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Abstract

Gait analysis is the systemic study of human locomotion and plays an important role in
detecting patterns in such activity.

Traditionally, gait analysis is carried out using video recording techniques, wherein the
recording is reviewed in slow motion to permit an accurate assessment of the gait cycle
fulfilled by a skilled clinician [1]; other optical techniques, such as Optoelectronic Systems,
are also largely used in gait analysis to evaluate the motor performance of healthy sub-
jects and patients [2]. The limitations of optical methods were partially overcome with the
use of wearable Inertial Measurement Units (IMUs). Due to their very low consumption,
these sensors can be battery powered and are promising tools for long-term ambulatory
monitoring outside clinical facilities or laboratories; moreover, considering their low cost,
inertial sensors have become particularly popular in the gait analysis research and devel-
opment field.

Gait segmentation, and particularly stride segmentation, answers the specific clinical needs
for analysing human gait. Stride segmentation is the procedure of dividing the gait into
strides, where a stride begins with one ’heel strike’ (i.e when the heel makes contact with
the ground) and ends with the heel strike of the following step of the same foot. The
ability to automatically and robustly segment individual strides from gait sequences de-
rived using inertial sensors during different gait activities is crucial for the estimation of
gait parameters and for the creation of a reliable gait dataset, without requiring the man-
ual segmentation of recordings. When considering stride segmentation done with Inertial
Measurement Sensors (i.e IMUs), multiple techniques and algorithms have been proposed:
several algorithms for the analysis of individual strides from accelerometer-derived data
are based on peak detection methods; other studies have used clearly defined signal char-
acteristics like zero crossings in gyroscope and accelerometer data to determine gait events
[3][4][5]. Machine Learning methods such as Hidden Markov Models (HMMs) [6][7][8][9],
Support Vector Machines [10][11] and Decision Trees [12] have also been successfully used.
In addition to these methods, template-based methods such as Dynamic Time-Warping
algorithms have also shown promising performance due to their ability to identify multiple
strides in a sequence, even though they might differ in length and amplitude.

In this work, a new algorithm for segmenting strides given raw data built upon the
Multi-dimensional Subsequence Dynamic Time-Warping (msDTW) Algorithm proposed
by Barth et al. [13] is presented, extending and extensively explaining the functionality
and the procedures that need to be followed in order to implement it. With the goal of en-
hancing the performance of the msDTW, an Optimisation Procedure which improves the
precision of the stride segmentation and reduces the computational time of execution of
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the segmentation is proposed. The dataset used in this work is provided by Luo et al. [14],
from which data from two IMU sensors (MTw Awinda,58 Xsens, Enschede, Netherlands)
placed on the right shank and on the right thigh are considered, representing subjects (1)
walking on a planar surface, (2) walking on a positive tilt, (3) walking on a negative tilt,
(4) ascending stairs and (5) descending stairs. All these recorded data are associated with
the category of Free Walking, i.e. uncontrolled environment. The performance of a Peak
Detection Algorithm [15], the msDTW algorithm proposed by Barth et al. and the pro-
posed msDTW Optimised Algorithm is compared in terms of Accuracy, Recall, Precision
and F'1-Score; moreover, a comparison of the msDTW Optimised method with Barth et
al.’s msDTW is provided in terms of time of execution.

With the use of the proposed msDTW Optimised method it was possible to identify the
best Sensor Set for each activity considered and achieve a Precision of 99.05% for the
activity Stair Ascent Walking, an Accuracy of 98.26% for the activity Downhill Walking
and a reduction of the computation time of up to 37.97%, when compared to Barth et
al.’s msDTW. Finally, a demonstration that the proposed algorithm is a robust and re-
liable alternative method for the construction of a gait dataset which requires no human
involvement is provided. Thanks to its high Accuracy and Precision, one can argue that
the proposed method is suitable for clinically relevant applications and could be adapted
to different gait activities and scenarios.

The proposed algorithm was concretely used for the automatic annotation of gait signals
collected using inertial sensors during experimental data gathering at the partner com-
pany Axiles Bionics, resulting in the creation of a reliable and consistent gait dataset that
is currently being used for the creation of Artificial Intelligence models capable of learning
gait patterns from data.

The work presented in this thesis has been reviewed and approved by Dr. Felipe Gomez
and Dr. Pierre Cherelle, respectively CTO and CEO of the partner company Aziles Bion-
ics. Moreover, the main content of this work has been submitted to the journal Sensors
(Manuscript ID: sensors-1276510) as an academic paper, thanks to fundings received by
Innoviris - Brussels Region and the Flemish Government (Al Research Program) and re-
viewed by professors Efthymiadis K., De Pauw K., Steckelmacher D.; Vanderborght B.
and Nowé A.
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Chapter 1

Fundamentals of human gait
and gait analysis

1.1 Biomechanics of the ankle

The ankle complex is comprised of the lower leg and foot and forms the kinetic
linkage that allows the lower limb to interact with the ground and allows dorsiflexion
and plantar flexion of the foot, as well as some degree of pronation and supination.
The ankle complex also acts as a shock absorber as the heel strikes the ground
during the first phases of gait.

The ankle complex is made up of the twenty-six individual bones of the foot, together
with the long bones of the lower limb, giving a total of thirty-one joints: this allows
the ankle complex to play a fundamental role in many tasks, such as weight bearing
and locomotion, and is responsible for complex movement functions such as gait
adaption.

Among these joints, the ankle joint, also known as the talocrural joint (Figure 1.1%),
forms the junction between the distal tibia, the fibula of the lower leg, and the
talus. Thanks to its geometry, the ankle joint allows movement such as dorsiflexion
and plantaflexion of the foot and contributes to the stability of the ankle complex.
Moreover, it limits its freedom of rotation.

Figure 1.1: Talocrural joint.

"https://www.kenhub.com/en/library/anatomy/transverse-tarsal-joint
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Fundamentals of human gait and gait analysis

The subtalar joint, also known as talocalcaneal joint (Figure 1.2 2), consists of the anterior
and posterior articulations between the talus and calcaneus. Most inversion and eversion
of the foot is provided by this articulation.

Figure 1.2: Talocalcaneal joint.

Given the articulated structure of the ankle complex, several movements are permitted
(Figure 1.3) over the planes of motion (Figure 1.4):

» Plantarflexion and Dorsiflexion, occurring in the sagittal plane

 Abduction (lateral rotation) and Adduction (medial rotation), occurring in the trans-
verse plane

o Inversion and Eversion, occurring in the frontal plane

Combinations of these motions create three-dimensional motions called Pronation and
Supination (Figure 1.3): both terms define the position of the plantar surface of the foot
(sole). During supination, a combination of plantarflexion, inversion, and adduction causes
the sole to face medially. In pronation, dorsiflexion, eversion, and abduction act to position
the sole facing laterally [16].

Frontal Sagittal Transverse

(coronal) plane (horizontal)
plane plane
, /) ;/
e g d g
e \
\

Pronation

Supination

Eversion Inversion Plantarflexion Lateral Medial
rotation rotation

Figure 1.4: Planes of motion.

Figure 1.3: Movements of the ankle.

’https://www.kenhub.com/en/library/anatomy/transverse-tarsal-joint
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Fundamentals of human gait and gait analysis

More specifically, the rotation in the saggital plane occurs along the axis passing through
the lateral melleoli and the medial malleoli (dotted line, Figure 1.5); the coronal plane
axis of rotation occurs around the intersecting point between the malleoli and the long

axis of the tibia in the frontal plane (Figure 1.5).

|

e
?f{

/

-

g

Figure 1.5: Sagittal and frontal plane axis of rotation of the ankle joint complex.

The transverse plane axis of rotation occurs around the long axis of the tibia intersecting
the midline of the foot (Figure 1.6)[16]. Studies [17] have shown that this axis may vary

as motion changes.

Figure 1.6: Sagittal and frontal plane axis of rotation of the ankle joint complex.

The range of motion (ROM) of the ankle complex has been shown to vary significantly
between individuals due to geographical and cultural differences in daily activities [18].
On average, in the saggital plane the range of dorsiflexion is between 10 and 20 degrees,
while the normal range of plantarflexion is between 40 and 55 degrees. Considering the
frontal plane, the avarage range of motion for inversion is around 23 degrees and for ev-

ersion is around 12 degrees.

To support all these movements, the ankle complex is made up of twelve extrinsic muscles
contained within four compartments (Figure 1.7). The anterior compartment produces
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Fundamentals of human gait and gait analysis

dorsiflexion, inversion and eversion of the foot. The lateral compartment produces plan-
tarflexion and eversion of the foot. The posterior compartment contributes to plantarflex-
ion of the foot. The deep posterior compartment produces plantarflexion and inversion of
the foot.

Anterior Compartment.

Deep Posterior
Compartment

U

Superficial Posterior Compartment

Figure 1.7: Muscles compartments.

1.2 Importance of gait analysis

Gait reveals key information about a person’s quality of life. Accurate and reliable knowl-
edge of gait characteristics at a given time and — even more importantly — monitoring
and evaluating them over time would enable early diagnosis of diseases and their compli-
cations and would help to identify the most appropriate treatment.

Due to the complex structure of the human musculoskeletal system, gait analysis becomes
the preliminary requirement in understanding the complex dynamics of its locomotion
strategy. Research on gait analysis promises new horizons for clinical and pathological gait
diagnosis, such as monitoring sports and athletic performances, observation of training
and rehabilitation exercises, and designing anthropomorphic gaits, exoskeletal systems,
and prosthetic limbs [19].

Technological advances have given rise to devices and techniques which allow an objec-
tive evaluation of different gait parameters, resulting in more efficient measurement and
providing specialists with a large amount of reliable information on patients’ gaits [20].
Abnormal gait is the main cause for many physical problems, such as back pain, joint pain
in the lower limbs, muscle strain, etc. [21], so the development of robust and trustworthy
methods for analysing gait are fundamental. On the other hand, gait abnormalities can
occur for a variety of reasons; such as a biomechanical problem, injury, stroke, fracture,
neurological disorder, and so on [22]; and thus require tools capable of supporting clini-
cians in the diagnosis and treatment process.

In the particular case of amputees, the prosthetic ankle has a reduced range of movement
compared to the anatomical ankle. This results in prolonged heel strike and weight bear-
ing through the heel before flat foot contact, with delayed forefoot loading. Due to the
reduced ankle movement of the prosthesis, the range of extension at the hip is reduced to
approximately half of that of the opposite limb. The stance time on the non-prosthetic
side is also increased compared to the prosthetic side [23]. Therefore, there are deviations
which an amputee will adopt to compensate for the prosthesis, leading to muscle weak-
ness or tightening, lack of balance and fear. Such deviations create an altered gait pattern
and it is important that they are recognised, as rehabilitation of the gait will need to
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Fundamentals of human gait and gait analysis

encompass corrections of these deviations [24][25][26].

Through the determination of the gait cycle and gait phases, and by validating gait
events, it is possible to obtain a series of parameters related to gait, and thereby permit
the classification and the analysis of different gait characteristics.

1.3 Segmentation of gait cycle

Gait can be defined as a series of rhythmic, alternating movements of the lower limbs
which results in the forward progression of the body [1]. A gait cycle starts with a so-
called heel strike (HS), the moment in which the heel of one leg (hereafter referred to as
the reference leg) touches the ground, and it ends at the next heel strike of the same leg.
A single gait cycle is denominated as a ’stride’.

The gait activity is a cyclical repetition of strides, each composed of two main phases:

« Stance phase: the phase in which both feet are in contact with the ground. It begins
with a heel strike and ends when the toe of the reference leg loses contact with
the ground. This latter event is referred to as toe off (TO). This phase makes up
approximately 62% of the gait cycle, with an average duration of approximately 0.59
to 0.67 seconds.

» Swing phase: the single-support phase of the gait cycle. This phase begins in corre-
spondence with the toe off of the reference leg and terminates with a new heel strike.
During this phase all body weight is borne by a single leg, while the reference leg os-
cillates over the ground towards a forward position. This phase takes approximately
38% of the gait cycle with an average duration of approximately 0.38 to 0.42 seconds.

Figure 1.8 summarises the phases thus far described and introduces a further division of
a stride.

Vi3

Stance phase Swing phase
Heel
Contact Foot Flat Contact phase Puﬁl;:;)ﬁ
phase P
v \ \ \/ v
Heel Strike  Foot Flat Heel Off Toe Off Heel Strike

Figure 1.8: Division of gait cycle. A stride can be divided into two main phases: stance phase
and swing phase. Furthermore, the stance phase can be additionally divided into: "heel contact’
phase, 'foot flat contact’ phase and ’push-off’ phase. The limits of these phases are defined by
four events identified as heel strike (HS), foot flat (FF), heel off (HO) and toe off (TO).
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Fundamentals of human gait and gait analysis

In figure 1.8 one can to observe the further division of the stance phase:

o Heel contact phase: the phase in which the reference leg’s heel rolls over the
ground but the toe has yet to make contact with the surface. This phase begins
with a heel strike and ends when the foot is completely in contact with the
ground, i.e. the foot flat event.

o Foot flat contact phase: the phase in which the foot is completely in contact
with the ground and the upper body loads body weight on to the reference leg,
while the other leg is swinging forwards. This phase begins when the foot is
completely in contact with the ground (foot flat) and ends when the heel of the
reference leg leaves the surface.

o Push-off phase: the phase in which the reference leg prepares for the swing
phase. It begins as soon as the heel of the reference leg starts to move away
from ground (heel off event) but the toe remains in contact with the surface
and ends when the toe also loses contact with the ground (toe off).

Various techniques have been employed with the purpose of studying human gait
through stride segmentation. Among them, devices used to study the human gait
can be classified according to two different approaches: those based on non-wearable
sensors (NWS) and those based on wearable sensors (WS). The former require con-
trol of the environment in which the sensors are located and only allows the capture
of gait data while the subject walks in predefined scenarios. In contrast, wearable
sensor systems allow data analysis outside of laboratory settings and permit the cap-
ture of information concerning human gait during a person’s everyday activities[20].
NWS systems can be further divided into two subgroups: (1) those based on image
processing (IP); and (2) those based on floor sensors (FS). IP systems capture data
on a subject’s gait through one or more optic sensors and take objective measure-
ments of the different parameters through digital image processing. Analogue or
digital cameras are the mostly commonly used devices. Other types of optic sensors
such as laser range scanners (LRS), infrared sensors and time-of-flight (ToF') cam-
eras are also used. Optical techniques may or may not employ the use of markers
(marker-based and marker-less methods, respectively)[20].

Figure 1.9: Example of optical system. Optoelectronic motion capture systems based on
markers. This allows the precise study of a subject’s motion using markers placed in
strategic spots and the recording of this motion through a multi-camera system. These
devices are often used in combination with force platforms and/or inertial sensors.
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On the other hand, F'S systems are based on sensors located along the floor on so-called
force platforms where gait information is measured through pressure sensors and ground
reaction force sensors (GRF) which measure the force exerted by the subject’s feet on the
floor when they walk.

Figure 1.10: Example of a force platform. Measuring instruments that perform ground reaction
force measurements and can be used to quantify pressure patterns under the subject’s foot.

WS systems use sensors located on several parts of the body, such as the feet, knees, thighs,
or waist. Different types of sensors are used to capture the various signals that charac-
terise human gait. These include accelerometers, gyroscopic sensors, magnetometers, force
sensors, extensometers, goniometers, active markers, and electromyography [20].

In this work, Inertial Measurement Units (IMUs) are used.

Figure 1.11: Example of a wearable sensor. Capable of sensing accelerations, angular speeds and
orientation in the earth’s magnetic field, IMUs are widely used in gait analysis for studying
subjects’ kinematics.
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1.3.1 Stride segmentation

Gait analysis is the systemic study of human locomotion and plays an important role in
detecting patterns within such activity. Stride segmentation is the procedure of dividing
the gait into strides, where one stride is defined between one heel strike and the heel
strike of the following step, as previously explained. The ability to automatically and ro-
bustly segment individual strides from gait sequences derived from inertial sensors while
performing different gait activities is crucial for the estimation of gait parameters and
for the creation of a reliable gait dataset, without requiring the manual segmentation of
recordings.

In the past few years, different techniques have been proposed to achieve stride segmen-
tation. In the following section, an overview of these techniques is presented, with a focus
on the detection of heel strikes in IMUs’ recorded signals. Among them, zero-crossing
techniques based on the analysis of gyroscope signals located on the shank have been
proposed by several authors [27][28][29], as well as techniques based on the detection of
peaks in acceleration and/or gyroscope signals [15][30][31]: these techniques are simple
but have shown respectable performances in terms of detection of heel strikes. However,
they perform relatively poorly in uncontrolled environments, such as during free walking
and have shown poor generalisation capabilities. The majority of these algorithms are
structured as a set of rules applied to the values of the IMU signals taken into consid-
eration (accelerations and angular speeds) for the detection of the Initial Contact (i.e.
heel strike): an example is given by Salarian et al. [15] and Gouwanda et al. [30], who
in their work have implemented an algorithm for the detection of heel strikes based on
the research of minimum values in gyroscope signals. Salarian’s work has been used as a
baseline in this work and his algorithm is presented in section 3.1.

The limitations of the techniques presented thus far are partially overcame by techniques
which use template recognition, such as Dynamic Time Warping [13][32]: these algorithms
perform better in terms of generalisation and correct detection in different real-life envi-
ronments. These techniques use information from a pre-constructed example of a stride
to search for that pattern in the recorded signals. In this work the algorithm proposed by
Barth et al. [13] is comprehensively analysed (3.2) and extended through an optimisation
algorithm (3.4). In addition to this, many Wavelet Transform based algorithms [33][34]
have also been proposed for stride segmentation.

In recent years, Artificial Intelligence methods such as Machine Learning and Deep Learn-
ing techniques have become increasingly popular. Among those methods, Zhao et al. [35]
proposed a gait recognition algorithm based on a seven-layer convolutional neural network
(CNN), Gurchiek et al. [36] work aimed to detect asymmetric gait patterns in patients
recovering from anterior cruciate ligament reconstruction with the use of a Support Vector
Machine (SVM). In addition, Mannini et al. [6][7] and Panahandeh et al. [37] proposed
an alternative solution based on a Hidden Markov Model (HMM), with the advantage of
having the possibility of evaluating the uncertainty of the prediction, but it is limited by
the assumption that IMU data is gaussian distributed.

In this work, a Dynamic Time Warping algorithm is developed starting from the method
proposed by Barth et al. [13] with the aim of performing precise stride segmentation on
the data collected by IMU sensors, placed on points of interest such as the right shank and
right thigh, with the final goal of building a robust and reliable method for the automatic
construction of a gait dataset of segmented signals.



Chapter 2

Materials and methods

2.1 Subject protocol

This work makes use of the public dataset! published in Nature by Luo et al. [14]. This
dataset contains data recorded while participants performed several walking trials over
different surfaces wearing IMU sensors.

Data was gathered analysing the gaits of 30 healthy subjects (15 male and 15 female)
with no pre-existing pathology while (1) walking on a planar surface, (2) walking on a
positive and (8) negative tilt, (4) ascending stairs and (5) descending stairs.

Table 2.1 shows the anthropometric characteristics of the participants, measured at the
time of the test.

Mean £+ STD
Age [years] 23.5 £4.2
Height [cm] 169.3 £21.5

Body mass [kg] 70.9 £13.9

Table 2.1: Anthropometric characteristics of the subjects.

No restrictions on the shoes were imposed in order to enlarge the range of applications.

lhttps://www.nature.com/articles/s41597-020-0563-y
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Materials and methods

In this work, the following activities are considered:
o Walking: Walking on an horizontal, paved surface

Stair Ascent: Ascending concrete stairs

Stair Descent: Descending concrete stairs

Uphill Walking: Walking on a upward sloping concrete surface

Downhill Walking: Walking on a downward sloping concrete surface

Flat even Upstairs/Downstairs|  Slope up/down

Figure 2.1: Measurement sites for walking and stair trials.

Figure 2.1 displays the surfaces on which the activities were performed: participants were
instructed to walk at their normal pace and to let their arms swing naturally. Surfaces
were presented in a randomised order and adequate rest was provided to prevent fatigue
between trials. Participants walked six times on each surface.

10



Materials and methods

2.2 Measurement protocol

Participants performed the activities while wearing six IMU sensors (MTw Awinda, Xsens,
Enschede, Netherlands) secured to the body using the bands provided by the manufacturer
such that they were:

e Centred on the wrist on the dorsal forearm

o Centred on both the anterior thighs

o Centred 5 cm above the bony processes of both ankles
« Posterior at level of L5/S1 joint

Following the most common set-ups used for gait analysis, in this work the IMUs placed
on the right shank and on the right thigh were considered (Figure 2.2). This permitted
the comparison of the obtained results with the literature.

-
A A
]

Figure 2.2: Sensor placement setup. In orange: the IMU sensors positioned on the right shank
and on the right thigh of one participant.

The frequency of sampling was 100Hz for all sensors.
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Materials and methods

In Figure 2.3 it is possible to see the orientation of the reference axis.

z
Y
\ Y
| <.
z
Y
Y
/| S
i =g

Figure 2.3: Orientations of the axis of the IMUs. The axis X follows the upper-lower direction, the
axis Y follows the mediolateral direction and the axis Z follows the anterior-posterior direction.

Using the IMU sensors, accelerations along the three axes (a,, a,, a,) and angular ve-
locities around the three axes (w,, wy, w,) were registered. In addition to these data,
combinations of the signals were considered in order to compute the magnitude of the
vectors acceleration and angular velocity (2.1).

magnitudege. = \/ acc + accy + accs

magnitude,, = /w2 + w? + w?

Accelerations without the gravity component were also considered.

(2.1)
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Table 2.2 reports all the signals used in this work.

Signal Axis Signal Identification Number
shank acceleration X 0
shank acceleration y 1
shank acceleration z 2
shank acceleration (without gravity) X 3
shank acceleration (without gravity) y 4
shank acceleration (without gravity) z 5
shank acceleration vector XYz 6
shank acceleration vector (without gravity) xyz 7
thigh acceleration X 8
thigh acceleration y 9
thigh acceleration Z 10
thigh acceleration (without gravity) X 11
thigh acceleration (without gravity) y 12
thigh acceleration (without gravity) z 13
thigh acceleration vector XYz 14
thigh acceleration vector (without gravity)  xyz 15
shank angular velocity X 16
shank angular velocity y 17
shank angular velocity Z 18
shank angular velocity vector XyZ 19
thigh angular velocity X 20
thigh angular velocity y 21
thigh angular velocity Z 22
thigh angular velocity vector XyZ 23

Table 2.2: Signals collected.

2.3 Preprocessing of data

Initially, a Power Spectral Density (PSD) estimation was performed so as to better under-
stand the spectral components of the signals: a Welch PSD estimation was used for this
purpose. Signals are considered Wide-Sense Stationary processes (WSS) inside windows
of 2 seconds and therefore a theoretical resolution in terms of frequency of 500mHz is
achieved. A Hamming window of a length of 50 samples was used. The overlap set for
the Welch estimation was 50%. The number of points on which representing the PSD
was chosen equal to 1024 in order to have an apparent resolution of around 100mHz. The
obtained PSD is shown in Figure 2.4.
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Figure 2.4: Power Spectral Density of the shank gyroscope signal (axis Y).

The results shown here refer to the signal of the gyroscope positioned on the shank (axis
Y), but relatively similar results were obtained for all other signals.

Considering the obtained results, an IIR low-pass filter was implemented to filter data.

The cut-off frequency chosen was equal to 7THz and the filter order equal to 10. The
response of the filter can be observed in Figure 2.5 and Figure 2.6.
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lIR filter frequency response
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Figure 2.5: Magnitude of the filter: the magnitude of the filter at the cut-off frequency of 7THz is
-3dB, while at 8Hz the magnitude is -16dB.
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Figure 2.6: Phase response of the filter.

The filter was then applied forward and backward to the signals, so as to avoid distortion
stemming from the non-linear phase of the IIR filter.
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2.4 Manual labelling of data

In order to compare and evaluate the results of the segmentation algorithms, data were
manually labelled by three users using a dedicated Graphical User Interface (GUI) devel-
oped for the purpose. The recordings were labelled following the results of several studies
related to Gait Segmentation using inertial sensors positioned on the shank or in its prox-
imity [1][15][38][39][40][41][42]. More specifically, the heel strike is believed to be located
in correspondence with a minimum in the gyroscope signal, as will be detailed later in
section 3.1.

The annotations made by the three users were compared to obtain more accurate and
reliable labelling: only the annotations selected by at least two of the three users were
considered. Moreover, differences among the annotations were always observed to be lower
then £10ms: each valid annotation was calculated as the average of the annotations of
each individual user.
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Chapter 3

Segmentation algorithms

The first algorithm implemented was a Peak Detection-based algorithm (3.1) and serves
as a baseline. The second algorithm was based on the technique of the Dynamic Time
Warping (3.2) and was implemented in such a way that more then one signal is used for
computing the segmentation (3.3). In the third algorithm, a method on top of DTW is
proposed to enhance performance, reduce the computational cost and boost the speed of
execution (3.4).

In this section data relating to the activity Walking are used as examples in order to
explain the segmentation procedures, but the same operations were executed on the sig-
nals recorded for each activity under consideration.

3.1 Peak Detection Algorithm

The Peak Detection Algorithm implemented for this work is the one proposed by Salarian
et al. [15], adapted to the data used.
The pipeline of the algorithm is reported in Figure 3.1.

] Identification of Control of the Heel Strike Heel Strike
Signal — "|  peaks ~ found Positions

Figure 3.1: Pipeline of the Peak Detection Algorithm.

The first step of the algorithm is the identification of peaks in the signal (shank angular
velocity in the medio-later direction) with height higher than 100 °/s and an inter-distance
higher than 500ms (Figure 3.2).
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Figure 3.2: Identification of peaks in the shank angular velocity (axis Y) signal. In green: the
identified peaks; these peaks correspond to the middle swing phase peaks.

The second step of the algorithm is to identify the heel strike: after each identified peak
(green points in Figure 3.2) the first local minimum in the signal within a range of 100ms
after the identified peak is believed to be the heel strike (red points in Figure 3.3).
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Figure 3.3: Identification of heel strikes in the shank angular velocity (axis Y) signal. In red: the
identified heel strikes.
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Among the identified heel strikes, only those which presented a negative value in the
shank angular velocity (axis Y) signal were accepted [40][43].

3.2 Dynamic Time Warping Algorithm

Dynamic Time Warping (DTW) [13] is a matching algorithm used for computing the
similarity between two time series. In the case of gait analysis, and in particular in the
case of stride segmentation, this algorithm is widely used to research a given time sequence
and identify the stride (hereafter called Template) inside a Target Signal (Figure 3.4).
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Figure 3.4: Example of a Target Signal (top) and its Template (bottom) for the activity Walking.
The signal considered is the shank angular velocity (axis Y). The Template is normalised between
0 and 1 and has a length of 250 samples.
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DTW is a distance-based algorithm, therefore it allows the identification of patterns with
different lengths and also matches signals non-linearly so that sub-parts of the template
are stretched or shortened for an optimal fit by warping the Template upon the Target
Signal [13].

The Template is defined as a time-dependent sequence T' = {t, .., tp;_1 } where each sam-
ple t,,, with m € {0, M — 1} consists of data from the inertial sensors.

The Target Signal is defined as a time-dependent sequence S = {sg,.., sy — 1} where
each sample s, with n € {0, N — 1} consists of data from the inertial sensors, from which
strides are segmented.

A detailed explanation of the Template generation is given in subsection 3.2.1.

The pipeline of the DTW algorithm is shown in Figure 3.5.

. Normalization
Target Signal — of data
\/ |/,
Calculatmn of Calculation of Identification of path Calculation of warping Strid
A Distance Matrix Accumulated Cost Matrix end pomts paths > rides
VA R

.

y bﬁ

Template

Figure 3.5: Pipeline of the DTW algorithm. The first step of the algorithm is the normalisation of
data; the algorithm then computes the matrix of distance D, followed by the computation of the
matrix of costs C. The algorithm then identifies the end-points of each stride using a threshold
on the Accumulated Cost Function, derived from C. Through a back-tracking procedure on the
matrix C| heel strikes are identified in the signal.

As can be seen in Figure 3.5, the first step of the algorithm is the normalisation of data:
in this work a min-maz scaling technique was used (3.1).

S = ma?(;)”f%i)(sy nel0,N -1} (3.1)

The algorithm then calculates the pairwise distance between each sample of the Template
and each sample of the Target Signal: in this work the Euclidean distance was used (3.2).

D(m,n) =\/(tm — $n)2Vme{0,...,M —1},n € {0,...,N — 1} (3.2)

The result of this operation is the matrix of distance (D) (Figure 3.6).
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Figure 3.6: Example of a matrix of distance. A darker colour in the image means a small distance
between one sample in the Target Signal and one other sample in the Template. The matrix D
shown in the figure is the one obtained by calculating the pairwise distance of each sample of
the shank angular velocity (axis Y) signal, and its Template.

Assuming that a small distance between the Template and the Target Signal is an index
of a good match in that point, it is possible to identify diagonal paths (hereafter referred
as Warping Paths) along the image that are associated to a good match between the
Template and the Target Signal. With the purpose of emphasizing those Warping Paths,
a min-maz scaling normalisation over rows and columns of D was performed: in other
words, the difference between low-level pixels and high-level pixels is highlighted, i.e the
contrast of the image is enhanced (Figure 3.7).

Template samples

0.0

0 50 100 150 200 250 300 350 400
Signal samples

Figure 3.7: Example of a matrix D normalised. The matrix D shown is obtained by taking the
pairwise distance of each sample of the shank angular velocity (axis Y) signal, and its Template
and then normalising the image. A dark colour represents a small value of distance between
a certain point of the Target Signal and another point of the Template; on the other hand, a
lighter colour indicates a larger distance.
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In order to better identify those Warping Paths, a new matrix with the same size as D,
defined as accumulated cost matrix C', was computed: C' represents not only the distance
between a Template and a Target Signal, but also the accumulated costs of warping the
Template to parts of a Target Signal [13].

The first row of C' is equal to the first row of D:
C(0,n) =D(0,n) Vne{0,...,N—1} (3.3)

The first column of C' is defined as:

C(m,0) = ZD(@',O) Vme{0,...,M—1} (3.4)

m
=0

All the other elements of C' are defined as:

C(m,n) =min{C(m—1,n—1),C(m —1,n),C(m,n — 1)} + D(m,n)

(3.5)
Vme{l,....M—1},n€{0,...,N — 1}

For the same reason as before, a min-maz scaling normalisation over rows and columns
of C' was performed.
An example of an accumulated cost matrix C' is shown in Figure 3.8.
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Figure 3.8: Example of an accumulated cost matrix C'. The matrix C shown in figure is obtained
from matrix D of the shank angular velocity (axis Y) signal. It is possible to notice the effects
that the operation has on diagonal paths, which are now highlighted.
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As a result of this operation, the top row of C' represents the cost accumulated during
the warping procedure and is thus called the Accumulated Cost Function (ACF') (Figure
3.9)(3.6).
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Figure 3.9: Example of an Accumulated Cost Function. The ACF shown is the one referred to
in the top row of matrix C' obtained for the shank angular velocity (axis Y) signal.

Troughs in the ACF identify the end points of the warping paths. The last row of C' also
identifies the stride end. The criteria used to identify the end points (penq) is the threshold
7 (Figure 3.10) (3.7).

ACF=C(M —1,n)¥ne{0,...,N -1} (3.6)

Dend = {Pend; € {0,..., N =1} | ACF[pena,] < 7}, 1 €{0,..., K} (3.7)
Where K is the number of identified strides.
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Figure 3.10: Example of an Accumulated Cost Function. The ACF shown is the one referred to
in the top row of matrix C' obtained for the shank angular velocity (axis Y) signal. In green: the
threshold 7. In red: the end points p.,4 identified.

Starting from each pe,q, it is possible to obtain the starting point of the path by back-
tracking on matrix C. A path P; is defined as follows:

P, ={p; e C|pj=min{C(m—1,n),C(m—1,n—-1),C(m,n—1)}}

with pj = (m,n),m e {0,.... M —1},ne€{0,...,N —1} for j={0,...,L—1} (3.8)
Where p; indicates each point (m,n) composing a path P, and L indicates the length of
the path P; in samples. Given its nature, the DTW algorithm allows the identification of
paths with different lengths L. As observed in 3.8, each warping path is defined between a
Pend; aNd @ Pgtart,, Where pgrqre, identifies the point p; where the stride starts. This means
that each path is forced to start in the first row of C' and end in the last row of C, as well
as to follow a diagonal path.
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Figure 3.11 shows an example of this warping procedure.
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Figure 3.11: Example of an accumulated cost matrix C. The matrix C' shown is obtained from
matrix D of the shank angular velocity (axis Y) signal. In red: the Warping Paths identified
using the DTW algorithm.

Ultimately, the point obtained at the end of the warping procedure is identified as the
starting point (psiare,) of each stride, i.e. the position of the heel strikes.

3.2.1 Creation of templates

The Templates for computing the DTW algorithm were created by calculating the mean of
360 manually labelled strides randomly selected from among those present in the recorded
signals. The labelled strides were resampled to 250 samples.

Labelling was carried out following the knowledge acquired from the literature using a
dedicated tool developed for the purpose [38][1][39][40][41][42][15].

Figure 3.12 shows the template obtained for the shank angular velocity (axis Y) signal
during the activity Walking and the variability associated to each sample.
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Figure 3.12: Example of a Template and its variance. The Template shown is the one corre-
sponding to the shank angular velocity (axis Y) signal. The red dotted line represents the limits
(maximum and minimum values) for each sample of the Template: as can be seen there is a
higher variability in the beginning of the Template, when compared to the end part. This phe-
nomenon was observed on several occasions while creating the Template. Moreover, the same
behaviour was noted for all the activities.

3.3 Multi-Dimensional Subsequence Dynamic Time
Warping Algorithm

The main limitation of the DTW algorithm is its inability to take into consideration
more than one Target Signal at a time. For this reason, a version of the algorithm which
simultaneously considers more than one Target Signal was implemented: this version of
the algorithm is called the Multi-Dimensional Subsequence Time Warping Algorithm
(msDTW).

In this work, the msDTW implemented takes a cue from the algorithm proposed by Barth
et al. [13], and extends it through a detailed explanation of the functionality of and the
motivation behind each procedure.

This version of the DTW algorithm computes a matrix of distance D for each of the
Target Signals that will be used and then computes the element-by-element sum of the D
matrices to combine them. In fact, by summing the matrices it is possible to emphasise
the difference between areas where the two matrices ‘agree’ (in both matrices there are
low/high values) and areas where they ‘disagree’ (in one matrix there are low/high values
and in the other the there are high/low values). Therefore, this procedure allows greater
selectivity when analysing the diagonals (Warping Paths) inside the matrix.

An example of the procedure is shown in Figure 3.13.
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(a) Matrix D of shank angular velocity (axis Y) signal, normalised.
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(b) Matrix D of thigh angular velocity (axis Y) signal, normalised.
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(c) Sum of the two matrices.

Figure 3.13: Example of summing of matrices D. The summing operation does not affect areas
where the two matrices “agree’ (for example on the diagonal paths and in some white areas) but
penalises areas where they do not agree (such as certain areas outside the diagonal paths and in
other areas of the matrices). As a consequence, in figure (¢) the Warping Paths are more evident
than in figure (a) and (b). When computing the matrix C' this translates to more accurate
mapping of the Warping Paths and, in turn, to a more precise Accumulated Cost Function (3.9,
3.6) which will result in more accurate identification of the heel strikes.
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The result obtained from summing the two matrices D will differ depending on the ma-
trices concerned. For example, in Figure 3.14 one observes the matrix D resulting from
the summing of matrix D of the shank gyroscope signal (axis Y) and matrix D of the
shank accelerometer signal (axis Y).

10

Template samples

200
Signal samples

Figure 3.14: Result of the summing of matrix D of the shank angular velocity (axis Y) signal
and matrix D of the shank acceleration signal (axis Y).

Figure 3.14 shows how the result of summing up two matrices D can differ depending on
the matrices concerned. In this case, the matrix D obtained by summing is noisier and
contains less accurate information about the location of the Warping Paths. Since the
algorithm is based on the correct identification of Warping Paths for the localisation of
the strides, the performance of the algorithm in terms of finding the correct position of
the heel strikes will decrease compared to the case presented in Figure 3.13 (c) .

The summing of matrices D can be extended to more than two matrices so as to improve
the performance of the msDTW algorithm yet further.

It was therefore necessary to better understand which Target Signals were more informa-
tive and which were less so. "Informative’ here shall mean that a Target Signal improves
the performance of the algorithm when considered in the sum of matrices.

In order to resolve this question, an Optimisation Algorithm was implemented (section
3.4).

3.4 Optimisation Algorithm

In order to optimise the msDTW Algorithm, some considerations were made:

1. A small distance in matrix D means that the pair of points involved in that distance
represents a good match. That particular pair of points can, however, represent either
a correct match (the point of the Template correctly corresponds to the point of the
Target Signal) or an incorrect match (the match has a small distance but in reality
the point of the Template shouldn’t correspond to the point of the Target Signal).
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2. The perfect and correct match between Template and Target Signal would be over a
diagonal path that goes from the bottom of the image to the top (from the beginning
of the Template to the end, and vice versa). Therefore, if a matrix D contains correct
information, this information will be over diagonal paths.

Given these considerations, only regions presenting small distances along diagonal paths
should be considered.

The goal of the Optimisation Algorithm is to recognise which Target Signals can ac-
tually improve the performance of the msDTW Algorithm and which ones would instead
hamper performance.

Considering the complexity of the problem, it was necessary to make two assumptions so
as to avoid having to test all possible combinations of Target Signals:

1. It is possible to divide the Target Signals (and thus the corresponding matrices D) in
two groups: informative and not informative. As already specified, a signal is consid-
ered informative if its presence in the sum of matrices D improves the performance
of the msDTW Algorithm.

This differentiation is made possible by considering all possible two-by-two combi-
nations of the matrices D, which can then be divided into two groups: combinations
where the relevant matrices D agree with each other and combinations where the
relevant matrices D disagree. As already specified, two matrices D agree on a cer-
tain region if, in that particular region, both matrices give low/high values. On the
other hand, two matrices D disagree if in one matrix, in a particular region, there
are low /high values and in the other matrix, in the same region, there are high/low
values.

The combinations belonging to the disagree group are not considered, as it would be
impossible to tell which of the two matrices D involved contains the correct infor-
mation regarding the position of the paths.

It was then necessary to investigate which of the combinations belonging to the agree
group (and thus the matrices D relating to those combinations) are informative and
which are not. It is reasonable to expect that two matrices D may ’agree’ on incorrect
information, i.e. they agree on the wrong position of the paths.

2. If a Target Signal is present in most of the combinations belonging to the agree group,
that Target Signal is informative. Therefore, all the Target Signals agreeing with the
informative one are also informative.
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Figure 3.15: As an explanation of Assumption 2, let us consider the illustrated situation. Target
Signal 2 is the one that agrees most with the other Target Signals, thus it is informative. Since
Target Signal 1, 3, 4 and 7 agree with Target Signal 2, they are also considered informative.

Target Signal 5 and Target Signal 6 agree with each other but are considered not informative,
since there is a higher probability that they are agreeing on something incorrect, i.e noise.

For the considerations made, the comparison between the matrices D was focused on the
diagonal paths contained in the matrices.

To begin, the images (the matrices) are binarised in order to isolate the diagonal paths
present in the images. This procedure is executed with the help of the manual annotations.
An example of binarisation can be seen in Figure 3.16
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Figure 3.16: Example of binarisation. Binarised matrix obtained from the shank angular velocity
(axis Y) signal.

After the binarisation of all matrices, they are compared. For a given combination, the
relevant matrices are multiplied element by element; this operation is equivalent to a
logical-AND between the matrices. As expected, if two matrices agree (now only on a di-
agonal path) the resulting matrix preserves most of its regions. Otherwise, if two matrices
disagree on most of the positions of the diagonal paths, the resulted matrix will lose most
of its regions having logical-1 values.
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(a) Binarised matrix obtained from the shank angular velocity (axis Y) signal.
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(b) Binarised matrix obtained from the thigh angular velocity (axis Y) signal.
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(c) Result of the product of the two matrices.

Figure 3.17: Example of the product of Binarised matrices.

For each combination, the sum of each element of the resulting matrix is computed; the
number obtained is referred to as the Score of the Combination.

Combinations composed by matrices that agree in most regions will give a high Score,
while combinations composed by matrices that disagree on most regions will give a low
Score as result.
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It is then possible to divide the combinations into the groups Agree and Disagree by
considering all the Scores obtained, as well as a threshold set by taking into account the
distribution and the histogram of the Scores (Figure 3.18) associated to each combination

of Target Signals.
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Figure 3.18: Distribution (a) and Histogram (b) of the Scores. On top: the distribution of the
Scores along all possible two-by-two combinations of Target Signals. Marked in red: the combi-
nations giving a Score higher than a prefixed threshold. In blue: discarded combinations. The
histogram of the Scores is shown below. The threshold is adapted for each individual trial,
though behaviour similar to that shown in the figure is observed for all recordings.
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After dividing the combinations between the two groups, only combinations belonging to
the Agree group are considered. Among those, the occurrences of each Target Signal are
computed. Following the assumptions made, the signal presenting the highest number of
occurrences in the combinations is considered Informative, as are all other signals that
agreed with it. The set of those signals is denominated Sensors Set.

In order to obtain an unbiased result, the operation thus explained is performed on 70%
of the recordings collected for a specific activity. As a final result, a Sensors Set for each
recording considered is obtained. For the same reason, only the Target Signals present
in at least a certain percentage of Sensors Sets are considered to be informative Target
Signals (Figure 3.19).
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Figure 3.19: Percentage occurrence of each Target Signal in the Sensors Sets. In red: the Target
Signals present in at least 70% of the Sensors Sets computed; these Target Signals make up the
final Sensors Set. The signal identification number’s legend can be found in Section 2.1.

The whole optimisation procedure was executed 5 times to consider the stochastic com-
ponent of the algorithm, though the final Sensors Set did not change.

The operations thus illustrated all refer to the activity Walking, but the same optimisation
procedure was executed for each activity, adapting parameters such as thresholds for each
case.
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Chapter 4

Results

4.1 Results of the Optimisation Procedure

The Optimisation algorithm was tested in the five activities: Walking, Uphill Walk-
ing, Downhill Walking, Stair Ascent Walking and Stair Descent Walking. Table 4.1
shows the results of the Optimisation.
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Signal Axis QU Q g 9
shank acceleration X X X X X X
shank acceleration y
shank acceleration z X X X X X
shank acceleration (without gravity) X X
shank acceleration (without gravity) y X
shank acceleration (without gravity) z X X X X X
shank acceleration vector XYz ‘ X X X X X
shank acceleration vector (without gravity) xyz ‘ X X X X X
thigh acceleration X X X X X X
thigh acceleration y
thigh acceleration zZ X X X X X
thigh acceleration (without gravity) X X X
thigh acceleration (without gravity) y X
thigh acceleration (without gravity) z X X X X X
thigh acceleration vector XyZ ‘ X X X
thigh acceleration vector (without gravity) — xyz ‘ X X
shank angular velocity X
shank angular velocity y X X X X X
shank angular velocity zZ
shank angular velocity vector xyz | X X X X X
thigh angular velocity X
thigh angular velocity y X X X X X
thigh angular velocity z
thigh angular velocity vector Xyz X

Table 4.1: Results of the Optimisation Procedure.
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4.2 Result of the segmentation

The three algorithms (Peak Detection (3.1), msDTW considering all the Target Signals
(3.3) and msDTW Optimised (3.4)) were ultimately used for the segmentation of the
strides. The results and methods of evaluation of this operation are shown in this section.

4.2.1 Methods for Error Measurement

Performance was evaluated using four different indicators calculated from the confusion
matrix obtained after the segmentation. The confusion matrix was constructed following
several considerations:

o Strides identified in the same position as the manual annotation were considered
True Positive (TP)

o Strides wrongly undetected by the algorithms were considered False Negative (FN)
o Strides wrongly detected by the algorithms were considered False Positive (FP)
 Strides correctly undetected by the algorithms were considered True Negative

The four indicators used to evaluate the performance are:

1. Accuracy. This indicates the correctness of the segmentation; the percentage of cor-
rectly detected strides considering the whole matrix.

TP+TN
TP+TN+ FP+FN

Accuracy = (4.1)

2. Recall. This indicates how well the strides are identified, considering how many of
them where correctly detected or undetected.

TP
i 4.2
Recall TP FN (4.2)

3. Precision. This indicates how well the algorithms avoid detecting wrong strides; the
higher the number of wrongly detected strides, the lower the Precision.

FP
Precision =1 — W (43)

4. F1-Score. This is the harmonic mean of Precision and Recall and takes into account
missing strides and wrongly detected strides equally.
2.TP

Fi- _ 44
Seore = S P T FP T FN (4.4)

In this work, the parameter Precision is considered the most important. The desired result
of the optimisation procedure is to enhance the performance of the msDTW algorithm,
so as to improve the detection of heel strikes in terms of reducing the number of Fulse
Positives. This factor becomes important when the ultimate intention of the segmentation
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procedure is to automatically generate a dataset that will be used for future works focused
on Artificial Intelligence models. The remaining indicators were used for a more complete
comparison.

4.2.2 Evaluation of performance

Considering the activity Walking, the following performances were obtained for the three
algorithms:

performance for the activity Walking

Algorithm Accuracy  Recall — Precision F1-Score

PeakDetection 92.02%  99.94%  92.08%  95.84%
msDTW (all TS) 95.02% 99.61% 95.38% 97.44%
msDTW Optimised 95.87% 99.77% 96.05% 97.87%

Table 4.2: Performances obtained using the three algorithms to annotate the data related to the
activity Walking.

Considering the activity Uphill Walking, the following performances were obtained for the
three algorithms:

performance for the activity Uphill Walking

Algorithm Accuracy Recall Precision F1-Score

PeakDetection 96.11%  99.97%  96.14%  98.01%
msDTW (all T5) 96.86% 100% 96.86% 98.40%
msDTW Optimised 96.98% 100% 96.97% 98.46%

Table 4.3: Performances obtained using the three algorithms to annotate the data related to the
activity Uphill Walking.

Considering the activity Downhill Walking, the following performances were obtained for
the three algorithms:

performance for the activity Downhill Walking

Algorithm Accuracy Recall Precision F1-Score

PeakDetection 96.08% 100% 96.08% 98.00%
msDTW (all TS) 97.66%  99.85%  97.81% 98.82%
msDTW Optimised 98.26% 99.78% 98.44% 99.11%

Table 4.4: Performances obtained using the three algorithms to annotate the data related to the
activity Downhill Walking.
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Considering the activity Stair Ascent Walking, the following performances were obtained
for the three algorithms:

performance for the activity Stair Ascent Walking

Algorithm Accuracy  Recall  Precision F1-Score

PeakDetection 82.22%  95.92%  85.20%  90.24%
msDTW (all 7S) 96.21% 97.87%  98.27% 98.07%
msDTW Optimised 9548%  96.32% 99.05%  97.67%

Table 4.5: Performances obtained using the three algorithms to annotate the data related to the
activity Stair Ascent Walking.

Considering the activity Stair Descent Walking, the following performances were obtained
for the three algorithms:

performance for the activity Stair Descent Walking

Algorithm Accuracy  Recall  Precision F1-Score

PeakDetection 85.890% 98.67%  86.89% 92.42%
msDTW (all TS)  91.78%  92.94%  98.65%  95.71%
msDTW Optimised 91.13% 92.12%  98.82% 95.35%

Table 4.6: Performances obtained using the three algorithms to annotate the data related to the
activity Stair Descent Walking.

Another important parameter that was taken into consideration for comparing the algo-
rithms is the time of execution. The Peak Detection Algorithm has not been considered
in this comparison since its architecture is not comparable with either of the two versions
of the msDTW Algorithm.

The time of execution of the segmentation was considered to be as important as the Pre-
cision. It was possible to calculate decreases in percentage of the time of execution of
the msDTW algorithm when comparing the version that takes into account all available
Target Signals and the Optimised version. Table 4.7 shows the results of this evaluation.

Decreases in % of time of execution for msDTW and msDTW Optimised

Activity Decreases [%)]
Walking 37.01%
Uphill Walking 36.72%
Downhill Walking 37.97%
Stair Ascent Walking 35.76%
Stair Descent Walking 36.02%

Table 4.7: Decreases in the percentage of time of executing the msDTW algorithm, comparing
the two versions proposed. The decreases consider the reduction of time in percentage terms
between the original version of the msDTW and the msDTW Optimised.
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Discussion

5.1 Optimisation Procedure

As displayed in Table 4.1, the Optimisation Procedure leads to some interesting obser-
vations. Some signals, the shank acceleration (axis Y) for example, are never selected as
informative Target Signals, while signals such as the shank angular velocity (axis Y) are
always selected in all activities. Moreover, certain signals are selected in some activities
but not in others.

These results are perfectly aligned with expectations. From a biomechanical point of view,
most motion of the articulations while performing a gait activity occurs in some particular
planes of the space; several studies suggest that the greatest part of the motion is placed
in the sagittal and coronal planes, while the range of motion in the transverse plane is far
less significant.

Analysing the data and the results obtained from the Optimisation Procedure, one can
confirm that signals describing the movement of the IMU sensor in certain directions, such
as the mediolateral displacements, are not as relevant as displacements along the verti-
cal or anterior-posterior direction. The same behaviour was observed for the rotations.
Several studies note that the angular displacements of the joints of the lower limb are
principally located in the sagittal plane. This is confirmed by the results as the angular
velocity, and thus the angular rotation, in the transverse plane (around axis X) and in
the coronal plane (around axis Z) are never selected as informative Target Signal, while,
on the other hand, the angular velocity around the axis Y (i.e. in the sagittal plane) is
always selected, both in the shank and in the thigh data.

Moreover, one observes that removing the gravity component from the acceleration sig-
nals (axis X) in both the shank and the thigh IMU implies the non-selection of those
signals for most activities, while the same signals with the gravity component included
are always selected. On the other hand, the acceleration signals (axis Z) in the shank and
in the thigh IMU are always selected, either with and without the gravity component, for
all activities.

5.2 Performance of the algorithms

Considering that the purpose of this work was to increase the performance of the msDTW
Algorithm in terms of reducing the number of Fulse Positives and decreasing the time of
computation, results shown in Table 4.2, Table 4.3, Table 4.4, Table 4.5, Table 4.6, and
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Table 4.7 confirm that this goal has been achieved.

More specifically, when comparing the msDTW performances with those of msDTW Op-
timised, for all the activities one observes increases in the indicator Precision ranging
from +0.11% up to +0.78%.

Moreover, for the activity Walking, Uphill Walking, and Downhill Walking, the msDTW
Optimised gave better performances both in terms of Accuracy and F1-Score. Considering
the Accuracy, increases between +0.85% and +1.49% were observed, while, for the FI-
Score, increases ranging from +0.06% up to +0.43% were obtained. Still considering these
three activities, the parameter Recall showed different results depending on the activity,
but in each case the performance remained higher than 99.61%.

A slightly different behaviour was noted for the activities Stair Ascent Walking and Stair
Descent Walking. In these two cases, marginal decreases in Accuracy can be observed,
always in the face of an increase in Precision. This response from the algorithm can be
explained from a biomechanical point of view. In fact, when analysing the variance of
the manually labelled strides in the activity related to the Stair Ascent/Descent, a much
higher stride variability was noted when compared to the activities related to Walking
(both on a flat surface and on a slope). These results led us to the conclusion that the
biomechanical movements taking place during the climbing/descending of stairs differ
greatly according to the person performing the activity.

On the other hand, as previously mentioned, an increase in Precision can be appreci-
ated. This led us to conclude that the msDTW Optimised is less subject to the detection
of False Positive strides and is thus better from this perspective compared to the non-
optimised version. In order to improve the Accuracy in these two activities, more than one
Template should be created, to allow the algorithm to better adapt to the different move-
ments that a person carries out while approaching a Stair activity. Considering the time
of execution of the msDTW algorithms, it was noted that the Optimised version showed
good improvements in terms of speed and reduction of unnecessary computational cost.
This is the consequence of the non-computation of the matrices D of those signals not
considered in the Sensor Set of a specific activity. This enhancement can be seen in Table
4.7, quantified as a decrease in the time of execution of the algorithm between 35.76%
and 37.97%.

Furthermore, when comparing the results obtained with the msDTW Optimised and
the Peak Detection algorithm, an increase in Accuracy, Precision, and F1-Score was ob-
served for all activities. More specifically, with regards to Accuracy, increases ranging
from +0.87% up to +13.26% can be noted. As expected, considering the high variability
in the activities involving stairs, the Accuracy is subjected to a substantial improvement.
In fact, since the Peak Detection algorithm is based on simple rules that consider only
the amplitude of peaks in the shank angular velocity (axis Y), the errors made by this
algorithm are much higher in the case of Stairs Activities than in the case of Walking
Activities (both on a flat surface and on a slope), where a much higher regularity can
be observed. On the other hand, the nature of the msDTW algorithm allows highly ef-
fective differentiation of correct strides from the noisy parts of the recordings. In terms
of F1-Score the same results were obtained; increases in this parameter were quantified
between a minimum of +0,45%, up to a maximum of +7.43%. Considering the Precision,
for the same reasons already mentioned, an enhancement of +0.83% up to +13.85% was
observed. This confirms the capability of the msDTW Optimised algorithm to be even
more selective in terms of the detection of correct strides, leading to more reliable seg-
mentation overall. In particular, the greatest improvement in Precision is observed for the
activity Stair Ascent Walking, where the best performance is also obtained.
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Chapter 6

Conclusions

The ability to automatically and robustly segment individual strides from gait sequences
derived from wearable inertial sensors while performing different gait activities is crucial
for the estimation of gait parameters and for the creation of a reliable gait dataset, without
requiring the manual segmentation of recordings.

In this work, an Optimisation Procedure for the msDTW Algorithm is presented. The
proposed algorithm aims to outperform the other segmentation algorithms in terms of
precision and/or computational speed. Firstly, a Peak Detection method is implemented
as a baseline and allows comparison of the obtained performance. Secondly, the msDTW
Algorithm proposed in [13] is extended and extensively explained in terms of functionality
and procedures. Finally, the proposed msDTW Optimised method built upon msDTW
is presented. Performance is evaluated in terms of Accuracy, Recall and F1-Score with
particular attention given to the Precision and the computational cost. The obtained
results lead us to affirm that the proposed method of msDTW Optimised is a robust and
reliable solution for stride segmentation, capable of identifying the majority of the strides
recorded during a gait activity with a higher precision compared to msDTW and Peak
Detection, and with a better performance-computational cost ratio.
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