
POLITECNICO DI TORINO
Master’s Degree in Mechatronic Engineering

Master’s Thesis

Adversarial Attacks for Convolutional
Neural Networks and Capsule Networks

Supervisors

Prof. Maurizio MARTINA

Prof. Muhammad SHAFIQUE

Prof. Andreas STEININGER

Project Ass. Alberto MARCHISIO

Candidate

Giovanni CARAMIA

Academic Year 2020/2021

Acknowledgements

First of all, I would to thank Professor Maurizio Martina for allowing me to explore
a new field of research. I am grateful to him for giving me the chance to interact
and develop the thesis in collaboration with the TU Wien and NYU Abu Dhabi.
In this regard, I would to thank the Professor Andreas Steininger and Professor
Muhammad Shafique for this opportunity. A special thanks goes to my tutor
Alberto, a kind and very competent person who took me by the hand and taught
me a lot of things about this new field: I also thank him for the help and support
throughout the development of the thesis .
Moreover, I would also like to thank my family, my father Gino and my mother
Enza, without whom, all this would not have been possible. They have always
encouraged me to try to improve myself and always go one step further.
Furthermore, I would like to thank my friends, which is like a second family. Thanks
to them, and to our moments of lightheartedness, everything was more bearable.
In particular, I would like to thank Enrico, Lele, Elena, Annette and Marco for
the philosophical chats under the Mole. I would like to thank Adalgisa, Carmela,
Cristina and Alessandra for supporting me. I cannot fail to mention my historical
friends: Gianfranco, Pierluigi, Gigi, Nicola, Martino, Ramon e Peppino for the
lovely conversations.

ii

“To my grandmother Giuditta”

iii

“A man should look for what is,
and not for what he thinks should be.”

Albert Einstein

iv

Summary

In Computer Vision (CV) context, the image classification is a supervised learning
problem which has several applications in all fields such as autonomous driving,
medical diagnosing, remote sensing and so on. In the Deep Learning (DL) field,
the image classification problem is solved by several architectures: from the simple
Convolutional Neural Networks (CNNs) to the more complex models such as Cap-
sule Networks (CapsNets). Nowdays, it is complicated to apply the CapsNet to
complex and high resolution datasets, and consequently this leads to an increase in
the complexity of the CapsNet architecture. Moreover, CapsNets for some datasets
are still unexplored. An important aspect of image classification is the robustness of
the architectures against adversarial attacks: an image can be misclassified crafting
a small perturbation to the input. In this dissertation, the adversarial attacks are
crafted on Residual Neural Networks (ResNet) and CapsNet models. In a CapsNet
configuration, another way to inject attacks is done through Vote Attack, which
directly attacks the votes instead of output capsules. In the literature, until now
the impact of the Vote Attack has been evaluated only on simple datasets.
Moreover, in the classification of outdoor images, the effect of atmospheric phe-
nomena has not yet been analyzed and could affect security. In this context, in the
field of autonomous driving, a misclassification could generate very serious effects
such as road accidents and dangers for passengers and pedestrians.
To resume, the thesis focus on these topics and tries to solve some challenges:

i. What is the behaviour of the CapsNet on complex and high resolution datasets?
In this regard, what about the robustness of the CapsNets against adversarial
attacks?

ii. What is the impact of Vote Attack on complex datasets?

iii. How is it possible to reproduce the effect of atmospheric conditions on the
camera lens in autonomous driving?

The research contributions of the thesis are mainly two:

• Evaluate the performances and the robustness of CapsNet models against
adversarial attacks

v

• Design an adversarial attack that can mislead the CNNs and CapsNet archi-
tectures

Going into details, in the first part of this dissertation there is a systematic
analysis of the latest CapsNet architectures in literature (ShallowCaps, DeepCaps,
YaoCaps and FMCaps) applied to the most common benchmarks datasets (SVHN,
CINIC10, CIFAR10, CIFAR100). Furthermore, CapsNets are applied for the
first time on high resolution datasets (MLRS and COVID19Ti). In particular,
the COVID19 Ti dataset contains several Chest X-ray images used for medical
diagnosing decision. It is splitted into two datasets: COVID19-CXR (grey-scale
configuration) and COVID19-ENH (Chest X-ray images enhanced using image
processing technique).Moreover, MLRS dataset is a novel dataset used for remote
sensing problem: it contains high-resolution optical satellite images allowing to
capture different perspectives of the Earth. Having high resolution datasets involves
some implementation problems which affect the memory usage. One solution would
be to resize the images to a smaller size: for example from 256x256 to 32x32. Some
tricks have been applied to obtain good performances. For example, taking into
consideration the case of ShallowCaps: in MLRS the kernel_size of the Prima-
ryCaps has been increased; in the case of COVID19 CXR, a Batch Normalization
Layer was added after Conv2D and the spitting rate was changed from 85/15 to
50/50.
Furthermore, in the second part of thesis the robustness of CNNs and CapsNet
models against adversarial attacks is evaluated. At the beginning, the robustness
evaluation is performed on MLRS and COVID19Ti: the robustness is performed
also changing the pnorm (l∞ and l2) for Remote sensing dataset. After that, the
Vote Attack impact is evaluated on CIFAR100.

In this context, taking into account the accuracy as a measure of performances
and the robust accuracy as a metric in the robustness field, the results show
that:

• For all cases, DeepCaps performs better than ShallowCaps. In particular,
considering SVHN and CINIC10 datasets, DeepCaps reaches an accuracy of
96.48% and 75.24%, respectively, while ShallowCaps gets 94.96% and 56.72%,
respectively.

• Yao Caps achieves the best results for CIFAR10 (94.70%) and CIFAR100
(70.14%).

• DeepCaps performs better than ResNet models on high resolution datasets
(MLRS and COVID19Ti), as shown in Table 1.

vi

COVID19 CXR COVID19 ENH MLRS
ResNet50 90.94 % 93.54 % 75.22 %
DeepCaps 93.34 % 94.01 % 82.23 %

Table 1: Accuracy values of DeepCaps and ResNet50 on high resolution datasets

• DeepCaps is more robust than ResNets for small perturbations on high resolu-
tion datasets (MLRS and COVID19Ti): Table 2 shows that for perturbations
greater than a certain Ô the situation is reversed.

COVID19 CXR COVID19 ENH MLRS (l∞)
FGSM Ô > 0.013 Ô > 0.015 /
PGD Ô > 0.017 Ô > 0.03 Ô > 0.03
BIM Ô > 0.016 Ô > 0.025 Ô > 0.02
MIM Ô > 0.018 Ô > 0.03 Ô > 0.025

Table 2: For each attack the epsilon value is shown after which the situation is
reversed (ResNet becomes more robust than DeepCaps)

Furthermore, in the context of MLRS case, adversarial attacks with l∞ norm
behave better than those with l2. As a consequence, the l∞ allows the attack
to be stronger.

• Vote Attack continues to be stronger than Caps Attack even for more complex
datasets like CIFAR 100 because robust accuracy values due to Vote Attack
are always lower than those caused by Caps Attack. For example, when
Ô = 0.04, in Vote case the robust accuracies, i.e., the accuracies measured
when at the input are applied the adversarial examples, of FGSM (11.27 %),
PGD (0.17 %) and BIM (0.5 %) are less than FGSM (11.59 %), PGD (0.19
%) and BIM (0.63 %) in Caps Attack.

Moreover, in the real world there are several situations where DL models fool
the correct classification due to atmospheric phenomena. In this context, a
novel methodology is proposed: assuming that the camera lens is dirty due
atmospheric conditions (such as rain, snow and hail), it is possible to craft a
perturbation changing the pixels of the input following several patterns. Such
attack, called Pattern Attack, is performed in a black box setting: the only
information available is the probability associated to each output label. Going into
depth, in the closest related works some researchers have perturbed the image by
changing one or more pixels, according to several algorithms; others have added
stickers to the images misleading the models. The innovative idea of the our

vii

attack methodology is to modify the pixels, following some patterns that simulate
the patterns that the drops or the snowflakes create when they are placed on the
camera lens. In reality, a drop of water has a spherical shape while a snowflake has
a hexagonal one. For simplicity, a drop or a snowflake can be modelled as a pixel:
a small square of the image which has h · l pixels (h = height , l = length).
Pattern Attack is splitted into three attacks: rain attack, snow attack and
hail attack. After crafting attack, the adversarial image goes into the black box
in a way that there is a comparison between the prior confidence in a clean
situation and the new confidence in an adversarial situation in order to evaluate
the attack success Rate (ASR). Pattern Attack is applied to CIFAR10 and it
is evaluated on three models: LeNet, ResNet and CapsNet. Figure 1 shows some
examples of misclassification.

The results obtained by applying the Pattern Attack show that:

• All types of Pattern Attack work well both in LeNet and ResNet models.
(ASR > 65 %)

• Hail Attack is the best attack because it performs better than other attacks
in all cases: LeNet (ASR = 82,5%) , ResNet (ASR = 78,5%) and CapsNet
(ASR = 63%)

Figure 1: Examples of misclassification for each Pattern Attack: it is possible to
see that the model was deceived, the predicted class is different from the real one

The purpose of this work is to make an important contribution to the field
of security. In Deep Learning context, CNNs and CapsNets will still be used in
many tasks and it is necessary to try to improve their performances and robustness
through new kinds of defense in order to find countermeasures against several
adversarial attacks that are created every day. The steps of future research may
be different: for the first part of analysis, the CapsNet models will be applied
to more complex datasets such as ImageNet or ObjectNet trying to obtain good

viii

classification performances. Moreover, in the context of Pattern Attack, the future
developments consist of applying the attack on other higher resolution datasets
and on other CapsNet models such as DeepCaps, YaoCaps and FMCaps.

ix

Table of Contents

List of Tables xiv

List of Figures xv

Acronyms xx

I Computer Vision: Introduction 2

1 Introduction 3
1.1 Scientific Challenges . 3
1.2 Our Novel Contributions . 4
1.3 Overview . 4

2 Background 6
2.1 Image Classification . 6
2.2 Neural Networks: basic concepts . 7

2.2.1 Multilayer perceptrons (MLP) 7
2.2.2 The learning process . 8

2.3 Convolutional Neural Network . 12
2.3.1 How does CNNs work? . 13

2.4 Residual Neural Network . 16
2.5 Adversarial attacks . 16
2.6 Design implementation . 18
2.7 Remarks . 19

II CapsNet simulations 20

3 State of the art : Capsule Networks 21
3.1 What’s wrong with CNN? . 21
3.2 What’s a capsule? . 23

xi

3.3 Shallow Caps . 24
3.3.1 How does a capsule work? 25
3.3.2 Dynamic routing algorithm 25
3.3.3 The architecture . 26
3.3.4 ShallowCaps Drawbacks . 27

3.4 Deep Caps . 27
3.4.1 3D dynamic routing algorithm 27
3.4.2 The architecture . 28

3.5 Yao Caps . 30
3.5.1 The architecture . 30

3.6 FM Caps . 31
3.6.1 The architecture . 31

3.7 Remarks . 32

4 CapsNet analysis 33
4.1 Implementation . 33
4.2 SVHN . 34

4.2.1 ShallowCaps evaluation . 35
4.2.2 DeepCaps evaluation . 36

4.3 CIFAR10 . 37
4.3.1 ShallowCaps evaluation . 38
4.3.2 DeepCaps evaluation . 39
4.3.3 YaoCaps evaluation . 40
4.3.4 FMCaps evaluation . 41

4.4 CIFAR100 . 42
4.4.1 ShallowCaps evaluation . 42
4.4.2 DeepCaps evaluation . 43
4.4.3 YaoCaps evaluation . 44
4.4.4 FMCaps evaluation . 45

4.5 CINIC10 . 46
4.5.1 ShallowCaps evaluation . 46
4.5.2 DeepCaps evaluation . 47

4.6 Remarks . 48

5 High resolution datasets: MLRS and COVID19 50
5.1 Remote sensing dataset: MLRS . 51

5.1.1 ShallowCaps evaluation . 52
5.1.2 DeepCaps evaluation . 53

5.2 Medical images dataset: COVID 19 54
5.3 COVID 19 CXR . 56

5.3.1 ShallowCaps evaluation . 56

xii

5.3.2 DeepCaps evaluation . 59
5.4 COVID 19 ENH . 60

5.4.1 ShallowCaps evaluation . 60
5.4.2 DeepCaps evaluation . 61

5.5 Remarks . 62

III CapsNet robustness 63

6 White Box configuration: Gradient based attacks 64
6.1 Gradient based attacks . 64

6.1.1 Fast Gradient Sign Method (FGSM) 64
6.1.2 Basic Iterative Method (BIM) 65
6.1.3 Momentum Iterative Method (MIM) 65
6.1.4 Projected Gradient Descent (PGD) 66

6.2 Implementation . 66
6.2.1 ResNet Attacks . 67
6.2.2 CapsNet Attacks . 67
6.2.3 Vote Attacks . 68

6.3 Remarks . 68

7 Gradient based results 69
7.1 Adversarial attacks on Medical Images 69

7.1.1 COVID19 CXR . 70
7.1.2 COVID19 ENH . 74

7.2 Adversarial attacks on Remote Sensing 78
7.3 Impact of the Vote Attack on CIFAR100 81

8 Black Box configuration: Pattern Attack 85
8.1 Motivations . 85
8.2 Pattern Configuration . 87

8.2.1 Rain Attack . 90
8.2.2 Snow Attack . 92
8.2.3 Hail Attack . 93

8.3 Remarks . 94

9 Conclusion and Future works 96

Bibliography 97

xiii

List of Tables

1 Accuracy values of DeepCaps and ResNet50 on high resolution datasets vii
2 For each attack the epsilon value is shown after which the situation

is reversed (ResNet becomes more robust than DeepCaps) vii

2.1 E(W, b) is the loss function (also annotated as J(W, b)), W is the
Weights matrix, b is the biases vector, N is the number of training
examples (or batch size), yi is the prediction output and ŷi is the
correct output. 9

2.2 Examples of p norms: the value of p changes from 1 to ∞ (p=1,2,∞). 18
2.3 Examples of adversarial attacks: the adversary can have access

to main information of the model (white box) or not (black box);
the adversary try to attack a specific class (Target attack) or not
(Untarget attack). 18

7.1 COVID19 CXR: Evaluation of ResNet and DeepCaps robustness
at the end of curves, in the neighbourhood of the values where the
robust accuracy goes to zero . 71

7.2 COVID19 ENH: Evaluation of ResNet and DeepCaps robustness
at the end of curves, in the neighbourhood of the values where the
robust accuracy goes to zero . 75

7.3 ResNet and DeepCaps evaluation against adversarial attacks (l∞
and l2) on MLRS dataset . 79

7.4 White box attacks on CIFAR100: attacks for Ô = 0.04 84

8.1 Attack Success Rate of Rain Attack 92
8.2 Attack Success Rate of Snow Attack 93
8.3 Attack Success Rate of Hail Attack 94

xiv

List of Figures

1 Examples of misclassification for each Pattern Attack: it is possible
to see that the model was deceived, the predicted class is different
from the real one . viii

2.1 The neuron [11] . 7
2.2 Multilayer perceptron architecture [12] 8
2.3 Plots of the error function versus weights in 2D and 3D planes [12] . 10
2.4 GD strategy: the minimum is reached tuning, step by step, the slope

of the loss function. [12] . 11
2.5 BGD and SGD [12] . 12
2.6 CNN architecture: the image is fed into Convolutional layers that

extract the fundamental features in order to do a classification [12] . 12
2.7 CNN strategy: in this example there is a cat at the input layer.

The image is scanned into several small patterns and re-combined
obtaining objects such as nose, eye and ear. Then, it is possible to
classify as a "cat" a figure which has these big objects. [14] 13

2.8 Convolution operation: it works by sliding these windows over the
3D input feature map, stopping at every possible location, and
extracting the 3D patch of surrounding features. Each 3D patch is
then transformed into 1D vector of shape. All of these vectors are
then spatially reassembled into a 3D output map of shape. [12] . . . 14

2.9 The pooling operation: it down-samples the feature maps in order
to obtain a reduction to the parameters in CNNs model. [15] 15

2.10 The Max pooling operation: it computes the maximum value between
elements of a small matrix inside the output feature map. [15] . . . 15

2.11 The Average pooling operation: it computes the average value be-
tween elements of a small matrix inside the output feature map.
[16] . 15

2.12 Residual learning framework [20] 16
2.13 Loss / Epoch A: Overfitting; B: Underfitting; C: Generalization [12] 19

xv

3.1 Picasso’s problem: for CNNs "1" and "2" are both faces. Spatial
hierarchical relationship between objects (face, nose, eyes, mouth) is
not important. [26] . 22

3.2 Pooling operation: spatial information is loosed after the pooling
layer. [12] . 22

3.3 Computer graphics and inverse graphics 23
3.4 Capsule’s configuration: at the left of the figure there is a pose vector

while a pose matrix is represented at the right. [27] 23
3.5 Capsule representation: each capsule has a vector output in order to

estimate the object’s pose parameters and the probability of presence.
[28] . 24

3.6 Dynamic routing algorithm: it is a route agreement process between
capsules [19] . 26

3.7 CapsNet architecture[19]: encoder and decoder part on MNIST
dataset. 27

3.8 3D dynamic routing algorithm [30] 28
3.9 DeepCaps architecture[30]: i) and ii) are the basic components of

the Encoder part. At the bottom of the figure it is possible to see
how the decoder works. 29

3.10 Inverted Dot-product Attention Routing algorithm [34] 30
3.11 YaoCaps architecture [34] . 31
3.12 FM algorithm [36] . 31
3.13 FMCaps architecture [36] . 32

4.1 SVHN Dataset [32] . 35
4.2 Implementation of the ShallowCaps on SVNH 35
4.3 ShallowCaps on SVHN: Plots and results 36
4.4 Implementation of the DeepCaps on SVNH 36
4.5 DeepCaps on SVHN: Plots and results 37
4.6 CIFAR10 Dataset [31] . 38
4.7 Implementation of the ShallowCaps on CIFAR10 38
4.8 ShallowCaps on CIFAR10: Plots and results 39
4.9 Implementation of the DeepCaps on CIFAR10 39
4.10 DeepCaps on CIFAR10: Plots and results 40
4.11 Implementation of the YaoCaps on CIFAR10 40
4.12 YaoCaps on CIFAR10: Plots and results 41
4.13 Implementation of the FMCaps on CIFAR10 41
4.14 FMCaps on CIFAR10: Plots and results 42
4.15 Implementation of the DeepCaps on CIFAR100 43
4.16 DeepCaps on CIFAR100: Plots and results 43
4.17 Implementation of the YaoCaps on CIFAR100 44

xvi

4.18 YaoCaps on CIFAR100: Plots and results 44
4.19 Implementation of the FMCaps on CIFAR100 45
4.20 FMCaps on CIFAR100: Plots and results 45
4.21 CINIC-10 Dataset [50] . 46
4.22 Implementation of the ShallowCaps on CINIC10 47
4.23 ShallowCaps on CINIC10: Plots and results 47
4.24 Implementation of the DeepCaps on CINIC10 48
4.25 DeepCaps on CINIC10: Plots and results 48
4.26 Results on SVHN and CINIC10 . 49
4.27 Results on CIFAR10 and CIFAR100 49

5.1 High resolution issue: there is not enough space in the memory . . . 51
5.2 Solution: resize the image . 51
5.3 MLRS Dataset [51] . 52
5.4 Implementation of the ShallowCaps on MLRS 52
5.5 ShallowCaps on MLRS: Plots and results 53
5.6 Implementation of the DeepCaps on MLRS 53
5.7 DeepCaps on MLRS: Plots and results 54
5.8 COVID19 Dataset [55] . 55
5.9 Chest X-ray images: CXR and enhanced CXR (MF) [52] 55
5.10 First configuration of the ShallowCaps on COVID19 CXR: model

configuration and results. 56
5.11 Solution for the issue found: add a BN layer after the first Conv2D

and change the splitting rate into 50/50. Note the change in the
curves (from plot "1" to plot "2"). 57

5.12 Implementation of the ShallowCaps on COVID19 CXR : final con-
figuration . 58

5.13 ShallowCaps on COVID19 CXR: Plots and results 58
5.14 Implementation of the DeepCaps on COVID19 CXR 59
5.15 DeepCaps on COVID19 CXR: Plots and results 59
5.16 Implementation of the ShallowCaps on COVID19 ENH 60
5.17 ShallowCaps on COVID19 ENH: Plots and results 60
5.18 Implementation of the DeepCaps on COVID19 ENH 61
5.19 DeepCaps on COVID19 ENH: Plots and results 61
5.20 Remarks . 62

6.1 Fast Gradient Sign Method [56] . 65
6.2 Adversarial attacks implementation 67
6.3 ResNet Attacks . 67
6.4 Caps Attacks & Vote Attack [47] 68

7.1 ResNet & DeepCaps Attacks on COVID CXR 70

xvii

7.2 FGSM: ResNet & DeepCaps on COVID19 CXR 71
7.3 PGD: ResNet & DeepCaps on COVID19 CXR 72
7.4 BIM: ResNet & DeepCaps on COVID19 CXR 72
7.5 MIM: ResNet & DeepCaps on COVID19 CXR 73
7.6 ResNet & DeepCaps Attacks on COVID ENH 74
7.7 FGSM: ResNet & DeepCaps on COVID19 ENH 75
7.8 PGD: ResNet & DeepCaps on COVID19 ENH 76
7.9 BIM: ResNet & DeepCaps on COVID19 ENH 76
7.10 MIM: ResNet & DeepCaps on COVID19 ENH 77
7.11 ResNet & DeepCaps Attacks on MLRS 78
7.12 PGD l∞ on MLRS . 80
7.13 BIM l∞ on MLRS . 80
7.14 MIM l∞ on MLRS . 81
7.15 ResNet Attacks, ShallowCaps Attacks & Vote Attacks on CIFAR100 82
7.16 FGSM Attacks on CIFAR100 . 83
7.17 PGD Attacks on CIFAR100 . 83
7.18 BIM Attacks on CIFAR100 . 84

8.1 Adversarial Patch creates a misclassification: at the beginning the
classifier output belongs to class "banana", while after the introduc-
tion of a sticker the class changes to "toaster". [75] 86

8.2 At left, there are stickers on road signs [76], while glasses are on face
at right [77]. 86

8.3 Drops of water [79] & Snowflakes [80] 87
8.4 Pixel perturbations: a pixel is simply a perturbation of a tuple, while

multiple tuples are needed for more pixels 88
8.5 Pattern Attack architecture . 89
8.6 Several patterns of drop of waters coming from real environment:

i)agglomerate of drops [81], ii)water drop patch [82] and iii) drop
lines [83] . 90

8.7 Agglomerate pattern . 90
8.8 Patch pattern . 91
8.9 Rain Attack . 91
8.10 Snow Attack . 92
8.11 Hail Attack . 93
8.12 ASR of Pattern Attack . 94
8.13 Examples of misclassification for all attacks 95

xviii

Acronyms

AI
artificial intelligence

ASR
Attack Success Rate

BIM
Basic Iterative Method

BN
Batch normalization

CapsNet
Capsule Network

CNN
Convolutional Neural Network

COVID-19
COronaVIrus Disease 19

CV
Computer Vision

DDN
Decoupling Direction and Norm

DL
Deep Learning

xx

DNN
Deep Neural Network

DR
Dynamic Routing

FC
Fully connected

FGSM
Fast Gradient Sign Method

GD
Gradient Descent

GPU
Graphics Processing Unit

ILSVRC
ImageNet Large Scale Visual Recognition Challenge

MIM
Momentum Iterative Method

ML
Machine Learning

MLP
Multilayer Perceptron

MSE
Mean Square Error

NN
Neural Network

PGD
Projected Gradient Descent

xxi

ResNet
Residual Neural Network

RGB
R=Red, G=Green, B=Blue

RL
Reinforcement Learning

SGD
Stochastic Gradient Descent

SL
Supervised Learning

SOTA
State Of The Art

UL
Unsupervised Learning

xxii

Acronyms

chapterpart

1

Part I

Computer Vision:
Introduction

2

Chapter 1

Introduction

In Computer Vision (CV) context, the image classification is a supervised learning
problem which has several applications in all fields such as autonomous driving,
medical diagnosing, remote sensing and so on. In the Deep Learning (DL) field,
the image classification problem is solved by several architectures: from the simple
Convolutional Neural Networks (CNNs) to the more complex models such as
Capsule Networks (CapsNets). An important aspect of image classification is the
robustness of the architectures against adversarial attacks [1] : an image can be
misclassified crafting a small perturbation to the input. [2] [3] In this dissertation,
the adversarial attacks are crafted on Residual Neural Networks (ResNet) and
CapsNet models. Over the years, many researchers have been interested in the
robustness of Capsule Networks.[4] [5] [6] [7] [8] In a CapsNet configuration, another
way to inject attacks is done through Vote Attack, which directly attacks the votes
instead of output capsules.

1.1 Scientific Challenges

Nowdays, it is complicated to apply the CapsNet to complex and high resolu-
tion datasets, and consequently this leads to an increase in the complexity of the
CapsNet architecture. Moreover, CapsNets for some datasets are still unexplored.
In this context, Medical images and Remote sensing dataset will be evaluated.
Moreover, it is necessary to understand the robustness of CapsNet for these new
datasets. For example, in medical applications a misclassification can mean a wrong
diagnosis instead of a correct one. Furthermore, in the CapsNet context, the Vote
Attack is a recent attack and it has been evaluated only on simple datasets until
now. It is important to try to see the impact of Vote Attack on more complex
datasets.

3

Introduction

Moreover, in the classification of outdoor images, the effect of atmospheric phe-
nomena has not yet been analyzed and could affect security. In this context, in the
field of autonomous driving, a misclassification could generate very serious effects
such as road accidents and dangers for passengers and pedestrians. To resume, the
thesis focus on these topics and tries to solve some challenges:

• What is the behaviour of the CapsNet on complex and high resolution datasets?
In this regard, what about the robustness against adversarial attacks?

• What is the impact of Vote Attack on complex datasets?

• How is it possible to reproduce the effect of atmospheric conditions on the
camera lens in autonomous driving?

1.2 Our Novel Contributions
The purpose of this dissertation is to solve these challenges. It is possible to
highlight mainly three novel contributions:

1. Systematic analysis of recent CapsNets architectures for different datasets
(chapters 3, 4, 5), in which they are evaluated for the first time on high
resolution datasets.

2. Analysis of different adversarial attacks on CNNs and CapsNets, and compari-
son between CapsAttacks and Vote Attacks on complex datasets.

3. Pattern Attack design, implementation and evaluation.

1.3 Overview
The thesis is splitted into the following chapters :

• Chapter 2: Review of the basic notions of Neural Networks (NNs), Convo-
lutional Neural Networks (CNNs), Residual Neural Networks (ResNet) and
Adversarial Attacks

• Chapter 3: Review of the latest relevant Capsule Networks (CapsNet) archi-
tectures in literature with a systematic approach (ShallowCaps, DeepCaps,
YaoCaps, FMCaps)

• Chapter 4: Evaluate the performances of CapsNet models on benchmark
datasets (SVHN, CINIC10, CIFAR10, CIFAR100).

4

Introduction

• Chapter 5: Evaluate the performances of CapsNet on high resolution datasets
: MLRS and COVID19.

• Chapter 6: Review of the most common adversarial attacks in a white-box
setting: FGSM, PGD, BIM and MIM

• Chapter 7: Compare the CapsNet robustness against adversarial attacks in
a white box configuration for novel datasets and evaluate the impact of Vote
Attack on on a complex dataset like CIFAR100

• Chapter 8: Design a novel methodology, called Pattern Attack, in a black
box configuration: this attack is inspired to the real scenarios configuration

• Chapter 9: Summarize all the work with some future research developments

5

Chapter 2

Background

In Chapter 2 there will be touched some important basic concepts related to the
Computer vision field. In particular, after a brief introduction about the image
classification, Neural Networks will be introduced highlighting the basic concepts
related. Going into depth, it is important to analyze two architectures that are
fundamentals in deep learning fields : Convolutional Neural Networks (CNN)
and Residual Neural Networks (ResNet). At the end, it is crucial dealing with
the robustness of deep learning models, paying attention to what concerns the
adversarial attacks.

2.1 Image Classification
In Machine Learning we have three kind of learning methods [9]:

i. Supervised learning: an human observer labels the images and groups
them into a training dataset. Typical examples of SL are classification and
regression.

ii. Unsupervised learning: the training dataset is unstructured and unla-
beled. Typical example of UL is Clustering.

iii. Reinforcement learning: the system reacts to changes in its environment
by learning from mistakes in order to improve its performance.

The image classification belongs to supervised learning. It takes into
account that the input image has a specific shape (ex.32x32) and a certain
colour(ex.gray-scale or RGB). The input volume is fed into the model which
applies a certain algorithm so that the image classification is performed: the output
declares which class the image belongs to. In this way it is possible to solve a
classification problem.

6

Background

2.2 Neural Networks: basic concepts
In this context, the Neural Networks (NNs) are widely spread. In particular, it is
important to focus our attention on Multilayer perceptrons(MLP).

2.2.1 Multilayer perceptrons (MLP)

First of all, the best way to introduce the MLP is to focus on its main computational
unit: the perceptron.

Perceptron

A perceptron is the simplest neural network: it consists a single neuron. In 1958
Rosenblatt [10] introduced this concept making an analogy between biological and
artificial neurons.

Figure 2.1: The neuron [11]

In human brain the biological neuron receives the information from the dendrites,
and after some operations, compute the output to the synapses which communicates
with another neuron. The artificial neuron works in a similar way: the inputs
(dentrites) are fed into a function f(x) (making some processes) which compute
the output. Figure 2.1 shows the difference between a biological and an artificial
neuron.

Multilayer perceptrons

A perceptron is not sufficient when the tasks begin more complex. The best idea is
to create another model (MLP) that combines several neurons stacked in many
layers, as shown in Figure 2.2. The basic concepts are the same as in perceptron
configuration.

7

Background

Figure 2.2: Multilayer perceptron architecture [12]

2.2.2 The learning process
After a brief introduction of the MLP model (a combination of several perceptrons),
it is crucial to analyse the way of learning. Indeed, the learning process is a
fundamental methodology which helps the neural network to learn. It is based on
the repetition of three steps: i)feedforward calculations, ii) error computation, iii)
backpropagation .

1. Feedforward process

The feedforward process is the method that allows to compute the output: the
information flows from the input layer, to the hidden layers and at the end to the
output layer. It is based on two consecutive steps:

• Weighted sum:
z =

Ø
xi · wi + b (2.1)

Each neurons performs a dot product with the input xi and its weights wi

and adds the bias b.

• Activation function:

ŷ = a = f(z) = f(
Ø

xi · wi + b) (2.2)

In the second stage there is an application of the activation function which
introduces the non linearity to the neural network: this is a gold point that
gives us the possibility to solve any non-linear problems. 1

1The most simple activation function is a step function that produces a binary output (0 or 1)
: if z is bigger or equal to 0, the output must be 0; if z is less than 0, the output must be 1. In
the design process it is possible to choose several activation functions, such as sigmoid function,
softmax function, hyperbolic function, ReLu function and so on. ReLu function is the best
choice in the hidden layers, while the softmax fuction is for output layer.

8

Background

The perceptron learns step by step using a trial and error procedure. The neuron
uses their weights tuning their values up and down learning from their mistakes,
as a human do with experience. Following this procedure, the network makes a
prediction ŷ.

2. Error computation

After that, it is crucial to evaluate the performance of the prediction: the error e
quantifies if the network’s prediction ŷ is close to the true label y.

e = ŷ − y (2.3)

Loss functions

The designer decides what is the error function, or cost function or loss function
which fits better in that situation. In Table 2.1 there is an introduction of the most
useful loss functions. 2

MSE / L2 Loss / Quadratic Loss E(W, b) = 1
N

qN
i=1 (ŷi − yi)2

Cross Entropy E(W, b) = 1
N

qN
i=1

qM
j=1 ŷi,j log (pi,j)

Table 2.1: E(W, b) is the loss function (also annotated as J(W, b)), W is the
Weights matrix, b is the biases vector, N is the number of training examples (or
batch size), yi is the prediction output and ŷi is the correct output.

The rule of thumb is that if we have a small loss, the model works good.

Optimization algorithms

The main aim in the learning process is to find the best weights minimizing the
loss function. In Deep learning fields there is an important parameter which evalu-
ates the performance of the network: the accuracy. In particular, the accuracy
measures how many times our model made the correct prediction. Indeed, if the
error is close to 0, the accuracy of the model will be high. The robustness of the
model increases if there is a decrease of the value of the cost function which is a
non negative function.

2Moreover, the mean square error has a common implementation in the regression problem,
while the cross-entropy function is for the classification problem. In the next chapter another
loss function will be introduced: the margin loss function which is fundamental for CapsNet.

9

Background

The optimization algorithm is a strategy that allows to minimize the error tuning
the weights of the model. The idea is to initialize the network with random weights,
and adjust them up and down, following the slope of the curve, in a way that the
goal is fulfilled, as it is possible to see in Figure 2.3.

Figure 2.3: Plots of the error function versus weights in 2D and 3D planes [12]

How can we find weights? How can we adjust weights values? It is possible to
solve these two answers through an iterative process, called optimization algo-
rithm.

Gradient Descent (GD):

The GD is the simplest optimization algorithm in the literature. It is based on
two concepts:

• the gradient: it tells us the slope of the curve (the step direction)

• the learning rate (lr): it tells us the speed of the convergence (the step size)

δwi = −λr
dE

dwi

(2.4)

The GD optimizer updates the weights tuning the slope of the curve in a way
that the minimum is reached: it is a descent to the point with the minimum error.
This operation is done in a iterative way using a step size, that is called learning
rate (lr) : it represents how fast or slow the optimizer descends the error curve.
A graphical representation of the GD algorithm is shown in Figure 2.4.

10

Background

It is crucial to highlight that the learning rate is the most important hyperpa-
rameter in the design process.3

Figure 2.4: GD strategy: the minimum is reached tuning, step by step, the slope
of the loss function. [12]

The GD has an important drawback: it uses the entire training dataset in one
batch (in one step) causing a big memory consumption. This is the reason why
GD is used only for small datasets.

In literature, there are other optimization algorithms that improve the properties
of GD: Stochastic gradient descent(SGD) and Adam.

Stochastic gradient descent (SGD):

This algorithm divides the entire dataset into small datasets depending on the
batch-size in a stochastic way. SGD starts its gradient descent not using only one
weight starting point, but more than one in a random way allowing us to obtain
several local minimas. After a comparison of the local minimas, the SGD get
the global minima. In this way SGD performs better than GD solving the its
drawbacks. The Figure 2.5 shows the differences between BGD and SGD strategies.

Adam

In 2017, Kingma et al. introduced Adam [13]: a novel algorithm based on adaptive
moment estimation which outperforms other optimizers. 4

3The learning rate can have several values from 0.1 to 0.0000001 and so on. If the lr is very
small the training is very slow, if the lr is very high, the training is faster, but it is possible
that the minimum is not reached. Our goal is to find the optimal value of lr that makes the
convergence, as fast as possible.

4In literature there are other optimization algorithms such as Nesterov accelerate gradient,
RMSprop, Adagrad and so on.

11

Background

Figure 2.5: BGD and SGD [12]

3. Backpropagation error

The third step in the learning process is the backpropagation error: th feedforward
process is repeated many times, updating the weights, improving the predictions in
a way that prediction error is minimized (close to zero).

wi+1 = wi + δwi (2.5)

2.3 Convolutional Neural Network

Convolutional neural network (CNN) is an advanced architecture used in image
classification field. It is different from the MLPs for some aspects: the MLP learns
pixel by pixel, while the CNN bases its learning process to the feature extraction.

The common CNN architecture is composed by an input layer, the convolu-
tional layers, the FC layers and the output layer for the prediction, as shown in
Figure 2.6.

Figure 2.6: CNN architecture: the image is fed into Convolutional layers that
extract the fundamental features in order to do a classification [12]

12

Background

2.3.1 How does CNNs work?
The main idea of the CNNs model is to scan the input volume(image)5, not using
all pixels (as MLPs did), but through the application of the local patterns. In
this way it is possible to store each possible small features, the feature maps. Then,
in the following layers they are re-combined obtaining big features. Finally, there
is an evaluation: if the object contains all right features, then it is assigned to a
class with a certain probability. In Figure 2.7 there is a graphical representation
that allows to understand better how CNN works.

Figure 2.7: CNN strategy: in this example there is a cat at the input layer. The
image is scanned into several small patterns and re-combined obtaining objects
such as nose, eye and ear. Then, it is possible to classify as a "cat" a figure which
has these big objects. [14]

Going in depth, the main idea is described, but in practice, how can we apply
these concepts?
CNNs strategy is based on two processes: i)the convolution operation, ii)the pooling
operation.

The convolution operation

At the beginning, the input volume is fed into Convolutional layers where CNNs
strategy is applied. The convolution operation allows us to extracts patches6

from its input feature map and applies the same transformation to all of these

5The input volume is a 3D tensor composed by two spatial axes (height,width) and a depth
axis (also called channels axis). The input image can have two different axes : if axes is equal to
1 , the image has only one channel and it is in a gray-scale configuration; if axes is equal to 3 the
image has three channels (RGB) and it is in a colour configuration.

6A patch is a window which has a size (height x width), for example it will be a matrix 3x3,
5x5, 9x9 and so on.

13

Background

patches, producing an output feature map, as shown in Figure 2.8. 7 From a
mathematical point of view, this action corresponds to a element-wise product
between the convolution matrices.

Figure 2.8: Convolution operation: it works by sliding these windows over the
3D input feature map, stopping at every possible location, and extracting the 3D
patch of surrounding features. Each 3D patch is then transformed into 1D vector
of shape. All of these vectors are then spatially reassembled into a 3D output map
of shape. [12]

In particular, the operation of sliding is done combining two translations: from
the left to right, and from the bottom to down, according to the stride number.8

In the convolution process the border effects (padding) of the input feature
map should be considered. The padding operation is a technical way which allows
that the input volume and the output feature map have the same spatial dimension
adding rows and columns to the input volume around the border of an image.9

7An output feature map is a map which has a depth, that represents the number of filters, for
example it will be 16, 32, 64, 256.

8In the sliding operation done by the convolution process, the stride represents the step to do
in matrix translation. For example, if the stride = 1, it means that the sliding operation goes one
pixel at time. If the stride is > 1, it goes following the same procedure, but with more pixels.

9An example of padding operation is the zero-padding where the border of the input volume
is done adding zeros.

14

Background

The pooling operation

After the construction of the output feature map, the pooling operation is done. It
is used to down-sample feature maps, in order to reduce the number of parameters,
as shown in Figure 2.9. The pooling layer is inserted between two convolutional
layers. Moreover, in literature two common pooling strategies are known: Max
Pooling (Figure 2.10) and Average Pooling (Figure 2.11).

Figure 2.9: The pooling operation: it down-samples the feature maps in order to
obtain a reduction to the parameters in CNNs model. [15]

• Max Pooling:

Figure 2.10: The Max pooling operation: it computes the maximum value
between elements of a small matrix inside the output feature map. [15]

• Average Pooling:

Figure 2.11: The Average pooling operation: it computes the average value
between elements of a small matrix inside the output feature map. [16]

15

Background

In the last few years, researchers have gone in depth with the CNNs models.
G.Hinton [17] [18] was the first that has found some drawbacks and limitations in
these models. For this reason, he designed a new architecture, the CapsNet [19]
that will be analyzed in the next chapter.

2.4 Residual Neural Network
The DNNs are difficult to train. In 2015 K.He [20] proposed a new architecture
called ResNet (Residual Neural Network). He changed the point of view of the
classical DL models, reformulating the layers with the introduction of the residual
learning framework, as shown in Figure 2.12. In this way he won the first prime in
ILSVRC 2015 conference outperforming the classical DNNs optimizing better the
training process.

Figure 2.12: Residual learning framework [20]

The main idea of the ResNet is the introduction of the shortcut connections:
it allows to jump over some layers. In this way the ResNet can avoid the problem
of vanishing gradients and mitigate the degradation problem.10

2.5 Adversarial attacks
The DNNs are common in some fields such as speech recognition and image
classification. Some researchers asked themselves these questions:

• "Are DNNs not vulnerable?

10The degradation problem in a particular behaviour of the DNNs that happens when there is
an accuracy saturation after some epochs.

16

Background

• "Are DNNs robust architecture?"

In 2014 Szegedy et al. [21] were the first to analyze the problem of security and
robustness of the NNs introducing a new concept :the adversarial example x’
which is an imperceptible perturbation.
If we apply an adversarial example x’ to a test image, it is possible to change the
network‘s prediction that leads to a misclassification.

The adversarial example x’ has to satisfy two properties:

• D(x, x’) is small for some distance metric D

• c(x’) /= c∗(x)

where D(x, x’) is the distance between the points belonged to the clean image
x and the points lied at the adversarial example x’; c(x’) is the new label due to
adversarial example x’, while c∗(x) is the true label in a clean situation.
It is straightforward to declare that x’ should be close to x, but x’ is classified
incorrectly .

How to construct an adversarial example x’?

After declaring the main concept, it is important to understand how it is possible
to create an adversarial attack. In practise, crafting an adversarial example means
solving a box-constrained optimization problem [22]. The main idea is to
find a perturbation δ such that c(x+δ) /= c∗(x) :

• minimizing ë δ ë subject to ë x’- x ëp ≤ Ô

• maximizing the classification loss on f(x+δ)

where p is a number (from 1 to ∞) of the p-norm 11 (Table 2.2); Ô is a sufficiently
small number in a way that the p-norm is imperceptible; f(x+δ) is the neural network
in an adversarial condition.

The p-norm can be written using this formula:

ëxëp = p

ñqn

i
xp

i
(2.6)

In this way Szegedy et al. [21] demonstrated that DNNs are vulnerable to
adversarial attacks

11If p is equal to 1, we have l1 norm: it is a norm on the one-dimensional vector spaces and it
is equal to the absolute value. If p is equal to 2, we have l2 norm: it corresponds to the Euclidean
norm and measures the Euclidean distance. If p is equal to ∞, the norm is called l∞ which
measures the maximum value in the vector space.

17

Background

l1 norm ëxë1 = qn
i |xi|

l2 norm ëxë2 = √qn

i
x2

i

l∞ norm ëxë∞ = max
0≤i≤∞

|xi|

Table 2.2: Examples of p norms: the value of p changes from 1 to ∞ (p=1,2,∞).

Taxonomy of adversarial attacks

There are several adversarial attacks in the literature. It is possible to split them
into different categories as shown in the Table 2.3.

White Box: Full access to DNN classifier (architecture and weights)
Black Box: Attack is crafted without access to the model

Target Attack: Misguide the DNN to a specific class
Untarget Attack: Don’t assign a specific class to the DNN output

Table 2.3: Examples of adversarial attacks: the adversary can have access to
main information of the model (white box) or not (black box); the adversary try
to attack a specific class (Target attack) or not (Untarget attack).

In the third part of the thesis (from the Chap.6 to the end) we will see in
depth what are the best adversarial attacks in literature, focusing also on the novel
algorithms proposed until now. In addition, we will analyze a novel attack, called
Pattern attack.

2.6 Design implementation
In the design process of the NNs (or similar architectures) the deep learning engineer
has to choose and tune some hyperparameters in a way that it is possible to
generalize the problem.
It is straightforward to face to three situations:

• Underfitting: it happens when the model is too simple to fit the data.

• Overfitting: it happens when the model is too able to fit the data. The NN
becomes so smart memorizing every training data, but without learning the
main features. The consequence of this action is the reduction of generalization
and the inability to recognize other data examples .The network performs
very well in training data, but it fails in testing data.

18

Background

• Generalization: it is the situation that we want to achieve. The NN learns
using training data, and tests its "experience" when new data occurs. If
the model recognizes the new data in a similar way as before, with an high
probability , it means that the generalization will be done.

For example, if we have a good accuracy in training data, but it is bad when
we are recognizing validation data, we are in the case of overfitting. Luckly, we
have several ways to prevent overfitting, such as weight regularization, dropout
and data augmentation. In Figure 2.13 it is possible to see the difference for each
situation.

Figure 2.13: Loss / Epoch A: Overfitting; B: Underfitting; C: Generalization [12]

2.7 Remarks
This is the background chapter where there were introduced some basic concepts
about the DL field such as NNs, CNNs and ResNet models. If the reader wants to
going in depth to these important subjects he can consult some other references
[23], [24].

19

Part II

CapsNet simulations

20

Chapter 3

State of the art : Capsule
Networks

In the previous chapter we focus our attention to the CNN models, that are
widespread in DL field. Despite their importance, G.Hinton [17] [18] found that
CNN has some limitations and drawbacks: for this motivation he designed a new
architecture, the CapsNet which outperforms the CNN architecture. In 2017 he
designed the first CapsNet [19] that learns through a specific algorithm called
"Dynamic Routing". After one year, Hinton proposed another view of "capsule
concept" introducing the CapsNet that learns through the "EM algorithm" [25].
After the innovations proposed by Hinton, other researchers have tried to design
several CapsNet models. In this Chapter I proposed the latest CapsNet models in
the literature until now, but in my opinion there are others which are also valid.

3.1 What’s wrong with CNN?
For many years after the LeNet-5 creation, all researches proposed new CNN
architectures in order to achieve state-of-the-art performance on different datasets.
Hinton [17] [18] found two crucial drawbacks in CNNs:

• Inability to understand spatial hierarchical relationship between features
(simple and complex objects)

• Invariance by pooling

Picasso’s problem

It is possible to understand the first drawback through an example, called Picasso
problem, as shown in Figure 3.1. We consider an human face: it is a figure that

21

State of the art : Capsule Networks

has face oval, two eyes, a nose and a mouth.

Figure 3.1: Picasso’s problem: for CNNs "1" and "2" are both faces. Spatial
hierarchical relationship between objects (face, nose, eyes, mouth) is not important.
[26]

For CNNs the objects "1" and "2" are both faces : a presence of objects (face, eyes,
nose, mouth) is sufficient to conclude that it is an human face. Orientational and
relative spatial relationships between objects are not important. This conclusion
is a big problem because for the human vision, that is the vision which the NN
try to reproduce, the objects "1" and "2" are different, and only one is a face ("1"),
but the other is only a representation of some objects (face,nose,eyes and mouth)
arranged randomly in the plane which it is not possible to see in the real world,
because it doesn’t exist.

Pooling operation

The second drawback of the CNNs is attributable to the pooling operation. The
Figure 3.2 shows an example of the pooling mechanism in CNN model. In the
previous chapter we introduce this concept: the pooling layer, inserted between
two successive Convolutional layers, is used to down-sample feature maps, in order
to reduce the number of parameters. What is the cost due to a reduction in
parameters?

Figure 3.2: Pooling operation: spatial information is loosed after the pooling
layer. [12]

22

State of the art : Capsule Networks

For Hinton the operation of pooling is not a good strategy: a spatial information
is loosed after the pooling layer.

3.2 What’s a capsule?
Hinton created the capsule [18], in order to overcome the CNNs drawbacks. The
idea came up by going to see how a computer works, in particular what are the
actions that allows an image representation.

Computer Graphics vs Inverse Graphics

A computer constructs an image using the computer graphics: in computer’s
memory are stored some internal hierarchical representation of geometric data as
arrays of geometrical objects and as matrices. In this way it is possible to take into
account the relative positions and orientation of these objects. A process, called
rendering converts this representation into an image.
The idea of Hinton [26] is to do the opposite operation of the computer graphics:
inverse graphics as human brain does (Figure 3.3). In fact, when we see an
image our brain splits every objects of the image in a way that, when we see the
same image, but with a different angle, we immediately recognize it.

Figure 3.3: Computer graphics and inverse graphics

Following the inverse graphics process, Hinton designed a capsule where stor-
ing the internal hierarchical representation of geometric data preserving hierarchical
pose relationships between object parts and equivariance.

Figure 3.4: Capsule’s configuration: at the left of the figure there is a pose vector
while a pose matrix is represented at the right. [27]

23

State of the art : Capsule Networks

A capsule is, for definition, a group of neurons where encapsulates properties of
single entity [27]. It can be represented through two configurations: i)pose vector,
ii) pose matrix [25], as shown in Figure 3.4.
Going into details, we consider a first configuration of the pose 1in order to under-
stand better how the capsule works. The Figure 3.5 is a graphical representation
of the Capsule: if we have a capsule as in a vector configuration, each capsule has
a vector output such that [28]:

• Length: it estimates the probability of presence

• Orientation: it estimates the object‘s pose parameters (instantiation param-
eters)

Figure 3.5: Capsule representation: each capsule has a vector output in order to
estimate the object’s pose parameters and the probability of presence. [28]

What was the genesis of the "capsule" ?

In principle, Hinton has found this idea many year before, but there were some
problems to realize it: there was no algorithm to implement the CapsNet in a
successful way and it was difficult to make it in hardware design. Luckly, thanks
to the invention of GPU 2 the task was solved in a good way.

3.3 Shallow Caps
In 2017, G.Hinton et al. [19] proposed a new kind of architecture that achieves
state-of-the-art performance on MNIST [29] through an iterative routing-by-
agreement mechanism.

1A pose gives us a representation of 3D objects taking into account the relations between
objects using translation and rotation.

2GPU is a new device able to accelerate the creation of images and to make some computation
graphics tasks.

24

State of the art : Capsule Networks

3.3.1 How does a capsule work?
How can the capsule learn? What is the learning process?

The learning process of the capsule is composed by several operations:

• Affine transform:
ûj|i = Wijui (3.1)

The "prediction vectors" ûj|i is performed by the multiplication of the "output"
ui of the capsule i by a weight matrix Wij.

• Weighted sum:
sj =

Ø
i

cijûj|i (3.2)

The capsule sj is done computing the weighted sum between the "coupling
coefficients" cij and the "prediction vectors" ûj|i.

• Non linear activation: squash function

vj = ësjë2

1 + ësjë2
sj

ësjë
(3.3)

The squashing operation is applied to the capsule sj. The "vector output" vj

of the capsule j is obtained through the application of the squash function
shrunking the length of the vectors: the short vectors go to 0, while the long
vectors go to 1.

A capsule is different from the traditional neuron: in the first configuration the
input/output of the capsule is a vector, while the input/output of the neuron is a
scalar.
According for what is introduced to the previous chapter, in the traditional neuron
configuration the weighted sum is obtained through z = q

xi · wi + b while the
non linear activation (sigmoid, tanh, ReLu and so on) is done by ŷ = a = f(z).

3.3.2 Dynamic routing algorithm
Putting these concepts together Hinton proposed the dynamic routing algo-
rithm which involves capsules according to an iterative agreement: it allows
capsules to communicate with each other in order to create images in a good way.
The Figure 3.6 shows, step by step, how to apply the dynamic routing algorithm.

25

State of the art : Capsule Networks

Figure 3.6: Dynamic routing algorithm: it is a route agreement process between
capsules [19]

3.3.3 The architecture
The Shallow Caps is composed into two sections: i)the Encoder part, ii)the
Decoder part. The Figure 3.7 shows an example of CapsNet architecture applied
to MNIST dataset. [29]

i) The Encoder part:

The Encoder part is the core of the CapsNet where the "dynamic routing algorithm"
is performed causing an image classification. It is splitted into several layers:

• Input Layer: is the input volume (image)

• Conv2D : is the first convolutional layer which extracts the feature maps

• Primary Caps: they transform the feature maps into capsules

• Digit Caps: where the "dynamic routing algorithm" is performed causing an
image classification

The loss function used in the "encoder part" is the margin loss:

Lk = Tk max(0, m+ − ëvkë)2 + λ(1 − Tk) max(0, ëvkë − m−)2 (3.4)

The margin loss Lk is the sum of the all losses concerning all capsules. The
parameters are: Tk = 1 ; m+ = 0.9; m− = 0.1; λ = 0.5 .

ii) The Decoder part:

Instead, the Decoder part is fundamental for the reconstruction of the image in
order to compare the initial image to the image, reconstructed thanks to the

26

State of the art : Capsule Networks

classification. In the Shallow Caps configuration, it is composed by several FC
layers connected each other. The loss function used in the "decoder part" is the
MSE = 1

N

qN
i=1 (ŷi − yi)2.

Figure 3.7: CapsNet architecture[19]: encoder and decoder part on MNIST
dataset.

3.3.4 ShallowCaps Drawbacks
The Shallow Caps has several drawbacks[30] to take into account:

• DR is computationally expensive procedure

• Higher costs of training and inference time

• Poor learning in the middle layers

3.4 Deep Caps
J. Rajasegaran et al. [30] studied in depth the properties of CNNs models find-
ing a way to overcome the ShallowCaps drawbacks. In 2019, they proposed a
novel architecture called DeepCaps which outperform the State-of-the-art of the
ShallowCaps [19] results on CIFAR10 [31], SVHN [32] and Fashion MNIST [33].
DeepCaps allow us to reduce:

• the number of routing iterations in the initial layers

• the number of parameters involved

3.4.1 3D dynamic routing algorithm
In the DeepCaps the dynamic routing is performed using the 3D convolution in the
middle layers. This particular choice guarantees an improvement of the performance
of the CapsNet for complex image datasets. The Figure 3.8 shows, step by step,
how to apply the 3D dynamic routing algorithm.

27

State of the art : Capsule Networks

Figure 3.8: 3D dynamic routing algorithm [30]

3.4.2 The architecture
According to the ShallowCaps, the DeepCaps is composed by two parts: i) the
Encoder part and ii) the Decoder part. The Figure 3.9 shows an example of
DeepCaps architecture.

i) The Encoder part

Rajasegaran introduced the concept of CapsCell: it is a structure which contains
several Conv2D layers. Indeed, the Encoder part is based on 4 "CapsCells" where
each "CapsCell" has 4 Conv2D layers. In the fourth "CapsCell" one Conv2D layer
is replaced by the ConvCapsuleLayer3D which is the core of DeepCaps where
the 3D dynamic routing is performed. At the end of the Encoder part there is
a DigitCaps layer.

ii) The Decoder part

Rajasegaran proposed an innovative decoder based on deconvolutional layers
that make better the reconstruction process compared to the FC ones (used in
ShallowCaps), thanks to a more spatial relationships. Furthermore, in DeepCaps
architecture only the activity vectors of the predicted class is fed into the Decoder.

28

State of the art : Capsule Networks

Figure 3.9: DeepCaps architecture[30]: i) and ii) are the basic components of the
Encoder part. At the bottom of the figure it is possible to see how the decoder
works.

29

State of the art : Capsule Networks

3.5 Yao Caps

At the beginning of 2020, Yao Tsai et al. [34] introduced a novel routing algorithm: it
is based on an Inverted Dot-product Attention Routing, where the agreement
is performed through dot products. The pose of capsule is in a matrix form, but
it is different from the matrix pose proposed by Hinton [25]. In Hinton case, the
activation probability is determined by the EM algorithm, while in Yao Caps it is
not represented. Moreover, the loss function is no longer the margin loss, as it
happens in ShallowCaps and DeepCaps, but Cross Entropy or Binary Cross
Entropy are used. Figure 3.10 shows, step by step, how to apply the Inverted
Dot-product Attention Routing algorithm.

Figure 3.10: Inverted Dot-product Attention Routing algorithm [34]

After the routing process, a Layer Normalization [35] (2016) is added in
order to improve the convergence. This is another difference with ShallowCaps and
DeepCaps, because in these cases the Layer Normalization is not present.

3.5.1 The architecture

YaoCaps architecture is a combination of ResNet blocks and Capsule layers.
The input image is fed into ResNet blocks to produce the feature maps, after
that it is transformed into capsules by PrimaryCaps layer, and then it goes
into Convolutional Capsules where an Inverted Dot-product Attention
Routing algorithm is done.

The Figure 3.11 shows an example of YaoCaps architecture: there is only the
Encoder part.

30

State of the art : Capsule Networks

Figure 3.11: YaoCaps architecture [34]

3.6 FM Caps
At the middle of 2020, L.Zhao et al. [36] proposed a novel algorithm, which is based
on pairwise agreement mechanism. The idea came out thanks to the previous
work carried out by Rendle et al. [37], dealing with the feature interactions of
"factorization machines". Figure 3.12 shows, step by step, how to apply the FM
algorithm.

Figure 3.12: FM algorithm [36]

3.6.1 The architecture
The architecture is similar to the YaoCaps, but in this case the output of Prima-
ryCaps layer goes into 3 CapsLayers where FM Agreement is done. Figure
3.13 shows an example of FM architecture.

31

State of the art : Capsule Networks

Figure 3.13: FMCaps architecture [36]

3.7 Remarks
Researchers continue to investigate ways to improve accuracy in the DL field. In the
literature there are other types of CapsNet, very promising such as: STAR-Caps
[38] ,Trans-Caps [39], CapsVB [40] and Efficient CapsNet [41].

32

Chapter 4

CapsNet analysis

After an introduction about the best CapsNet architectures (in Chap. 3), it is useful
to analyze them applying to several datasets taking into account the training process
and the final accuracy. At the beginning the analysis goes to the common datasets
such as SVHN, CIFAR10 and CIFAR100. After that, we go next introducing three
novel datasets: CINIC10 which is used in this chapter and other ones, that are
more important and for this reason there is a section for each one (MLRS and
COVID19).

4.1 Implementation
This is the implementation on several datasets using different CapsNet models.

We follow this procedure in order to obtain the best performances:

i. Split the datasets according to the Pareto optimal rule (80/20), in my case
I decide to split according 85/15, where’s possible

ii. Run several simulations with different architectures choosing the one that has
the best result

iii. Plot loss and accuracy functions due to simulation process

iv. Count the time elapsed in a training process

v. As soon as I get the best result I decide to run all the models 3 times and I
report their accuracy by “average±std”

vi. Plot the real images and the reconstructed images (after decoder) in order to
take a comparison

vii. Repeat i) - vi) for all datasets and CapsNet models, where’s possible

33

CapsNet analysis

It is important to focus our attention on point iii): in the plot (accuracy vs
epochs) the curve of validation Capsnet accuracy should be less than the curve of
training Capsnet accuracy. This action should be fulfilled for all the time simulation,
but in particular for the end region of the plot. At the initial time we can have some
instability phenomena which end after some epochs (according to the model and
dataset). Indeed, at the end region the model will be stabilized and the accuracy
can’t grown so much.
This fundamental "rule of thumb" allows us to improve the performance of our
models in order to generalize better the configuration: it is important to remember
it because it will be useful both in this chapter and in the next.

Going in depth, the training process is done through a data augmentation
for all CapsNets models.
In the ShallowCaps and DeepCaps architectures we use the margin loss for the
encoder part, while the MSE is used for the decoder part. In addiction, we use the
Adam optimizer.
In the YaoCaps and FMCaps architectures we have only the "encoder part" : the
YaoCaps uses the cross-entropy while the FMCaps uses the sparse categorical
cross-entropy. Both YaoCaps and FMCaps use the SGD optimizer.
Furthermore,Keras[42] andTensorFlow[43] libraries are used for the development
of ShallowCaps, DeepCaps and FMCaps. For YaoCaps the PyTorch[44] framework
is implemented. The models were trained on NVIDIA Ge Force RTX 2080 Ti. 1

4.2 SVHN
The SVHN[45] (Figure 4.1) is the first dataset where CapsNets are applied. It
is similar to the MNIST [29] because the images represent digits, but it is more
difficult computing the classification problem.

The SVNH is obtained from house numbers in Google Street View images. The
images contain overlapping digits and distracting features. This dataset consists
of 10 classes, the models are trained on the 73.275 training images and evaluated
on the 26.032 validation images. The input image size of SVHN is 32-by-32 RGB
pixels.
Indeed, we evaluate the SVHN on two CapsNets architectures: i)Shallow Caps and
ii)DeepCaps.

1In this context, all simulations are performed on Tu Wien Platform which is composed by
several GPUs.

34

CapsNet analysis

Figure 4.1: SVHN Dataset [32]

4.2.1 ShallowCaps evaluation
This is the implementation of the ShallowCaps on SVHN dataset. The input layer
has size by 32x32x3. The model is trained for 100 epochs using the batch size equal
to 128; the number of parameters of the model is about 27.8 million. The learning
rate starts from 0.001 and it is reduced by half after each 20 epochs until the
end. We adopt a batch normalization(BN) after the Conv2D layer. The decoder is
composed by three FC layers, useful to reconstruct the images.

Figure 4.2: Implementation of the ShallowCaps on SVNH

According to the configuration written in Figure 4.2, the average test accuracy
obtained is 94.96% ± 0.05, as shown in Figure 4.3.

35

CapsNet analysis

Figure 4.3: ShallowCaps on SVHN: Plots and results

4.2.2 DeepCaps evaluation
This is the implementation of the DeepCaps on SVHN dataset. The input layer
has size by 32x32x3: it is resized to 64x64x3 that allows us to go down deeper.
The model is trained for 100 epochs using the batch size equal to 160; the number
of parameters of the model is about 13.4 million. The learning rate starts from
0.001 and it is reduced by half after each 20 epochs until the end. We adopt a
batch normalization(BN) after the Conv2D layer. The decoder is composed by five
Deconvolution 2D layers, useful to reconstruct the images.

Figure 4.4: Implementation of the DeepCaps on SVNH

36

CapsNet analysis

According to the configuration written in Figure 4.4, the average test accuracy
obtained is 96.48% ± 0.04, as shown in Figure 4.5.

Figure 4.5: DeepCaps on SVHN: Plots and results

4.3 CIFAR10
The CIFAR10[46] (Figure 4.6) is the second dataset where CapsNets are applied.

This dataset consists of 10 classes, the models are trained on the 50.000 training
images and evaluated on the 10.000 validation images. The input image size of
CIFAR10 is 32-by-32 RGB pixels.
Indeed, we evaluate the CIFAR10 on four CapsNets architectures: i)Shallow Caps ,
ii)DeepCaps, iii)YaoCaps and iv)FMCaps.

37

CapsNet analysis

Figure 4.6: CIFAR10 Dataset [31]

4.3.1 ShallowCaps evaluation
This is the implementation of the ShallowCaps on CIFAR10 dataset. The input
layer has size by 32x32x3. The model is trained for 50 epochs using the batch size
equal to 100; the number of parameters of the model is about 11.7 million. The
learning rate starts from 0.001 and it is reduced by half after each 20 epochs until
the end. The decoder is composed by three FC layers, useful to reconstruct the
images.

Figure 4.7: Implementation of the ShallowCaps on CIFAR10

According to the configuration written in Figure 4.7, the average test accuracy
obtained is 70.68% ± 0.53, as shown in Figure 4.8.

38

CapsNet analysis

Figure 4.8: ShallowCaps on CIFAR10: Plots and results

4.3.2 DeepCaps evaluation
This is the implementation of the DeepCaps on CIFAR10 dataset. The input layer
has size by 32x32x3: it is resized to 64x64x3 that allows us to go down deeper.
The model is trained for 50 epochs using the batch size equal to 128; the number
of parameters of the model is about 13.4 million. The learning rate starts from
0.001 and it is reduced by half after each 20 epochs until the end. We adopt a
batch normalization(BN) after the Conv2D layer. The decoder is composed by five
Deconvolution 2D layers, useful to reconstruct the images.

Figure 4.9: Implementation of the DeepCaps on CIFAR10

39

CapsNet analysis

According to the configuration written in Figure 4.9, the average test accuracy
obtained is 89.00% ± 0.57, as shown in Figure 4.10.

Figure 4.10: DeepCaps on CIFAR10: Plots and results

4.3.3 YaoCaps evaluation
This is the implementation of the YaoCaps on CIFAR10 dataset. The input layer
has size by 32x32x3. In this case, several attempts have been performed. The best
result is obtained when the model is trained for 350 epochs: the batch size for
training data is equal to 100, while the batch size for testing data is 50. Moreover,
the number of parameters of the model is about 1.82 million and the number of
routing process is 2. The learning rate starts from 0.1 and decreases from 150 to
250 epochs. It is important to point out that in this case there is only the encoder
part.

Figure 4.11: Implementation of the YaoCaps on CIFAR10

40

CapsNet analysis

According to the configuration written in Figure 4.11, the best test accuracy
obtained is 94.70%, as shown in Figure 4.12. Moreover, in all plots there are two
steps, when the learning rate changes.

Figure 4.12: YaoCaps on CIFAR10: Plots and results

4.3.4 FMCaps evaluation
This is the implementation of the FMCaps on CIFAR10 dataset. The input layer
has size by 32x32x3. In this case, several attempts have been performed. The
best result is obtained when the model is trained for 150 epochs: the batch size
is equal to 128. Moreover, the number of parameters of the model is about 0.97
million. The learning rate starts from 0.1 and decreases from 81 to 122 epochs. It
is important to point out that in this case, as in YaoCaps, there is only the encoder
part.

Figure 4.13: Implementation of the FMCaps on CIFAR10

According to the configuration written in Figure 4.13, the best test accuracy
obtained is 93.48%, as shown in Figure 4.14. Moreover, in all plots there is a big
step, when the learning rate changes.

41

CapsNet analysis

Figure 4.14: FMCaps on CIFAR10: Plots and results

4.4 CIFAR100
The CIFAR100[46] is an extended version of CIFAR10 dataset. Indeed, CIFAR100
consists of 100 classes: it has 10 times the number of classes of CIFAR10. The
difficulty of CIFAR100 is that we only have 500 images per class in the training
process, instead of 5000 ones per class as it happens in CIFAR10 case.

The models are trained on the 50.000 training images and evaluated on the
10.000 validation images. The input image size of CIFAR100 is 32-by-32 RGB
pixels.
Indeed, we evaluate the CIFAR100 on four CapsNets architectures: i)Shallow Caps
, ii)DeepCaps, iii)YaoCaps and iv)FMCaps.

4.4.1 ShallowCaps evaluation
According to the standard procedure, following the configuration proposed by
Sabour et al. [19] it seems there is no way to obtain good performances. J.Gu [47]
modified a standard ShallowCaps configuration, adding ResNet18 backbone before
the Primary Capsules for CIFAR10 case.
Following this suggestion in a more complex dataset such as CIFAR100, the accuracy
of ShallowCaps goes to 51 %.

42

CapsNet analysis

4.4.2 DeepCaps evaluation
This is the implementation of the DeepCaps on CIFAR100 dataset. The input layer
has size by 32x32x3. The model is trained for 50 epochs using the batch size equal
to 8; the number of parameters of the model is about 23.3 million. The learning
rate starts from 0.0001 and it is reduced by half after each 20 epochs until the
end. We adopt a batch normalization(BN) after the Conv2D layer. The decoder is
composed by four Deconvolution 2D layers.

Figure 4.15: Implementation of the DeepCaps on CIFAR100

According to the configuration written in Figure 4.15, the average test accuracy
obtained is 59.25% ± 0.24, as shown in Figure 4.16.

Figure 4.16: DeepCaps on CIFAR100: Plots and results

43

CapsNet analysis

4.4.3 YaoCaps evaluation
This is the implementation of the YaoCaps on CIFAR100 dataset. The input layer
has size by 32x32x3. In this case, several attempts have been performed. The best
result is obtained when the model is trained for 350 epochs: the batch size for
training data is equal to 24, while the batch size for testing data is 16. Moreover,
the number of parameters of the model is about 2.8 million and the number of
routing process is 2. The learning rate starts from 0.1 and decreases from 150 to
250 epochs. It is important to point out that in this case there is only the encoder
part.

Figure 4.17: Implementation of the YaoCaps on CIFAR100

According to the configuration written in Figure 4.17, the best test accuracy
obtained is 70.14%, as shown in Figure 4.18. Moreover, in all plots there are two
steps, when the learning rate changes.

Figure 4.18: YaoCaps on CIFAR100: Plots and results

44

CapsNet analysis

4.4.4 FMCaps evaluation
This is the implementation of the FMCaps on CIFAR100 dataset. The input layer
has size by 32x32x3. In this case, several attempts have been performed. The
best result is obtained when the model is trained for 200 epochs: the batch size
is equal to 128. Moreover, the number of parameters of the model is about 0.93
million. The learning rate starts from 0.1 and decreases from 81 to 122 epochs. It
is important to point out that in this case, as in YaoCaps, there is only the encoder
part.

Figure 4.19: Implementation of the FMCaps on CIFAR100

According to the configuration written in Figure 4.19, the best test accuracy
obtained is 69.44%, as shown in Figure 4.20. Moreover, in all plots there is a big
step, when the learning rate changes.

Figure 4.20: FMCaps on CIFAR100: Plots and results

45

CapsNet analysis

4.5 CINIC10
The CINIC10 (Figure 4.21) is the novel dataset which is not so commonly used in
the DL field. In 2018 Darlow [48] proposed this new kind of dataset: it is obtained
through a combination of images from CIFAR10[31] and ImageNet32[49].

Figure 4.21: CINIC-10 Dataset [50]

The CINIC10 contains 270k images splitted into three equal-sized train, valida-
tion, test subsets. In this case the dataset is splitted according to the rule 50/50:
the models are trained on the 90.000 training images and evaluated on the 90.000
validation images. It consists of 10 classes as in the MNIST, SVHN and CIFAR10
cases. The input image size of CINIC10 is 32-by-32 RGB pixels.
Darlow et al.[48] evaluated the CINIC10 dataset on several CNNs architectures.
The challenge can be evaluating the dataset using CapsNet models in order to make
a comparison. Indeed, we evaluate the CINIC10 on two CapsNets architectures:
i)Shallow Caps and ii)DeepCaps.

4.5.1 ShallowCaps evaluation
This is the implementation of the ShallowCaps on CINIC10 dataset. The input
layer has size by 32x32x3. The model is trained for 50 epochs using the batch size
equal to 100; the number of parameters of the model is about 11.7 million. The
learning rate starts from 0.001 and it is reduced by half after each 20 epochs until
the end. The decoder is composed by three FC layers, useful to reconstruct the
images.

According to the configuration written in Figure 4.22, the average test accuracy
obtained is 56.72% ± 1.41, as shown in Figure 4.23.

46

CapsNet analysis

Figure 4.22: Implementation of the ShallowCaps on CINIC10

Figure 4.23: ShallowCaps on CINIC10: Plots and results

4.5.2 DeepCaps evaluation
This is the implementation of the DeepCaps on CINIC10 dataset. The input layer
has size by 32x32x3: it is resized to 64x64x3 that allows us to go down deeper.
The model is trained for 50 epochs using the batch size equal to 64; the number
of parameters of the model is about 13.4 million. The learning rate starts from
0.0001 and it is reduced by half after each 20 epochs until the end. We adopt a
batch normalization(BN) after the Conv2D layer. The decoder is composed by five
Deconvolution 2D layers, useful to reconstruct the images.

According to the configuration written in Figure 4.24, the average test accuracy
obtained is 75.24% ± 0.33, as shown in Figure 4.25.

47

CapsNet analysis

Figure 4.24: Implementation of the DeepCaps on CINIC10

Figure 4.25: DeepCaps on CINIC10: Plots and results

4.6 Remarks
At the end of chapter, it is important to make some considerations. For all cases,
DeepCaps performs better than ShallowCaps. In particular, considering SVHN
and CINIC10 datasets, DeepCaps reaches 96.48% and 75.24%, respectively, while
ShallowCaps gets 94.96% and 56.72%, respectively. In Figure 4.26 there is a
histogram showing these results.

Furthermore, a comparison between CIFAR10 and CIFAR100 is done. Yao Caps
achieves the best results in CIFAR10 (94.70%) and CIFAR100 (70.14%), as shown
in Figure 4.27.

48

CapsNet analysis

94,96

56,72

96,48

75,24

0

20

40

60

80

100

120

SVHN CINIC10

A
cc

u
ra

cy
 (

%
)

SVHN/CINIC10

ShallowCaps DeepCaps

Figure 4.26: Results on SVHN and CINIC10

70,68

51,14

89

59,25

94,7

70,14

93,48

69,44

0

10

20

30

40

50

60

70

80

90

100

CIFAR10 CIFAR100

A
cc

u
ra

cy
 (

%
)

CIFAR10/CIFAR100

ShallowCaps DeepCaps YaoCaps FMCaps

Figure 4.27: Results on CIFAR10 and CIFAR100

49

Chapter 5

High resolution datasets:
MLRS and COVID19

In the previous chapter some simulations were carried out on some known datasets.
Following the same procedure used previously, we evaluate how the CapsNets
behave with some new datasets such as MLRS and COVID19. Up to now, we have
done simulations on datasets that contain images with size 32x32. In the case of
the new datasets the images are of high resolution: for MLRS dataset the image
size is 256x256 while for COVID19 it is 299x299.

Having high resolution datasets involves some implementation problems 1 which
affect the memory usage. They can be summarized in two points:

• Loading process : it depends on the way you write the code to load the
data and the image processing technique applied.

• Convolutional process : it involves operations between tensors which entail
a certain computational cost.

The mechanism involved is the following: we load images and they become an in-
put volume for models (like CNNs and CapsNets). The input image is transformed
into tensors and a classification is performed through the convolution process. If the
image has a large size, the tensors become large and consequently the computational
cost of the convolutional process becomes high: in this way there is not enough
space in the memory. Figure 5.1 shows a graphical summary of the conceptual
flow.

1In all simulations we used only one GPU.

50

High resolution datasets: MLRS and COVID19

Figure 5.1: High resolution issue: there is not enough space in the memory

One solution would be to resize the images to a smaller size: for example from
256x256 to 32x32. Furthermore, by applying the "Trial & Error procedure", the best
model can be found by modifying the CapsNet parameters (number of capsules,
capsule size, first convolutional layers ...) so that the memory can better manage
every computational cost. Figure 5.2 shows an example of image resizing.

Figure 5.2: Solution: resize the image

The previous works on MLRS [51] and on COVID19 [52] were done using CNNs
architectures.

What is the accuracy using CapsNets?

Indeed, we evaluate both the datasets on two CapsNets architectures: i)Shallow
Caps and ii)DeepCaps.

5.1 Remote sensing dataset: MLRS Evaluation
At the end of 2020, Xiaoman Qi et al. [51] introduced the MLRSNet dataset [53]
(Figure 5.3) in order to improve image recognition techniques in remote sensing2.

The MLRS contains 109.161 high-resolution optical satellite images allowing
to capture different perspectives of the Earth. According to the "85/15 rule" we
splitted all the images obtaining 92.786 training images and 16.375 validation
images. Furthermore, the number of classes is 46 and each category contains from
1,500 to 3,000 images.

2Remote sensing is a process that allows to detect and photograph the physical characteristics
of the Earth such as rivers, lakes, mountains through the use of cameras on satellites and airplanes.

51

High resolution datasets: MLRS and COVID19

Figure 5.3: MLRS Dataset [51]

5.1.1 ShallowCaps evaluation
This is the implementation of the ShallowCaps on MLRS dataset. The input layer
has size by 256x256x3: it is resized with shorter size 32x32x3. The model is trained
for 50 epochs using the batch size equal to 32; the number of parameters of the
model is about 23.8 million. The learning rate starts from 0.001 and it is reduced
by half after each 20 epochs until the end. The decoder is composed by three FC
layers, useful to reconstruct the images.

Figure 5.4: Implementation of the ShallowCaps on MLRS

According to the configuration written in Figure 5.4, the average test accuracy
obtained is 72.714% ± 0.30, as shown in Figure 5.5.

52

High resolution datasets: MLRS and COVID19

Figure 5.5: ShallowCaps on MLRS: Plots and results

5.1.2 DeepCaps evaluation

This is the implementation of the DeepCaps on MLRS dataset. The input layer
has size by 256x256x3: it is resized to 32x32x3. The model is trained for 50 epochs
using the batch size equal to 32; the number of parameters of the model is about
14.4 million. The learning rate starts from 0.001 and it is reduced by half after each
20 epochs until the end. We adopt a batch normalization(BN) after the Conv2D
layer. The decoder is composed by four Deconvolution 2D layers, and not five as it
happens in the others configurations.

Figure 5.6: Implementation of the DeepCaps on MLRS

53

High resolution datasets: MLRS and COVID19

According to the configuration written in Figure 5.6, the average test accuracy
obtained is 82.23% ± 1.60, as shown in Figure 5.7.

Figure 5.7: DeepCaps on MLRS: Plots and results

5.2 Medical images dataset: COVID 19
At the end of 2019, a new virus came to change our life and our habits: the
COVID-19. It is an infectious respiratory disease caused by the coronavirus
SARS-CoV-2.[54] The COVID19 is transmitted via droplets of saliva and leads
to serious consequences, such as respiratory failure and in some cases even death.
In this context, the medical diagnosis3 becomes fundamental to recognize the
virus and prevent it from spreading further. The simplest diagnostic method is to
perform an Chest X-ray 4 to see if there is any damage to the lungs. Nowadays,
medical diagnostics based on image classification are spread among diagnostic
techniques: it is useful as supplement medical decision making.

Indeed, researchers have collected a multitude of Chest X-ray images in order
to improve diagnostic techniques through deep learning. At the end of March
2021, Xiao Qi et al.[52] proposed a new dataset, called COVID-Ti Dataset.[55]

3Medical diagnosis is a process that allows us to know which disease are involved to the
person’s symptoms.

4Chest X-ray is a non invasive medical test commonly used in pneumology field: the chest is
flooded with ionizing radiation allowing to create images of the inside the body in order to see
both the chest and related organs such as the heart and lungs.

54

High resolution datasets: MLRS and COVID19

Nowdays, it is the largest dataset of COVID19 disease (Figure 5.8) and it is
constantly updated: many researchers are helping to extend it further.

Figure 5.8: COVID19 Dataset [55]

This big dataset is splitted into two datasets:

• COVID19_CXR: where the Chest X-Ray images are in a grey-scale config-
uration (in Figure 5.9 CXR images)

• COVID19_ENH: where the Chest X-ray images are enhanced using a
image enhancement method 5 based on local phase. In this way the
images are in RGB configuration. (in Figure 5.9 MF images)

Each dataset contains three classes : "Normal", "Pneumonia" and "COVID19".
Indeed, the DL models have to recognize if the image belongs to one of these classes.

Figure 5.9: Chest X-ray images: CXR and enhanced CXR (MF) [52]

According to steps introduced in the previous chapter, we decide to split each
dataset according to the rule 85/15. In this way both COVID19 CXR and COVID19
ENH contain 15.887 training images and 2.804 validation images. Furthermore, the
images are not uniformly distributed: each class has a different number of image
as it can seen in the table above.

Xiao Qi et al. [52] produced some CNNs simulations on the COVID19
dataset: they splitted both COVID19 CXR and COVID19 ENH into "training

5In image processing field, the image enhancement is a technique that improves the quality of
digital images making easier to identify key features.

55

High resolution datasets: MLRS and COVID19

data", "validation data" and "test data", according to a certain "rate rule" that is
different from the rule adopted in the thesis. He demonstrated that the simulations
on the enhanced CXR images (COVID19 ENH) give better results compared to
the classical CXR ones (COVID19 CXR).
The challenge can be evaluating both COVID19 CXR dataset and COVID19 ENH
on CapsNets architectures in order understand if there is the same behaviour as in
the CNNs models.

5.3 COVID 19 CXR

5.3.1 ShallowCaps evaluation

First configuration:

At the beginning we propose a ShallowCaps model applied to COVID19 CXR
following the same procedure as in previous cases.
The input layer has size by 299x299x1: it is resized with shorter size 32x32x1. The
training dataset follows the rule 85/15. The model is trained for 100 epochs using
the batch size equal to 100. The learning rate starts from 0.0001 and it is reduced
by half after each 20 epochs until the end. The decoder is composed by three FC
layers, useful to reconstruct the images.

Figure 5.10: First configuration of the ShallowCaps on COVID19 CXR: model
configuration and results.

56

High resolution datasets: MLRS and COVID19

In Figure 5.10 it is possible to highlight that both training and validation curves
fit data with a similar behavior. In particular, it seems that the curve of validation
capsnet accuracy is slightly higher than the curve of training capsnet accuracy for
all the time simulation. It is a problem because it seems that the training process
is not so good in this way. Indeed, the test accuracy is only 85.66 %: it is less
than expected. According to what is declared in the previous chapter, the "rule of
thumb" should be fulfilled. We need to change the train and the validation curves
improving the performance in order to generalize well the configuration.

How to fulfill the "rule of thumb"?

This issue can be solved through several strategies. A solution can be found
following these two steps:

i. Apply a regularization method adding BN layer after first convolutional layer

ii. Change the splitting rate datasets increasing the test dataset (rule 50/50)

Figure 5.11: Solution for the issue found: add a BN layer after the first Conv2D
and change the splitting rate into 50/50. Note the change in the curves (from plot
"1" to plot "2").

Thanks to the strategy described above, the training images go from 15.887
to 9.345 and the validation images go from 2.804 to 9.346. Furthermore, the test

57

High resolution datasets: MLRS and COVID19

accuracy goes from 85.66 % to 88.11 %. In Figure 5.11 it is appreciable to note
the change in the curves (from plot "1" to plot "2"): after the solution proposed,
the curve of validation capsnet accuracy is less than the curve of training capsnet
accuracy for all the time simulation.

ShallowCaps final configuration:

Going into depth, this is the final implementation of the ShallowCaps on COVID
19 CXR. The configuration of the model is similar as before, with the introduction
of the BN layer and the splitting rate dataset is 50/50. The number of parameters
of the model is about 23.7 million.

Figure 5.12: Implementation of the ShallowCaps on COVID19 CXR : final
configuration

According to the configuration written in Figure 5.12, the average test accuracy
obtained is 88.14% ± 0.07, as shown in Figure 5.13.

Figure 5.13: ShallowCaps on COVID19 CXR: Plots and results

58

High resolution datasets: MLRS and COVID19

5.3.2 DeepCaps evaluation
This is the implementation of the DeepCaps on COVID19 CXR dataset. The input
layer has size by 299x299x1: it is resized to 64x64x1 that allows us to go down
deeper. The model is trained for 100 epochs using the batch size equal to 64; the
number of parameters of the model is about 8.8 million. The learning rate starts
from 0.001 and it is reduced by half after each 20 epochs until the end. We adopt
a batch normalization(BN) after the Conv2D layer. The decoder is composed by
five Deconvolution 2D layers, useful to reconstruct the images.

Figure 5.14: Implementation of the DeepCaps on COVID19 CXR

According to the configuration written in Figure 5.14, the average test accuracy
obtained is 93.34% ± 0.16, as shown in Figure 5.15.

Figure 5.15: DeepCaps on COVID19 CXR: Plots and results

59

High resolution datasets: MLRS and COVID19

5.4 COVID 19 ENH
5.4.1 ShallowCaps evaluation
This is the implementation of the ShallowCaps on COVID 19 ENH dataset. The
input layer has size by 299x299x3: it is resized with shorter size 32x32x3. The
training dataset follows the rule 85/15: it is not changed as in COVID19 CXR.
The model is trained for 100 epochs using the batch size equal to 100; the number
of parameters of the model is about 25.9 million. We adopt a BN after the Conv2D
layer, but the final result is similar also without the BN: it is important to remember
that the BN is fundamental in the COVID19 CXR case. The learning rate starts
from 0.0001 and it is reduced by half after each 20 epochs until the end. The
decoder is composed by three FC layers, useful to reconstruct the images.

Figure 5.16: Implementation of the ShallowCaps on COVID19 ENH

According to the configuration written in Figure 5.16, the average test accuracy
obtained is 93.10% ± 0.11, as shown in Figure 5.17.

Figure 5.17: ShallowCaps on COVID19 ENH: Plots and results

60

High resolution datasets: MLRS and COVID19

5.4.2 DeepCaps evaluation
This is the implementation of the DeepCaps on COVID19 ENH dataset. The input
layer has size by 299x299x3: it is resized to 64x64x3 that allows us to go down
deeper. The model is trained for 100 epochs using the batch size equal to 64; the
number of parameters of the model is about 8.8 million. The learning rate starts
from 0.001 and it is reduced by half after each 20 epochs until the end. We adopt
a batch normalization(BN) after the Conv2D layer. The decoder is composed by
five Deconvolution 2D layers, useful to reconstruct the images.

Figure 5.18: Implementation of the DeepCaps on COVID19 ENH

According to the configuration written in Figure 5.18, the average test accuracy
obtained is 94.01% ± 0.13, as shown in Figure 5.19.

Figure 5.19: DeepCaps on COVID19 ENH: Plots and results

61

High resolution datasets: MLRS and COVID19

5.5 Remarks
Finally, it is possible to make a comparison between the results obtained using
ShallowCaps and DeepCaps and other implementations. In particular, we decided
to run simulations using ResNet50.

Figure 5.20: Remarks

In Figure 5.20, it is evident that the DeepCaps outperforms the SOTA of
ResNet50 for all datasets. Indeed:

• MLRS: the DeepCaps achieves 82.23 % while the accuracy of ResNet50 is
75.22 %;

• COVID19 CXR: the DeepCaps reaches 93.34 % while the accuracy of
ResNet50 is 90.94 %;

• COVID19 ENH: the DeepCaps gets 94.01 % while the accuracy of ResNet50
is 93.54 %.

62

Part III

CapsNet robustness

63

Chapter 6

White Box configuration:
Gradient based attacks

In the Chap. 2 the adversarial examples are introduced. Now, it’s time to go
into depth with these concepts. In particular, there will be an analysis of the
common gradient based attacks in white box setting. After that, it is important to
understand how the adversarial attacks can be crafted in ResNet and CapsNet cases.
Finally, in the CapsNet context there is another way to mislead the models: the
Vote Attack. This chapter will introduce all these arguments, while the simulations
will be performed in the next one.

6.1 Gradient based attacks
In the Chap.2 the taxonomy of adversarial attacks is explained. In this section, we
will discuss the white box case where the adversary has full access to the model:
architecture and weights are known.

In literature there are two types of gradient based methods:

• One step method: it performs one iteration to generate adversarial exam-
ples.

• Iterative steps methods: iteratively apply perturbations multiple times
with a small step size.

6.1.1 Fast Gradient Sign Method (FGSM)
The FGSM is the first example of "one step method" which is introduced by
Goodfellow et al. (2014) [56] . FGSM is a fast method which allows to craft a

64

White Box configuration: Gradient based attacks

perturbation adding a small vector η that takes into account the sign of the gradient
of the loss function with respect to the input x following the formula:

η = Ô · sign(∇xJ(θ, x, y)) (6.1)

where Ô is a small perturbation, x is the input, J is the loss function and θ are
the parameters of the model.

xÍ = x + η = x + Ô · sign(∇xJ(θ, x, y)) (6.2)

It is important to highlight that the generation of adversarial examples depends
on the gradient of the loss function J (used to train the DNNs) computed in the
backpropagation process. In Figure 6.1 there is a graphical representation of the
FGSM attack.

+ .007 × =

Figure 6.1: Fast Gradient Sign Method [56]

6.1.2 Basic Iterative Method (BIM)
Kurakin et. al. (2016) [57] introduced the Basic Iterative Method (BIM) which
extends the FGSM idea through the application of an iterative optimizer: in this
case the small perturbation is not added with a single step, but iteratively applying
multiple steps. After each step, the pixel values of the intermediate results are
clipped by updating the x ’ so that the neighbourhood constraint is satisfied.

xÍ
t+1 = Clip {xÍ

t + α · sign(∇xJ(θ, xÍ
t, y))} (6.3)

6.1.3 Momentum Iterative Method (MIM)
Y. Dong et al. (2018) [58] proposed a Momentum Iterative Method (MIM)
which is a BIM process with the introduction of a momentum optimizer. In practise
BIM has an important drawback: at each iteration, the adversarial example follows
the direction of the sign of the gradient causing poor local maxima. In MIM
the solution is to accelerate the GD algorithms accumulating in a velocity vector
the gradient direction of the cost function for each step. In this way the update

65

White Box configuration: Gradient based attacks

directions are stabilized and the poor local maxima is escaped. The gradient gt+1
is updated by the introduction of a decay factor µ > 0 :

gt+1 = µ · gt + ∇xJ(xÍ
t, y)

ë∇xJ(xÍ
t, y)ë1

(6.4)

If the decay factor is equal to 0, the MIM becomes BIM. The update rule of xt+1 is
similar to the BIM case :

xÍ
t+1 = Clip {xÍ

t + α · sign(gt+1)} (6.5)

6.1.4 Projected Gradient Descent (PGD)
Madry et al. (2017) [59] introduced a Projected Gradient Descent (PGD): it‘s
similar to BIM, but in this case PGD projects the adversarial samples (from each
iteration) into the Ô-ball of x.

xÍ
t+1 = Proj {xÍ

t + α · sign(∇xJ(θ, xÍ
t, y))} (6.6)

6.2 Implementation
Until now, several adversarial attacks are presented.

How can we produce an adversarial attack, in practice?

Various libraries help us to craft an adversarial attack: Cleverhans [60] and
Foolbox [61] are used in this dissertation. 1 For other details it is possible to
consult Cleverhans [63] and Foolbox [64] documentations.
The adversarial attack is created following some steps:

i. Train the model using clean images and save weights about it

ii. Load the model trained

iii. Transform the model, written in Keras or PyTorch, into the model useful for
Cleverhans or Foolbox through a Wrapper. In this way, the toolbox has any
informations about the model. 2

1Nowdays, another toolbox is becoming popular : AdverTorch [62]. It is built on PyTorch
and allows to implement various attacks and defences, in a similar way as in the previous toolboxes.

2In this way, the toolbox (Cleverhans or Foolbox) computes gradients on its own. For further
explanations it is possible to consult Carlini’s articles [65], [66].

66

White Box configuration: Gradient based attacks

iv. Craft adversarial attacks applying the attack functions thanks to the toolboxes
modules

Figure 6.2: Adversarial attacks implementation

Figure 6.2 shows that the input images and the model are fed into the toolbox,
which transforms the model in its language producing an adversarial attack to the
"Model Wrapper". The robust accuracy is computed : it is different from the
accuracy at "clean setting" because it takes into account that the attacks is crafted.
In this context, the attacker decides the input volume, the attack and the model
to be attacked. In this chapter the attack is performed using ResNet, CapsNet
models.

6.2.1 ResNet Attacks
In ResNet setting, the output final layer is attacked as it is shown in Figure 6.3.

Figure 6.3: ResNet Attacks

6.2.2 Caps Attacks
In CapsNet setting, we can split the Caps Attacks into two configurations:

• ShallowCaps Attacks

• DeepCaps Attacks
In both cases, the output capsules are attacked directly following the formula :

δ∗ = arg max H(Z(x + δ), y) = L(softmax(Z(x + δ), y)) (6.7)

67

White Box configuration: Gradient based attacks

6.2.3 Vote Attacks
Jindong Gu et al. [47] proposed a new way to craft adversarial attack in CapsNet
setting, as shown in Figure 6.4.

Figure 6.4: Caps Attacks & Vote Attack [47]

In this case, the attack is done considering the votes before the routing process,
instead of the output capsules.

δ∗ = arg max H(log(g(1
N

NØ
i=1

(fv)i(x + δ))), y) (6.8)

6.3 Remarks
There are other attacks to remark in the literature. For example, three can be
mentioned:

• DeepFool (2016): Moosavi et al. [67] proposed an iterative adversarial attack
where the idea is to find the closest distance from the original input to the
decision boundary [68] of adversarial examples

• Carlini & Wagner (2016): it is a strong adversarial attack [69]

• DDN (2019):it induces misclassification with L2 norm, by decoupling the
direction and the norm of the adversarial perturbation that is added to the
image [70]

68

Chapter 7

Gradient based results

After the introduction of the main concepts in the previous chapter, it’s time to run
several simulations in order to analyze the results obtained. In particular, there
will be an evaluation of CapsNet robustness against adversarial attacks both in
Medical images and Remote sensing datasets. It should be noted that they are
new datasets: it is the first time that these types of simulations are performed on
them. After that, in the CapsNet context, the impact of Vote Attack is performed
on more complex dataset (CIFAR100). 1

7.1 Adversarial attacks on Medical Images
In the context of Medical Images, X. Ma (2020) [71] proposed a deeper under-
standing of the CNNs robustness against adversarial attacks taking into account
Fundoscopy, Chest X-ray and Dermoscopy datasets useful for diagnosing diabetic
retinopathy, lung diseases and skin cancer respectively.
According to the idea declared previously, the CapsNet robustness against ad-
versarial attacks (FGSM, PGD, BIM, MIM) is performed on Medical images for
COVID19 CXR and COVID19 ENH cases. These datasets are different from
the previous ones because they are specific to consider the "COVID19 class" as
lung disease too. For each dataset, the analysis is done in white box untargeted
setting, varying the size of perturbation Ô. It is performed following two steps:

• Compare all adversarial attacks in ResNet50 and DeepCaps cases understand-
ing what is the best attack

1For Medical Images and Remote sensing cases, the implementation is done through Keras &
TensorFlow framework with the Cleverhans toolbox. In CIFAR100, the framework is PyTorch
while the toolbox is Foolbox.

69

Gradient based results

• Compare the robustness of ResNet50 and DeepCaps for each attack

7.1.1 COVID19 CXR
i. ResNet50:
At the beginning PGD,BIM and MIM have the same behavior. PGD becomes
stronger than others when Ô = 0.038, as shown in Figure 7.1 .

ii. DeepCaps:
At the beginning BIM and MIM perform better than PGD, but the situation
changes when Ô = 0.018, as shown in Figure 7.1.

0

10

20

30

40

50

60

70

80

90

100

0 0,005 0,01 0,015 0,02 0,025 0,03 0,035 0,04

R
o

b
u

st
 a

cc
u

ra
cy

 (
%

)

Perturbation size epsilon (ԑ)

ResNet Attacks on COVID19 CXR

FGSM PGD BIM MIM

ԑ = 0.038

0

10

20

30

40

50

60

70

80

90

100

0 0,005 0,01 0,015 0,02 0,025

R
o

b
u

st
 a

cc
u

ra
cy

 (
%

)

Perturbation size epsilon (ԑ)

DeepCaps Attacks on COVID19 CXR

FGSM PGD BIM MIM

ԑ = 0.018

Figure 7.1: ResNet & DeepCaps Attacks on COVID CXR

70

Gradient based results

Ô = 0.08 No Attack FGSM PGD BIM MIM
ResNet50 90.94 % 35.5 % 0.5 % 1 % 1 %
Ô = 0.0203 No Attack FGSM PGD BIM MIM
DeepCaps 93.34 % 23 % 0.5 % 5 % 6.5 %

Table 7.1: COVID19 CXR: Evaluation of ResNet and DeepCaps robustness at
the end of curves, in the neighbourhood of the values where the robust accuracy
goes to zero

In all cases i) and ii) PGD is best attack performed, while FGSM is the worst
one. In particular, in ResNet case the robust accuracy of PGD goes to 0.5%
when Ô = 0.08, while the same happens when Ô = 0.0203 in DeepCaps case, as
shown in Table 7.1.
The second step is to compare the robustness of ResNet and DeepCaps for each
attack.

0

10

20

30

40

50

60

70

80

90

100

0 0,005 0,01 0,015 0,02 0,025 0,03 0,035 0,04

R
o

b
u

st
 a

cc
u

ra
cy

 (
%

)

Perturbation size epsilon (ԑ)

FGSM

DeepCaps ResNet50

ԑ = 0.013

Figure 7.2: FGSM: ResNet & DeepCaps on COVID19 CXR

71

Gradient based results

0

10

20

30

40

50

60

70

80

90

100

0 0,005 0,01 0,015 0,02 0,025 0,03 0,035 0,04

R
o

b
u

st
 a

cc
u

ra
cy

 (
%

)

Perturbation size epsilon (ԑ)

PGD

DeepCaps ResNet50

ԑ = 0.017

Figure 7.3: PGD: ResNet & DeepCaps on COVID19 CXR

0

10

20

30

40

50

60

70

80

90

100

0 0,005 0,01 0,015 0,02 0,025 0,03 0,035 0,04

R
o

b
u

st
 a

cc
u

ra
cy

 (
%

)

Perturbation size epsilon (ԑ)

BIM

DeepCaps ResNet50

ԑ = 0.016

Figure 7.4: BIM: ResNet & DeepCaps on COVID19 CXR

72

Gradient based results

0

10

20

30

40

50

60

70

80

90

100

0 0,005 0,01 0,015 0,02 0,025 0,03 0,035 0,04

R
o

b
u

st
 a

cc
u

ra
cy

 (
%

)

Perturbation size epsilon (ԑ)

MIM

DeepCaps ResNet50

ԑ = 0.018

Figure 7.5: MIM: ResNet & DeepCaps on COVID19 CXR

In all cases the behaviour of curves is similar: for small perturbations Deep-
Caps is the most robust, while for perturbations greater than a certain Ô the
ResNet50 performs better. In particular, it happens: FGSM (Ô > 0.013, Figure
7.2), PGD (Ô > 0.017, Figure 7.3), BIM (Ô > 0.016, Figure 7.4) and MIM (
Ô > 0.018, Figure 7.5).

73

Gradient based results

7.1.2 COVID19 ENH
i. ResNet50:
At the beginning PGD,BIM and MIM have the same behavior. PGD becomes
stronger when Ô = 0.047, as shown in Figure 7.6.

ii. DeepCaps:
BIM performs better than other attacks for all perturbations Ô, as shown in
Figure 7.6.

0

10

20

30

40

50

60

70

80

90

100

0 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08

R
o

b
u

st
 a

cc
u

ra
cy

 (
%

)

Perturbation size epsilon (ԑ)

ResNet Attacks on COVID19 ENH

FGSM PGD BIM MIM

ԑ = 0.047

0

10

20

30

40

50

60

70

80

90

100

0 0,01 0,02 0,03 0,04 0,05

R
o

b
u

st
 a

cc
u

ra
cy

 (
%

)

Perturbation size epsilon (ԑ)

DeepCaps Attacks on COVID19 ENH

FGSM PGD BIM MIM

Figure 7.6: ResNet & DeepCaps Attacks on COVID ENH

74

Gradient based results

Ô = 0.3 No Attack FGSM PGD BIM MIM
ResNet50 93.54 % 26 % 0.5 % 9.5 % 8.5 %

Ô = 0.05 No Attack FGSM PGD BIM MIM
DeepCaps 94.01 % 8 % 1 % 0.5 % 1 %

Table 7.2: COVID19 ENH: Evaluation of ResNet and DeepCaps robustness at
the end of curves, in the neighbourhood of the values where the robust accuracy
goes to zero

In all cases i) and ii) FGSM is the worst attack performed. In ResNet case
PGD is the best attack: the robust accuracy goes to 0.5% when Ô = 0.3. Moreover,
BIM performs better than others in DeepCaps case: the robust accuracy goes
to 0.5% when Ô = 0.05, as shown in Table 7.2 .
The second step is to compare the robustness of ResNet and DeepCaps for each
attack.

0

10

20

30

40

50

60

70

80

90

100

0 0,01 0,02 0,03 0,04 0,05

R
o

b
u

st
 a

cc
u

ra
cy

 (
%

)

Perturbation size epsilon (ԑ)

FGSM

DeepCaps ResNet50

ԑ = 0.015

Figure 7.7: FGSM: ResNet & DeepCaps on COVID19 ENH

75

Gradient based results

0

10

20

30

40

50

60

70

80

90

100

0 0,01 0,02 0,03 0,04 0,05

R
o

b
u

st
 a

cc
u

ra
cy

 (
%

)

Perturbation size epsilon (ԑ)

PGD

DeepCaps ResNet50

ԑ = 0.03

Figure 7.8: PGD: ResNet & DeepCaps on COVID19 ENH

0

10

20

30

40

50

60

70

80

90

100

0 0,01 0,02 0,03 0,04 0,05

R
o

b
u

st
 a

cc
u

ra
cy

 (
%

)

Perturbation size epsilon (ԑ)

BIM

DeepCaps ResNet50

ԑ = 0.025

Figure 7.9: BIM: ResNet & DeepCaps on COVID19 ENH

76

Gradient based results

0

10

20

30

40

50

60

70

80

90

100

0 0,01 0,02 0,03 0,04 0,05

R
o

b
u

st
 a

cc
u

ra
cy

 (
%

)

Perturbation size epsilon (ԑ)

MIM

DeepCaps ResNet50

ԑ = 0.03

Figure 7.10: MIM: ResNet & DeepCaps on COVID19 ENH

In all cases the behaviour of curves is similar: for small perturbations Deep-
Caps is the most robust, while for perturbations greater than a certain Ô the
ResNet50 performs better. In particular it happens: FGSM (Ô > 0.015, Figure
7.7), PGD (Ô > 0.03, Figure 7.8), BIM (Ô > 0.025, Figure 7.9) and MIM (
Ô > 0.03, Figure 7.10).
Comparing COVID19 datasets it is straightforward understand that crafting adver-
sarial attacks on COVID19 ENH is more difficult than COVID19 CXR.

77

Gradient based results

7.2 Adversarial attacks on Remote Sensing
The second dataset to be explored is the MLRS dataset which belongs to the
Remote Sensing field. The approach applied is similar to what it happens in
Medical Images scenarios. The goal is to evaluate the robustness of CapsNet
against adversarial attacks changing the pnorm (l∞ and l2). The first step is to
compare all adversarial attacks in ResNet50 and DeepCaps cases understanding
what is the best attack, while the second step is to compare the robustness of
ResNet50 and DeepCaps for attacks with l∞.

0

10

20

30

40

50

60

70

80

0 0,005 0,01 0,015 0,02 0,025 0,03 0,035 0,04 0,045

R
o

b
u

st
 a

cc
u

ra
cy

 (
%

)

Perturbation size epsilon (ԑ)

ResNet Attacks on MLRS

PGD l∞ PGD l2 BIM l∞ BIM l2 MIM l∞ MIM l2

0

10

20

30

40

50

60

70

80

90

0 0,005 0,01 0,015 0,02 0,025 0,03 0,035 0,04

R
o

b
u

st
 a

cc
u

ra
cy

 (
%

)

Perturbation size epsilon (ԑ)

DeepCaps Attacks on MLRS

PGD l∞ PGD l2 BIM l∞ BIM l2 MIM l∞ MIM l2

Figure 7.11: ResNet & DeepCaps Attacks on MLRS

78

Gradient based results

Figure 7.11 shows that in all cases adversarial attacks with l∞ behave better
than those with l2: the l∞ allows the attack to be stronger. Table 7.3 helps us to
make some reflections considering two situations in a random way: for example,
ResNet50 when Ô = 0.033 and DeepCaps when Ô = 0.03. The robust accuracy
is evaluated in both cases.
In ResNet50 the results demonstrate that PGD l∞ (2.5 %), BIM l∞ (0.5 %) and
MIM l∞ (1 %) are stronger than PGD l2 (67 %), BIM l2 (65.5 %) and MIM l2
(65.5 %) respectively.
Moreover, in the case of DeepCaps there is the same scenario: PGD l∞ (2.5 %),
BIM l∞ (0.5 %) and MIM l∞ (1.5 %) are stronger than PGD l2 (78.5 %), BIM l2
(77.5 %) and MIM l2 (77.5 %) respectively.

PGD l∞ PGD l2 BIM l∞ BIM l2 MIM l∞ MIM l2
ResNet50
Ô = 0.033 2,5 % 67 % 0,5 % 65,5 % 1 % 65,5 %
Ô = 0.035 1,5 % 66,5 % 0,0 % 65 % 0,5 % 65,5 %
Ô = 0.041 0,5 % 65,5 % 0,0 % 63 % 0,0 % 64 %
DeepCaps

Ô = 0.03 2,5 % 78,5 % 0,5 % 77,5 % 1,5 % 77,5 %
Ô = 0.034 1 % 77,5 % 0,5 % 77 % 0,5 % 77 %
Ô = 0.035 0,5 % 77,5 % 0,5 % 77 % 0,5 % 77 %

Table 7.3: ResNet and DeepCaps evaluation against adversarial attacks (l∞ and
l2) on MLRS dataset

Furthermore, BIM l∞ is best attack performed in all cases. In particular in
ResNet case the robust accuracy of BIM l∞ goes to 0.5% when Ô = 0.03 , while
the same happens when Ô = 0.033 in DeepCaps case.
The second step is to compare the robustness of ResNet and DeepCaps for each
attack with l∞ norm.

79

Gradient based results

0

10

20

30

40

50

60

70

80

90

0 0,01 0,02 0,03 0,04 0,05

R
o

b
u

st
 a

cc
u

ra
cy

 (
%

)

Perturbation size epsilon (ԑ)

PGD l∞

DeepCaps ResNet50

ԑ = 0.03

Figure 7.12: PGD l∞ on MLRS

0

10

20

30

40

50

60

70

80

90

0 0,01 0,02 0,03 0,04 0,05

R
o

b
u

st
 a

cc
u

ra
cy

 (
%

)

Perturbation size epsilon (ԑ)

BIM l∞

DeepCaps ResNet50

ԑ = 0.02

Figure 7.13: BIM l∞ on MLRS

80

Gradient based results

0

10

20

30

40

50

60

70

80

90

0 0,01 0,02 0,03 0,04 0,05

R
o

b
u

st
 a

cc
u

ra
cy

 (
%

)

Perturbation size epsilon (ԑ)

MIM l∞

DeepCaps ResNet50

ԑ = 0.025

Figure 7.14: MIM l∞ on MLRS

In all cases the behaviour of curves is similar: for small perturbations
DeepCaps is the most robust, while for perturbations greater than a certain
Ô the ResNet50 performs better. In particular, it happens: PGD l∞ (Ô > 0.03,
Figure 7.12), BIM l∞ (Ô > 0.02, Figure 7.13) and MIM l∞(Ô > 0.025, Figure
7.14).

7.3 Impact of the Vote Attack on CIFAR100
In a CapsNet configuration, another way to inject attacks is done through Vote
Attack, which directly attacks the votes instead of output capsules. Jindong Gu
et al. [47] proposed the Vote Attack against popular datasets such as SVHN and
CIFAR10. In this sense, the impact of the Vote Attack has been evaluated only on
simple datasets until now.

Does the Vote Attack also stronger than Caps Attack in more complex datasets?

The way to answer this question is to analyze the robustness of CapsNet against
adversarial attacks on a big dataset like CIFAR100. In particular, the robustness
is evaluated taking into accountResNet18 and ShallowCaps models. Adversarial
attacks are performed in three ways: ResNet attacks, ShallowCaps attacks and

81

Gradient based results

Vote Attacks. The accuracy curves are crafted by FGSM, PGD and BIM with the
increasing perturbation size Ô.

0

10

20

30

40

50

60

70

0 0,005 0,01 0,015 0,02 0,025 0,03 0,035

R
o

b
u

st
 a

cc
u

ra
cy

 (
%

)

Perturbation size epsilon (ԑ)

ResNet Attacks on CIFAR100

FGSM PGD BIM

ԑ = 0.005

0

10

20

30

40

50

60

0 0,005 0,01 0,015 0,02 0,025 0,03 0,035

R
o

b
u

st
 a

cc
u

ra
cy

 (
%

)

Perturbation size epsilon (ԑ)

ShallowCaps Attacks on CIFAR100

FGSM PGD BIM

ԑ = 0.005

0

10

20

30

40

50

60

0 0,005 0,01 0,015 0,02 0,025 0,03 0,035

R
o

b
u

st
 a

cc
u

ra
cy

 (
%

)

Perturbation size epsilon (ԑ)

Vote Attacks on CIFAR100

FGSM PGD BIM

ԑ = 0.005

Figure 7.15: ResNet Attacks, ShallowCaps Attacks & Vote Attacks on CIFAR100

82

Gradient based results

In Figure 7.15, at the beginning the behaviour of curves is similar, while after
Ô = 0.005 FGSM changes the slope by flattening, while PGD and BIM continue
to decrease with the same trend. It can be seen that FGSM is not powerful
compared to PGD and BIM.
Secondly, the robustness of ResNet and ShallowCaps for each attack is evaluated.

0

10

20

30

40

50

60

70

0 0,005 0,01 0,015 0,02 0,025 0,03 0,035

R
o

b
u

st
 a

cc
u

ra
cy

 (
%

)

Perturbation size epsilon (ԑ)

FGSM

ResNet18 ShallowCaps Vote Attacks

Figure 7.16: FGSM Attacks on CIFAR100

0

10

20

30

40

50

60

70

0 0,005 0,01 0,015 0,02 0,025 0,03 0,035

R
o

b
u

st
 a

cc
u

ra
cy

 (
%

)

Perturbation size epsilon (ԑ)

PGD

ResNet18 ShallowCaps Vote Attacks

Figure 7.17: PGD Attacks on CIFAR100

83

Gradient based results

0

10

20

30

40

50

60

70

0 0,005 0,01 0,015 0,02 0,025 0,03 0,035

R
o

b
u

st
 a

cc
u

ra
cy

 (
%

)

Perturbation size epsilon (ԑ)

BIM

ResNet18 ShallowCaps Vote Attacks

Figure 7.18: BIM Attacks on CIFAR100

Ô = 0.04 No Attack FGSM PGD BIM
ResNet18 59.05 % 8.59 % 0.13 % 0.26 %

ShallowCaps 51.14 % 11.59 % 0.19 % 0.63 %
Vote 51.14 % 11.27 % 0.17 % 0.5 %

Table 7.4: White box attacks on CIFAR100: attacks for Ô = 0.04

The accuracy curves represent the behavior of the models for each attack.
Following the trends in the Figures (7.16, 7.17 and 7.18) and the results of the
Table 7.4, two considerations can be obtained in CIFAR100:

• ShallowCaps is more robust than ResNet18 because ShallowCaps resists attacks
better

• Vote Attack is stronger than ShallowCaps Attack because robust accuracy
values due to Vote Attack are always lower than those caused by Shallow Caps.
For example, when Ô = 0.04, in Vote case the robust accuracies of FGSM
(11.27 %), PGD (0.17 %) and BIM (0.5 %) are less than FGSM (11.59 %),
PGD (0.19 %) and BIM (0.63 %) in ShallowCaps.

In this way, it is possible to declare that the Vote Attack continue to be stronger
than Caps Attack also in more complex dataset like CIFAR100.

84

Chapter 8

Black Box configuration:
Pattern Attack

In the previous chapters many topics have been covered: the evaluation of the
performances and the robustness of CapsNet models against adversarial attacks is
performed in different fields, from the common benchmarks datasets to the Medical
Images and Remote sensing datasets. In this sense, the first aim of the thesis is
fulfilled.
This chapter focus on the second goal of this dissertation: design a novel method-
ology that can mislead the CNNs and CapsNet architectures.

8.1 Motivations
The design of the novel attack derives from some considerations that will now
be revealed. First of all, our attention went to the concept of one pixel attack
proposed by N. Narodytska et al. (2016) [72] and Sun et al. (2019) [73], using
different algorithms.

In the black box setting, several prior works are done until now. Kurakin et al.
(2016) [57] proposed a method that, taking the images from a cell-phone camera, it
is possible to craft adversarial examples in the physical world. Moreover, taking
into account the high-saliency and low-distortion path, Gragnaniello et al. (2020)
[74] introduced an attack that improves the perceptual quality of the adversarial
image.

Secondly, several attacks were crafted through the introduction of a new concept:
the adversarial patch. Brown et al. (2017) [75] generated an image indepen-
dent patch to be placed anywhere inside the original image in order to mislead
the models, as shown in Figure 8.1.

85

Black Box configuration: Pattern Attack

Figure 8.1: Adversarial Patch creates a misclassification: at the beginning the
classifier output belongs to class "banana", while after the introduction of a sticker
the class changes to "toaster". [75]

Previously, several publications were done: Eykholt et al. (2017) [76] added
stickers to road signs in Traffic sign recognition field, while Sharif et al. (2016)
[77] added glasses to faces in Face recognition context, as can be seen in Figure
8.2.

Figure 8.2: At left, there are stickers on road signs [76], while glasses are on face
at right [77].

Thirdly, another consideration will be done. In the real world there are several
situations where DL models fool the correct classification due to atmospheric
phenomena. Zhai et al. (2020) [78] simulated various rainy situations using a
rain generation process gradient based.

86

Black Box configuration: Pattern Attack

8.2 Pattern Configuration
Taking into account all previous observations, a novel methodology is proposed:
assuming that the camera lens is dirty due atmospheric conditions (such as rain,
snow and hail), it is possible to craft a perturbation changing the pixels of the input
following several patterns. Such attack, called Pattern Attack, is performed in a
black box setting:

• the adversary has no informations about network

• only information available is the probability labels

• the attacker can query the network and observe the outcome.

The Pattern Attack is performed through the introduction of drops of water
and snowflakes (Figure 8.3).

Figure 8.3: Drops of water [79] & Snowflakes [80]

In reality, a drop of water has a spherical shape while a snowflake has a hexagonal
one. For simplicity, a drop or a snowflake can be modelled as a pixel: a small
square of the image which has h · l pixels (h = height , l = length).
In this sense, the Pattern Attack extends the formulation of one pixel attack
which is useful for this purpose. Sun et al. (2019) [73] defined the perturbation of
a pixel as a tuple of 5 elements (x, y, r, g, b) where:

• (x, y) are the coordinates of the pixel to be modified

• (r, g, b) is the color of the pixel in RGB configuration

pixeli = (xi, yi, ri, gi, bi) (8.1)

In practice, the novel methodology attacks the network , not only with one pixel,
but injecting a specific pattern following the appropriate algorithm. This action
is possible by adding multiple perturbations that imply more pixels to modify
in the input volume: it is a concatenation of multiple tuples. Figure 8.4 gives a
graphical representation of the pixel perturbations.

87

Black Box configuration: Pattern Attack

Figure 8.4: Pixel perturbations: a pixel is simply a perturbation of a tuple, while
multiple tuples are needed for more pixels

The color of the pixel is chosen according to the situation: in a rain sce-
nario color = [208, 209, 214] (#D0D1D6), while for snow and hail scenarios
color = [249, 242, 242] (#F9F2F2).1

How a pattern attack can be generated?

The goal is to create a specific pattern adding several drops of water or
snowflakes. Using the switch command it is possible to select the attack desired.
Pattern Attack (Figure 8.5) is splitted into three attacks: rain attack, snow
attack and hail attack. After crafting attack, the adversarial image goes into
the black box in a way that there is a comparison between the prior confidence
in a clean situation and the new confidence in a adversarial situation in order
to evaluate the attack success Rate. ASR measures the success rate of attack
taking into account how many times the adversarial attacks mislead the network.

Pattern Attack is applied to CIFAR10 which has 10 classes: each image
has size 32x32x3. Moreover, the novel methodology is evaluated on three models:
LeNet, ResNet and CapsNet. The code is written on Keras & TensorFlow
framework.

1The # symbol followed by an alphanumeric code represents HTML color codes: in this way
each type of color is labeled.

88

Black Box configuration: Pattern Attack

Figure 8.5: Pattern Attack architecture

89

Black Box configuration: Pattern Attack

8.2.1 Rain Attack
Rain attack is the first attack that is based on several drops of water. In the
real world the camera lens can be soiled by rain: water droplets make up different
patterns, as in Figure 8.6.

Figure 8.6: Several patterns of drop of waters coming from real environment:
i)agglomerate of drops [81], ii)water drop patch [82] and iii) drop lines [83]

The Agglomerate Pattern can be modelled as 5 pixels put together following
the representation in Figure 8.7.

Figure 8.7: Agglomerate pattern

90

Black Box configuration: Pattern Attack

The Patch Pattern (Figure 8.8) is divided into three cases:

a. Vertical patch: 2 pixels are arranged sequentially along x

b. Diagonal patch: 2 pixels are arranged along the diagonal

c. Line pattern: 4 or more pixel are arranged sequentially along x

Figure 8.8: Patch pattern

In rainy conditions, the water drops are mainly concentrated in the background
of the image. The creation of a V rule allows to simulate this effect.

Figure 8.9: Rain Attack

The idea is to concentrate the drops by combining agglomerate patterns and
path patterns following the shape of the V, as shown in Figure 8.9.

91

Black Box configuration: Pattern Attack

The results in Table 8.1 demonstrate that Rain Attack works well for LeNet
(ASR = 72%) and ResNet (ASR = 67%), while in CapsNet is not so efficient
(ASR = 36%).

CIFAR10 LeNet ResNet CapsNet
ASR 72 % 67 % 36 %

Table 8.1: Attack Success Rate of Rain Attack

8.2.2 Snow Attack

The second attack is the Snow Attack (Figure 8.10): it is based on dividing the
image into three parts: I,II and III. In parts I and III, the pattern is the same
where there is a hole between pixels, while in the central part (II) there are more
pixels.

Figure 8.10: Snow Attack

92

Black Box configuration: Pattern Attack

The results are similar to the rain attack : snow attack works well for LeNet
(ASR = 77%) and ResNet (ASR = 75,5%), while in CapsNet is not so efficient
(ASR = 28%), as shown in Table 8.2.

CIFAR10 LeNet ResNet CapsNet
ASR 77 % 75.5 % 28 %

Table 8.2: Attack Success Rate of Snow Attack

8.2.3 Hail Attack
The Hail Attack is a combination of pixels adding several hail patterns which
are agglomerates of 8 pixels, as shown in Figure 8.11.

Figure 8.11: Hail Attack

In this case the Hail Attack allows to have the following results (Table 8.3):
LeNet (ASR = 82,5%) , ResNet (ASR = 78,5%) and CapsNet (ASR = 63%).
It is possible to conclude that the Hail Attack performs very well in all models.

93

Black Box configuration: Pattern Attack

CIFAR10 LeNet ResNet CapsNet
ASR 82.5 % 78.5 % 63 %

Table 8.3: Attack Success Rate of Hail Attack

8.3 Remarks
In conclusion, taking into account the results contained in Figure 8.12, it is necessary
to make two considerations:

• All types of Pattern Attack work well both in LeNet and ResNet models.
(ASR > 65%)

• Hail Attack is the best attack : it performs better than other attacks in all
cases

72

67

36

82,5

78,5

63

77 75,5

28

0

10

20

30

40

50

60

70

80

90

LeNet ResNet CapsNet

A
SR

 (
%

)

Remarks

Rain Attack Hail Attack Snow Attack

Figure 8.12: ASR of Pattern Attack

In Figure 8.13 examples of misclassification are shown for each attack: it is
possible to see that the model was deceived, the predicted class is different from
the real one.

94

Black Box configuration: Pattern Attack

Figure 8.13: Examples of misclassification for all attacks

95

Chapter 9

Conclusion and Future
works

In recent years, adversarial attacks have become a fundamental topic in the field
of Convolutional Neural Networks and in Capsule Networks. In this thesis, after
evaluating the performance of CapsNets on various datasets, ample space was given
to the robustness of CNNs and CapsNets against adversarial attacks on Medical
Images and Remote sensing datasets. In particular, attention must be paid to
medical applications, where a misclassification can mean a wrong diagnosis instead
of a correct one. Later, in addition to the impact of the Vote Attack on CapsNet, a
new methodology was formulated that made it possible to simulate real situations
in conditions of atmospheric phenomena : the Pattern Attack has achieved excellent
results.
The purpose of this work is to make an important contribution to the field of
security. In Deep Learning context, CNNs and CapsNets will still be used in many
tasks and it is necessary to try to improve their performances and robustness
through new kinds of defense in order to find countermeasures against several
adversarial attacks that are created every day.
The steps of future research may be different: for the first part of analysis, the
CapsNet models will be applied to more complex datasets such as ImageNet or
ObjectNet trying to obtain good classification performances. Moreover, in the
context of Pattern Attack, the future developments consist of applying the attack
on other higher resolution datasets and on other CapsNet models such as DeepCaps,
YaoCaps and FMCaps.

96

Bibliography

[1] Lu Sun, Mingtian Tan, and Zhe Zhou. «A survey of practical adversarial
example attacks». In: Cybersecurity (2018) (cit. on p. 3).

[2] Xiaoyong Yuan, Pan He, Qile Zhu, and Xiaolin Li. Adversarial Examples:
Attacks and Defenses for Deep Learning. 2018. arXiv: 1712.07107v3 [cs.LG]
(cit. on p. 3).

[3] Kui Ren, Tianhang Zheng, Zhan Qin, and Xue Liu. Adversarial Attacks and
Defenses in Deep Learning. 2020. doi: https://doi.org/10.1016/j.eng.
2019.12.012 (cit. on p. 3).

[4] Alberto Marchisio, Giorgio Nanfa, Faiq Khalid, Muhammad Abdullah Hanif,
Maurizio Martina, and Muhammad Shafique. CapsAttacks: Robust and Imper-
ceptible Adversarial Attacks on Capsule Networks. 2019. arXiv: 1901.09878v2
[cs.LG] (cit. on p. 3).

[5] Felix Michels, Tobias Uelwer, Eric Upschulte, and Stefan Harmeling. On
the Vulnerability of Capsule Networks to Adversarial Attacks. 2019. arXiv:
1906.03612v1 [cs.LG] (cit. on p. 3).

[6] Yao Qin, Nicholas Frosst, Sara Sabour, Colin Raffel, Garrison Cottrell, and
Geoffrey Hinton. Detecting and Diagnosing Adversarial Images with Class-
Conditional Capsule Reconstructions. 2020. arXiv: 1907.02957v2 [cs.LG]
(cit. on p. 3).

[7] Yao Qin, Nicholas Frosst, Colin Raffel, Garrison Cottrell, and Geoffrey Hinton.
Deflecting Adversarial Attacks. 2020. arXiv: 2002.07405v1 [cs.LG] (cit. on
p. 3).

[8] Antonio De Marco. «Capsule Networks Robustness against Adversarial At-
tacks and Affine Transformations». In: Politecnico di Torino, Master Thesis
(2020) (cit. on p. 3).

[9] Stanley Cohen. «Chapter 2 - The basics of machine learning: strategies
and techniques». In: Artificial Intelligence and Deep Learning in Pathology.
Elsevier, 2021, pp. 13–40. doi: https://doi.org/10.1016/B978-0-323-
67538-3.00002-6 (cit. on p. 6).

97

https://arxiv.org/abs/1712.07107v3
https://doi.org/https://doi.org/10.1016/j.eng.2019.12.012
https://doi.org/https://doi.org/10.1016/j.eng.2019.12.012
https://arxiv.org/abs/1901.09878v2
https://arxiv.org/abs/1901.09878v2
https://arxiv.org/abs/1906.03612v1
https://arxiv.org/abs/1907.02957v2
https://arxiv.org/abs/2002.07405v1
https://doi.org/https://doi.org/10.1016/B978-0-323-67538-3.00002-6
https://doi.org/https://doi.org/10.1016/B978-0-323-67538-3.00002-6

BIBLIOGRAPHY

[10] F. Rosenblatt. The perceptron - A perceiving and recognizing automaton. Tech.
rep. Ithaca, New York: Cornell Aeronautical Laboratory, Jan. 1957 (cit. on
p. 7).

[11] Neural Networks Part 1: Setting up the Architecture. url: https://cs231n.
github.io/neural-networks-1/. (accessed: 1.06.2021) (cit. on p. 7).

[12] Mohamed Elgendy. Deep Learning for Vision Systems. Manning Publications,
2020 (cit. on pp. 8, 10–12, 14, 19, 22).

[13] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Opti-
mization. 2017. arXiv: 1412.6980v9 [cs.LG] (cit. on p. 11).

[14] Francois Chollet. Deep Learning with Python. Manning Publications, 2018
(cit. on p. 13).

[15] Convolutional Neural Networks (CNNs / ConvNets). url: https://cs23
1n.github.io/convolutional-networks/. (accessed: 11.06.2021) (cit. on
p. 15).

[16] The Deep Learning(.ai) Dictionary. url: https://towardsdatascience.com
/the-deep-learning-ai-dictionary-ade421df39e4. (accessed: 1.06.2021)
(cit. on p. 15).

[17] Geoffrey Hinton talk: What is wrong with convolutional neural nets ? url:
https://www.youtube.com/watch?v=rTawFwUvnLE&t=130s. (accessed:
10.06.2021) (cit. on pp. 16, 21).

[18] Geoffrey Hinton, Alex Krizhevsky, and Sida Wang. «Transforming Auto-
encoders». In: (2011) (cit. on pp. 16, 21, 23).

[19] Sara Sabour, Nicholas Frosst, and Geoffrey Hinton. «Dynamic Routing Be-
tween Capsules». In: (July 2017). arXiv: 1710.09829v2 (cit. on pp. 16, 21,
24, 26, 27, 42).

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. «Deep Residual
Learning for Image Recognition». In: (Oct. 2015). arXiv: 1512.03385v1
(cit. on p. 16).

[21] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru
Erhan, Ian Goodfellow, and Rob Fergus. «Intriguing properties of neural
networks». In: (19 Feb 2014). arXiv: 1312.6199v4 (cit. on p. 17).

[22] Claudio Gambella, Bissan Ghaddar, and Joe Naoum-Sawaya. «Optimization
problems for machine learning: A survey». In: (Sept. 2020). doi: https:
//doi.org/10.1016/j.ejor.2020.08.045 (cit. on p. 17).

[23] Michael Nielsen. Neural Networks and Deep Learning. Determination Press,
2015 (cit. on p. 19).

98

https://cs231n.github.io/neural-networks-1/
https://cs231n.github.io/neural-networks-1/
https://arxiv.org/abs/1412.6980v9
https://cs231n.github.io/convolutional-networks/
https://cs231n.github.io/convolutional-networks/
https://towardsdatascience.com/the-deep-learning-ai-dictionary-ade421df39e4
https://towardsdatascience.com/the-deep-learning-ai-dictionary-ade421df39e4
https://www.youtube.com/watch?v=rTawFwUvnLE&t=130s
https://arxiv.org/abs/1710.09829v2
https://arxiv.org/abs/1512.03385v1
https://arxiv.org/abs/1312.6199v4
https://doi.org/https://doi.org/10.1016/j.ejor.2020.08.045
https://doi.org/https://doi.org/10.1016/j.ejor.2020.08.045

BIBLIOGRAPHY

[24] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, Nov 2016 (cit. on p. 19).

[25] Geoffrey E. Hinton, S. Sabour, and Nicholas Frosst. «Matrix capsules with
EM routing». In: ICLR. 2018 (cit. on pp. 21, 24, 30).

[26] Understanding Hinton’s Capsule Networks. url: https://medium.com/ai%
C2%B3-theory-practice-business/understanding-hintons-capsule-
networks-part-i-intuition-b4b559d1159b. (accessed: 9.06.2021) (cit. on
pp. 22, 23).

[27] Sara Sabour : Introduction to Capsules. url: https://youtu.be/zRg3IuxaJ
6I. (accessed: 8.06.2021) (cit. on pp. 23, 24).

[28] Aurélien Géron: Capsule Networks (CapsNets) – Tutorial. url: https://
youtu.be/pPN8d0E3900. (accessed: 7.06.2021) (cit. on p. 24).

[29] THE MNIST DATABASE of handwritten digits. url: http://yann.lecun.
com/exdb/mnist/. (accessed: 7.06.2021) (cit. on pp. 24, 26, 34).

[30] Jathushan Rajasegaran, Vinoj Jayasundara, Sandaru Jayasekara, Hirunima
Jayasekara, Suranga Seneviratne, and Ranga Rodrigo. «DeepCaps: Going
Deeper with Capsule Networks». In: (21 Apr 2019). arXiv: 1904.09546v1
(cit. on pp. 27–29).

[31] The CIFAR10-100 dataset. url: https://www.cs.toronto.edu/~kriz/
cifar.html. (accessed: 7.06.2021) (cit. on pp. 27, 38, 46).

[32] The Street View House Numbers (SVHN) Dataset. url: http://ufldl.
stanford.edu/housenumbers/. (accessed: 7.06.2021) (cit. on pp. 27, 35).

[33] Han Xiao, Kashif Rasul, and Roland Vollgraf. «Fashion-MNIST: a Novel
Image Dataset for Benchmarking Machine Learning Algorithms». In: CoRR
abs/1708.07747 (2017). arXiv: 1708.07747. url: http://arxiv.org/abs/
1708.07747 (cit. on p. 27).

[34] Yao-Hung Hubert Tsai, Nitish Srivastava, Hanlin Goh, and Ruslan Salakhut-
dinov. Capsules with Inverted Dot-Product Attention Routing. 2020. arXiv:
2002.04764v2 [cs.LG] (cit. on pp. 30, 31).

[35] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer Normaliza-
tion. 2016. arXiv: 1607.06450v1 [stat.ML] (cit. on p. 30).

[36] Lei Zhao, Xiaohui Wang, and Lei Huang. An Efficient Agreement Mechanism
in CapsNets By Pairwise Product. 2020. arXiv: 2004.00272v1 [cs.CV] (cit.
on pp. 31, 32).

[37] Steffen Rendle. «Factorization Machines». In: 2010 IEEE International Con-
ference on Data Mining. 2010. doi: 10.1109/ICDM.2010.127 (cit. on p. 31).

99

https://medium.com/ai%C2%B3-theory-practice-business/understanding-hintons-capsule-networks-part-i-intuition-b4b559d1159b
https://medium.com/ai%C2%B3-theory-practice-business/understanding-hintons-capsule-networks-part-i-intuition-b4b559d1159b
https://medium.com/ai%C2%B3-theory-practice-business/understanding-hintons-capsule-networks-part-i-intuition-b4b559d1159b
https://youtu.be/zRg3IuxaJ6I
https://youtu.be/zRg3IuxaJ6I
https://youtu.be/pPN8d0E3900
https://youtu.be/pPN8d0E3900
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://arxiv.org/abs/1904.09546v1
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
http://ufldl.stanford.edu/housenumbers/
http://ufldl.stanford.edu/housenumbers/
https://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1708.07747
https://arxiv.org/abs/2002.04764v2
https://arxiv.org/abs/1607.06450v1
https://arxiv.org/abs/2004.00272v1
https://doi.org/10.1109/ICDM.2010.127

BIBLIOGRAPHY

[38] Karim Ahmed and L. Torresani. «STAR-Caps: Capsule Networks with Straight-
Through Attentive Routing». In: NeurIPS. 2019 (cit. on p. 32).

[39] Aryan Mobiny, Pietro Antonio Cicalese, and Hien Van Nguyen. Trans-Caps:
Transformer Capsule Networks with Self-attention Routing. 2021. url: https:
//openreview.net/forum?id=BUPIRa1D2J (cit. on p. 32).

[40] Fabio De Sousa Ribeiro, Georgios Leontidis, and Stefanos D. Kollias. «Capsule
Routing via Variational Bayes». In: CoRR abs/1905.11455 (2019). arXiv:
1905.11455. url: http://arxiv.org/abs/1905.11455 (cit. on p. 32).

[41] Vittorio Mazzia, Francesco Salvetti, and Marcello Chiaberge. «Efficient-
CapsNet: Capsule Network with Self-Attention Routing». In: CoRR abs/2101.12491
(2021). arXiv: 2101.12491. url: https://arxiv.org/abs/2101.12491 (cit.
on p. 32).

[42] Keras Documentation. url: https://keras.io/api/. (accessed: 04.05.2021)
(cit. on p. 34).

[43] TensorFlow Documentation. url: https://www.tensorflow.org/api_docs.
(accessed: 06.05.2021) (cit. on p. 34).

[44] PyTorch Documentation. url: https://pytorch.org/docs/stable/index.
html. (accessed: 07.05.2021) (cit. on p. 34).

[45] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and
Andrew Y. Ng. «Reading Digits in Natural Images with Unsupervised Feature
Learning». In: (2011) (cit. on p. 34).

[46] Alex Krizhevsky. «Learning Multiple Layers of Features from Tiny Images».
In: (2009) (cit. on pp. 37, 42).

[47] Jindong Gu, Baoyuan Wu, and Volker Tresp. «Effective and Efficient Vote
Attack on Capsule Networks». In: International Conference on Learning
Representations. arXiv: 2102.10055v1 (cit. on pp. 42, 68, 81).

[48] Luke N. Darlow, Elliot J. Crowley, Antreas Antoniou, and Amos J. Storkey.
«CINIC-10 is not ImageNet or CIFAR-10». In: (Feb. 2018). arXiv: 1810.
03505v1 (cit. on p. 46).

[49] Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. «A Downsampled
variant of IMAGENET as alternative to the CIFAR Datasets». In: (23 Aug
2017). arXiv: 1707.08819v3 (cit. on p. 46).

[50] The CINIC-10 dataset. url: https://www.kaggle.com/mengcius/cinic10.
(accessed: 7.06.2021) (cit. on p. 46).

[51] Xiaoman Qi et al. «MLRSNet: A Multi-label High Spatial Resolution Remote
Sensing Dataset for Semantic Scene Understanding». In: (Oct. 2020). arXiv:
2010.00243v1 (cit. on pp. 51, 52).

100

https://openreview.net/forum?id=BUPIRa1D2J
https://openreview.net/forum?id=BUPIRa1D2J
https://arxiv.org/abs/1905.11455
http://arxiv.org/abs/1905.11455
https://arxiv.org/abs/2101.12491
https://arxiv.org/abs/2101.12491
https://keras.io/api/
https://www.tensorflow.org/api_docs
https://pytorch.org/docs/stable/index.html
https://pytorch.org/docs/stable/index.html
https://arxiv.org/abs/2102.10055v1
https://arxiv.org/abs/1810.03505v1
https://arxiv.org/abs/1810.03505v1
https://arxiv.org/abs/1707.08819v3
https://www.kaggle.com/mengcius/cinic10
https://arxiv.org/abs/2010.00243v1

BIBLIOGRAPHY

[52] Xiao Qi, Lloyd Brown, David Foran, John Nosher, and Ilker Hacihaliloglu.
«Chest X-ray image phase features for improved diagnosis of COVID-19 using
convolutional neural network». In: (Jan. 2021). doi: https://doi.org/10.
1007/s11548-020-02305-w (cit. on pp. 51, 54, 55).

[53] MLRS Dataset. url: https://data.mendeley.com/datasets/7j9bv9vwsx/
2. (accessed: 03.05.2021) (cit. on p. 51).

[54] Coronavirus. url: https://www.who.int/health-topics/coronavirus#
tab=tab_1. (accessed: 5.05.2021) (cit. on p. 54).

[55] COVID-Ti Dataset: the largest COVID-19 Dataset (CXR and Enhanced CXR).
url: https://www.kaggle.com/endiqq/largest- covid19- dataset?
select=CXR. (accessed: 20.03.2021) (cit. on pp. 54, 55).

[56] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and
Harnessing Adversarial Examples. 2015. arXiv: 1412.6572v3 [stat.ML] (cit.
on pp. 64, 65).

[57] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. «Adversarial examples
in the physical world». In: CoRR (2017). arXiv: 1607.02533v4 (cit. on pp. 65,
85).

[58] Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jianguo Li, Xiaolin
Hu, and Jun Zhu. «Boosting Adversarial Attacks with Momentum». In: CoRR
(2018). arXiv: 1710.06081v3 (cit. on p. 65).

[59] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras,
and Adrian Vladu. Towards Deep Learning Models Resistant to Adversarial
Attacks. 2019. arXiv: 1706.06083v4 [stat.ML] (cit. on p. 66).

[60] Nicolas Papernot et al. Technical Report on the CleverHans v2.1.0 Adversarial
Examples Library. 2018. arXiv: 1610.00768v6 [cs.LG] (cit. on p. 66).

[61] Jonas Rauber, Wieland Brendel, and Matthias Bethge. Foolbox: A Python
toolbox to benchmark the robustness of machine learning models. 2018. arXiv:
1707.04131v3 [cs.LG] (cit. on p. 66).

[62] Gavin Weiguang Ding, Luyu Wang, and Xiaomeng Jin. advertorch v0.1: An
Adversarial Robustness Toolbox based on PyTorch. 2019. arXiv: 1902.07623v1
[cs.LG] (cit. on p. 66).

[63] CleverHans Documentation. url: https://cleverhans-nottombrown-fork.
readthedocs.io/en/latest/. (accessed: 03.05.2021) (cit. on p. 66).

[64] FoolBox Documentation. url: https://foolbox.readthedocs.io/en/
stable/. (accessed: 03.05.2021) (cit. on p. 66).

[65] Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated Gradients
Give a False Sense of Security: Circumventing Defenses to Adversarial Exam-
ples. 2018. arXiv: 1802.00420v4 [cs.LG] (cit. on p. 66).

101

https://doi.org/https://doi.org/10.1007/s11548-020-02305-w
https://doi.org/https://doi.org/10.1007/s11548-020-02305-w
https://data.mendeley.com/datasets/7j9bv9vwsx/2
https://data.mendeley.com/datasets/7j9bv9vwsx/2
https://www.who.int/health-topics/coronavirus#tab=tab_1
https://www.who.int/health-topics/coronavirus#tab=tab_1
https://www.kaggle.com/endiqq/largest-covid19-dataset?select=CXR
https://www.kaggle.com/endiqq/largest-covid19-dataset?select=CXR
https://arxiv.org/abs/1412.6572v3
https://arxiv.org/abs/1607.02533v4
https://arxiv.org/abs/1710.06081v3
https://arxiv.org/abs/1706.06083v4
https://arxiv.org/abs/1610.00768v6
https://arxiv.org/abs/1707.04131v3
https://arxiv.org/abs/1902.07623v1
https://arxiv.org/abs/1902.07623v1
https://cleverhans-nottombrown-fork.readthedocs.io/en/latest/
https://cleverhans-nottombrown-fork.readthedocs.io/en/latest/
https://foolbox.readthedocs.io/en/stable/
https://foolbox.readthedocs.io/en/stable/
https://arxiv.org/abs/1802.00420v4

BIBLIOGRAPHY

[66] Nicholas Carlini, Anish Athalye, Nicolas Papernot, Wieland Brendel, Jonas
Rauber, Dimitris Tsipras, Ian Goodfellow, Aleksander Madry, and Alexey
Kurakin. On Evaluating Adversarial Robustness. 2019. arXiv: 1902.06705v2
[cs.LG] (cit. on p. 66).

[67] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deep-
Fool: a simple and accurate method to fool deep neural networks. 2016. arXiv:
1511.04599v3 [cs.LG] (cit. on p. 68).

[68] David Mickisch, Felix Assion, Florens Greßner, Wiebke Günther, and Mariele
Motta. Understanding the Decision Boundary of Deep Neural Networks: An
Empirical Study. 2020. arXiv: 2002.01810 [cs.LG] (cit. on p. 68).

[69] Nicholas Carlini and David Wagner. Towards Evaluating the Robustness of
Neural Networks. 2017. arXiv: 1608.04644v2 [cs.CR] (cit. on p. 68).

[70] Jérôme Rony, Luiz G. Hafemann, Luiz S. Oliveira, Ismail Ben Ayed, Robert
Sabourin, and Eric Granger. Decoupling Direction and Norm for Efficient
Gradient-Based L2 Adversarial Attacks and Defenses. 2019. arXiv: 1811.
09600v3 [cs.CV] (cit. on p. 68).

[71] Xingjun Ma, Yuhao Niu, Lin Gu, Yisen Wang, Yitian Zhao, James Bailey,
and Feng Lu. Understanding Adversarial Attacks on Deep Learning Based
Medical Image Analysis Systems. 2020. arXiv: 1907.10456v2 [cs.CV] (cit. on
p. 69).

[72] Nina Narodytska and Shiva Prasad Kasiviswanathan. Simple Black-Box
Adversarial Perturbations for Deep Networks. 2016. arXiv: 1612.06299v1
[cs.LG] (cit. on p. 85).

[73] Jiawei Su, Danilo Vasconcellos Vargas, and Kouichi Sakurai. «One Pixel Attack
for Fooling Deep Neural Networks». In: (Oct. 2019). arXiv: 1710.08864v7
[cs.LG] (cit. on pp. 85, 87).

[74] Diego Gragnaniello, Francesco Marra, Giovanni Poggi, and Luisa Verdoliva.
Perceptual Quality-preserving Black-Box Attack against Deep Learning Image
Classifiers. 2020. arXiv: 1902.07776v3 [cs.CV] (cit. on p. 85).

[75] Tom B. Brown, Dandelion Mané, Aurko Roy, Martín Abadi, and Justin Gilmer.
Adversarial Patch. 2018. arXiv: 1712.09665v2 [cs.CV] (cit. on pp. 85, 86).

[76] Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati,
Chaowei Xiao, Atul Prakash, Tadayoshi Kohno, and Dawn Song. Robust
Physical-World Attacks on Deep Learning Visual Classification. 2018. arXiv:
1707.08945v5 [cs.CV] (cit. on p. 86).

102

https://arxiv.org/abs/1902.06705v2
https://arxiv.org/abs/1902.06705v2
https://arxiv.org/abs/1511.04599v3
https://arxiv.org/abs/2002.01810
https://arxiv.org/abs/1608.04644v2
https://arxiv.org/abs/1811.09600v3
https://arxiv.org/abs/1811.09600v3
https://arxiv.org/abs/1907.10456v2
https://arxiv.org/abs/1612.06299v1
https://arxiv.org/abs/1612.06299v1
https://arxiv.org/abs/1710.08864v7
https://arxiv.org/abs/1710.08864v7
https://arxiv.org/abs/1902.07776v3
https://arxiv.org/abs/1712.09665v2
https://arxiv.org/abs/1707.08945v5

BIBLIOGRAPHY

[77] Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, and Michael K. Reiter.
«Accessorize to a crime: Real and stealthy attacks on state-of-the-art face
recognition». In: Proceedings of the 23rd ACM SIGSAC Conference on Com-
puter and Communications Security. Oct. 2016 (cit. on p. 86).

[78] Liming Zhai, Felix Juefei-Xu, Qing Guo, Xiaofei Xie, Lei Ma, Wei Feng,
Shengchao Qin, and Yang Liu. «It’s Raining Cats or Dogs? Adversarial Rain
Attack on DNN Perception». In: (Sept. 2020). arXiv: 2009.09205v1 [cs.CV]
(cit. on p. 86).

[79] Water-Drop: come fotografare una goccia d’acqua. url: https://www.inabo
ttle.it/it/cultura/water-drop-tecnica-fotografare-goccia-acqua.
(accessed: 06.06.2021) (cit. on p. 87).

[80] Snowflakes and avalanches. url: https://www.sciencenewsforstudents.
org/article/snowflakes-and-avalanches. (accessed: 06.06.2021) (cit. on
p. 87).

[81] Aggiornamento Meteo GP Stiria – Arriva il diluvio, qualifiche realmente
a rischio. url: https://f1ingenerale.com/f1-aggiornamento-meteo-
gp- stiria- arriva- il- diluvio- qualifiche- realmente- a- rischio/.
(accessed: 08.06.2021) (cit. on p. 90).

[82] Maltempo: divieto di balneazione da Torrette al Passetto. url: https://
www.meteoweb.eu/2019/08/maltempo- divieto- di- balneazione- da-
torrette-al-passetto/1301567/. (accessed: 07.06.2021) (cit. on p. 90).

[83] Meteo, Pioggia in arrivo: le previsioni per martedì 2 ottobre. url: https:
//www.sardegnalive.net/news/in-sardegna/27621/meteo-pioggia-in-
arrivo-le-previsioni-per-martedi-2-ottobre. (accessed: 09.06.2021)
(cit. on p. 90).

103

https://arxiv.org/abs/2009.09205v1
https://www.inabottle.it/it/cultura/water-drop-tecnica-fotografare-goccia-acqua
https://www.inabottle.it/it/cultura/water-drop-tecnica-fotografare-goccia-acqua
https://www.sciencenewsforstudents.org/article/snowflakes-and-avalanches
https://www.sciencenewsforstudents.org/article/snowflakes-and-avalanches
https://f1ingenerale.com/f1-aggiornamento-meteo-gp-stiria-arriva-il-diluvio-qualifiche-realmente-a-rischio/
https://f1ingenerale.com/f1-aggiornamento-meteo-gp-stiria-arriva-il-diluvio-qualifiche-realmente-a-rischio/
https://www.meteoweb.eu/2019/08/maltempo-divieto-di-balneazione-da-torrette-al-passetto/1301567/
https://www.meteoweb.eu/2019/08/maltempo-divieto-di-balneazione-da-torrette-al-passetto/1301567/
https://www.meteoweb.eu/2019/08/maltempo-divieto-di-balneazione-da-torrette-al-passetto/1301567/
https://www.sardegnalive.net/news/in-sardegna/27621/meteo-pioggia-in-arrivo-le-previsioni-per-martedi-2-ottobre
https://www.sardegnalive.net/news/in-sardegna/27621/meteo-pioggia-in-arrivo-le-previsioni-per-martedi-2-ottobre
https://www.sardegnalive.net/news/in-sardegna/27621/meteo-pioggia-in-arrivo-le-previsioni-per-martedi-2-ottobre

	List of Tables
	List of Figures
	Acronyms
	I Computer Vision: Introduction
	Introduction
	Scientific Challenges
	Our Novel Contributions
	Overview

	Background
	Image Classification
	Neural Networks: basic concepts
	Multilayer perceptrons (MLP)
	The learning process

	Convolutional Neural Network
	How does CNNs work?

	Residual Neural Network
	Adversarial attacks
	Design implementation
	Remarks

	II CapsNet simulations
	State of the art : Capsule Networks
	What's wrong with CNN?
	What's a capsule?
	Shallow Caps
	How does a capsule work?
	Dynamic routing algorithm
	The architecture
	ShallowCaps Drawbacks

	Deep Caps
	3D dynamic routing algorithm
	The architecture

	Yao Caps
	The architecture

	FM Caps
	The architecture

	Remarks

	CapsNet analysis
	Implementation
	SVHN
	ShallowCaps evaluation
	DeepCaps evaluation

	CIFAR10
	ShallowCaps evaluation
	DeepCaps evaluation
	YaoCaps evaluation
	FMCaps evaluation

	CIFAR100
	ShallowCaps evaluation
	DeepCaps evaluation
	YaoCaps evaluation
	FMCaps evaluation

	CINIC10
	ShallowCaps evaluation
	DeepCaps evaluation

	Remarks

	High resolution datasets: MLRS and COVID19
	Remote sensing dataset: MLRS
	ShallowCaps evaluation
	DeepCaps evaluation

	Medical images dataset: COVID 19
	COVID 19 CXR
	ShallowCaps evaluation
	DeepCaps evaluation

	COVID 19 ENH
	ShallowCaps evaluation
	DeepCaps evaluation

	Remarks

	III CapsNet robustness
	White Box configuration: Gradient based attacks
	Gradient based attacks
	Fast Gradient Sign Method (FGSM)
	Basic Iterative Method (BIM)
	Momentum Iterative Method (MIM)
	Projected Gradient Descent (PGD)

	Implementation
	ResNet Attacks
	CapsNet Attacks
	Vote Attacks

	Remarks

	Gradient based results
	Adversarial attacks on Medical Images
	COVID19 CXR
	COVID19 ENH

	Adversarial attacks on Remote Sensing
	Impact of the Vote Attack on CIFAR100

	Black Box configuration: Pattern Attack
	Motivations
	Pattern Configuration
	Rain Attack
	Snow Attack
	Hail Attack

	Remarks

	Conclusion and Future works
	Bibliography

