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Abstract 
In this thesis work we explored the deployment of AI solutions on microcontrollers. All the AI solutions 

currently available and thought off to be deployed on microcontrollers were explored, tested and verified 

on hardware. 32-bit microcontroller is made part of the development since 8-bit microcontrollers are not 

supported by any platform for AI applications. Stm32l432kc with 64Kbytes of SRAM and 256Kbytes of 

flash memory is chosen for testing AI models. Current AI solutions for microcontrollers differ from each 

other on vendor propriety, open source and compiler bases. Propriety Google TensorFlow lite for 

microcontroller, stm32 AI cube and open source library NNOM were used for building and training AI 

models. Results for each AI solution is compared with others on four core parameters flash occupancy, 

ram occupancy, time for inference and output deviation. Optimizing techniques such as quantization and 

using only c source code for microcontroller were emphasized. C and C++ yields a huge amount of 

difference in code size and inference time. At the end AI solutions were tested for compile-time injection 

faults by flipping the memory bits and altering the microcontroller code.  
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Introduction 
This thesis work focuses on implementation of Artificial Intelligence (AI) on microcontrollers and custom 

designed SOC’s. Every electronic device has some kind of processing and decision making put in to it. 

Microcontrollers and custom designed SOC’s are the only parts which are programmed to perform tasks 

related to processing and decision making. These tasks are hardcoded in the microcontroller firmware. 

Rise of AI in commercial products and the expected increase in edge and IOT devices made the researchers 

to explore the AI deployment on edge and IOT devices. AI advantages and success in commercial products 

is another catalyst to explore its usage in edge devices. 

Edge and IOT devices central processing part is microcontroller or custom SOC’s. So, AI compatibility with 

microcontrollers and SOC’s is crucial for getting started with AI on micro’s and Soc’s. 

Development and Deployment issues 
AI applications are bulky and requires a lot of processing power, time and energy. Whereas 

microcontrollers have limited resources. Another issue is lack of development API’s. For microcontrollers 

we develop and train model  on another platforms (windows, Linux, mac etc.) and then deploy it on 

microcontrollers [1] along with some supporting libraries. 

Let’s look at the AI development API’s for microcontrollers. So far only one Platform TensorFlow Lite for 

microcontroller’s offers development of AI applications for micro’s.  

TensorFlow (TF) is a platform to develop Machine Learning (ML) models. Python and JavaScript can be 

used for developing, training and testing the models. You can export various predefined and pre-included 

ML datasets and API’s to develop and train your model. Its opensource and works in the cloud.   

TF lite is special variant of original TF which is designed for mobile, linux, edge and microcontrollers. You 

can develop, train and test your models using TF lite. TF lite has reduced functionality then main TF. 

TF lite subvariant TF lite for microcontroller supports AI model development for edge and 

microcontrollers.  

TF lite for microcontrollers 
Not all the functions of original TF are supported by TF lite for microcontroller. Models created by TF lite 

for micro can only be deployed on 32-bit microcontrollers. In other words, only 32-bit operations are 

supported by TF lite. This leaves us to conclusion that 8-bit microcontrollers cannot be used for AI 

applications or no such platform exits to create and deploy AL applications on 8-bit microcontrollers. Only 

cortex cores are supported for AI model deployment. So RICS architecture is also set a side. TF for 

microcontroller’s libraries are in C++11. To compile TF for micro we need a compiler which supports 

C++11.  

TF lite for microcontroller is just a converter. Typical workflow of developing a model and porting the 

model to micro is  

• First, we create our model in python using TF lite.  

• Then model flatbuffer file is created. Flatbuffer is automatically generated by the TF lite after 

successfully construction, training and validation of model. 
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• This flatbuffer file is then translated into c code using TF lite for micro converter. TF lite for micro 

is provided as an API. 

• Finally, we take the c code. Generate a new .c or .h header file in our micro application and place 

the c code in it. 

TF didn’t explain anything about the c code generation and how to use it. It only explains high level 

functions which automatically fetch the c code from the file and reconstruct the model in micro. Other 

high-level functions such as how to input and read output are also explained in the guide.   

Compiler constraints 
Usually microcontrollers firmware is written in c language and various c compilers and linkers comes with 

the development platform for code compilation. But in the TF lite for micro case we need a compiler which 

can translate both c++ and c code in to equivalent binary. Why both c++ and c code? TF lite micro package 

is in c++, whereas when we initialize any micro and include the vendor specific libraries for any particular 

peripheral of micro it is found that all of them are written in c. This puts an extra burden on the compiler.   

Most vendors invest in compilers only to speed up the running time of microcontroller. The general theory 

behind it is that faster speeds consume less power. Well its true, but in case of low end devices like 

microcontrollers another two parameters program size and power consumed by peripherals in general 

and overall power consumed play a vital role[2].      

 
Vendor specific AI converters dependent on TF and other AI model development 

platforms 
Deploying AI on embedded platforms is a challenging task but recent advances in machine learning and 

hardware design is overcoming it[3]. More and more silicon vendors are innovating not only in hardware 

but also in software to gain competitive advantage on their industry peers. 

Renesas e-AI converter 
e-AI or embedded artificial intelligence converter offered by renesas is a proprietary AI model converter. 

It takes a trained model as input and outputs model equivalent c code. Model can be trained in TF, Caffe 

or other supported AI model development platforms. Outputted model equivalent code can further be 

included in the project wizard for a particular renesas microcontroller. Since e-AI is a proprietary you can 

only use the c code with renesas e2 Studio Ide.  

Typical work flow is  

• Take pretrained model from TF, keras and caffe etc. 

• Fed the model into e-AI translator 

• Run translator, Optimized code for Renesas microcontroller is generated. 

• Include the code in renesas e2 studio project  
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Figure 1 Renesas e-AI Anatomy [4] 

Renesas recommends to use its microcontrollers with cortex-M3 core or above with suitable ROM and 

RAM in which one thinks its code can fit in. Not all the neural network (NN) layers are translatable by e-AI 

converter. Most popular and intensively used layers are supported1. 

 

ST microelectronics STM32Cube AI converter 
ST microelectronics offered an AI solution for its line of microcontrollers named STM32Cube.AI converter. 

It also takes pretrained model as input and outputs equivalent c code. Code can then be included in to 

your microcontroller development project.  

STM32Cube.AI is part of the STM32CubeMX. Cube MX offers GUI initialization of ST microcontrollers 

peripherals and with the click of a button initialization code for particular microcontroller is generated 

with all the necessary libraries included and startup file initialized. For Cube AI we just need to specify the 

path of the model file and initialize the micro peripherals in Cube MX. All done translate the project and 

all the files will be generated automatically. 

Cube AI offers other functions for example you can view the model, compress or quantize it. These 

functions are easy to use Cube MX GUI makes it really simple and straight forward.       

• Take pretrained model from TF, keras and caffe etc. 

• Open STM32CubeMX. Select microcontroller. Initialize its peripherals.  

• Open STM32Cube.AI from CubeMX and input the mode file. Load model (quantize if required). 

• Click generate code for project and pre-initialized code generation. 

 

                                                           
1 https://www.renesas.com/us/en/application/technologies/e-ai/translator 

https://www.renesas.com/us/en/application/technologies/e-ai/translator
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Figure 2 STM32 Cube AI Anatomy [5] 

CubeAI supports cortex-M3 and above microcontrollers offered by stmicroelectronics. TF, Keras and Café 

deep learning frame works are supported by CubeAI. Output code is in c and inline assembly format.    

 

ARM AI solutions 
All the AI solutions offered by various vendors supports ARM cortex cores. ARM provides solutions for a 

common standard. Application developed using ARM libraries can be ported to any vendor device using 

the same ARM core.  

Work flow is  

• Create model in TF, Caffe or any supported neural network platform. 

• Translate the model and make it compatible with ARM libraries. 

• Run inference.  

 

Figure 3 ARM AI core's flow [6] 

Translating the model to CMSIS-NN or ARM-NN is manual. Each layer and activations must be translated 

according to the ARM2 layers transform reference manual. Not all the AI neural network layers are 

                                                           
2 https://developer.arm.com/solutions/machine-learning-on-arm/developer-material/how-to-guides/converting-a-neural-network-for-arm-

cortex-m-with-cmsis-nn/single-page 

https://developer.arm.com/solutions/machine-learning-on-arm/developer-material/how-to-guides/converting-a-neural-network-for-arm-cortex-m-with-cmsis-nn/single-page
https://developer.arm.com/solutions/machine-learning-on-arm/developer-material/how-to-guides/converting-a-neural-network-for-arm-cortex-m-with-cmsis-nn/single-page
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translatable. If the layer is not supported by ARM other layers can be merged to achieve the functionality 

of the unsupported layers.   

For AI support ARM provides two library packages CMSIS-NN and ARM-NN. Various other stand-alone 

libraries can be added with CMSIS and ARM-NN for optimization purposes. 

ARM-NN for AI on CPU’s and GPU’s 

ARM-NN targets high end CPU’s and GPU’s. Thesis is on AI in microcontrollers so we will not go 

deeper in ARM-NN.   

CMSIS-NN for AI 

Common microcontroller software interface standard (CMSIS) is a set of libraries which can be 

used to develop firmware for ARM cores irrespective of the vendor. Firmware developed using 

CMSIS can be ported to any vendor product as long as the core is same. CMSIS-NN is a subset of 

original CMSIS which provides support for deploying AI models on ARM cores. 

 

NXP e-IQ for ARM CMSIS-NN 
Nxp e-IQ platform offers a machine learning environment on its high-end CPU’s and GPU’s. It utilizes 

CMSIS-NN and ARM-NN for machine learning. 

 

NNOM Project - Open Source 
Like other converters and translators an open source project is trying to foot in the AI field. NNOM takes 

a keras model as input and outputs a translated c code representing the inputted model. This c code 

contains the layers of model, its weights and biases. The code can then be deployed in the microcontroller 

project and NNOM libraries can be used to load the model in micro core and perform inference. 

 

Getting Started 
In this study I took three core AI solutions to start work on. All of the three are complete in most of the 

respects and can be deployed on 32-bit microcontrollers.  

1. Tflite for micro 

a) Google solution to deploy AI on microcontrollers. Uses ARM CMSIS libraries.   

2. Stm32Cube AI 

a) ST microelectronic solution. It also uses ARM CMSIS libraries. 

3. NNOM 

a) Open source project. It also depends on ARM CMSIS libraries.  

Target device chosen for the work is stm32l432kc microcontroller. It has 512Kb of flash and 64Kb of RAM. 

Internal clock oscillator of target is used whose clock is set to 80MHz. USART of microcontroller is also 

activated and inference results are output on a serial window using USART. Baud rate of USART is set to 

115200 bits/s.   
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Solutions will be compared on four main parameters which define the microcontroller performance. 

Memory is a major constrain in microcontroller embedded solutions. Our code foot print must fit in the 

available memory. Time comes next, execution must be as quick as possible. These two parameters were 

given precedence in many embedded solutions so in ours.  

• Flash occupancy 

• Ram occupancy 

• Inference time 

• Output deviation 

We have one more parameter in our case which is deviation from original output. Since AI models are not 

100% accurate so we will also consider this in our experiments. How much the individual solution output 

differs from the original value. 

General consideration that model will behave according to its construction and training is true. In our case 

model is created using two different techniques sequential and functional/layered. We will compare the 

output deviation by training the model on same data set. Another factor in our study is model translation 

using STM32Cube AI. We will also compare the output deviation if any when model is translated using 

cube AI.  

 

Model Construction and Training 
Getting started with TF lite for microcontroller lists a sine wave getting started example. The idea is if we 

input a number between sine(0-2𝛑) output will be between -1 to 1. Equation for the function is 

y=sine(x). Where x is input and y is output. Plotting the graph between x and y gives a perfect sine 

wave.  

 

Figure 4 Sine wave 0-2pi 

Google Collab is used for developing model. First, I imported TF library and all the other 

libraries/dependencies in the Collab project sheet. Such as NumPy for working with arrays, Math for 

exporting math functions, Keras for NN functions   and NN model construction.  

   



12 
 

import tensorflow as tf 

import numpy as np 

import matplotlib.pyplot as plt 

import math 

from tensorflow.keras import layers 

from tensorflow.keras import *  

Code snippet 1 Imported libraries 

 

Next a sample of 1000 is randomly generated from the input range 0-2π. Out of the total 1000, 20% 

samples are allotted for each test and validation sets. Remaining 60% are spared for training.   

nsamples = 1000     # Number of samples to use as a dataset 

val_ratio = 0.2     # % of samples for validation set 

test_ratio = 0.2    # % of samples for test set 

x_values = np.random.uniform(low=0, high=(2 * math.pi), size=nsamples) 

 

# Split dataset training(60%), validation(20%), and test(20%) 

val_split = int(val_ratio * nsamples) 

test_split = int(val_split + (test_ratio * nsamples)) 

x_val, x_test, x_train = np.split(x_values, [val_split, test_split]) 

y_val, y_test, y_train = np.split(y_values, [val_split, test_split])  

Code snippet 2 Data set test, train and validation 

 

Visualizing the split train, test and validation dataset. Almost full range is covered by each dataset or 

uniform distribution. 

Few values are above 1 and below -1 also the graph points are scattered. This is because when the sine 

function was created some random value is included with each sine output. This is important because if 

we don’t include it we can get a sine wave with no randomness or a precise sine wave.  
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Figure 5 Model data points 

 

Model Construction 
A sequential model having three fully connected dense neural network layers is created. Activation is relu. 

Input is a singe neuron and output also a single neuron. Sequential models are easy to construct and not 

much effort is required in programming. Input shape is a single neuron. Two hidden layers between input 

and output is named as layer 1 and 2. Both are dense layers. Dense layers are most commonly used layers 

in AI models and the simplest one’s.  

# Create a model 

model = tf.keras.Sequential() 

model.add(layers.Dense(16, activation='relu',name="layer1", input_shape=(1

,))) 

model.add(layers.Dense(16, activation='relu',name="layer2")) 

model.add(layers.Dense(1))  

Code snippet 3 Sine wave sequential model 

 

Layer-1 shape is 16 neurons with 32 parameters. Layer-2 16 neurons with 272 parameters and finally the 

output layer 1 neuron with 17 parameters. Model translation by google collab shows total 321 

parameters.  
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Figure 6 Model parameters 

Going deeper in the model. Input and output are float(32-bit) type. Total weights for first layer are 16 and 

bias stands at 16. For second layer weights are 256 and bias 16. Output weights are 16 and bias 1. 

Activations are Relu and model is sequential. Netron is used to view the model and its parameters. On the 

right-hand side, we can see that model input and output are float types.  

 

 

Figure 7 Model individual layers view 
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First layer of model has 16 neuros all of them are getting input from a single input range between 0-2π. 

Second layer has 16 neurons and each neuron is getting input from the previous layer 16 neurons. Finally, 

the output is a single neuron. 

 

Figure 8 Model neurons view 

Rmsprop optimizer is used for compiling, loss and metrics is calculated as a mean absolute error. To train 

the model batch size of 100 is used. Which effectively translates to (samples/batch size) 10 batches of 100 

samples. 10 batches each with 100 samples is passed through the model 500 times.    

# Add optimizer, loss function, and metrics to model and compile it 

model.compile(optimizer='rmsprop', loss='mae', metrics=['mae']) 

 

# Train model 

history = model.fit(x_train, 

                    y_train, 

                    epochs=500, 

                    batch_size=100, 

                    validation_data=(x_val, y_val))  

Code snippet 4 Training model epochs, batch size etc 

After training analyzing the training and validation loss graph shows us decrease in the loss linearly. Both 

losses reduce simultaneously with the increasing number of epochs. This is important because if one of 

them is not synced with other our model will not perform correctly and huge deviation in result is obvious.     
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Figure 9 Model training and validation loss 

Running a simple test prediction shows us a perfect sine wave. Test values are the one which were taken 

out from the initial sample of 1000 account 20% of the sample. Predicted values are almost in between 

the scattered sample and are continuous which is a positive sign and indicates that our model is behaving 

as expected.   

 

 

Figure 10 Model prediction 

 

NNOM – Model construction  
NNOM is an open source project. Which allows you to build and train your AI model in python and with 

its converter you can translate your model in c code for microcontroller. Few key points of NNOM are  

• Works with models built and trained using keras Only. 
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• Supports only Functional/Layered model unlike TF which supports sequential. 

• Must include the NNOM libraries (Python) to Keras project for model interpretation and 

conversion to NNOM format. 

• Not all layers and activations are supported by NNOM. 

• Libraries for microcontroller are in C language. 

Below is the same sine wave written in both sequential and functional types. Sequential is for TF lite and 

functional is for NNOM.  

 

Functional model input shape is 1. Which means single input. Next is a dense layer of 16 neurons. Which 

is activated by a relu function. After that another dense layer of 16 neurons activated by relu function. At 

last the final output layer of single neuron.   

# Functional or layer model with independent activation functions 

input = tf.keras.Input(shape=(1,)) 

X = tf.keras.layers.Dense(16)(input) 

X = Activation("relu")(X) 

X = tf.keras.layers.Dense(16)(X) 

X = Activation("relu")(X) 

output = tf.keras.layers.Dense(1)(X) 

modelNNOM = tf.keras.Model(input, output); 

 

# Create a model - Sequential Model 

model = tf.keras.Sequential() 

model.add(layers.Dense(16, activation='relu',name="layer1", input_shape=(1

,))) 

model.add(layers.Dense(16, activation='relu',name="layer2")) 

model.add(layers.Dense(1)) 

  

Code snippet 5 Sine wave Functional vs Sequential model 

Functional Model produces same results as sequential. Only the activations are now considered as 

separate layers. Where as in sequential activation functions are part of layers. Total parameters remain 

same 321 as of sequential model.  
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Figure 11 NNOM model layer parameters 

 

Training the model and running predictions on the same data set which was previously used for 

construction sequential model yields a perfect match. In this case the predictions seem more averaged 

and following a continuous sine wave with few bends. 

 

Figure 12 NNOM model predictions 

 

NNOM model training results and layers max min output is below. Test loss and mean absolute error for 

model stands at 0.0816. Layers input and output range is between 
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Table 1 NNOM max min layer input/output 

 Max Min 

Input 6.28 -0.0137 

Second Layer 2.80 -3.44 

Third Layer 1.89 -2.7 

Output Layer 1.04 -0.98 
7/7 - 0s - loss: 0.0816 - mean_absolute_error: 0.0816 

Test loss: 0.08161722123622894 

Top 1: 0.08161722123622894 

input_26 Quantized method: max-min  Values max: 6.280983639904923 min: 

0.013756599578923862 dec bit 4 

dense_44 Quantized method: max-min  Values max: 2.803634 min: -3.4467075 

dec bit 5 

activation_13 Quantized method: max-min  Values max: 2.803634 min: -

3.4467075 dec bit 5 

dense_45 Quantized method: max-min  Values max: 1.8984458 min: -2.7345867 

dec bit 5 

activation_14 Quantized method: max-min  Values max: 1.8984458 min: -

2.7345867 dec bit 5 

dense_46 Quantized method: max-min  Values max: 1.0484817 min: -0.98121214 

dec bit 6 

quantisation list {'input_26': [4, 0], 'dense_44': [5, 0], 

'activation_13': [5, 0], 'dense_45': [5, 0], 'activation_14': [5, 0], 

'dense_46': [6, 0]} 

quantizing weights for layer dense_44 

    tensor_dense_44_kernel_0 dec bit 7 

    tensor_dense_44_bias_0 dec bit 7 

quantizing weights for layer dense_45 

    tensor_dense_45_kernel_0 dec bit 6 

    tensor_dense_45_bias_0 dec bit 7 

quantizing weights for layer dense_46 

    tensor_dense_46_kernel_0 dec bit 6 

    tensor_dense_46_bias_0 dec bit 7 
 

Figure 13 NNOM layers output range & mean absolute error 

Layers weights width is also printed by the NNOM. This is too important. Since the NNOM don’t support 

fractional inputs. We can multiply the fractional number with width of weight and input the whole 

number. At output we must do the same divide the output by the weight width of the layer to convert 

back the number in fractional format.  

Model file when fed to netron results in the same output. Input and output types are floats. Layers names 

are replayed by fully connected. Fully connected is another name for dense layers. So, no difference. Each 

and every thing is identical to previous sequential model.   
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Figure 14 NNOM individual layers anatomy 

 

Mean absolute error (MAE) for the both models after training is listed below. Both models were trained 

on the same dataset, same number of epochs and batch sizes are used for training and validation. Not 

much difference in MAE is seen. 

Table 2 Mean absolute error sequential and functional model 

 

 

 

 

 

 

 

Model Mean absolute error during training 

Functional 0.0895 

Sequential 0.0838 
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TensorFlow – Project (c array) 
After constructing and training the model in TensorFlow. It is translated to equivalent c code using 

TensorFlow lite for microcontroller translator.  Translated c code file is then made part of the project. 

 

 

Figure 15 TFlite libraries with .c array 

 

Work flow of project is shown above. Model c array and Tflite external libraries are made part of the 

project. Since we are using ST microcontroller we must also import the ST dependent libraries in the 

project.  

I configured the STM32L432Kc using STM32CubeMX. Cube MX is a GUI package by STM which can be used 

to initialize the individual peripherals of STm32 microcontrollers. After setting up the micro peripherals 

you can generate initialized code for differed IDE’s. Currently Cube MX produces HAL libraries for micro 

peripherals. HAL are the updated peripheral libraries for st microcontrollers.  

I generated code for STM32Cube IDE and keil uvision IDE. To test both, since both uses different compilers. 

Tweaked GNU-GCC compiler.  

TensorFlow project using STM32CubeIDE: In the project tree all the included folders can be seen. 

Tensorflow libraries are in tensorflow_lite folder. Tree is further expanded on the right side. Plenty of files 

are in package and all of them are in c++. So, our main application file must be a c++ source file. Project 

code comprised of both c and c++ sources. In below window main file extension is .cpp or c++ file.   
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Figure 16 TensorFlow project using STM32CubeIDE 

  

Stm32cubeide uses GCC compiler with GNU arm embedded tool chain integrated in it. It’s a free 

distribution. 

TensorFlow project using keil uvision ide: With keil uvision IDE the libraries are same. Small difference 

is in the startup file, changed heap and stack size. The main difference is in compiler. ARM compiler 6 with 

ARMclang technology is used to compile the code. HAL and CMSIS libraries are same which were 

previously used in the cube ide. Project tree can be seen on the left side. Tensorflow folders are 

individually made part of the project. Keil doesn’t support folder in a folder tree structure. Our main 

source file ends with .cpp extension. Which means our code is in c and c++.  

 

Figure 17 TensorFlow project using keil uvision ide 

Arm clang is a propriety and a paid subscription is required for full code compilation.  
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Source code for both compliers were optimized at the maximum code and performance level which is 

given as -o3. For keil clang, link time optimization was also enabled.  

 

 

Chart 1 GCC vs ARM Clang -TFlite 

  

ArmClang flash and ram occupancy is way higher than open source GCC. But the inference speed of ARM 

Clang is higher than GCC. 

 

Table 3 GCC to ARM Clang - TFlite 

TFlite - GCC to ARMClang 

Flash +63% 

RAM +53% 

Inference  -244% 
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TensorFlow – project (.tflite flat buffer file) 
The c array generated in the above two methods is dependent on tflite file. This file is a cluster of flat 

buffers scalers and vectors representing our trained model. We generate c code for TFlite for 

microcontroller project using this file.  

ST microelectronics offers their own model translator under the name of STM32CubeMX.AI or AI package 

for ST microelectronics. Translator takes input a trained model file such as tflite or .h5 model file of keras. 

It then translates the model and outputs equivalent c files for the target STM32 microcontroller.    

In our case, first I selected the target microcontroller which is STM32l432kc. Next open the STM32CubeMX 

to initialize the peripherals. Then opened the STM32Cube AI and provided the tflite file as input. 

Compression and optimization can be performed on the inputted model file using cube AI package. Next 

the model is translated and pre-initialized code for target MCU is generated. In this case code is generated 

for both cube ide and keil uvision as well.   

STM32CubeMX.AI with .tflite model file: In the left pane of the above window project tree can be seen. 

Model files translated by STM32Cube AI are present in src (sine_model_data.c and sine_model.c) and inc 

(data, config and model header files) folder. Neurons their weights and biases are defined in these files. 

In the middleware’s folder STM32 AI libraries are residing. Together with the model files in src folder these 

libraries reconstruct the model in micro.     

Main file extension in this case is .c, which means our source code is in c language. All project libraries are 

in c. 

 

Figure 18 STM32CubeMX.AI with .tflite model file 

After compiling, the used Flash and RAM occupancy can be seen in the memory region window. It can be 

seen that 6.86Kb of RAM is used and 32.35Kb of flash is used. I am outputting inference result as serial 

UART output. 
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Stm32cubeide offers a terminal window. we can establish a serial connection to this window by specifying 

communication parameters. I set it up for 115200 bits/s, parity none and 1 stop bit. Inference results are 

outputted in this window. Inference time for prediction is recorded as 79 micro seconds.   

 

 

 

Chart 2 TFlite to Cube AI - ARM Clang 

Inference time and flash occupancy is significantly reduced using Cube AI translator with GCC compiler.  

Table 4 TFlite to Cube AI - GCC 

GCC - TFlite to Cube AI 

Flash -149.2% 

RAM -8.3% 

Inference -344.3% 

 

Cube AI code compiled with GCC reduces ram and flash size occupancy compared with GCC-Tflite.  

 

STM32CubeAI .tflite model file with keil IDE: In this case Cube MX is used to generate peripheral code. 

Cube AI translates model. Translated model code is same like the one generated in Cube IDE case because 

Tflite file is same. Project tree can be seen on the left side in the main window. AI libraries are in lib folder. 

Main source file is in c. we are in same situation like above one. Our all libraries are in c language.      
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Figure 19 STM32 Cube AI .tflite model file with keil IDE 

Project is compiled successfully and results can be seen in the build output window above. Building time 

is slightly higher than the GCC. The use of LLVM technique in ARM Clang takes longer to build the project 

files. 

 

Chart 3 GCC vs ARM Clang - Tflite vs Cube AI 
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First comparing the ARM Clang switching from Tflite to Cube AI we see reduction in all parameters (flash, 

ram and inference time). Next switching from GCC to ARM Clang we see reduction in flash and ram but 

the inference time is increased.  

Table 5 TFlite to Cube AI - ARM Clang 

ARM Clang – Tflite to Cube AI 

Flash -716.3% 

RAM -93.2% 

Inference -10.82% 

 

Table 6 GCC to ARM Clang - Cube AI 

Cube AI - GCC to ARM Clang 

Flash -100.3% 

RAM -16.27% 

Inference +16.45% 

 

 

NNOM - Project (Keras ) 
NNOM for sine wave model. NNOM is a light weight open source project on GitHub which perform 

inference using a model constructed and trained in Keras. Unlike TFlite, NNOM model must be in 

sequential/layered architecture. Sine model which was previously used for TFlite and Cube AI is 

transformed into layered architecture. Process shown in the introduction chapter. 

NNOM provides python dependencies and translator which can translate Keras AI model into equivalent 

NNOM c code. The concept is same like other solutions. Only the translator is changed and translated 

code is equivalent to NNOM supported architecture.  

On target side NNOM provides a package of c libraries which can be made part of the project for inference. 

The major drawback of NNOM is it doesn’t support fractional numbers as input. 

Project peripherals were initialized with stm32CubeMX and project files were imported for keil uvision 

ide. So. ARM Clang compiler is used to compile code for NNOM.  
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Figure 20 NNOM with ARM Clang 

In the above window on left pane project file tree is present. NNOM libraries are in NNOM/SRC folder. 

Weights header file in project window is the c code generated by the NNOM translator. Rest HAL and 

CMSIS libraries are included default by Cube MX when peripherals were initialized. Compiling the code is 

error free, build details and resources used are listed in the build output window.   

 

Figure 21 NNOM model anatomy UART view 
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Verifying the model if translated correctly is possible with microcontroller. We can output the model 

details on USART port. Layers shape’s, input and outputs, tensors are same. Memory buffers are saved 

weights and biases. Total parameters are also same 321.  

 

 

Chart 4 NNOM vs GCC vs ARM Clang 

Comparing NNOM with all the other solutions clearly shows it’s the best optimum solution. Inference time 

is way better than all the other solutions. Regarding memory its slightly higher than the ARM Clang Cube 

AI solution.   

Output Deviation: So far, we compared only the memory and inference time. Another and most 

important parameter is output. Does the input produce the required output? And how much time each 

input takes for inference?   

Deviation highly depends on the model and its training. Model must be trained to achieve lowest MAE. 

Model can be checked for MAE. This error is expected in the inference results.  

I took 6 random numbers (0.7, 1.6, 2, 3.4, 4.9, 6.2) from input range and their output is compared with 

original sine function output. Individual and average deviation from original output is calculated for each 

solution. 

Recall 

Table 7 Recall MAE 

Model Mean absolute error during training 

Functional 0.0895 

Sequential 0.0838 
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Analyzing the above results, we see that inference time is constant for every input in each individual 

solution. If MAE is taken as 0.08 for both models. We see that most of the outputs are in range of MAE, 

few are exceeding the it. NNOM MAE is far less than others. Sin(6.2) is deviation is worst in all the 

solutions. In Cube AI case it produces output which deviates 181% from original output.   

 

 

Chart 5 GCC vs ARM Clang vs NNOM - Spider view 

Spider graph is the best representation of the observed results. We see that inference time for GCC Tflite 

is approaching its limits whereas on flash side it is less than ARM Clang Tflite. Less than GCC Tflite area is 

covered by ARM clang Tflite. So, this solution is better compared to previous one. Compared to the above 

two solutions the GCC and Arm Clang Cube AI are covering less area. So, Cube AI with Clang and GCC is 

better than Tflite. We can decide between the two depending on the memory and inference precedence, 

what we want in our project.  

Minimum area occupied is by NNOM which means that NNOM is the best solution. Major draw backs of 

NNOM project is it does not support fractional number as input. You have to multiply the input fractional 

number with the width of the input layer to convert it in to whole number. At output we must divide the 

number with the width of the output layer to convert it back to fractional number.       
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Compile time injection faults to test robustness 
Compile time injection faults are introduced in the source code to test the robustness of AI deployment 

on microcontroller. Source code of the model will be flipped changed to test the behavior of the model 

under stress.  

I decided to use a bigger model for compile time injection faults testing. Sine wave model can also be 

tested. But a model consisting of images is better. We can test if images can be predicted by 

microcontrollers. Off course our model size will be bigger. On the other hand, we will be able to put stress 

on micro to test its robustness. 

MNIST Dataset: MNIST is a collection of hand written digits images. Total images in training set are 

60,000. Testing set has total of 10,000 images. Images size is 28x28. We must convert this array to 4 

dimensions in order to use it with keras or tensorflow. 

We learnt from the sine wave model that NNOM solution is perfect in all dimensions. So, I decided to use 

NNOM libraries with ARM Clang compiler to test MNIST dataset. 

Individual pixels of images range between 0 to 255. Which is quite bigger in memory cost. We can quantize 

our images. Individual pixel is divided by 255 to bring down the pixel range to 0-1. We can train our model 

on this range. This can not only reduce the weights and bias but also saves us a lot of memory.  

Now the usual NNOM operation is performed and model c files are generated. The final model in c format 

is below 

static nnom_model_t* nnom_model_create(void) 

{ 

    static nnom_model_t model; 

    nnom_layer_t* layer[16]; 

 

    check_model_version(NNOM_MODEL_VERSION); 

    new_model(&model); 

 

    layer[0] = input_s(&input_1_config); 

    layer[1] = model.hook(conv2d_s(&conv2d_config), layer[0]); 

    layer[2] = model.active(act_relu(), layer[1]); 

    layer[3] = model.hook(maxpool_s(&max_pooling2d_config), layer[2]); 

    layer[4] = model.hook(conv2d_s(&conv2d_1_config), layer[3]); 

    layer[5] = model.active(act_relu(), layer[4]); 

    layer[6] = model.hook(maxpool_s(&max_pooling2d_1_config), layer[5]); 

    layer[7] = model.hook(conv2d_s(&conv2d_2_config), layer[6]); 

    layer[8] = model.active(act_relu(), layer[7]); 

    layer[9] = model.hook(maxpool_s(&max_pooling2d_2_config), layer[8]); 

    layer[10] = model.hook(flatten_s(&flatten_config), layer[9]); 

    layer[11] = model.hook(dense_s(&dense_config), layer[10]); 

    layer[12] = model.active(act_relu(), layer[11]); 

    layer[13] = model.hook(dense_s(&dense_1_config), layer[12]); 

    layer[14] = model.hook(softmax_s(&softmax_config), layer[13]); 

    layer[15] = model.hook(output_s(&output_config), layer[14]); 

    model_compile(&model, layer[0], layer[15]); 

    return &model; 

} 
 

Code snippet 6 MNIST model in c 
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Model consists of three convolution layers, each layer used RELU for activation. Followed by two dense 

or fully connected layers. Final output goes through the softmax layer. So, in total 6 layers. But since 

NNOM works on layered architecture so all the individual functions are also considered layers.   

 

To perform inference ten random images were selected from the database and their pixel array values 

were saved in header file. These ten images will be used to test the MNIST dataset in microcontroller core. 

They will be inputted to model for inference. Size of the images are 28x28 which translates in to an array 

of 784 integer values. Furthermore, NNOM input layer weights width is 7 bits so our images pixel values 

will be in range from 0 to 127.  

 

#define IMG8 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 64, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0,  

#define IMG8_LABLE 6  

  

#define IMG9 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 

0, 0, 0, 

#define IMG9_LABLE 9  

 

#define TOTAL_IMAGE 10  

  

static const int8_t img[10][784] = 

{IMG0,IMG1,IMG2,IMG3,IMG4,IMG5,IMG6,IMG7,IMG8,IMG9};  

Code snippet 7 MNIST images arrays 

 

Compiling the project and looking in the build process, all the libraries are successfully compiled. Flash 

and Ram occupancy is listed in the below table. 

Table 8 MNIST flash and ram occupancy 

Parameter Memory kilo Byte 

Flash 145.772 Kb 

RAM 26.824 Kb 

 

To run inference input image array is feed to the model. Output is printed on serial window. USART at 

9600 bits/s is initialized. Putty is used to make a serial connection and print the USART output by 

microcontroller.  
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Figure 22 MNIST inference results 

It is concluded that all the 10 images are successfully identified by the model in microcontroller. 

Average inference time recorded 

Inference time 5.8568 milli seconds 

   

• Significant amount of bit flips in weights and biases results in output totally inaccurate. But still 

there is an output. Unless the width of weight/bias arrays are manipulated. 

• No significant change in prediction is found after flipping few image array bits.  

• Prediction is altered by introducing numeric values at array positions which are previously 

standing at 0.   

• Compiler automatically corrects the input size of a single element of image array during compiling 

if the input value size increases the datatype. 
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Conclusion  
It’s obvious from the results that the c++ libraries use in the microcontroller domain is not providing any 

edge when compared to their c counterparts. C++ produces binaries which are enormous in size. A single 

advantage (compiler comparison GCC vs ARM Clang) is seen using c++ which is the reduction in inference 

time but still way higher compared to c. Open source GCC when compared with ARM Clang takes much 

time for inference. ARM Clang uses LLVM (low level virtual machine) for object and binaries creation which 

with the help of ARM compiler reduces the time for inference. 

Open source NNOM and freeware STM32Cube AI have libraries in c and translates model in to equivalent 

c code. Both are better than google support for AI on microcontrollers (c++ TFlite). NNOM which supports 

functional model is found better than all. No difference is found in final model between functional and 

sequential but the performance of NNOM is better. This performance increase is due to NNOM translator 

and core inference engine.    

Compile time faults injection in model and input data on MNIST dataset suggests that in order to alter 

results a big portion of bits must be flipped. Especially the pixels with zero value if flipped to 1, alters the 

result. Weights and bias also alter the result on the same condition of drastic change in values. If a bit flip 

increases the size of the individual array element compiler automatically adjusts the size to datatype and 

generates just a warning.   
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