
1

POLITECNICO DI TORINO

Master of science in Computer Engineering

On the deployment of Artificial Neural Networks (ANN) in low

cost embedded systems

Supervisor Candidate

Sanchez Sanchez Edgar Ernesto (DAUIN) Butt Usman Ali

23rd July 2021

2

Contents
Abstract .. 5

Introduction .. 6

Development and Deployment issues ... 6

TensorFlow ... 6

TF lite for microcontrollers .. 6

Compiler constraints .. 7

Vendor specific AI converters dependent on TF and other AI model development platforms 7

Renesas e-AI converter .. 7

ST microelectronics STM32Cube AI converter .. 8

ARM AI solutions .. 9

NXP e-IQ for ARM CMSIS-NN ... 10

NNOM Project - Open Source .. 10

Getting Started ... 10

Model Construction and Training .. 11

Model Construction .. 13

NNOM – Model construction ... 16

TensorFlow – Project (c array) ... 21

TensorFlow project using STM32CubeIDE ... 21

TensorFlow project using keil uvision ide ... 22

TensorFlow – project (.tflite flat buffer file).. 24

NNOM - Project (Keras) ... 27

Output Deviation .. 29

Compile time injection faults to test robustness .. 32

MNIST Dataset .. 32

Conclusion .. 35

References .. 35

3

List of Figures
Figure 1 Renesas e-AI Anatomy .. 8

Figure 2 STM32 Cube AI Anatomy .. 9

Figure 3 ARM AI core's flow .. 9

Figure 4 Sine wave 0-2pi ... 11

Figure 5 Model data points ... 13

Figure 6 Model parameters .. 14

Figure 7 Model individual layers view .. 14

Figure 8 Model neurons view ... 15

Figure 9 Model training and validation loss .. 16

Figure 10 Model prediction .. 16

Figure 11 NNOM model layer parameters .. 18

Figure 12 NNOM model predictions ... 18

Figure 13 NNOM layers output range & mean absolute error ... 19

Figure 14 NNOM individual layers anatomy ... 20

Figure 15 TFlite libraries with .c array ... 21

Figure 16 TensorFlow project using STM32CubeIDE .. 22

Figure 17 TensorFlow project using keil uvision ide ... 22

Figure 18 STM32CubeMX.AI with .tflite model file .. 24

Figure 19 STM32 Cube AI .tflite model file with keil IDE .. 26

Figure 20 NNOM with ARM Clang ... 28

Figure 21 NNOM model anatomy UART view ... 28

Figure 22 MNIST inference results .. 34

List of Tables

Table 1 NNOM max min layer input/output ... 19

Table 2 Mean absolute error sequential and functional model ... 20

Table 3 GCC to ARM Clang - TFlite .. 23

Table 4 TFlite to Cube AI - GCC ... 25

Table 5 TFlite to Cube AI - ARM Clang .. 27

Table 6 GCC to ARM Clang - Cube AI ... 27

Table 7 Recall MAE .. 29

Table 8 MNIST flash and ram occupancy .. 33

List of Charts

Chart 1 GCC vs ARM Clang -TFlite ... 23

Chart 2 TFlite to Cube AI - ARM Clang .. 25

Chart 3 GCC vs ARM Clang - Tflite vs Cube AI ... 26

Chart 4 NNOM vs GCC vs ARM Clang .. 29

4

Chart 5 GCC vs ARM Clang vs NNOM - Spider view .. 31

List of Code Snippet

Code snippet 1 Imported libraries .. 12

Code snippet 2 Data set test, train and validation ... 12

Code snippet 3 Sine wave sequential model .. 13

Code snippet 4 Training model epochs, batch size etc ... 15

Code snippet 5 Sine wave Functional vs Sequential model .. 17

Code snippet 6 MNIST model in c ... 32

Code snippet 7 MNIST images arrays ... 33

5

Abstract
In this thesis work we explored the deployment of AI solutions on microcontrollers. All the AI solutions

currently available and thought off to be deployed on microcontrollers were explored, tested and verified

on hardware. 32-bit microcontroller is made part of the development since 8-bit microcontrollers are not

supported by any platform for AI applications. Stm32l432kc with 64Kbytes of SRAM and 256Kbytes of

flash memory is chosen for testing AI models. Current AI solutions for microcontrollers differ from each

other on vendor propriety, open source and compiler bases. Propriety Google TensorFlow lite for

microcontroller, stm32 AI cube and open source library NNOM were used for building and training AI

models. Results for each AI solution is compared with others on four core parameters flash occupancy,

ram occupancy, time for inference and output deviation. Optimizing techniques such as quantization and

using only c source code for microcontroller were emphasized. C and C++ yields a huge amount of

difference in code size and inference time. At the end AI solutions were tested for compile-time injection

faults by flipping the memory bits and altering the microcontroller code.

6

Introduction
This thesis work focuses on implementation of Artificial Intelligence (AI) on microcontrollers and custom

designed SOC’s. Every electronic device has some kind of processing and decision making put in to it.

Microcontrollers and custom designed SOC’s are the only parts which are programmed to perform tasks

related to processing and decision making. These tasks are hardcoded in the microcontroller firmware.

Rise of AI in commercial products and the expected increase in edge and IOT devices made the researchers

to explore the AI deployment on edge and IOT devices. AI advantages and success in commercial products

is another catalyst to explore its usage in edge devices.

Edge and IOT devices central processing part is microcontroller or custom SOC’s. So, AI compatibility with

microcontrollers and SOC’s is crucial for getting started with AI on micro’s and Soc’s.

Development and Deployment issues
AI applications are bulky and requires a lot of processing power, time and energy. Whereas

microcontrollers have limited resources. Another issue is lack of development API’s. For microcontrollers

we develop and train model on another platforms (windows, Linux, mac etc.) and then deploy it on

microcontrollers [1] along with some supporting libraries.

Let’s look at the AI development API’s for microcontrollers. So far only one Platform TensorFlow Lite for

microcontroller’s offers development of AI applications for micro’s.

TensorFlow (TF) is a platform to develop Machine Learning (ML) models. Python and JavaScript can be

used for developing, training and testing the models. You can export various predefined and pre-included

ML datasets and API’s to develop and train your model. Its opensource and works in the cloud.

TF lite is special variant of original TF which is designed for mobile, linux, edge and microcontrollers. You

can develop, train and test your models using TF lite. TF lite has reduced functionality then main TF.

TF lite subvariant TF lite for microcontroller supports AI model development for edge and

microcontrollers.

TF lite for microcontrollers
Not all the functions of original TF are supported by TF lite for microcontroller. Models created by TF lite

for micro can only be deployed on 32-bit microcontrollers. In other words, only 32-bit operations are

supported by TF lite. This leaves us to conclusion that 8-bit microcontrollers cannot be used for AI

applications or no such platform exits to create and deploy AL applications on 8-bit microcontrollers. Only

cortex cores are supported for AI model deployment. So RICS architecture is also set a side. TF for

microcontroller’s libraries are in C++11. To compile TF for micro we need a compiler which supports

C++11.

TF lite for microcontroller is just a converter. Typical workflow of developing a model and porting the

model to micro is

• First, we create our model in python using TF lite.

• Then model flatbuffer file is created. Flatbuffer is automatically generated by the TF lite after

successfully construction, training and validation of model.

7

• This flatbuffer file is then translated into c code using TF lite for micro converter. TF lite for micro

is provided as an API.

• Finally, we take the c code. Generate a new .c or .h header file in our micro application and place

the c code in it.

TF didn’t explain anything about the c code generation and how to use it. It only explains high level

functions which automatically fetch the c code from the file and reconstruct the model in micro. Other

high-level functions such as how to input and read output are also explained in the guide.

Compiler constraints
Usually microcontrollers firmware is written in c language and various c compilers and linkers comes with

the development platform for code compilation. But in the TF lite for micro case we need a compiler which

can translate both c++ and c code in to equivalent binary. Why both c++ and c code? TF lite micro package

is in c++, whereas when we initialize any micro and include the vendor specific libraries for any particular

peripheral of micro it is found that all of them are written in c. This puts an extra burden on the compiler.

Most vendors invest in compilers only to speed up the running time of microcontroller. The general theory

behind it is that faster speeds consume less power. Well its true, but in case of low end devices like

microcontrollers another two parameters program size and power consumed by peripherals in general

and overall power consumed play a vital role[2].

Vendor specific AI converters dependent on TF and other AI model development

platforms
Deploying AI on embedded platforms is a challenging task but recent advances in machine learning and

hardware design is overcoming it[3]. More and more silicon vendors are innovating not only in hardware

but also in software to gain competitive advantage on their industry peers.

Renesas e-AI converter
e-AI or embedded artificial intelligence converter offered by renesas is a proprietary AI model converter.

It takes a trained model as input and outputs model equivalent c code. Model can be trained in TF, Caffe

or other supported AI model development platforms. Outputted model equivalent code can further be

included in the project wizard for a particular renesas microcontroller. Since e-AI is a proprietary you can

only use the c code with renesas e2 Studio Ide.

Typical work flow is

• Take pretrained model from TF, keras and caffe etc.

• Fed the model into e-AI translator

• Run translator, Optimized code for Renesas microcontroller is generated.

• Include the code in renesas e2 studio project

8

Figure 1 Renesas e-AI Anatomy [4]

Renesas recommends to use its microcontrollers with cortex-M3 core or above with suitable ROM and

RAM in which one thinks its code can fit in. Not all the neural network (NN) layers are translatable by e-AI

converter. Most popular and intensively used layers are supported1.

ST microelectronics STM32Cube AI converter
ST microelectronics offered an AI solution for its line of microcontrollers named STM32Cube.AI converter.

It also takes pretrained model as input and outputs equivalent c code. Code can then be included in to

your microcontroller development project.

STM32Cube.AI is part of the STM32CubeMX. Cube MX offers GUI initialization of ST microcontrollers

peripherals and with the click of a button initialization code for particular microcontroller is generated

with all the necessary libraries included and startup file initialized. For Cube AI we just need to specify the

path of the model file and initialize the micro peripherals in Cube MX. All done translate the project and

all the files will be generated automatically.

Cube AI offers other functions for example you can view the model, compress or quantize it. These

functions are easy to use Cube MX GUI makes it really simple and straight forward.

• Take pretrained model from TF, keras and caffe etc.

• Open STM32CubeMX. Select microcontroller. Initialize its peripherals.

• Open STM32Cube.AI from CubeMX and input the mode file. Load model (quantize if required).

• Click generate code for project and pre-initialized code generation.

1 https://www.renesas.com/us/en/application/technologies/e-ai/translator

https://www.renesas.com/us/en/application/technologies/e-ai/translator

9

Figure 2 STM32 Cube AI Anatomy [5]

CubeAI supports cortex-M3 and above microcontrollers offered by stmicroelectronics. TF, Keras and Café

deep learning frame works are supported by CubeAI. Output code is in c and inline assembly format.

ARM AI solutions
All the AI solutions offered by various vendors supports ARM cortex cores. ARM provides solutions for a

common standard. Application developed using ARM libraries can be ported to any vendor device using

the same ARM core.

Work flow is

• Create model in TF, Caffe or any supported neural network platform.

• Translate the model and make it compatible with ARM libraries.

• Run inference.

Figure 3 ARM AI core's flow [6]

Translating the model to CMSIS-NN or ARM-NN is manual. Each layer and activations must be translated

according to the ARM2 layers transform reference manual. Not all the AI neural network layers are

2 https://developer.arm.com/solutions/machine-learning-on-arm/developer-material/how-to-guides/converting-a-neural-network-for-arm-

cortex-m-with-cmsis-nn/single-page

https://developer.arm.com/solutions/machine-learning-on-arm/developer-material/how-to-guides/converting-a-neural-network-for-arm-cortex-m-with-cmsis-nn/single-page
https://developer.arm.com/solutions/machine-learning-on-arm/developer-material/how-to-guides/converting-a-neural-network-for-arm-cortex-m-with-cmsis-nn/single-page

10

translatable. If the layer is not supported by ARM other layers can be merged to achieve the functionality

of the unsupported layers.

For AI support ARM provides two library packages CMSIS-NN and ARM-NN. Various other stand-alone

libraries can be added with CMSIS and ARM-NN for optimization purposes.

ARM-NN for AI on CPU’s and GPU’s

ARM-NN targets high end CPU’s and GPU’s. Thesis is on AI in microcontrollers so we will not go

deeper in ARM-NN.

CMSIS-NN for AI

Common microcontroller software interface standard (CMSIS) is a set of libraries which can be

used to develop firmware for ARM cores irrespective of the vendor. Firmware developed using

CMSIS can be ported to any vendor product as long as the core is same. CMSIS-NN is a subset of

original CMSIS which provides support for deploying AI models on ARM cores.

NXP e-IQ for ARM CMSIS-NN
Nxp e-IQ platform offers a machine learning environment on its high-end CPU’s and GPU’s. It utilizes

CMSIS-NN and ARM-NN for machine learning.

NNOM Project - Open Source
Like other converters and translators an open source project is trying to foot in the AI field. NNOM takes

a keras model as input and outputs a translated c code representing the inputted model. This c code

contains the layers of model, its weights and biases. The code can then be deployed in the microcontroller

project and NNOM libraries can be used to load the model in micro core and perform inference.

Getting Started
In this study I took three core AI solutions to start work on. All of the three are complete in most of the

respects and can be deployed on 32-bit microcontrollers.

1. Tflite for micro

a) Google solution to deploy AI on microcontrollers. Uses ARM CMSIS libraries.

2. Stm32Cube AI

a) ST microelectronic solution. It also uses ARM CMSIS libraries.

3. NNOM

a) Open source project. It also depends on ARM CMSIS libraries.

Target device chosen for the work is stm32l432kc microcontroller. It has 512Kb of flash and 64Kb of RAM.

Internal clock oscillator of target is used whose clock is set to 80MHz. USART of microcontroller is also

activated and inference results are output on a serial window using USART. Baud rate of USART is set to

115200 bits/s.

11

Solutions will be compared on four main parameters which define the microcontroller performance.

Memory is a major constrain in microcontroller embedded solutions. Our code foot print must fit in the

available memory. Time comes next, execution must be as quick as possible. These two parameters were

given precedence in many embedded solutions so in ours.

• Flash occupancy

• Ram occupancy

• Inference time

• Output deviation

We have one more parameter in our case which is deviation from original output. Since AI models are not

100% accurate so we will also consider this in our experiments. How much the individual solution output

differs from the original value.

General consideration that model will behave according to its construction and training is true. In our case

model is created using two different techniques sequential and functional/layered. We will compare the

output deviation by training the model on same data set. Another factor in our study is model translation

using STM32Cube AI. We will also compare the output deviation if any when model is translated using

cube AI.

Model Construction and Training
Getting started with TF lite for microcontroller lists a sine wave getting started example. The idea is if we

input a number between sine(0-2𝛑) output will be between -1 to 1. Equation for the function is

y=sine(x). Where x is input and y is output. Plotting the graph between x and y gives a perfect sine

wave.

Figure 4 Sine wave 0-2pi

Google Collab is used for developing model. First, I imported TF library and all the other

libraries/dependencies in the Collab project sheet. Such as NumPy for working with arrays, Math for

exporting math functions, Keras for NN functions and NN model construction.

12

import tensorflow as tf

import numpy as np

import matplotlib.pyplot as plt

import math

from tensorflow.keras import layers

from tensorflow.keras import *

Code snippet 1 Imported libraries

Next a sample of 1000 is randomly generated from the input range 0-2π. Out of the total 1000, 20%

samples are allotted for each test and validation sets. Remaining 60% are spared for training.

nsamples = 1000 # Number of samples to use as a dataset

val_ratio = 0.2 # % of samples for validation set

test_ratio = 0.2 # % of samples for test set

x_values = np.random.uniform(low=0, high=(2 * math.pi), size=nsamples)

Split dataset training(60%), validation(20%), and test(20%)

val_split = int(val_ratio * nsamples)

test_split = int(val_split + (test_ratio * nsamples))

x_val, x_test, x_train = np.split(x_values, [val_split, test_split])

y_val, y_test, y_train = np.split(y_values, [val_split, test_split])

Code snippet 2 Data set test, train and validation

Visualizing the split train, test and validation dataset. Almost full range is covered by each dataset or

uniform distribution.

Few values are above 1 and below -1 also the graph points are scattered. This is because when the sine

function was created some random value is included with each sine output. This is important because if

we don’t include it we can get a sine wave with no randomness or a precise sine wave.

13

Figure 5 Model data points

Model Construction
A sequential model having three fully connected dense neural network layers is created. Activation is relu.

Input is a singe neuron and output also a single neuron. Sequential models are easy to construct and not

much effort is required in programming. Input shape is a single neuron. Two hidden layers between input

and output is named as layer 1 and 2. Both are dense layers. Dense layers are most commonly used layers

in AI models and the simplest one’s.

Create a model

model = tf.keras.Sequential()

model.add(layers.Dense(16, activation='relu',name="layer1", input_shape=(1

,)))

model.add(layers.Dense(16, activation='relu',name="layer2"))

model.add(layers.Dense(1))

Code snippet 3 Sine wave sequential model

Layer-1 shape is 16 neurons with 32 parameters. Layer-2 16 neurons with 272 parameters and finally the

output layer 1 neuron with 17 parameters. Model translation by google collab shows total 321

parameters.

14

Figure 6 Model parameters

Going deeper in the model. Input and output are float(32-bit) type. Total weights for first layer are 16 and

bias stands at 16. For second layer weights are 256 and bias 16. Output weights are 16 and bias 1.

Activations are Relu and model is sequential. Netron is used to view the model and its parameters. On the

right-hand side, we can see that model input and output are float types.

Figure 7 Model individual layers view

15

First layer of model has 16 neuros all of them are getting input from a single input range between 0-2π.

Second layer has 16 neurons and each neuron is getting input from the previous layer 16 neurons. Finally,

the output is a single neuron.

Figure 8 Model neurons view

Rmsprop optimizer is used for compiling, loss and metrics is calculated as a mean absolute error. To train

the model batch size of 100 is used. Which effectively translates to (samples/batch size) 10 batches of 100

samples. 10 batches each with 100 samples is passed through the model 500 times.

Add optimizer, loss function, and metrics to model and compile it

model.compile(optimizer='rmsprop', loss='mae', metrics=['mae'])

Train model

history = model.fit(x_train,

 y_train,

 epochs=500,

 batch_size=100,

 validation_data=(x_val, y_val))

Code snippet 4 Training model epochs, batch size etc

After training analyzing the training and validation loss graph shows us decrease in the loss linearly. Both

losses reduce simultaneously with the increasing number of epochs. This is important because if one of

them is not synced with other our model will not perform correctly and huge deviation in result is obvious.

16

Figure 9 Model training and validation loss

Running a simple test prediction shows us a perfect sine wave. Test values are the one which were taken

out from the initial sample of 1000 account 20% of the sample. Predicted values are almost in between

the scattered sample and are continuous which is a positive sign and indicates that our model is behaving

as expected.

Figure 10 Model prediction

NNOM – Model construction
NNOM is an open source project. Which allows you to build and train your AI model in python and with

its converter you can translate your model in c code for microcontroller. Few key points of NNOM are

• Works with models built and trained using keras Only.

17

• Supports only Functional/Layered model unlike TF which supports sequential.

• Must include the NNOM libraries (Python) to Keras project for model interpretation and

conversion to NNOM format.

• Not all layers and activations are supported by NNOM.

• Libraries for microcontroller are in C language.

Below is the same sine wave written in both sequential and functional types. Sequential is for TF lite and

functional is for NNOM.

Functional model input shape is 1. Which means single input. Next is a dense layer of 16 neurons. Which

is activated by a relu function. After that another dense layer of 16 neurons activated by relu function. At

last the final output layer of single neuron.

Functional or layer model with independent activation functions

input = tf.keras.Input(shape=(1,))

X = tf.keras.layers.Dense(16)(input)

X = Activation("relu")(X)

X = tf.keras.layers.Dense(16)(X)

X = Activation("relu")(X)

output = tf.keras.layers.Dense(1)(X)

modelNNOM = tf.keras.Model(input, output);

Create a model - Sequential Model

model = tf.keras.Sequential()

model.add(layers.Dense(16, activation='relu',name="layer1", input_shape=(1

,)))

model.add(layers.Dense(16, activation='relu',name="layer2"))

model.add(layers.Dense(1))

Code snippet 5 Sine wave Functional vs Sequential model

Functional Model produces same results as sequential. Only the activations are now considered as

separate layers. Where as in sequential activation functions are part of layers. Total parameters remain

same 321 as of sequential model.

18

Figure 11 NNOM model layer parameters

Training the model and running predictions on the same data set which was previously used for

construction sequential model yields a perfect match. In this case the predictions seem more averaged

and following a continuous sine wave with few bends.

Figure 12 NNOM model predictions

NNOM model training results and layers max min output is below. Test loss and mean absolute error for

model stands at 0.0816. Layers input and output range is between

19

Table 1 NNOM max min layer input/output

 Max Min

Input 6.28 -0.0137

Second Layer 2.80 -3.44

Third Layer 1.89 -2.7

Output Layer 1.04 -0.98
7/7 - 0s - loss: 0.0816 - mean_absolute_error: 0.0816

Test loss: 0.08161722123622894

Top 1: 0.08161722123622894

input_26 Quantized method: max-min Values max: 6.280983639904923 min:

0.013756599578923862 dec bit 4

dense_44 Quantized method: max-min Values max: 2.803634 min: -3.4467075

dec bit 5

activation_13 Quantized method: max-min Values max: 2.803634 min: -

3.4467075 dec bit 5

dense_45 Quantized method: max-min Values max: 1.8984458 min: -2.7345867

dec bit 5

activation_14 Quantized method: max-min Values max: 1.8984458 min: -

2.7345867 dec bit 5

dense_46 Quantized method: max-min Values max: 1.0484817 min: -0.98121214

dec bit 6

quantisation list {'input_26': [4, 0], 'dense_44': [5, 0],

'activation_13': [5, 0], 'dense_45': [5, 0], 'activation_14': [5, 0],

'dense_46': [6, 0]}

quantizing weights for layer dense_44

 tensor_dense_44_kernel_0 dec bit 7

 tensor_dense_44_bias_0 dec bit 7

quantizing weights for layer dense_45

 tensor_dense_45_kernel_0 dec bit 6

 tensor_dense_45_bias_0 dec bit 7

quantizing weights for layer dense_46

 tensor_dense_46_kernel_0 dec bit 6

 tensor_dense_46_bias_0 dec bit 7

Figure 13 NNOM layers output range & mean absolute error

Layers weights width is also printed by the NNOM. This is too important. Since the NNOM don’t support

fractional inputs. We can multiply the fractional number with width of weight and input the whole

number. At output we must do the same divide the output by the weight width of the layer to convert

back the number in fractional format.

Model file when fed to netron results in the same output. Input and output types are floats. Layers names

are replayed by fully connected. Fully connected is another name for dense layers. So, no difference. Each

and every thing is identical to previous sequential model.

20

Figure 14 NNOM individual layers anatomy

Mean absolute error (MAE) for the both models after training is listed below. Both models were trained

on the same dataset, same number of epochs and batch sizes are used for training and validation. Not

much difference in MAE is seen.

Table 2 Mean absolute error sequential and functional model

Model Mean absolute error during training

Functional 0.0895

Sequential 0.0838

21

TensorFlow – Project (c array)
After constructing and training the model in TensorFlow. It is translated to equivalent c code using

TensorFlow lite for microcontroller translator. Translated c code file is then made part of the project.

Figure 15 TFlite libraries with .c array

Work flow of project is shown above. Model c array and Tflite external libraries are made part of the

project. Since we are using ST microcontroller we must also import the ST dependent libraries in the

project.

I configured the STM32L432Kc using STM32CubeMX. Cube MX is a GUI package by STM which can be used

to initialize the individual peripherals of STm32 microcontrollers. After setting up the micro peripherals

you can generate initialized code for differed IDE’s. Currently Cube MX produces HAL libraries for micro

peripherals. HAL are the updated peripheral libraries for st microcontrollers.

I generated code for STM32Cube IDE and keil uvision IDE. To test both, since both uses different compilers.

Tweaked GNU-GCC compiler.

TensorFlow project using STM32CubeIDE: In the project tree all the included folders can be seen.

Tensorflow libraries are in tensorflow_lite folder. Tree is further expanded on the right side. Plenty of files

are in package and all of them are in c++. So, our main application file must be a c++ source file. Project

code comprised of both c and c++ sources. In below window main file extension is .cpp or c++ file.

22

Figure 16 TensorFlow project using STM32CubeIDE

Stm32cubeide uses GCC compiler with GNU arm embedded tool chain integrated in it. It’s a free

distribution.

TensorFlow project using keil uvision ide: With keil uvision IDE the libraries are same. Small difference

is in the startup file, changed heap and stack size. The main difference is in compiler. ARM compiler 6 with

ARMclang technology is used to compile the code. HAL and CMSIS libraries are same which were

previously used in the cube ide. Project tree can be seen on the left side. Tensorflow folders are

individually made part of the project. Keil doesn’t support folder in a folder tree structure. Our main

source file ends with .cpp extension. Which means our code is in c and c++.

Figure 17 TensorFlow project using keil uvision ide

Arm clang is a propriety and a paid subscription is required for full code compilation.

23

Source code for both compliers were optimized at the maximum code and performance level which is

given as -o3. For keil clang, link time optimization was also enabled.

Chart 1 GCC vs ARM Clang -TFlite

ArmClang flash and ram occupancy is way higher than open source GCC. But the inference speed of ARM

Clang is higher than GCC.

Table 3 GCC to ARM Clang - TFlite

TFlite - GCC to ARMClang

Flash +63%

RAM +53%

Inference -244%

0

50

100

150

200

250

300

350

400

GCC (TFlite) ARMClang (TFlite)

RAM (Kb) 7.43 11.4

Flash (Kb) 80.55 131.4

Inference (μs) 351 102

7.43 11.4

80.55

131.4

351

102

GCC vs ArmClang Tflite c Array

RAM (Kb) Flash (Kb) Inference (μs)

24

TensorFlow – project (.tflite flat buffer file)
The c array generated in the above two methods is dependent on tflite file. This file is a cluster of flat

buffers scalers and vectors representing our trained model. We generate c code for TFlite for

microcontroller project using this file.

ST microelectronics offers their own model translator under the name of STM32CubeMX.AI or AI package

for ST microelectronics. Translator takes input a trained model file such as tflite or .h5 model file of keras.

It then translates the model and outputs equivalent c files for the target STM32 microcontroller.

In our case, first I selected the target microcontroller which is STM32l432kc. Next open the STM32CubeMX

to initialize the peripherals. Then opened the STM32Cube AI and provided the tflite file as input.

Compression and optimization can be performed on the inputted model file using cube AI package. Next

the model is translated and pre-initialized code for target MCU is generated. In this case code is generated

for both cube ide and keil uvision as well.

STM32CubeMX.AI with .tflite model file: In the left pane of the above window project tree can be seen.

Model files translated by STM32Cube AI are present in src (sine_model_data.c and sine_model.c) and inc

(data, config and model header files) folder. Neurons their weights and biases are defined in these files.

In the middleware’s folder STM32 AI libraries are residing. Together with the model files in src folder these

libraries reconstruct the model in micro.

Main file extension in this case is .c, which means our source code is in c language. All project libraries are

in c.

Figure 18 STM32CubeMX.AI with .tflite model file

After compiling, the used Flash and RAM occupancy can be seen in the memory region window. It can be

seen that 6.86Kb of RAM is used and 32.35Kb of flash is used. I am outputting inference result as serial

UART output.

25

Stm32cubeide offers a terminal window. we can establish a serial connection to this window by specifying

communication parameters. I set it up for 115200 bits/s, parity none and 1 stop bit. Inference results are

outputted in this window. Inference time for prediction is recorded as 79 micro seconds.

Chart 2 TFlite to Cube AI - ARM Clang

Inference time and flash occupancy is significantly reduced using Cube AI translator with GCC compiler.

Table 4 TFlite to Cube AI - GCC

GCC - TFlite to Cube AI

Flash -149.2%

RAM -8.3%

Inference -344.3%

Cube AI code compiled with GCC reduces ram and flash size occupancy compared with GCC-Tflite.

STM32CubeAI .tflite model file with keil IDE: In this case Cube MX is used to generate peripheral code.

Cube AI translates model. Translated model code is same like the one generated in Cube IDE case because

Tflite file is same. Project tree can be seen on the left side in the main window. AI libraries are in lib folder.

Main source file is in c. we are in same situation like above one. Our all libraries are in c language.

0

50

100

150

200

250

300

350

400

GCC (Tflite) ARMClang (Tflite) GCC (Cube.AI)

RAM (Kb) 7.43 11.4 6.86

Flash (Kb) 80.55 131.4 32.25

Inference (μs) 351 102 79

7.43 11.4 6.86

80.55

131.4

32.25

351

102
79

GCC vs ArmClang Tflite c Array

RAM (Kb) Flash (Kb) Inference (μs)

26

Figure 19 STM32 Cube AI .tflite model file with keil IDE

Project is compiled successfully and results can be seen in the build output window above. Building time

is slightly higher than the GCC. The use of LLVM technique in ARM Clang takes longer to build the project

files.

Chart 3 GCC vs ARM Clang - Tflite vs Cube AI

0

50

100

150

200

250

300

350

400

GCC (Tflite) ARMClang (Tflite) GCC (Cube.AI) ARMClang
(Cube.AI)

RAM (Kb) 7.43 11.4 6.86 5.9

Flash (Kb) 80.55 131.4 32.25 16.1

Inference (μs) 351 102 79 92

7.43 11.4 6.86 5.9

80.55

131.4

32.25 16.1

351

102
79 92

GCC vs ArmClang Tflite c Array

RAM (Kb) Flash (Kb) Inference (μs)

27

First comparing the ARM Clang switching from Tflite to Cube AI we see reduction in all parameters (flash,

ram and inference time). Next switching from GCC to ARM Clang we see reduction in flash and ram but

the inference time is increased.

Table 5 TFlite to Cube AI - ARM Clang

ARM Clang – Tflite to Cube AI

Flash -716.3%

RAM -93.2%

Inference -10.82%

Table 6 GCC to ARM Clang - Cube AI

Cube AI - GCC to ARM Clang

Flash -100.3%

RAM -16.27%

Inference +16.45%

NNOM - Project (Keras)
NNOM for sine wave model. NNOM is a light weight open source project on GitHub which perform

inference using a model constructed and trained in Keras. Unlike TFlite, NNOM model must be in

sequential/layered architecture. Sine model which was previously used for TFlite and Cube AI is

transformed into layered architecture. Process shown in the introduction chapter.

NNOM provides python dependencies and translator which can translate Keras AI model into equivalent

NNOM c code. The concept is same like other solutions. Only the translator is changed and translated

code is equivalent to NNOM supported architecture.

On target side NNOM provides a package of c libraries which can be made part of the project for inference.

The major drawback of NNOM is it doesn’t support fractional numbers as input.

Project peripherals were initialized with stm32CubeMX and project files were imported for keil uvision

ide. So. ARM Clang compiler is used to compile code for NNOM.

28

Figure 20 NNOM with ARM Clang

In the above window on left pane project file tree is present. NNOM libraries are in NNOM/SRC folder.

Weights header file in project window is the c code generated by the NNOM translator. Rest HAL and

CMSIS libraries are included default by Cube MX when peripherals were initialized. Compiling the code is

error free, build details and resources used are listed in the build output window.

Figure 21 NNOM model anatomy UART view

29

Verifying the model if translated correctly is possible with microcontroller. We can output the model

details on USART port. Layers shape’s, input and outputs, tensors are same. Memory buffers are saved

weights and biases. Total parameters are also same 321.

Chart 4 NNOM vs GCC vs ARM Clang

Comparing NNOM with all the other solutions clearly shows it’s the best optimum solution. Inference time

is way better than all the other solutions. Regarding memory its slightly higher than the ARM Clang Cube

AI solution.

Output Deviation: So far, we compared only the memory and inference time. Another and most

important parameter is output. Does the input produce the required output? And how much time each

input takes for inference?

Deviation highly depends on the model and its training. Model must be trained to achieve lowest MAE.

Model can be checked for MAE. This error is expected in the inference results.

I took 6 random numbers (0.7, 1.6, 2, 3.4, 4.9, 6.2) from input range and their output is compared with

original sine function output. Individual and average deviation from original output is calculated for each

solution.

Recall

Table 7 Recall MAE

Model Mean absolute error during training

Functional 0.0895

Sequential 0.0838

0

50

100

150

200

250

300

350

400

GCC (Tflite) ARMClang
(Tflite)

GCC (Cube.AI) ARMClang
(Cube.AI)

NNOM
ARMClang

RAM (Kb) 7.43 11.4 6.86 5.9 6

Flash (Kb) 80.55 131.4 32.25 16.1 18.6

Inference (μs) 351 102 79 92 49

7.43 11.4 6.86 5.9 6

80.55

131.4

32.25 16.1 18.6

351

102
79 92

49

GCC vs ArmClang Tflite c Array

RAM (Kb) Flash (Kb) Inference (μs)

30

31

Analyzing the above results, we see that inference time is constant for every input in each individual

solution. If MAE is taken as 0.08 for both models. We see that most of the outputs are in range of MAE,

few are exceeding the it. NNOM MAE is far less than others. Sin(6.2) is deviation is worst in all the

solutions. In Cube AI case it produces output which deviates 181% from original output.

Chart 5 GCC vs ARM Clang vs NNOM - Spider view

Spider graph is the best representation of the observed results. We see that inference time for GCC Tflite

is approaching its limits whereas on flash side it is less than ARM Clang Tflite. Less than GCC Tflite area is

covered by ARM clang Tflite. So, this solution is better compared to previous one. Compared to the above

two solutions the GCC and Arm Clang Cube AI are covering less area. So, Cube AI with Clang and GCC is

better than Tflite. We can decide between the two depending on the memory and inference precedence,

what we want in our project.

Minimum area occupied is by NNOM which means that NNOM is the best solution. Major draw backs of

NNOM project is it does not support fractional number as input. You have to multiply the input fractional

number with the width of the input layer to convert it in to whole number. At output we must divide the

number with the width of the output layer to convert it back to fractional number.

-100

0

100

200

300

400
Flash

Ram

Inference

Deviation

Spider ploting of observations

GCC(TFlite) ARM Clang (TFlite) GCC (Cube AI)

ARM Clang (Cube AI) NNOM (ARMClang)

32

Compile time injection faults to test robustness
Compile time injection faults are introduced in the source code to test the robustness of AI deployment

on microcontroller. Source code of the model will be flipped changed to test the behavior of the model

under stress.

I decided to use a bigger model for compile time injection faults testing. Sine wave model can also be

tested. But a model consisting of images is better. We can test if images can be predicted by

microcontrollers. Off course our model size will be bigger. On the other hand, we will be able to put stress

on micro to test its robustness.

MNIST Dataset: MNIST is a collection of hand written digits images. Total images in training set are

60,000. Testing set has total of 10,000 images. Images size is 28x28. We must convert this array to 4

dimensions in order to use it with keras or tensorflow.

We learnt from the sine wave model that NNOM solution is perfect in all dimensions. So, I decided to use

NNOM libraries with ARM Clang compiler to test MNIST dataset.

Individual pixels of images range between 0 to 255. Which is quite bigger in memory cost. We can quantize

our images. Individual pixel is divided by 255 to bring down the pixel range to 0-1. We can train our model

on this range. This can not only reduce the weights and bias but also saves us a lot of memory.

Now the usual NNOM operation is performed and model c files are generated. The final model in c format

is below

static nnom_model_t* nnom_model_create(void)

{

 static nnom_model_t model;

 nnom_layer_t* layer[16];

 check_model_version(NNOM_MODEL_VERSION);

 new_model(&model);

 layer[0] = input_s(&input_1_config);

 layer[1] = model.hook(conv2d_s(&conv2d_config), layer[0]);

 layer[2] = model.active(act_relu(), layer[1]);

 layer[3] = model.hook(maxpool_s(&max_pooling2d_config), layer[2]);

 layer[4] = model.hook(conv2d_s(&conv2d_1_config), layer[3]);

 layer[5] = model.active(act_relu(), layer[4]);

 layer[6] = model.hook(maxpool_s(&max_pooling2d_1_config), layer[5]);

 layer[7] = model.hook(conv2d_s(&conv2d_2_config), layer[6]);

 layer[8] = model.active(act_relu(), layer[7]);

 layer[9] = model.hook(maxpool_s(&max_pooling2d_2_config), layer[8]);

 layer[10] = model.hook(flatten_s(&flatten_config), layer[9]);

 layer[11] = model.hook(dense_s(&dense_config), layer[10]);

 layer[12] = model.active(act_relu(), layer[11]);

 layer[13] = model.hook(dense_s(&dense_1_config), layer[12]);

 layer[14] = model.hook(softmax_s(&softmax_config), layer[13]);

 layer[15] = model.hook(output_s(&output_config), layer[14]);

 model_compile(&model, layer[0], layer[15]);

 return &model;

}

Code snippet 6 MNIST model in c

33

Model consists of three convolution layers, each layer used RELU for activation. Followed by two dense

or fully connected layers. Final output goes through the softmax layer. So, in total 6 layers. But since

NNOM works on layered architecture so all the individual functions are also considered layers.

To perform inference ten random images were selected from the database and their pixel array values

were saved in header file. These ten images will be used to test the MNIST dataset in microcontroller core.

They will be inputted to model for inference. Size of the images are 28x28 which translates in to an array

of 784 integer values. Furthermore, NNOM input layer weights width is 7 bits so our images pixel values

will be in range from 0 to 127.

#define IMG8 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 64, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0,

#define IMG8_LABLE 6

#define IMG9 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0,

0, 0, 0,

#define IMG9_LABLE 9

#define TOTAL_IMAGE 10

static const int8_t img[10][784] =

{IMG0,IMG1,IMG2,IMG3,IMG4,IMG5,IMG6,IMG7,IMG8,IMG9};

Code snippet 7 MNIST images arrays

Compiling the project and looking in the build process, all the libraries are successfully compiled. Flash

and Ram occupancy is listed in the below table.

Table 8 MNIST flash and ram occupancy

Parameter Memory kilo Byte

Flash 145.772 Kb

RAM 26.824 Kb

To run inference input image array is feed to the model. Output is printed on serial window. USART at

9600 bits/s is initialized. Putty is used to make a serial connection and print the USART output by

microcontroller.

34

Figure 22 MNIST inference results

It is concluded that all the 10 images are successfully identified by the model in microcontroller.

Average inference time recorded

Inference time 5.8568 milli seconds

• Significant amount of bit flips in weights and biases results in output totally inaccurate. But still

there is an output. Unless the width of weight/bias arrays are manipulated.

• No significant change in prediction is found after flipping few image array bits.

• Prediction is altered by introducing numeric values at array positions which are previously

standing at 0.

• Compiler automatically corrects the input size of a single element of image array during compiling

if the input value size increases the datatype.

35

Conclusion
It’s obvious from the results that the c++ libraries use in the microcontroller domain is not providing any

edge when compared to their c counterparts. C++ produces binaries which are enormous in size. A single

advantage (compiler comparison GCC vs ARM Clang) is seen using c++ which is the reduction in inference

time but still way higher compared to c. Open source GCC when compared with ARM Clang takes much

time for inference. ARM Clang uses LLVM (low level virtual machine) for object and binaries creation which

with the help of ARM compiler reduces the time for inference.

Open source NNOM and freeware STM32Cube AI have libraries in c and translates model in to equivalent

c code. Both are better than google support for AI on microcontrollers (c++ TFlite). NNOM which supports

functional model is found better than all. No difference is found in final model between functional and

sequential but the performance of NNOM is better. This performance increase is due to NNOM translator

and core inference engine.

Compile time faults injection in model and input data on MNIST dataset suggests that in order to alter

results a big portion of bits must be flipped. Especially the pixels with zero value if flipped to 1, alters the

result. Weights and bias also alter the result on the same condition of drastic change in values. If a bit flip

increases the size of the individual array element compiler automatically adjusts the size to datatype and

generates just a warning.

References
[1] F. Sakr, F. Bellotti, R. Berta, and A. De Gloria, “Machine Learning on Mainstream Microcontrollers,”

Sensors, vol. 20, no. 9, Art. no. 9, Jan. 2020, doi: 10.3390/s20092638.

[2] “Wolfe - 2005 - How compilers and tools differ for embedded system.pdf.” Accessed: Jul. 15, 2021.

[Online]. Available: https://my.eng.utah.edu/~cs5785/reading/pgi_article_cases.pdf

[3] P.-E. Novac, G. Boukli Hacene, A. Pegatoquet, B. Miramond, and V. Gripon, “Quantization and

Deployment of Deep Neural Networks on Microcontrollers,” Sensors, vol. 21, no. 9, Art. no. 9, Jan. 2021,

doi: 10.3390/s21092984.

[4] “What is Renesas’ e-AI Solution? | Renesas.”

https://www.renesas.com/us/en/application/technologies/e-ai/about-e-ai (accessed Jul. 15, 2021).

[5] “x-cube-ai.pdf.” Accessed: Jul. 15, 2021. [Online]. Available:

https://www.stmicroelectronics.com.cn/resource/en/data_brief/x-cube-ai.pdf

[6] “ai-platform-solution-product-brief.pdf.” Accessed: Jul. 15, 2021. [Online]. Available:

https://armkeil.blob.core.windows.net/developer/Files/pdf/ai/ai-platform-solution-product-brief.pdf

