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Abstract

The recent need of a fully autonomous car has pushed researchers into developing
applications, services and technologies capable of connecting the vehicle to its sur-
roundings. A real-time geo-referenced notification system coupled with aggregation
of data and optimization of fog-computations in the edge network allows for a fast
and reliable traffic orchestration in critical areas. Modern literature showcases the
efficiency and responsiveness of cellular vehicle-to-network in areas like collision
avoidance and traffic control. This thesis aims at developing an architecture ca-
pable of aggregating and disseminating real-time notification messages through
a multi-MAC infrastructure. Furthermore, an assessment on its efficiency and
responsiveness is carried out through several metrics. After a quick overview on
the state of the art, the overall architecture is discussed. This features a brief
overview on the MEC infrastructure that recognizes and elaborates information on
the MEC node. The focus of the analysis revolves around the cloud architecture
algorithms and the message flows traveling from the road to the users. Due to
stringent requirements, experimental data are collected on the end-to-end latency;
this serves as a benchmark for evaluating the reliability and effectiveness of such a
solution. The collected data are then aggregated in a live Citizen Application that
displays information about vehicles and alerts on the critical zones where possible
hazards have been detected.
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Chapter 1

Introduction

In a world where the digital transformation is becoming a fundamental player in
every technological sector, the vehicle is establishing itself as the prime drive for this
change. The need of an interconnected mobility infrastructure is becoming crucially
important in the development of a fully-autonomous mean of transportation. In the
past years many important institutions have laid significant foundations towards
achieving this goal. The Intelligent Transport Systems (ITS) refers to the set of
information which have the aim of improving the transportation operations in order
to increase safety, reduce cost, save energy and time.

ITS does not only introduce new information that were before unseen to the
user but it plays the role of strengthening the ones that were already present. This
is done in an effort to improve the existing network with accurate and complete
traffic information, as well as new means of controlling it. The vehicle must be able
to understand its existing infrastructure and must be able to improve its quality
for all the other players in the network.

The correct functioning of ITS is possible thanks to the Vehicles/Users that
provide constant exchanges of data. These, are then collected and managed by
the road infrastructure which provides traffic control and services. Lastly, the
communication networks (VANETs) work as a bridge between the two by allowing
fast and reliable communication. To guarantee high mobility, network partition and
fragmentation the information must be exchanged efficiently to avoid broadcasting
issues (broadcast storm). The main characteristics of VANETs are the presence
of fixed RSUs (Road Side Units) and vehicles which can move at low and high
speeds, this poses a challenge due to the variable connection window. Nodes in
the VANETs environment are restricted to follow the topology of the road (urban,
rural and highway) leading to various challenges. Urban mobility is a complex
network due to the sheer number of vehicles and obstacles and the presence of
multiple users.
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Introduction

The increased number of VANETs application fueled the development of
Dedicated Short Range Communication (DSRC) which exploit V2V and V2I
exchanges of messages. The IEEE 802.11 covers several wireless standards. Among
these, IEEE 802.11p WAVE covers the standardization of DSRC which uses the
5.85-5.925 GHz frequency range dedicated for vehicular communication. It relies on
the communication transceivers mounted on the RSU and on board of the vehicles.
However, performances are greatly affected by parameters such as vehicle speeds
and number of vehicles that can be on a single channel. Latency and delivery
success rate seem to be the most affected parameters when the number of vehicles
increases over the channel. Whilst the DSRC protocol has been developed in the
United States, the ITS-G5 one was developed by the European Telecommunication
Standard Institute (ETSI) but serves a similar purpose and develops the same kind
of problems seen in DSRC.

To improve the performance indicators of C-V2X, a newer solution has recently
emerged exploiting 3GPP Long Term Evolution (LTE) Release 14 "PC5" (Device to
Device). This allows to respect bounded low latency and a fair amount of volume
of traffic with relative high speed[1]. In addition to this, the robustness is increased
and fewer RSU are needed for coverage. While it may seem that C-V2X greatly
differs from DSRC, it still exploit the same PHY/MAC layer. Although the most
common mode of utilization of C-V2X generally fall into V2V, V2I and V2P it is
also possible to implement a V2N (Vehicle to Network) communication mode that
operates on the "Uu" interface that operates in the traditional mobile broadband
licensed spectrum [2]. The use-case that will be dealt on this thesis greatly exploits
these modes of communication, especially C-V2N.
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Chapter 2

C-V2X

The benefits of the C-V2X are various and important. Typical fully-autonomous
driving vehicles are equipped with a variety of sensors: Camera, LiDAR, Radar,
GNSS, and CAN that are very well suited to analyze in depth the zones nearest to
the vehicles. The advent of C-V2X makes possible the detection of hazards from a
further distance. Non in-line of sight objects (NLOS) are impossible to be detected
with the sole use of the on-board instrumentation. This makes this technology a
compelling element in the improvement of road safety and comfort.

C-V2X can aggregate information that are being collected and can be periodi-
cally update onto a map. Other vehicles can then have access to these information
from distances that would have been impossible before. Features like blind-spot
detection, platooning and long-range perception can be achieved thus improving
road capacity and efficiency. C-V2X has the novelty that is does not require a sim
card or a licensed spectrum to function, it does not require an infrastructure to
function in the case of V2V and V2I and above all it is has a scheduled reservation
that does not require CSMA/CA. Compared to the 802.11p, it is far more powerful
in its range and is more robust.

2.1 C-V2X stack
All the efforts performed by SAE, ETSI and IEEE in defining applications, mes-
sages/facilities, security services and transport/networking layers have all been
leveraged by the C-V2X. Only the physical and the MAC layer have been replaced
from the 3GPP to provide the end to end solution. The physical layer is based
on the Single Carrier Frequency Division Multiplexing which supports 10 or 20
MHz channels. Each of these channels is divided into sub-frames, Resources Block
(RBs) and subsequently sub-channels [1]. C-V2X defines two sub-channels that are
a group of RB pairs in the same sub-frame. The sub-channels are then exploited
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C-V2X

Figure 2.1: C-V2X stack

to transmit data and to control information. The physical channels are divided
into Downlink and Uplink Channels. The data information is transmitted over
the Physical Downlink Shared Channel (PDSCH). The majority of data channels
are exploited for control operations. The Physical Broadcast Channel (PBCH)
is used to transmit MIB (Master Information Block) and Radio Access Channels
parameters. The Physical Control Format Indicator Channels (PCFICH) trans-
mits the details on the format and the Physical Hybrid ARQ Indicator Channel
(PHICH) transmits the ACK/NACK to the uplink frame. Finally the Physical
Downlink Control Channels (PDCCH) controls the downlink resource scheduling,
the uplink power control instructions and the uplink resource grant as well as the
indication for paging/system information. As described before due to the similarity
that LTE and C-V2X share, the physical layer is identical for both. The spectrum
at which C-V2X operates varies depending on the region in which it is employed.
Particularly in Europe, different channels are used to allow C-V2X to co-exist with
the 802.11p standard. Differently, in North America the FCC has approved the
exclusive use of the upper 5.9 GHz band for C-V2X applications.

The introduction of the Device-to-Device (D2D) in the LTE release 12 (com-
monly called ProSe) saw the addition of a UL/DL transfer mode called Sidelink
transfer. Such a feature is also present in the V2X with the addition of enhanced
ProSe interfaces (PC5) that enable Vehicle-to-Vehicle communication. This was
specifically designed to tackle high speed and high density scenarios.
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C-V2X

LTE-V2X uses centralized scheduling mode (Mode 3) and decentralized schedul-
ing mode (Mode 4) that supports PC5. Mode 3 has the task of allocating cellular
network resources, on the other hand Mode 4 does not require cellular coverage;
this makes it possible for vehicles to autonomously select their radio resources using
Semi-Persistent Scheduling (SPS) In these cases the Road Side Unit (RSU) and
the On Board Unit (OBU) are sufficient to deploy C-V2X V2V, V2I, V2P [3].

2.2 C-V2X Architecture/ProSe
The ProSe architecture enables services that are provided by the 3GPP based on
the UEs being in proximity one with the other. The 3GPP system enablers for
ProSe include:

• EPC-level ProSe Discovery;

• Direct discovery;

• Direct Communication;

• UE-to-Network Relay;

The non-roaming architecture will be considered as it is the most common one.
The architecture can be divided into the LTE Access Network and the Evolved

Figure 2.2: Non Roaming ProSe Architecture. Courtesy of ETSI

Packet Network (EPN) that describes the core network. It is possible to notice
the various interfaces present in the architecture, namely:

5
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• PC1 The reference point between the ProSe application in the UE and in the
ProSe Application Server.

• PC2 The reference point between the ProSe Application Server and the ProSe
Function. It is used to define the interaction between ProSe Application Server
and ProSe functionality provided by the 3GPP EPS via ProSe Function for
ProSe Direct Discovery and EPC-level ProSe discovery.

• PC3 Which is the reference point between the HSS (hosting the client profile)
and the ProSe function. It provides the subscription information to authorize
access for ProSe Direct Discovery and ProSe Direct Communication on a per
PLMN basis.

• PC4b Used by the ProSe Function in EPC-level ProSe Discovery Function.

• PC5 It is the reference point between ProSe enabled-UEs for the control and
user plane for ProSe functions.

• S6a In the case of ProSe S6a is used to download ProSe related subscription
information to MME during E-UTRAN attach procedures or to inform MME
subscription information in the case in which the HSS has changed.

The ProSe function is a logical function used for network-related actions that are
required by ProSe such as service authorization and PLMN-specific information.
Each PLMN has only one PSF available. The ProSe Function plays a different role
depending on the features of ProSe. There are three subfunctions that are employed
to provide UEs with data necessary for ProSe operations. The Direct Provision-
ing Function (DPF) is employed to allow UEs with the necessary parameters to
execute PDD and PDC. The Direct Discovery Name Management Function
used by PDD to allocate and process ProSe Application IDs; its main function is
to protect the discovery messages. Finally, the EPC-level discovery includes a
variety of functions among which storage of ProSe-related subscriber data and/or
retrival of subscriber data from HSS; it also provides location services client, handle
of EPC ProSe User IDs, Application Layer User IDs and much more [4].

2.2.1 UEs
The UEs, as evidenced in figure 2.2, must be able to exchange information through
the PC3 interface and allow for open and restricted ProSe Direct Discovery of the
other UEs across the PC5 interface. It may also support additional functions that
are useful in vehicular applications such as:

• Procedures for one-to-many Direct Communication over PC5

• Procedures for one-to-one Direct Communication over PC5.
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2.2.2 ProSe Application Server
The Applicaiton Server must be able to provide:

• Storage of EPC user IDs

• Mapping of Application Layer User IDs and EPC ProSe User IDs

• Interaction with UEs through PC1 interface.

2.2.3 Mobility Management Entity
The MME resides in the Core Network and is responsible for retrieving the infor-
mation related to ProSe from the HSS and to inform the E-UTRAN that the UE
is authorized to use ProSe.

2.2.4 P/S-GW
The P/S-GW are responsible for managing the mobile traffic and take care in
receiving information related to the ProSe UE-Network Relay coming from the
SGW and MME respectively.

2.3 ProSe High Level Functions
High Level Functions in ProSe are a set of functions that allow for Discovery and
Communication between UEs [4]. Firstly the devices must be authorized to perform
these tasks through the PC3 interface where the UE gets authorized on a per PLMN
basis. In host PLMNs, the authorization for Direct Communication is requested
from the Home PLMN (HPLMN). Direct Discovery is defined as the process capable
of identifying and detecting another UE in proximity. The Discovery can either be
open or restricted; the first allowing for no specific permission needed by the UE
to be discovered whereas the second one requires a specific permission. There exist
two models of Discovery:

• Mode A ("I am here"): where the UE announces certain information that
can be used by proximity UEs and monitors information of interest in the
proximity of announcing UEs.

• Mode B ("Who’s there?"): UE transmits a request containing information on
what is interested to discover and the reply is handled by another UE which
is capable of providing the reply.
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2.3.1 ProSe Direct Communication
Direct Communication allows a One-to-many on ProSe enabled Public Safety
UEs that have been previously authorized and can be applied both in reach of
an E-UTRAN and both outside E-UTRA coverage. The characteristics of the
one-to-many communication is that it is connectionless (no signaling over the PC5
interface). Members of a group of devices share a secret from which a group of
security keys can be derived. As shown in figure 2.3, the UE is configured with

Figure 2.3: One-to-many ProSe Direct Communication transmission. Courtesy
of ETSI

information for a one-to-many communication. The UE is then tasked with finding
a proper radio frequency in which to conduct the transmission. The other devices
are then equipped for listening and receive the group information. This is done
through the ProSe Layer-2 Group ID, Group IP multicast address. The information
are then filtered and if it matches the configured Group ID it is passed to the upper
layers [4].
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Chapter 3

Basic Set of Applications

ITS comprises a variety of use cases that are distributed over a multitude of ITS
stations (ITS-S) that provide co-operating customer services. The most important
services provided include Cooperative Awareness (CA) and Road Hazard Warnings
(RHW). CA works by exchanging messages in the ITS network through ITS-S with
the aim of creating awareness between vehicles and road users as well as supporting
cooperative performance in the road network [5]. RHW applications have the
objective of improving road safety and traffic efficiency through the V2V and V2I
network. It exploits a Decentralized Environmental Notification application service
that supports RHW applications [6].

3.1 Cooperative Awareness Services
As defined by ETSI, cooperative awareness services provides sending and reception
of CAMs. Frequency of sending may vary and is dependent on the CA basic service
originating ITS-S [5]. CA is a facilities layer entity in the ITS-S architecture, it
interfaces with the application layer through the FA-SAP interface in order to collect
information from CAMs. Data collection entities may be the Vehicle Data Provider
(VDP), the Position and Time management (POTI) and the Local Dynamic
Map (LDM). CA interfaces with the Network and Transport Layer through the
NF-SAP to exchange messages with other ITS-S and with the management and
security layer through the MF-SAP and SF-SAP respectively [5].

For sending and receiving CAMs, the following sub-functions must be provided:

• Encode CAM

• Decode CAM

• Transmission management that takes the task of managing the start and
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Figure 3.1: CA basic service architecture

end of a transmission and its generation frequency

• Reception management that triggers the decoding action

3.1.1 CAM dissemination
To successfully cover an area CA Messages are transmitted from the originating
station towards all the receiving ITS-S in a single-hop that are in range. When a
vehicle is present on the road, the stream of data is activated concurrently to the
ITS-S activation. Similarly the stream of data is interrupted as soon as the ITS-S
is deactivated.

The frequency at which messages are generated depends on the channel
congestion levels. However, values belonging to the interval of minimum generation
time TGenCamMin = 100ms and maximum TGenCamMax = 1000ms are accepted
[5]. In the case of LTE-V2X the access layer manages channel congestion and
subsequent generation times. Other conditions that may trigger a cam message
can occur if:

• If the difference of the current heading and the one previously to the originating
ITS-S varies by 4◦

• The distance between the previously transmitted and originating station
exceeds 4m

• The speed difference from the originating ITS-S exceeds 0.5 m/s
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3.1.2 CAM Format Structure
A CAM is composed of and ITS PDU header that provides information on the
protocol version, message type and ITS-S ID from where the message has originated.
The CAM can be composed by three types of containers [5]:

• Basic container that contains the basic information about the originating
ITS-S

• High frequency container containing highly dynamic information about
the ITS-S

• Low frequency containing static or slowly changing information

• Special vehicle container that contains info specific to a particular vehicle
(i.e Public Transport, Special Transport)

Figure 3.2: CAM structure. Courtesy of ETSI

3.2 Decentralized Environmental Notification Ba-
sic Service

Differently from the CA Services, DEN Services are used by ITS applications in
order to alert users regarding a specific event detected on the road [6]. The DENM
protocol deals with the exchange of these information. The way by which ITS uses
DEN services, is through the following process:

• When an alert is raised the DENM disseminates itself across ITS-S that are
contained in an area called zone of relevance.

• This transmission can be repeated and is persisted until the event has ceased

• Messages can be elaborated or simply forwarded from an ITS-S to another
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• It may be possible to show information to the user through and HMI but it is
not mandatory

The DENM contains information related to an event that may impact the
road safety and traffic conditions. A DENM may be persistent for as long as the
event exists. A particular feature of DEN Messages is that they are independent
on the originating station, that is, if a vehicle detects an hazard on the road, the
affected vehicles in the nearby zone will still be alerted even after the originating
station has left the area of interest [6].

DENM types are of four categories:

• New DENM: Whenever a new event is detected for the first time. An action
ID is assigned and the event provides attributes such as type, detection time
and more

• Update DENM: This type of service is provided by the originating ITS-S
whenever an information has to be updated

• Cancellation DENM: Whenever an event is terminated; The event is issued
by the origination ITS-S.

• Negation DENM: When an event reaches its termination. For example an
hazard that is no longer present on the road will be signaled with a negation
DENM once its presence has been removed.

3.2.1 DENM ITS Architecture and Service
The DEN Service, just like for the CA service, interfaces with the Applications in
order to receive and process DENMs. In the facility layer it interacts with the Local
Dynamic Map that gets updated upon reception of messages. It interacts with the
Security nd Management entities through the SF-SAP and MF-SAP respectively
and with the lower layers through the NF-SAP.

3.2.2 DENM Dissemination
The event identification is enabled by the actionID that is linked to the originating
station. This allows the distinction between various stations even in the case the
event that has been generated is identical for all ITS-S. The stationID adds value
to the actionID especially in the security level.

When the DEM Service receives a Trigger from the Application layer, it is
requested to generate a DENM, at the same time an unused actionID shall be
created by the DEN Service [6]. Similarly, when an event has received an update it
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Figure 3.3: DENM architecture

must request to the DEN basic service to a newer referenceTime (greater than
the originating one). The actionID has to remain unchanged as long as the ITS-S
remains the same. A DENM repetition can be requested with a repetitionInterval
and a repetitionDuration; in their absence no repetition is processed. The DENM
termination may either be a negation or a cancellation. Terminations happen
when an ITS-S stops generating DENMs after the repetitionDuration, cancellation
happens when the actionID will be equal to the one set by the application upon
triggering.

The relevance area is an important characteristics of the DENMs as it
provides a region in which vehicles may be exposed to the danger on the road [6]. It
must be included by the generating station and must include a relevanceDistance at
which vehicles shall receive the alert and a relevanceTrafficDirection which indicates
the direction at which the vehicles may encounter the alert. As an example, if a
vehicular hazard happens in a motorway, the vehicles in the opposite lane would
not be alerted but in the case of rural areas the alert must be extended to all
directions of motion.

Location referencing acts as a complementary function to the relevance area
and it provides information on the event position. If the hazard may be encountered
form multiple directions the message must include all possible paths of encounter.
A receiving ITS-S compares its route to the one provided by the DENM and takes
relevant actions.
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3.2.3 DENM Container
Similarly to CAMs, DENMs contain an ITS-PDU header that serves identical
functions. The management container hosts information such as the actionID,
detectionTime, referenceTime, relevantDistance and much more. The situation
container holds information regarding the content of the event. InformationQuality
is a range from 0 to 7 that evaluates the quality of the information provided (0
being unavailable info). EventType includes the causeCode and subCauseCode
provide high and low level information on the causes of the event. The linkedCause
and eventHistory describe the possible subsequent causes generated by the event
and the previous position of it, respectively. This allows to describe a forward and
backward map of all causes and reactions due to an event.

The location container includes information such as:

• Event speed;

• Event position heading;

• Traces;

• Road type;

The à la carte container is optional and includes additional information that have
not been included in the other containers. As an example externalTemperature
may be added to invigorate the information of adverse weather [6].

Figure 3.4: DENM container structure
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Chapter 4

Multi Access Edge
Computing

With the advent of Internet of Things the number of intelligent devices has increased
rapidly. Having the possibility of relying on a cloud Computing interface enables
rich a powerful solutions for the devices that may want to access it. In addition, the
possibility of performing such operations at the network edge enables low latency
and low congestion traffic. The MEC as defined by ETSI is divided into three
reference points [7]:

• Reference points for MEC platform functionalities (Mp)

• Management reference points (Mm)

• Reference points connecting to external entities (Mx)

A MEC infrastructure is composed of a host and of a MEC management that
is crucial to run applications within an operator network. The MEC host can
be further subdivided into a MEC platform which is a collection of fundamental
functionalities that are required to run the MEC applications; such applications
are instantiated on the Virtualization Platform [7].

The device applications interact with the MEC system and thus have a life-cycle
management.

4.0.1 MEC system level management
At the base of the MEC system level management resides the the multi-access
edge orchestrator. Its main functionality consists in keeping an overall view on
the MEC Host, available resources, available services and topology. In addition
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Figure 4.1: Multi-access edge system architecture [7]

to this it is responsible for selecting the correct MEC Host/s based on the needed
application constraint such as latency, available resources and services [7].

4.0.2 MEC Host level management
In the Host management level the main task reside in the platform manager that
is responsible for keeping track of the life cycle of applications as well as informing
the MEC orchestrator about application related events. This platform also receives
fault reports and performance measures.

The Virtualization infrastructure manager is responsible for allocating
and realizing the compute, storage and networking resources for the virtualization
infrastructure [7]. It is also tasked with running the image and reporting any
possible issues.

4.1 MEC Services
The services provided and consumed by the MEC platform or MEC application
takes the name of MEC service.

If an application is registered for that service it interacts through the Mp1 as
shown in figure 4.1. A set of services is required in order to fulfill requirements as
defined by ETSI. Radio Network Information enables up-to-date radio network
information, measurements and statistics information related to the user plane as
well as information related to the UEs that are being served by the radio node
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associated to the MEC host [7].
Location services about UEs can be exploited by other UEs that are associated

to the same MEC node thus providing a geolocalization platform that can achieve
interesting ITS features with UEs that would otherwise be outside of range in
normal DSRC applications. With the help of such a service it is possible to enable
Traffic Management Services such as BandWidth Management (BWM) and
Multi-Access traffic steering that seamlessly redirects application data traffic across
multiple access network connections [7].

4.2 MEC Support for V2X Communication
The MEC finds most of its purposes in V2X vehicular communication scenarios.
Safety, convenience, vulnerable road users and advanced driving assistance are some
of the many applications in which MEC can be employed. The latter collects the
most challenging aspects due to the amount of huge data that must fulfill reliable
and fast constraints. In addition to this the vehicle can benefit from predictive
reliability such as network availability to plan ahead.

Figure 4.2: Multi-access edge Driver Assistance

Real-time situation awareness becomes of crucial importance in autonomous
driving especially in segments of road that may be critical due to traffic or road
layout. Vehicles can detect ahead hazards and information that populate a High
Definition Local Map in real-time [8]. Local aggregation can be supported by
connected nodes with very low latency. In addition, predictive quality must remain
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stable in changing environments that may undermine latency and signal-strength
parameters [8].

An interesting application described by M. Malinverno, G. Avino et al. [9]
employs the use of a MEC server to perform collision avoidance algorithms. The
architecture is composed of three entities: Users, POAs (Points of Access) and
Collision Detection Servers. The Users can be either vehicles or vulnerable users
equipped with OBUs capable of periodical broadcast of BSMs (Basic Safety Mes-
sages). These information include:

• position, speed and heading;

• lateral and vertical acceleration;

• vehicle length and width

BSMs are sent in broadcast so to allow each user to perform their own collision
detection algorithms. In order to fullfill the MEC paradigm, the POAs are not
solemnly constraint to collision avoidance, but can be employed for entertainment
and leisure.

In the proposed architecture, collision detectors can be physical servers, virtual
machines or containers that can run collision detection algorithms. The input
provided to the server are BSMs generated by vehicles or users, which is then
processed to understand whether a possible collision may happen and emit an alert.

Figure 4.3: Internal architecture of the collision detector. [9]

The MEC offers significant flexibility in the number and placement of collision
detectors. It is possible to place collision detectors at the edge of the network thus
resulting in shorter delays and latencies or multiple ones in the core network that
can cover a wider area.
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4.3 End-to-end latency evaluation in MEC as-
sisted C-V2X communications

With the advent with 5G technologies, collective vehicle awareness requires the
satisfaction of various parameters. The most important one being End-to-End
Latency (E2E) which is intended as the total time needed to transmit information
from the moment a vulnerable user signals a dangerous situation until the moment
in which the vehicle receives it and elaborates. MEC infrastructures play a crucial
role in significantly reducing the E2E latency compared to common platforms.

In a study conducted by M. Emara M. C. Filippou and D. Sabella [10] a
MEC-assisted V2X architecture has been tested and its results have been compared
to a conventional one that does not employ MEC. The model comprised an highway
environment with one lane per direction road where vehicles and non-vehicles
exchange Cooperative Awareness Messages (CAMs) via the Uu radio interface. The
latency model describes a one-way time interval that is the sum of:

Tone-way = TUL + TBL + TT N + TCN + TExc (4.1)

where TUL is the uplink transmission latency, TBH is the backhaul network latency,
TT N the TN latency and TCN the CN latency. The TExc is the processing time for
the CAM messages. Due to this the end to end latency will be made up of:

TE2E = TUL + 2(TBH + TT N + TCN) + TExc + TDL (4.2)

Thanks to the advantages of the MEC-assisted framework, the network latencies
can be avoided by processing the CAM packets at the MAC host. This effectively
removes TBH , TT N , TCN

The results obtained take into consideration variations in the VRU and vehicle
density. A greater number of VRUs leads to an increase in the traffic density but
thanks to the use of MEC interfaces the exploitation of resources is improved by
66%-80%. [10]
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Chapter 5

Advanced Message Queuing
Protocol

In IoT applications, the need of real-time communication systems is of crucial
importance. There exist a variety of protocols currently available on the market.
This research will only consider AMQP as it serves its purpose in the Rainbow use
case.

AMQP is a lightweight M2M (Machine-to-machine) developed by John
O’Hara at JPMorgan Chase in London in 2003. It is a corporate messaging
protocol mainly used in business and it relies on reliable, secure, provisioning and
interoperable infrastructure. It is capable of supporting both request/response
and a publish/subscribe architecture. In addition to this it provides a varieties of
features such as reliable queuing, topic-based publishing and subscribe messaging,
flexible routing and transaction [11].

The AMQP is composed of multiple layers, the lowest comprises an efficient,
binary, peer-to-peer, protocol for transporting messages between two processes over
the network [12]. On top of that the messaging layer provides an actual messaging
formatting that includes its own encoding.

5.0.1 AMQP Transport Layer
In AMQP there exist nodes that are connected through links and are responsible
for the storage and/or delivery of the messages. The link is a unidirectional
connection between nodes and is attached at the terminus point. It is responsible
for tracking the delivery and origin of the messages. Once a message has been
successfully sent, the receiving node is responsible for its safe storage.

Nodes exist within the concept of containers. A broker or a client, may be
examples of containers that are made up of one or more nodes. Each node can
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Figure 5.1: Transport between nodes

be a producer, a consumer or a queue. The first two take care of generating and
processing messages whereas the third on simply stores them and forwards them.

For communication to happen between two nodes a connection must be
established. AMQP defines a full-duplex, reliably ordered sequence of frames.
A frame is a unit of work that is carried on the wire. If the nth frame has been
successfully sent then this means that all previous ones must have been correctly
received as well [12]. A connection is composed of a series of independent
unidirectional channels. A session is able to correlate two unidirectional channels
to create a bidirectional one, capable of creating a conversation between nodes.
The flow between nodes is controlled by transfer frames that have a maximum
size for a specific connection. A connection may have several session, up until the
maximum size of the channel.

Figure 5.2: Communication between endpoints

5.0.2 AMQP Header
The AMQP header contains information regarding the protocol version that will
be used for connection. header is composed by upper case ASCII letters "AMQP"
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followed by an id of zeros followed by three unsigned bytes that represent the
major, minor and revision of the protocol. For a protocol version 1, without
revision, the code will look like (1 MAJOR, 0 MINOR, 0 REVISION) [12].

Once the role of client and server have been established, it is the task of the
TCP client to immediately send the outgoing protocol header. On the other side,
the TCP server may decide to wait a finite amount of time for the incoming header.
Both TCP client and TCP server must agree on the version to be used. Any
connection after that will refer to that protocol version.

In details the protocol version is chosen accordingly:

• The client must send upon socket connection to the server, the desired protocol
header version.

• If the requested protocol is accepted by the server, it must be sent to the
socket to successfully establish a connection.

• In the event of a protocol unavailability, the server must reply with the protocol
of its convenience and then terminate the connection.

• Replies by the server must always choose the upper version, if available.

• If the received protocol header cannot be parsed, the server must reply with a
supported protocol and, as before, close the socket connection.

Figure 5.3: AMQP protocol negotiation

5.1 AMQP Frames
Frames can be divided into three categories: fixed width frame header, variable
width extended frame header, variable width frame body [12]. The frame
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header is composed of 8 bytes which is fixed and is followed by an optional variable
width frame header. The frame body, which is also optional, has a variable width
as well, and it is the last part of the frame.

The rule by which sizes are decided depends on three main factors:

• size: bytes 0-3 contain the information regarding the size of the frame. This
must contain an unsigned 32-bit integer that defines the sum of the frame
header, extended header and frame body

• doff : Byte 4 contains the data offset. This gives the position of the body
within the frame.

• type: Byte 5 indicates the format and the purpose of the frame. A 0x00 code
indicates and AMQP frame whereas 0x01 indicates an SASL frame.

• Bytes 6-7 contain the information on the channel number

• The frame is composed of performative elements (Open, Begin, Attach, Flow,
Transfer, Disposition, Detach, etc.) and of the payload. This last one is
defined based on the structure of the performative elements.

Figure 5.4: Frame layout

5.2 Connections
As previously state a connection is composed of many unidirectional channels that
are connected by a session. The exchanges of information happens at the connection
endpoints which also track the open and close connection. Endpoints are also
responsible for mapping incoming and outgoing channels number and endpoints.

Due to the nature of the connection (unidirectional), incoming and outgoing
channels are completely distinct from each other. This means that bidirectional
connections do not share the same channel.

5.2.1 Connection opening
The connection is instantiated on the basis of the limitations. A maximum frame
size of 512 and maximum channel of 0 are considered [12]. Such information
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are used in the opening frame before beginning any transaction. Due to to the
channel rule, opening frames can only be sent on channel 0.

Figure 5.5: AMQP Connection Opening

5.2.2 Connection closing

Similarly to the connection opening, the closing requires both peers to instantiate
this procedure. This is done through a specific closing frame that justifies the
actions. Once this frame is sent, the peer can no longer send frames. It must,
however, wait for the reply from the other peer with a closing frame acknowledging
the reason for the termination. All acknowledges are considered within a timeout
window to guarantee protection against malicious frames. Contrary to the opening,
the closing can happen on any channel, however channel 0 is preferential [12].

5.3 Sessions

Once a connection has been established, it is the task of the session to coordinate
unidirectional connections in such a way to create a conversation between containers.
Sessions serve the purpose of contextualizing links for communication. Sessions
have a one-to-many property, that is, they can connect to multiple links at the
same time. The opposite is NOT true. Links can interface with at most one
session. Links within a session share common features, such as delivery features
that allow the coordination of multi-link applications. This is used to simply the
acknowledgment through the single use of sessions.
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Figure 5.6: AMQP session description

5.4 Links

As described above, links provide a unidirectional method of communication
between the Source and the Target. Link Endpoints have the task of interfacing
the Terminus and the Session Endpoint. Links may come as Senders and Receivers
respectively. When an sending application submits a message to be sent it must
deliver a tag used by the Source to track state of the message during delivery.
Endpoints have also the task of assigning univocal delivery ids that are used track
subsets of outstanding deliveries on a session [12].

5.4.1 Establishing and Resuming a Link

When a link is first established the Link Endpoint assigned an unused handle and
sends an attach frame. This includes the information of the local and remote
termini that will eventually become the source and the target of the communication.
The Remote session endpoint receives the attach and thus creates a Link Endpoint.
When a link is resumed the conditions that were present before may have changed.
The Source and Target can be different, this leads to conflict between the Termini
properties in the source and target fields of the attach frame. In such a case it is
the Sender that holds the properties of the Source and the Receiver the ones about
the Target. In the case that the properties differ the link will detach, otherwise it
will continue freely [12].

5.4.2 Closing a Link

The closing of a link is done by sending a detach frame with a close flag set to true.
The peer partner will destroy its states and corresponding link endpoint. In the
case in which the Peer and the Partner are sending conflicting information, the one
that is sending the detach frame must issue a new attach frame that signals the
intention of terminating the link [12].
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5.5 Flow Control
To control the message transfer, a flow control mechanism is employed. This is
done through the Link Endpoints that maintain the state of the flow. Flow control
decides when a message can be sent over an attached link and controls information
such as the link-credit [12]. This is used to understand when there are no more
messages to be consumed or when there is not sufficient credit to sent the messages.
Other flow control parameters are [12]:

• Delivery Count: It tracks the number of successfully sent messages. It can
also be employed to track Received messages

• Link-Credit: The credit defines the amount by which the delivery count can
be increased. Receivers can select this value whereas Senders must always
attain to the chosen by the Receiver.

• Available: When a dedicated amount of link-credit is available, the senders
signals to the receiver that it is available to utilize them. In the case in which
the available is null, the sender can still send messages.

• Drain: When insufficient messages are available to be consumed the credit-
flow the sender will increase the delivery count as much as possible in order
to consume all credit.

If the link-credit is equal to zero then the delivery-count is equal to the delivery
limit since [12]:

link − credit = delivery − countrcv + link − creditrcv − delivery − countsnd

5.6 Messages

5.6.1 Message format
It is important to distinguish between a message as seen from the sender and the
one seen from the receiver. The first is usually called a bare message that contains
an immutable payload that is handed to the messaging infrastructure. The receiver
sees an annotated message, that is, the bare message plus annotated information
that have been found along the infrastructure [12]. Annotated information are
usually provided at the beginning and/or at the end of a message.

The bare message is immutable thus cannot be changed by an intermediary
node that is found along the way. This is important because the encoded message
cannot be modified. The message is composed of the following sections [12]:
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• Header

• Delivery annotations

• Message annotations

• Properties

• Application properties

• Body

– data section
– amqp sequence section
– amqp value section

• Footer

The header defines delivery details of the AMQP network. The durable field
defines if the durability requirements; if an intermediary fails during the network it
must guarantee that the message is not lost. The priority field indicates the priority
of the message. A high number indicates an higher priority indicating that this
message must be delivered before all the others with lower value. Ttl (time to live)
defines the time in which the message should be considered to be alive. If a message
lasts longer than defined in the ttl, it will discarded. A first-acquirer message
indicates that no other link has acquired the message before . The delivery-count
records the number of unsuccessful attempts; a message with non-null delivery may
indicate the presence of duplicates.

Message and Delivery annotations consist in a series of information that
are delivered to the receiver and are used for the delivery and message properties.
In the case in which annotations are omitted, the equivalent section consists in an
empty map of annotations. If they are present, they are used to describe properties
which are immutable parts of the bare message.

The message field details contains among the most important information.
The message-id defines the unique code to identify a message within a message
system, it is not immutable as it can be easily modified by brokers and nodes.
User-id on the other hand identifies the the user that originated the message. It may
only be confirmed by intermediaries, but cannot be changed. The content-encoding
holds information on the encoding properties of the message. If present it indicates
that the application has been encoded with additional encodings; this requires
specific decoding structures on the receiver side to decode the message.

The body can be made up of simple opaque binary data, AMQP sequence or
AMQP value. The sequence contains an arbitrary number of structured data [12].
The AMQP value contains only a single value.
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5.6.2 Transactions
AMQP transfers become entangled one to the other when a transaction occurs.
One part of the transfer is considered as the resource, the other as the controller
[12]. The controller is responsible for regulating the transaction by declaring it and
discharging it. This is done through the use of an identifier that is confirmed by
the coordinator (a resource target responsible for the transactions).

A transaction can be described with its state.

• posting or making available

• acquiring the message at the source level

• retiring or terminally ending it

The posting takes place when incoming transfer frames arrive at the controller.
They then will take the acquired state when the incoming flow is initiated and
terminated with the frame disposition. It needs to be specified that these flows
can be directional therefore they can move from and to the controller.

5.7 Security
AMQP employs a security layer for encryption and authentication where the traffic
can safely flow. In the case of Transport Layer Security, this has to be externally
defined. On the other hand, SASL security layer has to be internally defined on its
host protocol to provide framing [12].

5.7.1 TSL
As discussed in the beginning of the chapter peers begin their communication by
exchanging a header frame containing protocol information. The major, minor
bytes define respectively:

1 (TLS-MAJOR) 0 (TLS-MINOR) 0 (TLS-REVISION)

Figure 5.7: TLS Security Layer Protocol
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5.7.2 SASL
Similarly to the TSL security layer, the SASL must be established through an
header frame that is sent at the beginning of the connection between peers. The
schema is identical to the one shown in figure 5.7. The main difference from the
TSL is that SASL needs to be defined internally through frames.

A SASL frame consists of an header, extended header and a body containing
the SASL mechanisms, SASL init, SASL challenge and SASL response as well as
the SASL outcome. At this point TCP client and TCP server begin a negotiation
. This process defines the supported authentication using a SASL-mechanism that
when agreed, can begin the exchange [12].

Figure 5.8: SASL establishment through negotiation

29



Chapter 6

The Rainbow Project

The increasing number of smart devices has pushed the massive use of cloud
platforms; particular benefits can be obtained with little infrastructural investments.
Given this unidirectional trend, it is easy to expect that almost all devices will
exploit cloud services. However, this has raised several issues concerning privacy,
security, latency and bandwidth [13]. In the automotive field, particularly for
connected vehicles, these constraints can result in serious issues for the performance
and the safety of the users. To overcome such a problem, it is becoming common
sense to exploit the network edge to speed up the process of data transmission
and elaboration [14]. This thanks to the possibility of completing tasks that would
otherwise strain normal cloud data centers at the core network. In the modern
vehicles camera sensors produce huge amount of data that can be utilized to
perform precise evaluation on the status of the road and of the other vehicles.
Edge computing not only provides direct services to the user but it can handle
computational tasks such as processing, storage, caching and load balancing [14].

Fog computing enables computations at the extremes of the edge. They are used
to store and compute data, coming from devices allocated at the network extremes.
This data are then forwarded to the cloud infrastructure [15]. There is a subtle
difference between fog computing and edge computing. Although they perform
similar tasks and their advantages are overall the same, edge computing takes place
at the data source, manipulating data before they are transferred to the
Cloud. Fog computing on the other hand is part of the Cloud Computing
power that takes place locally, this indicates an extension of calculating power
from the network core to the extremities of the edge. Even with the use of
fog computing, challenges remain. This is further underpinned by the need of
performing such computations on weaker hardware [16]. It is of great importance
the need of considering fog nodes as not static entities fixed in position but as
dynamic elements that interact with the IoT and Cloud Services. It is matter
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Figure 6.1: Fog Computing and Edge Computing

of growing discussion the need for optimizing efficiency, power consumption and
manage their lifecycle. This requires a service capable of migrating computational
resources and data management to better balance efficiency and power deployment.
In the automotive sector in particular, it is of crucial importance the computational
power modulation that can guarantee quality of data process and speed of transfer.

The aim of the RAINBOW project is to create an open and trusted fog
computing platform that facilitates the deployment and management of
scalable, heterogeneous and secure IoT services and cross-cloud appli-
cations[17]. This is done with the prospect of delivering a platform capable of
managing hundred of edge devices, thousands of fog nodes and possibly millions
of vehicles [17]. The project aims at demonstrating the possibility of providing
deployment, orchestration and data management for edge applications. This is
done by pushing computational powers to the network edge whilst also keeping
security and reliability. Rainbow divides its implementation into three use cases:

• Human-Robot Collaboration in Industrial Ecosystems

• Digital Transformation in Urban Mobility

• Power Line Surveillance via Swarm of Drones

This research piece will only consider the second use case.

6.1 Digital Transformation of Urban Mobility
The goal of RAINBOW is to create a real-time geo-referenced notification system
that can be employed by vehicles traveling in urban areas. Notifications will
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empower vehicles that are in critical areas (i.e an hazard has been detected on the
road). The steps needed to achieve this goal hinge on the creation of the following
steps:

• Disseminating information across the traffic

• Aggregating data and making it available (crowdsourcing)

• Exploiting fog computation resources present in the edge network

• Identifying and forwarding alerts to the relevant users in the areas of interest

6.1.1 Alert detection, AHED
Roads can present several sources of hazard, each of them can be detected by
vehicles, road side units, sensors or even users. Notifications can be of two types:

• Automatic notifications: detected by road side units, vehicle sensors or
through sensor fusion.

• Explicit notifications: that are triggered manually by a vulnerable user.

In the case of automatic notifications, data fusion refers to the aggregation of
Road Side Units and vehicles that send data directly to the Fog node, MEC or
Cloud. For the identification, AI/ML algorithms are exploited to identify hazards
and generate an appropriate notification flag associated with it. These alerts are
conveyed to a Traffic Control Center (TCC), that holds information regarding geo-
localization, client digital signature, textual information and perhaps
media data. Due to the heavy computational resources required to administrate
such a task, the service can be distributed at the MEC edge to guarantee low levels
of latency and high performance metrics. The AHED (Automatic Hazardous Event
Detection) is tasked with detecting and identifying the hazards [17].

The main challenges for such a configuration hold in the ability to:

• Create a trusted and secure virtualized orchestrator capable of reporting
and updating the information. This encompasses not only the mere haz-
ard identification but also being able correlate fused data with the manual
notifications provided by users.

• Realizing an optimization algorithm capable of splitting the resources from
local, the edge and the cloud backend.

• Identification of preferable MEC positions to balance coverage capability and
service stratification (i.e possibility of generating multiple user services).
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• Merging of the aforementioned needs with the expanding C-V2X PC5 tech-
nologies.

Figure 6.2: Automatic Hazardous Detection configuration

6.2 FOG node for hazard identification
The fog node utilizes computational capabilities and image recognition algorithms
to understand the current status of the road. It is seen that fog nodes are extensions
of the cloud level in order to provide services closer to the edge-network [18]. In
evolving smart cities has pushed the need of the computational powers closer to
the user. The geo-distributions of elements in cities makes it necessary for the big
data to be processed closer to the sensor [19]. A scalable multi-layer approach
described in [19] highlights the importance of stratifying services and resources in
order to balance the need for coverage with the necessity of low latency services.
Cloud computing elements present at top level provide monitoring and control
[19]. Lower fog layers provide subsequent narrow coverage area but more reliable
quickly adjustable gear. The fog node presented in 6.2 provides the example of
a low level, low latency device capable of sensing hazards and producing alerts.
In addition, these fog nodes represent the closest access point to which it is
possible to interact with the other vehicles present on the road.

Due to the importance of such devices, it is crucial to discern malicious
nodes from trusted ones. As described in [19], a third-party security provider
can establish a validation procedure that can be used before data transfer occurs
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between IoT devices and the node interact. FOG nodes among themselves can
cooperate to provide backup and assistance in case of dynamical variations in the
service provider.

6.2.1 Fog implementations: Camera
Interfaces with the road can be achieved with a variety of sensors. Cameras play
a crucial part in this, as they can provide with a clear definition through image
processing techniques capable of extracting peculiar information of an object almost
instantaneously. To properly control a segment of the road, cameras would need
to continuously, scanning for situations of interest and analyzing them in order to
provide a clear an univocal description. This poses strains on the bandwidth of the
system and would result in poor latency performances.

Fog nodes connected to cameras prove to be extremely effective in achieving a
mass-scale coverage area, thanks to their compact size and low cost nature. The
use of multiple sensors allows to detect of concurrent and independent events that
can be promptly reported to any requesting application [20]. Primary detection
is associated with the embedded system that provide computational power and
storage [21]. Thanks to the nature of the fog infrastructure, it is possible to
achieve highly accurate algorithms with far lower latency than conventional direct-
cloud computing. In [22], it is shown how a possible real-time surveillance system
can achieve powerful results when it is coupled with fog computing. Latency
performances are two orders of magnitude slower than the direct-driven Cloud
computing architecture.

In the Rainbow project [17], the RSUs are equipped with IP cameras that
work as fog computing nodes. At the same time, the video stream is also
reachable from the MEC node. Cameras are capable of implementing image
detection algorithms in order to identify the presence of an animal on the road.
Thanks to the dual nature of the infrastructure, it can either run on the Fog node or
on the MEC node, depending on the appropriate situations. Good streaming quality
is achieved at the Fog node thanks to its vicinity to the source, this provides
accurate identification results. On the other hand, good accuracy requires
high computational power that may lead to excessive overheating, resulting in a
possible failure. The MEC node does not suffer this problem thanks to its powerful
computational resources. However, this results in higher latency and lower
image quality, leading to poorer identification results.

6.2.2 AMQP Message Flows
In the event of a detection, the on board cameras recognize an hazardous situation
on the road. The RSU servers a double purpose. When hazards detected on
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Running Node Advantages Disadvantages

Fog Node • Low latency
•High detection accuracy

• Low computational power
• High power consumption

MEC Node • High computational power
• Low power consumption

• High latency
• Low detection accuracy

Table 6.1: Fog computational advantages compared to MEC node

the road need to be broadcasted to the Red Zone, the PC5 interface is utilized.
When the detected hazards need to be transmitted towards the Orange Zone an
AMQP Client is employed which embeds DENMs/CAMs according to the structure
described in chapter 5.

When the computational resources required are so great that the FOG node
risks overheating, the MEC node is called into action. The latter has to perform
DENM generation and act as an AMQP Client. Contrary to the Fog node, the
MEC node has to generate information exclusively to the Cloud Data Center. This
allows DENMs to be forwarded to vehicles in zones of less interest (Orange Zones)
or be processed by the Cloud aggregating architecture for map visualization.

AHED 
DETECTION
INSTANCE

PC5 Interface AMQP Client

AHED 
DETECTION
INSTANCE

AMQP Client

Cloud Interface

 Red Zone Vehicles

FOG NODE MEC NODE

Figure 6.3: Fog/MEC messages generation

6.2.3 On-Vehicle Message Flows
Vehicles equipped with a C-V2X technology communicate with the nearby RSUs
to exchange messages. On one side, vehicles receive DENMs generated by the RSU
or forwarded from the Cloud Infrastructure, on the other, they act as clients for
Cooperative Awareness Messages generation.

CAMs are exchanged between vehicles in order to notify them about their
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presence, position and status in single hop distance [23]. CAM messages are
generated according to the rules describe di chapter 3, the basic algorithm behind
the information generation behaves accordingly [24]:

Algorithm 1 CAM generation algorithm as described by ETSI
Input: Position p; position history pHist; last CAM message sent lastCam
Output: New Cam message, lastCam updated; pHist updated with p

1: procedure CAM Generation(p,pHist,lastCam)
2: ▷ p is the new position, pHist is the position History
3: while true do
4: time←System.getTime()
5: heading ← calcHeading(pHist,p)
6: lastPos←lastPosition(pHist)
7: lastHist←pHist/ lastPos
8: lastHead←calcHeading(lastHist,lastPos)
9: speed← calcSpeex(pHist,p)

10: if p /= null then
11: lastSpeed← calcSpeed(lsatHist,lastPos)
12: if distance(p, lastCam.pos) ≥ D-THRESHOLD or
13: |heading − lastCam.heading| ≥ H-THRESHOLD or
14: |speed− lastCam.speed| ≥ S-THRESHOLD then
15: cam ← newCam(time, p, heading, speed)
16: sendCam(cam)
17: lastCam ←
18: pHist ← pHist ∪ p
19: else
20: p ← lastPos
21: heading ← lastHead
22: if time - lastCam.time ≥ T-THRESHOLD then
23: cam ← newCam(time, p, heading, speed)
24: sendCam(cam)
25: lastCam ←
26: System.wait(CHECK-PERIOD)
27: ▷ The system check guarantees the CAM generation frequency of 10 Hz

The values of D-THRESHOLD, H-THRESHOLD, S-THRESHOLD and T-
THRESHOLD are the ones reported by ETSI:

• D-THRESHOLD = 5 m

• H-THRESHOLD +/- 4◦
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• S-THRESHOLD = 1 m/s

• T-THRESHOLD = 1 s

This guarantees that all vehicles can be properly mapped with a continuous flow of
information that guarantees reliability and accuracy.

Information gathered at the sensor level allows to register speeds, and directions
as well as other important parameters. Those are then routed through the CAN bus
in order to be registered by the V2X management system. The AMQP Client is,
too, connected to the CAN bus, it takes part in a bidirectional flow of information
that comes from the Uu interface. Data collection and data generation happen
mainly with respect to the Cloud Infrastructure that is a forwarder as well as a
collector of CAM messages. These are useful to aggregate information on a Citizen
Application containing DENMs as well as CAMs.

The PC5 interface on the other hand is employed in high risk areas (Red Zones)
and directly communicates with the Fog RSU. In this case, Hazardous Notification
Messages (DENM) are subject of interest for the vehicles, which after parsing the
messages, is able to extrapolate the necessary information. If the vehicle is located
inside the perimeter defined by the GeoNetworking header (further details in
successive chapters) it notifies the drivers through an HMI.

In this sense the vehicle is a complex entity that has to manage bidirectional
flows coming from Cloud and Fog interfaces. Processing speeds are limited by the
CAN bus and the speed at which the V2X management unit can process data. The
PC5 and Uu stacks manage the PC5 and the UU communication layer [17]. The
AMQP client negotiates a connection with the cloud broker and then can either
receive or send a stream of data (CAM, DENM) messages, properly encoded
and safely encrypted. The AMQP client must also be able to extract sufficient
information that have to be sent to the V2X management unit. The same piece
of equipment manages and orchestrates all processed within the vehicle; sending
and reception are in fact regulated by it. Finally the HMI sets-up a sequence of
policies in order to guarantee a proper interaction with the end user.

6.2.4 Cloud Node
The role of the Cloud node is to bridge far communicating users in a fast and
reliable manner. This is achieved through aggregating methods and smart traffic
flow management. A single broker is employed, the use of topic categorization
allows for reception of different type of messages depending on their source.

Signals issued from vehicles are collected, decoded and finally extrapolated.
With this, the City Aggregator is able to implement the real-time geo-localization
paradigm previously described. Another flow of message coming from the RSU is
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V2X mng
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CAN
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Figure 6.4: Vehicle information flow

forwarded directly to the vehicle. This contains alert messages that have been
issued from the Red Zone and are directed for the vehicles belonging to the Orange
Zone.

Finally, the Cloud Interface will collect data coming from the Vulnerable Road
Users that are present on the road. Such information must be confirmed by RSU
before being considered trust-worthy.

MEC/FOG
NODE VEHICLE

Figure 6.5: Simplified Cloud Node Flow

6.2.5 Use Case Scenario
After a brief description of the underlying architecture, it is important to describe
the scenarios that take place.
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From the Cloud management point of view, in real case implementations, the
ecological impacts due to power consumption become a non-negotiable aspect.
virtualization techniques have helped reducing the number of physical server thus
decreasing overall power consumption and utilization levels [25], however
this is not enough. A Smart Orchestration technique must be implemented to
minimize the usage of such a powerful computational resource in non-necessary
situations. The working conditions can be subdivided into two main categories:

• Non-hazardous situations

• Hazardous situations or Congested Network

In the case of Non-hazardous situations, when there are no detected hazardous
events, the RSU will send low-resolution and low frame-rate footage directly to
the MEC node. In this case, the AI image recognition algorithms will continuously
analyze images. The RSU can be wireless or wired connected and are energized
by the electric grid. In standard conditions the network bandwidth is enough for
the video streams so the RSU can run is low-power mode. Most of the operations
happen at the MEC node where they are already efficiently managed [17].

Differently, two possible situations can trigger another event:

• Detection of hazardous situation: In this case all computational resource
powers must be switched to the zone where the event has been detected. This
means moving the AHED algorithms from the MEC node towards the Fog
node. Higher image resolutions and higher frame rate are needed to insure a
more stable and reliable image detection. Furthermore thanks to the relatively
short distance, the latency is significantly reduced. Alert messages are directly
produced at the RSU level and are dispatched to the vehicles through the PC5
interface. Away vehicles are alerted exploiting the AMQP broker positioned
at the Cloud level. This does not necessitate of minimal latency constraints
due to the lower priority. After the event has ceased to exist all power resources
are allocated back to the MEC node [17].

• Congested network: if extremely high levels of latency are detected at the
MEC node due to congested traffic, the orchestration may decide to switch
back and forth the computational power resourced towards the RSU [17].

6.2.6 Smart Orchestration
The role of the Rainbow platform is to manage and organize load-shifting, moving
computational powers back and forth between elements of the architecture. This is
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Scenarios Fog resources MEC resources

Non hazardous event
• Low quality
• Low frames
•Power saving mode

•AHED algorithms
• Low power consumption
•Efficient

Hazardous event
•Full resource allocation
•Low latency
•High definition and frame

•No AHED algorithms are employed
•Power allocation towards the FOG node

Congested network •Fog support towards MEC
•High level of latency
•Reallocation of computational resources
to the Fog nodes

Table 6.2: Resource orchestration for different use case scenarios

achieved by analyzing several metrics among which latency and bandwidth usage
measured by service graph networks and policy editor [17].

These data are evaluated in an effort to satisfy as many constraints as possible:

• Bandwidth usage

• Latency

• Power consumption

• RSU temperature

• Event Detection

Powerful algorithms will balance the need for fast and reliable AHED without
compromising too much power consumption and risking hardware overheating.

Load balancing is achieved by means of Slicer [26], a powerful general
purpose sharding device developed by Google that is capable of monitoring load
hotspots, server health and to dynamically allocate work over a set ot servers. This
is done through the use of keys that that allow for re-balancing. On the other
hand, Accordion technology achieves scalability resolving the issue of dynamic
data placement [27].

6.2.7 Security and Data Storage
Due to the significant number of sensitive data, particular care has to be taken to-
wards security measures. Security should be considered in both the communication,
during data exchanges, as well as in the data itself by using authentication and
encryption [28]. The means by which it is possible to guarantee such requirements
is through the use of:

• SSL and TSL protocols coupled with the use of a VPN
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• Digital Certificates

Encryption of data through keys and authentication access controls can be
solutions exploited by the DBMS (Database Management System).

RAINBOW provides remote attestation by means of trust-aware service graph
which can guarantee both authentication whilst keeping user data private [17].

6.2.8 RAINBOW Functionalities

Requirement Monitoring network load

Goal Control the network flow produced by the RSU and keep
the power usage levels below a certain threshold

RAINBOW
Functionalities

Modelling
-Constraint and policy editor
-Centralized application packaging

Orchestration
-ALC (Application Life Cycle) management
-Runtime and resource adaptation

Workflow

Configuring video streams from the RSU to the Edge Node
-Low resolution
-Low frame per second

Begin AHED service
-Low accuracy
-High latency

Bandwidth monitoring
-If above SLO then:

i. Move AHED to RSU
ii. Stop video stream towards edge node

Table 6.3: Network load administration from RAINBOW
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Requirement Ensuring hardware working regime
Goal Control the RSU temperature to keep it under safety limits

RAINBOW
Functionalities

Modelling
-Constraint and policy editor
-Centralized application packaging

Orchestration
-ALC (Application Life Cycle) management
-Runtime and resource adaptation

Workflow

Start AHED service on RSU
-High resolution
-High frame per second
-High accuracy
-Low latency

Monitoring RSU temperature. If above SLO threshold
Configure video stream to flow from the RSU toward the Edge Node

-Move AHED service on the Edge Node

Table 6.4: RSU temperature administration from RAINBOW

Requirement Maximize available resources and accuracy in the case of hazardous events

Task
AHED will run on Edge Node up with low resolution. When Hazardous event
is detected it will move to the Fog Node, high resolution and high frame rate.
When event ends, all resources will be re-allocated to the Edge again.

RAINBOW
Functionalities

Modelling
-Constraint and policy editor
-Centralized application packaging

Orchestration
-ALC (Application Life Cycle) management
-Runtime and resource adaptation

Workflow

Stream flows from RSU towards Edge Node
-High resolution
-Low latency

Start AHED service on Edge Node. If hazard is detected:
-Move AHED service on the RSU

i. High accuracy
ii. Low latency

If event expires:
-Move AHED back to the Edge Node

Table 6.5: Resource administration from RAINBOW
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Chapter 7

Cloud Node Framework

The Cloud node that has been described in section 6.2.4 highlights the main
interfaces that play a role in message exchanges. The overall structure is composed
by single broker that interacts with AMQP Producers and Consumers.

Three main flows of information can be highlighted:

• Fog/MEC node towards Cloud Node

• Vehicle to Cloud

• Citizen App towards User

For this reason, the node must be composed of three consumers, one per each
direction, and one producer that forwards messages directly to the AMQP Client
available on the vehicle. The node has its central element revolving around a
message decoder that exposes the ETSI messages. The information contained
inside are used to aggregate data in a centralized map, publicly accessible.

7.1 Message Emulator
The need for a message emulator originates in the ability to simulate the complete
chain of transmission within the architecture. A message that has been created
can be used to measure end-to-end latencies by comparing the generation time
with the time taken for transmission and decoding.

Before being able to send a message across the channel, CAM/DENMs must be
generated, this is done through the use of encoding techniques. In order to guarantee
security during transmission, ETSI defines a set of Public Key Infrastructures (PKIs)
for C-ITS environments [29]. However, no specific standard is defined regarding
Abstract Syntax Notation One (ASN1) [30].
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Figure 7.1: Cloud Node internal structure

Abstract Syntax Notation One is a standard widely used in telecommuni-
cation systems in order to specify the data used. The aims of ASN.1 is to specify
data-structures that can be independent on the language and platform used. It,
therefore, defines methods and rules by which these data-structures can be stored
in a binary fashion. The final encoding that results after the operation is a
concatenation of the encoding realized on all the structures composing the root
ASN.1 definition [30]. Conversely, in the decoding phase, these structures must be
predefined in order to successfully reconstruct the original message. The introduc-
tion of 3GPP saw the integration of the UPER encoding rule in order to describe
signaling messages in the LTE-Uu interface protocol stack [31]. Packet Encoding
Rules and Unaligned Packet Encoding Rules (PER, UPER) aim at eliminating
redundancies contained in packet encoding rules such as in the case of BER. The
encoding of a structure yields an array of bytes. Not all encoded structures
represent a complete byte array value. A structure described in 6 bits can be
represented with a single byte (8 bits) or just as an array of length 6. UPER
version does not implement any padding in the unfilled octects, common practice
usually employed in PER encoding [30].

In AMQP Senders the use of UPER encoding will be exploited. This procedure
takes place at the beginning of the encoder where the ASN.1 file is initalized.
This will be reused whenever a new message is created, making the procedure
lightweight and reliable. The ASN.1 includes a ITS-PDU header description at
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the beginning of the file which includes information on the protocol version, ITS
station ID, and message type. In appendix A the ITS-PDU Header is defined
with respect to the Cooperative Awareness Messages.

The emulation process begins with the transformation of a textual file con-
taining the bare ETSI message. In the case of DENMs, this will hold information
regarding the cause code and subcause code positioned at the situation con-
tainer level. In the case of CAMs the critical information are those described in
the algorithm 1. The textual message if firstly converted to string so that it can
be managed by the encoding software. For this particular procedure, the Python
library ans1tools will be employed [32]. On top of the encoded message, the Basic
Transport Protocol and Geonetworking will be encapsulated [33], according to the
structure in figure 7.2:

ITS Application

ITS Facilities

Basic Transport
Protocol

Geonetworking

ITS Access
Technologies

IT
S 

M
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IT
S 
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Figure 7.2: Geonetworking stack in ITS
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Algorithm 2 Message emulator
Input: ASN.1 ITS-PDU asn1 ; latitude lat; longitude long; GeoNetworking

geo; ETSI Message Body msg
Output: Encoded CAM encoded

1: procedure ETSI Message Emulator(asn1,lat,long,geo)
2: time ←System.getTime()
3: asn1.compiled← asn1tools.compile(asn1)
4: msg_string ← string(msg)
5: msg.latitude ← lat
6: msg.long ← long
7: while true do
8: timestampITS ←convertEpoch(time)
9: ▷ Converting internal clock time to ETSI reference time

10: msg.timestamp ← timestampITS
11: encoded ← encode(msg)
12: msg_encoded ← geo ⋃︁ encoded
13: ▷ Encoded body is encapsulated inside BTP+Geonetworking header
14: AMQPSender(msg_encoded)
15: ▷ These procedures are not specific for a particular ETSI message type

To properly simulate the movement of vehicles within a certain geographical
area, a set of latitudes and longitudes will be generated. Those will try, as
best as possible, to emulate the probable path that a vehicle may undergone. Such
a set of latitude and longitude are then included prior to the encoding phase within
the ETSI CAM message. Similarly, a series of events will be generated and their
position will be mapped onto the City Aggregator.

7.2 Qpid Proton: AMQP Sender/Receiver
The development of AMQP Senders and Receivers has been done exploiting Qpid
Proton, high-performance, lightweight messaging library that can be employed
to develop brokers, clients, routers, bridges, proxies and more [34]. As extensively
described in section 5.4, AMQP message transfer occurs between peers upon the
establishment of links. The sending peer calls the link Sender, at the receiving peer
it takes the name of Receiver. Links may contain the Source or Target address
where the message has to be sent. Links can begin only when sessions have been
established and sessions take place only when connections are generated. To
generate a connection, containers are used that are uniquely identified. A single
connection may contain multiple session; generally this is a rare case but it is still
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possible. Qpid generally ignores session unless explicitly required [34].
A message once sent over a link is said to be in delivery. The term message,

as described in 5.6.1, contains an immutable payload containing all information of
interest, header, application properties, and message annotations. The exchange is
identified with the transfer of the data content.

To confirm a delivery either Sender or Receiver can settle it. Upon this action,
the other side has to be promptly notified of the successful delivery. Further
communications at that point are halted.

7.2.1 AMQP Sender
The AMQP Sender in the architecture described in 7.1 is mainly tasked with the
information forwarding towards the vehicle. Due to the experimental nature of the
analysis, the entire flow of messages has to be simulated.

AMQP Producers present at the Fog/MAC level are simulated with a Qpid
Sender instance that generates flows of DENM data. This is done in an effort to
simulate all levels of communication, even those outside the scope of the Cloud
Node.

The basis of the process is based on the creation of an application logic in
a class that handles various events [34]. Such events are handled by the Proton
event handler and are defined within the application container with the following
classes:

• on_start: When an event loop is initialized

• on_sendable: When the link has sufficient credit, thus permitting message
flow

• on_accepted: When the remote peer acknowledges the message coming from
the sending peer

• on_disconnected: Called only when the connection socket has been closed

All these events are contained inside a container, which is a class imported
from Reactor. It allows for easy programming thanks to an event loop which is
able to react to the events listed above. The event classes contained inside will
then notify when their are being triggered.

The Container, upon initialization, is served with the address location of the
broker that is usually defined according to the follow schematics:

1 IpAddress :5672/ top i c : // rainbow . p r o j e c t . c r f . p o l i t o . cam . 0 . 0 . 1
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Where the first element passed is the destination broker address and its port.
AMQP defines a default port 5672 for all AMQP transmissions. Subsequently the
topic is defined.

Although available, queues are not preferred over topic. A real-time notifi-
cation service cannot be adopted due to their intrinsic nature to store messages in
queues that are destined to specific consumers. This means that until ready, a no-
tification message will remain stored within the broker until a consumer subscribes
to the queue. A non-defined delay time will be included in the reception of the
message which can lead to severe discrepancies between what the vehicles see and
what is the actual situation of the road.

On the other hand, topic exchanges allow for multiple consumers, that are
interested in the same topic, to receive the notification parallely. In the use-case
scenario described in figure 6.2 all vehicles belonging to the Red Zone will be
notified simultaneously regarding the same message:

topic://rainbow.project.redzone.*.*.*

Topics, in addition, employ powerful wildcards "*" that allows vehicles subscribed
with topics such as

• topic://rainbow.project.redzone.1.0.0

• topic://rainbow.project.redzone.0.1.0

to receive the same hazardous notifications.
In addition to the message destination address, the encoded message is included

in the initialization event belonging to the container. It is then sent along with a
unique identification code through the event.sender.message command.

7.2.2 AMQP Receiver
Similarly to the AMQP Sender, the Receiver is instantiated inside a container
where events are handled. Conversely to before the Receiver handles the following
events:

• on_start: where variables are initialized

• on_message: where processes such as decoding, Geonetworking extrapo-
lation takes place.

Thanks to the properties of the topic structure, the receiver will listen on:

1 IpAddress :5672/ top i c : rainbow . p r o j e c t . c r f . p o l i t o . cam . ∗ . ∗ . ∗
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Figure 7.3: Qpid Proton Sender chart

This way, the Receiver consumes only messages that are associated with a particular
direction of flow and belong to any subcategory within it.

From the Receiver the extrapolated messages are sent to the City Aggregator
where they are processed to extract information relevant to the message type (CAM
or DENM)

7.3 AMQP Broker
All message flows have the necessity of passing through a broker. AMQP Producers
take advantages of those by sending messages over specified topics. On the other
side, AMQP Receivers listen over specific topics to receive updates and critical
information. It is therefore essential the use of a reliable and efficient broker
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solution able to accommodate a sufficiently large traffic size without degrading in
performance. Apache ActiveMQ, is an open source, multi-protocol, Java based
message broker [35].

The way by which an ActiveMQ creates an application is through the following
steps:

Create connection istance

Create a connection

Create a session

Create a destination (topic)

Create a producer for the topic Create a consumer for the topic

Send Message Receive Message

Figure 7.4: AMQP Broker initalization

For the current architecture a single broker runs multiple instances at
the same time, this is done in order to reduce the overall complexity of the design.
In a physical implementation several distributed brokers can concurrently work
alongside to guarantee the correct functioning of the overall system. A specific
broker takes care of the DENM flows from RSU/MEC nodes through the cloud
interface whereas another one deals with the AMQP flows from and to the vehicles.

ActiveMQ performs much better than its competitors due to a low time for
placement of messages over a topic. In addition it is far more efficient with lower
number of clients [36].

7.4 Detailed message flow description
In order to complete the internal architecture of the system it is important to
describe the decoding phase and how it interfaces with the City Aggregator.
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When a message arrives at the AMQP Receiver side, it is routed depending on the
information contained in the topic description. If a message contains simple DENMs
notifications and it is coming from a RSU/MEC node, it is directly forwarded to
the vehicles without any particular reprocessing. The bare message is forwarded
to a successive topic that will be used by the vehicles in order to be informed
regarding the zones of danger. The use of direct forwarding is done in an effort
to reduce the latency time, thus moving the decoding resources on-board
of the vehicles. In order to guarantee forwarding, a simple AMQP Sender is
be employed; although different in its working principles, it maintains a similar
structure to the basic AMQP Sender. Forwarding topic can be discerned from
common ones by creating a sub-topic category for identification that points to
the message final destination.

AMQP
Forwarder

AMQP Receiver

Geonetworking 
Decoder

Message
Decoder

City Aggregator

Vehicles

UDP

Figure 7.5: Forwarding processing inside AMQP Receiver

After the forwarding procedure has occurred, the message is firstly stripped
of its BTP&Geonetworking part which is separately decoded. The remaining
part of the message, containing the bare information, is firstly decoded using the
inverse process shown in section 7.1, so as to convert a bytearray into textual
information. Exploiting a UDP Socket messages are sent to the Map application
system, ready for visualization.

In the case of vehicular messages (i.e CAMs) or citizen notification prompts,
no forwarding action takes place. Firstly, the Rainbow architecture must
validate user information prior to publishing. This is done in an effort to reduce
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mischievous attempts that can severely undermine the correct functioning of the
system. After validity cross-checks, User’s messages may be included within the
visualization platform and can be exploited by other vehicles.

Message flows Message type Forwarding Interfaces
RSU/MEC to Vehicles DENMs Yes AMQP Receiver & Forwarder

Vehicles to Cloud CAMs No AMQP Receiver
Vulnerable User to Cloud Node DENMs/CAMs No AMQP Receiver
Cloud node to City Aggregator DENMs/CAMs No UDP Socket

Table 7.1: Detailed message flow within Cloud Node

7.5 Latency measurements
Although no explicit latency limit is specified in the ETSI standard, the E-UTRAN
must be able to transfer messages via 3GPP network between a UE and
an application server with an end-to-end delay not superior to 1000 ms.
[37]. Considering recent works done with the use of 5G [38] in truck platooning, the
latency measured from the Test User Equipment mounted on-vehicle board and the
Base Station Equipment shows values around 2 ms of peak delay. This confirms
the powerful nature of the technology which will be leveraged in this architecture.

Latencies measurements have been carried within the architecture by measuring
the time elapsed from the message generation, up until its reception and
decoding at the vehicle side. Latencies measured from the RSU/MEC/Vehicle
node up until the decoding phase in the Cloud Node do not represent the limit
case of the architecture, this is due to their easier construction and the presence of
a single sender and receiver.

In the considered model, the end-to-end latency is, therefore the union of
three type of delays:

• Time taken for the Message generation and AMQP sending procedure

• Time taken by the AMQP Receiver for consuming the message and forwarding
it to the vehicle node

• Time taken for reception and decoding at the vehicle level

The sum of the three constitutes the total chain delays.

TE2E = TEmu + TAMQP Send + TAMQP Recv + TAMQP Fwd + TVehicle Receive + TDecoding
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Where TEmu represents the emulation time (encoding phase included), TAMQP Send is
the AMQP Sender latency, TAMQP Recv is the Cloud Node AMQP Receiver latency,
TAMQP Fwd is the AMQP forwarder latency, TVehicle Receive is the AMQP Receiver
latency mounted on board of vehicles and TDecoding is the decoding time.

The preliminary work focuses mainly on the identification of the so called
latency bottleneck within the architecture. This allows for a focused and efficient
software optimization.

7.5.1 AMQP Sender/Receiver latency
Experimental results carried on the AMQP Qpid Proton Sender and Receiver
measure the elapsed time from the container creation until the connection close
procedure. This therefore include the on_start phase, the on_sendable phase,
on_accepted and on_disconnected as described in section 7.2.1. The latency
measured at the receiver side includes only the on_message. The receiver, in
fact, is initialized only once and is kept alive for the entirety of the experiment.

Figure 7.6: Average AMQP receiver
latency

Figure 7.7: Average AMQP sender la-
tency

Figures 7.6 and 7.7 are measures of average latency conducted on a set of
data flow of 10 minutes. Data are plotted with the relative standard deviation. It
is clear that the sending delay amounts for the majority of the taken time. This
is justified by greater amount of procedures contained in the sending container
compared to the receiving one. The AMQP receiver behaves particularly well and
it is stable throughout the experiment.

Measurements conducted in this fashion tend to overestimate the actual
latency; time retrieval within the container requires a set of n timestamps used
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for comparison. This adds unwanted delay that undermines the correctness of the
results.

7.5.2 Average transmission time CAM/DENM
The aforementioned latency measures all procedural times taken from the generation
up until the sending. Similarly, the receiver considers only the time taken to
process the incoming messages. The time taken for the message to reach the
broker and come back is not included. For this reason a ping-based latency
measurement experiment is devised. To simulate real packets transmission the data
length is modified to accomodate for real CAM/DENMs packet sizes.

• CAMs: 99 bytes

• DENMs: 115 bytes

A series of a thousands packets is then sent across the channel towards the broker
destination. This gives an estimate of the time taken for the ITS packet to
be transmitted and come back to its source.

Figure 7.8: Average packet transmis-
sion latency (CAMs)

Figure 7.9: Average packet transmis-
sion latency (DENMs)

Figures 7.8 and 7.9 showcase similar results with average ping times that
stabilize themselves around 30 ms. It is worth mentioning that standard utility
ping instruments tend to overestimate latency measurements [39], the obtained
results can then be considered as an upper bound for the overall transmission
time.
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7.5.3 End-to-end latency
In order to measure E2E latency in a non-invasive manner, the message structure
is exploited. For CAMs generationDeltatime represents the time of reference
position of the CAM, considered as the time for its generation [5]. It is considered
wrapping a standard TimestampITS in a window of 65536:

generationDeltaT ime = TimestampIts % 65536

The TimestampITS is an integer value considered since the epoch time 2004-01-01
T00:00:00:000Z [40]. For DENMs the management container holds information
regarding the actionID, eventPosition and detectionTime as described in section
3.2.3. The latter can hold ITS-type timestamps [6].

Exploiting such container’s sections, makes it possible to substitute these
information with timestamp measurements obtained during the experimental phase.
Upon reception, such results can be extrapolated during decoding and they can
be compared to timestamps measured in that particular instance. This methods
avoids the invasive comparing technique used in 7.5.1 providing accurate results.

ETSI Message Emulator

Timestamp ITS

% 65536

Timestamp ITS

DENM

CAM

AMQP
Sender

AMQP
Receiver Comparator

Timestamp ITS

Timestamp ITS

% 65536

Latency
measurement

Figure 7.10: End-to-end latency working structure

Due to the great amount of data, MySQL database is used to store latency
measurements computed with this method. Grafana is used for data visualization
as it is a multi-platform interactive data aggregator that allows for compact and
dynamic plotting [41].

Data are sent over to MySQL through UDP socket [UDPSocket], before
data pre-processing. The MySQL listens over port 5005 commonly employed for
Real-time Transport Protocol applications.

Data pre-processing consists in stripping valuable information from the message
body and computing the punctual latency. In addition, an average latency value
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is computed in a time window of 5 s; such a value attenuates latency peaks that
can originate due to the oscillating performances of both hardware and wireless
systems used during experimentation.

Figure 7.11: E2E average latency per 5s - CAMs flow

Figure 7.12: E2E punctual latency - CAMs flow

The Cooperative Awareness Message flow of figures 7.11, 7.12, shows an
average latency around 200 ms with limited fluctuations. This is the minimum
latency observed in the architecture as it does not require forwarding; it is directly
processed within the Cloud Node.

Figure 7.13: E2E average latency per 5s - DENMs flow

The average DENMs flow of figures 7.13, 7.14 highlights the effect of the
AMQP forwarder. Due to the additional AMQP sender and AMQP receiver, the
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Figure 7.14: E2E punctual latency - DENMs flow

latency values revolve around 300 ms (100 ms more than the CAMs), this quantifies
the average AMQP sending latency around 100 ms, different from the one obtained
with invasive analysis in section 7.5.1.

Figure 7.15: E2E average latency per 5s - CAMs/DENMs flow

Figure 7.16: E2E punctual latency - CAMs/DENMs flow

The CAMs/DENMs mixed flow of figures 7.15, 7.16 mimics a possible Citizen
App scenario where users can send manual notifications. As evidenced in figure
7.15 the oscillating behavior is caused by the presence of a DENM message every
five CAMs.
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7.6 NTP: Latency measures for remote peers
It is important to remark that the obtained results are relevant only if timestamp
encapsulation and extraction are performed on the same machine. Remote oper-
ations necessitate of a machine-to-machine synchronization rule. The literature
offers an ample selection of flavors through which synchronization may occur across
devices. Precision Time Protocol (PTP) defines a protocol for precise and accurate
synchronization of real-time clocks of devices in a network of distributed systems. It
does so enabling clocks of various inherent precision, resolution and stability to syn-
chronize to a grandmaster clock [42]. Reference Broadcast Synchronization (RBS)
employs nodes to send reference beacons to their neighbors using physical-layer
broadcasts [43]. The most common an well-established synchronization system
remains the Network Time Protocol (NTP) [44]. It has established itself as an
Internet Standard Protocol by using a set of time servers and transmission paths
as a synchronization subnet [45]. The precision of the NTP protocol heavily relies
on the assumption of a symmetric transmission between client and server. If
this does not hold, the synchronization may result erroneous [46].

NTP employs a stratified architecture level made up of servers. Each level,
also known as stratum, is ordered in terms of its accuracy level, that is, the
topmost level being the most accurate [45]. As the levels increase, the accuracy
performances will degrade depending on the network path and local-clock stability
[45].

A simple tools that can guarantee time synchronization through NTP is the
NTP Pool Project [47]. Devised by Bjørn Hansen, it exploits a public pool of servers
to achieve NTP synchronization worldwide. A domain name server is initialized,
after which, multiple sub-domains are created under this address according to the
geographical location [48].

server 0.it.pool.ntp.org
server 1.it.pool.ntp.org
server 2.it.pool.ntp.org
server 3.it.pool.ntp.org

As of today, there exist no explicit method to synchronize two machines
outside a common LAN. As a matter of fact, remote computers fetch from a
random pool of servers that changes every hour [47]. The choice usually tends to
optimize three parameters:

• Delay: represents the time take for a request to reach and come back the
server , this is used to calculated the network delays in the synchronization
phase
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ATOMIC CLOCK
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(CLIENT)

Figure 7.17: NTP stratum levels

• Jitter: Indicates to what extent does the dispersion affects the signal

• Offset: Which indicates the time difference of the local machine with respect
to the external server.

The offset value depends on the specific server to which the machine is syn-
chronized and on the machine itself.

Synchronization of two remote machines is only possible by forcing the remote
machine to synchronize to the same server. Due to the intrinsic nature of the NTP
protocol, this becomes extremely challenging. A server connection may be accurate
for a specific machine and totally inaccurate for the other remote machine. In
addition, connection’s faults are frequent and unpredictable.

Synchronization is therefore considered as a random error with standard
deviation σ affecting the overall latency. A set of offset data is retrieved from a
specific NTP server connected to two remote machine. The overall NTP offset
difference is calculated as the absolute difference between the two remote machines.
Offset values can, in fact, be positive in the case of a machine delay with respect
to the server and a negative value in the case of a machine offset advance.

NTPoff = |OFFS1 −OFFS2|

As it is visible in 7.18 positive skewness properties can be evidences in the
normal distribution graph. This characteristic describes the lack of symmetric of a
normal distribution function around an average µ and standard deviation σ. As
reported by Doane & Seward [49] skewness is defined through the second and third
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Figure 7.18: Standard distribution of offset between remote NTP clients

Mean (s) Standard deviation (s)
NTP Offset 0.0034664 0.0005226

Table 7.2: Mean and standard deviation for NTP offset measurements

moments around the mean

m2 = 1
n

n∑︂
i=1

(xi − x̄)2 m3 = 1
n

n∑︂
i=1

(xi − x̄)3

According to Fisher-Pearson [50] the measure of skewness is obtained through:

g1 = m3

m
3/2
2

=
1
n

∑︁n
i=1 (xi − x̄)3[︂

1
n

∑︁n
i=1 (xi − x̄)2

]︂3/2

As mentioned above, synchronization to the same NTP server is difficult and
unstable, this results in increasing number of offset measurements on both remote
machine; the resulting effect is the positive skewness property. However, thanks to
the obtained statistical results, it is possible to account for the direct effect on the
E2E latency results of section 7.5.3
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7.6.1 City Aggregator
The city aggregator completes the real-time notification system infrastructure; it
introduces data conglomeration in order to visualize a live map publicly accessible.
The platform is developed on Mapbox, a custom online map provider exploiting
the Mapbox open source GL-JS JavaScript library [51].

The application is defined through JavaScript Express [52], used to create
HTTP and HTTPS server connections. The connection is handled through IOSe-
cureSocket. AMQP packet transmission occurs through the UDP socket interface.
All messages entering the application are obtained from a single AMQP Receiver
running on the server.

HTML

City
Aggregator

Request

Response

UDP Socket
AMQP

Receiver

Frontend BackendUser
Request

Response

CITY AGGREGATOR WEB APP

Figure 7.19: City Aggregator web app architecture

Messages received at the broker level are processed and sent to the server logic
running node. Its aim is to read object information from the AMQP receiver and
pass it to the client through socket.io. The frontend shows the relevant information
on the map constructed with Mapbox whilst it implementing aggregating, filtering
and data interpretation algorithms.

7.6.2 Geonetworking Geographical Area Definition
GeoNetworking is a network layer that provides packet routing in an ad hoc network
[53]. Single-hop broadcast is mainly used in the transmission of periodic CAMs,
whereas multi-hop distribution of events within an area is exploited in DENMs

61



Cloud Node Framework

[54].
Targeted areas are identified through geometrical shapes. ETSI defines a set

of three different areas:

• circular area

• rectangular area

• elliptical area

Figure 7.20: GeoNetworking geographical area definition

The value of a corresponds to the semi-axis of the ellipse and rectangle, b corresponds
to the shorter semi-axis length (in the case of circular area b and a coincident with
the radius r). The angle θ corresponds to the azimuth angle with respect to the
major semi-axis, φ its complementary.

Areas are plotted onto the map by firstly drawing the shape through a series
of interpolating point that respect the geometry shape. The figure is then rotate
exploiting a simple rotation matrix around the z-axis:

R(θ) =

⎡⎢⎣cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

⎤⎥⎦
The geometry is then converted into latitude and longitude coordinates with respect
to a central point on the map. Considering the number of kilometers per degree of
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longitude corresponds to:
(︃

πRearth

180◦

)︃
cos

(︄
θπ

180◦

)︄

A displacement in meters around a point on the map corresponds in a latitude and
longitude variation given by:

Latc − Lati = ∆x

Rearth
·
(︃180◦

π

)︃

Longc − Longi = ∆x

Rearth
·
(︃180◦

π

)︃
· 1

cos(Lati · π
180◦ )

The calculations hold for small displacements, at least comparable to the earth’s
radius.

GN defines an additional parameter, useful for identifying the position of the
object within the area. Function F determines whether a point P(x,y) is:

F (x, y)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
= 1 for x = 0 and y = 0(centerpoint)
> 0 inside geographical area
= 0 at the border of the area
< 0 outside the area

For circular area F is defined as:

F (x, y) = 1−
(︃

x

r

)︃2
−
(︃

y

r

)︃2

For rectangular areas the function F assumes the form:

F (x, y) = min

(︄
1−

(︃
x

a

)︃2
, 1−

(︃
y

b

)︃2
)︄

For elliptical area:
F (x, y) = 1−

(︃
x

a

)︃2
−
(︃

y

b

)︃2

The results obtained in the City Aggregator are reported in the appendix C.
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Conclusions

The possibility of a real-time geo-referenced notification system brings the reality of
a fully autonomous system, one step forward. The efforts made toward this goal are
strengthened by the recent developments in the automotive and telecommunication
fields. The Rainbow project is an example such effort made by governing agencies
towards the enhancement of fog computing capabilities. This development will
open up further researches, aiming at extending this platform to larger aspects of
mobility.

The aim of this thesis has been that of designing the Cloud Node infrastructure
and test its performance in terms of reliability and efficiency. A preliminary part
has served the purpose of introducing the technological window where the project
lays its foundations. C-V2X technologies and MEC infrastructures introduced the
advantages of edge computing in terms of its reduced latency and greater scalability.
The BSA opened up the description of Cooperative Awareness Messages and
Decentralized Environment Notification Messages, crucially important in achieving
hazard notification and full-scale dissemination. Detailed descriptions have been
carried out regarding message transfer and flows. Furthermore, the key concepts of
AMQP protocol have been exploited to manage a messaging infrastructure capable
of rapidly moving and aggregating information that can instantaneously available
in the palm of our hands.

The Rainbow Project has then been introduced, its underlying structure, basic
functioning and use case scenarios have been described in-depth. Each architectural
component has been analyzed, particularly in terms of its relation with the central
Cloud Node.

The central part of the discussion has been devoted to the Cloud Node
Framework, this includes an overall description of the message emulator algorithms,
used for generation of ETSI messages. The structure of the AMQP Sender and
Receiver have continued the discussion, particularly on the topic generation and
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handling. The experimental part saw the description of the latency model and
its role in the AMQP chain. Message transmission latency through variable data
length ping has quantified the amount of latency measured between AMQP entities.
Finally measurements of E2E latency have shown the overall message flow latency
from its origination up to its decoding at the vehicle level. NTP considerations
have been useful to quantify the average random error present in the E2E measures
due to the lack of synchronization between remote peers.

The City Aggregator internal architecture has been exposed. Message infor-
mation have been used exploiting the GN Geographical Area Definition to identify
an area where hazards and vehicular communications should be delivered. The
final demo has merely served the purpose of confirming the correct functioning of
the architecture but has provided with a final visual reference.
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ITS-PDU Header for CAMs

1 CAM−PDU−Desc r i p t i on s {
2 i tu−t (0 ) i d e n t i f i e d−o rgan i z a t i on (4 ) e t s i ( 0 ) itsDomain (5 )

wg1 (1 ) en (302637) cam (2) ve r s i on (2 )
3 }
4

5 DEFINITIONS AUTOMATIC TAGS : :=
6

7 BEGIN
8

9 IMPORTS
10 ItsPduHeader , CauseCode , Re fe rencePos i t i on , Acce l e ra t ionContro l ,

Curvature , CurvatureCalculationMode , Heading , LanePosit ion ,
EmergencyPriority , EmbarkationStatus , Speed , Dr iveDirect ion ,
Long i tud ina lAcce l e ra t i on , La t e ra lAcce l e r a t i on ,
V e r t i c a l A c c e l e r a t i o n , StationType , Exte r i o rL ight s ,
DangerousGoodsBasic , SpecialTransportType , LightBarSirenInUse ,
Vehic leRole , VehicleLength , VehicleWidth , PathHistory ,
RoadworksSubCauseCode , ClosedLanes , Tra f f i cRu le , SpeedLimit ,
SteeringWheelAngle , PerformanceClass , YawRate ,
ProtectedCommunicationZone , PtActivat ion , Latitude , Longitude ,
ProtectedCommunicationZonesRSU , CenDsrcToll ingZone FROM ITS−
Container {

11 i tu−t (0 ) i d e n t i f i e d−o rgan i z a t i on (4 ) e t s i ( 0 ) itsDomain (5 )
wg1 (1 ) t s (102894) cdd (2 ) ve r s i on (2 )

12 } ;
13

14

15 −− The root data frame f o r coope ra t i v e awareness messages
16

17 CAM ::= SEQUENCE {
18 header ItsPduHeader ,
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19 cam CoopAwareness
20 }
21

22 CoopAwareness : := SEQUENCE {
23 generat ionDeltaTime GenerationDeltaTime ,
24 camParameters CamParameters
25 }
26

27 CamParameters : := SEQUENCE {
28 bas i cConta iner BasicContainer ,
29 highFrequencyContainer HighFrequencyContainer ,
30 lowFrequencyContainer LowFrequencyContainer OPTIONAL,
31 s p e c i a l Ve h i c l e C on t a i n e r Spec i a lVeh i c l eConta ine r OPTIONAL,
32 . . .
33 }
34

35 HighFrequencyContainer : := CHOICE {
36 bas icVehic leConta inerHighFrequency

BasicVehic leContainerHighFrequency ,
37 rsuContainerHighFrequency RSUContainerHighFrequency ,
38 . . .
39 }
40

41 LowFrequencyContainer : := CHOICE {
42 basicVehic leContainerLowFrequency

BasicVehicleContainerLowFrequency ,
43 . . .
44 }
45

46 Spec i a lVeh i c l eConta ine r : := CHOICE {
47 publ i cTransportConta iner Publ icTransportContainer ,
48 spec ia lTranspor tConta ine r Spec ia lTransportConta iner ,
49 dangerousGoodsContainer DangerousGoodsContainer ,
50 roadWorksContainerBasic RoadWorksContainerBasic ,
51 re scueConta iner RescueContainer ,
52 emergencyContainer EmergencyContainer ,
53 sa fe tyCarConta iner SafetyCarContainer ,
54 . . .
55 }
56

57 BasicConta iner : := SEQUENCE {
58 stat ionType StationType ,
59 r e f e r e n c e P o s i t i o n Re fe rencePos i t i on ,
60 . . .
61 }
62

63 BasicVehic leContainerHighFrequency : := SEQUENCE {
64 heading Heading ,
65 speed Speed ,
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66 d r i v e D i r e c t i o n Dr iveDirect ion ,
67 veh ic l eLength VehicleLength ,
68 vehic leWidth VehicleWidth ,
69 l o n g i t u d i n a l A c c e l e r a t i o n Long i tud ina lAcce l e ra t i on ,
70 curvature Curvature ,
71 curvatureCalculat ionMode CurvatureCalculationMode ,
72 yawRate YawRate ,
73 a c c e l e r a t i o n C o n t r o l Acce l e ra t i onCont ro l OPTIONAL,
74 l a n e P o s i t i o n LanePos i t ion OPTIONAL,
75 steer ingWheelAngle SteeringWheelAngle OPTIONAL,
76 l a t e r a l A c c e l e r a t i o n L a t e r a l A c c e l e r a t i o n OPTIONAL,
77 v e r t i c a l A c c e l e r a t i o n V e r t i c a l A c c e l e r a t i o n OPTIONAL,
78 per formanceClass PerformanceClass OPTIONAL,
79 cenDsrcTol l ingZone CenDsrcToll ingZone OPTIONAL
80 }
81

82 BasicVehicleContainerLowFrequency : := SEQUENCE {
83 veh i c l eRo l e Vehic leRole ,
84 e x t e r i o r L i g h t s Exte r i o rL ight s ,
85 pathHistory PathHistory
86 }
87

88 Publ icTransportConta iner : := SEQUENCE {
89 embarkationStatus EmbarkationStatus ,
90 ptAct ivat ion PtAct ivat ion OPTIONAL
91 }
92

93 Spec ia lTransportConta iner : := SEQUENCE {
94 spec ia lTransportType SpecialTransportType ,
95 l i gh tBarS i r en InUse LightBarSirenInUse
96 }
97

98 DangerousGoodsContainer : := SEQUENCE {
99 dangerousGoodsBasic DangerousGoodsBasic

100 }
101

102 RoadWorksContainerBasic : := SEQUENCE {
103 roadworksSubCauseCode RoadworksSubCauseCode OPTIONAL,
104 l i gh tBarS i r en InUse LightBarSirenInUse ,
105 c losedLanes ClosedLanes OPTIONAL
106 }
107

108 RescueContainer : := SEQUENCE {
109 l i gh tBarS i r en InUse LightBarSirenInUse
110 }
111

112 EmergencyContainer : := SEQUENCE {
113 l i gh tBarS i r en InUse LightBarSirenInUse ,
114 i n c i d e n t I n d i c a t i o n CauseCode OPTIONAL,
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115 emergencyPr ior i ty EmergencyPrior ity OPTIONAL
116 }
117

118 SafetyCarContainer : := SEQUENCE {
119 l i gh tBarS i r en InUse LightBarSirenInUse ,
120 i n c i d e n t I n d i c a t i o n CauseCode OPTIONAL,
121 t r a f f i c R u l e Tra f f i cRu l e OPTIONAL,
122 speedLimit SpeedLimit OPTIONAL
123 }
124

125 RSUContainerHighFrequency : := SEQUENCE {
126 protectedCommunicationZonesRSU ProtectedCommunicationZonesRSU

OPTIONAL,
127 . . .
128 }
129

130 GenerationDeltaTime : := INTEGER { oneMi l l i S e c (1 ) } ( 0 . . 6 5 5 3 5 )
131

132 END
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AMQP WireShark capture

The capture reported in figure B.1 represents the different phases of an AMQP
message. This is complementary to the description of chapter 5. The transmis-
sion is initiated with the Protocol-Header 1-0-0 and Protocol-Header 1-0-0
sasl.mechanism, followed by sasl.init and outcome. The beginning of the
flow is performed by the open begin attach flow followed by the transfer and
disposition. Finally when the transmission is ended (either from the client or the
broker) the close procedure occurs.

Figure B.1: WireShark capture of AMQP message flows
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City Aggregator - DEMO

Figure C.1: Geometrical Area Definition Geonetworking - Circle
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City Aggregator - DEMO

Figure C.2: Geometrical Area Definition Geonetworking - Ellipse

Figure C.3: Geometrical Area Definition Geonetworking - Rectangle
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