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“We are dwarves perched on the shoulders of giants..”

Bernard of Chartres
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Abstract

Nicola BARTOLINI

A supervised Adversarial Auto-encoder based technique for
data translation: mRNA-miRNA data translation in cancer

The crucial role of multi-omics analysis enables researchers to experiment
with new deep learning techniques for the study of genomics and disease de-
tection. A huge amount of several data types is available. However, due to
time and cost limitations, the quantification of these data for a single sam-
ple is not always possible [1]. Therefore, researchers would benefit from the
prediction of a new data type (e.g. miRNA expression) given available data
(e.g. mRNA expression). This process can be considered similar to the trans-
lation between two domains. In this thesis, I focused on the translation be-
tween two different transcriptomics data: miRNA and gene expression. The
proposed model was implemented on a kidney cancer dataset and extended
on a lung cancer one. At first, I extracted miRNA and gene expression kid-
ney cancer data for which the same patients were available. The model con-
sists of two supervised adversarial autoencoders (sAAEs), one for each data
type considered, i.e. miRNA and gene data. An sAAE is a deep generative
model composed of 3 parts working simultaneously. It is based on an autoen-
coder (consisted of an encoder and a decoder) and introduces a discriminator
network. The training of the model is based on two sequential phases, the
reconstruction, and the regularization phases. The former exploits class la-
bels to disentangling the original information. The latter provides a lower
probability of overfitting, but also the possibility of generating new consis-
tent samples from random variables of the same imposed distribution. Com-
bining the encoder and the decoder of both sAAEs allows the translation be-
tween miRNA and gene expression data and vice versa. The model’s architec-
ture was defined through two different tuning types. The first one has been
used to define the structural parameters of the networks, the number of lay-
ers, and the size of hidden layers, while the second one has been used to ob-
tain the hyper-parameters that most affect the network learning (e.g., learning
rates, batch size and test set size). Next, the method has been evaluated on
a lung cancer dataset composed of adenocarcinoma (LUAD) and squamous
cell lung (LUSC) classes. The obtained results aim to compare the original
and translated data. First, principal Component Analysis (PCA) allowed a
qualitative visualization of data variability between original and translated
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data. Then, cluster analysis was performed to measure the distributions’ dif-
ferences and similarities by computing clustering performance metrics. The
metrics used are the adjusted RAND index, the average silhouette value, and
the Calinski-Harabasz value. These metrics report a similar behaviour in the
case of the original and translated datasets. Therefore, an analysis of indi-
vidual patients was performed and a scatter plot was generated for each pa-
tient (the original values are in the abscissa while the translated values are
in the ordinate). I performed a differential analysis to investigate if the same
genes/miRNAs that differentiate tumor subclasses in the original dataset are
the same as those in the translated dataset. I generated the heatmaps rep-
resenting the intensity of genes/miRNAs expression, which is differentially
expressed for both the original and translated data. Thus, the biological co-
herence of the genes/miRNAs has been preserved. The correlation between
original and translated genes/miRNAs was performed to demonstrate how
well this translator is.
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Chapter 1

Introduction

The history of medicine has been marked by developments in diagnosis
that led to changing treatments and improved outcomes for patients. Al-
though, when it comes to cancer, the diagnosis is mainly done by looking
through the microscope at the appearance of the cancer cells, often the most
accurate way of making a diagnosis is by defining the source organ. However,
over the last couple of decades, researchers realized that a much better way
to diagnose cancer is through the molecular abnormalities that distinguish the
cancer cells from the normal ones in the body and these molecular abnormali-
ties are often changes in the genome of the cancer cells.

In parallel, the evolution of artificial intelligence algorithms has driven
enormous data processing capacity, for instance, through deep neural net-
works. In the biomedical field, machine learning algorithms have enabled the
diagnosis of diseases. The main applications of deep learning algorithms in
the biomedical field are omics analysis, biomedical imaging, and biomedical
signals [2].

The crucial role of multi-omics analysis enables researchers to experiment
with new deep learning techniques to study genomics and disease detection.
A considerable amount of several data types is available. However, due to
time and cost limitations, the quantification of these data for a single sample is
not always possible [1]. Therefore, researchers would benefit from predicting
a new data type (e.g., miRNA expression) given available data (e.g., mRNA
expression). This process can be considered similar to the translation between
two domains.

This thesis focused on the translation between two different transcriptomics
data: miRNA and gene expression. The proposed model was implemented on
a kidney cancer dataset and extended on a lung cancer one. In the first step, I
extracted miRNA and gene expression kidney cancer data for which the same
patients were available. Kidney tumor patients (samples) are divided into two
classes: clear cell renal cell carcinoma (KIRC) and papillary renal cell carci-
noma (KIRP). After pre-processing, these data resulted in 1544 miRNAs and
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19373 genes for a total of 800 common patients (512 and 288 respectively for
KIRP and KIRC classes). The model consists of two supervised adversarial au-
toencoders (sAAEs), one for each data type considered, i.e., miRNA and gene
expression.

An sAAE is a deep generative model composed of 3 parts working simul-
taneously. It is based on an autoencoder (consisting of an encoder and a de-
coder), and it introduces a discriminator network. The training of the model
is based on two sequential phases, the reconstruction and the regularization
phase. The former exploits class labels to disentangling the original informa-
tion. The latter provides a lower probability of overfitting, but also the possi-
bility of generating new consistent samples from random variables of the same
imposed distribution.

Combining the encoder and the decoder of both sAAEs allows the transla-
tion between miRNA and gene expression data and vice versa. The model’s
architecture was defined through two different tuning types. The first one has
been used to define the structural parameters of the networks, the number of
layers, and the size of hidden layers, while the second one has been used to
obtain the hyper-parameters that most affect the network learning (e.g., learn-
ing rates, batch size and test set size).
Next, the method has been evaluated on a lung cancer dataset composed of
adenocarcinoma (LUAD) and squamous cell lung (LUSC) classes.

The obtained results aim to compare the original and translated data. First,
Principal Component Analysis (PCA) allowed a qualitative visualization of
data variability between original and translated data. Then, cluster analysis
was performed to measure the distributions’ differences and similarities by
computing clustering performance metrics. The metrics used are the adjusted
RAND index, the average silhouette value, and the Calinski-Harabasz value.
These metrics report a similar behavior in the case of the original and trans-
lated datasets.

However, the values for the translated data are generally higher than the
corresponding original data. Therefore, an analysis of individual patients was
performed. First, a random population was examined, and both original and
translated data were considered. Next, a scatter plot was generated for each
patient (the original values are in the abscissa while the translated values are in
the ordinate). A predicted regression line was superimposed on each plot. In
detail, both translators are less reliable with translations of low expression val-
ues. Gene-to-miRNA translation improves as the expression value increases
while it is less visible in miRNA-to-gene translation.
In order to evaluate the goodness of predicted data, I performed a differen-
tial analysis to investigate if the genes/miRNAs that differentiate tumor sub-
classes in the original dataset are the same as those in the translated dataset. In
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addition, I generated the heatmaps representing the intensity of genes/miRNAs
expression, which is differentially expressed for both the original and trans-
lated data. Thus, the biological coherence of the genes/miRNAs has been
preserved. Indeed, most of the genes/miRNAs reported in the heatmaps are
among the biological markers for these specific tumor classes. In particular,
I found the gene ENTPD1 alias CD39 with a high expression is a powerful
prognostic marker of clear cell RCC (KIRC) patients [3], the hsa-mir-200b, hsa-
mir-424 and more markers between normal kidney and different renal cell
carcinoma subtypes [4]. The model has identified hsa-miR-375, hsa-miR-205,
and hsa-miR-196b, which are valuable molecular markers for the classifica-
tion of non-small cell lung carcinoma (NSCLC) histologic subtypes [5]. The
correlation between original and translated genes/miRNAs was performed to
demonstrate how well this translator works.
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Chapter 2

Biological Background

This chapter will overview the fundamental mechanisms that regulate the
interaction between miRNAs and messenger RNAs.

In the first part, we will initially look at what generally happens after the gen-
eration of miRNAs and how they interact with mRNAs. Then we will focus
on how these interactions affect the processes of tumorigenesis.

Then, in the second part, we will explain the process of obtaining the ex-
pression levels of both genes and miRNAs. Finally, we will say what they are
and why they are crucial in the diagnostic process of some types of diseases.

2.1 Introduction of microRNA

The cells of every multicellular living organism are of many types, and every
one of them has a particular purpose. However, in each of them, there is a
part common to all, the nucleus. It contains the DNA that encodes all the
information about the organism.
The cell can differentiate itself by using or not using this information. This
information resides in the genes. Genes are nucleotide sequences contained in
DNA. The information used is different for each type of cell.
It means that genes are exploited differently by each of the different cells.

2.1.1 Biosintesis of miRNA

The ability to use only the information that the specific cell needs is referred to
as gene silencing. The molecules that allow these genes to be used or not are
miRNAs.

miRNAs are a small (22 nts) endogenous non-coding RNAs (ncRNAs), and
in the following lines, we will see how they can inhibit the action of genes. Due
to their regulatory function, they are the leading players in gene silencing.
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Before explaining gene silencing, I want to introduce how miRNA biogen-
esis occurs.

MicroRNA (miRNA) is formed within the cell by the action of RNA poly-
merase II. The ladder produces a miRNA as a nucleotide segment that forms a
hairpin ring structure. This first stage of miRNA is called primer-miRNA. In a
second step, the pri-miRNA is identified and associated by the Drosha-DGCR8
complex, which cuts off a portion. The pri-mirna thus becomes the precursor
of the miRNA (pre-miRNA). The pre-miRNA is thus ready to be carried out
of the nucleus and Exportin 5 is the protein assigned to this task. In the cyto-
plasm, pre-miRNA is released and recognized by the Dicer protein. Dicer is
responsible for cutting the steam loop of the pre-miRNA. Now the pre-miRNA
is composed of a double-wrapped nucleotide strand.

Subsequent interaction of AGO2 with the Dicer/pre-miRNA complex al-
lows passage of the pre-miRNA from Dicer to AGO2.
AGO2 unwinds the pre-miRNA and releases one of the two strands. The

FIGURE 2.1: Biogenesis and functionality of the microRNA: the
RNA polymerase II (RNA Pol II) (A) produces the primary mi-
croRNA (pri-miRNA) (B) that is sliced by Drosha-DGCR8 com-
plex (C). In this way, the pri-miRNA becomes a small precursor
hairpin microRNA (pre-miR). The Exportin5 carries out the pre-
miR to the cytoplasm (D). The DICER binds the pre-miR and cuts
off the hairpin steam loop. Next, the pre-miR moves from DICER
to AGO2, which splits it into two single strands. One remains
bound to AGO2 while the second is degraded (E). Then the RISC

complex can be formed (F)

newly created complex formed by AGO2 and the miRNA strand is referred
to as RISC (RNA Induced Silencing Complex). This complex allows inacti-
vating the action of genes contained in mRNA. The binding of a miRNA to
its target gene transcript contained in mRNA often relies on a 6-8 nucleotide
pair region of almost perfect complementarity between the 5 end (the "seed



2.1. Introduction of microRNA 15

region") of the miRNA and its target mRNA sequence. The targeting is pre-
cise because it is determined by basic pairing between the RISC complex and
the targeting mRNA. There are two ways to silence a gene: the mRNA degra-
dation or the inhibition of the translation expression, also called translational
repression (Figure 2.1. Degradation of mRNA is induced when the comple-
mentarity between the miRNA and the target mRNA sequence is high.

2.1.2 Role of miRNAs in tumor suppression and proliferation

The role of miRNAs is central in the regulation of gene expression, and this
is also confirmed in cancer cells. Therefore, the action of miRNAs during the
life stage of cancer cells is of great interest, especially for those miRNAs for
which cancer is highly "addicted". Those miRNAs are defined "oncomiRs". In
contrast, some miRNAs act as tumor suppressors. Therefore, understanding
which miRNAs are oncogenic or tumor suppressors is a hot topic in research.
Two lists of some of the tumor suppressors and oncomiRs validated in litera-
ture are reported in Table 2.1 and Table 2.2 respectively.

miRNA Cancer Type Function

miR-34b/c Lung Cancer A positive feedback between p53 and miR-34
mediates tumor suppression in human lung cancer

miR-126 Lung, breast
and colon cancer

Plays a critical tumor-suppressor role in tumor
initiation and metastasis

miR-155 Breast cancer Downregulates RAD51 and sensitizes cancer
cells to irradiation

miR-494 Lung cancer Regulated by ERK1/2 it modulates proliferation
and apoptosis response

TABLE 2.1: List of some miRNAs that are tumor suppressors val-
idated in literature [6]

miRNA Cancer Type Function

miR-9 AML Specifically overexpressed in MLL-rearranged AML and
promotes leukemia progression

miR-181a/b Liver, breast
and colon cancers Promote tumorigenesis and tumor progression

miR-21 Breast cancer Overexpression of miR-21 contributes to proliferation
and metastasis

miR-421 Gastric cancer Marker of circulating tumor cells

TABLE 2.2: List of some oncomiRs validated in literature [6]

The following section will introduce the data types used in this thesis, what
sequencing techniques are used, i.e., how they are obtained and what they
represent.
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2.2 Brief introduction of RNA-Seq

Gene expression and miRNA data are the product of sequencing processes.
RNA-seq or RNA sequencing is a developed approach to transcriptome pro-
filing. It is a high-throughput sequencing technique that is included among
the next-generation sequencing. In addition to whole RNA (mRNA) sequenc-
ing, RNA-seq also includes RNA (mRNA) sequencing as well as small RNAs
(miRNA, piRNA, siRNA) and tRNA [7]. These sequencing techniques are

FIGURE 2.2: RNA-Seq workflow

based on complementary DNA. During the transcription step, the DNA is
copied, and after removal of the "non-protein-coding" (introns), we obtain
RNA, which will be composed of nucleotide bases complementary to DNA.
The most popular method of RNA sequencing is done indirectly. However,
direct RNA sequencing methods are growing that could lead to new gold stan-
dards [8].
After the transcription phase, there is a reverse-phase called "reverse transcrip-
tion" in which RNA is converted back into DNA, in particular into comple-
mentary DNA (cDNA). In this way, it is possible to sequence RNA indirectly
because the cDNAs are more stable than RNAs.
Given a sample with RNA to be sequenced: the RNA size selection is impor-
tant for the types of molecules that will be sequenced. Indeed the total RNA
sequencing and small non-coding RNA sequencing (microRNA-Seq) follow
different pathways:

1 - the microRNA-Seq isolate the RNA through size selection. After isola-
tion and purification, the small RNAs are converted to cDNA through
reverse transcription.

2 - the mRNA-Seq convert the RNA into cDNA before the size selection.
Each cDNA molecule corresponds to one RNA strand. The cDNA se-
quences are then randomly cut to form large fragments of equal size. In
this way, the miRNAs, as the rest of small RNAs are lost [9](Figure 2.2).
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In any case, the fragments or reads are aligned to the reference genome through
an alignment algorithm. A gene or a miRNA expression corresponds to the
number of reads that map that specific gene or miRNA.
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Chapter 3

Deep Learning

In this section, the main technical instruments used for the development
of the project are described. Then, those tools will be explained in order to
give a clearer view of the model. The following paragraphs will introduce
complex topics, starting with the general discussion of deep neural networks
and ending with a discussion on generative models such as GANs, Variational
Auto-encoders, and adversarial Auto-encoders.

3.1 Deep Feedforward Networks

Deep neural networks are mathematical models that aim to approximate func-
tions of interest. We can define a deep neural network with a function f. If we
consider x the input of a neural network and f the function of the network,
then f(x) is the output of the network. f is typically a function composed of
multiple functions. Each function represents a layer of the network. A deep
neural network is composed of at least 3 layer’s types:

1- Input layer

2- Hidden layer

3- Output layer

There may be more than one hidden layer but only one input and output layer.
The input and the output layers are the visible layers. A deep neural network
composed by two hidden layers is shown in Figure 3.1 Each layer contains
neurons. Each neuron is part of a layer. The neuron is the smallest part that
makes up the neural network, and they are connected to the adjacent neurons
of the following and the previous layer. The connection between one neuron
and another is weighted: the value assumed by the next neuron will be a linear
combination of the weighted values of the neurons of the previous layer to
which a bias will be added. An activation function is applied to this linear
combination, which changes according to the type of problem. For example,
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FIGURE 3.1: Neural Network with two hidden layers and single
neuron output

let us consider a classification problem: given a sample input x, the classifier
must understand what x is. In other words, if x has y as its class, I want the
classifier to understand that x belongs to class y. If class y is a binary value, 0
or 1, then the network’s output consists of a single sigmoid neuron, to which
the sigmoid function is applied. A sigmoid function (Figure 3.2 ) is a logistic
function that maps any real value on a small range, usually between 0 and 1.
It can convert the output into probabilities between 0, and 1 [10]. In general, if
a network consists of two layers (with input layer excluded), the network will
be composed of two generic functions f1 and f2. If ŷ is the predicted value of
the network, the formulation will be:

ŷ = f(x) = f 2 ( f 1 (x)) (3.1)

The deep neural networks also called deep feed-forward networks and they
are characterized by feed-forward connections between neurons: the graph
formed is acyclic, i.e. the information flows along through the function f that
maps the input with the output f(x) [11]. The neural network architecture must
be designed according to the type of application and the complexity of the
problem. Defining the input and output dimensions is often straightforward.
The input is defined by what data I have and the output is defined by what I
want to achieve. The number of hidden layers and the number of neurons per
layer are parameters that strongly affect the network’s performance. Tuning
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FIGURE 3.2: Sigmoid function

these parameters is necessary to ensure the best combination. It will only be
necessary to utilize a search algorithms such as Grid Search, Random Search
[12] to search for them.

One of the essential things that characterize neural networks but extend-
able to any machine learning problem is the training and testing phase. Dur-
ing the training phase, the network learns specific patterns based on data to be
autonomous in the testing phase. The training phase generally consists of sev-
eral iterations. We will also need to split our data into a training set and a test
set. If we consider the previous classification problem, at each iteration, data
from the training set is given input to the network, The learning algorithm of
the neural network is the backpropagation algorithm. After the forward prop-
agation through layer by layer, the network generates the output. The memory
of the network consisting of the weights and biases is updated at each itera-
tion.

3.1.1 Hyper-parameters

The performance of Neural Networks is affected by several parameters. The
best way to choose those parameters is to use an optimization algorithm for
optimal searching. Machine learning developers, as deep learning ones, must
know which hyper-parameters affect the network the most. The parameters
that are generally optimized in a deep neural network are:

• Depth of the model

The depth of a deep neural network is the number of hidden layers that
determine the overall length of the network chain.

• Width of the model

It correspond to the dimension of each hidden layer.
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• Learning Rate

The learning rate is a parameter that determines how fast the learning
algorithm should do its work. The optimization of the learning rate is
crucial in neural network training.

• Dropout

The dropout is a regularization technique used by neural networks dur-
ing the training phase. The idea is that some neurons were inactivated
randomly during the training phase. The parameter that the machine
learning developer sets is the probability of a neuron to be zeroed. The
optimization of this parameter can improve the performance of a neural
network in many fields [13].

The data used to build the final model is split in two datasets:

• Training dataset: the part of the dataset that is used for training the net-
work. For one (or more) deep neural networks, this coincides with train-
ing the weights and biases of the various nodes and links.

• Test set: is used to test the final models’ performance. A test dataset is
provided and consists of data that the network has never seen during the
training phase. It is smaller than the training dataset.

Machine learning models can be of two categories:

• Generative models

• Discriminative models

3.2 Generative Models

This section will discuss generative models, starting from the introduction
of classical Auto-encoders up to the explanation of the operation of complex
generative models such as GAN, Variational Auto-encoders, and Adversarial
Auto-encoders.

3.2.1 Auto-encoder

The Auto-encoder (AE) is a simple generative model that in general is formed
by two deep neural networks, the encoder and the decoder, that work together.
The input of this model is mapped by the encoder to a low dimensional latent
space z. After that, the output of the encoder is the input of the decoder that
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FIGURE 3.3: Summary structure of the Auto-encoder: the func-
tion f maps x to the encoded space h and the function g maps the

space h to the reconstruction r

reconstruct the original data (Figure 3.3). The Auto-encoder is formally de-
fined as the functions A: Rm → Rz (encoder) and B: Rz → Rm (decoder)
where m is the input dimension and z is the latent space dimension. Input re-
construction is accomplished by minimizing a distance measure between the
decoder output and the encoder input e.g. `2-norm. The `2 cost function for
the reconstruction task by the Auto-encoder is

L(φ, θ) =
1
n

n

∑
i=1

[x(i)−gφ(fθ(x(i)))]2 (3.2)

where the φ and θ are the parameters that define the encoder and the decoder,
respectively. This parameters represent the weight and the bias of the net-
works. n is the number of data contained in the training set and the x(i) corren-
spod to the ith sample. The gφ( f θ(x(i))) term is the reconstructed data.

The simple Auto-encoder cannot generate new coherent samples but only
generate a low-dimensional representation of the input.

The approach for the training of this network is unsupervised. Indeed, the
input will be reconstructed without any label. This type of encoding is called
deterministic encoding that allows reproducing the input as best as possible.

The Auto-encoder is widely used in the field of feature selection and anomaly
detection because the latent space is a compression of the input data in which
the highest level of variability of the data is concentrated. In some cases, the
latent space coincides with the PCA. The Auto-encoders can be trained with
all the same techniques as feed-forward networks. Indeed, it is necessary to
set the same hyperparameters such as numbers of hidden layers, the hidden
size, learning rate, decay of weights, momentum, and optimization strategy
for backpropagation. However, the dimensionality of the latent space must
also be considered. The dimensionality of the latent space consists of a pa-
rameter that affects the results of the Auto-encoder reconstruction. The latent
space that the Auto-encoder would like to train is a bottleneck of the input
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data. The smaller the size of the latent space, the greater the loss of informa-
tion relative to the input that will occur, and this leads to an inevitable loss of
quality at the output of the Auto-encoder [11] [14] [15].

3.2.2 Variational Auto-encoder

This particular type of Auto-encoder was introduced by Kingma et al. [16].
The variational Auto-encoder architecture is similar to the one of the Auto-
encoder, but there are many differences in terms of purpose and operation.
First of all, the variational Auto-encoder works with probability, and the en-
coder and the decoder become conditional probability functions.

Before dealing with the variational Auto-encoder, it is necessary to introduce
some concepts of variational inference.

• Kullback-Leibler divergence

The Kullback-Leibler divergence (KL) is a measure of dissimilarity of two
distribution. Given two distribution p(x) and q(x), the KL divergence of
p(x) with respect q(x) is

KL(p(x)||q(x)) = −∑
x

p(x)log
q(x)
p(x)

. (3.3)

Two important properties of KL divergence are:

– KL ≥ 0 (always positive)

– KL(p(x)||q(x)) 6= KL(q(x)||p(x)) (asymmetric function)

• Bayes’s theorem

The Bayes’s theorem describes the condition probability of an event given
a prior knowledge. Given a probability distribution p, the conditional
probability of an event z given x is equal to

p(z|x) =
p(x|z) p(z)

p(x)
(3.4)

Cost function

The following part aims the obtaining of the cost function of the variational
Auto-encoder Considering the graphical model reported in Figure 3.4a.

The x corresponds to the observation and the z is the latent variable. The
objective of this inference problem is to compute the conditional probability of
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(A) (B)

FIGURE 3.4: The graphical models that represent variational
technique used for inference

z given x p(z|x). If we consider the Eq.3.4, the conditional probability p(z|x)
depend on the marginal probability p(x). As a marginal distribution, p(x) is
equal to

p(x) =
∫

z
p(x|z) p(z) dz (3.5)

The Eq.3.5 is an intractable integral. The variational inference tries to solve this
problem by avoiding it. Indeed, it tries to approximate p(x|z) with another
distribution q(z)

The minimization problem of the KL between this two distribution occurs

argmin{KL(q(z)||p(x|z))} (3.6)

After several calculations reported [16], the problem is solved by maximiza-
tion of the variational lower bound L that is composed by two terms:

L = E q(z|x)[logp(x|z)]− KL(q(z)||p(z)) (3.7)

L = reconstruction loss− regularization loss (3.8)

Now, we can consider an Auto-encoder as in Figure 3.5. Let assume that ex-
ists another distribution q(z|x) generated by the encoder which maps x into
z. The Eq. 3.7 is the cost function of variational Auto-encoder. Indeed, the
variational Auto-encoder cost function aims to make the distribution of the la-
tent space q(z|x) similar to a multivariate Gaussian distribution N (z;0,I) with
a mean equal to 0 and covariance equal to I matrix (in case of real-valued data).
The maximization of the expectation term (the first term) is a problem of dis-
tance error minimization between the input and the input reconstructed by the
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FIGURE 3.5: The general scheme of a variational Auto-encoder

decoder p(x|z):

argmax{log(p(x|x̂))} =

argmax{log(e−|x−x̂|2)} =
(3.9)

argmax{−|x− x̂|2} (3.10)

The maximization of the Eq. 3.10 is equal to the minimization of the mean squared
error when the prior distribution is Gaussian distribution.

The KL term (the second term) means that the distribution q(z|x) should
match another prior distribution p(z) (the multivariate Gaussian distribution).
This term is the "regularization term" of the total cost function.

Reparametrization trick

The backpropagation can fix the weight of the encoder and the decoder be-
cause it was introduced the reparametrization trick concept. The problem is that
the vector z (see the Figure 3.5) is obtained by a stochastic sampling operation
and the neural network backpropagates gradients through only deterministic
nodes.

The reparametrization trick reparametries the sampling layer z. Indeed,
the vector z is considered as the sum of a fixed µ means vector and a fixed ∑
covariance vector that is scaled by normal constants ε N (0, 1)

z = µ + Σ� ε (3.11)

In this way, the stochastic node is represented by ε, and the latent space z is a
deterministic node concerning ε.

I decided to introduce this part to understand better how the cost function
in Eq. 3.7 is obtained.
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FIGURE 3.6: The structure of the Generative Adversarial Net-
work

3.2.3 Generative Adversarial Network

The Generative Adversarial Network (GAN) is a particular generative model
that exploits the competition between two different models. It is formed by
two deep neural networks of multiple types depending on what the network
needs to generate. For instance, convolutional neural networks can be used
for generating images. The two adversarial models are the discriminator (D)
and the generator (G). This particular model was designed for the first time
by [17].

Adversarial Training

In order to generate new samples, the generator G aims to learn the data dis-
tribution of the training samples, and the discriminator D aims to estimate the
probability that the input sample came from the training set rather than G. The
reference paper explains GAN as a money counterfeiter trying to confuse the
police. Each time the police realize the money is fake. The counterfeiter gets
better at creating money that looks more like the real one. Ideally, after n at-
tempts, the counterfeit money is indistinguishable from the real money for the
police. In terms of probability, after n iterations, the discriminator states that
the probability that a sample is from the training set or generated by G is 0.5

The Figure 3.6 shows the main structure of a GAN.

• pz(z) is the prior noise distribution (Gaussian, Poisson, Bernoulli distri-
butions and other ones).

• G(z, θg) is the function that represents the deep neural network of the
generator parametries with θg.

• pg(z) is the distribution of G(z)

• pdata(x) is the distribution of the training data
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• D(x,θd) is the function that represents the deep neural network of the
discriminator parametries with θd.

• D(x) represents the probability that x is a training sample or a generated
sample (real or fake).

Adversarial training

Adversarial training consists of two main parts: the training of the discrimi-
nator and the training of the generator.

1- Discriminative Loss : the discriminator is trained to distinguish both the
real distribution (the prior distribution pdata(z)) and the aggregated pos-
terior distribution created by the generator (pg(z)). In other words, the
objective of the discriminator is to maximize the probability of correctly dis-
tinguishing the input.

2- Generative Loss : on the other hand, the generator aims at tricking the dis-
criminator through its distributions minimizing the probability for the dis-
criminator to understand if the generated distributions are real or fake.

The previous definitions can be formalized by the following cost function:

min
G

max
D
V(G, D) = Ex∼pdata [logD(x)] + Ez∼pz(z)[log(1 - D(G(z)))]. (3.12)

in which the D(G(z)) is the estimate of the discriminator of the probability the
G(z) is real. [17] themselves discussed the criticality of a cost function. The
discriminator has a much easier task than the generator: the first must distin-
guish the two distributions while the second must model its distribution in a
way that the first does not understand. For this reason, another generator loss
function is introduced to avoid the saturation of the GAN and its stuck in the
early stages. The cost function of the generator is shown below:

log D(G(x)). (3.13)

3.2.4 Adversarial Auto-encoder

The Adversarial Auto-encoder (AAE) is a generative model that combines
the need of performing variational inference for the latent space of an Auto-
encoder as VAE and the generative adversarial networks, or GAN.

As I already explained in the VAE section, one of the biggest problems of
generative models is to obtain the marginal distribution in Eq. 3.5 because it is
an intractable integral. Therefore, the matching between the aggregated poste-
rior distribution of the latent space with another arbitrary prior distribution is
the much more accessible and computationally low cost than the Monte Carlo
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EM solution [16]. The main concept behind the AAE is that use the GAN for
this matching. The structure of the AAE consists of an AE and a GAN (Figure

FIGURE 3.7: Original structure of Adversarial Auto-encoder

3.7). It is possible to review the structure of an Auto-encoder (explained here),
with the encoder and the decoder. The neural network that maps the input x
into z is the encoder and the decoder that reconstructs the input at the output.
The GAN is composed of the discriminator, which takes as input the prior dis-
tribution p(z) and the aggregated posterior distribution q(z) that is generated
by the encoder. Indeed, in this particular neural network, the encoder of the
Auto-encoder becomes the generator of the GAN. In this way, the generator
learns to fit the prior distribution.

Training phase

The training phase occurs sequentially. The training phase of the AAE is com-
posed of two different steps: the training of the Auto-encoder and the training
of the GAN. At each training epoch, the Auto-encoder is first trained, and then
the discriminator and generator of GAN are trained. The cost function of the
AAE is similar to the variational lower bound presented in the VAE training,
and I want to maximize it. In particular, it is composed by two terms: the recon-
struction term and the regularization term. The first term remains the minimiza-
tion of a distance metric between the input and the output (the reconstructed
term), but in contrast, the regularization term is acted by the GAN. Then, the
regularization phase of the AAE is reported in the Adversarial training section
of the GAN.

Just to summarize, the regularization term can be used to:

• generate new samples

• prevent overfitting
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3.2.5 Supervised Adversarial Auto-encoders

Supervised Adversarial Auto-encoders (sAAEs) are a type of AAE that incor-
porates the label information of the data used for training the network. This
incorporation is at the latent space level. In this way, the decoder uses both the
hidden vector z and the label information to reconstruct the input data. As a
result, the network learns information independently for the label, and it can
be focused on the information style of the data [18].
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Chapter 4

Method

In this chapter, I explain the Method used for developing the project. The
following information is reported in order to understand what I implemented.
The chapter is divided into two main parts:

• The Data part, obtaining the data and how it was pre-processed to be
used in the method.

• The Model part, how the proposed neural network model is structured
and how it was trained.

4.1 Introduction of the Cancer Genome Atlas

The Cancer Genome Atlas (TCGA) is an association between the National Can-
cer Institute (NCI), the federal government’s principal agency for cancer re-
search, and the National Human Genome Research Institute (NHGRI) that is
the driving force for advancing genomics research at the National Institutes of
Health (NIH). This collaboration began in 2006, and the initial focus was only
on three cancer types: lung, ovarian, and brain (glioblastoma) [19]. In 2021 the
TCGA has generated over two petabytes of data such as genomic, transcrip-
tomic, and proteomic data by collecting over 11 thousand cases of 33 different
types of tumor.

Their ultimate goal is to find better ways to prevent cancer and achieve bet-
ter cancer patients outcomes. First of all, the molecular changes that happen
in cancer cells are crucial in all phases of the clinical trials, and the character-
ization of those changes improves the ability to diagnose, treat and prevent
cancer.

The NCI creates a Next Generation Cancer Knowledge Network called Ge-
nomic Data Commons (GDC) to put researchers in close communication and
create a community where everyone has free access to qualitative data stored
on the dedicated user-friendly portal. Thanks to the analysis tool DAVE they
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will also have the possibility to analyze, visualize, and explore them and their
applications that allow the pattern recognition to mine the huge amounts of
data in the GDC portal. (https://gdc.cancer.gov/)

4.2 Retrieving the data

In the GDC Data Portal, there are several navigation options, and the Reposi-
tory link directs users to the Repository Page where the data files are available
for download (https://portal.gdc.cancer.gov).

On the left part of the page where we were directed, there are the data fil-
tering columns. Each property of data can be used as a filter. The filtered data
used for our model training and validation were extracted as follows:

1. miRNA Expression Quantification: The following filters get the kidney
cancer miRNA expression data.

Filter "Files":

. Data Category: "Transcriptome Profiling"

. Data Type: "miRNA Expression Quantification"

. Experimental Strategy: "miRNA-Seq"

. Workflow Type: "BCGSC miRNA Profiling"

Filter "Case" (or "Biospecimen"):

. Samples Sample Type: "primary tumor"

. Program: "TCGA"

2. Gene Expression Quantification: The following filters get the kidney
cancer miRNA expression data.

Filter "Files":

. Data Category: "Transcriptome Profiling"

. Data Type: "Gene Expression Quantification"

. Experimental Strategy: "RNA-Seq"

. Workflow Type: "HTSeq - FPKM-UQ"

Filter "Case" (or "Biospecimen"):

. Samples Sample Type: "primary tumor"

https://gdc.cancer.gov/
https://portal.gdc.cancer.gov
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. Program: "TCGA"

The reference projects for the development of the thesis are the two major his-
tologic subtypes of renal cell carcinoma (RCC): clear cell RCC (TCGA-KIRC)
and the papillary RCC (TCGA-KIRP). In addition, results from the analysis
and processing of the same method of lung cancer data, in particular, Lung
Adenocarcinoma (TCGA-LUAD) and Lung Squamous Cell Carcinoma (TCGA-
LUSC), were added to validate the work.
The protocol used to download the TCGA data is described in the following
steps:

FIGURE 4.1: The workflow of a manifest file processing through
the GDC Transfer Tool; on the right the directory of the miRNAs
and isoform quantification files stored in a specific folder called

"manifest"

Step 1 . The manifest files and the information about the files are obtained us-
ing the filters previously mentioned where you need to specify the type
of project (e.g., for RCC data, the projects are TCGA-KIRC and TCGA-
KIRP).
The manifest files are text files that contain a list of files to be downloaded
using the GDC Data Transfer Tool, recommended for transferring large
volumes of data.

The information about the files are available in form of .json or .csv exten-
sion files and they contain the unique link between the file name and the
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sample identifier or cases unique identifier, the cases ID. (Figure 4.1). In
this thesis, the data extracted are of two different types: miRNA Expres-
sion Quantification data and Gene Expression Quatification data. It is
possible to obtain the miRNA and the isoforms quantification files from
the first type, but only the miRNAs were saved for later analysis. From
the second type, only gene expression quantification files are achieved.

Step 2 . An automatic algorithm has allowed the extraction of the read counts
for each sample to create the expression matrices both for the miRNA
and gene expression data. (Figure 4.2).

FIGURE 4.2: Creation of the raw expression matrix: the process
for obtaining the matrix from top to bottom.
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FIGURE 4.3: Creation of the complete expression matrix: on the
right, there is the .json file for changing the name of the samples

with the case identifiers (case IDs)

Step 3 . Furthermore, the names of the samples were changed to the corre-
sponding identifiers (case ID), and the miRNA and gene matrixes were
intersected to end up with the cases ID.

Step 4 . Annotation files were created which contain the links between the
cases ID and the file names both of the miRNAs and the genes for each
type of project.

Step 5 . The miRNA data have been normalized using DeSeq [20]. In this
way, the read counts were normalized as log2(count+1).

The dimensions of the data obtained from the procedure just explained are
described as follows:

Kidney Cancer Classes

. TCGA-KIRP: 512 cases

. TCGA-KIRC: 288 cases

Total miRNAs: 1544

Total genes: 19373
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Lung Cancer Classes

. TCGA-LUAD: 475 cases

. TCGA-LUSC: 471 cases

Total miRNAs: 1631

Total genes: 19373

4.3 Model Architecture

The adopted approach for the implementation of the translation method was
research-based on cross-function generative models. This exploratory analy-
sis led to the development of neural network models that leverage together
with the potential of adversarial training, first introduced by Goodfellow et
al. [17]. This powerful neural networks system is composed of two different
supervised Adversarial Autoencoders (sAAEs) for both the two data transla-
tion types. The input and output of these sAAEs vary depending on the size
of the data, e.g. in the translation from genes to miRNAs, the input’s width
will be equal to the number of genes while the output’s one will be equal to
the number of miRNAs.

The proposed method takes inspiration from [21] because it is based on the
use of Adversarial Autoencoders (AAE) that serves for the domain translation
between multiple data types. However, I disregard the generative model part,
and I assume that the encoders of the sAAEs used are deterministic functions.
In this way, the Auto-encoder is not stochastic, but deterministic. In this case,
the regularization term is used as a parameter that allows more stability dur-
ing training and prevents problems related to overfitting. The architecture of
the two sAAEs is different because the data have significantly different dimen-
sions. The following sections will discuss the structure of the models used,
how they were trained, and how they were combined.
The Figure 4.4 shows the final sAAE that can translate the two domains. The

yellow part refers to the encoder that takes gene expression data as input,
while the green part refers to the decoder that processes translated miRNA
expression data as output. The blue vector represents the low-dimensional
space where the encoder maps the meaningful information about the data. In
addition, the purple vector is the label vector. In this way, I add important
information to the translation that will be refined.

4.4 Training Phase

As I explained in the training phase of the Adversarial Autoencoder part, the
original variational lower bound that I want to maximize for the training of
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FIGURE 4.4: Scheme of the supervised Adversarial Autoencoder
architecture for the gene to miRNA translation (x1>x’2)

an sAAE is composed by a reconstruction term and a regularization term. The
reconstruction term becomes a translation problem if we know the ground
truth. Then, the following sections are related to the two phases of the new
sAAE.

- Translation Phase

- Regularization Phase

4.4.1 Translation Phase

Let’s consider xi the input of the encoder with function q(z|xi), x’j the output
of the decoder with function p(xj|z), and let xj be the corresponding of the
input in the other domain i.e. the ground truth (e.g. x1 is a random mini-batch
of gene expression data with specific case IDs and x2 is the miRNA expression
data of the same cases). During the translation phase, the data flows along the
autoencoder (Figure 4.5), then the input x1 is mapped in z by the encoder. The
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latent code vector z (blue part) is the result of the encoding of the input, and
it represents the aggregated posterior distribution generated by the encoder.
At this point, the latent space z along with the label information y (violet part)
of the encoded samples are decoded, building the translation of the input,
i.e., x’1. The training of the decoder is performed trying to minimize the mean
squared error between the decoder output x’1 and the ground truth x*1 (orange
part) with the cost function:

1
N

N

∑
i=1

[xi − x′i]2 =

1
N

N

∑
i=1

[xi − P(Q(xi))]
2

(4.1)

4.4.2 Regularization Phase

After the translation phase, the regularization phase is managed by adversar-
ial networks. This training phase exploits the adversarial costs as I explained
in the Generative Adversarial Network section. In this phase, as in [18], the
encoder q(z|xi) of the autoencoder becomes the generator of the aggregated
posterior distribution and is involved the discriminator is a neural network
with single output. Also let’s consider pZ(z) a prior distribution (Figure 4.6).
The adversarial game just explained has been defined by [17] as the minimax

FIGURE 4.5: Translation phase data flow
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game with the value function V in Eq.3.12

FIGURE 4.6: The work of the GAN during the regularization
phase

4.4.3 Model architecture design and hyper-parameters tuning

The definition of the architecture of the networks that make up the model is
presented. The first phase for constructing the models is based on hypotheses
on the possible ranges of the values of interest. The parameters that charac-
terized the architecture of the models are shown in Table 4.1 and in Table 4.2.
Once these ranges were defined, a search for values was carried out by a Ran-
dom Search algorithm. This type of searching algorithm can find models in a
much more efficient way than grid search, especially in neural networks appli-
cations [12]. Optuna optimization framework is used for the implementation
of the optimization strategy since it allows the use of a wide range of opti-
mization algorithms as the Tree-structured Parzer models [22][23], the random
search as and the grid search in an easy-to-use development environment [24].
In addition, optuna allows the implementation of pruner models such as the
Asynchronous Successive Halving Algorithm (ASHA) and the Hyperband al-
gorithm. The pruning algorithm allows a given trial to be stopped through
intermediate analysis of the objective function.
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In this case, Hyperband algorithm for the pruning tasks is used. This par-
ticular algorithm extends the idea of the Successive Halving algorithm of allo-
cating a budget to the set of configured hyper-parameters [25]. After 50 trials,
the results of this tuning is reported in Table 4.5, Table 4.3, Table 4.4. The split-
ting of datasets was set to 20% for gene expression data and 15% for miRNA
expression data. The dimensionality of the training sets and test sets for each
tumor tissue is shown in Table 4.6 and in Table 4.7

Hyper-Parameters Ranges
Batch Size [5 , 25]
Number of Hidden Layers [1 , 2]
Learning Rate (AE) [1E-06 , 1E-04]*
Learning Rate (D) [1E-06 , 1E-04]*
Learning Rate (G) [1E-06 , 1E-04]*
Hidden Size (AE) [1000 , 3000]
Dropout (p) [0.3 , 0.7]
Hidden Size 1 (D) [100 , 200]
Hidden Size 2 (D) [50 , 99]

TABLE 4.1: Parameter ranges for the model architecture design

Hyper-Parameters Ranges
Batch Size [5 , 25]
Learning Rate (AE) [1E-06 , 1E-04]*
Learning Rate (D) [1E-06 , 1E-04]*
Learning Rate (G) [1E-06 , 1E-04]*
Dropout (p) [0.3 , 0.7]

TABLE 4.2: Parameter ranges for the hyper-parameters tuning

*The data were sampled in a log domain between the ranges reported

The two different types of hyper-parameters tuning are performed for each
translation task, i.e., considering the projects (kidney cancer data and lung
cancer data) and the type of data (miRNA expression data and gene expression
data). The searching of model parameters reveals that in the various types of
translation, the optimal structure of the model varies enormously in function
to the type of data.

The following tables show the architecture of different sAAEs designed by
the hyper-parameters tuning:

1 - The Table 4.3 and the Table 4.4 show the dimensionality of both the Auto-
Encoders and the Discriminators networks of the sAAEs. Each column
corresponds to a layer. The value assumed by each layer is the number
of neurons that make it up.
The Table 4.3 shows that the Auto-Encoders used for the translations
consist of an encoder and a decoder, both composed of a hidden layer
and also by a low dimensional latent space (hidden layer).
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The Table 4.4 shows that the Discriminators used to regularize both types
of translations are two deep neural networks composed of two hidden
layers. The input layer is as wide as the low-dimensional latent space,
while the output layer is a single neuron with a sigmoid activation func-
tion.

2 - The Table 4.5 shows the result of the second tuning of hyper-parameters.
The first column refers to the type of translation. At each translation
type, the search algorithm selected a batch size, a learning rate related to
the AE, one related to the discriminator, one related to the generator, and
the dimension of the test set.

NEURAL NETWORK Hidden1 Latent Space Hidden1
Autoencoder

(miRNA→ gene) 1646 278 1646

Autoencoder
(gene→ miRNA)

2600 273 2600

TABLE 4.3: Autoencoders’ Architectures

NEURAL NETWORK Input Hidden1 Hidden2 Output
Discriminator

(miRNA→ gene) 278 148 98 1

Discriminator
(gene→ miRNA)

273 128 32 1

TABLE 4.4: Discriminators’ Architectures

TRANSLATION Batch Size lr(AE) lr(D) lr(G) Dropout (p) Test Size
Translation

miRNA→ gene 40 7.94e-05 8.92e-05 5.26e-06 0.57 15%

Translation
gene→ miRNA 19 9.77e-05 1.04e-05 8.74e-06 0.61 20%

TABLE 4.5: Hyper-parameters Setting
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TUMOR TOTAL (cases) GENOME TYPE PROJECT TRAINING SET TEST SET

Kidney 800
miRNA KIRC 410 102

KIRP 230 58

Gene KIRC 435 77
KIRP 245 43

TABLE 4.6: Dimensionality of training and test sets for each kid-
ney cancer project and genome type

TUMOR TOTAL (cases) GENOME TYPE PROJECT TRAINING SET TEST SET

Lung 946
miRNA LUAD 380 95

LUSC 400 99

Gene LUAD 404 71
LUSC 400 71

TABLE 4.7: Dimensionality of training and test sets for each lung
cancer project and genome type
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Chapter 5

Results

The Results section will contain all the tables, graphs, and data that will be
used for the overall evaluation of this method. In the next "discussion" section,
comments and considerations will be made on what has been achieved. The
next paragraphs will be structured as follows:

1- Translation in terms of data distribution.

We will investigate the variability in the data through Principal Compo-
nent Analysis (PCA) and how this was maintained after being translated.

Meanwhile, through a Cluster Analysis we will try to highlight differ-
ences in terms of tumor subgroup distributions. We will see how some
clustering techniques will perform with both the original and translated
data. These clusters will also be evaluated as a function of the number of
clusters using specific metrics.

2 - Differential expression analysis

In this second phase, we will investigate the quality of the translation by
looking deeper. As a first step, the translation will be analyzed to un-
derstand where it is more faithful to the original. Therefore, Scatter plots
will be used to compare the original expression levels to the translated
expression levels of individual cases.

After that, those genes/miRNAs that differentiate tumor subclasses will
be analyzed.

For the differential analysis, a Statistical test is used for determining if the
mean of the genes/miRNAs as distributions of data are significantly dif-
ferent from the tumor subclasses. Furthermore, in order to explore these
particular genes/miRNAs in more detail, some Heat maps were gener-
ated. This process made it possible to visualize the expression levels that
differentiate the subclasses, and the correlation between those translated
genes/miRNAs and the original ones was calculated.

The results introduced previously were obtained from miRNA and gene ex-
pression data from kidney cancer. At the end of this phase, lung cancer miRNA
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and gene expression data were used to validate the method and generalize it
concerning two types of cancer.

5.0.1 Principal Component Analysis

As a high-level result, the principal component analysis (or PCA) of the trans-
lated data and the original data can be shown in Figure 5.1. It is possible to

(A) (B)

(C) (D)

FIGURE 5.1: Principal component analysis of kidney cancer
miRNA expression data (upper figures) and gene expression
data (down figures): on the left there are (A) original data (green
circles) and translated data(blue circles), on the right (B) the same
original and translated data (circles and triangles respectively)
with the true labels superimposed (KIRC: purple, KIRP: yellow)

create a scatter plot to evidence how the variability of the original data was
maintained in the translation, considering the first two principal components.
Indeed, PCA allows us to have a reduction in dimensionality while preserving
most of the variability of the input data [26]. It is possible to observe how the
translated and original data are distributed through the PCA of the two super-
imposed distributions (Figure 5.12a, Figure 5.12c). In addition, a second PCA
is provided to see how variability in the distributions of tumor subclasses also
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transferred from the original to the translated data. In this scatter plot, true
labels were used for both data types.

(A) (B)

(C) (D)

FIGURE 5.2: Clustering analysis applied to kidney cancer
miRNA expression data: (A) the Spectral clustering is applied
to translated data, (B) the mini-batch K-means is applied to orig-
inal. The clustering methods recognize the two sub-classes of
kidney cancer KIRC (purple circles) and KIRP (yellow circles).
The two methods return the best RAND index for both original

and translated data.

5.0.2 Clustering

Cluster analysis was used to understand how different clustering techniques
interpret the original and translated data distributions. The steps that were
followed are:

1- Given the number of true labels in the samples (tumor subgroups = 2),
the same clustering techniques with a number of clusters equal to 2 were
applied to the original and translated data. The clustering techniques
considered in this phase are K-Means [27], Spectral Clustering [28], Hi-
erarchical Clustering [29], Mini-Batch K-Means [30] implemented by clus-
tering modules provided by [31]. The clustering techniques considered
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reported the best adjusted RAND indexes. The adjusted RAND index

Clustering Techniques
Adjusted

RAND
index

Original

Hierarchical Clustering 0.697
K-Means 0.784

Spectral Clustering 0.782
Mini-Batch K-Means 0.829

Clustering Techniques
Adjusted

RAND
index

Translated

Hierarchical Clustering 0.924
K-Means 0.949

Spectral Clustering 0.949
Mini-Batch K-Means 0.924

TABLE 5.1: Adjusted Rand index (ARI) for each type of cluster-
ing technique used applied to original (left table) and translated

(right table) kidney cancer miRNA expression data

Clustering Techniques
Adjusted

RAND
index

Original

Hierarchical Clustering 0.691
K-Means 0.691

Spectral Clustering 0.748
Mini-Batch K-Means 0.021

Clustering Techniques
Adjusted

RAND
index

Translated

Hierarchical Clustering 0.720
K-Means 0.808

Spectral Clustering 0.748
Mini-Batch K-Means 0.021

TABLE 5.2: Adjusted Rand index (ARI) for each type of cluster-
ing technique used applied to original (left table) and translated

(right table) kidney cancer gene expression data

is a measure of similarity between two clusterings. Generally used to
compare true labels from predicted ones in clustering evaluation [32] but
also in supervised classification contexts [33]. It takes on values between
0 and 1 inclusive. The RAND would return a value equal to 0 if the label
assignment were random, while it is equal to 1 if the two clusterings are
identical.

The list showing the clustering techniques used and their calculated RAND
indexes are in Table 5.1 and in Table 5.2. In Table 5.1 and Table 5.2 there
are data on kidney cancer, miRNA and gene expression data, respec-
tively. The K-Means technique reports the adjusted RAND value in the
case of kidney cancer miRNA data, but for the original data, the K-Means
technique was used with mini-batch optimization (batch size = 10). At
the same time, for the same tumor tissue data, in the case of gene expres-
sion data, the highest adjusted RAND is reported by Spectral Clustering
for the original data and K-Means for the translated data. Some coinci-
dent values between the original and translated data, such as the RANDs
returned by Spectral Clustering and Mini-Batch K-Means, both for gene
expression data. However, the adjusted RAND values are significantly
higher for the translated data than for the original data.

2- The algorithms with the best adjusted RAND were selected. I evalu-
ated the goodness of clustering as a function of the number of clusters
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Clustering Techniques Number of
Clusters

Adjusted
RAND
index

Avg. Silhouette
Width

Calinski-
Harabasz

Score

Homogeneity
Score

Completeness
Score

Original Mini-Batch K-Means

2 0.829086 0.120906 18.97699 0.716972 0.722307
3 0.718394 0.116977 12.82099 0.543454 0.667789
4 0.380579 0.075979 10.77927 0.324491 0.593276
5 0.407101 0.065776 9.527051 0.369395 0.711377
6 0.406526 0.066482 8.531183 0.347083 0.763793
7 0.414393 0.005685 6.05615 0.307579 0.655762
8 0.314366 0.050919 7.378385 0.280452 0.772602
9 0.35209 -0.00294 4.992346 0.309204 0.71002

10 0.362138 -0.01295 5.010496 0.291965 0.763398

Clustering Techniques Number of
Clusters

Adjusted
RAND
index

Avg. Silhouette
Width

Calinski-
Harabasz

Score

Homogeneity
Score

Completeness
Score

Translated K-Means

2 0.949514 0.209972 31.85936 0.89407 0.89407
3 0.917579 0.209644 17.91261 0.780324 0.875498
4 0.526946 0.114943 18.91571 0.490097 0.868805
5 0.834204 0.181156 12.54027 0.593367 0.829134
6 0.354293 0.105874 15.42256 0.367298 0.917103
7 0.801329 -0.07612 8.47799 0.597835 0.830566
8 0.318843 0.089597 13.15987 0.322746 0.870613
9 0.345992 0.061616 8.758376 0.34025 0.900265

10 0.35746 -0.00224 8.146712 0.32507 0.841829

TABLE 5.3: Calculated metrics to evaluate the Mini-Batch K-
Means applied to the original kidney cancer miRNA data as a
function of the number of clusters (upper table) and to evaluate
the K-Means applied to the translated kidney cancer miRNA data

as a function of the number of clusters (lower table).

by calculating some specific metrics. These metrics are the RAND index,
the Average Silhouette Width [34], the Calinski-Harabasz score [35], the Ho-
mogeneity and Completeness score [36]. The lists of metrics calculated for
evaluating the clustering technique as a function of the number of clus-
ters are shown in Table 5.3 and in Table 5.4 (the graphs that reported the
values of the Table 5.3 and in Table 5.4 are in Figure 5.3 5.4, 5.5, 5.6).

What I expect from these metrics is a small discrepancy between the original
and translated data.

5.0.3 Differential Expression Analysis

In this second part of the results, various points will be touched upon to ana-
lyze translation more deeply. This part can also be divided into several steps:

1- Expression levels of both translated and original individual cases were
considered to understand which types of genes/miRNAs the translator
predicted best. For this purpose, scatter plots relating original and trans-
lated data from a single case were used. The plots related several cases
are reported in Figure 5.7 and Figure 5.8 . The predicted regression line
was overplotted.
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Clustering Techniques Number of
Clusters

Adjusted
RAND
index

Avg. Silhouette
Width

Calinski-
Harabasz

Score

Homogeneity
Score

Completeness
Score

Original Spectral Clustering

2 0.748862 0.093026 11.6613 0.639519 0.645393
3 0.506113 0.091251 9.548117 0.580936 0.555874
4 0.808787 0.078886 5.649847 0.763397 0.672517
5 0.582654 0.081747 8.35747 0.730116 0.403122
6 0.584379 0.085973 7.91261 0.758171 0.401099
7 0.423608 0.081665 5.840382 0.635687 0.311673
8 0.416279 0.067674 7.191988 0.782185 0.333112
9 0.391346 0.068814 6.852578 0.782185 0.312001

10 0.679586 -0.10996 4.229151 0.724801 0.459473

Clustering Techniques Number of
Clusters

Adjusted
RAND
index

Avg. Silhouette
Width

Calinski-
Harabasz

Score

Homogeneity
Score

Completeness
Score

Translated K-Means

2 0.83889 0.123413 14.66016 0.746016 0.748939
3 0.703327 0.119763 11.81116 0.574464 0.609015
4 0.76154 0.127551 11.23876 0.569863 0.747301
5 0.642954 0.096003 7.935659 0.468999 0.673186
6 0.594246 0.093968 8.685866 0.39685 0.71519
7 0.360215 0.08239 9.626706 0.321676 0.781518
8 0.331058 -0.05076 6.457652 0.26528 0.596079
9 0.377802 0.0473 6.261602 0.313644 0.741459

10 0.356345 0.086227 8.041752 0.321412 0.793258

TABLE 5.4: Calculated metrics to evaluate the Spectral Clustering
applied to the original kidney cancer gene data as a function of
the number of clusters (upper table) and to evaluate the K-Means
applied to the translated kidney cancer gene data as a function of

the number of clusters (lower table).

2- After this, I went directly to the differential expression analysis. Both
gene expression and miRNA expression data were divided by label. In
the case of kidney cancer data, the two subclasses are KIRC and KIRP.
Thus, it is desired to investigate the difference between the genes/miRNAs
that characterize these two subclasses. For this reason, a Welch’s t-test
was done to both miRNAs and genes between the two labels. Thus, it
was possible to obtain a p-value for each gene/miRNA. A diagram illus-
trating the step just explained is shown in Figure 5.9. It was possible to
derive the number of genes and miRNAs differentially expressed within
the two subclasses considering different p values. Table 5.5 and Table
5.6 report these numbers for p values less than 5.E-03, 5.E-06, 5.E-12, 5.E-
16, 5.E-21, 5.E-26. Also reported is the number of genes and miRNAs
that are in common. When the p-value decreases, the number of genes
and miRNAs differentially expressed also decreases, but these genes and
miRNAs create more differentiation between the subclasses.

3- At this point, the genes, and miRNAs that differentiate the subclasses
are available. The questions to be answered are how were the data trans-
lated, what correlation is there with the original data, and most impor-
tantly, was biological consistency maintained?

Heat maps were generated to visually compare the differentiation and
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(A) (B) (C)

(D) (E)

FIGURE 5.3: The graphs reported (A) the silhouette, (B) the
RAND index, (C) the Calinski Harabasz score, (D) the Homo-
geneity score and (E) Completeness score for a range of cluster
numbers. The clustering technique used is the Mini-Batch K-
Means applied to the original kidney miRNAs expression data.

miRNA p<5.E-02 p<5.E-06 p<5.E-12 p<5.E-16 p<5.E-21 p<5.E-26
Original 452 144 44 20 6 4

Translated 712 231 84 49 23 8
Common 417 143 44 20 6 4

TABLE 5.5: Differential Expression Analysis: each reported value
represents the number of miRNAs that are differentially ex-
pressed by tumor subclasses under certain p values. The rows
show the types of data (original and translated) and also those

that are in common.

Gene p<5.E-02 p<5.E-06 p<5.E-12 p<5.E-16 p<5.E-21 p<5.E-26
Original 10150 3312 827 188 24 3

Translated 11326 4511 1534 519 160 31
Common 9476 3166 804 185 24 3

TABLE 5.6: Differential Expression Analysis: each reported value
represents the number of genes that are differentially expressed
by tumor subclasses under certain p values. The rows show the

types of data (original and translated) and those in common.

how it results in the original and translated data. Heat maps are partic-
ular diagram that shows the intensity of each element of a matrix with
a color. The maximum and minimum values set the ends of the color
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(A) (B) (C)

(D) (E)

FIGURE 5.4: The graphs reported (A) the silhouette, (B) the
RAND index, (C) the Calinski Harabasz score, (D) the Homo-
geneity score and (E) Completeness score for a range of cluster
numbers. The clustering technique used is the K-Means applied

to the translated kidney miRNAs expression data.

scale. Typically, dark colors are associated with low-intensity values and
light colors with high-intensity values. In these maps, we find the same
cases in a row and the same genes or miRNAs in columns, the visual
comparison is facilitated.

The heat maps are shown in Figure 5.10 and in Figure 5.11.

4- The correlation between the original and translated data can be seen
qualitatively from the heat maps. To obtain this data quantitatively, the
Pearson correlation between the original and translated genes/miRNAs
was calculated as

ρ =
cov(X, Y)

σxσy
(5.1)

where cov function is the covariance of the two random variables X and
Y, and σx, σy are the standard deviation of X and Y respectively. If ρ=1,
means that X and Y have a perfect correlation meanwhile if ρ=0 represent
the absense of a relation between the two variables.

The following data report the total number of translated genes/miRNAs
that have a significant correlation with the original ones:

• out of a total of 1530 miRNAs, 807 translated miRNAs have a Pear-
son’s correlation greater than 0.75 (p value<0.05).
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(A) (B) (C)

(D) (E)

FIGURE 5.5: The graphs reported (A) the silhouette, (B) the
RAND index, (C) the Calinski Harabasz score, (D) the Homo-
geneity score and (E) Completeness score for a range of cluster
numbers. The clustering technique used is the Mini-Batch K-

Means applied to the original kidney genes expression data.

• out of a total of 19372 genes, 15475 translated genes have a Pearson’s
correlation greater than 0.75 (p value<0.05).

The question to be answered is how many and which of these genes and
miRNAs differentiate tumor subclasses? The numbers that summarize
this analysis are:

• out of a total of 417 differentially expressed miRNAs (p<5E-02, see
Table 5.5), 318 translated miRNAs have a Pearson’s correlation of
0.75 (p value<0.05).

• out of a total of 9476 differentially expressed genes (p<5E-02, see
Tab 5.6), 7030 translated genes have a Pearson’s correlation of 0.75
(p value<0.05).

Then, the p-values resulting from the T-test and the correlation values
are considered for the genes/miRNAs in the original dataset and the
translated one. The idea is to evaluate how many genes/miRNAs are
differentially expressed in the two classes with respect to the correlation
and p-value values changes.

Table 5.7 shows how the number of genes varies while Table 5.8 shows
how the number of miRNAs varies.
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(A) (B) (C)

(D) (E)

FIGURE 5.6: The graphs reported (A) the silhouette, (B) the
RAND index, (C) the Calinski Harabasz score, (D) the Homo-
geneity score and (E) the Completeness score for a range of clus-
ter numbers. The clustering technique used is the K-Means ap-

plied to the translated kidney genes expression data.

(A) (B) (C)

(D) (E) (F)

FIGURE 5.7: Scatter plots of kidney miRNA expression data. Six
different random cases are used. The graphs show the original

data in the abscissa and the translated data in the ordinate.
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(A) (B) (C)

(D) (E) (F)

FIGURE 5.8: Scatter plots of kidney gene expression data. Six
different random cases are used. The graphs show the original

data in the abscissa and the translated data in the ordinate.

FIGURE 5.9: Welch’s T-test application

p<5E-2 p<5E-6 p<5E-12 p<5E-16 p<5E-21
Total* 9476 3166 609 185 24
ρ > 0.75 7030 2846 590 180 24
ρ > 0.80 6052 2608 573 180 24
ρ > 0.85 4613 2162 510 165 24
ρ > 0.90 2670 1428 363 128 17
ρ > 0.95 695 377 99 29 3

TABLE 5.7: The number of genes that differentiate the subclasses
in relation with the correlation’s values.

*The total numbers is the number of common genes/miRNAs that differentiate the
subclasses, see Table 5.5
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(A) Original miRNA
data of kidney cancer

(B) Translate miRNA
data of kidney cancer

FIGURE 5.10: Heatmap of differential miRNAs

(A) Original gene data of
kidney cancer

(B) Translate gene data
of kidney cancer

FIGURE 5.11: Heatmap of differential genes

So fixed a p-value, the translated genes and miRNAs that most differ-
entiate the subclasses and have a correlation greater than 0.75 with the
corresponding original data are shown in Tables 5.9.

According to Table 5.5 and Table 5.6, the Table 5.9 shows the 41 miRNAs ob-
tained by p<5E-12 p-value selecting in the differentiation phase and a ρ>0.75
at left and the 24 genes obtained by p<5E-21 p-value selecting in the differen-
tiation phase and a ρ>0.75 at right.
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p<5E-2 p<5E-6 p<5E-12 p<5E-16 p<5E-21
Total* 417 143 44 20 6
ρ > 0.75 318 132 41 20 6
ρ > 0.80 263 118 37 18 6
ρ > 0.85 204 96 33 18 6
ρ > 0.90 105 54 23 15 5
ρ > 0.95 19 14 9 7 1

TABLE 5.8: The number of miRNAs that differentiate the sub-
classes in relation with the correlation’s values.

*The total numbers is the number of common genes/miRNAs that differentiate the
subclasses, see Table 5.5

5.0.4 Validation

In this part, I validate what precedes this paragraph. Validation is based on the
application of the proposed method to another tumor tissue data. The tumor
tissue selected for validation is the lung tissue because it is composed of two
populous tumor classes, LUSC and LUAD tumors. The data types will remain
unchanged. The dimensionality of the validation data is reported in Table 4.7.
The next few pages will be reserved to explain the same process described in
the previous paragraphs. For more details about the following results, refer to
the section Results.

PCAs are depicted below to see how variability in the original data trans-
ferred to the translated data. PCAs with the true label superimposed are
also available in Figure 5.12 to see how intraclass variability was also main-
tained after the translation. RAND indexes for the various clustering tech-
niques (number of clusters=2) were calculated. In this case, the clustering
techniques that reported the best RAND are K-Means, both original and trans-
lated miRNA expression data and also for original gene expression data, while
Spectral clustering for translated gene expression data. The list showing the
clustering techniques used and their calculated RAND indexes are in Tables
5.10 and in Tables 5.11. The clustering techniques that reported the best
RAND were evaluated by various metrics. The list of evaluation metrics used
as a function of the number of clusters are shown in Tables 5.13 and Tables
5.12 (the graphs that reported the values of the Table 5.12 and Table 5.13 are in
Figure 5.14, 5.15, 5.16, 5.17). The K-Means returned the best adjusted RAND
score for the miRNA, both original and translated data. At the same time,
the K-means reported the best RAND for the original gene expression data,
while the Spectral Clustering returned the best RAND for the translated gene
expression data.

The scatter plots reported the relation between original and translated data
provided by individual cases are shown in Figure 5.18 and Figure 5.19.

The results related to Welch’s T-test done for both miRNAs and genes be-
tween the two subgroups label are shown in Table 5.14 and Table 5.15.
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The heatmaps that shown the intensity of lung miRNA and gene expres-
sion data, both original and translated types, are reported in Figure 5.20 and
Figure 5.21.

The relationship between the differentiation made by the T-test and the

miRNAs Correlation (ρ) p-values
hsa.mir.561 0.882998 1.12E-08

hsa.mir.3913.1 0.856304 9.42E-08
hsa.mir.16.1 0.958688 1.70E-13
hsa.mir.122 0.918144 2.60E-10
hsa.mir.628 0.94959 1.46E-12

hsa.mir.2355 0.834361 4.04E-07
hsa.mir.183 0.946077 3.01E-12
hsa.mir.429 0.942948 5.51E-12
hsa.mir.145 0.962912 5.30E-14

hsa.mir.1271 0.929724 5.13E-11
hsa.mir.1180 0.934153 2.56E-11
hsa.mir.126 0.981014 3.65E-17
hsa.mir.132 0.782689 6.18E-06

hsa.mir.3605 0.903421 1.49E-09
hsa.mir.424 0.859526 7.45E-08

hsa.mir.200a 0.97655 3.65E-16
hsa.mir.200b 0.976617 3.53E-16
hsa.mir.128.2 0.799139 2.82E-06
hsa.mir.671 0.861704 6.34E-08
hsa.mir.96 0.915777 3.52E-10

hsa.mir.576 0.853618 1.14E-07
hsa.mir.651 0.819033 9.90E-07
hsa.mir.338 0.936714 1.67E-11
hsa.mir.16.2 0.956571 2.92E-13

hsa.mir.219a.1 0.907447 9.54E-10
hsa.mir.589 0.850516 1.41E-07
hsa.mir.21 0.960774 9.72E-14

hsa.mir.361 0.948893 1.69E-12
hsa.mir.195 0.880605 1.38E-08

hsa.mir.128.1 0.797598 3.05E-06
hsa.mir.210 0.944425 4.16E-12
hsa.mir.10b 0.879172 1.56E-08
hsa.mir.215 0.972561 2.01E-15
hsa.mir.503 0.78965 4.48E-06
hsa.mir.374c 0.883678 1.05E-08
hsa.mir.1307 0.831875 4.70E-07
hsa.mir.3613 0.884119 1.01E-08

hsa.mir.17 0.837345 3.35E-07
hsa.mir.143 0.920427 1.92E-10

hsa.mir.135b 0.928291 6.36E-11
hsa.mir.139 0.956741 2.80E-13

Genes Correlation (ρ) p-values
SH2B3 0.884007882 1.14E-06
EGLN3 0.923617799 4.58E-08

GIMAP1 0.917970765 7.95E-08
ERG 0.92049666 6.24E-08

DDX59 0.902175309 3.09E-07
ENTPD1 0.92406171 4.37E-08

FLI1 0.921623677 5.59E-08
LRRC8C 0.949070861 1.94E-09
C3orf70 0.943954417 4.10E-09

PECAM1 0.89557233 5.10E-07
ARHGDIB 0.883605479 1.17E-06
KDELC2 0.869188069 2.84E-06
PHKA2 0.966450311 7.26E-11
GIMAP4 0.938933287 8.02E-09
FMNL3 0.877678277 1.71E-06

RASGRP3 0.928151355 2.85E-08
GIMAP7 0.921483415 5.66E-08

GRK5 0.933377524 1.58E-08
ETS1 0.951139467 1.40E-09

PRKCH 0.889965953 7.61E-07
HHEX 0.905744046 2.32E-07

TMEM131L 0.950307667 1.60E-09
GIMAP6 0.945081715 3.50E-09

FYN 0.890223128 7.48E-07

TABLE 5.9: The tables contain Pearson correlation values be-
tween the original and translated miRNAs (left) and genes (right)
that differentiate the two subclasses of kidney cancer with p-
values less than 5E-12 and 5E-21 respectively. Only correlation
values greater than 0.75 were considered. Out of a total of 44
miRNAs differentially espressed (see 5.5), 40 translated miRNAs
were included. Out of a total of 24 genes differentially espressed

(see 5.6), all 24 traslated genes were included.
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(A) (B)

(C) (D)

FIGURE 5.12: Principal component analysis of lung cancer
miRNA expression data (upper figures) and gene expression
data (down figures): on the left there are (A) original data (green
circles) and translated data(blue circles), on the right (B) the same
original and translated data (circles and triangles respectively)
with the true labels superimposed (LUAD: purple, LUSH: yel-

low)

correlation between the original and the translated data can be found in Table
5.8 and Table 5.17.

In Table 5.18 is reported the Pearson correlation between miRNAs and
genes both translated and original. Those miRNAs/genes differentiate the
subclasses of tumor, information reported by Welch’s T-test.
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(A) (B)

(C) (D)

FIGURE 5.13: Clustering analysis applied to lung cancer miRNA
expression data (upper figures) and gene expression data (lower
figures): the K-Means is applied to both original (A) and trans-
lated (B) miRNA expression data and also to original gene ex-
pression data (C) whilst the Spectral Clustering is applied to
translated gene expression data. The clustering methods recog-
nize the two sub-classes of lung cancer LUAD (purple circles)
and LUSH (yellow circles). The two methods return the best

RAND index for both original and translated data.

Clustering Techniques
Adjusted

RAND
index

Original

Hierarchical Clustering 0.725
K-Means 0.743

Spectral Clustering 0.725
Mini-Batch K-Means 0.743

Clustering Techniques
Adjusted

RAND
index

Translated

Hierarchical Clustering 0.837
K-Means 0.837

Spectral Clustering 0.818
Mini-Batch K-Means 0.762

TABLE 5.10: Adjusted Rand index (ARI) for each type of cluster-
ing technique used applied to original (left table) and translated

(right table) lung cancer miRNA expression data
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Clustering Techniques
Adjusted

RAND
index

Original

Hierarchical Clustering 0.472
K-Means 0.575

Spectral Clustering 0.533
Mini-Batch K-Means -0.003

Clustering Techniques
Adjusted

RAND
index

Translated

Hierarchical Clustering 0.533
K-Means 0.619

Spectral Clustering 0.665
Mini-Batch K-Means 0.173

TABLE 5.11: Adjusted Rand index (ARI) for each type of cluster-
ing technique used applied to original (left table) and translated

(right table) lung cancer gene expression data

(A) (B) (C)

(D) (E)

FIGURE 5.14: The graphs reported (A) the silhouette, (B) the
RAND index, (C) the Calinski Harabasz score, (D) the Homo-
geneity score and (E) the Completeness score for a range of clus-
ter numbers. The clustering technique used is the K-Means ap-

plied to the original lung miRNAs expression data.
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(A) (B) (C)

(D) (E)

FIGURE 5.15: The graphs reported (A) the silhouette, (B) the
RAND index, (C) the Calinski Harabasz score, (D) the Homo-
geneity score and (E) the Completeness score for a range of clus-
ter numbers. The clustering technique used is the K-Means ap-

plied to the translated lung miRNAs expression data.

(A) (B) (C)

(D) (E)

FIGURE 5.16: The graphs reported (A) the silhouette, (B) the
RAND index, (C) the Calinski Harabasz score, (D) the Homo-
geneity score and (E) the Completeness score for a range of clus-
ter numbers. The clustering technique used is the K-Means ap-

plied to the original lung gene expression data.
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(A) (B) (C)

(D) (E)

FIGURE 5.17: The graphs reported (A) the silhouette, (B) the
RAND index, (C) the Calinski Harabasz score, (D) the Homo-
geneity score and (E) the Completeness score for a range of clus-
ter numbers. The clustering technique used is the Spectral Clus-

tering applied to the translated lung gene expression data.

Clustering Techniques Number of
Clusters

Adjusted
RAND
index

Avg. Silhouette
Width

Calinski-
Harabasz

Score

Homogeneity
Score

Completeness
Score

Original K-Means

2 0.743695 0.08829 19.5834 0.647562 0.644709
3 0.591785 0.070218 12.82455 0.457633 0.669038
4 0.533148 0.053025 9.91686 0.37425 0.656496
5 0.532879 0.007812 7.168435 0.410399 0.664021
6 0.495312 -0.01318 5.685169 0.349756 0.561863
7 0.226797 0.02672 6.919867 0.244967 0.665453
8 0.674237 -0.00641 4.419881 0.49605 0.693756
9 0.528674 -0.05186 4.29381 0.403544 0.719827

10 0.419002 -0.0583 3.897953 0.343939 0.713363

Clustering Techniques Number of
Clusters

Adjusted
RAND
index

Avg. Silhouette
Width

Calinski-
Harabasz

Score

Homogeneity
Score

Completeness
Score

Translated K-Means

2 0.837819 0.155762 36.05297 0.768139 0.763708
3 0.636909 0.116777 22.98539 0.511452 0.763933
4 0.575263 0.079401 16.07102 0.457058 0.69812
5 0.544302 0.046584 13.49185 0.428392 0.758342
6 0.445959 0.095545 12.41482 0.38684 0.791026
7 0.287759 0.032908 11.94143 0.284627 0.748333
8 0.49572 0.047996 8.995248 0.366631 0.698933
9 0.343275 0.025422 8.528527 0.303832 0.747019

10 0.38857 0.00117 7.552718 0.34428 0.823516

TABLE 5.12: Calculated metrics to evaluate the K-Means applied
to the original lung cancer miRNA data as a function of the num-
ber of clusters (upper table) and to evaluate the Spectral Clustering
applied to the translated lung cancer miRNA data as a function

of the number of clusters (lower table).
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Clustering Techniques Number of
Clusters

Adjusted
RAND
index

Avg. Silhouette
Width

Calinski-
Harabasz

Score

Homogeneity
Score

Completeness
Score

Original K-Means

2 0.575636 0.071239 9.411687 0.586364 0.558959
3 0.58635 0.067917 5.783055 0.570112 0.57808
4 0.524081 0.045229 4.775725 0.381841 0.461777
5 0.47307 0.061513 4.756729 0.340101 0.490882
6 0.275003 0.022603 4.283062 0.219261 0.394167
7 0.34149 0.016321 4.162227 0.256659 0.559207
8 0.418383 -0.02126 2.923523 0.306389 0.541017
9 0.338805 -0.12544 2.58828 0.26616 0.497135

10 0.196879 0.014519 3.854418 0.180688 0.47748

Clustering Techniques Number of
Clusters

Adjusted
RAND
index

Avg. Silhouette
Width

Calinski-
Harabasz

Score

Homogeneity
Score

Completeness
Score

Translated Spectral Clustering

2 0.665043 0.098974 14.64232 0.64875 0.630525
3 0.597226 0.094341 9.392246 0.497453 0.533198
4 0.442474 0.075636 8.310124 0.320716 0.495237
5 0.318837 0.05769 7.567373 0.244872 0.496686
6 0.430133 0.028267 6.157142 0.311956 0.601981
7 0.384145 0.030071 5.402818 0.2938 0.570848
8 0.385554 -0.03225 4.790545 0.327814 0.657222
9 0.287361 0.022615 5.042153 0.240722 0.598686

10 0.340705 -0.01021 4.866959 0.289835 0.737925

TABLE 5.13: Calculated metrics to evaluate the K-Means applied
to the original lung cancer gene data as a function of the number
of clusters (upper table) and to evaluate the Spectral Clustering
applied to the translated lung cancer gene data as a function of

the number of clusters (lower table).

(A) (B) (C)

(D) (E) (F)

FIGURE 5.18: Scatter plots of lung miRNA expression data. Six
different random cases are used. The graphs show the original

data in the abscissa and the translated data in the ordinate.
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(A) (B) (C)

(D) (E) (F)

FIGURE 5.19: Scatter plots of lung gene expression data. Six dif-
ferent random cases are used. The graphs show the original data

in the abscissa and the translated data in the ordinate.

miRNA p<5.E-02 p<5.E-06 p<5.E-12 p<5.E-16 p<5.E-21 p<5.E-26
Original 484 105 27 13 7 5

Translated 773 221 77 45 26 13
Common 452 105 27 13 7 5

TABLE 5.14: Differential Expression Analysis: each reported
value represents the number of miRNAs that are differentially
expressed by tumor subclasses under certain p values. The rows
show the types of data (original and translated) and also those

that are in common.

Gene p<5.E-02 p<5.E-06 p<5.E-12 p<5.E-16 p<5.E-21 p<5.E-26
Original 9108 1803 144 8 0 0

Translated 11364 3942 844 251 43 5
Common 8653 1769 141 7 0 0

TABLE 5.15: Differential Expression Analysis: each reported
value represents the number of genes that are differentially ex-
pressed by tumor subclasses under certain p values. The rows
show the types of data (original and translated) and also those

that are in common.
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(A) Original miRNA
data of lung cancer

(B) Translate miRNA
data of lung cancer

FIGURE 5.20: Heatmap of differential miRNA

(A) Original gene data of
lung cancer

(B) Translate gene data
of lung cancer

FIGURE 5.21: Heatmap of differential gene
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p<5E-2 p<5E-6 p<5E-12 p<5E-16 p<5E-21
Total* 452 105 27 13 7
ρ>0.75 350 97 26 13 7
ρ>0.8 291 83 25 12 6
ρ>0.85 190 59 18 10 6
ρ>0.9 93 28 10 8 4
ρ>0.95 10 5 0 0 0

TABLE 5.16: The number of miRNAs that differentiate the sub-
classes in relation with the correlation’s values.

*The total numbers is the number of common miRNAs that differentiate the
subclasses, see Table 5.14

p<5E-2 p<5E-6 p<5E-12 p<5E-16 p<5E-21
Total* 8653 1769 141 7 0
ρ>0.75 5006 1310 129 7 0
ρ>0.8 3749 1061 113 5 0
ρ>0.85 2349 717 88 5 0
ρ>0.9 1002 302 49 5 0
ρ>0.95 127 29 4 1 0

TABLE 5.17: The number of genes that differentiate the sub-
classes in relation with the correlation’s values.

*The total numbers is the number of common genes that differentiate the subclasses,
see Table 5.15
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miRNAs Correlation (ρ) p-values
hsa.mir.29a 0.933895 4.02E-13

hsa.mir.6510 0.902176 5.46E-11
hsa.mir.149 0.931405 6.41E-13
hsa.mir.93 0.889943 2.35E-10
hsa.let.7g 0.875841 1.04E-09

hsa.mir.26a.2 0.867775 2.24E-09
hsa.mir.181b.1 0.818977 9.95E-08

hsa.mir.944 0.85903 4.90E-09
hsa.mir.4652 0.844316 1.63E-08
hsa.mir.4709 0.803713 2.60E-07
hsa.mir.6512 0.836043 3.04E-08
hsa.mir.151b 0.89484 1.34E-10
hsa.mir.769 0.906509 3.11E-11
hsa.mir.375 0.88415 4.43E-10

hsa.mir.203a 0.92756 1.27E-12
hsa.mir.4728 0.829434 4.89E-08
hsa.mir.6499 0.947948 1.95E-14
hsa.mir.326 0.761207 2.56E-06
hsa.mir.205 0.93199 5.76E-13

hsa.mir.1266 0.901349 6.07E-11
hsa.mir.708 0.823544 7.34E-08
hsa.mir.30d 0.914208 1.06E-11

hsa.mir.26a.1 0.870941 1.67E-09
hsa.mir.5698 0.810025 1.77E-07
hsa.mir.196b 0.907629 2.68E-11
hsa.mir.3662 0.859866 4.56E-09

Genes Correlation (ρ) p-values
NECTIN1 0.886757 8.63E-08

MUC1 0.913878 7.14E-09
RPS6KA2 0.821077 5.09E-06
ABCC3 0.818035 5.89E-06
ARRB1 0.883049 1.15E-07
WDR53 0.910224 1.04E-08
REPS1 0.839891 1.91E-06
ZFP64 0.832516 2.85E-06
PKP1 0.963235 2.67E-12

MMS22L 0.797617 1.49E-05
GPR39 0.776149 3.54E-05

SMIM14 0.897357 3.54E-08
ERBB3 0.857698 6.72E-07
RAB17 0.895992 3.99E-08
SGMS2 0.809815 8.67E-06
NKX2-1 0.922923 2.58E-09
DQX1 0.832966 2.78E-06
TRA2B 0.901377 2.46E-08
TRIM29 0.915256 6.16E-09

IRF6 0.905929 1.60E-08
CENPP 0.859 6.19E-07

TMEM125 0.89985 2.83E-08
NEK6 0.760331 6.33E-05

RBM47 0.930292 1.02E-09
FANCE 0.880166 1.44E-07
RORC 0.927698 1.43E-09

LONRF3 0.881169 1.33E-07
TPCN1 0.932749 7.34E-10
OCLN 0.911825 8.86E-09

FAM83B 0.943739 1.41E-10
PERP 0.890078 6.59E-08

SENP5 0.921622 3.01E-09
ACSL5 0.920417 3.46E-09

SLC16A1 0.822063 4.85E-06
DDAH1 0.865849 3.96E-07

ARHGEF38 0.857773 6.68E-07
FBXO45 0.920915 3.27E-09

TP63 0.953547 2.37E-11
ACOX2 0.882897 1.17E-07

PARD6G 0.919507 3.84E-09
FYCO1 0.815722 6.58E-06

SUCLG2 0.79769 1.48E-05

TABLE 5.18: The tables contain Pearson correlation values be-
tween the original and translated miRNAs (left) and genes (right)
that differentiate the two subclasses of lung cancer with p-values
less than 5E-12 and 5E-14 respectively. Only correlation values
greater than 0.75 were considered. Out of a total of 27 miRNAs
differentially espressed (see 5.14), 26 translated miRNAs were in-
cluded. Out of a total of 45 genes differentially espressed (see

5.15), 42 traslated genes were included.
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Chapter 6

Discussions

The following chapter is related to the discussions of the thesis. An interpre-
tation of the obtained results will be provided.

The following steps will discuss all the results obtained concerning the ta-
bles, figures, and graphs in the Results section.

1- The principal component analysis shows that the translated data distri-
butions are in the area where the original data are spread out. Looking
at the scatter plots in Figure 5.1 and Figure 5.12 it is possible to see that
the variability of the original data was maintained after the translation
as the intra-class variability. In other words, translated data preserve
variability in tumor subclasses. The overlap of cases in the PCA is not
punctual, but considering the amount of translated genes/miRNA, I can
be satisfied from a graphical viewpoint.

2- The following step was the cluster analysis. The Tables 5.1, 5.2, 5.10, 5.11
containing the adjusted RAND data for each clustering technique tell
which of them comes closest to the true label and quantifies this close-
ness. I collected clustering techniques evaluation metrics to describe the
distributions of the original and translated data. In order to compare
them, metrics were calculated for a range of cluster numbers. The ad-
justed rand obtained from the translated data is generally higher than
the original data. There are few coincident values between the original
and the translated kidney cancer data as the RANDs returned by Spectral
Clustering and Mini-Batch K-Means, for both gene expression data. At
the same time, the metrics of the original data are also generally lower
than those of the translated data. However, the Figures 5.3, 5.4 plots
show that the metrics reported from both the original and translated kid-
ney cancer data follow a similar trend. The previous observation can be
extended to the other pairs of Figures 5.5, 5.6, and 5.14, 5.15 and 5.16,
5.17.

In addition, the average Silhouette score and the Calinski-Harabasz score
reported the best value for a number of clusters equal to 2 in all possible
cases.
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3- The analysis of individual patients is characterized by the scatter plots
shown in Figure 5.7, 5.8, 5.18, 5.19. These plots provide a significant re-
sult: observing the distribution of the data concerning the regression line,
one can see that the translation from genes-to-miRNAs is better than the
translation from miRNAs-to-genes. In addition, translation from genes
to miRNAs improves as the expression value of the miRNA to be trans-
lated increases. In contrast, this trend is not visible in the case of trans-
lated genes.

4- The first step of the differential expression analysis was to investigate if
the same genes/miRNAs that differentiate tumor subclasses in the origi-
nal dataset are the same as those in the translated dataset. This informa-
tion is reported in the Table 5.5, 5.6, 5.14, 5.15.

On average, over 95% of the original miRNAs that differentiate the classes
are among the translated ones, while over 96% of the original class-
differentiating genes fall within the translated ones. However, the trans-
lator has produced new differential genes/miRNAs. Nevertheless, I in-
vestigated the differential genes/miRNAs in common between the origi-
nal and translated data. The question was, how were these genes/miRNAs
translated? The heat maps were generated. This qualitative visualiza-
tion shows a difference between the two types of translations: it can be
noticed that the gene-to-miRNA translation remains more faithful to the
original (Figure 5.10, Figure 5.20) while the other translation (Figure 5.11,
Figure 5.21) produced genes that differentiate the two classes more dis-
tinctly.

However, by comparing the original and translated maps, it can be said
that the biological coherence of both miRNAs and genes was preserved.
In fact, in one class, the up-regulated genes/miRNAs relative to the other
one have remained, as well as those that are down-regulated.

I carried out literature research to confirm the biological consistency main-
tained by the translated data.

. J.Wu et al.[3] showed how the CD39 alias ENTPD1 gene with a
high expression value is a powerful prognostic marker of ccRCC
patients.

. Hamamoto et al.[5] reported in the paper that the miRNAs hsa-
miR-375, hsa-miR-205, and hsa-miR-196b are valid molecular mark-
ers for the classification of subtypes of non-small cell lung cancer
(NSCLC).

. N.Okabe et al. [37] introduced the FAM83B as a new biomarker for
the diagnosis and prognosis for lung squamous cell carcinoma.

. D.Petillo et al. [38] documented the overexpression of hsa-miR-424
in clear cell RCC relative to papillary RCC
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Chapter 7

Conclusions

In the conclusion section, I will review the purpose and why of this method.
I will show what is in the literature.
I will also discuss the limitations of my method, its strengths, and what im-
provements can be adopted. Talking about what I got, I would start from the
beginning, i. e. why this method was developed.

I wanted to create a deep neural network model capable of translating two
different transcriptomics data. In particular, I aimed at predicting gene ex-
pression data consistent with tissue type given miRNA expression data and
vice versa. The proposed method shows that a supervised Adversarial Auto-
encoder is capable of performing this task.

The proposed method allows to obtain faithfully translated data. It re-
quires a significant amount of data, and the data required for a faithful transla-
tion must be very similar to the training data. If sAAEs are used this way, the
translations will report high biological consistency for high expression value
data (especially for translated miRNAs) and statistical correlation greater than
75% for over 70% of differentially expressed genes/miRNAs.
If applied to several tumor tissues, the performance could decrease since the
network is sensitive to expression levels. If a gene/miRNA typically has a
lower expression value than it does in another tissue, it could be translated in
a worse way than if they were translated separately. This factor could further
limit the method because there would be a data limitation.

The proposed method is also limited at the implementation level. The
translation between the two data types is purely deterministic, limiting the
network to translations between only two data types at once i.e., miRNAs-to-
genes or vice versa. Furthermore, this consequentially causes the fact that an
sAAE can perform one-way translations only. The networks also require la-
beled data, and in order to train them, I need data for which the same patients
are available. This approach severely limits the translation.

Several methods have been proposed in the literature for domain-to-domain
or even intra-domain translation like "Cycle GAN" [39], "Disco GAN" [40] and
the "Cross-modal Autoencoders" [21] methods.

. The CycleGAN method approaches the proposed method using the ad-
versarial loss for the mapping function between two domains. It also
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uses two cost functions defined as cycle consistency loss, by which it
minimizes the distance of reconstructed samples.

. The DiscoGAN method exploits two GANs, i.e., two generators and two
discriminators that train simultaneously. The training takes place on two
strands. This method has been used to learn domain relations of images.
Consider the two domains, A and B. In both strands, a domain trans-
lation takes place via a generator (A → B and B → A). The obtained
translation will be completed with a discriminator. It will have to un-
derstand which is the translated image and which is the real one. The
real image will be the input of the opposite strand. Then the translation
will be re-translated. This new image is the reconstruction of the start-
ing image. Another cost function is introduced to minimize the distance
between the new image with the starting image.

. The cross-modal autoencoders method exploits adversarial autoencoders
to perform domain translation, crossing them to translate both images
and genomic data as well genomic data of different types. The applica-
tion is based on chromatin biology and the data used are ATAC-seq and
RNA-seq from primary human immune cells, i.e., CD4+ lymphocytes.

The methods previously mentioned are structured probabilistic models [11].
The complexity introduced by these models is high. These models allow for
greater generalization than deterministic models such as the one proposed.
However, in this way, I was able to obtain accurate results without the need
for probabilistic formalisms.
To make the translation more generalizable, I need to reintroduce the proba-
bilistic assumptions proposed by [21] and a more significant amount of data.



71

Bibliography

[1] Lin Liu et al. “Comparison of next-generation sequencing systems”. In:
J Biomed Biotechnol 2012.251364 (2012), p. 251364.

[2] Seonwoo Min, Byunghan Lee, and Sungroh Yoon. “Deep learning in
bioinformatics”. In: Briefings in Bioinformatics 18.5 (July 2016), pp. 851–
869. ISSN: 1467-5463. DOI: 10.1093/bib/bbw068. eprint: https://academic.
oup.com/bib/article-pdf/18/5/851/25581102/bbw068.pdf. URL:
https://doi.org/10.1093/bib/bbw068.

[3] Jie Wu et al. “pHigh Expression of CD39 is Associated with Poor Prog-
nosis and Immune Infiltrates in Clear Cell Renal Cell Carcinoma/p”. In:
OncoTargets and Therapy Volume 13 (Oct. 2020), pp. 10453–10464. DOI:
10.2147/ott.s272553. URL: https://doi.org/10.2147/ott.s272553.

[4] Youssef M Youssef et al. “Accurate molecular classification of kidney
cancer subtypes using microRNA signature”. In: European urology 59.5
(2011), pp. 721–730.

[5] Junko Hamamoto et al. “Identification of microRNAs differentially ex-
pressed between lung squamous cell carcinoma and lung adenocarci-
noma”. In: Molecular medicine reports 8.2 (2013), pp. 456–462.

[6] Colles Price and Jianjun Chen. “MicroRNAs in cancer biology and ther-
apy: Current status and perspectives”. In: Genes & Diseases 1.1 (Sept.
2014), pp. 53–63. DOI: 10.1016/j.gendis.2014.06.004. URL: https:
//doi.org/10.1016/j.gendis.2014.06.004.

[7] Zhong Wang, Mark Gerstein, and Michael Snyder. “RNA-Seq: a revo-
lutionary tool for transcriptomics”. In: Nature Reviews Genetics 10.1 (Jan.
2009), pp. 57–63. DOI: 10.1038/nrg2484. URL: https://doi.org/10.
1038/nrg2484.

[8] Fatih Ozsolak et al. “Direct RNA sequencing”. In: Nature 461.7265 (Sept.
2009), pp. 814–818. DOI: 10.1038/nature08390. URL: https://doi.org/
10.1038/nature08390.

[9] Felix Richter. “A broad introduction to RNA-Seq”. In: WikiJournal of Sci-
ence 4.1 (2021), p. 4. DOI: 10.15347/wjs/2021.004. URL: https://doi.
org/10.15347/wjs/2021.004.

[10] Michael A. Nielsen. Neural Networks and Deep Learning. misc. 2018. URL:
http://neuralnetworksanddeeplearning.com/.

https://doi.org/10.1093/bib/bbw068
https://academic.oup.com/bib/article-pdf/18/5/851/25581102/bbw068.pdf
https://academic.oup.com/bib/article-pdf/18/5/851/25581102/bbw068.pdf
https://doi.org/10.1093/bib/bbw068
https://doi.org/10.2147/ott.s272553
https://doi.org/10.2147/ott.s272553
https://doi.org/10.1016/j.gendis.2014.06.004
https://doi.org/10.1016/j.gendis.2014.06.004
https://doi.org/10.1016/j.gendis.2014.06.004
https://doi.org/10.1038/nrg2484
https://doi.org/10.1038/nrg2484
https://doi.org/10.1038/nrg2484
https://doi.org/10.1038/nature08390
https://doi.org/10.1038/nature08390
https://doi.org/10.1038/nature08390
https://doi.org/10.15347/wjs/2021.004
https://doi.org/10.15347/wjs/2021.004
https://doi.org/10.15347/wjs/2021.004
http://neuralnetworksanddeeplearning.com/


72 Bibliography

[11] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.

[12] James Bergstra and Yoshua Bengio. “Random search for hyper-parameter
optimization.” In: Journal of machine learning research 13.2 (2012).

[13] Nitish Srivastava et al. “Dropout: A Simple Way to Prevent Neural Net-
works from Overfitting”. In: Journal of Machine Learning Research 15.56
(2014), pp. 1929–1958. URL: http://jmlr.org/papers/v15/srivastava14a.
html.

[14] Dor Bank, Noam Koenigstein, and Raja Giryes. Autoencoders. 2021. arXiv:
2003.05991 [cs.LG].

[15] Kien Mai Ngoc and Myunggwon Hwang. “Finding the Best k for the
Dimension of the Latent Space in Autoencoders”. eng. In: Computational
Collective Intelligence. Lecture Notes in Computer Science. Cham: Springer
International Publishing, 2020, pp. 453–464. ISBN: 9783030630065.

[16] Diederik P Kingma and Max Welling. “Auto-encoding variational bayes”.
In: arXiv preprint arXiv:1312.6114 (2013).

[17] Ian J. Goodfellow et al. Generative Adversarial Networks. 2014. arXiv: 1406.
2661 [stat.ML].

[18] Alireza Makhzani et al. “Adversarial autoencoders”. In: arXiv preprint
arXiv:1511.05644 (2015).

[19] Tracy Hampton. “Cancer Genome Atlas”. In: JAMA 296.16 (Oct. 2006),
pp. 1958–1958. ISSN: 0098-7484. DOI: 10 . 1001 / jama . 296 . 16 . 1958 -
d. eprint: https://jamanetwork.com/journals/jama/articlepdf/
203742/jha60008-4-1.pdf. URL: https://doi.org/10.1001/jama.296.
16.1958-d.

[20] Michael I Love, Wolfgang Huber, and Simon Anders. “Moderated esti-
mation of fold change and dispersion for RNA-seq data with DESeq2”.
In: Genome Biology 15.12 (Dec. 2014). DOI: 10.1186/s13059-014-0550-8.
URL: https://doi.org/10.1186/s13059-014-0550-8.

[21] Karren Dai Yang et al. “Multi-domain translation between single-cell
imaging and sequencing data using autoencoders”. In: Nature Commu-
nications 12.1 (2021), p. 31. ISSN: 2041-1723. DOI: 10.1038/s41467-020-
20249-2. URL: https://doi.org/10.1038/s41467-020-20249-2.

[22] James Bergstra et al. “Algorithms for hyper-parameter optimization”. In:
25th annual conference on neural information processing systems (NIPS 2011).
Vol. 24. Neural Information Processing Systems Foundation. 2011.

[23] Tanay Agrawal. “Optuna and AutoML”. In: Hyperparameter Optimization
in Machine Learning. Springer, 2021, pp. 109–129.

http://www.deeplearningbook.org
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://arxiv.org/abs/2003.05991
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://doi.org/10.1001/jama.296.16.1958-d
https://doi.org/10.1001/jama.296.16.1958-d
https://jamanetwork.com/journals/jama/articlepdf/203742/jha60008-4-1.pdf
https://jamanetwork.com/journals/jama/articlepdf/203742/jha60008-4-1.pdf
https://doi.org/10.1001/jama.296.16.1958-d
https://doi.org/10.1001/jama.296.16.1958-d
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1038/s41467-020-20249-2
https://doi.org/10.1038/s41467-020-20249-2
https://doi.org/10.1038/s41467-020-20249-2


Bibliography 73

[24] Takuya Akiba et al. “Optuna: A next-generation hyperparameter opti-
mization framework”. In: Proceedings of the 25th ACM SIGKDD interna-
tional conference on knowledge discovery & data mining. 2019, pp. 2623–2631.

[25] Lisha Li et al. “Hyperband: A novel bandit-based approach to hyperpa-
rameter optimization”. In: The Journal of Machine Learning Research 18.1
(2017), pp. 6765–6816.

[26] Hervé Abdi and Lynne J. Williams. “Principal component analysis”. In:
WIREs Computational Statistics 2.4 (2010), pp. 433–459. DOI: https://
doi.org/10.1002/wics.101. eprint: https://onlinelibrary.wiley.
com/doi/pdf/10.1002/wics.101. URL: https://onlinelibrary.wiley.
com/doi/abs/10.1002/wics.101.

[27] Aristidis Likas, Nikos Vlassis, and Jakob J Verbeek. “The global k-means
clustering algorithm”. In: Pattern recognition 36.2 (2003), pp. 451–461.

[28] Andrew Ng, Michael Jordan, and Yair Weiss. “On spectral clustering:
Analysis and an algorithm”. In: Advances in neural information processing
systems 14 (2001), pp. 849–856.

[29] Stephen C Johnson. “Hierarchical clustering schemes”. In: Psychometrika
32.3 (1967), pp. 241–254.

[30] David Sculley. “Web-scale k-means clustering”. In: Proceedings of the 19th
international conference on World wide web. 2010, pp. 1177–1178.

[31] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal
of Machine Learning Research 12 (2011), pp. 2825–2830.

[32] José E Chacón. “A close-up comparison of the misclassification error dis-
tance and the adjusted Rand index for external clustering evaluation”.
In: British Journal of Mathematical and Statistical Psychology 74.2 (2021),
pp. 203–231.

[33] Jorge M Santos and Mark Embrechts. “On the use of the adjusted rand
index as a metric for evaluating supervised classification”. In: Interna-
tional conference on artificial neural networks. Springer. 2009, pp. 175–184.

[34] Peter J. Rousseeuw. “Silhouettes: A graphical aid to the interpretation
and validation of cluster analysis”. In: Journal of Computational and Ap-
plied Mathematics 20 (1987), pp. 53–65. ISSN: 0377-0427. DOI: https://
doi . org / 10 . 1016 / 0377 - 0427(87 ) 90125 - 7. URL: https : / / www .
sciencedirect.com/science/article/pii/0377042787901257.
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