planet and for human 

settlements throughout the world (UN-Habitat, 2011). As a primary cause of climate change 

on Earth (Dodman, 2011; Ribeiro et al., 2019), carbon dioxide emissions in cities are 

affected  by a number of factors, including the local climate, urban form, population 

size, building density, technology, as well as average income or wealth (Mohajeri, 2015). 

Several studies have addressed the strong relationship between city size and carbon 

dioxide emissions (Fragkias et al., 2013; Gudipudi et al., 2016; Oliveira et al., 2014). 

Therefore, understanding how the size of a city influences emissions can provide insight 

into how the size of a city might be used as part of a bigger regional or national strategy to 

reduce emissions (Fragkias, 2013).


	 This dissertation proposes to contribute to the empirical literature on the urban 

scaling -power-law relation between carbon dioxide emissions and city population- in the 

case of the Netherlands. Moreover, the relationship between carbon dioxide emissions and 

average annual personal income, average household natural gas consumption, and average 

household electricity consumption will also be examined as control variables.


1.2 Problem Statement 

	 While rapid urbanization has driven innovation and socioeconomic growth, it has 

also resulted in several global issues, ranging from climate change and its implications for 

food, energy, water supply, public health, and the global economy (Bettencourt et al., 2010; 

Gudipudi et al., 2016). Despite occupying just 0.4-0.9 percent of the world's land surface, 

cities are responsible for more than 70% of emissions (Reckien et al., 2007; Ribeiro et al., 
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2019). CO2 emissions from urban consumption, both direct and indirect, have dominated 

global overall CO2 emissions, and rapidly rising urban CO2 emissions are one of the major 

factors for the rapid rise in global CO2 emissions (Cai et al., 2013; Dhakal, 2009; IEA, 2009; 

Satterthwaite, 2008; UN-Habitat, 2011). As a consequence, one of the major issues of the 

present is the sustainable management of urban areas across the world.


	 In addition to the previously addressed issue of rapid urbanization and rising carbon 

dioxide emissions, another issue is that existing literature debates the scaling behavior of 

carbon dioxide emissions and city size, and produces conflicting results. Some studies 

reveal sublinear relationships, whereas others demonstrate superlinear relationships. 

However, this research aims to indicate whether which of these scaling behaviors is valid for 

the Netherlands.


	 As it is pointed out by Bettencourt, the properties of contemporary urban systems in 

Europe are less studied than in other nations (2016). Likewise, literature on urban scaling is 

concentrated more on the United States, the United Kingdom, and China, while few studies 

conducted on European countries can be found. The empirical research on cities in the 

Netherlands seeks to contribute to the literature on urban scaling in European countries.


1.3 Research Questions and Objectives 

	 What is the relationship between carbon dioxide emissions and the city size in terms 

of population in the Netherlands?


	 While answering this research question, following objectives will be evaluated;


• To conduct a linear regression analysis, with relevant data of the Netherlands,


• To observe the relationship between carbon dioxide emissions and other 

independent variables,


• To compare the linear regression analysis from this study with the existing 

literature.  


2



1.4 Overview 

	 The first chapter provides an overview of the dissertation's background, problem 

statement, research questions, and objectives. The introduction chapter, as Chapter 2, is 

followed by background information on scaling, urban scaling, and multiple linear 

regression, which is the analysis method used in this research. Various studies from the 

relevant literature will be given in Chapter 3. Specifically, studies that result in different 

scaling behaviors will be introduced. Chapter 4 describes the data and methods used in the 

study, then the results and discussion will be indicated in Chapter 5. Chapter 5 will also 

identify limitations of the research. Finally, Chapter 6 outlines the conclusions of the 

analysis.
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CHAPTER 2: BACKGROUND 

2.1 Scaling/Allometry 

	 Scaling, or in other words, allometry, is an analytical framework that represents the 

relationship between properties of systems and measures of their sizes (Bettencourt et al., 

2020). Starting with biology, scaling successfully validates that size alone (body mass) 

provides satisfactory information to predict many characteristics, such as an animal’s 

lifespan, metabolism, and heart rate (Arcaute et al., 2013). It is noteworthy that these 

characteristics of biological organisms and more scale with body mass, M, as a power law. 

The exponent of the power law is typically a multiple of 1/4 which is expressed as 1/(d + 1) 

and d is the dimension. In order to clarify, if the metabolic rate, which is the power required 

to sustain the organism, B, scales as B M3/4, metabolic rate per unit mass decreases with 

body size as B/M M-1/4. Thus, this relationship fundamentally indicates that larger 

organisms consume less energy per unit time and per unit mass. Furthermore, in terms of 

almost all biological rates, times, and internal structure, the existence of such universal 

scaling laws may lead to the conclusion that mammals are scaled versions of one another 

and all scaled in a nonlinear, predictable way. For example, a gorilla is a scaled version of a 

mouse, an elephant is a scaled version of a gorilla, and so on (Bettencourt et al., 2007). 

Although scaling was originally introduced in the context of evolutionary theory to describe 

the correlation between relative dimensions of parts of body size (Oliveira et al., 2014), the 

use of scaling analysis as a method to reveal basic dynamics and structure has great 

importance for understanding problems across disciplines (Bettencourt et al., 2007, 2020). 

In recent decades, a perspective has emerged in disciplines as diverse as economics, 

geography, and complex systems -from equations of state for gases and liquids, to 

biological metabolism, to populations in ecology and anthropology, and to the properties of 

firms and cities- that proposes many properties of cities are quantitatively predictable due 

to agglomeration or scaling effects (Bettencourt et al., 2016, 2020). 


∝

∝

4



2.2 Urban Scaling/Allometry 

	 Cities are shaped by geographic, cultural, and political constraints as the result of 

complex social and economic dynamics (Arcaute et al., 2015). Therefore, each city has 

developed under unique geographical, political, and cultural aspects. Despite the 

heterogeneity of their historical development, certain characteristics that are common to all 

cities are recognizable regardless of their location, such as the fractality of cities, the Zipf 

distribution of city sizes, and population growth laws (Arcaute et al., 2013). In recent past, 

attempts to formalize these certain characteristics or assumptions mathematically have 

introduced the urban scaling hypothesis, which basically can be described as certain 

properties of all cities change with their size in a predictable scale-invariant way, on average 

(Bettencourt et al., 2013). The change in nonlinear properties of how cities work exhibits 

either sublinear behavior, meaning that quantities grow more slowly than city size, namely 

economies of scale, or superlinear behavior, meaning that quantities grow faster than city 

size, namely diseconomies of scale (Bettencourt et al., 2020). Consequently, as pointed out 

by sublunar or superlinear behavior, population city size alone as a characteristic of the 

urban system displays rates of innovation, income and employment, household electrical 

consumption, road surface area, and many others quantified by scaling laws. This 

quantitative understanding of human social organization and dynamics of cities that 

identifies urban scaling laws could be quite crucial to encourage managing current global 

challenges affecting cities, such as the impact of transport and industrial emissions on 

climate change, natural resource use, and the growth of urban poverty (Arcaute et al., 2013; 

Bettencourt et al., 2020).


2.3 Formalizing of Urban Scaling 

	 Any average functional quantity is the urban scaling’s requirement, which is Y as a 

scale invariant. The statement represents that 


Y (λN)/Y (N) = f(λ),
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where the function f(λ) does not depend on N, which is the population size, but does 

depend on the arbitrary relative population size, λ > 0. Despite the fact that this statement 

has not always been identified in a way that is a scaling relation, it has been adopted 

frequently for different disciplines. Likewise, based on many empirical studies, power law 

scaling relations are described mathematically 


Y(N)=Y0 Nβ,


as by verifying direct substitution (Arcaute et al., 2013; Bettencourt et al., 2007, 2013; 

Molinero et al., 2019). The scale of Y can be determined by the constants in N, Y0 and β. 

Specifically, the scale of Y can be explained as Y0 = Y (N = 1), and the relative increase in 

the rate of Y in terms of the rate of N , that is β = dt ln(Y )/dt ln(N ). Y can either stand for 

energy or infrastructure sources, wealth, patents, pollution, and more. Along with that, Y0 is 

normalization constant that is depends on time and differs from the subjected urban 

system. The exponent β is time-independent or slightly varying and display general 

dynamic rules. In particular urban systems, similar quantities displays similar exponent, β, 

values (Bettencourt et al., 2007, 2013).


2.4 Regression Analysis 

Regression is a statistical method that aims to analyze the relationship between 

variables. In most cases, the researcher is looking for the causal effect of one variable on 

another (Sykes, 1992). The variable of interest that is defined by the mathematical 

expressions is called the dependent variable and symbolized by y. As predictor or 

explanatory variables, other variables which are expected to provide information on the 

behavior of the dependent variable are included in the model. These variables are referred 

to as independent variables and are represented by x (Dickey, 1998).
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2.4.1 Multiple Regression Analysis 

	 Multiple regression is a technique that allows additional aspects to enter the analysis 

separately in order to evaluate each of their effects. It's useful for estimating the impact of 

various  effects on a single dependent variable (Sykes, 1992). Above all, the dependent 

variable y may be associated with a number of k independent or regressor variables which  

are referred as x (Montgomery, 2003). Multiple regression model is described by the given 

equation:


	 	 	 	 .


The parameters βj, j=0, 1…k, are called the regression coefficients. It indicates the linear 

dependence of the dependent variable y from the independent variable x. β0 is the constant 

term, which has the value of y when x is 0. The random variable u expresses the regression 

error and is described as the difference between the actual value of y and the predicted 

value of y (Montgomery, 2003).


2.5 OLS (Ordinary Least Squares) Assumptions 

	 As it is discussed by Osborne et al., the majority of statistical tests are based on 

particular assumptions about the variables used. If these assumptions are not met, the 

outcomes may not be reliable (2002). Thus, OLS assumptions must be held true to confirm 

that the multiple regression model is the best linear unbiased estimator.


	 2.5.1 Linearity


	 The linearity assumption refers that the regression model is linear in the coefficients 

and the error term. The relationship between dependent and independent variables can 

only be properly estimated using standard multiple regression if the relationships are linear 

in nature. The regression analysis results will miscalculate the true relationship if the 

relationship is not linear (Osborne, 2002).


y = β0 + β1x1 + β2x2 + . . . + βk xk + u
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	 2.5.2 Random Sampling


	 The dataset used to estimate the regression model must have been  randomly 

sampled from the population (Wooldridge, 2006). Because, there is a risk of introducing an 

unknown factor into the analysis if the sample is not random. Random sampling 

assumption also refers to the sample size, in other words, the observations, for the 

regression model should be larger than the number of parameters to be estimated.


	 2.5.3 Conditional Mean Zero 

	 The error term accounts for the variation in the  dependent variable  that 

the independent variables do not explain. The estimates that are generated from the model 

are unbiased and consistent if the error term for each observation, u, is drawn from a 

distribution that has a mean of zero, or in other words, the expected value of the error 

(Sykes, 1993).	


	 


	 2.5.4 No Perfect Collinearity 

	 There should be no exact linear relationships, namely correlations among the 

independent variables. The high level of correlation between several independent variables 

is called multicollinearity (Woolridge, 2006). Although multicollinearity of a moderate degree 

may not be considered as a problem, drastic multicollinearity can enhance coefficient 

estimate variance and cause them to be extremely sensitive to slight model modifications 

(Frost, 2013).


	 2.5.5 Homoscedasticity


	 The error variance must be the same across all levels of the independent variables. 

This situation is known as homoscedasticity. When the heteroscedasticity is high, the 

results of the analysis can be skewed significantly (Osborne, 2002). The assumption of 

homoscedasticity is fulfilled to determine model efficiency (Wooldridge, 2006). 
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2.6 The New Science of Cities 

	 Collecting and sharing data availability has started to grow with acceleration in 

recent past, and it provides crucial characteristics of cities, such as statistical patterns of 

land use, urban infrastructure, and rates of socioeconomic activity. Currently, improved and 

extended data availability is leading quantitative studies of urban systems to open the way 

to the new Science of Cities (Bettencourt, 2013; Bettencourt et al., 2013; Louf et al., 2014a, 

2014b). This science has the capacity to unite competing paradigms in the study of cities, 

enrich prevailing theories of city planning, and allow city planners to produce operational 

tools that lead to realistic city plans that will improve city dwellers’ way of living. It provides 

awareness of the city’s resource limits on urban density, sprawl and sustainability issues 

(Batty, 2008). To put it simply, depending on the scaling exponents, assuming that a city is 

predicted to double in size over the next decades, dozens of performance indicators, 

growth rates, infrastructure costs, etc. can be derived and proactively used in urban 

planning. Scaling laws offer apparent constraints on urban performance indicators and an 

opportunity to change at a particular level of growth (Molinero et al., 2019). Especially on 

the basis of the global urbanization that the world is facing currently, there is an undeniable 

urgency to predictive and quantitative urban organization theory and sustainable 

development. In light of the new Science of Cities, quantitative understanding of human 

social organization and dynamics in cities is a significant step directing progress towards 

sustainability (Batty, 2008; Bettencourt et al., 2007). 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CHAPTER 3: LITERATURE REVIEW 

3.1 Urbanization and Climate Change 

	 Between 1950 and 2018, the world's urban population more than quadrupled, from 

0.8 billion to 4.2 billion citizens. As a result, the world's population became increasingly 

urbanized between 1950 and 2018, with the percentage of people living in cities increasing 

from 30% in 1950 to 55% in 2018. Considering this accelerated urbanization, the world's 

population shifted for the very first time in 2007 from rural to urban. (Figure 3.1 

demonstrates the global urban population, while Figure 3.2 demonstrates the Dutch urban 

population.) The urbanization trend is projected to continue for decades, with an ever-

increasing percentage of the world's population living in cities. The world's urban 

population is projected to hit 5 billion in 2028 and 6 billion in 2041, indicating that 

urbanization will continue to grow. These patterns in urban and rural population growth 

rates, as well as the subsequent urban-rural population distribution, would undoubtedly 

10
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have profound consequences for the global economy, the environmental quality, and the 

kinds of lives that people will lead (United Nations, 2019).


	 As a result of rapid urbanization, climate change is accelerating the intensity of 

many of the consequences that are already present on the planet and for human 

settlements throughout the world (UN-Habitat, 2011). Carbon dioxide emissions are one of 

the primary causes of climate change on Earth (Dodman, 2011; Ribeiro et al., 2019). 

Despite occupying just 0.4-0.9 percent of the world's land surface, cities are responsible for 

more than 70% of emissions (Reckien et al., 2007; Ribeiro et al., 2019). Increasing global 

CO2 emissions are shown in Figure 3.3 between the years 1960 and 2018. The main source 

of atmospheric CO2 comes from the burning of fossil fuels. This fossil-fuel energy is used in 

transportation, building heating and cooling, and the manufacture of cement and other 

products, all of which are major activities in cities (UN-Habitat, 2011). Urban dwellers 

consume more per capita than rural dwellers (United Nations, 2019). Higher energy 

demands, related to higher living standards, such as higher income, smaller households, 
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bigger flats and houses, more spare time relative to working hours, changing economic 

mechanisms such as globalization, specialization in products and human labour, and a 

general rise in people's traffic radius, as well as exchange rates of goods and services, all 

contribute to the increased use of fossil fuels (Reckien et al., 2007). However, another 

perspective is that cities have the advantage of economies of scale (Fragkias et al., 2013). 

As such, due to their mass transportation systems, polycentric and dispersed cities may 

generate more pollution than compact and monocentric cities (Gaigné et al., 2012).


3.2 CO2 Emissions and City Size Relationship 

	 The role of urbanization in rising carbon dioxide emissions has primarily been 

studied by using scaling relationships or by focusing on the understanding of how 

population density affects CO2 emissions per capita (Ribeiro et al., 2019). The previous 

studies using the scaling hypothesis have investigated the relationship between city size, 
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population density and CO2 emissions (Fragkias et al., 2013; Glaeser et al., 2010; Gudipudi 

et al., 2016; Oliveira et al., 2014), as well as the relationship between city size, urban form, 

transport related energy consumption and CO2 emissions (Gudipudi et al., 2016; Louf et al., 

2014b; Mohajeri et al., 2015), also explored CO2 emissions in polycentric versus 

monocentric cities and their compactness and complexity (Makido et al., 2012).


	 Several studies differ significantly based on their findings. Some research, for 

example, concludes that larger cities are not more efficient than smaller ones (Makido et al., 

2012; Fragkias et al., 2013; Louf et al., 2014b; Mohajeri et al., 2015; Oliveira et al., 2014). 

Using administrative boundaries to define the area of cities, Fragkias et al. (2013) propose a 

linear relationship between city size and carbon dioxide emissions for large metropolitan 

areas in the United States. Initially, Fragkias et al. (2013) showed that a 1 percent increase 
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Source: doi:10.1371/journal.pone.0064727.g001 

Figure 3.4. Cross-sectional log-log regressions for years (A) 1999 and (B) 2008 



in population size is associated with a 0.93 percent increase in CO2 emissions in 2008. The 

population size coefficient shifts to 1.028 when a measure of population density and per 

capita personal income are included as control variables, indicating a fairly proportional 

effect for the same year. Figure 3.4 demonstrates the scaling behavior with a coefficient of 

0.93, whereas the first graph refers to 1999 and the second graph refers to 2008. 

Additionally, despite drawing the same conclusion that larger cities are not more efficient, 

Oliveira et al. (2014) reveal two distinct findings as a result of using different boundary 

definitions. While the City Clustering Algorithm (CCA) shows a superlinear scaling behavior 

(β=1.46) between CO2 emissions and the city population, the administrative boundaries 

(MSA) show a sublinear relationship between the two across all US cities. Furthermore, 

another research based on the findings of fifty Japanese cities by Makido et al. (2012) 

indicates that residential CO2 emissions per capita were negatively correlated with income 

and positively correlated with city size, whereas transport related CO2 emissions per capita 

were positively correlated with population density and compact and mono-centric 

settlement types. In contrast, Gudipudi et al. (2016) identifies a sublinear relationship 

between population density and total emissions, which includes both on road and building 

emissions on a per capita basis, as can be seen in Figure 3.5. The sublinear relationship is 

derived from the City Clustering Algorithm (CCA) and utilizes the gridded CO2 emissions 

data of all populated areas in the United States. As a consequence, with growing 

population density, emissions per capita tend to decrease. Another study that aims to 

demonstrate  carbon dioxide emissions related to new construction in multiple locations 

around the United States came to a similar conclusion. As stated by Glaeser et al. (2009), 

cities have considerably  reduced emissions than the suburbs. Along with that,  more 

populated cities have lower emissions, considering  emissions from driving, public 

transportation, house heating, and household electricity use.


	 Moreover, variations in outcomes can be found in previous studies that concentrate 

on fuel consumption, street network, congestion, and CO2 emissions. Despite polycentrism, 

diseconomies associated with congestion scale superlinearly with population size, results 

by Louf et al. (2014b) imply that cities are unsustainable as a result of traffic sensitive 
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transportation infrastructure. Thus, the quantity of CO2 emitted per capita increases as the 

size of the city increases. In addition, according to Mohajeri et al. (2015), the street network 

in a large city is more efficient compared to a small city, considering sublinear relationships 

between the number of streets, total length of streets, area covered by the street network 

and city size. Mohajeri et al. (2015), on the other hand, found  that fuel consumption and 

CO2 emissions have a linear relationship with city size and a superlinear relationship with 

total street length, taking into account that a greater portion of the street network in a large 

city is used at near-full capacity for a longer period of time than in a small city. In that case, 

large cities are likely to be less energy efficient and less sustainable than smaller ones.
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CHAPTER 4: METHODOLOGY 

4.1 Introduction 

	 The research  is conducted in order to determine primarily the relationship between 

carbon dioxide emissions and the city size in terms of population in the Netherlands. As a 

quantitative research method, multiple regression analysis is adopted with a cross-sectional 

data respect to year 2018. A descriptive dataset is used without intervening.


4.2 Data 

	 4.2.1 The Source and Units of Data 

	 The source of the population size, average personal income, average household 

natural gas consumption, average household electricity consumption data and the 

definitions of the urban agglomerations is the Netherlands Central Bureau of Statistics 

(CBS). CO2 emissions data is provided by the Emission Register Project of the Netherlands, 

which is in co-operation with. The data was obtained according to municipal redivisions. 


	 The CO2 emissions of each municipality are defined by the unit of kilograms 

concerning total CO2 emissions to the air. The income per capita data is described yearly 

and the unit is 1000 euros. It includes the total of income from employment, income from 

own business, insurance benefits and social security benefits (with the exception of child 

benefits and child-related budget). The average household natural gas consumption data 

has a unit of m3 and the average household electricity consumption data has a unit of kWh. 

The data provides  regional data by municipalities. The population size is obtained by 

regional totals respecting the administrative boundaries of municipalities. Lastly, the entire 

data used in multiple regression analysis is in reference to the year of 2018.


	 As specified previously, personal income, natural gas consumption, and electricity 

consumption data is adopted as average values. Although using data that consists of total 
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amounts increases the R square, therefore the reliability of the model, average values are 

used instead of total amounts. The reason is that using total amounts also increased 

correlation between independent variables considering a small amount of increase in R 

square of the model.


4.2.2 Administrative Divisions of the Netherlands 

	 There are 12 provinces in the Netherlands, each with its own size and population. 

The province of Utrecht is the smallest geographically, and the province of Flevoland has 

the smallest population, however it is rapidly rising. Cities are defined as municipalities in 

the Netherlands. The municipalities, namely ‘gemeenten’, which are subdivisions of their 

respective provinces, are the Netherlands' second-level administrative division. Figure 4.1 

shows provinces and municipalities of the Netherlands. A total of 380 municipalities 

form  the Netherlands. Neighboring municipalities combined over time as some policy and 

service areas demanded more administrative-organizational strength, thus, the number of 

municipalities have decreased. This  process is still in progress  that hasn't reached a 

standstill yet. Amsterdam is the most populous municipality around 800,000 inhabitants. 

Schiermonnikoog which is one of the islands along  the coast of the Netherlands, has the 

least number of inhabitants  with only 900 inhabitants (The Association of Netherlands 

Municipalities, 2020).


4.2.3 Dataset 

	 In total, 343 cities, namely municipalities have been used in this dissertation. 

Specifically, Het Hogeland, Westerkwartier, Noardeast-Fryslân, Meppel, West Betuwe, 

Vijfheerenlanden, Hoeksche Waard, Molenlanden, Alphen-Chaam, Altena, Beek, 

Beekdaelen, and Beesel are excluded from the study due to the absence of observations 

for each variables. The dataset includes variables of CO2 emissions, population size, 

income per capita, natural gas consumption, and electricity consumption. Number of 

observations, standard deviations, minimum, maximum, and mean values of the dataset  is 

indicated by the Table 4.2, Descriptive Statistics.
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Table 4.1. Operationalization of Variables

Variable Type Abbreviation Unit Definition

Carbon dioxide 
emissions 

Dependent 
variable CO2 kg

CO2 emissions of each municipality is 
defined by total CO2 emissions to the 
air from both stationary and mobile 
sources. Stationary sources include 
energy sector, industry, private 
households and other. Mobile sources 
include transportation. 

Population size Independent 
variable pop

number 
of 

person
s

Population size is defined in regional 
totals respected administrative 
boundaries of municipalities.

Income per 
capita

Independent 
variable inc 1000 

euros

Personal income includes the total of 
income from employment, own 
business, insurance benefits and 
social security benefits (with the 
exception of child benefit and child-
related budget). Income insurance 
premiums (with the exception of 
national insurance premiums) have 
been excluded. The target population 
includes all private households with 
known income.

Household 
natural gas 
consumption

Independent 
variable gas m3

Natural gas consumption is accounted 
as average annual consumption of 
natural gas from private homes. It is 
provided as regional data by 
municipalities. In the calculation of the 
average natural gas consumption, 
homes with very low or even zero 
consumption are included if there is 
district heating.


Household 
electricity 
consumption

Independent 
variable el kWh

Electricity consumption is accounted 
as average annual consumption of 
electricity from private homes. It is 
provided as regional data by 
municipalities.The own generation of 
electricity, for example with solar 
panels, is unknown and therefore not 
included in the average annual 
consumption. Collective consumption 
as lift installations or hall lighting are 
also not included in the calculation. 
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4.3 Analysis 

	 4.3.1 The Model 

	 The model has been used in order to estimate relationship between population size, 

income per capita, household natural gas consumption, household electricity consumption 

and CO2 emissions of the municipalities of the Netherlands is multiple regression with 

logarithmic functions. This model is represented by the following equation:


. (1)


The dependent variable in this equation is carbon dioxide emissions, and independent 

variables are population size, income per capita, household natural gas consumption, 

household electricity consumption consecutively.


	 4.3.2 OLS (Ordinary Least Squares) Assumptions 

	 After the model is determined, in order to effectively utilize the capabilities of OLS, a 

set of assumptions must be met (Wooldridge, 2006). OLS assumptions and their definitions 

are indicated in the Background Chapter. Before applying the method of OLS to the 

relevant set of data specified previously and estimating the model, these assumptions will 

Table 4.2. Descriptive Statistics

Variable Observati
ons

Min Max Standard Deviation Mean

Carbon dioxide 
emissions 343 6210590 30867700000 2041411899 460815336

Population size 343 936 862965 80103.92 50704.60

Income per 
capita 343 24900 56200 4352.03 32426.88

Natural gas 
consumption 343 370 2390 263.31 1438.44

Electricity 
consumption 343 2090 3900 340.28 3013.89

log(CO2) = β0 + β1 . log(pop) + β2 . log(inc) + β3 . log(gas) + β4 . log(el ) + u
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be satisfied; linearity, random sampling, conditional mean zero, no perfect collinearity and 

homoscedasticity. First, the linearity assumption should be met by examining residuals 

versus fitted values plot. Second, the random sampling assumption must be satisfied, 

whereas the dataset should not be intervened. Third, the residuals versus fitted values plot 

will be investigated once more to check if the assumption of conditional mean zero is held 

true. Next, a variance inflation factors (VIF) test will be performed to satisfy the no perfect 

collinearity assumption. Lastly, the homoscedasticity assumption must be met by reviewing 

the scale-location plot. Thus, when these assumptions hold true, the multiple regression 

model used in this dissertation will be the best linear unbiased estimator considering the 

relevant dataset. So that the regression analysis can produce reliable estimates.


	 4.3.3 Regression Analysis 

	 The method of OLS is applied to estimate the multiple regression model. After 

conducting the regression analysis for the complete observations, model estimates are 

achieved. The complete observations imply Netherland’s 343 municipalities and 

dataset  including CO2 emissions, population size, income per capita, natural gas 

consumption, and electricity consumption as variables for the year 2018. Further, the 

outliers of the dataset are detected. In order to detect outliers, the Residuals vs. Leverage 

plot is obtained. Then, by obtaining Cook’s Distance Bar Chart, outliers are displayed as 

how strongly they influence the regression considering their Cook’s distances. Outliers are 

observations that differ significantly from the overall pattern. Thus, excluding outliers from 

the data set would alter the regression results. Therefore, outliers are excluded from the 

regression analysis. Finally, regression analysis is also conducted without outliers and 

model estimates are presented once more.


	 4.3.4 Software 

	 For the regression analysis conducted on this thesis, RStudio software is used with 

the support of the central processing unit (CPU). The CPU of the computer 1.4GHz 
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Quadcore Intel Core i5. As the process does not require much memory, graphical 

processing unit (GPU) is not used for the analysis. In constructing the algorithm of the 

thesis, some libraries of RStudio software are utilized. These libraries include readxl, 

ggplot2 and car which helps to take raw input data from Microsoft Excel to RStudio, 

perform regression analysis and draw suitable graphical information to show the results of 

the analysis.
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CHAPTER 5: RESULTS & DISCUSSION 

5.1 The Model 

	 The multiple regression model allows examining the influence of relevant 

independent variables on CO2 emissions. As mentioned in the methodology section, the 

dissertation is focused on examining the relationship between CO2 emissions and 

population size in cities, or to put it in a way that is classified as in the Netherlands, 

municipalities. In order to analyze the relationship, the model is illustrated as: 


. (1)


Carbon dioxide emissions are the dependent variable in this equation, whereas population 

size, income per capita, household natural gas consumption, and household electricity 

consumption are the independent variables.


5.2 OLS (Ordinary Least Squares) Assumptions 

	 To obtain the best possible estimates from the model, the multiple regression model 

must satisfy certain assumptions that are also explained in Chapter 2: Background. The 

OLS estimators are unbiased under the first four Gauss-Markov assumptions, which are 

linearity, random sampling, no perfect collinearity, and zero conditional mean. As a 

consequence, including an irrelevant variable in a model has no effect on the unbiasedness 

of the intercept and other slope estimators. In addition, the first four were used to prove 

OLS' unbiasedness, while the fifth, homoscedasticity, was added to conclude that OLS is 

the best linear unbiased estimator (Wooldridge, 2006). The following are the steps to verify 

whether these assumptions hold true. 


	 The first assumption to satisfy is ‘linearity’. In a more comprehensive meaning, the 

regression model is linear in the coefficients and the error term. The Residuals vs fitted plot 

log(CO2) = β0 + β1 . log(pop) + β2 . log(inc) + β3 . log(gas) + β4 . log(el ) + u
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shows the variability of the residual values with fitted values (predictor variables) as shown 

in Figure 5.1. An ideal plot should be symmetrically distributed and tend to cluster towards 

the middle of the plot. The more linear the relationship is, the better the predictive value is. 

In Figure 5.1, the red line which shows the average value of the residuals at each value of 

fitted value is nearly flat. Therefore, there is no distinct non-linear trend to the residuals. 

Although positive values for the residuals are slightly more prominent than negative ones, it 

does not violate overall symmetry and the cluster in the middle of the plot is 

distinguishable. As a result, the regression model is linear in the coefficients and the error 

term. Thus, the linearity assumption is satisfied.


	 Second, the ‘random sampling’ assumption needs to be fulfilled for the model to be 

unbiased. Essentially, the data must have been randomly sampled from the population. The 

collection of data is based on a full sample of the municipalities of the Netherlands. As it is 
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‘y’ indicates carbon dioxide emissions. ‘x1’, ‘x2’, ‘x3’, ‘x4’ demonstrate population size,  income per 
capita, household natural gas consumption, household electricity consumption, consecutively.

Figure 5.1. Residuals vs Fitted Plot



explained in Chapter 4: Methodology, only 13 municipalities were excluded from the study 

due to lack of data. The remaining 343 municipalities are included without any selection in 

the dataset. Consequently, the random sampling assumption can be considered satisfied.


	 The third assumption is ‘conditional mean zero’. In order to assume that the error 

term has a conditional mean of zero, the residuals versus fitted values plot should 

demonstrate a systematic deviations of symmetry around the horizontal line of zero. As it is 

also demonstrated in Figure 5.1, although there is no absolute symmetry between above 

and below the horizontal line zero, a distinctive asymmetry is not indicated by the plot. 

Residuals are clustered around the middle of the plot as an ideal residuals versus fitted 

values plot would demonstrate that it is also explained for the linearity assumption. No 

matter which value is chosen for the independent variables, the error term does not address 

a predictable error term. Consequently, the assumption that the error term has a conditional 

mean of zero is fulfilled.
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‘y’ indicates carbon dioxide emissions. ‘x1’, ‘x2’, ‘x3’, ‘x4’ demonstrate population size,  income per 
capita, household natural gas consumption, household electricity consumption, consecutively.

Figure 5.2. Scale-Location Plot



	 The next assumption to satisfy is ‘no perfect collinearity’, to put it another way, no 

independent variable is a perfect linear function of other explanatory variables. 

Multicollinearity occurs when one or more independent variable are a perfect linear function 

of other explanatory variables. In order to confirm that, variance inflation factors (VIF) test is 

performed. The numerical value of VIF expresses how much of the variance coefficient is 

being inflated due to multicollinearity. Considering, VIF test value 1 defines no correlation, 

and 5 defines moderate correlation. According to the test results, the test values are 

1.281579, 1.060450, 1.480427, and 1.480301 for each independent variable. The model 

shows that there is an insignificant amount of correlation. Consequently, analysis shows 

that there is no multicollinearity. The fourth assumption is also met, thus, the model is 

unbiased.


	 The last assumption to satisfy and to confirm that the model produces the best 

linear unbiased estimates is ‘homoscedasticity’, or ‘ the error term has a constant variance’. 

The error variance must be the same across all levels of the independent variables, 

because uneven variances may result in biased and skewed results. The scale-location plot 

demonstrates the standardized values of the model would predict against standardized 

residuals obtained. As displayed in Figure 5.2, the  red line is approximately horizontal. 

Then, the spread of the residuals is roughly equal at all fitted values. Also, there is no clear 

pattern among residuals, meaning that residuals are randomly distributed around the red 

line. Although the plot shows some outliers around the cluster, the outliers are not causing 

heteroscedasticity. Therefore, the assumption of  homoscedasticity  is satisfied for the 

multiple regression model.


	 The four Gauss-Markov assumptions (linearity, random sampling, no perfect 

collinearity,  and zero conditional mean) are satisfied and unbiasedness is established. 

Then, assumption of homoscedasticity is also fulfilled to determine model efficiency. As a 

consequence, the multiple regression model is the best linear unbiased estimator.


26



5.3 Regression Analysis 

	 The method of OLS is applied to estimate the multiple regression model. Based on 

the Netherland’s 2018 data consist of 343 municipalities and the model developed as 

Equation (1), Table 5.1 presents the relevant multiple regression results. As it is 

demonstrated by the Table 5.1, the model is obtained the R-squared value of 0.6254 and 

adjusted R-squared value of 0.6210. When the exact model is conducted on the dataset 

with outliers removed, the outcome is shown in Table 5.3, with an R-squared value of 

0.6237 and an adjusted R-squared value of 0.6192. Additionally, two of the variables which 

are household natural gas consumption and household electricity consumption are not 

statistically significant conforming to p-values of 0.09 and 0.52 respectively. In contrast, the 

population size and income per capita independent variables are statistically significant as it 

is indicated by the significance levels in Table 5.1 Further, coefficients of the variables will 

be interpreted in discussion part.
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Table 5.1. Multiple Regression Results. Dependent variable: Carbon dioxide 
Emissions

Independent Variables

Intercept 12.13**

(3.89)

log(pop) 1.03***

(0.05)

log(inc) -0.75*

(0.30)

log(gas) 0.27

(0.21)

log(el) 0.25

(0.38)

Observations 343

R-squared 0.6254

Adjusted R-squared 0.6210

Note: Standard errors are reported in parentheses. *, **, *** indicates significance levels. ⁎ p < 
0.05. ⁎⁎ p < 0.01. ⁎⁎⁎ p < 0.001.  
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Table 5.2. Analysis of Variance, Dependent variable: log(CO2)

Df Sum Sq Mean Sq F-value p-value

log(pop) 1 236.43 236.43 555.37 < 2e-16 ***

log(inc) 1 2.39 2.39 5.61 0.02 *

log(gas) 1 1.24 1.24 2.92 0.09 .

log(el) 1 0.18 0.18 0.42 0.52

Residuals 338 143.89 0.43

⁎ p < 0.05. ⁎⁎ p < 0.01. ⁎⁎⁎ p < 0.001.  
Df: degree of freedom, Sum Sq: sum of square, Mean Sq: mean square.

‘y’ indicates carbon dioxide emissions. ‘log(x1)’ demonstrates population size and ‘log(x2)’ 
demonstrates income per capita which are the two statistically significant independent variables.

Figure 5.3 3d Scatter Plot



5.4 Outliers 

	 Outliers are observations in which the observed dependent value deviates from the 

overall trend given  the independent value. If the residual for that observation is large, it 

influences the line and draws the line towards itself. The high-leverage observation will pull 

the regression line towards it. Figure 5.4 demonstrates the ‘Residuals vs. Leverage’ plot, 

Cook’s distance is also indicated. Although Figure 5.4 displays the outliers, it is evident 

from Figure 5.5, which is a Cook's bar chart, the outliers are observations with the numbers 

82, 230, and 245. These outliers are the cities (municipalities) of Druten, Pijnacker-

Nootdorp, and Roosendal. Excluding outliers from the data set would alter the regression 

results. Therefore, regression analysis is also conducted without the outliers. Multiple 

regression analysis without outliers is resulted as Table 5.3. Coefficients of population size, 

income per capita and natural gas consumption remained constant. Coefficients of 

intercept is slightly increased from 12.13 to 12.20 and electricity consumption is slightly 

decreased from 0.25 to 0.24. Furthermore, a hardly noticeable change is also occurred in R- 

squared and adjusted R-squared. Table 5.5 reveals variations in the model evaluation of 

both model with and without outliers.
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‘y’ indicates carbon dioxide emissions. ‘x1’, ‘x2’, ‘x3’, ‘x4’ demonstrate population size,  income per 
capita, household natural gas consumption, household electricity consumption, consecutively.

Figure 5.4. Residuals vs Leverage plot
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‘y’ indicates carbon dioxide emissions. ‘x1’, ‘x2’, ‘x3’, ‘x4’ demonstrate population size,  
income per capita, household natural gas consumption, household electricity consumption, 
consecutively.

Figure 5.5. Cook’s Distance Bar Chart

Table 5.3. Multiple Regression Results without outliers. Dependent variable: 
Carbon dioxide Emissions

Independent Variables

Intercept 12.20**

(3.91)

log(pop) 1.03***

(0.05)

log(inc) -0.75*

(0.30)

log(gas) 0.27

(0.21)

log(el) 0.24

(0.39)

Observations 340

R-squared 0.6237

Adjusted R-squared 0.6192

Note: Standard errors are reported in parentheses. *, **, *** indicates significance levels. ⁎ p < 
0.05. ⁎⁎ p < 0.01. ⁎⁎⁎ p < 0.001.  



	 In order to prevent the effect of observations that inconsistent with the dataset, 

outliers are eliminated. After eliminating the outliers, the model is determined as following 

equation: 


.  (2)


                       (3.91)        (0.05)	      (0.30)                   (0.21)                   (0.39)   


                             


Dependent and independent variables are the same as explained in the previous equation: 

Carbon dioxide emissions are the dependent variable in this equation, whereas population 

size, average yearly personal income, average household natural gas consumption, and 

average household electricity consumption are the independent variables.


log(CO2) = 12.20 + 1.03.log(pop) − 0.75.log(inc) + 0.27log(gas) + 0.24log(el ) + u
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Table 5.4. Analysis of Variance without outliers, Dependent variable: log(CO2)

Df Sum Sq Mean Sq F-value p-value

log(pop) 1 236.92 236.92 546.40 < 2e-16 ***

log(inc) 1 2.36 2.36 5.50 0.02 *

log(gas) 1 1.24 1.24 2.89 0.09 .

log(el) 1 0.16 0.16 0.39 0.53

Residuals 338 143.64 0.43

⁎ p < 0.05. ⁎⁎ p < 0.01. ⁎⁎⁎ p < 0.001.  
Df: degree of freedom, Sum Sq: sum of square, Mean Sq: mean square.

Table 5.5. Model Evaluation

Residual 
standard 

error

Multiple R-
squared

Adjusted R-
squared F-statistic p-value

Model (1) 0.6525 0.6254 0.6210 141.1 < 2.2e-16

Model (2) 0.6548 0.6237 0.6192 138.8 < 2.2e-16

Model (1) substitutes the model with the outliers, model (2) substitutes the model without the outliers.



5.5 Preliminary Model & Discussion of Functional Form 

	 As a preliminary analysis, multiple regression has been performed by following the 

same procedure as discussed previously without logarithmic functions. However, the 

preliminary model could only explain 41% of the data. Therefore, it was not sufficient to 

explain the relevant correlation between independent and dependent variables. In order to 

linearize the model, logarithms of both sides of the existing equation have been taken, and 

Equation (1) has been achieved as the model of the analysis. In a regression model, 

logarithmically transforming variables is a frequent approach to dealing with situations 

where the independent and dependent variables have a non-linear relationship (Benoit, 

2011). By transforming the distribution, logarithmically transformed variables enhance the fit 

of the model. Therefore, an improved adjusted R-squared is obtained and Equation (2) is 

decided as the final model of the regression analysis.


5.6 Discussion 

	 After conducting the multiple regression analysis for the model that was finalized by 

excluding the outliers, population size and income per capita is found to be statistically 

significant. The R-squared value indicates how well the model fits the actual data. The R-

squared of the final model is 0.6237. However, the R-squared always increases when more 

variables are included to the model in multiple regression analysis (Wooldridge, 2006). Thus, 

the preferable measure is adjusted R-squared in this dissertation, to eliminate the variable 

dependency. The adjusted R-squared value that is obtained by the multiple regression 

analysis is 0.6192. Therefore, approximately 62% of the variance found in the dependent 

variable of carbon dioxide emissions can be explained by the independent variables. 

Several studies that are reviewed in chapter 2 have also found similar R-squared values. To 

illustrate, Fragkias et al. (2013) estimate R-squared values   ranging from 0.67 to 0.68 each 

ten years by using metropolitan statistical areas, Glaeser et al. (2010) estimate R-squared 

as 0.41, Gudipudi et al. (2016) find values ranging from 0.6 to 0.71 with different datasets 

and different threshold distances for the city clustering algorithm, and Oliveira et al. (2014) 
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obtain an R-squared value of 0.76. Given that similar R-squared values have been obtained 

in previous studies, the adjusted R-squared of the model used in this dissertation can be 

considered respectable.


	 As it is stated in Table 5.3, income per capita has a p-value of 0.02. A p-value is a 

measure that expresses the probability that observations may have occurred by chance. 

When the p-value is less than 0.05, it is considered statistically significant. As a 

consequence, the probability of observations of income per capita happening by chance is 

2% which is considered to be a relatively low probability and it is statistically significant. 

The scaling coefficient of income per capita is -0.75. The scaling coefficient can be 

described as elasticity (Fragkias, 2013), with a 1% increase in income per capita resulting in 

a 0.75% decrease in carbon dioxide emissions. Despite the expected outcome based on 

previous studies, income per capita obtained a negative correlation with carbon dioxide 

emissions. Büchs et al. (2013) conclude that a 1% increase in equivalised income is 
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A 1% increase in income per capita results a 0.75% decrease in carbon 
dioxide emissions.

Figure 5.6. log-log Regression of Income per Capita and CO2 
Emissions



associated with a 0.6% increase in total emissions. Similarly, Fragkias et al. (2013) indicates 

a 1% increase in personal income relates to 0.36% increase in total carbon dioxide 

emissions in the US. Another study by Hang et al. (2011) confirm that income has a positive 

effect on carbon dioxide emissions in China. On the contrary, a negative correlation 

between income and CO2 emissions also exists in the literature. To clarify, while analyzing 

relationship between urban form and CO2 emissions, Makido et al. (2012) obtain for the 

residential sector, income has negative effects on per capita CO2 emissions. Further, Gill et 

al. (2018) identify the scaling coefficient of disposable income as -0.488 with a high 

significance level in a regression analysis on direct GHG emissions per capita in the UK. Gill 

et al. (2018) use the concept of suburbanization to explain why there is a negative 

correlation. Regarding the concept of suburbanization and higher income per capita in the 

suburbs of larger cities in the Netherlands, the negative correlation in this study is also 

justifiable.
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The intensity of labour-intensive industries by municipalities in the Netherlands is shown in the figure. 
Colors from red to blue represents very high, high, average, low, very low. 
Source: LISA (2009), http://www.lisa.nl/

Figure 5.7. Share of Labour-intensive Industries by Municipalities, 2009



	 Increasing incomes may lead to an increase in consumption in the cities (Gill et al., 

2018; Munksgaard et al., 2000). Alternatively, larger incomes earned in cities are not always 

spent in the city. People may choose to live in smaller municipalities located some distance 

from the city center if commuting is simple and comfortable. This phenomenon is known as 

suburbanization (Gill et al., 2018; Siedentop, 2008). Wealthier people may prefer a suburban 

lifestyle since it allows them to live in single-family dwellings with better opportunities. 

Although incomes in consumer surveys are assigned to households' locations of residence 

rather than the place where they are generated, it is expected that higher incomes in 

wealthy suburbs rather than in the cities themselves under conditions of strong 

suburbanization (Gill et al., 2018). According to 2018 data of the Netherlands, Wassenaar, 

Bloemendaal, Blaricum, and Laren have the highest income per capita with 59.2, 56.2, 53 

and 52.6 thousand euros respectively. Wassenaar is considered as suburb of The Hague 

(’s‑Gravenhage). Bloemendaal is in the same province as Amsterdam, with a close location. 

Blaricum and Laren are the suburbs of the Amsterdam metropolitan area. Considering the 

suburbs of the randstads have the highest income per capita and the randstads -the four 

largest Dutch cities, which are Amsterdam,  Rotterdam,  The Hague  and  Utrecht- have 

relatively large CO2   emissions, the case of a negative correlation between income per 

capita and CO2  emissions is reasonable.


	 Further, the share of labour-intensive industries by municipalities in the Netherlands 

is shown in Figure 5.7 for the year 2009. (Share in knowledge-intensive and capital-

intensive industries by municipalities is found in Appendix B) According to the 

municipalities, their share of the industry sector is ‘very high’ (labour-intensive, knowledge-

intensive, and capital-intensive), their potential economic base is considered industry in this 

dissertation. The category of very high intensity strongly varied between the minimum and 

the mean of income per capita. The lowest income per capita belongs to the municipality of 

Pekela with 24.9 thousand euros and, the mean is approximately 32.4 thousand euros, as is 

indicated by Table 4.2, Descriptive Statistics. Especially, the nether portion of the poorer 

municipalities is dominated by labour-intensive industry. In contrast, after the mean 

threshold, industry as a potential economic base is rarely encountered until the maximum 
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value of income per capita. This situation has strongly prevailed between income per capita 

of 36 thousand euros and 59.2 thousand euros, which is the municipality of Wassenaar with 

the highest income per capita of the country. Accordingly, lower income per capita could be 

associated to industry concentrated municipalities. Dodman indicates that, whether it is 

primarily industrial or service-oriented, greenhouse gas emissions can be associated with 

different sectors that reflect the economic base of different cities (2011). Assuming poorer 

municipalities’ potential economic base is industry, the negative correlation between 

income per capita and CO2 emissions is reasonable.


	 The next independent variable that is highly significant is population size. It has a p-

value smaller than 2e-16, which is significantly lower than 0.001. Thus, the probability of 

observations of population size happening by chance is greatly close to zero. Further, the 

power-law relationship between carbon dioxide emissions and population size represents a 
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A 1% increase in population size results a 1.03% increase in carbon dioxide 
emissions.

Figure 5.8. log-log Regression of Population size and CO2 
Emissions



positive correlation according to the scaling coefficient. The scaling coefficient of 

population size is 1.03. This suggests that a 1% increase in population size is associated 

with a 1.03% increase in CO2 emissions. The regression results indicate an almost 

proportional relationship between population size and carbon dioxide emissions. Hence, 

larger municipalities in terms of population size are insignificantly more emissions efficient 

than smaller municipalities due to the coefficient of 1.03 is slightly bigger than one (one 

indicates linearity). In fact, the scaling coefficient is greatly close to one, the scaling 

behavior can be considered as linear. The change in nonlinear properties of how cities work 

exhibits either sublinear behavior, meaning that quantities grow more slowly than city size, 

or superlinear behavior, meaning that quantities grow faster than city size (Bettencourt et 

al., 2020). Whereas sublinearity indicates the presence of economies of scale, superlinearity 

indicates the presence of increasing returns to scale. In the case of the Netherlands, with 

regard to city size and CO2 emissions, it can be interpreted that there is no considerable 

amount of economies of scale, likewise, no diseconomies of scale. 


	 As noted in Chapter 2: Literature Review, on the basis of their conclusions and 

scaling coefficients, numerous studies vary considerably. As a result of adopting differing 

boundary definitions, Oliveira et al. (2014) discovered two separate findings. While the City 

Clustering Algorithm demonstrates a superlinear scaling behavior between CO2 emissions 

and city population across all US cities with a scaling coefficient of 1.38, the administrative 

boundaries (MSA) show a sublinear relationship with a scaling coefficient of 0.92. Oliveira et 

al. (2014) draw the conclusion that larger cities are not more efficient as a result of their 

study. Alternatively, another study that uses a model to analyze the relationship between 

CO2 emissions, economic scale, technology, income, and the population in China by Hang 

et al. obtains the scaling coefficient of population as 0.9 (2011). While the population has a 

positive effect on CO2 emissions, the coefficient indicates a sublinear relationship between 

the population and CO2 emissions in China. Admittedly, neither sublinear nor superlinear 

scaling behaviors, as reported by Oliveira et al. (2014) and Hang et al. (2011), coincide with 

the population size coefficient obtained in this dissertation, despite the fact that 

administrative boundaries are adopted in those studies as the boundary unit. Considering 
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countries across the globe have distinct geographical, political, socioeconomic, and 

sociocultural contexts, relative contrasting results might be reasonable. However, according 

to the majority of existing literature, including previous studies cited above, the scaling 

behavior of the population size and CO2 emissions in the case of the Netherlands meet 

neither of the both contrasting expected outcomes. 


	 Nonetheless, the population findings of Fragkias et al. (2013) in their study 

correspond to the findings of this dissertation. Their study is conducted in the United States 

and 366 metropolitan statistical areas and 576 micropolitan areas are adopted. First, they 

describe that a 1% increase in population size is related with slightly sublinear increase in 

CO2 emissions of 0.93% for the year of 2008. Then, by including a measure of population 

density and per capita personal income as control variables, the population size coefficient 

shifts to 1.028, which displays a quite proportional effect for the same year. According to 

the outcomes of Fragkias et al. (2013), coefficients varied from 1.02–1.03 throughout all the 

years in their analysis. Thus, it can be seen that the effect of the population size on carbon 

dioxide emissions in the Netherlands is significantly parallel to the study of Fragkias et al. 

(2013), with the coefficient of 1.03. CO2 emissions are determined by the carbon intensity of 

the energy source as well as demand drivers for fossil fuels, therefore, linear scaling of CO2 

emissions and population size can be justified by several possible explanations (Fragkias et 

al., 2013). Such as, larger cities might underperform in their capacity to control demand for 

fossil fuels compared to smaller cities. Or, citizens in larger cities may not be motivated 

through urban form or energy prices  to request lower fossil fuel amounts in their energy 

supply. Likewise, another possible explanation is that, despite larger cities tend to be more 

innovative than smaller ones, they may struggle to integrate eco-innovations into local fossil 

fuel markets. Although the findings in this dissertation are not detailed enough to prove 

these possible explanations’ accuracy, these assumptions seem to be well-grounded and 

can not be disregarded also for the Netherlands.


	 Lastly, household natural gas consumption and household electricity consumption 

have p-values of 0.09 and 0.53 respectively. As it was discussed previously, when the p-

value is more than 0.05, the variable is not statistically significant. Both p-values are bigger 
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than the significance level of 0.05. Therefore, these independent variables can not be 

considered statistically significant. Accordingly, household natural gas consumption and 

household electricity consumption do not contribute to the variation in CO2 emissions. In 

other words, considering these independent variables to explain the relationship with CO2 

emissions is not compatible to the regression analysis.


	 The findings presented here should be viewed in the context of the limitations. The 

dissertation has some limitations that could be addressed in future research. The primary 

limitation is access to other possible independent variables. In order to use the same 

boundary unit for the municipalities, data is taken from the same source, which is the 

Netherlands Central Bureau of Statistics (CBS). Although possible related data as 

independent variables has been used, additional variables could be used to better explain 

the model and investigate the relationships. As an example, to confirm the possible reasons 

to explain scaling behavior of population size and CO2 emissions indicated through the 

discussion part, fossil fuel consumption and energy prices may be included in the study. 

Further, the industrial sector as the potential economic base of some municipalities has 

been considered for the possible reason of the negative correlation between income per 

capita and CO2 emissions. Not only to discuss possible reasons behind the negative 

correlation, but to investigate their empirical relationship and to better explain the 

association, the level of industry in the municipalities may be included in the study as an 

independent variable. 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CHAPTER 6: CONCLUSION 

	 Cities are responsible for more than 70% of global emissions while occupying only 

0.4-0.9 percent of the land surface (Reckien et al., 2007; Ribeiro et al., 2019). CO2 

emissions from urban consumption have dominated global total emissions, and rapidly 

rising urban CO2 emissions are one of the primary causes of the exponential rise in global 

levels (Cai et al., 2013; Dhakal, 2009; IEA, 2009; Satterthwaite, 2008; UN-Habitat, 2011). In 

light of the undeniable urgency of predictive and quantitative urban organization theory and 

sustainable development, this dissertation is conducted to primarily identify the power law 

relationship between CO2 emissions and the city size in terms of population in the 

Netherlands. 


	 In order to perform this research, a multiple regression model is conducted. This 

model is obtained by using population size, income per capita, household natural gas 

consumption, and household electricity consumption as independent variables to find their 

relationship with CO2 emissions. Moreover, before applying the method of OLS to estimate 

the multiple regression model, linearity, random sampling, conditional mean zero, no perfect 

collinearity and homoscedasticity assumptions are held true. This yields that the model is 

applicable to the relevant set of data of the Netherlands. 


	 Regression analysis is conducted both on entire observations and on observations 

without outliers. Although there were no significant differences, the model that had no 

outliers is chosen (Model (2)) to create an altered version of regression analysis. 

Consequently, approximately 62% of the variance found in the dependent variable of 

carbon dioxide emissions can be explained by the independent variables, whereas the 

model has produced respectable results.


	 The results of regression analysis indicated a significant association between 

population size, income per capita and carbon dioxide emissions in the Netherlands. The 

city size, in terms of population, and CO2 emissions are positively correlated. A 1% increase 

in population size is associated with a 1.03% increase in CO2 emissions. Despite the 
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expected outcome, the analysis presented almost a linear relationship, indicating that there 

is neither a considerable amount of economies nor diseconomies of scale. Therefore, in the 

case of the Netherlands, it is not conceivable to suggest a carbon dioxide efficiency with 

regard to the city size. Furthermore, it is also found that there is a negative correlation 

between income per capita and CO2 emissions. A 1% increase in income per capita 

resulted in a 0.75% decrease in carbon dioxide emissions. The possible reasons for the 

negative correlation are specified as the concept of suburbanization and the association 

between poorer municipalities with industry as their potential economic base. Moreover, 

household natural gas consumption and electricity consumption are not found to be 

statistically significant. For this reason, the regression analysis did not allow these 

independent factors to be used to explain their association with CO2 emissions.


	 In conclusion, population size and income per capita are crucial determinants of 

carbon dioxide emissions in the Netherlands. Despite the fact that the results do not display 

economies or diseconomies of scale concerning population size and CO2 emissions, 

population size still affects the rise of CO2 emissions. Thus, the decision makers’ obligation 

to develop strategies for low carbon municipalities remains highly critical.
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Appendix A: The Netherlands 2018 dataset 

The table displays the dataset used in multiple regression analysis, consists of 343 
observations including outliers.


Municipalities CO2 
emissions

Population 
size

Income per 
capita

Natural gas 
consumption

Electricity 
consumption

s-Gravenhage 1526100000 537833 33700 1060 2400

s-Hertogenbosch 704170000 154205 34300 1220 2910

Aa en Hunze 238274000 25386 31800 1900 3140

Aalsmeer 139972000 31728 36800 1410 3130

Aalten 106363000 27011 28000 1480 2810

Achtkarspelen 129780000 27852 26200 1630 2660

Alblasserdam 92290700 20069 31600 1260 3110

Albrandswaard 88849600 25271 40100 1200 2530

Alkmaar 1392510000 108558 31900 1350 2770

Almelo 358848000 72849 27300 450 2940

Almere 528369000 207904 32700 1230 2840

Alphen aan den Rijn 328472000 110986 34000 1800 3700

Ameland 18340400 3673 27800 1130 2740

Amersfoort 566647000 156286 36000 1210 2780

Amstelveen 292189000 90838 42008 870 2090

Amsterdam 7934430000 862965 36600 1390 2790

Apeldoorn 862201000 162445 31800 1430 2440

Appingedam 41677600 11721 27400 1110 2440

Arnhem 732554000 159265 30400 1340 2570

Assen 246636000 67963 30100 1600 3550

Asten 214488000 16710 30400 1760 3530

Baarle-Nassau 39761900 6847 29700 1570 2860

Baarn 118288000 24767 38700 1130 3230

Barendrecht 206384000 48673 38000 1540 3180

Barneveld 517700000 57971 31500 1600 3070

Beemster 113963000 9748 36300 1460 3250

Berg en Dal 166597000 34773 30700 1510 2990

Bergeijk 89166100 18491 31800 1710 3630

Bergen (L.) 101419000 13140 28400 1620 3540
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Bergen (NH.) 100628000 29974 36800 1680 2890

Bergen op Zoom 645062000 66811 31200 1240 2930

Berkelland 258768000 43904 28600 1610 2910

Bernheze 219641000 30806 31600 1640 3650

Best 162337000 29821 34800 1440 3330

Beuningen 488387000 25882 32700 1430 3120

Beverwijk 162928000 41176 31500 1200 2590

Bladel 110742000 20175 31100 1530 3380

Blaricum 51836000 11202 53000 2090 3900

Bloemendaal 69292000 23410 56200 2080 3520
Bodegraven-
Reeuwijk 233962000 34462 35200 1420 3080

Boekel 54075800 10588 29500 1670 3690

Borger-Odoorn 141887000 25372 28800 1880 3150

Borne 89178800 23210 32200 1440 3140

Borsele 1790620000 22800 31000 1390 2760

Boxmeer 239942000 29065 30800 1540 3320

Boxtel 188651000 30747 31500 1400 3060

Breda 845635000 183873 34100 1040 2880

Brielle 108184000 17182 37200 1270 3100

Bronckhorst 247868000 36212 30200 1760 3200

Brummen 312712000 20698 30800 1580 2900

Brunssum 104929000 28103 27600 1350 2850

Bunnik 108414000 15192 39000 1520 3090

Bunschoten 73850500 21576 31600 1450 3470

Buren 115934000 26568 33800 1770 3460
Capelle aan den 
IJssel 168180000 66818 32500 790 2820

Castricum 112422000 35772 36300 1490 2770

Coevorden 212392000 35483 29000 1720 3100

Cranendonck 131828000 20440 31300 1660 3510

Cuijk 298878000 24931 29600 1420 3070

Culemborg 92128400 28555 33500 1130 2650

Dalfsen 133448000 28499 30800 1690 3180

Dantumadiel 64564800 18923 26300 1650 2560

De Bilt 208145000 42824 41700 1640 3130
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De Fryske Marren 320811000 51430 29800 1520 2690

De Ronde Venen 228938000 44059 38500 1500 3250

De Wolden 165029000 24110 30800 1850 3250

Delft 369761000 103163 30100 950 2420

Delfzijl 2106390000 24716 27700 1560 2550

Den Helder 176479000 55604 29000 1270 2400

Deurne 226384000 32362 30100 1590 3450

Deventer 412233000 99957 30500 1200 2680

Diemen 1334150000 29196 33300 970 2660

Dinkelland 134886000 26350 29700 1890 3590

Doesburg 31702000 11148 28700 1260 2710

Doetinchem 245992000 57555 29600 1350 2760

Dongen 187231000 26051 31600 1390 3260

Dordrecht 997980000 118654 31400 1160 2640

Drechterland 77405000 19597 31100 1560 3000

Drimmelen 181563000 27150 32700 1480 3260

Dronten 288673000 40815 30900 1330 2820

Druten 104924000 18797 31300 1460 3120

Duiven 678537000 25332 31500 570 3020

Echt-Susteren 210790000 31638 30800 1620 3250

Edam-Volendam 115019000 36099 34000 1630 3360

Ede 662785000 115710 31700 1370 2890

Eemnes 85029700 9113 35900 1540 3130

Eersel 128333000 19110 34500 1650 3470

Eijsden-Margraten 137633000 25658 33500 1760 3290

Eindhoven 949368000 231642 32600 1210 2610

Elburg 118299000 23086 29200 1510 2980

Emmen 794175000 107113 27100 1570 2930

Enkhuizen 48472900 18507 30000 1250 2690

Enschede 1368580000 158986 26900 1150 2780

Epe 183032000 33145 30700 1710 3130

Ermelo 173557000 26858 32500 1520 2850

Etten-Leur 251026000 43774 32400 1310 3250

Geertruidenberg 2891180000 21515 31900 1220 3070
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Geldrop-Mierlo 155699000 39595 32500 1460 3070

Gemert-Bakel 140951000 30447 30100 1570 3490

Gennep 81568800 17071 29800 1540 3300

Gilze en Rijen 130988000 26431 31300 1380 3200

Goeree-Overflakkee 248580000 49611 32800 1400 2990

Goes 174193000 37653 31100 1210 2610

Goirle 66567800 23793 33200 1400 3400

Gooise Meren 327381000 57715 46900 1650 3030

Gorinchem 238180000 36682 32100 1100 2700

Gouda 213450000 73181 32700 1120 2500

Grave 37093200 12483 31200 1490 3150

Groningen 1001890000 203819 28700 1200 2210

Gulpen-Wittem 59192800 14246 30500 1640 3090

Haaksbergen 94388200 24277 29500 1580 3260

Haaren 69436800 14195 34400 1680 3580

Haarlem 374011000 161265 36300 1230 2420

Haarlemmermeer 1777040000 148068 36400 1270 3030

Halderberge 138680000 30194 31400 1530 3210

Hardenberg 320751000 60574 28100 1600 3240

Harderwijk 218619000 47581 31200 1260 2720
Hardinxveld-
Giessendam 109543000 18051 31200 1280 2970

Harlingen 337363000 15758 27400 1340 2220

Hattem 122793000 12173 33000 1570 2800

Heemskerk 99690500 39164 32400 1230 2660

Heemstede 70520100 27286 49000 1640 3000

Heerde 198020000 18546 30700 1670 3030

Heerenveen 263276000 50257 30200 1440 2540

Heerhugowaard 194613000 56742 31500 1090 2760

Heerlen 361901000 86832 27400 1250 2670

Heeze-Leende 102997000 15964 35700 1750 3470

Heiloo 72790400 23464 37000 1530 2840

Hellendoorn 136911000 35808 29400 1610 3180

Hellevoetsluis 131704000 40049 34700 1170 3070

Helmond 367604000 91524 30200 1090 3040
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Hendrik-Ido-
Ambacht 89203800 30966 35700 1180 3030

Hengelo (O.) 571093000 80683 29700 1350 2830

Heumen 84740300 16486 35400 1570 3090

Heusden 244645000 44135 32200 1490 3370

Hillegom 53293100 21966 33300 1240 2870

Hilvarenbeek 81705300 15334 33000 1660 3490

Hilversum 289186000 90238 37700 1450 2640

Hof van Twente 197652000 34940 30200 1680 3260

Hollands Kroon 366156000 47815 29800 1520 3000

Hoogeveen 306042000 55662 27400 1470 2780

Hoorn 173995000 73004 31100 1200 2700

Horst aan de Maas 391010000 42291 29800 1640 3520

Houten 170255000 49911 38800 950 3090

Huizen 113389000 41273 35800 1390 2850

Hulst 180833000 27524 31900 1460 2720

IJsselstein 83002200 34160 35200 1150 3030

Kaag en Braassem 181239000 26866 34300 1400 3110

Kampen 254190000 53779 28600 1370 2760

Kapelle 145271000 12785 32000 1350 2770

Katwijk 150908000 65302 31700 1190 2860

Kerkrade 154073000 45642 26700 1390 2750

Koggenland 142496000 22738 31200 1480 3060
Krimpen aan den 
IJssel 62280200 29376 32800 1290 2830

Krimpenerwaard 212245000 56048 33000 1400 2970

Laarbeek 165042000 22333 31100 1580 3440

Landerd 101729000 15529 30600 1690 3700

Landgraaf 114878000 37591 28900 1430 2900

Landsmeer 30508500 11488 38300 1500 3160

Langedijk 80251600 27992 32300 1270 2900

Lansingerland 605716000 61601 39800 1200 3300

Laren (NH.) 73404100 11195 52600 2240 3690

Leeuwarden 525665000 123107 28300 1260 2230

Leiden 506158000 124899 33300 930 2350

Leiderdorp 88937300 27109 36500 1140 2820
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Leidschendam-
Voorburg 262152000 75425 38500 1250 2550

Lelystad 1783150000 77893 30100 1070 2880

Leudal 284475000 35681 30700 1660 3460

Leusden 121656000 30030 36800 1380 3060

Lingewaard 302431000 46475 32000 1460 3040

Lisse 55853000 22800 33200 1220 2780

Lochem 244760000 33590 33300 1790 3050

Loon op Zand 87353000 23327 31200 1480 3320

Lopik 78392900 14473 32200 1530 3420

Loppersum 51300900 9614 29300 1790 2630

Losser 96925100 22622 28700 1660 3290

Maasdriel 223713000 24693 32200 1730 3340

Maasgouw 137752000 23716 31600 1700 3300

Maassluis 63806300 32768 31400 1120 2670

Maastricht 1116630000 121565 29300 1210 2570

Medemblik 250645000 44809 30400 1490 2960

Meerssen 82457500 18923 33900 1710 3300

Meierijstad 533971000 80815 31400 1510 3400

Meppel 164648000 33564 30900 1350 2670

Middelburg (Z.) 206303000 48544 30900 1190 2390

Midden-Delfland 298334000 19391 36700 1230 3070

Midden-Drenthe 289014000 33178 29800 1720 3050

Midden-Groningen 548936000 60899 28100 1610 2790

Mill en Sint Hubert 55926100 10891 29300 1710 3670

Moerdijk 5293910000 36961 32600 1430 3230

Montferland 157095000 36026 28600 1550 3070

Montfoort 48994600 13996 34400 1420 3270

Mook en Middelaar 26237100 7806 35900 1730 3380

Neder-Betuwe 261467000 24034 29700 1630 3280

Nederweert 166380000 17001 30100 1650 3620

Nieuwegein 251873000 63036 32200 570 2900

Nieuwkoop 120718000 28628 34000 1460 3120

Nijkerk 205180000 42943 32600 1430 3030

Nijmegen 568160000 176756 29800 1150 2390
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Nissewaard 183730000 84797 32700 1100 3000

Noord-Beveland 42252500 7308 29900 1310 2470

Noordenveld 131513000 31290 31000 1710 2850

Noordoostpolder 426576000 46862 29000 1420 2840

Noordwijk 137121000 26174 35500 1370 2870
Nuenen, Gerwen en 
Nederwetten 93661900 23186 37200 1660 3320

Nunspeet 160942000 27481 30600 1590 3090

Oegstgeest 67421100 24426 47200 1280 2960

Oirschot 175990000 18623 33200 1650 3670

Oisterwijk 124892000 26140 35800 1570 3410

Oldambt 294991000 38129 26700 1700 2780

Oldebroek 136734000 23598 28900 1590 3050

Oldenzaal 117452000 31840 30100 1460 2960

Olst-Wijhe 77537500 18071 30400 1570 3080

Ommen 125757000 17813 29800 1680 3160

Oost Gelre 164322000 29704 30000 1530 2970

Oosterhout 297905000 55616 32100 1250 3060

Ooststellingwerf 130082000 25497 27800 1700 2630

Oostzaan 47235100 9757 35000 1410 3080

Opmeer 52943400 11779 30000 1480 2900

Opsterland 163489000 29723 29400 1640 2720

Oss 392546000 91451 30900 1450 3220

Oude IJsselstreek 176512000 39473 27800 1540 2970

Ouder-Amstel 150758000 13916 42300 1360 2920

Oudewater 32494600 10201 34500 1440 3150

Overbetuwe 329931000 47543 33100 1490 3110

Papendrecht 118093000 32290 33100 1060 2870

Peel en Maas 478525000 43311 29500 1620 3490

Pekela 73053400 12214 24900 1760 2920

Pijnacker-Nootdorp 276697000 54331 38600 1040 3160

Purmerend 119253000 80117 31100 370 2850

Putten 169770000 24198 31400 1590 3240

Raalte 165807000 37511 29700 1550 3050

Reimerswaal 362677000 22678 29100 1350 2800
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Renkum 374418000 31302 36400 1640 2750

Renswoude 34989200 5259 33700 1560 3420

Reusel-De Mierden 59625400 13060 31600 1640 3720

Rheden 149742000 43640 31300 1510 2660

Rhenen 71630400 20004 32600 1520 3190

Ridderkerk 246084000 46241 31100 1140 2860

Rijssen-Holten 207043000 38300 29300 1630 3130

Rijswijk (ZH.) 183718000 53467 35000 1200 2480

Roerdalen 106385000 20615 30300 1660 3270

Roermond 583095000 58209 30100 1330 2840

Roosendaal 726424000 77032 30700 1370 2950

Rotterdam 30867700000 644618 30500 850 2350

Rozendaal 6210590 1654 52000 2390 3890

Rucphen 117392000 22572 29300 1750 3700

Schagen 213772000 46553 30900 1440 2870

Scherpenzeel 32512100 9873 31200 1520 3090

Schiedam 238377000 77999 30100 1060 2460

Schiermonnikoog 6211570 936 30700 1680 2590
Schouwen-
Duiveland 206630000 33779 31100 1450 2830

Simpelveld 35856300 10516 29800 1580 2920

Sint Anthonis 80909500 11606 30900 1720 3640

Sint-Michielsgestel 103315000 28991 35100 1690 3530

Sittard-Geleen 5174450000 92661 30500 1360 2930

Sliedrecht 103970000 25026 30600 1170 2620

Sluis 126933000 23386 29700 1390 2460

Smallingerland 243727000 55938 28300 1440 2480

Soest 165007000 46194 36300 1530 3120

Someren 200029000 19322 29800 1620 3520

Son en Breugel 185157000 16904 37600 1720 3480

Stadskanaal 118394000 31789 25600 1650 2850

Staphorst 146364000 17003 28500 1830 3480

Stede Broec 51092000 21706 29300 1390 2830

Steenbergen 391441000 25054 30600 1470 3240

Steenwijkerland 202549000 43940 28700 1570 2870
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Stein (L.) 80010400 24961 30600 1510 3150

Stichtse Vecht 402816000 64336 38200 1410 3100

Súdwest-Fryslân 456423000 89710 28900 1450 2480

Terneuzen 8195310000 54589 31100 1340 2620

Terschelling 28435700 4890 30000 1700 2750

Texel 81860500 13547 28500 1520 2720

Teylingen 117378000 37061 37900 1300 2980

Tholen 152629000 25780 29400 1330 2880

Tiel 227865000 41978 30200 1330 2880

Tilburg 770795000 217259 29300 870 2790

Tubbergen 121663000 21276 29500 1900 3770

Twenterand 118093000 33792 27700 1600 3270

Tynaarlo 139242000 33698 35400 1840 3030

Tytsjerksteradiel 181935000 31780 28900 1590 2600

Uden 198904000 41782 30900 1410 3250

Uitgeest 90790300 13528 35100 1330 2860

Uithoorn 128247000 29424 35100 1280 2850

Urk 64625600 20763 29300 1500 3350

Utrecht 2045170000 352866 35400 790 2400
Utrechtse 
Heuvelrug 296347000 49515 38800 1670 3170

Vaals 26339200 10092 28700 1450 2690
Valkenburg aan de 
Geul 70329500 16470 31300 1580 2910

Valkenswaard 104460000 30910 31500 1440 3130

Veendam 226734000 27491 27400 1690 2730

Veenendaal 161829000 65589 30800 1200 2910

Veere 88969500 21835 31500 1450 2670

Veldhoven 162334000 45337 35400 1420 3190

Velsen 1,28E+10 68348 32900 1270 2660

Venlo 633730000 101603 28500 1390 2940

Venray 333579000 43326 29800 1520 3280

Vlaardingen 187883000 72404 30800 1090 2510

Vlieland 4850310 1138 30900 1440 2720

Vlissingen 1704350000 44371 29100 1110 2290

Voerendaal 49016300 12452 33400 1680 3160
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Voorschoten 50886600 25479 40800 1340 2860

Voorst 176926000 24417 31900 1660 3170

Vught 117694000 26396 39500 1540 3140

Waadhoeke 320109000 46039 27800 1520 2550

Waalre 72870000 17247 40700 1750 3270

Waalwijk 220489000 48240 30600 1360 3050

Waddinxveen 175853000 28316 32500 1210 2980

Wageningen 103135000 38774 29700 1160 2400

Wassenaar 117624000 26211 59200 1960 3370

Waterland 77092300 17315 37000 1530 2970

Weert 363827000 49842 30600 1460 3040

Weesp 61093500 19334 36000 1160 2510

West Maas en Waal 120471000 19076 31400 1680 3160

Westerveld 106655000 19348 30700 1840 3130

Westervoort 27809700 14944 29700 810 2850

Westerwolde 225020000 25199 26900 1880 3080

Westland 1429140000 108603 32300 1250 3090

Weststellingwerf 131338000 25840 27700 1630 2740

Westvoorne 108234000 14626 40300 1620 3400

Wierden 139074000 24351 31000 1670 3410

Wijchen 164633000 40951 32000 1360 3050

Wijdemeren 82290400 24013 38200 1680 3210

Wijk bij Duurstede 65646800 23762 34500 1370 3190

Winterswijk 133951000 28903 28400 1510 2860

Woensdrecht 130729000 21866 31800 1520 3330

Woerden 360423000 52197 36300 1300 2950

Wormerland 97607500 16329 33000 1340 2840

Woudenberg 70660800 13166 33200 1490 3160

Zaanstad 615988000 155885 31000 1220 2570

Zaltbommel 306949000 28451 32400 1520 3100

Zandvoort 38170700 17011 34100 1350 2780

Zeewolde 158814000 22309 33500 1050 2980

Zeist 238051000 63934 39900 1470 2930

Zevenaar 281384000 43488 29300 1360 2970
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Zoetermeer 338236000 124944 33600 1000 2880

Zoeterwoude 111291000 8450 34800 1310 2930

Zuidplas 312508000 42762 35300 1290 3160

Zundert 121819000 21612 30500 1710 3530

Zutphen 194744000 47609 29600 1280 2490

Zwartewaterland 91875900 22503 29700 1500 3050

Zwijndrecht 232248000 44639 31500 1200 2760

Zwolle 511494000 127497 31900 1170 2580
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Appendix B: Types of industries by municipalities 

The intensity of capital-intensive and knowledge-intensive industries by municipalities in the 
Netherlands is shown in the figures. Colors from red to blue represents very high, high, average, 
low, very low.
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