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Abstract

In this thesis, we investigated how in medical image segmentation, apriori information about
objects’ shape knowledge can be used to guide the lungs segmentation from chest X-ray images.
We propose a deep convolutional neural network for lung segmentation, where shape information
is represented by a statistical representation, based on principal components analysis of lung
masks computed using the training dataset and described by their Signed Distance Functions.
In this regard we provided a nonlinear extension, considering the expediency of KernelPCA and
the related kernel functions. As a result, the proposed network learns to predict shapes instead
of learning pixel-wise classification. The segmentation method named Shape Predictor Network
(SP-Net) was applied to chest X-ray images of Covid-19 positive patients where shape could
be of utmost importance. Results showed that SP-Net and Kernel SP-Net could constrain
the predicted shape to resemble a pulmonary-like structure in those cases where the pixel-
wise segmentation methods failed in the presence of a significant image artifact. Finally, we
compared the proposed methods with state-of-the-art methods. U-net, a convolutional neural
network particularly effective for medical image segmentation.

Keywords: Deep Learning , SP-NET,U-NET, A priori information , Shape Analysis ,PCA
, KernelPCA
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C H A P T E R 1

Introduction

©

This section explains the principal aspects and motivations that led to the elaboration of this

work, it also intends to illustrate its main contributions. For this reason, we provide an in-

troduction that gives an overview of how the idea of a priori information can be applied with

convolutional neural networks and in the context of deep learning, with particular attention to

its application in lung fields segmentation of CXR images of Covid-19 positive patients. The fol-

lowing section, called ’Motivation of thesis’, provides a brief report on why apriori information

can improve segmentation results but especially on the importance that it defines in delineat-

ing the lung field in CXR imaging for screening and improving the diagnosis and treatment of

Sars-Cov-2 patients. In the final part are reported the foremost contributions that the thesis

wants to give with the development and study of the proposed method.

©
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1.1 Introduction

1.1 Introduction

Apriori information is an essential component of the human vision system, allowing us to be more

selective and effective in a visual recognition task. In computer vision, the need to include this

knowledge about the task to be realized is increasingly recognized. Apriori shape information

can be considered an exciting point in a computer vision problem.

The significant progress in computer vision induced us to make extensive medical imaging

data to diagnose better, treat, and predict diseases. In this context, computer vision can ex-

ploit shape, contour as apriori information from an image sequence and provide an anatomical

segmentation that helps with better human understanding. On these grounds, the thesis focus

on the ailment and integration of apriori information in a specific branch of computer vision like

image segmentation, which aims to extract the semantic objects lying in images by dividing any

given image into meaningful contiguous regions or extracting one or more critical objects in im-

ages. In this perspective, it is a fundamental component of automated vision systems and uses

in medical applications. Accurate segmentation of 2-D, 3-D medical images to isolate anatomi-

cal objects of interest for analysis is essential in almost any computer-aided diagnosis system or

other medical imaging areas. However, the problem remains challenging, with no general and

unique solution, due to a large and constantly growing number of different objects of interest,

notable variations of their properties in images, and different medical imaging modalities. In

this context, using apriori information, integrated with the segmentation algorithms, could im-

prove the results, leading to better performance. Nowadays, image segmentation has become an

essential tool and support for medical diagnosis and treatment. One method for initial screen-

ings of Covid-19 positive patients is using Chest X-rays. Due to its rapidity, cost-effectiveness,

and a low dose of radiation, CXR imaging is revealed as a suitable modality in particular sit-

uations as in emergency departments and outpatient clinics. . Indeed, the automatic analysis

and segmentation of anatomical compartments in CXR images could alleviate the tremendous

amount of work for the clinicians and researchers involved in the unprecedented challenge of

the pandemic crisis. Therefore improvements in the segmentation carried out in this area are

of utmost relevance. In particular one of the most critical steps in the automatic analysis

of CXRs is to detect the lung boundaries accurately. The boundary extraction is the key to

identifying shape irregularity and lung volume and thus provides insight into the identification

of pneumonia and others symptoms related to Covid-19 and aids in reducing computational

complexity for other lung-related disease identification algorithms by performing computations

only on lung regions. These factors prompted us to explore the benefits of apriori information

develop the proposed method within the thesis on lung segmentation in CXR images to aid and

2



1.1 Introduction

support the R&D and academic community in the battle against Covid-19. Indeed during the

pandemic, the research community has been finding ways to combat the Covid-19 disease. It has

progressed rapidly in image processing tasks like segmentation and classification over the past

year, including biomedical imaging and collecting medical images and data of positive patients.

Although COVID-19 medical images are still not available in large quantities. Our experiments

are completed on one of the few available datasets. The dataset used was released by Centro

Diagnostico Italiano in Milan; clinical data and chest radiographs are collected in six Italian

hospitals at the time of hospitalization of symptomatic patients with Covid-19 during the first

wave of emergency in the country (March-June 2020) [2]. The segmentation methods imple-

mented with these data were developed by considering artificial intelligence a brilliant solution

and deep learning the mainstream of medical image segmentation. Especially convolutional

Neural Network (CNN) [5] has attracted tremendous attention because of Its high efficiency

for feature extraction and particular classification. In this setting, our thesis intends to explore

how apriori shape information can be integrated within deep convolutional neural networks to

improve their results and make their segmentations more reliable, especially on low contrast

images due to the severe conditions of Covid-19 patients.

3



1.2 Motivation of thesis

1.2 Motivation of thesis

Due to the significant advances in imaging devices and technologies, digital images play a more

and more critical role in the hospital sector. An image records a scene of one anatomical and

structural part of the patient in a numeric representation that can be stored, transmitted, and

studied afterward. The expression ”a picture is worth a thousand words” indicates that an im-

age has a powerful ability to describe the rich information it carries. In the medical field, images

are acquired through various modalities, providing invaluable access to see the human body’s

interior and allowing physicians to make a more accurate diagnosis. During the pandemic, es-

pecially CXR imaging has proved to be, as already anticipated, a suitable tool to give more

information on the medical state of Covid -19 patients’ lungs. In this domain, the extraction of

useful information from CXR images has become an essential task. Although radiologists and

researchers can naturally and easily solve this task (at least in the 2D natural interpretation

of scenes), it is difficult for a computer to automatically interpreting an image. To analyze an

image or understand the scene, one of the first assignments consists of partitioning the figure

into several significant parts. Since an image is composed of many pixels, the segmentation

problem can be treated as a labeling problem that assigns each pixel a label indicating a partic-

ular component in the scene. Alternatively, the segmentation task is considered as extracting

the boundaries between different objects so that the image is partitioned into meaningful re-

gions according to the edges. As we will comprehend, the accuracy of the segmentation is an

absolute necessity in medical applications and has assumed, in recent times, an essential sig-

nificance in the ways of diagnosing Coronavirus diseases. In most cases, manual segmentation

by experts can provide the best and the most reliable result. Still, it is tedious and incredibly

time-consuming, a burdensome factor for analysis and diagnosing Covid-19 disease. Moreover,

manual segmentation is subjective to operator variability. These facts motivate researchers to

develop automatic segmentation methods to deal with large datasets while achieving the ac-

curacy of manual segmentation. All this led us in our thesis to investigate how segmentation

methods can be applied to CXR images and how they can be enhanced for lung boundaries de-

tection. However, lung field segmentation remains a strenuous accomplishment for a computer.

The challenge is due to the considerable variability of anatomical shapes in different patients.

To deal with this challenge, we have studied how to incorporate the apriori shape information

on image segmentation methods. So the optimal segmentation map is constrained by the set of

valid shapes learned from the object of interest. In this manner, segmentation is more robust to

noise, while using the global shape of the object can also alleviate the ambiguity of non-visible

boundaries between different organs due to similar tissue properties or noise and sampling ar-

4



1.2 Motivation of thesis

tifacts introduced during the CXR acquisition process. In this respect, our analysis intends to

deepen how apriori information of relative order can be applied to train a convolutional neural

network effectively and how such a concept can induce better performance about lung field

segmentation than state-of-art. Above all, the motivation of the thesis lies in the hope that

the following work can be helpful on how artificial intelligence and its applications can support

research and studies related to the ongoing global pandemic of coronavirus diseases.

5



1.3 Contribution

1.3 Contribution

The thesis explores and investigates how apriori shape information can be integrated into lead-

ing deep learning algorithms, failing to learn high-level topological shape knowledge and often

failing to constrain the object segmentation results. We represent a novel, deep fully convo-

lutional neural network that can predict in the shape domain instead of classifying each pixel

separately, constraining the segmented region to a class of learned shapes. The principal com-

ponents analysis constructs the shape space to realize the drawbacks and advantages of a linear

dimension reduction method in capture and retrieving the total variation in the training dataset.

Furthermore, we consider the feasibility of a nonlinear version of the proposed method based on

Kernel PCA, perceiving as a nonlinear estimation of apriori shape information may or not yield

better performances. We also inspect the training process of the proposed model by empha-

sizing the optimization of the hyperparameters and regularization techniques. In this context,

we explore how early stopping and data augmentation can reduce the network overfitting and

whether or not they can give better results, although all two, as we will see, lead to complica-

tions of the algorithm. In conclusion, We apply the proposed method to Chest X-ray images

of positive Covid-19 patients, where the shape can be information of paramount importance to

guide the lung segmentation process in a misleading imaging modality, being confident that this

work will help the research community in the relevant Covid-19 studies. To sum up, the main

contributions of this thesis are the following:

• Investigation of a deep fully convolutional neural network that predicts shapes instead of

segmentation maps

• Study and understanding of the principal component analysis in estimating the apriori

shape information by the training set

• A nonlinear extension of the proposed method based on kernel principal components

analysis.

• The applicability of the proposed method in a challenging context as lung fields segmen-

tation in CXR images

• A small step on how artificial intelligence methods can aid in the diagnosis of Covid-19

diseases.
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C H A P T E R 2

Background

©

The ’Background’ section provides a brief overview of the imaging modality, outlining the his-

tory, major applications and highlighting its fundamental use in screening and detecting covid-

19. In the chapter, we also discuss the relevance of lung field segmentation in this medical field

and the related methods used to date. In the concluding part, the use of apriori information

in shape context and its derivations in lung fields segmentation are reviewed with particular

attention to their application in deep learning.

©
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2.1 Introduction

2.1 Introduction

Image segmentation is one of the most exciting and challenging problems in computer vision

generally and medical imaging applications specifically. Segmentation partitions an image area

or volume into a non-overlapping and connected section, and this process plays an essential

role in extracting regions of interest in medical images, providing more intuitive medical infor-

mation than raw images. Indeed it is a vital aspect in computer-aided diagnosis systems for

different applications. Medical segmentation is considered, in fact, a crucial imaging process

as it extracts anatomical structures from a medical image with a semiautomatic or automatic

process. It splits an image into areas based on a specified description, such as segmenting

organs/tissues in the medical images for border detection, tumor, or mass detection. In this

context, it represents one of the most exigent medical analysis tasks: to supply critical informa-

tion about the volumes and shapes of these organs and assist doctors in diagnosing or making

decisions. For this reason, the vast investment and development of medical imaging modalities

such as microscopy, X-ray, computed tomography (CT), magnetic resonance imaging (MRI),

and positron emission tomography (PET) attract researchers to implement new medical imag-

ing methods in segmentation. However, X-ray imaging has been revealed to be one of the most

commonly prescribed medical imaging procedures, often more than other imaging modalities.

Indeed, these examinations are recognized as a valuable medical tool for various procedures

since they are used noninvasively and painlessly to help diagnose disease, monitor therapy, and

support medical and surgical treatment planning. Therefore, the X-ray modality is a low-cost

imaging technique that has been used for over a century for medical imaging and continues

to apply nowadays. Due to low cost and a low dose of radiation, hundreds to thousands of

X-rays are generated in a typical hospital daily. This large amount of images creates critical

diagnostic workloads for radiologists and medical practitioners. Consequently, it is paramount

to develop computer-aided detection methods for X-rays to support these clinical issues where

a helpful answer is organ segmentation. Nowadays, in the setting of the coronavirus pandemic,

chest X-ray imaging, in particular, plays a significant role in the early diagnosis and treatment

planning for patients with suspected or confirmed Covid-19 chest infections. Chest x-rays show

characteristic radiographic findings in patients with Covid-19 pneumonia, demonstrating that

lung segmentation is functional for Covid-19 identification and stratify disease severity.[2]
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2.2 Chest X-Rays imaging

A chest radiograph or chest X-ray (CXR) is an imaging modality to diagnose conditions and

diseases affecting the chest and nearby structures. The Chest X-ray (CXR) is widespread in

everyday clinical practice, aiming to visualize disorders of the bony thorax and the organs of the

thoracic cavity. It is responsible for approximately 30–40% of all X-ray examinations performed,

regardless of the level of healthcare delivery.[6] Even though this imaging modality is not costly,

readily available, and technically simple, it can reveal a significant amount of information re-

garding the patient’s health, thus providing essential clues for an accurate diagnosis. Over the

years, CXR has inevitably faced the rapid progress of medical imaging technology and has been

subjected to criticism regarding its poor diagnostic sensitivity, which has to be counterbalanced

by an accurate, detailed, and time-consuming interpretation by a radiologist. Indeed it has

the advantages of being fast, easy, non-invasive, and inexpensive. Although easy to acquire, a

chest radiograph (CXR) is one of the most complex imaging modalities to interpret. Its ac-

knowledged interpretation heavily depends on the level of training and experience of the person

interpreting it. Prior studies indicate that medical practitioners in an emergency or out-patient

departments frequently miss radiographic abnormalities, and there is considerable discrepancy

among their interpretations and those of trained radiologists[7]. Since clinical decisions depend

on the accurate understanding of CXRs, it is highly desirable to develop computer-aided diag-

nosis (CADx) systems that can automatically interpret CXRs and assist medical practitioners

in decision-making.
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2.2.1 Chest X-rays Imaging : History and applications

The traditional technique used in acquiring and developing a chest radiograph is based on

methods similar to those discovered by Roentgen in 1895. Indeed chest X-ray imaging employs

electromagnetic waves or better X-rays to create pictures of the inside of the thoracic region.

X-rays or X-radiations are referred to as Röntgen radiation after the German scientist Wilhelm

Conrad Röntgen discovered it on November 8, 1895. Röntgen brought to light their medical

use when he made a picture of his wife’s hand on a photographic plate provided due to X-

rays. The photograph was the first image of a human body part using X-rays and the incipit

of future medical applications. Even the CXR examination involves positioning the patient’s

chest between the machine that produces the X-rays and a plate containing an X-ray detector

that creates the image digitally or with X-ray film. The X-rays occur in a defined room with

a movable camera attached to a large metal arm. When this latter is turned on, x-rays travel

through the thoracic area and are absorbed in different amounts by internal organs and tissues.

Indeed dense bone or materials absorbs most of the radiation. Whereas soft tissue, such as fat,

muscles, and organs, allows more x-rays to advance through them. Consequently, bones appear

white on the x-ray, soft tissue such as lung tissue shows up in shades of gray, and air arises

black. Chest X-rays exploit small amounts of ionizing radiation to produce images. The risks

of radiation exposure are related to the increase in imaging tests used rather than immediate

consequences. X-radiations could cause a slightly increased risk of cancer in a lifetime but

concern shallow risks of short-term side effects. In this light, radiologists use the ”effective

dose” to measure the risk of dose radiation; the effective dose is a weighted sum of organ doses.

It is considered the best dosimetric quantity for estimating the risk of exposure to ionizing

radiation [8]. The scientific unit of this measurement is the millisievert (mSv), but there are

other units such as radium and ren. This measurement considers how different sensitive tissues

are to radiation and enables us to compare it to familiar exposure sources, such as natural

background radiation. A single chest x-ray exposes the patient to about 0.1 mSv It is about

the same amount of radiation people are exposed to naturally over about ten days. While a

chest CT delivers seven mSv,70 times as much.[9] The American College of Radiology advises

limiting lifetime diagnostic radiation exposure to 100 mSv, equivalent to about 10,000 chest X-

rays, but only 25 chest CT scans [9]. However, radiologists follow the ALARA principle because

of accumulated radiation dose over a person’s lifespan, which says patients should always receive

radiation doses such as ”As Low As Reasonably Achievable.” [10]

10



2.2 Chest X-Rays imaging

Standard medical radiographs are generally considered very safe with minimal risk, but the

technique also has some significant limitations despite these apparent advantages of low dose.

These are mainly related to limited spatial resolution and that all anatomical structures within

the chest, lying in the path of the x-ray, are projected onto each other. This issue, intended

as ’overprojection, involves that some pulmonary lesions are challenging to see or analyze on a

chest radiograph, and thus, the typical response is to acquire a CT scan for further analysis.

Diseases that are usually easy to diagnose with a chest radiograph are, in fact, pneumonia,

pneumothorax, symptomatic pleural effusion, cardiac enlargement with vascular congestion,

and symptomatic tumors [11]. In contrast, small nodules, pulmonary fibrosis, and complex

disease affecting the mediastinum and lung are often not fully visible and require CT imaging.
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2.2.2 Chest X-rays Views

Chest X-Rays image is ordinarily captured with the patient in a standing position. However,

different views or projections of the chest can be employed by changing the relative orientation

of the patient and the direction of the X-ray beam. The most common positions are pos-

teroanterior, lateral, and anteroposterior. In the posteroanterior (PA) view, the X-ray source is

positioned so that the X-ray beam enters through the posterior (back) of the chest and exits out

of the anterior (front) part, where the beam is detected. In this view, the patient stands facing

a flat surface behind which is an X-ray detector. On the other hand, the lateral view is taken

to complement the frontal image. A lateral position is helpful to localize a lesion, together with

a frontal one. It allows a 3-dimensional analysis, and in this modality, the patient is asked to

turn and lean one shoulder on the plate and raise hands over their head. An anterior-posterior

chest X-Ray is generally less preferred because the image of the heart and mediastinum is less

clear and focused in this projection. In this view, the patient is standing with their back against

the film, and the x-ray source and detector are reversed compared to PA projection. AP chest

x-rays are more complicated to read than PA x-rays and are generally reserved for situations

where it is arduous for the patient to stand an ordinary chest x-ray, such as the patient is

bedridden. CXR can be achieved in bedridden patients using portable machines, which can be

transferred to intensive care units. In this context, portable CXR is essential in evaluating crit-

ically ill patients who frequently suffer from severe pulmonary diseases caused by pneumonia,

heart failure, or respiratory distress requiring mechanical ventilation[11].

In conclusion, chest radiography is still in everyday use. The technique has been constantly

improved over the last few decades, and it serves as a baseline examination for lung diseases

worldwide and, as such, if wisely used by radiologists, is of great value.

Figure 2.1: : Left: posterior-anterior (PA) view frontal chest radiograph. Middle: lateral chest

radiograph. Right: Anterior-posterior (AP) view chest radiograph
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2.2.3 Chest X-rays Imaging for Covid-19

The Coronavirus disease pandemic (COvid-19), originated in 2019 by the Severe Acute Respi-

ratory Syndrome Coronavirus 2 (SARS-CoV-2) virus, has become the most significant public

health crisis our society has faced recently.Sars-Cov-2 affects mainly the respiratory system

and, in extreme cases, causes a massive inflammatory response that reduces the total lung ca-

pacity. Because of that, the chest X-ray (CXR) and computed tomography or computerized

X-ray imaging (CT) scan became the standard imaging tests for pneumonia and, consequently,

Covid-19. These imaging examinations play, in fact, a pivotal role in different settings. Indeed,

these imaging modalities are used during triage in unavailability, delay of, or the first negative

result of reverse transcriptase-polymerase chain reaction (RT-PCR) and then stratifying dis-

ease severity[2]. However, The CT scan is the gold standard for lung disease diagnosis since it

generates very detailed images. CXR is very useful in particular scenarios since they render the

resulting images faster, exposes the patient to much less radiation, and be more widespread in

the emergency care unit. Moreover, X-ray devices are easily accessible and reduce Coronavirus

contamination during the imaging acquisition [12]. Chest X-ray (CXR) imaging is employed

as an assistive tool in COVID-19 prognosis, and it is reported to have a potential diagnosis

capability in recent studies [13]. It can be used as a possible chance for the early identification

of Covid-19 patients at risk of severe outcomes. Furthermore, chest radiography of seriously ill

people with respiratory symptoms when they present to the hospital can help identify those with

Covid-19 pneumonia. Hence this screening is essential for evaluating the status of the patient

and treatment. Like other cases of respiratory diseases, Covid-19 pneumonia causes the density

of the lungs to increase. It reveals whiteness on radiography but depends on the severity of

pneumonia. It obscures the lung markings that are customarily observed; however, this may be

delayed in appearing or absent. When the increased whiteness partially covers lung markings, a

ground glass pattern (ground-glass opacity, fig 2.2) occurs. This issue can be subtle and might

need confirmation from a radiologist in CXR examinations. [14] On this premise, covid-19

pneumonia can be classed as atypical pneumonia because of the radiographic appearances of

multifocal ground-glass opacity, linear opacities, and consolidation. Indeed these changes are

also seen in other atypical cases of pneumonia, including other coronavirus infections (severe

acute respiratory system, Sars, and Middle East respiratory syndrome, Mers). A quantitative

meta-analysis covering 2847 patients in China and Australia, and a global descriptive analysis

of 39 case report articles summarising 127 patients, found that Covid-19 pneumonia changes

are mostly bilateral on chest radiographs (72.9%, 95% confidence interval 58.6 to 87.1) and have

ground-glass opacity in 68.5% of cases (95% CI 51.8 to 85.2).[15]
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On this basis, several studies were proposed to investigate the development of segmenta-

tion models for the opacity regions for the Covid-19 positive chest X-rays and the impact of

lung segmentation in identifying pneumonia in CXR images. In this setting, a relevant study

demonstrated how, in chest X-rays of the Covid-19 positive patients, the percentage of the

predicted and segmented opacity region over the total lung area could indicate the patient

severity regarding ICU admission and mortality. [16] While other studies, in a real-world appli-

cation, showed how segmentation is an essential step since it removes background information,

reduces the chance of data leak, and forces the model to focus only on meaningful image areas.

Segmentation in this way improves the classification performance, as it increases the model’s

reliability and quality. Indeed . in these methods, the best identification rate of COVID-19,

among other types of pneumonia, is achieved using segmented CXR images instead of raw

images, demonstrating the importance of lung segmentation in CXR image classification algo-

rithms[1]. Also, Further studies proposed to perform lung segmentation as the first step in their

approaches[17],[18]. They evidenced that narrowing the region of interest down to the lungs’

areas increased the trustworthiness of their methods. Thus, segmentation can aid in more reli-

able detection of Covid-19 by extracting the region of the lungs and left out of analysis areas

that do not belong to the region of interest (ROI). In this context, our thesis work aims to

investigate the lung segmentation process to contribute and support research against Covid-19.

Because of that, we implemented the proposed method on a series of COVID-19 positive pa-

tients’ CXR images to see if our approach could lead to improvements over the state-of-the-art

in the Covid-19 research field.

Figure 2.2: CXR Image of Covid-19 patient : glass opacity
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2.2.4 Chest anatomy in CXR images

Accurate information of the lung shape and its anatomical variations is very noticeable in

medical imaging and is paramount for proper segmentation. Therefore, an in-depth description

of lung shape and their anatomical structures in CXR imaging appears needful and explanative

in this perspective. The lungs are pyramid-shaped, paired organs connected to the trachea by

the right and left bronchi; on the inferior surface, by the diaphragm. The diaphragm is the

flat, dome-shaped muscle situated at the base of the lungs and thoracic cavity. Furthermore,

The lungs are enclosed by the pleurae, which are connected to the mediastinum. The right lung

is shorter and wider than the left lung, and this latter takes a smaller volume than the right.

Indeed due to the elevated position of the liver, the left lung is slightly more extended than the

right one. Furthermore, the left lung shares space with the heart and has an indentation in its

wall called the cardiac notch of the left lung. In addition, the front and outer sides of the lungs

face the ribs, which form light indentations on their surfaces. The medial surfaces face towards

the center of the chest and lie against the heart, great vessels, and the carina, where the trachea

branches into the two main bronchi. Moreover, both lungs have a recession termed as the hilum

at the root of the lung, where the blood vessels and airways permeate the lungs.[17]

Figure 2.3: (a) Normal labeled CXR, (b) CXR indicating the tracheal shift toward the right,

(c) Raised left hemidiaphragm due to left phrenic nerve palsy, normal position delineated in

red, (d) Blunt CP angle indicating pleural effusion, delineated in red, (e) Two different ways of

delineating lung boundary in abnormal cases
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In CXR images, anatomical structures such as the heart and lungs are seemingly visible

(Fig. 2.3 a), but others are obscured or occluded. Because of that, to effectively understand

and develop computerized methods for processing and segmenting CXRs, firm knowledge about

the visual characteristics of anatomical compartments is essentially required. The following

section provides a brief overview of the visual appearance of anatomical structures on a CXR,

In medical literature, many different mnemonics have been described for looking at a CXR, but

the commonly used ’ABCDE’[18] is as follows:

A. Airways: the airways contain air and are of lower density as compared with the sur-

rounding soft tissues. Thus, they appear darker on a CXR. The trachea is the vastest airway

and is present midline in a normal CXR. Tracheal shift (Fig. 2.3 b) indicates abnormalities

such as pleural effusion, pneumothorax, atelectasis, and pleural fibrosis. Thus, several CADx

systems [20,21,22] locate the upper end of the trachea and its centerline and delineate it to

detect abnormalities. The trachea divides into the left and right bronchus at the carina, The

carina is a ridge of cartilage surrounding the area posterior to where the aortic arch crosses

to the left of the trachea. Its detection is critical for CADx systems designed for pulmonary

embolism. Although lung landmarks such as the trachea and carina are of great significance in

a chest radiographic CADx system, generally remove the mediastinal region containing them

before producing the final segmented output as a binary mask for visualization to prevent the

two lungs from touching each other.

B. Bones: Bones are dense and thus appear brighter than soft tissues on a CXR. The bones

visible on a CXR include clavicles, ribs, part of the spine, scapula, and the proximal humeri.

Many CADx systems use bones (mainly the ribs and the clavicles) as markers to automatically

detect rotations in CXRs [24,24], to accurately register temporal CXRs [27], and to assess the

level of inspiration in an image. Bones can be segmented using dual-energy subtraction radiog-

raphy [28] or using the software methods described in [26,27]. Various CADx systems perform

bone segmentation and suppression to significantly improve radiologists’ accuracy in detecting

lung nodules [28,29,30] and focal pneumonia [32] in a CXR image.
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C. Cardiomediastinal region: Cardiomediastinal region is an area between the lungs

that consists of significant blood vessels, trachea with stem bronchi, muscular esophagus, thy-

mus gland, and the heart. This region is denser as compared with the surrounding air-filled

lungs and thus appears brighter on a CXR. Although most of the constituents of the mediastinal

region, except the heart, are not visible on a normal CXR, the cardio-mediastinal profile plays a

vital role in diagnosing various diseases. Various CADx systems look for subtle deviation in the

mediastinal profile for detecting cardiomegaly and pericardial effusion [34]. Mediastinal contours

are also traced by various rule-based methods for the effective segmentation of the lung field [33].

D. Diaphragm: The diaphragm separates the relatively denser abdominal region below it

from the less dense lung region. Each hemidiaphragm should appear as a crisp dome-shaped

contour on a normal CXR. Obscured, flattened, or raised hemidiaphragm (Fig. 2.3 c) indicates

abnormalities such as consolidation of lower lobes, congenital diaphragmatic hernia, phrenic

nerve palsy, and lung hyper-expansion. The angle between the diaphragm and the chest wall

at the bottom of the lung, known as the costophrenic angle, also provides critical information.

Blunt costophrenic angle (Fig. 2.3 d) helps detect pleural effusion due to pneumonia, cirrhosis,

pulmonary embolism, and tuberculosis (TB). [36,37,38] angle is crucial for many CADX systems

to detect pleural effusion in CXRs.

E. Expanded lung: CXRs are generally acquired after the patient inhales and holds the

breath. The expanded air-filled lungs are less dense and thus appear darker on a CXR. In

standard cases, a lung boundary (labeled as 10 in Fig. 1a) consists of lung apices (AB in Fig.

1a), mediastinal edges (BC in Fig. 2.3 a), hemidiaphragm (CD in Fig. 2.3a), and coastal

borders (DA in Fig. 2.3 a). The mediastinal region, heart, aorta, and the structures below the

diaphragm are not included in the lung field. However, there is a difference in opinion amongst

radiologists about what constitutes the lung field in abnormal cases. Some consider only the air

cavities as a part of the lung field (as shown in green in Fig. 2.3 e), while others believe the air

cavities and the area obscured by the pleural fluid as a part of the lung field (as shown in red

in Fig. 2.3 e) [37]. Most of the CADx systems and Lung Fields Segmentation methods segment

only the air cavity as the lung field and use its shape as a feature to detect the abnormality.
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2.3 Segmentation methods of lung fields in chest radiographs

2.3.1 Introduction

Lung field segmentation is undoubtedly the first and mandatory step of an automated system

aimed at any computer analysis on chest radiographs. Indeed it takes priority importance as

it precisely defines ROI in which specific radiologic signs such as pulmonary opacities, cavities,

Kerley B lines for pulmonary edema, and lung nodules are searched[33,39]. Moreover, the seg-

mentation algorithms used to identify these abnormalities being applied to the lung area result

in more sensitivity. Besides, lung field segmentation outlines other quantitative parameters

such as size, shape, texture, and volume are directly used as an indicator of various medical

conditions. Because of that, a great deal of research has focused on lung field segmentation

in postero-anterior chest radiographs. However, several theoretical studies in the past decades

demonstrated that the automatic segmentation of the lung fields is a complicated problem from

a computer vision point, and related reasons have been highlighted. For example, research

by Vyborny [40] explains how chest radiographs are among the most challenging radiographs

to produce technically and interpret diagnostically. Firstly, they reported how the habitus,

the position, and finally, the level of inspiration of the person in the moment of acquiring the

radiographs could originate considerable variations in radiographs of the same patient; it sig-

nificantly impacts the visibility of some parts of the lung. Secondly, the setting of the chest

unit, particularly the peak tube voltage, determines the visibility of several structures such as

the bones and the vessels [41]. Finally, the last but most important cause of problems is that

radiographs are projection images and represent all superimposed structures. Consequently,

the segmentation task is then misleading if anatomical compartments are superimposed to the

natural borders of the lungs. Examples are the hilum, where the arteries and veins enter the

lungs, bony structures such as the clavicles, the spine, and the shoulder-blade, that are often

better visible than the rib cage boundaries, the heart, the diaphragm, that is constantly hiding

the costophrenic angles, and the intestinal gases in the left lung area. As a result, knowledge

of these themes is strictly needed to recognize all the listed problems and solve or avoid the

errors caused by their effects. Another critical issue about lung segmentation is the definition

of the lung area to be detected and delineated. All methods presented in the literature aim to

define the most visible parts of the lungs, those not hidden behind the diaphragm, the heart,

and the spinal column. Indeed the segmentation process identifies an optimal area when the

abnormalities or pathologies detected by the computerized system, such as tuberculosis, are

restricted to the visible lung area. It is better to limit the processing to this search area since
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it is less extended hence needing less computational costs. Nevertheless, this visible area is not

enough for lung nodules detection systems since tumors may be present in the not visible parts

of the lungs, and in this context, they would be lost by the cad system. Examples of the visible

lung area extracted by the algorithm presented by Ginneken [43]. they are thorax images of

patients with lung tumors, evidencing that some nodules are outside the segmented area. In

this perspective, innovative studies are focused on methods to include the retro-cardiac region

in the CXR-based lung segmentation for accurate lung capacity estimation. [42]
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2.3.2 Segmentation methods

The main approaches that have been presented in the literature for solving lung segmentation

at state of the art are:

• Rule-based methods

• Pixel-classification methods

• Model-based methods

• Hybrid methods

• Deep learning methods

According to this classification, based on Shi et al. [45], these categories consider deep learning

methods, although they could be listed in pixel classification, in a separate group due to their

surprising performance in computer vision. The rule-based systems are composed of algorithms

performing consecutive steps, each containing specific processing with certain adjustable pa-

rameters, and employ heuristic assumptions to locate the lung region. On the other hand, Pixel

classification methods are based on the classification of the pixels of the image into two classes,

“lung pixels” and “not lung pixels”; this process is based on a set of features calculated for

each pixel itself. Model-based segmentation is less common and uses both low-level appearance

and shape analysis to identify the lung area. In hybrid methods, the best parts of the schemes

are combined to produce a better approach to overcome the challenges of lung boundary de-

tection. In the end, deep learning methods are based on deep neural networks, which process

image data through convolutional layers and learn feature representation hierarchically, start-

ing from low-level to more abstract representations. Nowadays, These are the most prominent

state-of-the-art approaches.
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2.3.3 Rule-Based Methods

The algorithms in this category set sequential steps and heuristic assumptions on imaging

characteristics to segment the lung field. Several methods have been proposed that segment

the lung field by using the rules based on its position, intensity, texture, shape, and structural

relationship to other anatomical structures, Generally, several rules are applied in sequence

to obtain the desired result. The beneficial aspect of these methods is that the constituent

regulations can be used in different orders, giving notable freedom [46]. The general workflow

pipeline of the rule-based Lung field segmentation methods is shown in Fig. 2.4. According to

the applied rules, the rule-based methods are further classified as (i) intensity thresholding-based

methods, (ii) edge-detection-based methods.

Figure 2.4: General Pipeline of Rule-based Methods
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Intensity thresholding-based methods

Intensity thresholding-based methods classify each pixel of a CXR image into the lung or non-

lung region based on a grey-scale threshold. The most considerable challenge in the successful

application of these methods is determining a reasonable threshold value. One of the ear-

liest methods belonging to this section is suggested by Cheng and Goldberg.[47] It involves

the sequential implementation of three rules. First, horizontal and vertical projection profiles

(HVPPs)(note) of a CXR image are taken to determine minimum rectangular frames enclosing

the left and the suitable lung regions. After that, a grey-level histogram thresholding tech-

nique that uses a pre-determined static threshold value is applied to the rectangular frames

to delineate lung boundaries. Ultimately, the top and side segments of the lung boundaries

so achieved are refined, employing parabolic curves and straight lines. This method is swift

and computationally inexpensive but lacks adaptiveness due to a static global threshold. For

the same reason, it fails to perform reasonably well on CXR images with different contrasts.

Instead of using one static global threshold value, Armato et al. [49] performed grey-level his-

togram analysis to initialize a range of threshold values for iterative global thresholding. The

initial lung contours deduced by global thresholding are refined using more local thresholding

and the large-scale aberrations like depressions or protrusions in the lung contours by applying

morphological operations with a circular structuring element. The segmentation accuracy of

the method improved because of the usage of an iterative thresholding process. However, itera-

tive thresholding makes the approach computationally inefficient and slower. In conclusion, the

intensity thresholding-based methods are fast and do not require further information about the

morphology and location of lungs in a CXR. However, these procedures are elementary, fragile,

and do not perform well on CXRs with poor contrast.

1

1HVPP: Horizontal and Vertical Projection profile is calculated separately for different axis. Projection profile
along vertical axis is called Vertical Projection profile. Vertical projection profile is calculated for every column
as sum of all row pixel values inside the column. Horizontal Projection profile is the projection profile of a image
along horizontal axis. Horizontal Projection profile is calculated for every row as sum of all column pixel values
inside the row.
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Edge-based Methods

These methods leverage contrast differences between the lung and non-lung regions and de-

termine lung boundaries by detecting abrupt changes in the intensity values of CXR image

pixels. However, numerous pre-and post-processing operations are applied in a quest to ob-

tain smooth and continuous boundaries. Li et al. [50] analyzed the first derivatives of HVPP

to determine lung apex, costal, mediastinal, and hemidiaphragm edges. The reliance of the

derivative approach on local information generates several false lung boundary points leading

to discontinuous and disorganized lung boundary instead of global. The detected border is

then processed using t and edge tracing and iterative boundary point adjustment procedures

to form a smooth continuous boundary. Despite all the heuristics hypotheses, the method en-

counters difficulties in detecting mediastinal and hemidiaphragm and mediastinal edges due to

their complex patterns and structure of grey-scale distribution. As in [48], Duryea and Boone

[51] also analyzed HVPP to determine the potential locations of mediastinal and lateral edges.

Nevertheless, they reduced the image resolution by a factor of 32 to limit the number of data

pixels while at the same time preserving enough resolution to identify the lung field successfully.

It has been subjectively evaluated that the accuracy of the just discussed method is at par with

hand-drawn segmentation done by a human observer. However, the utmost limit of the method

is that the segmentation uncertainties increase when the segmented regions are expanded to

complete resolution. Iakovidis and Papamichalis [52] applied a similar approach to detect lung

boundaries in portable CXRs. As in [49,50], edge points on the anatomical structures around

the lung field are delineated using HVPP analysis and intensity thresholding. However, instead

of the edge tracing technique, Bézier curve interpolation approximates the lung contours. The

lung field segmented by this approach includes overlapped heart region, which is typically ex-

cluded by other methods. Pietka [53] performed histogram analysis to find a threshold value

adopted to eliminate the bright sub-diaphragm, mediastinum, and parts of the thorax. HVPP

gradient analysis is then performed to find the lung boundary. Finally, the detected lung bor-

der is smoothed using cubic spline interpolation and morphologic erosion procedure. These two

methods exploit a single global threshold and fail to correctly delineate lung boundary in a

chest radiograph with poor contrast between the lungs and other anatomic structures.
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The processes relying on HVPP gradient analysis tend to poorly segment hemidiaphragm

edges, especially the left one, due to the complicated stomach gas structure and cardiac bound-

aries. Xu and Doi [54] presented an improved method for detecting hemidiaphragm edges and

lung field segmentation. They eliminated false edges identified by the gradient analysis using

structural relationships between seven categories of anatomic landmark points, whereas the re-

maining edges are smoothed with polynomial functions. Instead of using fragile edge tracing,

false edge elimination, and edge smoothing procedures in the latter stages, Ahmad et al. [88]

used the fuzzy C-means (FCMs) clustering method to refine the lung boundary. In this method,

a Gaussian derivative filter is applied at seven different orientations to identify a rough lung

outline. First, the lung outline is filled with global thresholding and later is refined using FCM

clustering. Instead of basing on a static threshold, the method relies on an adaptive threshold

determined by the Otsu method [55].

Edge-detection-based methods have the advantage that they do not require any knowledge

of lung anatomy. Nevertheless, these methods are sensitive to noise. Therefore, even if noise

is filtered using a Gaussian or a similar mask during the pre-processing stage, the outcome is

highly dependent on the size of the filter and the threshold value used.
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2.3.4 Model-based Methods

Model-based methods are segmentation algorithms that search image-specific characteristics as

closed, smooth contour or determined curves that respect used models’ shape constraints. The

latter intends to shape an object or anatomical part as a flexible two-dimensional (2D) curve or

a three-dimensional surface that can be deformed under the influence of internal forces, external

forces, and user-defined conditions. The internal forces, which retain the model smooth during

the deformation, are defined within the curve or surface. The external forces, which direct the

model toward the object boundary or other desired features within the images, are computed

from the training or image data. Constraints about the appearance, position, shape of the

object are manually specified or derived from the training data. These models offer promising

segmentation results even under dreadful variability in object shape and image quality and are

incredibly successful when the structure is delineated similar shapes across many subjects in

the training data [56] These methods are classified as (i) parametric models and (ii) geometric

models. A general pipeline is illustrated in the following Fig 2.5

Figure 2.5: General Pipeline of Model-based Methods
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Geometric Models

Geometric models represent surfaces or curves implicitly as a level set higher-dimensional scalar

function. Two-dimensional curves are characterized by a level set of a function of three variables,

i.e., a surface in 3D space. A plane, for instance, a ’zero level set,’ intersects this surface and

gives the desired contours. A significant advantage of this model over the parametric model

is that a single function can describe more than one curve (see Fig. 6 b). Besides, these

models are numerically stable, do not yield self-intersections, and naturally handle topological

changes. Geometric models based on the level set method [56] have considerably succeeded in

lung field segmentation. The advantages of using the level set method are that it is accurate,

robust, and can handle sharp corners and cusps in evolving curves effectively. Furthermore, the

process provides increased accuracy with the computational cost at par with other methods.

Lee et al. [58] presented an unsupervised method based on a multi-resolution fractal feature

vector where HVPP analysis is executed to gather ROI. Features from the ROI are extracted

using the Gabor wavelet transform and fractal dimension calculation method. Fuzzy C-means

clustering is performed on the extracted features to obtain the initial lung boundary, refined

by applying the regularised level set evolution method. The approach is tested on a small

dataset, and its performance is even lower than the default ASM method. Graph cuts is another

optimization method in which objective function is minimized, similar to the level set method.

For segmentation, the objective function is defined in terms of the boundary, region, and object

model properties. Candemir et al. [59,86] presented a registration-driven Lung segmentation

method based on graph cuts. In this method, a content-based image retrieval approach is used

to find training images with lung shapes similar to that in the patient’s image and create lung

atlas. SIFT-flow non-rigid registration technique is then adopted o create an initial lung model

using the patient-specific lung atlas. Final segmentation is achieved using graph cuts discrete

optimization method with modified energy function. The technique is one of the state of the

art methods for lung segmentation and can successfully segment challenging regions such as the

apical and the clavicle. However, its performance near the costophrenic area can be further

improved. Indeed Candemir et al. [59] have generalized this technique for pediatric CXRs as

well.
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Parametric Models

These techniques, conceived by Kass, Witkin, and Terzopoulos in 1987 and known as ”snakes”[60],

are based on parameterizing the contour and then evolving each element according to image and

internal terms. Such techniques are fast and efficient. However, the original ”purely paramet-

ric” formulation is mainly criticized for its limitations regarding the choice of sampling strategy,

the internal geometric properties of the curve, topology changes (curve splitting and merging),

and addressing problems in higher dimensions. A parametric model or, more simply, snake

involves an energy minimizing, deformable spline influenced by constraint and external forces,

resumed by the image, that pulls it towards object contours and internal forces that resist de-

formation. Snakes may be understood as a particular case of the general technique of matching

a deformable model to an image employing energy minimization. In two dimensions, the active

shape model and the active appearance model constitute a discrete version of this approach,

taking advantage of the point distribution model to constrain the shape or appearance range

to an explicit domain acquired from the training set. These methods employ a small set of

parameters to form a model representing the preliminary analysis of the geometrical shape and

appearance of the object to be delineated. The parametric models iteratively interact with the

image features by adjusting their parameters according to the image forces. When the internal

and external forces balance each other, an equilibrium is attained that delineates the segmented

output. The convenience of these models is that they exploit compact representations and are

very fast in their convergence. Nevertheless, their major limitation is that the adaptation of

the model topology, such as merging or splitting parts during the deformation, is impossible.

Hence, the model can only detect a single object. For multi-object segmentation, multiple mod-

els have necessarily to be initialized, one for each object. The parametric model-based methods

are further categorized as (i) Active shape models and (ii) Active appearance models.
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Active shape models

Active shape models (ASMs) are statistical models of the shape of objects which iteratively

deform to fit an example of the object in a new image, developed by Tim Cootes and Chris

Taylor in 1995. Regarding lung fields segmentation, in [61], Van Ginneken et al. modified the

ASM method [62] and reported ’ASM with optimal features’ for segmenting lung fields CXR

images and cerebellum and corpus callosum from magnetic resonance imaging brain images. To

segment the lung field, they constructed an initial shape model by manually marking a collection

of landmark points on CXR. The landmarks are iteratively shifted to their best positions such

that one side of the curve, formed by interpolating the landmarks, contains local optimal image

features belonging to the lung region, and the other side does not. The local optimal image

features are obtained from the training images using feature selection and a nonlinear kNN

classifier. Choosing to use the optimal local features over the normalized first-order derivative

profile used in the traditional ASM method appreciably improved the method’s performance.

However, its computational complexity is much higher than that of the traditional ASM method.

Yuan et al. [63] reported an image segmentation method in which gradient vector flow

(GVF) is applied to steer the shape of a randomly initialized curve. The control points are

updated using the magnitude and direction of the gradient vectors. Indeed, since the GVF of

an image is independent of the evolving curve, the curve does not get trapped in local optima.

Xu et al. [64] adapted the method proposed in [63] for lung field segmentation. They found

that the point evolution equation employed in the GVF method is linear and inefficient for

segmenting blurred lung boundaries. They revised the GVF-based ASM method by using a

nonlinear global GVF function for model fitting. Because of this, adaption the overlap measure

of the proposed method increased by 3% from that of the GVF-based ASM approach and by

5% from that of the ASM-based method. In the ASM-based methods, the landmark points

used to create the initial lung boundary are manually selected. The authors of the following

ASM-based methods[66] applied additional pre-processing steps to obtain the landmark points

automatically. Iakovidis and Savelonas [65] presented a method in which the landmark points

are automatically identified using rib cage endings. Subsequently, these points are interpolated

using Bézier curves to set the initial lung boundary. The ASM model is then implemented

to evolve the lung boundary and segment the lung field. The method has the advantage of

automatically detecting landmark points of the initial lung boundary. However, this detection

is highly challenging and erroneous, especially in low contrast CXR images. Furthermore, the

method gives poor segmentation results when the lung is hugely deformed or collapsed because

the initial lung boundary approximated using rib cage endings will not be near the actual lung
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boundary.

Lee et al. [67] presented an innovative way to initialize the lung boundary by fitting the mean

shape estimated over a set of training images inside the lung ROI given by exploiting HVPP

analysis. The initial lung boundary is adapted by a variant of the ASM technique that uses

k-means clustering and shape-based cluster validation technique. This modification does not

provide any significant performance improvement. Wu et al. [68] proposed a method in which

the initial lung boundary is estimated similarly, where the ASM’s objective function is redesigned

and consists of a weighted grey-scale appearance model’s cost function, an edge constraint,

and a distance constraint. The weighted component gives significance to the neighbors along

with the directions perpendicular to the lung contour. Distance and edge constraints help

improve convergence and prevent the model from getting trapped in the stomach gas region.

The method accuracy on the JSRT dataset is 94% and is 4.4% better than the traditional

ASM- based method and 2.7% better than ASM with local invariant features. The mean

shape used to initialize the lung boundary in the method is population-based and not patient-

specific. Thus, the method does not perform well when a specific CXR has considerable lung

deformations. Shi et al. [69] introduced a deformable model that applies both population-based

and patient-specific shape statistics to segment the lung field. In fact, in the initial phase,

the model relies more on population-based statistics, but as it evolves, the patient-specific

statistics start playing a predominant character in constraining it. Another central feature of

this method is that the deformable model uses scale-invariant feature transform (SIFT) features

more distinctive than gradient and intensity features. Nevertheless, the usage of SIFT features

increases the computational complexity. Dawoud [70] proposed a method that considers both

the intensity-based thresholding and shape information in an iterative framework. Initially, a

parametric model for lung shape is derived from the training images. The model is then used

to optimize iterative thresholding-based segmentation of the lung field. For a test image, the

outputs of iterative thresholding are compared with the initial model based on Mahalanobis

distance to achieve the most similar output. At last, ASM is applied to refine the output.

The characteristic of the method is that it maximizes the information utilization by combining

intensity information with shape one. The method has revealed better results than ASM.

Nevertheless, a limiting requirement of the approach is that the resolution of the test image

should be the same as that of training images. Zhang et al. [68] proposed a similar method in

which intensity information and shape analysis are used to initialize the lung outline, modified

using the ASM method. In setting initial landmark points sufficiently close to the target contour,

Xu et al. [66] used global edge and region force (ERF) analysis to initialize the lung boundary.

The optimization strategy also uses the global ERF field to evolve landmark points and pulls the
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landmark points out of local optima. The algorithm’s convergence is individuated by specifying

either the number of iterations or the Euclidean distance threshold between two consecutive

iterations. The method’s accuracy on the JSRT dataset is 95.2 and is five better than the

traditional ASM-based method. The reliance of the method on the global ERF field rather

than local features during the evolution stage is advantageous as it removes the prerequisite of

placing initial landmark points close to the target lung contour, and it is unnecessary a manual

adjustment of pose parameter.
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Appearance-based models

A limitation of ASM is that it considers only the shape of an object and not the appearance, tex-

ture, or grey-level variations across the object. This deficiency is filled by an extension of ASM,

known as AAM, which concerns both the appearance and shape of the object while constructing

preliminary analysis. They are, in fact, more robust than ASM but are more computationally

expensive. . Li et al. [72] proposed a segmentation method based on shape and appearance

models. In this method, the shape model is initialized by performing HVPP analysis and is

iteratively evolved using multi-scale and multi-step-size strategies. This strategy enhances the

searchability of the approach and prevents the evolving curve from getting stuck in local max-

ima. The appearance model (AM) employs multiple features with different weights to describe

the lung boundary and increases segmentation accuracy. The multi-scale and multi-step-size

strategy augmented with multiple features gives favorable results. However, in some cases, it

creates a sham border near the real one due to overlapping ribs inside the lung field. Shao

et al. [73] presented a joint shape and appearance-based method for lung field segmentation.

A robust shape initialization approach using a learning-based landmark detection method is

used to achieve the initial lung model. About 14 landmark points on lung boundary are initial-

ized, and for each landmark point, a specific landmark detector is learned via cascade learning

[76]. Instead of relying on a single shape model, the method divides the lung shape model into

segments according to local shape variations and spatial positions to form local shape models.

Similarly, the lung boundary is split into several segments according to appearance cues and

spatial distances to establish a local appearance model. In the end, a hierarchical deformable-

based framework is used to integrate scale-dependent shape and appearance information for

robust and accurate segmentation.

In conclusion, ASM and AAM do not perform well at widely varying shapes, require proper

initialization for a successful convergence, and the output boundary strongly relies on tuning

the parameters. Moreover, for lung region segmentation, the algorithm can get trapped at local

minima due to strong rib cage and clavicle bone edges.
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2.3.5 Pixel classification methods

In these algorithms, each pixel is labeled and considered as a lung or a non-lung pixel using

a classifier, like support vector machines and shallow neural networks trained with CXRs and

their corresponding lung masks. Since the early 1990s, this kind of machine learning technique

has been extensively used to segment various anatomical structures such as the brain, spine,

lungs, liver, kidney, and colon [77], and these approaches are based on training a binary or multi-

class classifier using a large annotated dataset. Specifically, the training is based on anatomical

structure’s distinctive shape, appearance, size, pose, location, and structural relationship with

other anatomical structures [79]. Therefore the trained classifier then exhaustively classifies

each pixel as either belonging to the background or anatomical structure. However, a properly

trained classifier responds to the test data with the same error as the training data. Thus,

if training data are the correct representation of the test cases, the properly trained classifier

labels the pixels accurately and segments the anatomical compartments precisely. Nevertheless,

training a classifier properly for anatomical structure segmentation is surprisingly tricky. Apart

from the difficulties in achieving sufficient annotated medical training data of variety and high

quality, the process of taking relevant features and their representation is cumbersome and

resource-consuming.Genarl workflow pipeline is shown in Fig 2.6.

Figure 2.6: General Pipeline of Pixel Classification Methods
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In these methods, the feature extraction process is automatic, and the segmentation is

based on the possibility of learning from the characteristics of the images themselves. The

primary challenge with these methods is determining the appropriate class of features to be

extracted and robustly extracting them. McNitt-Gray et al. [77] used linear discriminant

analysis (LDA), k-nearest neighbors (kNN), and feed-forward back-propagation neural network

classifiers to classify each pixel of a CXR into one of several anatomic classes, namely heart,

upper mediastinum sub-diaphragm, lungs, axilla, the base of head/neck, and background. Each

classifier is trained on a small custom dataset of 17 CXRs exploiting 59 grey-level-based, local

texture-based, and local difference-based features and finally tested on a separate set of 16 CXR

images. The percentage of pixels correctly classified by KNN, LDA, and NN classifiers are 70,

70, and 76, respectively. In [78], McNitt-Gray et al. investigated the effect of the quality and

number of features on the performance of different classifiers. In order to determine the impact,

they individualized eight best features from the 59 implying stepwise discriminant analysis and

eight features (not including the best) randomly. Moreover, the classifiers are re-trained using

the selected feature sets, and their performance is evaluated.
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They realized that the performance of classifiers trained using eight best features is compa-

rable with their respective classifier trained with the complete feature set, while the classifier’s

performance using eight randomly selected features is substandard. The feature selection step

also saved a substantial amount of training time. These findings stress the profound impact of

features on the machine learning algorithm’s ability to create a good classifier model. Instead of

using these methods, Tsujii et al. [79] used adaptive-sized hybrid NN (ASHNN) along with rela-

tive pixel addresses, normalized density, and histogram equalized entropy features. The network

is trained on 14 images and evaluated on 71 images acquiring 92% accuracy. The employment

of a small training set led to the overfitting of the classifier. Nevertheless, the use of ASHNN

is advantageous as it can learn quickly and automatically adjust the number of layers. Similar

to [79], Vittitoe et al. [80] segmented a CXR into the lung or non-lung region using spatial

and textural information. However, their approach is diverse regarding how this information

is modeled. They used Markov random field (MRF) modeling to incorporate spatial and tex-

tural information via potential functions parameterized, implying spatially varying probability

distributions. These distributions are empirically deduced from a training set consisting of 115

CXRs. In conjunction with MRF modeling, iterative conditional modes techniques are used to

classify each pixel of the CXR optimally. Then when evaluated on a separate test set of 115

CXRs classified 94.8% pixels correctly, which is better than [79, 81].

It performed better because the MRF model provides a flexible and powerful way to capture

textural and local spatial information [83]. Vittitoe et al. [80] demonstrated the flexibility of the

approach by segmenting the CXR into six anatomical regions lung, sub-diaphragm, heart, sub-

diaphragm, body, mediastinum, and background. In multi-class anatomical segmentation, the

approach classified 90% of the pixels correctly. Although MRF modeling makes the approach

robust and flexible, it is computationally very complex and costly. The aforementioned PC-

based methods are supervised and need an extensive annotated training set for generating a

classifier model. In place of performing supervised classification, Shi et al. [84] adopted an

unsupervised approach to segment the lung field in a CXR. They employed Gaussian kernel-

based FCM with spatial constraints to segment the lung field. The method is tested on 52

CXRs taken from the JSRT dataset and attained 97.8% accuracy. Although FCM clustering is

ductile and has a solid mathematical background, it can give inaccurate results when applied

to medical images in the presence of noise, artifacts, and intensity inhomogeneity.

In contrast to deep-learning-based methods, the feature engineering for these approaches is

more intuitive. The performance of methods entirely relies on the quality of distinctive features

and is highly variable.
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2.3.6 Hybrid methods

In these methods, the best parts and features of the previous approaches are combined to pro-

duce a better algorithm to overcome the challenges of lung boundary detection. For instance, in

[83], deformable models and pixel classification approaches are combined with majority voting,

and a better boundary detection performance is reported. In [84], an atlas-based system is used

in which the model atlases are registered to the patient CXR using the SIFT-flow algorithm

and combined with graph cut boundary detection. Furthermore, Tuan Anh Ngo and Gustavo

Carneiro[87] proposed a new methodology for lung segmentation in CXR using a hybrid method

based on a combination of distance regularized level set and deep structured inference. Using

the publicly available Japanese Society of Radiological Technology (JSRT) dataset, they show

that this approach produced accurate lung segmentation results in the field. Wan Ahmad, W

Mimi Diyana, and W Zak [88] realized a novel method based on oriented Gaussian derivatives

filter with seven orientations Fuzzy C-Means (FCM) clustering and thresholding to refine the

lung region. However, there are other hybrid methods for lung segmentation, but they can

be summarized in their intent to combine the advantageous characteristics of the previously

described approaches with improving state-of-art performances. Therefore, their consideration

is paramount for accurate lung segmentation.
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2.3.7 Deep learning Methods

Thanks to advancing computational power and large amounts of data, deep learning has become

the default machine-learning method [89] used because it can determine significantly higher

complex patterns than traditional machine-learning methods or segmentation methods. Deep

learning has been a determinant and vital asset to foster Artificial Intelligence (AI) in the

recent few years. It has performed remarkable or yet superior human-level performance on

image classification [90], speech identification [91], and reading knowledge [93]. Therefore, this

is particularly essential for the field of medical imaging analysis. In recent years, with the

warming up of deep learning research, Convolutional Neural Network (CNNs) have attracted

researchers tremendously in image processing. Its high efficiency in the patterns extraction

model generated by learning makes it highly accurate for image segmentation. In all deep

learning approaches, CNNs are of prime concern. By utilizing confined connectivity patterns,

such as those employed in the ImageNet competition Krizhevsky et al.[94], CNN’s have fast

enhanced the state-of-the-art approach for image processing. The current CAD systems must

provide accurate and efficient diagnosis and deal with various medical images.

With advances in GPU technology, computer vision systems designed with deep neural

networks trained on an amount of data have been shown to produce more accurate results

than conventional approaches. In deep learning algorithms, input data are processed through

deep convolutional layers, which learn feature representation hierarchically, starting from low-

level to more abstract models. Especially, convolutional neural networks (CNNs) have received

considerable attention in image analysis problems since they preserve the spatial relationship

between the image pixels. Deep neural networks and convolutional neural networks use, de

facto, multiple linear and non-linear processing layers to perform pixel classification . However,

no consensus has been among the researchers on the minimum number of layers that a network

should prevent from being classified as a shallow network rather than a deep network. Schmid-

huber [97]labels networks with a depth greater than two hidden layers as ’deep networks ’ and

more profound than ten as ’very deep networks.’
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For a given problem, the depth of a deep network or the number of hidden layers is estab-

lished intuitively and is one of the paramount hyper-parameters, and it is a quantity that cannot

be learned from the data. Fig 6b illustrates a deep network, with a depth of four hidden layers,

in which each successive layer of the network learns features from the previous layer to learn

more complex features. It is practically impossible to extract such complex features intuitively,

and thus, deep-learning-based feature extractors have effectively replaced hand-crafted feature

extractors. The most commonly used deep learning model, the deep convolutional neural net-

work (D-CNN), has outperformed state of the art in many visual recognition tasks [2], and has

been used in the medical image analysis domain for brain tumor segmentation [3, 4], pancreas

segmentation [5, 6], detection of mitotic cells [7-8], knee cartilage segmentation [9], pulmonary

embolism, and detection of chest pathology [10, 11] during the recent years. Despite the popu-

larity and acknowledgment of deep learning algorithms in medical imaging, not so many studies

have been reported in the literature for lung field segmentation in CXRs. A recent study uses

a semantic segmentation approach [12] in which the input is a CXR image and the output is a

map indicating the lung region of each pixel. In [13], researchers proposed using fully convolu-

tional networks (FCN) [14] for segmenting lung and heart regions. A full convolution network

is an encoder-decoder architecture. The encoder models and patterns the semantic information

in the image; the decoder recovers the location information lost during the pooling process and

produces a map containing the lung region probability of each pixel. FCN makes, in fact, a

rough map due to its elementary decoder architecture. Therefore, researchers [13] applied ar-

chitectural modifications and adjustments by adding a drop-out layer after every convolutional

layer, re-ordering the feature maps, and replacing pooling layers with convolutional layers. Al-

though the application of CNN for lung field segmentation dates back to 1994 [91], Kalinovsky

and Kovalev [110] recently employed SegNet, a semantic pixel-wise image labeling network, for

lung boundary detection. They used a neural network is a four-layered encoder-decoder CNN

(ED-CNN), having four encoders and four decoders. The encoders map high-resolution images

to lower resolution feature maps, while decoders perform vice versa. In comparison, a fully

connected softmax layer performs the classification. When tested on a dataset consisting of

354 images from two sources, the network gives DSC 96.2%. The most significant advantage

and aspect of the method are that the generated output is the same size as the input image.

Long et al. [112] retained the advantageous feature of SegNet and built a fully convolutional

network (FCN) that takes an input of the arbitrary size and produces an output of the same

size. In this application, the contracting layers in FCN are supplemented by successive layers, in

which upsampling operators replace pooling operators. The proposed network architecture has

multi-resolution layer combinations that appreciably improve the state of the art while speed-
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ing up and simplifying the learning and inference. Ronneberger et al. [113] modified FCN by

bringing symmetry in contracting and expanding paths. In this way, they created a U-shaped

architecture and named it as U-Net. U-Net vastly augments the training images by applying

elastic deformations, drastically reducing the number of images required for training and the

dimension of the training set. It outperforms the prior best available method in segmenting

neuronal structures in electron microscopic stacks. In recent years another interesting deep

learning approach based on generative models was investigated for lung field segmentation. In-

deed, in [114], researchers proposed using a generative adversarial network (GAN) for lung field

segmentation in CXRs. GANs concerns two networks: a generator and a discriminator. For

segmentation problems, the generator produces artificial lung masks using manually delineated

lung regions; the discriminator produces an extrapolated probability if the map is synthetic

or from a ground-truth mask set. According to the probability, the discriminator guides the

generator to generate masks more similar to the ground truth masks. This generative approach

achieves the appreciable dice coefficient percentage to 95,1% on the JSRT dataset. All proposed

DNN-based approaches perform as well as inter-observer performance for lung region detection.

However, these methods need an enduring training process and require high computational

complexity. Moreover, the satisfactory performance of a deep learning approach is given thanks

to the large set of annotated data. It is a critical issue, especially for the acquisition and manual

segmentation of CXR images.

Figure 2.7: Example of hierarchical feature learning by a deep neural network
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2.4 Use of apriori information

2.4.1 Introduction

In Latin, apriori means ”what comes first.” A priori understandings are the assumptions that

come before the rest of the assessment, argument, or analysis. Apriori information encompasses

all that knowledge that is extrapolated or learned before any cognitive or heuristic process. In

the image processing and segmentation context, ”Biocybernetics and Biomedical Engineering”

[121] journal defines apriori information or knowledge as the combination of anatomical infor-

mation about the shape, appearance, and gray-level distribution of the pixels, completed by

annotations about the parameters used to tune or guide the segmentation method. A priori

knowledge is an essential part of the development of pattern recognition systems and segmenta-

tion methods. The proper use of a priori knowledge allows a higher recognition algorithm than

the typical usage level. Indeed this involves preventing errors and correcting them based on the

apriori information acquired. Apriori information can take many forms: user interaction; ap-

pearance models; boundaries and edge polarity; shape models; topology specification; moments

(e area/volume and centroid constraints); and distance prior between different regions/labels;

and atlas or pre-known models. We will explore more significant attention segmentation frame-

works that can incorporate apriori knowledge on expected shape in our context. The latter is

also intended also, shape prior information or apriori shape information. When segmenting or

localizing an anatomical structure, apriori information about the expected shape of that struc-

ture can significantly aid in the segmentation methods. Indeed these can benefit from using

this information regarding the object’s shape to be segmented to increase robustness against

noise and occlusions. The shape knowledge may be incorporated by first constructing a sta-

tistical shape model from training cases and then constraining the segmentation results within

the learned shape space. The shape space can be constructed with statistical analysis, e.g.,

with tools such as principal component analysis (PCA), isomap or Local Linear Embedding

(LLE), Laplacian Eigenmaps. Usually, this shape statistic is taken into account in standard

active contour algorithms. Fortunately, with the successful application of artificial intelligence

(AI) in image processing, many challenging augmentation tasks are easily solved with deep

convolutional neural networks. However, it has been shown that incorporation of shape prior

information significantly improves the performance of the deep learning methods involved in

segmentation tasks. Nevertheless, in these segmentation techniques like CNNs, it is tricky to

incorporate such prior knowledge. On this premise, in the following sections, related works

based on a priori shape information were illustrated and detailed.
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2.4.2 Apriori shape information

The shape of an object is a geometrical description of the object boundary, and it plays an essen-

tial role in computer vision tasks such as recognition, segmentation, and tracking. In the context

of image interpretation, apriori knowledge of the object of interest (color, texture, shape) is very

useful in distinguishing the object from the background. In particular, incorporating the shape

information in the segmentation task shows significant advantages of improving the accuracy

and robustness of the algorithms when the appearance features of the object in the image alone

are not sufficient due to noise, background clutter, or partial object occlusions. Therefore, it is

indispensable and critical to building a shape model representing the prior shape knowledge of

the object class, and it should be easily incorporated in solving the vision tasks. Shape mod-

eling is a very challenging task due to the shape variability of the object of interest. A simple

way to represent the apriori information is to use a shape template, a typical shape example of

the object of interest. However, it is not specific to describe the object class with considerable

natural variability. For example, the shape of the human organ shows both inter-individual

variability (differences within populations) and intra-individual variability (differences of the

same subject in tests taken at a different time or in other conditions). to construct a reliable

shape model with information about the typical variation of the learned class, a straight direc-

tion is to gather this information by statistical means from several observations of the object

(as many as possible), which leads to statistical shape models (SSMs). In this light, statistical

shape analysis or statistical shape models had applications in various fields, including medical

imaging, computer vision, computational anatomy as it analyzes the geometrical properties of

a given set of shapes by statistical methods. Paramount aspects of this analysis are obtain-

ing a measure of distance between shapes, estimating mean shapes from (possibly random)

samples, shape variability, performing clustering, and testing differences between shapes. Al-

though statistical shape modeling is a well-studied problem, generally, it consists of two critical

components: A mathematical definition of the shape representation for statistic analysis and

constructing a statistical model that describes the observed shape variations from a training

set. For this reason, Various statistical models have been proposed to learn the apriori shape

knowledge or information from a training set of the shape instances. Indeed, these models aim

to represent the shape variation by linear or non-linear representations and globally or locally.

Therefore most of the developed methods will be reported in the next section.
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2.4.3 Use of apriori information in segmentation methods

A priori shape information has been used for medical image analysis for over two decades.

The first approaches were based on the simple observation that a two-dimensional anatomical

shape usually has a boundary that a smooth curve can well represent. In this regard, Kass

et al. [60] introduced Active Contours or ”snakes” based on this simple shape. Indeed the

curves describing the shape information have been assumed to satisfy additional criteria based

on minimizing bending energy in these methods. However, the idea to learn the properties

of a shape from examples was initially formalized in the field of statistics by Dryden and

Mardia [120] and later applied for image analysis by Cootes et al. [121, 126, 62]. In these

models, known as the Active Shape models, the shape is relatively crudely represented as several

manually selected landmark points in two dimensions. Only later, Blanz and Vetter extended

Active Shape Models to three dimensions and used a dense set of points to define the shapes

[122]. These models are known as 3D deformable models. In this context, active shape models

and deformable models have since been used successfully for many tasks in computer visiion,

computer graphics , and medical imaging, and in current image analysis literature, Active shape

models and deformable Models are often not distinguished anymore. The term statistical shape

models summarize, in fact, all these models. In general, the Active Shape Model (ASM) [12]

is one of the most well-known methods in statistical shape modeling. This approach models

the shape variations in a Point Distribution Model (PDM), which is learned in the following

steps: Firstly, given a training set, each shape sample is represented by several points with

correspondences across the training set; Secondly, an eventual alignment of the training shapes

in a standard reference frame using Procrustes Analysis [127] has to be performed to eliminate

pose variations. Third, the mean shape of all aligned training samples can be computed, and the

variation modes concerning the mean shape are calculated by linear analysis such as principal

component analysis (PCA). At last, the shape model is represented by a linear combination of

the most prominent modes of variation. Furthermore, using bounded coefficient parameters,

new shape instances can be generated to remain in the allowable shape domain (ASD) to

look like those in the training set. This strategy was successfully applied to various types

of shapes (faces, hands, organs, anatomical compartments), and for this reason, the point

distribution model has become a standard in statistical shape modeling, particularly in the

context of medical image segmentation. However, the application of the PDM strategy involves

some disadvantages. One main drawback of this model is that it represents the shape variations

globally since each mode of variation simultaneously influences all the shape variables. This

global effect limits the shape model to have the flexibility of controlling local variations, which
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is one of the desired properties in shape analysis or diagnostic purposes. To obtain variation

modes that only affect a limited number of local landmarks, the orthomax method employed

by [123] rotates the PCA modes to increase sparsity while maintaining the orthogonality of

components. Another solution is Sparse PCA [123] which obtains the sparse modes and produces

near-orthogonal components. Independent component analysis (ICA) [125] does not assume a

Gaussian distribution and delivers statistically independent projections without orthogonality.

These PCA-variant methods, however, provide no natural ordering for the various modes. Thus,

different techniques have to be employed. Another practical issue in the PDM approach is

that it is problematic to represent the full range of shape variations in high-dimensional space

from a small training set. The size of the training set is always relatively small since the

available images, and their required manual segmentation is not easy to obtain, especially in

3D cases, while the maximum number of eigenmodes can not exceed the number of the training

examples minus one. [133] addressed this problem by introducing additional synthetic variance

and covariance directly to the covariance matrix and coupling the movements of the neighboring

points along the boundary. On the other hand, focusing on the shape representation, point-based

or landmark-based representation (PDM) [128, 134], implicit representations [135], superquadric

model [136], medial model [137], Fourier surface [138] are different examples to embody shape

apriori information. Indeed, based on the shape representation of these methods, the statistical

model is mainly represented either by a mean shape and the principal modes of variations or

by a probability density function. The most popular method used in the former case is, as

seen above, principal component analysis (PCA), and it is a variant [139], which approximates

the shape by a linear combination of the most significant modes of variations. In the second

case, Gaussian probability density function [139], Gaussian mixture models [141], kernel density

[142], as well as manifold learning [143] have also been employed Nevertheless, the PCA-based

shape modeling methods are the most referenced and the most intuitive way to represent the

shape variations even if these methods can be applied directly to a point-based representation

and other shape descriptions. [143] used Fourier parameterization of the object surface [144]

and implemented principal component analysis (PCA) in the Fourier coefficient space. Closely,

[145] expanded surface representation into a series of spherical harmonics (SPHARMs) and

calculated shape eigenmodes in the shape parameter space. [146] used wavelet transform of

the object contour and built a hierarchical shape model via PCA on the coefficients in each

band, and [177, 148] used spherical wavelets to extend this approach to 3D cases. Moreover,

implicit shape representation given by the level set framework is another popular and essential

choice in shape representation, where the contour of the object is embedded as the zero level

set of a higher dimensional surface. The embedding function is often chosen as signed distance
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maps. Indeed [142], Leventon-Grimson-Faugeras were the first authors to incorporate shape

information into the segmentation process based on active contours intrinsically represented

by a level set function. The shape model used by the authors is the principal components

analysis (PCA) that aims at capturing the main variations of a training set while removing

redundant information. In particular [149] represented each training shape as a signed distance

map sampled at regular intervals and performed PCA on the signed distance maps to build the

shape model. [146] also applied PCA to collect signed distance representations of the training

set and optimized the shape parameters directly in the segmentation process. Based on this

global statistical representation, [137] considered a more challenging shape model that accounts

for local variation. A common criticism of performing PCA on signed distance maps is that it

can lead to invalid shapes since distance maps do not form a linear space. [179] addressed this

problem by embedding the signed distance map manifold into the linear LogOdds vector space

and applying PCA on the latter space. Furthermore, as a linear model, PCA cannot adequately

model non-linear shape variations such as bending and shape variations of an articulated object.

[133] estimates the probability density function of the distribution of shapes as a mixture of

Gaussians to deal with this problem. Kernel Principal Component Analysis (KPCA) [144]

introduces a non-linear mapping of the data to a feature shape, and PCA is performed in the

feature space, and it was applied by [152] to the task of constructing non-linear ASMs. KPCA

has become suitable for implicit shape representation [142] since it solves the problem that

signed distance maps do not form a linear vector space. Manifold learning is also used to model

non-linear shape prior. For example, [153] modeled a category of shapes as a shape apriori

information manifold using Diffusion maps which generate a mapping from the original shape

space into a low-dimensional space. In conclusion, this section constitutes a brief overview of

methods and their critical issues about statistical shape modeling and a priori shape information.

Additionally, we recommend a review [169] of apriori shape information for medical image

segmentation reported over fifty projects, which use some statistical shape models for medical

image analysis
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2.4.4 Use of apriori information in deep learning methods

Deep learning has revolutionized image classification , segmentation [, and many other aspects

of computer vision. In particular, recently proposed deep, fully convolutional neural networks

show excellent performance in segmentation tasks. In this context, the use of apriori shape infor-

mation could still improve, especially in some anatomical segmentation, the already promising

results of deep neural networks. Moreover, the shape-awareness could overcome the limitations

of previous deep learning approaches, which lack strong shape priors and the limits of active

shape models, which miss, on the other hand, advanced pattern recognition capabilities. In

image segmentation, the shape has been widely used in segmentation methods, like the active

shape model, to constrain a segmentation result to a class of learned shapes. Indeed, to date,

the shape information has been underutilized in deep segmentation networks. These methods do

not use any statistical shape model and rely only on the fact that the sizeable receptive field of

the convolutional neural network will perceive the anatomy of interest all at once, and therefore

improbable shapes will be predicted only rarely in these modalities. Specifically, the deep and

convolutional neural networks are trained with a pixel-wise loss function based on pixel-wise.

Therefore it fails to learn high-level topological shape information and often fails to constrain

the object segmentation results to possible shapes. However, combining shape information in a

deep segmentation network is not straightforward, and especially, incorporating a priori shape

information in deep segmentation networks is an ambitious challenge. Fei Chen [45] was one of

the first researchers to propose a deep learning model to capture shape prior information. This

latter was incorporated into two stages. The first stage uses a deep Boltzmann machine to learn

the hierarchical structure of shapes in the training set. In the second state, the learned global

and local shape variations are utilized in an energetic form to data-driven variational methods

for making the final predictions. In addition to the training data, Mohammad Tofighi et al.

[148] used a set of canonical shapes obtained via domain experts. They utilize the expected

behavior via regularization term, which penalizes false positives results, which are not inside

the boundary of the prior shape object. Zahra Mirikharaji et al. [149] came up with a new loss

term for incorporating shape priors into an end-to-end fully convolutional network, penalizing

all non-star shape segments in the output of FCN as in their task. All the training examples

have the property of star shape. This method requires expensive optimization steps at inference

time or user input information about the object center compared with energy-based approaches.

However, it is a highly task-specific solution. In [151], authors propose novel cost functions in

which they try to minimize the distance to the ground truth and the learned shape. They used

convolutional autoencoders to project the input image into a shape space. These approaches
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propose to utilize the prior shape information fully automatically, without user interaction and

additional computational costs during the inference time. A different approach intended as

a multi-network approach for incorporating shape information with the segmentation results

was proposed in [153]. It uses a convolutional network to localize the segmentation object, an

autoencoder to infer the object’s shape, and finally uses deformable models, a version of SSM,

to achieve segmentation of the target object. Another method for localizing shapes using a

deep network is proposed in [8], where the final segmentation is performed using SSM. In this

context, S. M. Masudur Rahman Al Arif et al. [152] proposed a novel, deep, fully convolu-

tional neural network based on the SSM technique. Their approach can predict shapes instead

of classifying each pixel separately, where a novel loss function computes the error directly in

the shape domain compared to the other deep networks where errors are computed in a pixel-

wise manner. In this paper, apriori shape information is captured from the training set using

PCA, similar to well-known and aforementioned Statistical shape methods. To demonstrate

the potentiality of the proposed method, the authors applied this neural network to a series

of cervical vertebrae proving the effectiveness of this implementation. Fausto Milletari et al .

proposed in [164] to integrate statistical shape apriori knowledge obtained through PCA into

a deep neural convolutional network. Where PCA layer incorporates the modes of variation of

the data at hand and produces predictions as a linear combination of these, it employed this

approach to two different ultrasound dataset depicting the human heart and segmenting the

left ventricle area, verifying that the proposed architecture improves the robustness and validity

of the segmentation results and multiple measurements. On the other hand, Adrian V. Dalca

et al. [165] introduced a generative probabilistic model that employs the learned shape prior

through a convolutional neural network to compute segmentation in an unsupervised setting.

In this method, the integration of anatomical priors can facilitate CNN-based anatomical seg-

mentation in a range of novel clinical problems, where few or no annotations are available and

thus standard networks are not trainable. From these methods, it appears that the informa-

tion can improve the accuracy and robustness of some deep learning methods and increase the

computational cost and complexity of the latter.
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2.4.5 Use of apriori shape information in lungs fields segmentation

Lung shape analysis

Lung shape and variations are among the most riveting topics in the medical-radiological and

CADX systems applying segmentation algorithms. The shape information can be used in the

diagnosis of disease, determine the stage of illness, motion prediction, motion tracking in treat-

ment planning, registration for better treatment and segmentation, Usually, the regular varia-

tions of the lung shape are interpreted as a normal lung and their physical functioning during the

breathing. In contrast, abnormal variations of the lung shape can result from severe pulmonary

diseases such as Sars-Cov-2. Specifically, lung shape variation is significant to radiologists who

segment, interpret and analyze the radiological images [2]. In this regard, Hayashi et al. [154]

showed that the knowledge of the variation of the lung is necessary to identify different images

of related abnormalities. Aldur et al.[155] concluded that a surgeon should always recognize

the variation of the lung with the support of the CAD system before committing lobectomies

and segmental resection for patients. Moreover, in clinical trials, lung shape analysis can pro-

vide valuable qualitative and quantitative information from pulmonary disease patients .Since

anatomical lung shape variation may lead to misunderstanding in different imaging techniques

or misleading the diagnosis, sufficient knowledge is necessary for detecting related abnormalities

in various imaging techniques and associated segmentation processes.

Indeed, lung shape analysis intended as a quantitative description of normal or abnormal

lung shape, inter-subject variability, and age-related or disease-related differences is essential

for several reasons. First, diseases with an age-related prevalence that affect the lung tissue

can develop with a regional preference; for example, preferentially apical for emphysema as a

component of chronic obstructive pulmonary disease (COPD) or subpleural basal for idiopathic

pulmonary fibrosis (IPF). In IPF, this has been proposed to be related to locally high shear

stress[167], which depends on the degree of lung inflation and change in the shape of posture and

chest wall expansion during breathing. Detailed testing of this hypothesis has been limited by a

lack of description of the ordinary and pathological lung shape. Second, mechanical changes to

the lung tissue and chest wall accompany COPD or IPF affect the functional deformation of the

lung tissue during breathing or breath-hold. In this context, lung shape and the related spatial

distribution of abnormal tissue could hold prognostic information for staging or stratifying

patients with these conditions. Finally, information on shape would improve automated image

processing and segmentation methods, for instance, for detecting pulmonary fissures, where

fissure integrity is a paramount predictor of outcome for endobronchial valve treatment of severe

emphysema.
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All these considerations provide insight into how shape information is essential in detect-

ing and diagnosing certain diseases. Moreover, the previous sections evinced how it could be

appropriate to incorporate shape knowledge as apriori information in the main segmentation

approaches. As illustrated in [116], the effective modeling of apriori shape information is chal-

lenging because shape variation is complex and cannot always be modeled by a parametric

distribution, and a shape instance derived from image appearance may have gross errors, Last

but not least, local details of the input shape are difficult to preserve if they are not statistically

significant in the training data. Biological shape variations in the lung compartment are often

complex and highly challenging to interpret or explicate, In this perspective, an SSM provides a

mathematical description of an object’s shape and how its shape varies. It captures the global

shape of the object of interest instead of using fixed geometric measurements such as lengths

and angles. The statistical shape model (SSM) technique analyzes geometrical properties based

on some given set of shapes via statistical methods with some crucial aspects, such as estimating

the distance between the shapes, qualifying and quantifying the differences, and representing the

mean shape among samples and their variability. SSM has many applications in medical image

analysis to interpretation, recognition, classification, and especially segmentation. The active

shape model (ASM) is one of the best model-based medical image segmentation approaches and

bases its implementation and operation on statistical shape modeling. In recent years, ASM is

widely used to model appearance, shape variations, and detect anatomical structures [45-47].

The ASM technique, which Cootes et al. [48, 49] developed, is limited to medical objects and

can be used in a non-medical context. [46]. Based on the importance of this method for the anal-

ysis of apriori shape information, this technique is briefly reviewed as follows: A shape model,

a gray level appearance model, and a matching algorithm are the essential components of the

ASM technique [45, 48]. The shape model, a template of the region of interest, is represented as

a distribution of points known as a point distribution model (PDM). Statistical variation of the

shape in the training set encodes via PDM. Subsequently, PCA is applied to the shape vectors

so that the shape model can be approximated and inferred, This process quantifies the average

lung shape deriving a statistical average model and its principal modes of shape variation, such

that the weighted sum of these components can retrieve back the object’s shape. However, this

approach allows extrapolating only the linear variations, not sometimes involving a complete

description of lung shape information.
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Segmentation methods

Segmentation is one of the most critical problems in medical imaging literature and is a fore-

most step of the computer-aided diagnosis (CAD) of lung diseases is the detection of the lung

field. Accurate shape analysis of the lung can be an essential component in the segmentation

process involving classification or clinical quantifications. Indeed lung shape analysis from dif-

ferent imaging systems for various applications has been studied in recent years. Klinder et

al. [180] presented a prediction framework using 4DCT datasets for patient-specific modeling

via a statistical motion model to predict respiratory lung motion. El Baz et al. [159] studied

3D lung shape analysis using 3D low dose CT datasets via spherical harmonic shape analysis

to diagnose malignant lung nodules early. Zhang et al. [161] presented robust and effective

lung shape modeling using CXR datasets via sparse learning-based shape prior modeling for

lung localization and segmentation. The goal of this study is twofold: (1) represent two lung

shape models which are different at the reference points in the registration process considering

to show their impact on estimating the inter-patient 2D lung shape variations and (2) using the

obtained models in lung field segmentation by utilizing active shape model (ASM) technique.

Awais Mansoor et al. [160] introduced a hybrid principal component analysis (PCA)-DL-based

approach for including apriori shape information for deformable object segmentation. In this

method, a module named marginal shape deep learning (MaShDL) transforms the iterative pro-

cess of the conventional SSM-based segmentation methods to a recursive marginal refinement

approach and, precisely, begins by learning the mode of shape deformation in the eigenspace of

the most prominent variation and then marginally increases the dimensionality of eigenspaces.

The framework was evaluated using a comprehensive CXR dataset and demonstrates outstand-

ing potential for generic applicability. Li et al. [143] presented a 2D lung inter-patient variation

from CXR datasets for automatic lung field segmentation using statistical shape and appearance

models. Lopes et al. [167] studied lung shape analysis from CXR datasets via a pre-trained

convolutional neural network as feature extractors for tuberculosis detection. Gang et al. [168]

studied lung shape analysis from CXR datasets to dimensionality reduction in deep learning to

analyze lung cancer. Cheimariotis et al. [165] presented automatic lung segmentation in venti-

lation/perfusion lung SPECT datasets via active shape model trained on reference lung shapes

from CT datasets. Afzali et al. [166] studied lung shape analysis using Fourier descriptors

(FDs) to estimate inter-patient 2D lung shape variations from CXR imaging datasets. Nakao

et al. [176] studied lung shape analysis from CT datasets via model-based shape matching

(Laplacian-based shape registration) for lung surface deformation analysis. Souza et al. [177]

proposed a different view of lung shape analysis using deep neural net work on CXR images to
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perform an automatic CXR lung segmentation. Gaal et al. [178] presented lung shape analysis

from CXR datasets using a novel deep learning-based approach to achieve a CXR lung seg-

mentation. Usman et al. [179] proposed a novel semi-automated system using a deep U-Net

architecture and lung nodule shape analysis to present 3D segmentation of lung nodules. Lung

shape, therefore, potentially provides a prognostic marker of lung health or accelerated aging;

it could provide a straightforward means for staging or stratification of lung disease. However,

to distinguish between normal and abnormal lung shapes, a quantitative description of the

standard or not- standard shape and variability is the first step required in the segmentation

process. Nevertheless, the method or strategy for accomplishing this analysis is of paramount

importance.
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Materials & Methods

Materials & Methods

©

This section is one of the most significant as it illustrates the main methods and materials availed

in this thesis. Materials define the datasets handled to train and test the neural network with

the preprocessing operations apt to conform the data or better the images to the used methods.

In addition, attention is paid to the AIforCovid dataset, as it is one of the few datasets available

that includes data and images from covid-19 positive patients. Regarding the methodology, we

detail the proposed method termed ”SP-net” in its main aspects and fundamental concepts to

extract and process the apriori information extracted from the training dataset . In this respect,

the section deals with the comparison method considered as the state of art and identified as

deep neural network U-net.

©
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3.1 Introduction

Datasets are an essential part of deep learning research and play a crucial role in developing

any segmentation method based on a deep neural network. However, datasets consist primar-

ily of images for this task and require label data for supervised and semi-supervised learning

algorithms, which involves considerable effort and time for labeling operation. Datasets for

unsupervised learning can also be onerous and costly to produce, although they do not need to

be labeled. The aim of the proposed method is the segmentation of lung field X-ray images. In

this perspective, for neural networks training based on supervised learning, two datasets have

been used: Just and Montgomery county datasets. These are two publicly available datasets

with lung field annotations and come from two different countries with different lung diseases.

Besides, their widespread application in the relevant literature allows comparing this method

with the current state-of-the-art. To evaluate the proposed SP-NET network, we used the

AIforCOVID imaging archive as a test set that hosts an extensive archive of medical images of

COVID-19 patients.
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3.2 Datasets

3.2.1 JSRT Dataset

The JSRT dataset[174] was released in 1998 by the Japanese Society of Radiological Technology.

Since then, it has been used by several researchers in the world for various research purposes such

as image processing, image compression, and computer-aided diagnosis (CAD), and training and

testing in Deep learning applications. In 2008, the JSRT database was made available online

and free of charge due to that. The dataset consists of 247 posteroanterior (PA) chest x-ray

images are acquired with a standard X-ray machine and collected from 13 different Japanese

institutions and one in the USA. Of all,154 have lung nodules, and 93 have no lung nodule.

The CXR images are scanned from films to a resolution of 2048x2048 pixels, with a grey-scale

depth of 12 bits and pixel size of 0.175 mm, and released as disc image files with img extension.

Also, the dataset contains additional information such as the patient’s age which is between 16

to 89 years, gender, X and Y coordinates of the lung nodule.

Figure 3.1: Four CXR images from the JSRT Dataset
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The manually annotated masks of CXR. images are available and retrieved from Segmented

Chest Radiograph (SCR) dataset[182] this is created by Image Sciences Institute, University

Medical Centre of Utrecht, and it has been established to facilitate comparative studies on

segmentation of the lung fields, the heart, and the clavicles in standard posterior-anterior chest

radiographs. Indeed it is built on the JSRT dataset by manually delineating the relative anatom-

ical structures’ boundaries (right lung, left lung, heart, and clavicles) in the chest area. Then,

the segmented masks are released as separate mask images for all anatomical structures in gif

extension and exact resolution as their corresponding images in the JSRT dataset. It is impor-

tant to emphasize that this dataset represents mostly regular lung masks. The reason is that,

even though the majority of patients have lung nodules, these do not alter the contour of the

lungs.

In the vast majority of literature, the segmentation is evaluated on the Japanese Society

of Radiological Technology (JSRT) data. However, this dataset covers a far narrower set of

abnormalities. It means that a method developed to segment CXRs of this dataset might not

generalize well for many irregularities. Furthermore, X-rays in this dataset appear smoother

intensity-wise due to an older imaging system. For all these reasons, the Montgomery County

dataset was also considered representative for developing and evaluating our method. Manual

masks separately for the left and right lung are also provided; these are binary images depicting

white the lung and black backgrounds.
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3.2.2 Montgomery Dataset

The Montgomery Dataset[173] was released in 2014 by the USUS. National Library of Medicine

(USNLM) collaborates with the Department of Health and Human Services of Montgomery

County, MD, USA. The dataset consists of 138 posterior-anterior x-rays, of which 80 x-rays

are regular, and 58 x-rays are abnormal with manifestations of tuberculosis. The images were

collected as part of Montgomery County’s Tuberculosis screening program. The radiographs

were acquired with a Eureka stationary X-ray machine and stored at a spatial resolution of

4020x4892, or 4892 x 4020 pixels, with a grey-scale depth of 12 bits and pixel size as 0.0875

mm, available in DICOM format. In addition, the dataset consists of separate mask images

for both left and right lungs with png extension and clinical readings for each CXR. in the

form of txt extension, which concerns the patient’s age, gender, and abnormality seen in the

lung, if any. Lungs were segmented under the supervision of a radiologist, following anatomical

landmarks, such as the boundary of the heart and pericardium, excluding the area behind the

heart and diaphragm. Furthermore, an inferred boundary was drawn when the pathology is

severe and affects the lungs’ morphological appearance. The binary lung masks were saved

using the same naming convention as used for the X-ray images and clinical readings and

separately for the left and right lung, in folders leftMask and rightMask, respectively The US

National Library of Medicine has made The Montogomery dataset available free of charge to

foster research in computer-aided diagnosis of pulmonary diseases with a particular focus on

pulmonary tuberculosis.

Figure 3.2: Four CXR images from the Montgomery Dataset
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3.2.3 AIforCovid Dataset

The AIforCovid imaging archive[2] is a novel Dataset, released in December 2020, and intro-

duced thanks to a recent project promoted by CDI Centro Diagnostico Italiano (Milan) in

partnership with Università Campus Bio-Medico (Rome), and Istituto Italiano di Tecnologia

(Genova) and several hospitals in Italy. The AiforCovid Dataset includes clinical data and CXR

images from 820 patients by six Italian hospitals in 2020 during the first Covid-19 emergency.

Moreover, each patient is associated with prognostic information related to the clinical outcome.

This dataset has been created primarily to investigate artificial intelligence’s potential to predict

such patients’ prognosis, distinguishing between severe and mild cases and offering a baseline

reference for other researchers and practitioners. To this end, the data repository is made pub-

licly available to encourage research on AI-based prognostic models and thus support healthcare

systems in the fight against the Covid-19 pandemic. All Chest X-rays collected in this dataset

were performed in Covid-19-positive adult patients at the time of hospital admission, and all

the patients resulted positive for SARS-CoV-2 infection.

Figure 3.3: Four CXR images from the AIforCovid Dataset
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On the other hand, the clinical outcome assigns each patient to the mild or the severe tar-

get. The former consists of patients intended to domiciliary isolation or hospitalized without

any ventilatory support. In contrast, the latter includes the patients who required non-invasive

ventilation support or intensive care unit (ICU). CXR images and clinical data were performed

in different hospital centers using analog and digital units, and the execution parameters were

settled according to the patient conditions. Therefore, they include common real-world issues

such as outliers, different imaging devices, poorly standardized, and missing clinical data (iden-

tified with string ”NaN”). The AIforCovid dataset contains images of patients in both lying

and standing positions. These radiographs were acquired with isotropic pixel spacing ranging

from 0.1 mm to 0.2 mm and stored in DICOM format using 16 bits. Finally, regarding image

resolution, the CXR images have different sizes in pixels: Most of them are between 2336×2836

and 3520×4280 pixels. The others have a number of rows ranging from 1396 up to 4280, while

the number of columns ranges from 1676 up to 4280.

Dataset Source Content Resolution Bit Depth Format Public

JSRT J.S.R.T. 247 CXRs 2048x2048 12 .img X
Montgomery U.S.N.L.M. 138 CXRs 4092x4892 12 .png X
AIforCovid C.D.I. 821 CXRs floating 12 .nrrd X

Table 3.1: CXR datasets used in the proposed method
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3.3 Preprocessing

3.3.1 ETL-preprocessing

ETL (Extraction-Transformation-Loading) processing is a well-known process that extracts data

from different sources, transforms those into the required format, and finally loads it into the

target data destination. In this respect, the Extraction-Transformation-Loading (ETL) process

is a preliminary and paramount step to collect data from datasets and train, verify, and tune

the new deep learning algorithms and applications. For this reason, this step was essential

to customize the images and masks for the proposed method. Regarding the JSRT Dataset,

the Japanese Society of Radiological Technology has given free access by creating a user name

and password to access the download site. It allowed us to download the CXR images as disc

image files with an IMG extension which implied specific functions to access and convert them

later to a more convenient file type. The corresponding masks were retrieved from the SCR

dataset have been downloaded from the official website: SCR database, Segmentation in Chest

Radiographs. The annotated masks have been released in gif extension and so extracted with

”scikit-image” based functions. In addition, the database provides for each image of the JSRT

dataset a single mask respectively for the left lung and the right lung. Because of that, it was

necessary to reunite the segmented masks into a single image during the extraction process.

The Montgomery Dataset is publicly available on the official website of the USUS. National

Library of Medicine. Indeed, the image files were extracted by downloading a zip file containing

both CXR images and CXR masks. These are released in png format, and because of that,

typical image processing functions were used to extract them from the source file. Also, in this

case, the masks are present separately for the two lungs. Therefore min the extraction step,

they are reassembled in a single mask for each CXR image of the dataset. The Extraction

Process for the AIforCovid dataset was a bit more complicated. The CXR images and masks

are preserved in Nrrd format to support scientific visualization and image processing. It was

possible to download the image files from Centro Diagnostico Italiano’s official website, receiving

the supervisor’s credentials. After that, the images and masks were extracted from the zip file

using an unusual package in Python based on ITK and formatted in the desired file type. Image

data extracted from the source are raw and not usable in their original form. Therefore, in the

data transformation stage, a series of rules or functions are applied to the extracted data to

prepare it for loading finally into the end target. The transformation process consists of a

precious pipeline to carry out image processing operations to customize each mask and image

according to the requirements of the proposed method. The pipeline consists of the following
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steps: image resizing, normalizing, and specifying the photometric interpretation. The masks,

instead, were just resized and normalized. The procedure has been applied to all datasets to

homogenize all images and masks according to the same scheme. This part is very crucial for

the outcome of the proposed neural network. Indeed it will be discussed in more detail in the

next section. The load phase places the data into the end target, and it is the last step of the

ETL process. Our application provides the loading of images and masks within a training set,

validation set, and test set, intending to place the JSRT and Montogomery dataset files in the

former and the Aiforcovid image files in the latter.
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3.3.2 Images Preprocessing

Introduction

Training a convolutional neural network on raw images will probably lead to harmful or in-

consistent performances. Hence the image processing is an essential preliminary task before

training the proposed model. Image preprocessing refers to all the transformations on the raw

data before it is fed to the machine learning or deep learning algorithm. Moreover, this process

aims to improve the quality of the image so that it can be better analyzed. In this case, this

procedure is limited to making sure that all the datasets’ images have the exact specifications.

Indeed, the pipeline concerns only re-dimensioning images to the same resolution, normalization

of them, and adjusting their photometric interpretation. The idea is that the neural network

can be trained on images as much as possible identified by common real-world issues. In this

sense, image preprocessing is defined by a series of operations on images at the lowest level of

abstraction. These operations do not increase image information content, but they decrease if

entropy is an information measure. Thus, preprocessing aims to improve the image data that

suppresses undesired distortions or enhances some image features relevant for further processing

and analysis tasks.
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Resizing

Resizing images is a critical preprocessing step in computer vision. Principally, deep learning

models train faster on smaller images. However, an input image that is twice as large requires

the network to learn from four times as many pixels, and that time adds up. Moreover, many

deep learning model architectures require an exact resolution, and raw collected images may

vary in size. Therefore it emerges as a process of priority importance to ensure the images do

not involve a computationally elevated cost for the network’s training and respect the standard

input of this last one. In particular convolutional neural networks need to resize the images in

the dataset to a unified dimension. It implies that raw images must be preprocessed and scaled

to have identical widths and heights before fed to the learning algorithm. In this regard, We

establish a base size of 128x128 pixels for all images provided into our deep convolutional neural

network so that this resolution does not presuppose significant time and effort in the training

process and without excessive reduction in image quality. However, the resizing operation needs

to perform interpolation of pixel values to up-size or down-size N-dimensional images. In this

perspective, the bilinear interpolation method was applied to decrease the dimension of the

images for all datasets. This method is widespread in computer vision and image processing

applications. Indeed, it can be used where perfect image transformation with pixel matching is

impossible, and so can calculate and assign appropriate intensity values to pixels. Unlike other

interpolation techniques such as nearest-neighbor interpolation and bicubic interpolation, bilin-

ear interpolation takes values of only the four nearest pixels, located in diagonal directions from

a given pixel, to find the appropriate color intensity values of that pixel. Bilinear interpolation

considers the closest two × two neighborhoods of known pixel values surrounding the unknown

pixel’s computed location. It then takes a weighted average of the four pixels to arrive at its

final, interpolated value. This algorithm reduces the visual distortion caused by resizing an

image to a non-integral zoom factor instead of nearest-neighbor interpolation, which will make

some pixels appear more significant than others in the resized image. Moreover, it is compu-

tationally less expensive than bicubic interpolation. The JSRT dataset’s images were resized

from a resolution of 2048x2048 to a standard of 128x128 pixels. Likewise, the Montogomery

dataset and Aiforcovid dataset images acquired to a spatial resolution of 4020x4892, or 4892 x

4020 pixels, were resampled to this resolution.
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Normalization

Image normalization is a typical process in image processing that changes the range of pixel

intensity values. Its purpose is to convert an input image into a range of pixel values that are

more familiar or normal to the senses, hence the term normalization. The pixel values in images

must be scaled before providing the images as input to a deep learning neural network model

during the training or evaluation of the model.

The reason behind this process is that by training our network, these initial inputs will be

multiplied with weights and added bias to cause activations that then back-propagated with

gradients to train the model. Similar ranges for input images are crucial in this perspective so

that gradients do not go out of control. Indeed, during the image preprocessing, each image’s

pixel values in our datasets were reduced to the range of 0-1 make computation more efficient.

In our application, normalization branches into two different cases. The former involves linear

normalization. It is performed according to the formula.

However, this process causes a loss of contrast in normalized images. Since some pixels with

high brightness in the normalization process result in clipping the others to low values. In most

cases, these are due to text or letters’ presence inside the images that bring no information for

network training purposes. As a result, they can be considered outliers pixels. In this context,

the second approach offers an arguable alternative to standard normalization, and it avoids

image degradation due to the latter. The following process is defined in our image preprocessing

as ”percentile normalization.” It applies standard normalization considering maximum pixel

value 95th percentile of pixel distribution and, as the minimum, the 5th one, keeping the pixel

values between 0 and 1. It is better indicated from the following formula :

Consequently, this method allows us to exclude pixel outliers from the normalization process

and not alter image contrast. Therefore percentile normalization was applied on all images of

the considered datasets.
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Photometric Interpretation

The photometric interpretation specifies how the pixel data should be interpreted for the correct

image display as a monochrome or color image. To define if color information is stored in the

image pixel values, we introduce the concept of samples per pixel (also known as the number

of channels). Monochrome images have one sample per pixel and no color information stored

in the image. Nevertheless, a scale of shades of gray from black to white is used to display

these images. The number of shades of gray depends clearly on the number of bits used to store

the sample that coincide with the pixel depth. Hence one discerns how it is essential to use a

single photometric interpretation and the same pixel depth for all the images in our datasets.

Clinical and radiological images, like chest X-ray images, have a grayscale photometric interpre-

tation. Indeed the JSRT dataset’s images were acquired by displaying the lungs field with gray

tones tending to black while the remaining part of the chest is rendered with complementary

colors, tending to white. This photometric interpretation was considered as a reference for all

datasets. The Montogomery dataset presents images with the same photometric interpretation,

and therefore, no adjustment was necessary. However, for the Aiforcovid images, the lung fields

are rendered in gray shades close to white. Thus colors of this region are inverted with those of

the background to respect the other dataset’s specifications. Finally, all datasets’ images were

stored in 32 bits to properly image quality and ensure that the training and neural network

weights are accurate.
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3.3.3 Masks pre-processing

The segmentation masks of the datasets were rescaled to the exact resolution as the respective

images. Nevertheless, for this assignment, the nearest neighbor interpolation has been employed.

It results computationally the most efficient in resizing the segmentation maps. Indeed this is

the default method for scaling boolean matrices. Moreover, it requires the least processing

time of all the interpolation algorithms because it only considers one pixel and the closest

one to the interpolated point. In the next phase, labeled masks are normalized with standard

normalization. As follows, the pixel values are in the range of 0 and 1, and the segmentation

maps are not altered in any way.
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General Scheme of ETL Preprocessing

The following figure (Fig 3.4) resume the principal process carried out to bring the raw images

and data to final form and employed in our algorithms.As the illustration shows, the essential

steps described in the previous paragraphs consist of Extracting, Transforming and Loading the

images and data into the final sets.

Figure 3.4: ETL Preprocessing
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3.3.4 Training set, Validation set & Test Set configuration

After the ETL-preprocessing , as described above, the images and masks are divided into ap-

propriate sets, according to the established schemes and specifications. As a matter of fact, to

realize the training dataset and the validation set, all the images of the JSRT Dataset and the

Montogomery Dataset have been used, making up by 299 and 86 images, respectively. While

for the test set it consists of 43 images sampled by AIforCovid. The subdivision described here,

is better reported by the following table:

Dataset Source Content Resolution

Training Set JSRT & Montgomery Dataset 299 CXRs 128x128
Validation Set JSRT & Montgomery Dataset 86 CXRs 128x128
Test Set AIforCovid Dataset 43 CXRs 128x128

Table 3.2: CXR datasets for Training , Validation & Testing
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3.4 Methods

3.4.1 Introduction

As we discussed in the previous chapter, a wide range of challenges involves lung field segmen-

tation processes and incorporating apriori information in them. Our goal is to investigate the

benefit of integrating the apriori shape knowledge in deep neural networks. In this light, we

extend the idea and method presented by Al Arif et al. [152] to the troublesome but compelling

challenge of segmentation of lungs field in CXR images. The method presented in this paper

is based fundamentally on principal components analysis used on the training dataset to cap-

ture the apriori shape information. In this respect, we also provide a nonlinear extension of

PCA, applying the kernel PCA on the training dataset and integrating the apriori information

derived in the neural network, renamed Kernel-SPnet. To understand these methods’ actual

capabilities and advantages, we will compare them with the convolutional neural network U-net,

a segmentation method broadly used in the relevant literature and considered state-of-the-art

for biomedical segmentation. The following paragraphs will describe and illustrate the convolu-

tional neural network U-net and the proposed network termed SP-net and the nonlinear form

Kernel Sp-net.
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3.4.2 U-net

Introduction

In recent years, deep learning has predominated medical image segmentation. Especially

encoder-decoder architectures, such as U-Net, can be included in state-of-the-art models with

robust designs achieved by implementing skip connections to propagate local information from

an encoder path to a decoder path to give detailed spatial information lost pooling operations.

UNet is a Convolutional Neural network created in 2015 at the University of Freiburg, Germany

[113]. Olaf Ronneberger, Philipp Fischer, and Thomas Brox purposely introduced it to analyze

biomedical images. Indeed the method was very successful in the medical context, to the ex-

tent that various applications of U-Net in biomedical image segmentation, such as liver image

segmentation (”sliver07” [176]), and brain image segmentation (”BRATS” [177]) obtaining ex-

cellent results. Furthermore, the network, freshly designed, won the ISBI cell tracking challenge

in 2015. On this premise, in the following paragraphs, we will examine the main aspects of this

neural network and its impact on biomedical segmentation.
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U-net: An improvement of fully connected networks

Although Olaf Ronneberger et al.[1113] created U-Net, in 2015 in the paper ”U-Net: Convo-

lutional Networks for Biomedical Image Segmentation,” it can be considered an improvement

and development of a fully convolutional neural network, proposed in 2014 by Evan Shelhamer,

Jonathan Long, Trevor Darrell[178]. In the paper ”Fully convolutional networks for semantic

segmentation,” the authors define, in fact, a new fully convolutional net (FCN) for segmentation

that combines layers of the feature hierarchy and refines the output’s spatial precision, resulting

in accurate and detailed segmentation. The paper has presented three different neural networks

-FCN-32s, FCN-16s, and FCN-8s. The final number in each abbreviation indicates the pixel

stride at the final prediction layer limits the scale of detail in the upsampled output. In this

context, The FCN-8s (Figure 4.1) are proven to have the best performance. Hence, it achieves

similar U-net results. Indeed it would not be wrong to say that U-Net is an extended, deeper

version of FCN-8s. The main idea in [113] was to supplement a usual contracting network by

successive layers, where upsampling operators replace pooling operators. Hence, these layers

increase and recover the resolution of the output. To localize, high-resolution features from the

contracting path are combined with the upsampled result. A subsequent convolution layer can

then learn to assemble a more accurate output based on this information. One crucial modifica-

tion in Unet architecture is that it also has many feature channels in the upsampling part, which

enable the network to propagate context information to higher resolution layers. Consequently,

the expansive path is more or less symmetric to the contracting one and yields an u-shaped

architecture. The network does not include any fully connected layers and only uses the right

part of each convolution; the segmentation map only contains the pixels. The whole context is

available and retrieved from the input image. This strategy allows the seamless segmentation

of arbitrarily large images by an overlap-tile approach (see Figure 2). Briefly, Unet exploits

symmetric structure charactered by skip connections to predict the pixels in the border region

of the image, so the missing context is extrapolated by mirroring the input image. This tiling

strategy is essential to apply the network to large images since otherwise, the resolution would

be limited

68



3.4 Methods

U-net Architecture

As evidenced, the U-Net architecture is built upon the FCN and modified in a way that results

in a better segmentation in biomedical imaging. However, compared to FCNs, it presents two

significant differences.

• UNet is symmetric to ensure the input images has the exact resolution of outputs;

• the skip connections between the downsampling path and the upsampling path apply a

concatenation operator instead of a sum.

These skip connections play pivotal importance as they provide local information to the global

information when upsampling, thereby recovers the background and spatial details. Due to its

symmetry, the network holds a high number of feature maps in the upsampling 23path, which

supports working with high-resolution layers the UNet architecture is constituted and divided

into three parts :

• The contracting/downsampling path;

• Bottleneck

• The expanding/upsampling path

Figure 3.5: U-net architecture
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As illustrated in Figure 3.5, the network architecture consists of a contracting path (left side)

and an expansive path (right side). The contracting branch follows the typical architecture of a

convolutional network, and its goal is to capture the context of the image to perform segmenta-

tion. In this step, spatial information was reduced, and features increased. The downsampling

path contains many contraction blocks. Every block accepts two 3 by 3 convolution layers

and a 2 by 2 max pooling, each followed by a ReLU. The number of filters doubles after each

block. The bottleneck is between the contracting and expanding paths operating as a bridge.

It composes of two 3 by 3 CNN layers and 2 by 2 up convolution layers. The most important

part of this architecture is the expanding path. Like a contraction section, it is made of several

expansion blocks. Each block transmits the input to two 3 by 3 CNN layers followed by a 2 by

2 upsampling layer. After each block, the number of kernels that the convolutional layer uses

is halved to keep the symmetry. Nevertheless, the input is joined to the feature maps of the

corresponding contraction layer. This step ensures that the features learned when contracting

the image will be utilized to remodel it back. Finally, the produced mapping is sent to another

3 by 3 CNN layer with the number of feature maps equal to the segments targeted.
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U-net in our thesis

The U-net architecture attains outstanding performance on very different biomedical segmen-

tation applications and contexts. Thanks to the feasibility of data augmentation with elastic

deformation, it only needs very few annotated images and has a reasonable training time. These

concepts significantly impact the medical area, where the availability and accessibility of manu-

ally segmented images is a crucial and rare resource. However, in Unet, despite its strong power

of representation, skip connections tend to use redundant information in low-level encoder fea-

tures in a multi-scale approach. Furthermore, the contextual information of the encoder feature

at the beginning of the network is insufficient, leading to poor performance for pixel-wise recog-

nition when concatenating with the corresponding high-level decoder feature map. Addressing

these issues by either modifying the architecture or changing the training scheme could im-

prove the network capability in object detection and segmentation. Unet has been employed in

our work as a reference standard and comparison network method on this premise. Moreover,

the proposed method constitutes a modification of Unet architecture to integrate the apriori

information retrieved from the training set images.
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3.4.3 The proposed method: SP-net

Introduction

Apriori shape information has been widely used in medical image segmentation algorithms to

bridle a segmented region to a class of learned shapes. Perceiving the idea of segmenting or

localizing an anatomical structure, with apriori information about the expected shape of that,

can significantly aid in the segmentation process. However, recent methods for medical seg-

mentation primarily use deep learning algorithms, but the majority of state-of-the-art deep

segmentation networks are trained with loss functions and defined in a pixel-wise manner that

is unsuitable for learning or integrating topological shape information and constraining seg-

mentation results. In this respect, the proposed deep fully convolutional neural network aims

to integrate the apriori shape knowledge into the model to predict shapes instead of pixel-

wise classification. In this perspective proposed method inspired by the reference paper by

Al Arif et al[158]. and termed as Shape predictor network (abbreviated in SP-NET) modi-

fies the Unet architecture, employing in the final layers specific operations to incorporate the

apriori information and predict, therefore, in the shape domain. Hence, unlike the pixel-wise

loss function-based segmentation networks, the loss for the proposed network is computed with

the shape parameters, priorly calculated by principal component analysis in the ground truth

generation. In our work, considering the medical importance of lung field segmentation, the

proposed neural network focuses on integrating apriori knowledge of lung shape information in

this context. Indeed, to demonstrate the potential and effectiveness of this method, we applied

it to a series of CXR lung images of covid-19 positive patients and characterized by real-world

issues, caused mainly by the consequences of the disease and the patient conditions render lung

segmentation more challenging.
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Methodology

As illustrated in fig1, SP-net is based on an architectural adaptation of Unet in which the final

layer involves tthe predicted images are converted , by a principal components ,more specifically

their eigenvectors, to shape parameters compactly represented in a lower-dimensional space.

Figure 3.6: SP-net architecture

Specifically, our proposed network, SPNET, uses the same network architecture [11]. It takes

a CXR image patch as input and produces its related shape representation intended as SDF,

which is also defined over the same pixel space. Finally, the last layer outputs the difference

signed distance function (φd), which is then sent to the final layer, where the integration of

the information through the principal components sorted in a matrix W allowed to convert the

predicted segmentation map into a shape parameter vector and compared it with the ground

truth (bgt ).
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In line with this approach, the development and unfolding of the method consist of the

following steps and arguments. The overall pipeline of our proposed method is demonstrated

in Figure 2.

1. Estimation of apriori shape information

2. Dataset and ground truth generation

3. Application of shape predictor network

Figure 3.7: SP-net pipeline
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Estimation of apriori shape information

The estimation of apriori information is a preliminary analysis performed before the deployment

or training of the neural network. It computes apriority on shape variation given a set of

training instances. In our context, it encompasses all those operations carried out to retrieve

apriori information relating to the lung shape from the training set. In this regard, this analysis

employs techniques used to extrapolate the shape information relatable to the object to be

segmented of interest. Following Leventon’s approach[149] and as referenced in [1], it primarily

uses a defined shape representation intended as a ”signed distance function” to collect richer

information about structural and anatomical features from training images. Subsequently, it

compacts the information using the principal components analysis to induce the segmentation

maps to comply with apriori-shaped knowledge learned. On this premise, the leading aspects

being investigated in the following paragraphs are the signal distance function and the principal

components analysis, which are the real characters involved in shape learning.
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Signed Distance Function

The estimation of apriori information aims to collect information about the lungs’ shape in

CXR images in our thesis. In this light, the shape representations focus the informative content

of the lung images on the pulmonary curves. In this regard, implicit models such as signed

distance functions become an essential element of shape analysis. A signed distance function

(SDF) is a level set function that embeds points and contours in a higher-dimensional space

and encoding information about structural and shape features of the concerned anatomical

part. Indeed it represents the image’s pixels by the distance between the point and the closest

boundary of the target object or organ. In contrast, the sign of pixels denotes whether the pixel

is inside the border of the target organ (negative), outside the organ (positive), or part of the

boundary(zero). The Signed Distance Function (SDF) is defined by :

As evidenced by the formula, to every point x in , the shortest Euclidean distance d(x, C)

to the contour is assigned. Function values are negative inside the shape in and positive in the

outside region out. The contour is then defined implicitly as the zero levels set of its SDF: (x) =

0 This representation allows obtaining more contextual information than landmark samples em-

ployed in point model distribution, constituting a congenial asset for medical segmentation since

it also requires background details. Moreover, manually localizing landmarks is tedious, while

automatic landmark detection is prone to errors, especially when dealing with 3D objects. For

this reason, SDF is a viable alternative to point model distribution. Several works have explored

the Signed Distance Function (SDF) applications in computer vision and graphics. (Perera et

al. 2015) uses truncated SDF to reconstruct volumetric surfaces on RGB-D images better. [166]

treats the linearly shifted saliency map as the SDF and refines the predicted saliency map in

multiple training stages with level set smoothness terms. (Park et al. 2019) learns the con-

tinuous 3D SDF directly from point samples by a network containing series of fully connected

layers and an L1 regression loss. The learned SDFs are used for obtaining state-of-the-art shape

representation and completion results. Our reference paper [152] proposes to use an unsigned

distance map as an intermediate step for 2D organ shape prediction. Subsequently, PCA is

involved in converting from distance map to shape parameter vector, and the segmentation

map is not engaged. More recently, [181] use distance map prediction as a regularizer during
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training for organ segmentation. Since they predict segmentation maps and distance maps in

different branches, correspondences between projections of the separate segmentation and SDF

branches are not guaranteed. Their method differs from ours, but in both cases, segmentation

maps and SDFs involved in our model are connected by a differentiable Heaviside function and

can be predicted and reconstructed as a whole. These considerations evince, like the signed

distance function is an appropriate representation to provide further prominence to the shape

information about the anatomical part. On these grounds, this shape representation is the

primary operation computed in our method.
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Our application

In our thesis, the signed distance function is employed as shape representation to convert the

images or better binary masks belonging to the training set. Indeed the manual annotation

for each training mask is transformed into a signed distance function (SDF). To convert the

lungs shapes into an SDF (), The pixels lying on the manually annotated boundary curve have

been assigned zero values. a All other pixels are assigned intensity based on the infimum of

the euclidean distances between the corresponding pixel and the set of pixels with zero values.

In this perspective, after processing and loading the images from the Montgomery and JSRT

datasets within the training set, they are split into two groups consisting of 299 ground truth

CXR images and the corresponding binary masks, respectively. In this way, the 299 masks, once

detached from the training set, were converted into SDFs so that later the principal component

analysis can process the shape of apriori knowledge. This procedure gives more relevance to

the shape of the organ in order to improve the segmentation in our interest. Furthermore,

the point-wise localization of contours or landmarks is replaced by this automatic process that

makes the algorithm more computationally intensive, easier to manage and implement. The

procedure is illustrated in the following figure (fig3.8).

Figure 3.8: SDF of pulmonary binary mask
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Principal Component Analysis

Principal component analysis constitutes the second and most determining process in the pre-

liminary shape analysis related to estimating apriori shape information. It aims to capture

the main shape variations of a training set while removing redundant information to include

statistical apriori knowledge obtained into the deep neural convolutional network. PCA was

introduced by Pearson in 1901 and became a popular approach in multivariate statistics. It

aspires to find a linear subspace of lower dimensionality than the original feature space, where

the new features have the largest variance To this end, PCA defines a new orthogonal coor-

dinate system represented by principal components that optimally describe the variance in a

single dataset and compress the latter onto a lower-dimensional feature subspace to maintain

the most relevant information. In this context, it is considered one of the main algorithms

involved in dimensional reduction.
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Principal Component Analysis: Mathematical Steps

Mathematically, the idea of Principal Component Analysis (PCA) concerns extracting the prin-

cipal modes of variation by computing the eigenvectors of the covariance matrix and therefore

requires necessarily the following steps. Considering a dataset {x1,x2,x3,. . . ..xi } where i = {

1, 2, · · ·, N,} and each xi is a D-dimensional vector, PCA, this way, is involved in projecting

the data onto an M-dimensional subspace, where the M dimension is lower than D. In the first

instance, the data are centered at the origin by subtracting the mean observation formula1. It

is intended as ”mean centering” to perform PCA to ensure that the first principal component

describes the direction of maximum variance. Indeed if mean subtraction is not performed,

the first principal component might correspond more or less to the mean of the data. Hence,

considering the origin as zero is needed for finding a basis, minimizing the mean square error of

the approximation of the data. In this way, the data are zero average :

1

N

N∑
i=1

xi = 0 (3.1)

Secondly, by stacking the residual data in data matrix X column-wise, the covariance matrix

is obtained as illustrated by the formula (3.2):

C =
1

N
XTX (3.2)

The covariance matrix is a symmetric matrix where its members describe the correlation

between different data or parameters used in the analysis. Indeed The diagonal elements of the

covariance matrix stand for the variance of each variable itself, and off-diagonal elements in the

covariance matrix represent how variables are correlated with each other. Therefore the matrix

fully describes the variability and the correlations inside the dataset. Subsequently, variance

maximization is achieved by diagonalizing the covariance matrix by eigendecomposition leading

to the eigenvectors vi, coined principal components, represent the covariance maximizing basis

while corresponding eigenvalues but constitute the eigenspectrum.

λv = Cv (3.3)

This process embodies the ”core” of the principal components analysis as the eigenvectors (prin-

cipal components) determine and report the directions of the new feature space, and the eigen-

values assess their magnitude. Solving the eigenproblem, the principal components assigned by

PCA are decreasing variance, which is reflected by the respective eigenvalues.
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Singular value decomposition

The principal component analysis is used to compute the dominant vectors representing a given

data set and provide an optimal basis for reconstructing the given data. The computational

basis of PCA is the calculation of the Singular value decomposition of the data matrix, which

is equivalent to the eigenvalues and eigenvectors decomposition of the data covariance matrix.

Singular Value Decomposition, or SVD, is a computational method applied to calculate princi-

pal components for a dataset. Using Singular value decomposition infact is sed to perform PCA

is numerically robust and efficient. Futhermore, the intimate relationship between them can

guide our intuition about what Principal component Analysis does and help us gain additional

insights into this process. Eugenio Beltrami and Camille Jordan discovered the singular value

decomposition independently, in 1873 and 1874, respectively. The singular values of the bilinear

forms, represented as a matrix, considt of a complete and full set of invariants for bilinear forms

under orthogonal substitutions. James Sylvester also arrived at the singular value decomposi-

tion for real square matrices in 1889, apparently independently of Beltrami and Jordan. The

fourth mathematician to discover the singular value decomposition is Autonne in 1915, who

arrived on the other hend via the polar decomposition. The first application of the singular

value decomposition for rectangular and complex matrices seems to be reported by Carl Eckart

and Gale J. Young in 1936;[25] they saw it as a generalization of the principal axis transfor-

mation for Hermitian matrices. However, practical methods for computing SVD date back to

Ervand Kogbetliantz between 1954 and 1955 and Magnus Hestenes in 1958 and have a simi-

lar implementation to Jacobi’s method, which uses plane rotations or Givens rotations. These

approaches were replaced by the method of Gene H. Golub and William Kahan, published in

1965 (Golub Kahan 1965), which is based on Householder transformations or reflections. In

1970, Golub and Christian Reinsch published a variant of the Golub/Kahan algorithm that is

still one of the most widely employed of the Golub/Kahan algorithm is still one of the most

commonly used. Nowadays, SVD plays a predominant role in principal components analysis as

the PCA includes numerous and computationally expensive operations, especially in analyzing

large-size datasets such as image processing. In this light, the singular value decomposition is

a more direct and expedient approach as it associates the principal components transformation

a matrix factorization of the original dataset matrix.
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In linear algebra, this process is a factorization of a real or complex matrix that generalizes

the eigendecomposition of a standard square matrix as an extension of the polar decomposition.

This technique provides a robust computational framework and enhances our understanding of

what principal components are . It lets us compute them accurately for different datasets. The

singular value decomposition (SVD) decompose the considered dataset X as :

X = UΣW T (3.4)

Where Σ is an n-by-p rectangular diagonal matrix of positive numbers (k), called the singular

values of X; U is an n-by-n matrix, the columns of which are orthogonal unit vectors of length

n called the left singular vectors of X; and W is a p-by-p whose columns are orthogonal unit

vectors of length p and reached the right singular vectors of X. In terms of this factorization,

the covariance matrix XTX can be considered as :

It underlines the eigenvector factorization of XTX establishes that the right singular vectors

W of X are equivalent to the eigenvectors of XTX. In contrast, the singular values ς(k)of X are

equal to the square root of the eigenvalues λk) of XTX. The SVD is revealed an efficient algo-

rithm of X without having to form the matrix XTX, so computing the SVD is now the standard

procedure to obtain a principal components analysis from a data matrix[citation needed], unless

only a handful of components are required. Indeed the SVD calculates the respective eigen-

vectors of X without having to form the covariance matrix XTX, So computing the SVD now

represents the standard to calculate a principal components analysis from a data matrix[citation

needed], as it requires fewer steps and is more intuitive.

82



3.4 Methods

Full singular value decomposition

As previously discussed, singular value decomposition is based on a theorem from linear algebra

which says that a rectangular matrix A can be decomposed into the product of three matrices

: an orthogonal matrix U, a diagonal matrix S, and the transpose of an orthogonal matrix V :

M = UrΣV
T (3.5)

This process is also denoted as full SVD w where the matrix of right singular values, cor-

responding to the matrix of eigenvectors, is, according to linear algebra, square and composed

of n columns and n rows, respectively. As a result, the Full SVD in the principal component

analysis derives from the initial dataset, specifically the square matrix V of the eigenvectors of

the covariance matrix MTM. However, the eigenvectors retrieved are not orthonormal among

them d therefore, it is linearly dependent, evidencing like the whole procedure reports principal

components are unnecessary and consequently redundant in the lower-space. Hence, despite

the directness of this approach compared to canonical PCA, the Full SVD process requires a

considerable computational cost and time, especially for large datasets.
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Reduced singular value decomposition

In the principal applications and image processing, it is unusual for the full SVD. Instead, it

is often sufficient and faster, more economical for storage to compute a reduced version of the

SVD, basing the dimension of the eigenvectors on the rank of the original dataset matrix.Van

den Broek et al. [28] employed the SVD to reveal the rank and reduce the data dimension

of multivariate images. This paper presents a feature reduction method using the singular

value decomposition (SVD). Indeed SVD is applied in a new way and in drastically reducing

computer processing. Reduced singular value decomposition is a mathematical technique. The

insight underlying the use of SVD for these tasks is that it takes the original data, usually

consisting of elevated dimensions, and breaks it down into linearly independent components.

These components are, in some sense, an abstraction away from the noisy correlations found in

the original data to sets of values that best approximate the underlying structure of the dataset

along each dimension independently. The reduced, or economy-sized, SVD of the data matrix,

indeed, is given by[21]:

Where r constitutes the rank of the original data matrix and corresponds to the number of

linearly independent eigenvectors with the correspondent eigenvalues, by calculating only the

latter, it excludes redundant information not strictly necessary for the projection of the dataset

and retrieving of principal components, making the algorithm more flowing. The matrices Uk

and Vk contain only the first k columns of U and V, and k contains only the first k singular

values from . The matrix Uk is thus m×kr ,Σk is r×r diagonal, and Vk is k×n. The reduced SVD

uses significantly less space and computation time if r” max(m, n). As a result, it is employed

in many algorithms concerning the PCA transformation over dimensionally extensive datasets

and our application.

Mr = UΣrV
T
r (3.6)
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Principal Component Analysis: Denoising and Recostruction

Principal component analysis (PCA) is a powerful dimension reduction technique widely used

in the data mining field. PCA aims to project the data into a lower-dimensional space while

preserving the intrinsic information hidden in the data as much as possible. As previously

discussed, it computes and finds eigenvectors of the covariance matrix defined as principal

axes and sorts them by their eigenvalues according to the amount of explained variance. The

centered data can then be projected onto these principal axes to yield principal components.

For dimensionality reduction, one can keep only a subset of principal components and discard

the rest in reconstructing the process of the data. Basically, PCA is an orthogonal linear

transformation used to find a projection of all data into lower dimensions, whereas these termed

principal components are those of the highest variance transformation. In this perspective, this

transformation is just considered a matrix multiplication (3.7):

Y=XW (3.7)

Y is the lower-subspace based on retrieved principal components, X is input data, and W

is a matrix of eigenvectors constituted by the principal axes delineating the maximum variance

that can be used to recover the original matrix.

Xrec = YW T +Xmean (3.8)

where Xrec is the reconstructed original space.
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In summary, one can think of PCA projecting data onto a lower-dimensional subspace

and reconstructing data back to the original dimension; the result of this process is called

reconstruction. It occurs finding the projection that the best linear reconstructions of the

data are as close as possible to the original data. The reconstructed data usually differs from

the original one; the difference is measured as Euclidean distance between the original and

reconstructed data and defined as the reconstruction error, which is the sum of eigenvalues of

the ignored subspace and often associated with not relevant information. On this basis, the

dimensionality reduction based on principal components analysis may also be an appropriate

option when the variables in a dataset are noisy. Hence, discarding eigenvectors with small

eigenvalues often result from noise, delineating PCA as a denoising technique. It removes from

the reconstruction process the components with the lowest variance assessable to that corrupt

data and related information. Consequently, most of the total variance is concentrated in the

first few principal components than the same noise variance. The proportionate effect of the

noise is negligible. The first few components a higher signal-to-noise ratio in reporting and back-

projecting the original dataset. PCA thus can have the effect of noise reduction, concentrating

much of the signal or information into the first few principal components, which can usefully

be captured by dimensionality reduction. In contrast, the later principal components may be

dominated by noise and disposed of without significant loss.
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Our application

In our work, the principal component analysis aims to extract the a priori information related

to the shape of the lung fields belonging to the training set. Indeed according to this idea

introduced by Leventon, the PCA is not applied on the parametric geometric curves but on the

signed distance functions (SDFs) of pulmonary contours, which are implicit and parameter-free

shape representations. Following the steps involved in the principal component analysis, each

SDF is vectorized in a single array with a size equal to the number of pixels in the image. This

process allows the realization of a complete data matrix composed of 299 rows representing the

number of samples or observations in the training set and 16384 columns that delineate the

resolution of images. To compute the variance in shape using Principal Component Analysis

(PCA), the mean shape is subtracted from each signed distance function to create a mean-

offset map. In the ensuing stage, Singular Value Decomposition (SVD), the considered dataset

is decomposed as:

X = UΣW T (3.9)

where W is a matrix whose column vectors are equivalent to the eigenvectors representing

the principal components of shape variation reported by the training dataset. Despite the size

of the dataset considered, the last step allows obtaining efficiently and less expensively the

eigenvectors derived from the covariance matrix that describe the main shape variations in the

training set, interpreting the essential tool to integrate the shape apriori knowledge in tho the

proposed network. Nevertheless, the deployment of the reduced version of SVD will entail some

advantages , we use full SvD as descibed in the reference paper. This last step allows us to

extract principal components describing the total variation captured by the training dataset.

The eigenvector matrix also enables us to project the SDFs images in the shape space and ensure

that the proposed network can be trained and predict in the latter. The principal component

analysis also allows us to back-project the images into the original space by obtaining the

respective SDF predicted and using the Heaveside function, the predicted binary mask. It is

evident from Each SDF (Φ) in the training data to be represented by a mean SDF (Φ), matrix

of eigenvectors (W), and a vector of predicted shape parameter b.

Φ = φ+Wb (3.10)

In this perspective, it stands to reason the investigation of the denoising aptness bout the

PCA algorithm can be exploited not only to capture shape information but also eventually refine
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from noise effects the original data. In our algorithm, the reconstruction process based on PCA

allows us to reconvert shape parameters into SDFs and then return to the original image space.

We can reduce the effect of some artifacts by decreasing the number of components. This process

referred to as ’component number optimization’, employs a progressive reduction in the number

of components to remove those associated with noise and to explore how this in the prediction

of shape parameters and the subsequent reconstruction of the signed distance function and its

binary mask may or may not improve the segmentation map.

In other words, the PCA in our algorithm, both in its standard version and in the SVD

extension, embraces how tail features can be discarded as redundant or noisy information, thus

reducing the dimensionality of the initial dataset while the most relevant data has been retained

as a constituent and integral part of the apriori information.
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Dataset & Ground Truth Generation

In this thesis, the Unet architecture is modified to generate a signed distance function (SDF)

from the input image. Where predicted SDF is converted to shape parameters compactly rep-

resented and projected on the basis of principal components in shape space, in which finally the

loss is computed. From a geometric point of view, this principal component analysis determines

the best orthonormal basis Rm to represent a set of n-m dimensional samples of the training set.

Therefore the input data can be projected to the new basis by the set of retained eigenvectors.

Indeed the data can be synthesized by the leading principal components. In practice, only the

first principal modes are necessary to model the biggest variations present in our training set.

These p principal components are sorted in an eigenvectors matrix Wp. Then, the PCA can

produce a new data set based on the training set ϕj :

ϕ = ϕ+WpXpca (3.11)

where ϕ is the reconstructed sample and ϕ is the mean value and xpca is called vectors or the

eigenmodes of variation. This synthesis is considered in our application as ”Shape parametriza-

tion”. It employed as output in the proposed network constrain the latter to learn the shape

information of the target organ and enforce the model output the global shape parameters of the

anatomical curves, implicitly introducing continuity and smoothness terms into the segmenta-

tion process. In this light, the final layer of the neural networks integrates the shape information

retrieved from the principal components, which allowed to project the predicted image into a

shape parameter vector and compared it with the ground truth (bgt ). It implies this implies

the apparent need to convert and generate the respective shape parameters (annotated as b

ground truth) of SDF images so that they can be compared with those predicted and therefore

proceed to train the neural networks, This essential stage is defined in the reference paper as

the ground truth generation.
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Ground Truth Generation

Principal component analysis allows each SDF (φ) in the training data to be represented by a

mean SDF (φ), matrix of eigenvectors (W) and a vector of shape parameters, b: φ = φ + Wb,

(1) where φ and φ are the vectorized form of φ and φ, respectively. For each training example,

in our method we can compute b as: b = W T (φ - φ) = W Tφd , (2) where φd is the vectorized

difference SDF, φd = φ - φ. These parameters are used as the ground truth (bgt ) for training

the proposed network. Hence they are computed subsequently to the eigenvector matrix.

b = W T (φ− Φ) = W TΦd (3.12)

Considering a training set composed of 299 training images and the respective binary masks,

from the resulting SDF, the correspondent 299 shape parameters are generated to be used as

output and reference of the network. Then the final prediction is computed as b: W Tφd or in

the element-wise form: bi =
∑k

j=1wijφd, i = 1, 2, · · ·, k; (3) where wij is the value at the i-th

row and j-th column of the transposed eigenvector matrix (W T ) and k is the number of shape

parameters. Finally, the loss is defined as:

Although this process concurs a simplification of the calculation of the loss function, it

constitutes an additional step of our algorithm involving statistical variations of the shape

parameters according to the implementation representing a feeble boundary with the concept

of ground truth.
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SP-net Architecture

SP-net is a fully convolutional deep neural network for shape prediction, which bases the con-

figuration of most of its layers on the Unet architecture and employs the final to predict the

outcome in the shape domain. SP-net provided a variant of Unet and presented a symmetrical

structure consisting of a downsampling path involved in the general convolutional process and

upsampling composed by transposed 2d convolutional layers to retrieve the original resolution

input images processed in the learning phase. All these will be deepened and explored in the

following paragraphs to be conceived more favorably the operation of the proposed network.

The network has a basic foundation that looks like:

Figure 3.9: SP-net Architecture
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The Encoder Path

In the first instance, the contraction path (also called the encoder path) is used to capture

and process the contextual information in the image. It is constituted by a traditional stack of

convolutional and max-pooling layers. Indeed the input images, composed of 128x128 pixels and

in grayscale, thereby with a single channel, are convoluted by the first layers as the convolution

process will increase the depth of the image, extracting 64 distinct features according to different

kernels of filters. Subsequently, the consecutive process induces the elaboration of others 64 parts

at the same resolution of input images. The max-pooling process halves down the size of the

image, preserving maximum pixel value and thus obtain a pooled feature map and maximize

its information content. The size or dimension of the filter and strides are two paramount

hyper-parameters in this max pooling operation. The size is also reduced due to padding issues,

but the implementation here uses padding= ”same.” A significant point to note the considered

block using convolution operation and especially the pooling operation reduces the image’s size.

It is intended as a down-sampling operation. At the bottom-most part still, two convolutional

layers are built but with no max pooling and constitute the network’s bottleneck. The functions

involved in the first block are repeated for other constituents of the encoder. They increase the

number of channels and thus the number of filters, applying greater abstraction of the image

information and reducing the spatial resolution. It implies a much more compact representation

of the received image, and subsequent steps are used to recover contextual and background

information lost during the down-sampling stage.
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The Decoder path

The operations collected in the decoder path definition aim to recover the high resolution of the

original images. Indeed, in the expansive path, the image data will be upsized to its original

resolution with a series of transposed convolution. Transpose convolution (sometimes called

deconvolution or fractionally convolution) is a technique for sampling an image with learnable

parameters. On a high level, transposed convolution is precisely the opposite of a standard

convolution, i.e., the input volume is a low-resolution image, and the output volume is a high-

resolution image. It is nicely explained how a regular convolution can be expressed as a matrix

multiplication of input image and filter to produce the output image. It involves the taking

of the transpose of the filter matrix, we can reverse the convolution process. Hence the name

transposed convolution. After the transposed convolution, the image is upsized. Then, this

image is concatenated with the corresponding image from the contracting path and together

makes an image a larger size. Here is to combine the information from the previous layers to

get a more precise prediction. Same as before, this process is repeated for the three remaining

blocks to restore the original resolution. Indeed the uppermost of architecture reshape the

image to satisfy our prediction requirements.
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Final layers

In conclusion, the latest layers are designed to integrate the shape apriori information derived

from principal components analysis and converting the predicted image into the respective

shape space where loss is computed. In this perspective, a specific dot layer is involved in

multiplicating the network outcome and projecting it along the novel orthobasis represented

by eigenvectors matrix and retrieved from previous principal component analysis. As a result,

the neural networks are trained on the correspondent shape parameters, taking into account

the information and restraint in the shape domain. It is deduced that the neural network

has an image, an input, and a projection of the predicted image on the principal components,

described as shape parameter (b) in the output. However, as evidence from the article and

since the analysis of the principal components is an orthogonal transformation, it is possible to

reconstruct the predicted segmentation map by the latter .
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3.4.4 Kernel SP-net

Introduction

Principal component analysis (PCA) has demonstrated a popular tool for linear dimensionality

reduction, primarily feature extraction. Indeed in the previous sections, we focused on how

principal component analysis can extract apriori information from a training dataset consisting

of CXR images and masks, exploiting the SDF transformation on the latter to incorporate the

shape-awareness in the prediction of segmentation maps within the proposed network . However,

if the given dataset has more complicated structures which cannot be well represented in a linear

subspace, standard PCA will not be very convenient. One cannot assert that linear PCA will

always detect all structures in the training set. By the use of suitable nonlinear components, one

can extract more information. Hence we intend to take a further step forward by investigating

a nonlinear extension of linear PCA and study how it could be integrated with the proposed

method. In this connection, kernel Principal Component Analysis (Kernel PCA)[144] is used to

extract nonlinear features and reduce dimensionality. It is revealed as a nonlinear form of PCA,

which better exploits the complicated spatial structure of high-dimensional data. Kernel PCA

was implicitly performing a linear PCA in some high-dimensional kernel feature space that was

nonlinearly related to input space by using a suitable nonlinear kernel function mapping. Indeed,

the kernel implemented induces KPCA to correlate the dataset nonlinear features ad compute

principal components describing the variance of the data according to this interpolation. As a

kernel method, kernel PCA suffers from the problem of kernel choice. Therefore, a procedure

is also required to ensure the selection of the best kernel function, which is very suited is very

well suited to extract interesting nonlinear structures in the training dataset . Against the

background, we have tried different kernel provided in the relevant literature on the training

dataset to understand which is the best in extracting the more relevant shape information

and integrating into the shape predictor network. The kernel choice is based on comparable

reconstruction errors of images in the original space, assessing the latter on the validation

set constituted by images of the same dataset of the training and the test set, consisting of

AIforcovid Images. For this reason, considering the applicability of the kernel methods in

the SP-net network, we coined the term ”Kernel SP-net” to underline the pertinency of these

techniques.
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Kernel Principal Component Analysis

kernel-PCA is a prominent nonlinear extension of the classical dimensionality reduction tech-

nique as it conducts principal component analysis for the feature vectors. More precisely, given

data points xi ∈ x, i = 1, 2, . . . , n, kernel PCA outputs a set of principal functions by the

following two-step procedure: (i) transform the data nonlinearly into the feature space H, i.e.,

Xi → , (ii) solve the linear PCA problem for the feature vectors, i.e., solve the directions in H

for which the variance of (Xi) along those directions is maximized.The algorithm of kernel PCA

is described as follows for the detail, see Scholkopf et al.[144]) ˜Φ(x) :=Φ(x)- 1n

n∑
j=1

Φ(xj).

The estimated covariance matrix is given by; C =
n∑

j=1
Φ(xj)Φ(xi)) with the centered feature

vectors. The principal directions v ∈ C are given by the unit eigenvectors corresponding to the

largest eigenvalues, and thus the problem is converted to solving the eigenproblem:

Cv=λv

By using the kernel trick, this problem is reduced to the generalized eigen value problem

that finds: v=
n∑

j=1
αiΦ(xi) such that:

Kα = nλα subject to: αTKα = 1

where K is the n × n centered Gram matrix with Kij = k(xi, xj) Let λ1 ≤ λ2..... ≤ λn ≤ 0 de-

note the ordered eigenvalues of K with associated eigenvectors αi, ...αn, where αj = (α1j ...αnj)

which are normalized. The j-th principal direction vj ∈ C is then given by:

vj =
1√
λj

N∑
i=1

αijΦ(X) (3.13)

the j-th principal component of the data point Xi is given by:

(vj,Φ(X)) =
1√
λj

N∑
i=1

Kαij =
√
λαij (3.14)

For a test point X out of the sample, the jthprincipalcomponentissimilarlygivenby;

(vj,Φ(X)) =
1√
λj

N∑
i=1

K(X,X)αij (3.15)

where k(x, y) is the centered kernel:
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Kernel Choice and Hyperparameters Selection

Kernel PCA suffers from the problem of kernel choice. Therefore, a procedure is also required

to ensure the selection of the best kernel function, which is very suited is very well suited

to extract interesting nonlinear structures in the training dataset. Different kernels, provided

in the relevant literature, are tried on the training dataset to understand which is the best

in extracting the more relevant shape information and integrating it into the shape predictor

network. The kernel choice is based on comparable reconstruction errors of images in the original

space, assessing the latter on the training, validation, and test set constituted by binary masks.

in this context kernel functions are explored based on their potential advantages in analyzing

such training dataset, therefore the following functions are explored:

• Cosine Similarity kernel

• Radial Basis Function Kernel

• Laplacian Kernel

• Polynomial Kernel
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Kernel on Cosine Similarity

It is called cosine similarity because Euclidean (L2) normalization projects the vectors onto the

unit sphere. The dot product is then the cosine of the angle between the points denoted by the

vectors. Cosine similarity considers the extent to which two vectors point in opposite direction,

in the same direction,, or whether they are orthogonal.

K(x, y) =
xyT

||x||||y||
(3.16)

Radial Basis Function Kernel

The RBF kernel function for two points or vectors computes the similarity based on euclidean

distance , perceving how close they are to each other. This kernel also named Gaussian Kernel

can be mathematically represented as follows:

K(x, y) = exp(−γ||x− y||2) (3.17)

Laplacian Kernel

The Laplacian kernel is a variant based on the radial basis function kernel defined as follows,

where x and y are the input points or vectors, and the manhattan distance is measured instead

of the euclidean distance.

K(x, y) = exp(−γ||x− y||1) (3.18)

Polynomial Kernel

The function polynomial kernel computes the degree polynomial kernel between two vectors.

The polynomial kernel represents in fact the similarity between two vectors. Conceptually, these

kernels consider the similarity between vectors under the same dimension and across dimensions.

When used in machine learning or deep learning algorithms, this allows accounting for feature

interaction.

K(x, y) = (1 + x ∗ y)d (3.19)

98



3.4 Methods

Kernel PCA in our application

In our application the kernel PCA allows us to perform the same steps as those performed by

the approach provided by the princiapl componet analysis. Through the use of the Kernel trick,

the latter allows us to retrieve a covariance matrix defined according to the internal product

established by the kernel function chosen. Then it is possible to obtain the respective eigenvector

matrix and project the corresponding Shape parameters. This process involves and allows the

reconstruction of the masks and segmentation maps predicted by the network called Kernel

SP-net and to implement an upstream process for the dateset and ground truth generation. In

addition, the process of projection and rear projection, assumed as reconstruction, allows us to

adequately estimate the most appropriate kernel.
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Kernel SP-net Architecture

The Kernel SP-net architecture (fig 3.10), as it constitutes an extension of the Shape Predictor

Network method, structurally appears identical to the latter. Except for the fact that the

integration of the apriori information includes the eigenvectors matrix retrieved from the Kernel

Principal Component Analysis. The figure shows that it has the same number of layers as the

previous networks and the same characteristics. However, in the final layers, the network

includes the shape knowledge obtained through the application of the Kernel PCA on the

training set composed by Signed distance functions.

Figure 3.10: Kernel SP-net Architecture
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3.5 Evaluation metrics

Evaluation metrics measure the quality of a Deep or machine learning model by explaining its

performance in terms of figures. In this context, the segmentation methods are evaluated using

appropriate metrics, which are divided into qualitative and quantitative. A qualitative metric

involves visual inspection and rating of the segmented image by a domain expert. On the other

hand, a quantitative index compares the predicted segmentation with the available ground truth

of the medical image, annotated manually by a group of medical experts. Indeed, comparing

images to evaluate segmentation quality is an essential part of measuring progress in this research

area. In this perspective, the Dice coefficient and Jaccard index are the most functional and

commonly used metrics for evaluating segmentation tasks in medical imaging and convolutional

neural networks trained for image segmentation. Additionally, using two or more evaluation

metrics is paramount to prevent a model from performing well on one evaluation metric but

poorly using another measurement. The Dice coefficient, also known as the Sørensen–Dice index

or simply Dice score, is a statistical tool that measures the similarity between two sets of data

or, in this case, two sample images. This index has become the most broadly used tool in

validating image segmentation algorithms created with AI. It is determined considering twice

the overlapping area between the ground truth image and the segmented one divided by the

total sum of pixels in both images. The Jaccard Index, also known as Intersection-Over-Union

(IoU), is one of the most widespread metrics in semantic segmentation. It is calculated by the

overlap between the predicted segmentation and the ground truth divided by the area of union

between the predicted segmentation and the ground truth. Both metrics range from 0–1, with

0 signifying no overlap and 1 signifying perfectly overlapping segmentation.
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Design of Experiment

Design of Experiment

©

The following section expresses the strategy used to train the proposed neural network, empha-

sizing the optimization of hyper-parameters such as the learning rate and the policy adopted. In

addition, the techniques of regularization employed in this method are illustrated to avoid the

overfitting of the neural network, giving more prominence to the enforceability of the Earlystop-

ping technique and Data Augmentation well as to the feasibility of its use. In conclusion, it will

be reported with which hyperparameters the experiment will be conducted, and thus SP-net

will be trained so that it can be compared under the appropriate conditions with U-net.

.

©
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4.1 Introduction

In the design and accomplishment of an experiment, the training process is the most challenging

part of deep learning techniques; in general, it is by far the most time-consuming, both in terms

of effort required to configure and set the process and computational complexity necessary

. Furthermore, it is dependent on the dataset size and available processing power; therefore

constitutes a process that is not well defined in those terms. The purpose of training is to

minimize the difference between the network’s output and ground truth data. It is also required

that the model would produce accurate results when presented with data that was not used

during the training phase. The training phase of a neural network from an example is usually

conducted by considering the difference or error between the predicted output of the network

and target output, intended as the error. The network then adjusts its weighted associations

according to a learning rule and using the respective error value. Other adjustments will cause

the neural network to produce output that is increasingly similar to the target output. After a

sufficient number of these attempts, the training can be terminated based upon specific criteria.

The training process is solved using an optimization algorithm or method that searches through

a space of possible values for the neural network model weights for a set of weights that results

or brings in a good performance on the training dataset. Deep learning convolutional neural

network models learn to map inputs to outputs given a training dataset of examples. Specifically,

the training process involves finding a set of weights in the network that proves to be good

enough to solve the specific problem.

In this connection it provides an iterative scheme, meaning that it progresses step by step

with slight updates to the model weights each iteration and, in turn, a change in the performance

of the model each iteration, solving an optimization problem that finds for parameters that result

in a minimum loss when evaluating the samples in the training dataset. Indeed optimization is a

directed search procedure, and the problem that we wish to solve when training a convolutional

network model is complicated. The best general method or algorithm known for solving this

issue is stochastic gradient descent, where model weights or are updated each iteration using

the backpropagation of the error algorithm. The backpropagation algorithm compares the

network output with the expected output or ground truth and calculates an error measure.

From that result, it backtracks the change or gradient of every step in the computational

process using the chain rule partial derivatives. Against this background, training has been

the object of studies and investigations in the proposed method. We consider two essential

arguments as optimizing hyperparameters and decreasing the chance of overfitting the training

data. Overfitting is a problem that arises in neural network training. When a model is overfitted

103



4.1 Introduction

to the training data, it loses its generalization capability, and further training decreases the

model’s performance on unseen data. On the other hand, hyperparameter optimization or

tuning is the problem of choosing a set of optimal hyperparameters for a learning algorithm. A

hyperparameter is a parameter whose value or used to handle the learning phase. By contrast,

the other parameters (typically node weights) are learned. In the former case, we investigate the

feasibility of regularizer techniques like Data Augmentation and Early stopping. In the latter

case, we find a combination of hyperparameters that returns an optimal model which reduces a

predefined loss function and in turn increases the accuracy on given independent data, paying

particular attention to the initialization of learning rate and the choice of related policy involved

in the backpropagation of the proposed neural network. In the following section, we report the

principal techniques involved in reducing overfitting and the test conducted to retrieve optimal

hyperparameters.
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4.2 Regulaziter Tecniques

One of the most critical aspects when training neural networks are avoiding overfitting. This

issue is fundamental in supervised machine learning, which prevents us from perfectly generaliz-

ing the models to fit well-observed data on training data and unseen data on the testing set. In

other words, The model learned specific patterns specific to the training data, which are irrel-

evant in other cases. The network fails to generalize the features/pattern for the testing data.

There are several manners in which overfitting is reduced in deep learning models. However,

the proposed method in this content uses Functional solutions such as dropout regularization,

batch normalization, which are fully integrated into the network layers. Nonetheless, the best

option is to get more training data. Unfortunately, in real-world situations, often there is no

possibility due to time, budget, or technical constraints. For this reason, we explore the use

of the data augmentation technique turned into an artificial way to increase the size of the

training dataset. Moreover, overfitting is intensified by looking at validation metrics, like loss

or accuracy. Ordinarily, the validation metric stops improving after several epochs and begins

to decrease afterward. On the other side, The training metric improves because the model seeks

to find the best fit for the training data, resulting in worse performance on testing sets. On

this basis, we investigate the viability of the Early stopping regularization, which guides how

many iterations can be run before the learner begins to over-fit, observing the improvements

of the validation loss function. In this perspective, we presented A brief description of these

overfitting solutions and their relevance and adaptation in the proposed neural network.
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4.2.1 Dropout technique

Dropout is a regularization technique based on the random drop units (along with their connec-

tions) from the neural network during training, proposed by Srivastava et al. in 2014 by their

paper[182] Dropout: A Simple Way to Prevent Neural Networks from Overfitting. Dropout is

implemented per layer in a neural network. It can be employed with most layers, such as con-

volutional layers, dense fully connected layers, and recurrent layers such as the long short-term

memory network layer. In simple terms This technique, during training, some number of layer

outputs are randomly ignored or better ”dropped out.” This implies making the layer look like

and being treated like a layer with a different number of nodes and connectivity to the last

layer. As a result, each update to a layer during training is performed with a different ”view” of

the configured layer. It means that their contribution to the activation of downstream neurons

is temporally removed in the forward pass, and any update of the weights is not applied to the

neuron in the backward pass. As a neural network learns, the neurons’ weights are established

in their context within the network. Neuron weights are tuned for specific features that pro-

vide some specialization. Neighboring neurons rely on this specialization, which, if taken too

broadly, can result in a fragile and over-specialized model for the training data. The reliance on

context for a neuron during training relates to complex co-adaptations. Imagine that neurons

are randomly deleted from the network during training. Other neurons will have to step in and

handle the required representation to make predictions for the missing neurons. It is believed

to result in multiple independent internal representations learned by the network. From this

perspective, the network becomes less sensitive to the specific weights of neurons. It, in turn,

results in a network that is capable of better generalization and is less likely to overfit the train-

ing data. On these grounds, we adopted the dropout layer as an integral part of the proposed

network to reduce the probability of overfitting.
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4.2.2 Batch Normalization

Batch normalization is one of the most widely used techniques in regularization as it normalizes

the set of activations in a layer. Normalization works by subtracting the batch mean from each

activation and dividing it by the batch standard deviation. This normalization technique, along

with standardization, is a standard technique in the preprocessing of pixel values, which is used

to render artificial neural networks faster and more stable by normalization of the layers’ inputs

by re-centering and re-scaling. This method was proposed by Christian Szegedy and Sergey Ioffe

in 2015.[183] Whereas the outcome of batch normalization is conspicuous, the reasons behind its

effectiveness remain under discussion. It was believed that it could mitigate the problem or issue

of internal covariate shift, where parameter initialization and changes in the distribution of each

layer’s inputs affect the network’s learning rate.More recently, some scholars have argued that

batch normalization does not reduce internal covariate shift but rather smooths the objective

function, improving performance.On the other hand, others sustain that batch normalization

achieves length-direction decoupling and thereby accelerates neural networks[184]. On this

premise, we embrace the batch normalization in the convolutional and deconvolutional layer,

which constitute the core of the Shape predictor network, in order to regulate the operations in

image learning and processing,
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4.2.3 Data Augmentation

One of the more widespread strategies to avoid overfitting is to increase the size of the training

dataset. As illustrated, when the training data size is small, the network tends to have greater

control over the training data. Nevertheless, gathering large amounts of data in real-world

scenarios is a tedious time-consuming task; hence, collecting new data is not viable. Data

augmentation provides techniques to increase or better augment the size of the existing training

dataset without any support of external addition. If our training data consists of images, image

augmentation techniques like horizontal vertical flipping, translation, rotation, or adding noise,

cutouts can be applied to the existing training images to increase the number of instances.

Data Augmentation is used to artificially expand the size of a training set by creating edited

data from the existing one. It is a common practice to use DA to prevent overfitting, or the

initial dataset is too small to train on, or even o squeeze better performance from the proposed

model. In this light, we investigate the possibility of using the overcited technique in or context

to increase the training dataset. We consider basic operations carried out on the training set,

belonging to the Jsrt Dataset and the Montgomery Dataset. These operations, as mentioned

above, constitute geometric transformations so that the size of the initial training dataset can

be increased and the proposed method can be generalized to the test set. On this premise,

we investigated geometrical mechanisms and eventually added noise to render the training

images similar and characterized by the artifacts and misalignments of the Aiforcovid Dataset

image acquisition process. The data augmentation proposed in our application to reflect the

characteristics present in the test set makes use of rotation operations of angles between 0 and

90 degrees, horizontal and vertical tilts, and slightly shear misalignments. Moreover, we include

the artificial corruption by Gaussian Noise in every image in order to represent the poor contrast

of test images
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Figure 4.1: Data Augmentation : Geometrical transformartions
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Dimension of Augmented Dataset

In the Deep Learning field, the performance and results of a model improve with the amount of

data that has been used to train it. As previously discussed, Data Augmentation artificially in-

creases the size of the training set by generating a new variant of each training instance. In this

sense, It is a widespread and very well-known and technique for all computer vision problems

that allows the generation of new training instances belonging to the same class as the base

instance. In this manner, data augmentation forces the model to be more tolerant, increasing

its capacity to generalize. This technique is usually during the training phase, inducing the

network trains on slightly different images, artificially generated by the training set, in each

epoch by implementing an image data generator employed in the training process. Neverthe-

less, in the proposed method, The training set is significant for extracting and processing apriori

information retrieved by a shape analysis conducted before the training. From this assumption,

it follows that data augmentation shall be a preliminary process to the network training since

applied at this stage, it would also change the content and size of the matrix of the eigenvectors

and, therefore, the principal components used by the network to predict in the shape domain.

By understanding this order of processes, it is essential to determine the size of the augmented

dataset and the number of artificially generated images from which the respective shape pa-

rameters are derived. In this respect, we investigate the relevance of Data Augmentation. We

have realized several Datasets of different sizes based on Jsrt and Montgomery masks as the

training set using this technique. After deriving the respective SDFs and eigenvectors Matrix,

Twenty lung masks belonging to different classes (AiforCovid Dataset and an outsider part of

JSRT Montgomery Dataset) were reconstructed employing the reconstruction, or better the

retro projecting introduced by the principal component analysis. In this way, it is possible to

demonstrate how this process could improve the Dice Coefficient, and Jaccard Index measured

between reconstructed masks and real ones. As one can infer from the following, 4000 images

and masks is the optimal dimension.
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4.2.4 Earlystopping

In the broad set of strategies against this curse of overfitting is called regularization, early

stopping is one paramount technique. It has a long history and background, which can be

dating back to the 1970s. Also, it is widely used in iterative algorithms, especially in the

first neural networks starting from the 1990s. Early stopping offers the considerable benefit

to reduce overfitting without compromising on model accuracy. The main idea behind early

stopping is to stop training before a model starts to overfit. This strategy is known as probably

the most commonly used form of regularization in deep learning. Its popularity is due to both

its effectiveness and its simplicity. Early stopping is an unobtrusive form of regularization in

that it requires almost no change in the underlying training procedure, the objective function,

or the set of allowable parameter values. It means that it is easy to use early stopping without

damaging the learning dynamics. It contrasts with weight decay, where one must be careful not

to use too much weight decay and trap the network in a wrong local minimum corresponding

to a solution with pathologically small weights. Early stopping may be used either alone or

in conjunction with other regularization strategies. Even when using regularization strategies

that modify the objective function to encourage better generalization, it is rare for the best

generalization to occur at a local minimum of the training objective. Moreover, it is also helpful

because it reduces the computational cost of the training procedure. Besides the noticeable

reduction in cost due to limiting the number of training iterations, it also has the benefit of

providing regularization without requiring the addition of penalty terms to the cost function or

the computation of the gradients of such additional term. However, Early stopping requires a

validation set, which means some training data is not fed to the model. Indeed, it achieves A

compromise to train on the training dataset and stop training when performance on a validation

dataset starts to degrade. These early stopping rules work by splitting o the original dataset

into a new training set and a validation set. The error on the validation set is evaluated as a

priority for the generalization error in establishing when overfitting has begun. These methods

are most usually employed in the training of neural networks. The validation set is used to

determine and verify how well the model generalizes to unseen data. When the error on the

training set begins to deviate from the validation loss, a threshold can be set to determine the

early stopping condition and the correct number of epochs improvement after which training

will be stopped as known as patience parameter It outlines how the validation set used in

conjunction with early stopping is essential to determine the optimal training zone for a model.

111



4.2 Regulaziter Tecniques

Given these observations, Earlystopping emerges as an unavoidable technique in the learning

phase of deep neural networks. Indeed we employed it in our method by realizing a validation

set consisting of images and masks of the Montgomery and JSRT Dataset has been created.

However, this issue shows that it is unfeasible to use the shape parameters obtained from the

respective SDFs to calculate the validation loss on which to base the Earlystopping process.

The shape vectors are different from those obtained from the training dataset a and also cannot

be projected based on the information received from the latter . and depend on the statistical

processes used during the algorithm, making fleeting the meaning and considering ground truth

for shape parameter vectors. It leads us to consider the masks of the validation set as ground

truth on which to calculate a new loss on Dice coefficient intended and termed as Dice loss.

Figure 4.2: Earlystopping Techniques
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4.3 Hyperparameters Optimization

4.3.1 Introduction

The development and training of neural networks are still unpredictable and challenging proce-

dures. The difficulty of tuning these models does training and developing is more of an art than

a science, based on the researcher’s knowledge and experience. One of the reasons for this dif-

ficulty is that the training procedure of deep learning models includes several hyperparameters

that affect how the training phase fits the model to the data. These parameters directly control

the behaviors of training algorithms and significantly affect the performance of the resulting

deep learning models. Unlike the internal model parameters, such as the neuron’s weights,

which can be learned from the model training phase, hyperparameters are set before the learn-

ing process. . Hyperparameters are the variables that determine the network structure) and the

variables which set how the network is trained(E Learning Rate). However, while the former de-

pends on the network architecture used, the latter requires careful and necessary optimization.

In machine learning, hyperparameter optimization or tuning is the problem of choosing a set

of optimal hyperparameters for a learning algorithm. In this context, the Learning rate might

be the most crucial hyperparameter in deep learning, as the learning rate decides how much

gradient to be backpropagated. It, in turn, decides by how much we move towards minima.

The small learning rate makes the model converge slowly, while the significant learning rate

makes the model diverge. So, the learning rate needs to be correct and honed. When training

convolutional neural networks, it is often helpful to reduce the learning rate as the training

progresses. It can be done by using predefined learning rate schedules or adaptive learning rate

methods. These methods involve learning rate reduction during the training process are better

known as Learning rate policies, and since they also depend on the architecture of the network

and the initial data set, it is necessary to determine which beseemeth the proposed method. In

this context, the number of epochs is revealed as a hyperparameter of the utmost importance as

it defines the number of times that the learning algorithm will work through the entire training

dataset. In this regard, The batch size and steps per epochs need to be configured to allow

appropriate network training. The batch size is identified as several samples processed before

the model is updated, whereas steps per epoch indicates the number of batch iterations before

a training epoch is considered finished. It may be functional with vast data set or generating

random data augmentations. As a result, both hyperparameters shall be set according to the

training set size. In the following paragraphs, we will explain which criteria will be used to

select and optimize the hyperparameters listed above and involved in the network’s training.
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4.3.2 The Learning Rate Optimization

The learning rate may be the most critical hyperparameter when configuring the neural network.

Therefore, it is crucial to know how to investigate the effects of the learning rate on model

performance and build an intuition about the dynamics of the learning rate model behavior.

The learning rate is a parameter that controls and handles how much to change the model in

response to the estimated error each time the model weights are updated. Setting the learning

rate is arduous as a value too small may result in a lengthy training process that could get

stuck, whereas a value too large may involve learning a sub-optimal set of weights too fast or an

unstable training process. Indeed the learning rate controls how quickly the model is adapted to

the problem. Lower learning rates require more training epochs given the more minor changes

made to each update’s weights, whereas more significant learning rates result in rapid changes

and require fewer epochs.

In this light the challenge of training deep learning neural networks involves carefully se-

lecting the learning rate as it may be crucial or the model. As suggested by Ian Goodfellow,

”The learning rate is perhaps the most important hyperparameter. If you have time to tune

only one hyperparameter, tune the learning rate.” [185] In this perspective, we consider the

training application strategies and experiments involved in selecting the initial value learning

rate and the related policy used to reduce scheduler or adaptively learning rate as the training

progresses.
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Learning Rate Test: estimation of reasonable interval

There are multiple ways to choose a good starting point for the learning rate. A naive and

trivial approach is to try a few different values and see which one gives the best loss without

sacrificing training speed. Leslie N. Smith proposes a powerful technique to select a range of

learning rates for a neural network in the 2015 paper ”Cyclical Learning Rates for Training

Neural Networks.”[186] The trick is based on training a network starting from a low learning

rate, increase the learning rate exponentially for every batch, and record the learning rate

and training loss for every step. This is a simple way to estimate the reasonable minimum

and maximum boundary values with one training run of the network for a few epochs. It is a

”Learning rate range test”. This test is enormously valuable whenever facing a new architecture

or dataset. For learning rates that are too low, the loss may decrease but at a very shallow rate.

When entering the optimal learning rate zone, we observe a quick drop in the loss function.

Increasing the learning rate further cause an increase in the loss as the parameter updates

to cause the loss to ”bounce around” and even diverge. In this respect, we operate different

learning rate strategies to apply the ”Learning Test” to the proposed method, employing some

epochs equal to ten, in order that the learning rate can be increased and reaches the set values

in its exploration. In the successive section, we present and describe the learning rate policies,

the rate of learning engaged in our training process.
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Learning Rate Policies

As previously introduced, a highly non-trivial parameter in training convolutional neural net-

works is the optimization step size intended as the learning rate. Indeed, proper tuning of the

learning rate can significantly reduce training time at different learning processes while ensur-

ing that the model converges to a wider local minimum generalizing better to unseen data[167].

This pursuit of optimizing learning rates has yielded different methods; several proposing var-

ious policies that modify the learning rate according to a predefined function or performance

metric(s) evaluated during training [185], while others using adaptive methods that modify

learning rates according to the local first-order information. These methods, also referred to

as ”optimizers” stochastic gradient descent, typically train deep learning models. However,

there are many variations of stochastic gradient descent: Adam, RMSProp, Adagrad, SGD

with decay, etc. Thie latter can be divided into learning rate schedules or adaptive learning

rate methods. Learning rate schedules seek to adjust the learning rate during training by re-

ducing the learning rate according to a predefined schedule. Standard learning rate schedules

include time-based decay, step decay, and exponential decay. Adaptive gradient descent algo-

rithms such as Adagrad, Adadelta, RMSprop, Adam provide an alternative to classical SGD,

as they set the goal of minimizing the objective function of a network by using and considering

the gradient. Nevertheless, there has been no clear winner so far among these different strate-

gies. Indeed, each method achieving different performance levels under varying settings like

the network architecture, dataset, and other hyperparameters. It leads us to consider the use

of various learning rate policies, pairs on the training dataset. Inspired by the ”A systematic

evaluation of learning rate policies in training CNNs for brain tumor segmentation”[188] we

employed different optimizers in the training process. We evaluated their effectiveness based

on the performance metric on the test set images, accordingly choosing the most impressive.

The following sections report a brief description of the main characteristics of the methods just

recently introduced, outlining the motivations that have induced us to employ them.
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Stochastic gradient descent : Constant Learning Rate

The constant learning rate is the default learning rate schedule in the SGD optimizer[187], and

it provides no reduction in the learning rate during the training phase. It is tricky to choose

the correct learning rate, and often, this method does not lead to any convergence resulting in

poor performance. .

Momentum is another argument in SGD optimizer which we could tweak to obtain faster

convergence. Unlike classical SGD, momentum method helps the parameter vector to build up

velocity in any direction with constant gradient descent so as to prevent oscillations.

SGD optimizer also has an argument called nesterov which is set to false by default.

Nesterov momentum is a different version of the momentum method which has stronger

theoretical converge guarantees for convex functions.The Momentum method does not take

into account direction it is going in, the Nesterov Accelerated Gradient method computes an

approximation of the next position of the parameters. The update rule is given in :
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Adaptive Learning Rate Methods

Adagrad

The Adagrad [187] method adapts the updates to the slope of the error function. The algorithm

adapts the learning rate to the parameters, so the size of the updates for each parameter de-

pends on its importance. The Adagrad algorithm gives more significant updates for infrequent

parameters and more minor updates for frequent parameters; the update rule is given in the

equation. Here Gt is a diagonal matrix containing the sum of squares of past gradient con-

cerning . The main advantage of Adagrad is that one does not need to tune the learning rate

manually. However, Adagrad faces problems due to the accumulation of squared gradients in

the denominator. Since every additional term is positive, the accumulated sum keeps growing.

Therefore the learning rate becomes smaller as training progresses.

Adadelta

Adadelta [187] is an extended version of Adagrad which reduces the problem of the decreasing

learning rate. It restricts the range of accumulated squared gradients to a certain fixed size.

RMSprop

RMSprop [187] is also an adaptive learning rate method that tackles the accumulation of squared

gradients in Adagrad. RMSprop divides the learning rate indeed by an exponentially decaying

average of squared gradients. It is an unpublished algorithm by G. Hinton.
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Adam

The Adaptive Moment Estimation (Adam) optimizer [187] also determines an adaptive the

learning rate for each parameter. Adadelta and RMSprop store an exponentially decaying

average of past squared gradients vt , but Adam also considers an exponentially decaying average

of past gradients mt . Vectors vt and mt are estimates of the mean and the uncentered variance

of the gradients, respectively, which are biased towards zero.

Nadam

Nadam is an acronym for Nesterov and Adam optimizer[187]. As we have seen before, Adam

can be considered as a combination of RMSprop and momentum: RMSprop contributes, in fact,

the exponentially decaying average of past squared gradients.

, while on the other hand, momentum accounts for the exponentially decaying average of

past gradients

. We have also proved that Nesterov accelerated gradient is superior to standard momentum.

Nadam (Nesterov-accelerated Adaptive Moment Estimation) [187] thus combines Adam and

NAG. In order to incorporate NAG into Adam, its momentum is modified. . In order to add

Nesterov momentum to Adam, we can thus similarly replace the previous momentum vector

with the current momentum vector. the Nadam update rule is the following :

Expanding the second equation with the definitions of m̂ t and m t in turn gives us:
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Learning rate policies in the proposed method

In the training phase of deep neural networks, it is often valuable to reduce the learning rate as

the training progresses. Even for a constant learning rate baseline, it is non-trivial to choose and

implement for a DNN. Dynamic learning rates involve multi-step tuning of LR values at various

training processes and offer high accuracy and fast convergence. We inspect principal learning

rate policies in this idea, adopting predefined learning rate schedules or adaptive learning rate

methods. Therefore, based on the dominant papers in the literature, we have selected six

different learning rate strategies: Sgd with constant Learning rate, Sgd with Moment, and

Nestorov Moment. Adam optimizer has been one of the overall choices in our experiment as

it dam is an optimization algorithm that can be employed instead of the classical stochastic

gradient descent procedure to update network weights iterative based on training data and in

an adaptive way. Moreover, empirical results demonstrate that Adam works well in practice

and compares favorably to other stochastic optimization methods. Adam can be looked at

as a combination of Stochastic Gradient Descent with Momentum amı̀nd RMS prop. On the

other hand, RMSprop is defined as a refinement of the Adagrad technique or a variant of

Adadelta. Therefore it was employed in our algorithm than the latter. Insofar, RMSprop and

Adam are very similar algorithms that do well in similar circumstances. [187] its bias correction

helps Adam slightly outperform RMSprop towards the end of optimization as gradients become

sparser. In practice, Adam is currently recommended as the algorithm to use and often works

slightly better than RMSProp. However, it is usual also worth trying SGD+Nesterov momentum

as an alternative. While momentum accelerates our search in the direction of minima, RMSProp

impedes our search in the direction of oscillations. Finally, considering the importance of the

Nesterov moment, we also examine the feasibility of the Nadam optimizer in our deep learning

model. Adam and Nadam are particularly being adapted for benchmarks in deep learning

papers. Good default settings for the tested machine learning problems are β1=0.9, β2=0.999

and ε=10e-8 Momentum is set to a value greater than 0.0 and less than one for the learning rate

schedules, where shared values such as 0.9 and 0.99 are used in practice. However, the relevant

literature suggests the value of momentum is usually set to 0.9 in this concept, we evaluated

the different learning rate policies on the test dataset, considering the pre-eminent the one with

higher performance.
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4.3.3 Number of Epochs

A significant challenge when training a deep learning model is deciding how many epochs to run.

Too few might not lead to model convergence, while too many steps could lead to overfitting.

The number of epochs is the measure of complete passes through the training dataset. The

model should be trained for an optimal number to mitigate overfitting and increase the neural

network’s generalization capacity. It is as high as possible to ensure the convergence of the

model but, on the other side, end training based on the error rates. Indeed, one should set this

parameter as high as possible and terminate the training when the validation error increases.

The number of epochs can be selected to an integer value between one and infinity. However,

the optimal value can be determined only heuristically, training the model for different epochs,

denoting the state of convergence of the training loss and the error or the increment or the

validation loss. Hence we have trained the proposed network, varying such parameters and

choosing the optimal configuration experimentally.
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4.3.4 Batch Size

Batch size is a hyperparameter used in machine learning and refers to the number of training

examples utilized in one iteration or stepper epoch; it defines the number of samples propagated

through the networks. A batch of samples is propagated through the model and then backward

propagated to estimate gradients for every instance in every single training step. The gradients

of all samples then are averaged. The use of Mini-batches and, therefore, batch sizes smaller

than the number of images that make up the dataset brings considerable advantages. It requires

less memory. Since one trains the network using fewer samples, the overall training procedure

requires less memory. It is essential if it is unfeasible to fit the whole dataset in the machine’s

memory- Furthermore, typically, networks train faster with mini-batches because the weights

are updated after each propagation.

Batch size has a critical and impressive impact on the convergence of the training process

and the resulting accuracy of the trained model. Typically, there is an optimal measure or range

of values for batch size for every neural network and dataset.

Large batch sizes may cause wrong generalization (or even get stuck in a local minimum),

which underlines overfitting and means that the neural network will perform poorly on samples

outside the training set. On the other hand, small-batch sizes may lead to slow convergence

of the learning algorithm. Consequently, for the proposed network, a batch size parameter is

established respecting the constraints of the GPU memory, and the considerations reported

previously. We have chosen a bath size parameter of 40 as an acceptable compromise.

4.3.5 Steps per Epoch

The steps per epoch or number of batch iterations before a training epoch is considered finished.

It may be helpful for a vast data set or generate random data augmentations. Traditionally, the

steps per epoch are calculated as the quotient of training dataset length and batch size since

this will use all of the data points, one batch size worth. On these grounds in our application,

considering the dataset and batch size, we appraised thirty steps per epochs, a practical choice

to cover the whole dataset in the standard case and one hundred in Data augmentation.
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4.4 Experimennts

4.4 Experimennts

4.4.1 Introduction

In this section, we describe the main experiments conducted in exploring the applicability of the

proposed methods. Therefore we describe the optimizations to set the parameters of training of

the neural networks in question but, above all, analysis to verify and to deepen the methodologies

of estimation of the apriori information and how they are introduced in the neural networks.

Moreover before considering implementation and training, it is necessary to determine what is

the number of components needed in the denoising version of SP-net and Sp-net Kernel and

especially what is the most appropriate kernel for this application. These processes require

further experiments based on the process of image reconstruction through the PCA and Kernel

PCA based on different numbers of components. With these premises, all the experimentations

have been effected in the same conditions in order to be able to report a correct comparison

between the proposed methods (Kernel SP-net and SP-net) mentioned above, considering the

neural network U-net as reference standard.

123



4.4 Experimennts

4.4.2 Kernel PCA & PCA Experiments

In these experiments, the applicability and reliability of Kernel PCA and PCA in the process of

projection and rear projection of binary mask images belonging to different sets are evaluated.

This process is intended as reconstruction and is used to evaluate the most suitable number of

components in the denoising applications of the proposed networks and especially which kernel

is better in this operation. In this regard, image reconstruction processes will be performed

using the above mentioned kernels for Kernel PCA and different numbers of components in the

reconstruction process. This procedure will be performed under the same conditions for the

linear PCA.
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4.4 Experimennts

4.4.3 Training Optimization Experiments

In the first instance, one might wonder about the hyperparameters to be used to train the model,

both triggering or not data augmentation, This request is essential to ensure that the proposed

method does not fail due to an underfitting or overfitting, which would lead to a deviation of

the results. Indeed, the first experiments are aimed at optimizing the understanding of what are

the best parameters. As described above, these experiments will see the deployment of various

techniques to adapt or not the value of the learning rate to train the model. In addition,

various training has been performed to understand which are the best number of epochs and

how Early stopping can be optimally applied. The value of batch size and steps for epochs

are established depending on the capacity of the GPU Memory and the size of the dataset .

The results produced led us to train the network using the following as a learning rate policy

, Nadam technique employing a starting learning rate=0,001. For the number of epochs has

been established a number equal to 300 because as observable by the loss and validation loss

is suitable to avoid cases of underfitting and overfitting.Batch size and steps per epoch are

estabilished according dataset features . Earlystopping is implemented considering a patience

maesure of 30 epochs as suggested by reference paper[190] .
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4.4 Experimennts

4.4.4 SP-Net Experiments

These experiments are intended to capture the drawbacks and advantages of the proposed

method ”Shape predictor network” . On this basis, SP-net is explored both with and with-

out implementation of Data Augmentation. The latter concerns to perceive how geometrical

transformation of the original masks and therefore of the SDFs can lead or not performance

improvements, assuming that these transformations lead to a wider distribution of pixels con-

stituting the masks transformed into signed distance functions, hoping that they can then cover

the misalignment present within the images of AIforcovid dataset. Moreover, to understand if

a reduction of the principal components can lead to advances effectively, the following reduced

version is examined.

4.4.5 Kernel SP-Net Experiments

In this case, the experiments performed have the role of investigating an extension of the

proposed method, trying to perceive how PCA kernel may or may not correct the defects

expressed in the previous method. Therefore, this application has been considered and used in

the same SP-Net conditions by exploring here a reduced version and not of Kernel SP-Net and

the application of Data Augmentation. Regarding the kernel used, this was chosen based on

the reconstruction errors in the set of validation and testing.

4.4.6 U-net Experiments

In latter phase, U-net being considered as the state of the art method, the related experiments

were carried out with the intent to provide a comparison of the proposed methods and to

understand the importance of the results especially in relation to the methods usually used

for the segmentation of medical images. n this regard Unet has been implemented with Data

Augmentation generating the same number of images expected in Sp-net and Kernel SP-net

through the use of the same geometric transformations.
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4.4 Experimennts

4.4.7 Comparison of Methods

In conclusion, the results obtained from these experiments were compared in order to understand

the actual performance . Therefore a comparison on the application of the Data Augmentation

has been carried out for what concerns the above mentioned neural networks and the application

of the latter with the original dataset. While in the version of the reduced components’ number,

the results of SP-net of its non-linear extension Kernel SP-net are reported, compared in turn

with the performance of the U-net network.

127



C H A P T E R 5

Discussion & Results

©

This chapter is the most prominent of the thesis as it reports and describes the main findings

following the application of the methods described above. These results are also discussed in

order to expose and perceive the main advantages and disadvantages in the segmentation of

the images that are part of the test dataset compared to the standard method assumed as a

reference, such as Unet. Therefore, in addition to the graphs showing performance measurement

indices, a qualitative analysis was also carried out to gain better the detriments and benefits

realized through such methodologies.

©
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5.1 Introduction

5.1 Introduction

The results are the conclusive and biting part of this work. In this regard, they have been

organized to follow a logical thread that leads to the exploration and application of the methods

previously mentioned. Consequently, we have reported all the results concerning the training of

the neural networks used. Since architecturally, SP-net and Kernel SPnet result to be identical.

The verdict of the results for the training optimization is used in the same way for both neural

networks, while U-net will be used under the same conditions to provide a comparison. In

the rest of the chapter, the results regarding SP-net have been described in the first instance,

both using the images of the original training set and those artificially generated through La

Data Augmentation. In addition, the results obtained following the use of fewer components

regarding the projection of images predicted by the network have been exposed to observe

whether this application can bring improvements. Similarly, these results are reported in parallel

to demonstrate whether effectively a nonlinear version of the method can behave better in

capturing and perceiving the apriori information obtained nonlinearly through the predefinition

of a kernel function. The procedure used in the choice of such a function has also been described.

Finally, as anticipated, the results of Unet are expressed as a method of references and so with

data augmentation. Wrapping up the resultant of this thesis is represented only from the dice

coefficient and jaccard index. They also come crowned from a qualitative analysis picturing the

best and worst cases of the respective methods.
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5.2 Principal Component Analysis Results

5.2 Principal Component Analysis Results

The results shown here expose the criteria and findings retrievied after the exploration of prin-

cipal component analysis and its use within the proposed neural network. In this regard, the

cumulative explained variance is evaluated to assess the optimal number of components to

establish a denoising end reduced version of SP-NET.

5.3 PCA: Cumulative explained variance

A vital part of using PCA is the ability to estimate how many components are needed to

describe the data. it can be determined by looking at the cumulative explained variance ratio

as a function of the number of components:

Figure 5.1: Cumulative explained variance by PCA
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5.3 PCA: Cumulative explained variance

5.3.1 PCA: Choosing Number of Components

As illustrated in the previous paragraphs, we have sampled some numbers of components of

the cumulative explained variance, starting from a minimum threshold of 100 components as

the minimum number of components to obtain an adequate reconstruction of the masks and

representing the 98% explained variance ad used as criteria of choice in the reference paper[152]

of ”Shape predictor Network”. . The other numbers in the esperiment have been considered

increasing the order of magnitude(therefore sampling 100, 1000, 10000, 15000 , total compo-

nents).

Figure 5.2: Sampled cumulative explained variance by PCA

131



5.3 PCA: Cumulative explained variance

5.3.2 PCA : Reconstruction Process

The reconstruction process of masks and segmentations was performed and evaluated with the

number of components sampled and validated on the training set, validation set and finally on

the test set, exploiting the reconstruction of 10 images for each set and calculating the respective

dice coefficent and jaccard index of the reconstructed lung curves.
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5.3 PCA: Cumulative explained variance

Qualitative Analysis

These results express a qualitative analysis of the first images from the training set, validation

set and test set reconstructed with the chosen component numbers, respectively.

Figure 5.3: Qualitative analysis by PCA
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5.4 Kernel Principal Analysis Results

5.4 Kernel Principal Analysis Results

As already shown the application of the Kernel PCA requires a correct choice of the Kernel

and of the related hyperparameters corresponding to the training dataset on which it is used.

As expressed in the previous chapters, the process to decide the best kernel function has been

established and decided according to the process of reconstruction of the masks coming from the

training set, validation set and Test set. The kernels that have been investigated are respectively

kernel on cosine similarity , radial basis function kernel , laplacian kernel and polynomial kernel.

For the latter three since their expression considers the use of hyperparameter , optimization

process based on binary mask reconstruction was adopted to choose correct parameters.

5.4.1 Kernel PCA: Radial Basis Function Kernel

Since the results and the application of RBF kernels resulted to be very dependent on the γ

parameter, three different values have been chosen respectively in the reconstruction process,

two of them randomly taken ( γ=0.00001, γ=1000) and one related to the average variance

present in the traning dataset (γ = 0.010705), as reported in the paper [189]. From these

findings we see that the application and explained variance of Kernel PCA depends on the

chosen γ parameter

Figure 5.4: Cumulative Explained Variance by RBF Kernel (dependent on γ)
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5.4 Kernel Principal Analysis Results

Also analyzing the results of the reconstruction processes on the training set , valdation set

and test set , it is evident that the gamma parameter must be proportional to the variance of

the investigated dataset.
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5.4 Kernel Principal Analysis Results

5.4.2 Kernel PCA: Laplacian Kernel

The laplacian kernel is considered as a variant of the Radial Basis Function kernel , in this

perspective were used the same criteria and the same parameters gamma, in fact this kernel was

verified in the reconstruction of 10 images of the training set, validation set and test according

to the jaccard and Dice coefficient with the number of components sampled.
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5.4 Kernel Principal Analysis Results

5.4.3 Kernel PCA: Polynomial Kernel

The polynomial kernel was adopted using different parameters, considering as second, third and

fourth degree polynomial
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5.4 Kernel Principal Analysis Results

5.4.4 Comparison of Kernel Methods

Assigned the values of the parameters of the laplacian and RBF Kernel and establishing, as

also from the reference paper, a degree equal to two for the polynomial kernel, these can be

compared with both the cosine similarity kernel and linear PCA.
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5.4 Kernel Principal Analysis Results

5.4.5 Kernel Methods: Qualitative Analysis

This section demonstrates how even qualitatively the kernel based on cosine similarity is more

robust and efficient in the reduction of components assuming results similar to the Linear PCA

and for this reason it can be used as a Kernel function in the non-linear extension of SP-net.

Qualitative Analysis: Training set

Figure 5.5: Qualitative Analysis : Training set
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5.4 Kernel Principal Analysis Results

Qualitative Analysis: Validation set

Figure 5.6: Qualitative Analysis : Validation set
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5.4 Kernel Principal Analysis Results

Qualitative Analysis:Test set

Figure 5.7: Qualitative Analysis : Test Set
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5.4 Kernel Principal Analysis Results

Kernel on Cosine similarity for kernel choice

From a first visual analysis and from the reconstruction of the images it is perceived as the

kernel based on cosine similarity is very robust especially in the reconstruction of the masks with

smaller and smaller number of components. In fact, it can be observed how the other kernels lose

the reconstruction of the initial lung shape below a certain number of components. Probably

this reason is deduced from the concept that the cosine similarity through the redefinition in

the inner product applies operations similar to those computed by Linear PCA on the original

SDFs, although in reality it is a non-linear extension.Therefore, given this evidence and also

on the basis of the cumulative variance explained from this application, one understands how

this kernel is the most suitable in our algorithm. Therefore, given this evidence and also on

the basis of the cumulative variance from this application, we understand how this kernel is the

most suitable in our algorithm. Therefore it will also be used in the same way as Linear PCA

in the denoising activity of the proposed methods.

Figure 5.8: Cumulative Explained Variance by Kernel PCA on Cosine similarity
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5.5 Training Optimization Results

5.5 Training Optimization Results

5.5.1 Learning Rate Optimization

The suitable initial learning rate and the related Learning rate policy has been established

considering six different optimization strategies, both adaptive and scheduler. In the first in-

stance for both of these techniques some Learning rate tests were performed in order to obtain

a confidence interval of values for which to test the proposed method .

Systematic evaluation of learning rate policies

As per the refereed paper[188] , the authors establish and report on several strategies to train a

convolutional U-net and carry out an in-depth study on which optimizer is the best to achieve

loss convergence. Similarly, once we established the confidence interval of the learning rates, we

implemented the following strategies on the proposed neural network .
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5.5 Training Optimization Results

Scheduler leaning rate policies

This section represents the related results of Dice coefficent and Jaccard Index reported on the

training set and test set by evaluating the following learning rate policies: Stochastic gradient

descent , Stochastic gradient descent with momentum, Stochastic gradient descent with Nesterov

momentum

Adaptive leaning rate policies

On the other hand in this case we represent the related results of Dice Coefficent and Jaccard

Index reported on the training set and test set by evaluating the adaptive learning rate policies:

Adam , Nadam and RMSprop.

144



5.5 Training Optimization Results

Comparison of learning rate policies

the following results show an efficient comparison between the various strategies estimated on

the training set and test, demonstrating like the Nadam learning rate policy is the more adapted

in the training of the net, since it previews like also in the literature a greater robustness in the

falling in the local minimums of the loss function regarding the others. Assessing the results,

for RMSprop, Stochastic gradient descent and Stochastic gradient descent with Mommemntum

and Nesterov Momemntum the congenial intial learning rate is 0.0001 , while for Nadam and

Adam the suitable learning rate is 0.001.
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5.5 Training Optimization Results

5.5.2 Number of Epochs

Assumed the initial value of learning rate the appropriate strategy of optimization (Nadam) ,

several training of the proposed networks were conducted , to establish the correct number of

epochs. In particular both Kernel SP-net and SP-net , have been from trained for 100 , 200

, 300 , 400 , 500 epochs.On the basis of which is consulted the validation loss as it allows to

avoid the overfitting or underfitting of the network. As can be seen from the results of the

training, from the 200th epoch, there are no considerable oscillations in the validation loss, in

fact considering the interval from 200 to 300 epochs, the normal distribution of values between

the 200th and 250th epochs overlaps with the distribution of values of the remaining epochs.

The gaussian distributions are take considering a validation loss of SP-net ,kernel SP-net and

Unet training with 300 epochs , 400 epochs , 500 epochs.
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5.5 Training Optimization Results

5.5.3 SP-net : Number of Epochs

SP-net without Data Augmentation : Lass and validation loss for epochs

SP-net without Data Augementation : Validation losses and Normal distributions
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5.5 Training Optimization Results

SP-net with Data Augmentation : Lass and validation loss for epochs

SP-net without Data Augmentation : Validation losses and Normal distributions
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5.5 Training Optimization Results

5.5.4 Kernel SP-net:Number of Epochs

Kernel SP-net without Data Augmentation : Lass and validation loss for epochs

Kernel SP-net without Data Augmentation : Validation losses and

Normal distributions

149



5.5 Training Optimization Results

Kernel SP-net with Data Augmentation : Lass and validation loss for epochs

Kernel SP-net with Data Augmentation : Validation losses and Normal distribu-

tions
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5.5 Training Optimization Results

5.5.5 U-net:Number of Epochs

Unet without Data Augmentation : Lass and validation loss for epochs

U-net without Data Augmentation : Validation losses and Normal distributions
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5.5 Training Optimization Results

Unet with Data Augmentation : Lass and validation loss for epochs

U-net without Data Augmentation : Validation losses and Normal distributions
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5.5 Training Optimization Results

Therefore, denoting slight shifts of the superpositions of the normal distributions, noted in

the previous pages, was an optimal number of epochs equal to 300 in the training of our neural

networks.

5.5.6 Batch size

The batch size is determined by the condition and capacity of the GPU memory and the size

of the training dataset. In the proposed methods, it is observed that a value of 40 is ideal.

5.5.7 Steps per epochs

steps per:epoch can be calculated by total samples/batch size but considered larger to ensure

that all images are implemented in the network . On the other a few times wider when data

augmentation is used.In this perspective for standard case of dataset 10 iterations were used ,in

data augmentation case 100 steps were used..
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5.6 Final Results

5.6 Final Results

The following paragraphs discuss and expose the final results obtained based on the training

of the proposed neural networks. The results are evaluated principally considering the units of

measurement previously mentioned, that is the jaccard index and the dice coefficient, performed

and calculated on the total images belonging to the test and therefore on 43 images of the

validation and training set. Given the conditions established in the previous sections, the

experiments for each method were performed by training the network for 300 epochs, using an

initial learning rate of 0.001.However Unet, as reported also in the literature, was trained using

the strategy of Adam . Regarding the methods derived from SP-net they were trained according

to the results obtained and therefore with the optimizer Nadam. Finally, the results reported

here are referred to 10 repetitions for the training of each network.
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5.6 Final Results

5.6.1 SP-NET Results

his section presents the results obtained for the training set, validation set and test set through

the application of SP-NET considering the mean Jaccard Index and mean Dice Coefficient.

SP-NET without Data Augmentation:

5.6.2 SPNET with Data Augmentation
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5.6 Final Results

SP-NET 100

These results show the efficiency of the neural network SP-NET in its reduced version, employ-

ing less components in the reconstruction of the image and therefore applying an operation of

denoing in the reconstruction of the segmentation.Indeed 100 indicates the number of compo-

nents used.

Comparison of SP-NET methods

The chart below shows an actual comparison between the results defined with SP-NET and its

variants on the test set images .
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5.6 Final Results

5.6.3 Kernel SPNET Results

Similarly, this section introduces the key results achieved with a non-linear extension of the

method in question and intended as the Kernel SPNET .

Kernel SP-NET without Data Augmentation:

Kernel SP-NET with Data Augmentation:
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5.6 Final Results

Kernel SP-NET 100

SImilar to the Denoisng process applied by SPNET 100 , in this we investigate results with the

same procedure in the nonlinear version.

Comparison of KERNEL SPNET Methods:
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5.6 Final Results

5.6.4 U-NET Results

The following bar graphs represent the results achieved from the referenced method ,applying

or not Data Augmentations.

5.6.5 U-NET without Data Augmentation;

5.6.6 U-NET with Data Augmentation:
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5.6 Final Results

Comparison of Unet Methods :
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5.6 Final Results

5.6.7 Comparison of Methods :Final Results

As a consequence of the results achieved, we realize how the data augmentation in the proposed

methods involves only a reduction of performance without improving effectively the learning.

Therefore we agree that SP-NET and Kernel SP-NET can be used without the application and

use of such technique and therefore in this mode are compared with Unet, that in the reduced

version and so employing less components have not given better outcomes.
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5.7 Qualitative Analysis

5.7 Qualitative Analysis

The qualitative analysis has the purpose and the desire to make the reader fully understand the

results obtained so that he perceive and appreciate the advantages as well as the drawbacks.

To this end, this section illustrates the segmentation maps predicted by our algorithms and

compares them with the real ones. In the first place, the results are reported with reference to

the sets of images given and only then will a qualitative analysis of the best and worst cases be

carried out.

5.7.1 Qualitative Analysis : UNET

Finally, it is possible to appreciate how Unet is more able to pick up and delineate the lung

boundary than the previous methods. This fact is better illustrated in the following analysis,

which represents in more detail the segmentation of the images of the Aiforcovid dataset.
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5.7 Qualitative Analysis

5.7.2 Qualitative Analysis:SP-NET

As it is refined also from an analysis of the first images belonging to the various sets, SP-NET

results to be pariticularly effective both on the training and validation set, while on the test set

SP.NET results to be able to segment the lungs summarily well.
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5.7 Qualitative Analysis

5.7.3 Qualitative Analysis : Kernel SP-NET

Kernel SPNET in its versions, similarly to SP-NET, succeeds in defining the lung boundaries

of both the images belonging to the validation and the training set, but also those belonging to

the test set, even if the latter are not exhaustive.
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5.7 Qualitative Analysis

5.7.4 Qualitative Analysis of Aiforcovid Images

This last part is appropriate to give greater attention and prominence to the images that make

up the test set, for this reason the section below has the objective of highlighting the harder

cases on which it is particularly ardous for the methods discussed to implement a segmentation

and the best cases in which they are very effective. In particular, since the methods exposed

here have the purpose of improving the current state of the art, the worst cases are those in

which U-net performs segmentation maps that are not completely reliable and the best are the

images of the Aiforcovid Dataset on which the segmentation is very faithful.

Harder Cases

In this context, the purpose of this analysis is to shed light on the shortcomings and deficiencies

of the algorithms used in this work. Therefore, we carry out a qualitative evaluation of the

cases extracted from AIforcovid dataset and that proved to be the most challenging to segment

.

1.Unet :
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5.7 Qualitative Analysis

2.SP-NET:

3.KERNEL SP-Net:

166



5.7 Qualitative Analysis

Harder Cases : Comparison of Methods

The last page of this chapter intends to perform among the methods and configurations consid-

ered best based on the results obtained. Starting from this, the segmentation maps obtained by

SP-NET and Kernel SP-NET are compared with those of U-NET, and evaluated on the cases

in which the latter fails.
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5.8 Discussion of the Results

5.8 Discussion of the Results

From the results, it emerges how SPnet, both in its original and the non-linear form (Kernel

SPnet), fails to give qualitatively and numerically better performances than Unet . Although

the dice coefficient and the jaccard index of the segmentations predicted by both the networks

mentioned above are close to those of the reference method, they have significant differences. It

is explained by some flaws and detriments reported by the applied methodologies and techniques

used to acquire and capture apriori information based on the expected shape by the training

dataset. From the qualitative analysis of proposed methods, it is possible to observe a limitation

in the segmentation of some of the lungs present in the AIforcovid Dataset in many cases. Thus,

it is possible to notice a defect called and intended as the ”bridge effect2 corresponding to the

conjunction of the right lung segmentation map and the left one at the top of the tracheal

compartment. This imperfection is justified because the analysis of principal components, both

in the standard version and with a kernel function, finds it challenging to analyze and perceive

the variance of the pixels located in that area because they assume negative and positive values

and so are very discontinuous. This problem could be solved by applying a specific threshold

to analyze the pixels that make up this area or applying unique methodologies, but this would

involve a greater complexity of the algorithm used to recognize lung boundaries. This problem

could be solved by applying a specific threshold to analyze the pixels that make up this area

or applying unique methodologies, but this would involve a greater complexity of the algorithm

used to recognize lung images. However, in the images with poor contrast, the algorithm gives

approximate segmentation, more faithful on some occasions than those predicted from Unet.

This result is also found with the use of the Kernel SPnet, and the same applies unfortunately

also to the defects described. Other problems are evident from the Data Augmentation. Even

if, in particular cases, it gives more optimal segmentation for a dataset of greater dimensions,

in most images, it originates the detection of false lung fields from the outcome of the network.

his effect is since the geometric transformations used in the generation of artificial images

carried out during the data augmentation introduce a distribution and, the variance of pixels

where usually in chest radiographs where there are no lung areas. Therefore it is captured

by the first principal components and reported in the reconstruction of the predicted masks.

It follows that even using fewer components and therefore a reduced matrix of eigenvectors,

this error would still be present. As a result, the appliance of data augmentation renders the

algorithm more robust. On the other hand, it introduces artifacts in the prediction of the

masks due to rotations and translations on the original pulmonary curves. The following result

is also observed in the extension provided by the Kernel PCA since it performs steps analogous
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5.8 Discussion of the Results

to the principal component analysis. Extracting in the first components the pixels with more

significant variance and corresponding to areas typically recognized as lung fields, Kernel SP-net

with Data Augmentation predicts regions of segmentation outside the lung contours indicated

by the manually annotated masks. The outcome of this segmentation depends on the shape

that you want to annotate and of which you want to get the apriori information. In fact, in the

reference article from which the following methods draw inspiration, it is noted that instead,

the data augmentation leads to better performance due to the context of this application. In

the case of the paper, in fact, the proposed method had the objective of segmenting vertebrae,

and therefore any misalignment implemented in the generation of a larger dataset does not

lead to a wrong distribution of pixels but a performance improvement. It is clear from the

discussion of these results that the principal component analysis in the standard version and

nonlinear integration and capture of apriori information and applicability depends very much

on the anatomical shape in question and the desired segmentation.
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C H A P T E R 6

Conclusion

©

The section described here concerns the conclusion of the work accomplished so far. Indeed it

composes the final thesis retrieved as a result of the results described and discussed previously.

Therefore this section exposes in the first part a real conclusion of the results obtained from the

proposed methods, focusing on how they are given principally by the techniques used to treat

the apriori information acquired. In addition, this section also provides a description of possible

solutions that could be proposed on the basis of the proposed algorithm in order to improve it.

In fact, this part of the article is described as ”Future Work.”

©
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6.1 Conclusion

6.1 Conclusion

Following the results obtained and discussed in the previous chapter, it is possible to conclude

that the work achieved, the deepening, and the application of the proposed methods can give

significant improvements only in the analysis of medical images in specific contexts. It was

observed mainly in lung field segmentation as it is of vital importance in the development

of methods addressed, the techniques used to acquire apriori information about the expected

anatomical shape. Although the principal component analysis itself and its nonlinear form are

used in many shape analysis cases, it has some limitations in this area. Although Spnet and

Kernel Spnet, thanks to the principles and steps of the principal component analysis used for

a priori information, can obtain a reliable segmentation in low-quality images compared to the

unet, in the remaining part of the cases considered difficult, have significant defects not shown

in state of the art. Since the latter is also present in the nonlinear version, we conclude that

even using the Kernel PCA to explore the characteristics and nonlinear correlations do not sig-

nificantly benefit. From this perspective, we perceive how incorporating apriori information can

be helpful only in some cases, namely to ensure that we have approximate segmentations with a

lung-like structure in the low-contrast images provided by the Aiforcovid dataset. While in the

remaining cases, using the information by a network like Unet is not indispensable. Besides, it

has been demonstrated that using different datasets, thanks to data augmentation, there is no

significantly better performance. It also implies that with such applications to exploit the ad-

vantages, should be used other different techniques to capture the information apriori, because

as also exposed in the previous section, the use and the basic concepts of principal component

analysis and kernel PCA involves the introduction of some artifacts and false segmentations

not present in the original version of the methods. In conclusion, the apriori information re-

garding the expected anatomical shape can be an additional faculty of the convolutional neural

networks, especially when the network cannot give an effective segmentation but different from

the natural mask manually annotated and reported by the ground truth. This concept will be

expressed in the next section, describing the future work that can be developed possibly based

on the results retrieved in this thesis.
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6.2 Future Work

As already anticipated in the conclusion of the thesis, as far as the results reported in this

work are concerned, the a priori information has a crucial role only in the segmentation of

some images because thanks to this, they can delineate reliable pulmonary profiles compared

to the Unet segmentation. We understand how the use and integration of a priori information

can be essential in providing reliable discrimination in very complex images, while in others,

it is superfluous or even harmful. Moreover, as can be seen from the use of Kernel PCA, an

alternative form of principal component analysis is not decisive in this context. From this point,

it follows that rather than investigating different techniques to capture the a priori information,

it is more helpful to investigate in future works a method to consider when to use or not the

a priori information in the prediction of the segmentation predicted by convolutional networks.

As suggested by the conclusive part of the thesis, the shape knowledge is valuable only in

those images in which unet succeeds in not distinguishing the areas belonging to the lungs

from those forming the background, and in this case, the use of principal components could

be decisive. To this end, for future work, we propose to approach the constitution of neural

networks described in the thesis and seek a method that can distinguish those scenarios in which

it is necessary to consider the apriori knowledge and those in which the use of these could lead

to a worsening of performance as it would excessively affect the segmentation resulted from the

convolutional neural network in question. In this way, integrating the a priori information could

be a real solution and an additional opportunity to obtain realistic segmentations even in the

most complex cases. However, on the other hand, we realize that introducing this mechanism

certainly involves a greater complexity in the development and training of the neural network,

and it was an exciting challenge given the potential benefits described above.
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