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Abstract

Parkinson disease is a neurodegenerative disorder characterized by a slow but pro-
gressive evolution. Even if it mainly involves the motor system, issues with the
phonatory system have been noticed. The patient loses full control of the speech
apparatus; are noticed uncontrolled repetitions, incorrect articulation of words and
a weakening of the voice speech.

In recent years, non-invasive techniques based on speech signal processing have
been developed for the purpose of early diagnosis and to monitor the effects of
pharmacological and neuro stimulation therapies.

This thesis work can be considered a primary step of a study focused on improving
the models under analysis by increasing the database of the monitored subjects and
identifying repeatable patterns using a weighted classification algorithm based on
the estimate error of the feature extraction algorithm.

To acquire the vocal signals, wearable devices have been used that are able to
monitor the subjects not impairing their daily activities. The analyzed signals have
been recorded during the repetition of 3 vowels produced by 57 healthy subjects
(HE), 67 patients with vocal tract diseases (PA) and 45 parkinsonian patients (PD).
From this dataset very unbalanced in terms of both age and gender, a reduced bal-
anced dataset has been extracted, which includes 10 subjects from each class.

The aim of the first part of this work has been the processing of the vocal sig-
nal to extract parameters that allow to evaluate the stability in frequency (jitter)
and amplitude (shimmer) of the sustained vowels and other parameters related to
the signal quality, such as harmonic to noise ratio and cepstral peak prominence
smoothed (CPPS).

To increase the balanced dataset, artificial vowels with known sequences of pe-
riods and amplitudes have been generated through a Monte Carlo simulation with
the Metropolis-Hastings algorithm.
The parameters extracted from the artificial signals have been compared to those
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extracted from the original signals in order to estimate the error of the feature
extraction algorithm.

The second part of the work has been focused on the evaluation of reproducibility
and repeatability of the obtained measurements. The synthetic vowels previously
obtained have been reproduced using a “Head and torso simulator” in an anechoic
chamber. The vocal signals produced have been acquired using 3 different mea-
surement chains:
- a microphone in air placed in 4 different positions;
- a reference phono-meter;
- a microphone embedded in an iPhone 8.

The same parameters have been extracted to evaluate the errors of the feature
extraction algorithm by comparing the sequences obtained from these recordings
to those extracted from the artificial signals.

In the third part of the work, the extracted features have been used to train a
weighted logistic regression model to discriminate HE and PA subjects from PD
subjects. The combination of features considered by the classifier were the one that
had the lowest average relative error. The weights of the features of the algorithm
are the reciprocal of the errors obtained in the previous steps.

The classification method, considering the original vowels, provided the proba-
bility of belonging to HE class with an accuracy of 84.2% and to PA class with an
accuracy of 90.0%.
This method, using the weights obtained in the previous steps, provided the prob-
ability to belong to HE class with an accuracy 93.3% and to PA class with an
accuracy of 93.3%.
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Chapter 1

Parkison Disease

1.1 Characteristics of the Parkinson Disease
Parkinson’s disease (PD) is a progressive, multi-systemic neurodegenerative disor-
der with motor and non-motor symptoms. The cardinal symptoms of the disease
are bradykinesia (slowness and fatigue of movements), muscle stiffness and tremor.
While bradykinesia and rigidity are invariably present (even if absent at the onset,
they emerge in the evolution of the disease), tremor occurs only in a part of the pa-
tients [6]. These disorders can be associated with abnormalities of walking, posture
and balance, which can appear relatively early in the progression of the disease.
Its prevalence in industrialized countries is about 0.3% (3 patients out of 1000) in
the general population and increases up to 1% in people older than 60 and up to
4% of the population older than 80 [7].

1.2 Causes of the Disease
In Parkinson’s disease, synuclein, that is a brain protein that helps nerve cells com-
municate, forms clusters called Lewy bodies that consists of misfolded synuclein.
Synuclein can accumulate in different regions of the brain, in particular in the sub-
stantia nigra located deep inside the brain as shown in Figure 1.1 and interfere with
brain function.
This leads to a degeneration of neurons in this area of the brain that causes the

drop of the dopamine production, with a gradual progression and a prolonged course
of the reduction in dopamine levels as shown in Figure 1.2. The causes are not yet
known. Multiple elements appear to contribute to its development. These factors
are mainly genetics, in fact some known mutations are associated with Parkinson’s
disease [8].
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1 – Parkison Disease

Figure 1.1: Substantia nigra differences between Parkinson’s and non Parkinson’s [1].

Figure 1.2: Different levels of dopamine[2].

About 20% of patients have a positive family history for the disease. It is es-
timated that family members of people with Parkinson’s disease have a slightly
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higher risk of developing the disease than the general population.
Among the genes identified the most important are: alpha-synuclein (PARK 1 /
PARK 4), parkin (PARK-2), PINK1 (PARK-6), DJ-1 (PARK-7), LRRK2 (PARK-
8) and GBA glucocerebrosidase.
There are also other factors, such as toxic factors or occupational exposure: the risk
of illness acquires with toxins such as some pesticides or hydrocarbon-solvents and
in some professions, the exposition of workers to heavy metals (iron, zinc, copper)
[9].

Smoking appears to be a protective factor because smoke probably reduces the
onset of Parkinson’s disease.

Although movement disorders are the most obvious element of Parkinson’s dis-
ease, the disorder can also impair other functions of the central nervous system
such as cognitive processes, behavior, mood, night rest and the central nervous sys-
tem. The alteration of one of these functions, or the parallel involvement of several
systems can lead to the onset of so-called non-motor symptoms [9].

1.3 Diagnosis, disease assessment and therapies
To evaluate the severity of Parkinson’s symptoms, although there are no specific
diagnostic tests, some scales have been developed according to the Parkinson’s
Disease Society Brain Bank Diagnostic Criteria.
The most common are the Hoehn and Yahr scale and the UPDRS scale.

The Hoehn and Yahr Scale

The Hoehn and Yahr Scale measures the progression of Parkinson symtomps and
the level of disability.
Originally published in 1967 in the journal Neurology by Melvin Yahr and Margaret
Hoehn, it included stages 0 to 5 [10].

• Stage 0 - No signs of disease.

• Stage 1 - Symptoms on one side only (unilateral).

• Stage 1.5 - Symptoms unilateral and also involving the neck and spine.

• Stage 2 - Symptoms on both sides but no impairment of balance.

• Stage 2.5 - Mild symptoms on both sides.

3
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• Stage 3 - Balance impairment, mild to moderate disease, physically indepen-
dent.

• Stage 4 - Severe disability, but still able to walk or stand unassisted.

• Stage 5 - Needing a wheelchair or bedridden unless assisted.

The UPDRS Scale

The UPDRS scale (Unified Parkinson’s disease rating scale), developed in 1987, is
a very detailed system for evaluating the severity of Parkinson’s symptoms. It is
mostly by doctors to track the progression of patients’ symptoms during the as-
sumption of a particular medicine. UPDRS is characterized by four parts [11].

Part I : Cognitive skills, behavior and mood.

Part II: Daily activities.

Part III: Motor activity.

Part IV: Motor complications of therapy.

Thanks to this scale, is possible to obtain a numerical evaluation useful to compare
the patient’s results over time and follow the evolution of the disease.
A score equal to 0 represents complete disability and a vegetative level, while higher
scores indicate a higher level of patient’s ability and independence in performing
daily tasks without difficulty.
Figure 1.3 shows the score sheet of the UPDRS scale.
Particular attention is payed for section 1 (Part III) that can be used as a "global"
measure of communication assessment.
It includes diction, volume, intelligibility and expression, parameters which are
used as index of the severity of the vocal system that establish the degree of disease
progression.
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Figure 1.3: Patients evaluation: score sheet - UPDRS scale [3].
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1.4 The affection of the vocal system

In Parkinson’s disease, apart from motor symptoms there are also non motor symp-
toms that are not often considered.
However, speaking difficulties arise in about half of the affected patients while the
other half of the patients, even after many years from the onset of the disease, may
not experience such problem. Changes in the ability to communicate can result in
the tendency to self social isolation.
Speaking is a complex motor task which implies the recruitment of some muscles
and in particular those that control breathing, phonation (emission of the voice),
articulation (pronunciation), prosody (rhythm, intonation and pace of speech).
In Parkinson’s disease the alterations of the voice are due to a reduced coordination
of these muscles.

The symptoms that can occur as a consequence of these alterations are:

• Weakening of the volume of the voice
It is the first change to be noticed. Over time, this reduction can come to the point
of inaudibility of the voice.

• Dulling of the voice
The voice is strong at the beginning of a sentence, but fades at the and of any
sentence vocalization.

• Monotone voice
The voice remains at the same level, does not vary and lacks expression.

• Voice quality change
The sound of the voice is trembling, faint or more acute.

• Involuntary hesitation before speaking
The difficulty to start talking and keep the voice steady from beginning to end of
a conversation or a phrase.

• Indistinct articulation (pronunciation)
The pronunciation in particular the end of the words is omitted; the sounds of the
final syllables are unclear

• Fast accelerated pace
The syllables and the words flow without pauses.
There could be also a progressive acceleration of words towards the end of a sen-
tence.
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• Uncontrolled repetitions
Words, phrases and sentences are repeated involuntarily and out of control [12].
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Chapter 2

State of the Art

2.1 Introduction
The voice in normal speech production is a non stationary signal.
The characteristics of the signal vary quickly over time and change accordingly to
the particular sound emitted.
Such signal, in speech and reading, can be considered, with good approximation,
stationary during a window of about 10-30 ms.
It is characterized by a fundamental period T0, a fundamental frequency that is the
inverse of the period F0 = 1

T0
and by its harmonics that have frequencies that are

integer multiples of the fundamental frequency. The value of F0 oscillate around
an average value, which is a characteristic of each individual and varies according
to age, gender and type of vocal activity as shown in Table 2.1:

Frequency Type
105 ÷ 160 Hz Men
255 ÷ 440 Hz Children
175 ÷ 245 Hz Women [13]

Table 2.1: Frequency range depending on gender and age

The vocal apparatus can be considered as an exciter-resonator system. The vocal
folds represent the exciter and the vocal tract is the resonator. The modification
of the shape of the vocal tract is involved in the articulation of phonemes in speech
production.
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However, the position of the fundamental frequency F0 remains unchanged, only
the amplitudes of the various spectral components are modified. The audible spec-
trum can have components up to 20 kHz, but most of the energy is concentrated
below 4 kHz in speech production.
The scientific and technological progress of the last decades has contributed to an
effective revolution in the study and analysis of the vocal signal. Modern acous-
tic analysis is in fact based on the use of computers with dedicated hardware and
software.

2.1.1 Acoustic parameters
In the past years various researches focused on the correlation between objective
parameters extracted from the vocal signals and several pathologies that can influ-
ence the voice production.
Considering the production of continuous vowels, the analysis is focused on the
characteristics of signals in the time and frequency domain. Particular attention
can be payed to the relative perturbations of such measurement and to the rela-
tionship between harmonic and non-harmonic components [14].
In this work, the acoustic parameters used to describe signals perturbations to eval-
uate the voice quality are:
•Local Jitter (%): Relative measure of the variation of the fundamental pseudo-
period from cycle to cycle.

Jitt = 100
1

N−1

N−1∑︁
i=1

|T (i)
0 − T

(i+1)
0 |

1
N

N∑︁
i=1

T
(i)
0

(2.1)

where T(i)
0 , i = 1,2...N are the estimated pseudo-periods, N is the number of esti-

mated pseudo-periods.

• Absolute jitter (µs): absolute measure of the variation of the fundamental pseudo-
period cycle to cycle.

Jita = 1
N − 1

N−1∑︂
i=1

|T (i)
0 − T

(i+1)
0 | (2.2)

where T(i)
0 , i = 1,2...N are the estimated pseudo-periods, N is the number of esti-

mated pseudo-periods.

•RAP (%): relative measure of the change in pitch from period to period with
an average over 3 successive periods.
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RAP = 100
1

N−2

N−1∑︁
i=2

|T
(i−1)
0 −T

(i)
0 −T

(i+1)
0

3 − T
(i)
0 |

1
N

N∑︁
i=1

T
(i)
0

(2.3)

where T(i)
0 , i = 1,2...N are the estimated pseudo-periods, N is the number of esti-

mated pseudo-periods.

• PPQ (%): relative measure of the pitch variation from period to period with
an average over 5 successive periods.

PPQ = 100
1

N−4

N−4∑︁
i=1

|1
5

4∑︁
r=o

T
(i+r)
0 − T

(i+2)
0 |

1
N

N∑︁
i=1

T
(i)
0

(2.4)

where T(i)
0 , i = 1,2...N are the estimated pseudo-periods, N is the number of esti-

mated pseudo-periods.

• vF0 (%): represents the relative standard deviation of the frequency basic.

vF0(%) = 100

√︄
1
N

N∑︁
i=1

(F (i)
0 − F )2

F
(2.5)

where F(i)
0 = 1

T
(i)
0

are the values of the fundamental frequencies of each estimated

pseudo-period, F is the mean value of F(i)
0 , T(i)

0 , i = 1,2...N are the estimated
pseudo-periods, N is the number of estimated pseudo-periods.

• Shimmer percentage (%): relative measure of the amplitude variation peak-
to-peak period to period.

Shim = 100
1

N−1

N−1∑︁
i=1

|A(i)
0 − A

(i+1)
0 |

1
N

N∑︁
i=1

A
(i)
0

(2.6)

where A(i), i = 1,2...N are the peak-to-peak amplitudes, N is the number of esti-
mated pulses.
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• Absolute shimmer (dB): measurement of the variation of the peak amplitude
- peak from period to period. It is calculated as:

ShidB = 1
N − 1

N−1∑︂
i=1

|20log(A(i)
0 /A

(i+1)
0 )| (2.7)

where A(i), i = 1,2...N are the peak-to-peak amplitudes, N is the number of es-
timated pulses.

• APQ (%): measure of the variation of the peak-to-peak amplitude from pe-
riod to period with an average over 11 successive periods. It is calculated as:

APQ = 100
1

N−10

N−10∑︁
i=1

| 1
11

10∑︁
r=o

A
(i+r)
0 − A

(i+5)
0 |

1
N

N∑︁
i=1

A
(i)
0

(2.8)

where A(i), i = 1,2...N are the peak-to-peak amplitudes, N is the number of es-
timated pulses.
• vAm (%): relative standard deviation of the peak-to-peak amplitude. It is cal-
culated as:

vAm(%) = 100

√︄
1
N

N∑︁
i=1

(A(i)
0 − A)2

A
(2.9)

where A(i)
0 , i = 1,2...N are the peak-to-peak amplitudes, A is the mean value of

A(i)
0 , N is the number of estimated pulses.

Another extracted parameter, is the Harmonics-to-Noise Ratio. This parameter
is calculated as the ratio between the harmonic spectral energy components and
the unharmonic spectral energy components, evaluating the ratio between the har-
monic and non harmonic content of the speech signal.
The formula for calculating the HNR, based on autocorrelation is [15]:

HNR = 10log
ACv(τ)

ACv(τ) − ACv(0) (2.10)

where ACv(0) is the value of the autocorrelation function considering a delay equal
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to 0 (the power of the signal) while ACv(τ) is the value of the autocorrelation func-
tion when the delay is equal to τ , which is the estimated pseudo-period [15].

Under this assumption, the HNR assumes a similar physical meaning of the Signal-
to-Noise Ratio (SNR). Higher HNR values indicate a periodic component in the sig-
nal greater than the noise component while lower values of HNR indicate a higher
noise component than the periodic component. Ideally periodic signal present an
infinite HNR.

Another parameter based on autocorrelation is the fundamental frequency F0,
which is defined as the inverse of the pseudo-period T0. This parameter is par-
ticularly important because is used to calculate stability parameters as seen in
equations 2.1 - 2.9.

The signal frames are labeled according to their magnitude and harmonic con-
tent. In particular, three kinds of frame have been labeled:
•silent frames;
•unvoiced frames (containing unvoiced sounds);
•voiced frames (containing vocalized sounds).

The frame labeling has been performed using the following algorithm:

1. The signal is sliced into frames:

• if RMSframe <
RMSsignal

2 where RMSsignal is the root mean square of the entire
signal, then the interval considered is a frame of silence;

• otherwise go to the next step.

2. The HNR and the fundamental frequency F0 is evaluated:

• if [F0i−F0i−1
F0i−1

] < 0.5 and [HNRi > 0 dB] is false, then the frame is "Unvoiced";

• otherwise the frame is "Voiced".

According to this algorithm, is possible to calculate another parameter of inter-
est which is the ratio between vocalized sounds and unvoiced sounds vocalized:

• V/uV = 100 (frames)v

(frames)uv
(%).

The validity of these parameters is limited by the difficulty in determining the

12
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fundamental frequency, in fact small errors can become relevant in the measure-
ment of perturbations. Besides, it also changes with gender and age, thought to
depend on factors such as the state of mind of the person, voice education, voice
professional use and lifestyle. These measurements also, in fact are valid only on
vocal material consisting of sustained vowels.

2.1.2 CPP and CPPS
In recent years, acoustic parameters that are not based on the estimation of the
fundamental frequency have been developed. Such evaluations can also be adapted
to free speech [16].

Two important parameters are the Cepstral Peak Prominence (CPP) and the Cep-
stral Peak Prominence Smoothed (CPPS).

The concept of cepstrum was introduced in 1963 by Bogert et al.
Is defined as “the logarithmic power spectrum of the logarithmic spectrum of the
speech signal” [17]. For this reason, the terms “spectrum” and “frequency” can be
replaced by the corresponding words “cepstrum” and “quefrency”.

Cepstrum is defined as :

C(τ) = |F{log(|F{f(t)}|2)}|2 (2.11)

where F is the Fourier transform, |F{f(t)}|2 is the power spectrum and f(t) is the
signal as a function of time.

The variable τ is the "quefrency" mentioned before and has the dimensions of time.

CPP is an acoustic measure of the degree of harmony within a voice sample.
The more periodic the voice signal, the greater is harmonicity and the greater is
the value of the CPP [18].

Unlike other acoustic measures that rely on pitch tracking mechanisms to mea-
sure the degree of perturbation within a voice signal, CPP is based on spectral
transformation of fixed length frames [18].

The CPP is the measure in dB of the amplitude prominence of the first cepstral
peak (also called as first “rahmonic”) measured as the distance from the regression
line of the cepstrum floor.
Harmonic signals show a prominent cepstral peak at the index corresponding to the
fundamental period, whereas dysphonic voice signals with disturbed periodicity are

13
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associated with a reduced prominence of cepstral peak.

To correctly estimate the cepstral peak prominence it is necessary to search it
in a quefrency range from 3 ms to 16 ms, which corresponds to the frequency range
from 60 Hz to 300 Hz because in this range is concentrated the F0 of the human
voice.

To calculate CPPS, measured in dB, two smoothing steps are needed [19].

In the first phase the cepstra are time averaged: the current cepstrum is averaged
with a certain number of cepstra preceding and following the considered cepstrum.

In second phase the cepstra are averaged along the quefrency.

In this way a CPPS is defined for each single frame and the output of the al-
gorithm is composed of different values of CPPS.
From the evaluated CPPS, vectors statistical distribution can be extracted to eval-
uate statistical values such as mean, median, mode, standard deviation, range, 5°
percentile, 95° percentile, skewness and kurtosis.

14



Chapter 3

Materials and Methods

3.1 Signal acquisition

3.1.1 Data collection
The data provided have been collected at "Città della Salute" in Turin. The par-
ticipants who took part in the research were:

• 57 healthy subjects (HE).

• 67 patients with pathological non-Parkinson’s disease (PA).

• 45 patients with Parkinson’s disease (PD).

Both HE subjects and PA subjects underwent an endoscopic analysis to certify
the subjects’ vocal apparatus health status. The Figure 3.1 shows the dataset pro-
vided.
The dataset is unbalanced both in terms of gender and age (Figure 3.2) and (Figure
3.3) and in terms of the number of the subjects (Figure 3.4).

Figure 3.1: Unbalanced Dataset considering gender and average age of patients.
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Figure 3.2: Unbalanced Dataset considering gender and average age of patients.

Figure 3.3: Unbalanced Dataset considering averag age of patients.

To overcome the problem with the unbalanced set of data collected, a balanced
set of data has been obtained considering 5 males and 5 females of healthy, patho-
logical and parkinsonian patients.
As shown in Figure 3.5, the provided dataset is balanced both in terms of gender
and age (Figure 3.6) and (Figure 3.7) and in terms of number of subjects (Figure
3.8).
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Figure 3.4: Unbalanced Dataset considering number of patients.

Figure 3.5: Balanced Dataset considering gender and average age of patients

Figure 3.6: Balanced Dataset considering gender and average age of patients

17
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Figure 3.7: Balanced Dataset considering average age of patients.

Figure 3.8: Balanced Dataset considering number of patients.

18
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3.1.2 Data acquisition chain
For the voice signals acquisition of the subjects monitored in this study, two kind
of microphones have been used:
• a cheek-type microphone in air (MIPRO MU55-HR) placed at a distance of about
2.5 cm from the subject’s lips; an example is shown in Figure 3.9.

Figure 3.9: Microphone in Air

• a piezoelectric contact microphone (HX505-1-1), which is a collar whose sen-
sitive element must be positioned near the jugular notch to pick up the vibrations
of the vocal cords; an example is shown in Figure 3.10.

Figure 3.10: Contact Microphone

Both microphones have been connected to a portable recorder (EDIROL ROLAND
R09-HR) using its stereo input.
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The portable recorder is shown in Figure 3.9 and in Figure 3.10.

All recordings have been made with a sampling rate Fs = 44100 Sa/s and bit
resolution of 16-bit.

The contact microphone is insensitive to the background noises so is suitable for
noisy environments and for long term evaluations. However such microphone is in-
sensitive to unvoiced phonemes such as “/s/” and “/f/” so the use of a microphone
in air is needed to have a complete evaluation of voice signals.

Figure 3.11 shows a comparison between the same signal acquired using a mi-
crophone in air and a conctact microphone from a Pathological non Parkinsonian
patient.

Figure 3.11: Signal recorded with both Microphone in air and Contact Microphone

In this thesis work, only recordings made by microphone in the air, have been con-
sidered.
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3.1.3 Acquisition protocol and Pre-processing
The acquisitions of the vocal signals, required a well-defined protocol. This proto-
col was structured in 3 distinct parts:

• production of the ’/a/’ phoneme maintained for as long as possible (3 ÷ 10
seconds), at a confortable intensity.
In this case, the subjects involved were asked to repeat the voice emission three
times.

• reading of a phonetically balanced text, reported in AppendixA, for about 1
minute;

• eloquence on a free topic lasting about 1 minute.

The recorded samples have been processed using the Audacity software:

• sustained vowel ’/a/’: for each recording, the three vowels were separated into
individual files called A1, A2, A3, eliminating the initial and final part of the record-
ing to avoid signal instability;

• reading: the recording of the reading was cut from the beginning of the piece
’Bulka’ to the word ’sanguisuga’, in order to reduce computational times and to
balance the analysis time with that of free speech.

• free speech: the part relating to free speech has been cut from the recording
from the beginning of speech up to a maximum of 1 minute to comply with the
analysis duration of the reading file and reduce computational times.

In this thesis work, the attention has been focused on the analysis of the repe-
tition of the sustained vowel recorded by the microphone in air.

3.2 Extracted parameters
The recorded samples have been processed in order to extract significant acoustic
parameters of the three groups.
These parameters, for clarity sake, can be divided in different groups and referenced
with a number used in the following chapters.

Time-stability parameters:

21



3 – Materials and Methods

Parameter Reference
Jita 1
Jitt 2

RAP 3
PPQ 4
vF0 5

Table 3.1: Frequency parameters

Amplitude-stability parameters:

Parameter Reference
Shim 6
ShdB 7
APQ 8
VAm 9

Table 3.2: Amplitude parameters

HNR temporal evolutions are quantized considering the harmonic frames to get
statistical distributions and calculate some relevant parameters. Table 3.3 shows
the extracted parameters.

Parameter (HNR) Reference
Mean 10

Median 11
Mode 12

Standard Deviation 13
Range 14

5° Percentile 15
95° Percentile 16

Skewness 17
Kurtosis 18

Table 3.3: HNR parameters
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F0 temporal evolutions are quantized considering the harmonic frames to get sta-
tistical distributions and calculate some relevant parameters. Table 3.4 shows the
extracted parameters.

Parameter (F0) Reference
Mean 19

Median 20
Mode 21

Standard Deviation 22
Range 23

5° Percentile 24
95° Percentile 25

Skewness 26
Kurtosis 27

Table 3.4: F0 parameters

RMS temporal evolutions are quantized considering the harmonic frames to get
statistical distributions and calculate some relevant parameters. Table 3.5 shows
the extracted parameters.

Parameter(RMS) Reference
Mean 28

Median 29
Mode 30

Standard Deviation 31
Range 32

5° Percentile 33
95° Percentile 34

Skewness 35
Kurtosis 36

Table 3.5: RMS parameters
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CPPS temporal evolutions are quantized considering the harmonic frames to get
statistical distributions and calculate some relevant parameters. Table 3.6 shows
the extracted parameters.

Parameter(CPPS) Reference
Mean 37

Median 38
mode 39

Standard Deviation 40
Range 41

5° Percentile 42
95° Percentile 43

Skewness 44
Kurtosis 45

Table 3.6: CPPS parameters

The last parameter, shown in Table 3.7 is:

Parameter Reference
V/uV 46

Table 3.7: Voiced/Unvoiced parameter

In Figure 3.12 an example of Jitter extracted from PD and HE subjects is shown.
The results obtained show how Parkinsonian subjects have higher Jitter than
healthy subjects.
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Figure 3.12: Jitter differences between PD and HE patients

In Figure 3.12 an example of Shimmer extracted from PD and HE subjects is
shown. The results obtained show how Parkinsonian subjects have higher Shimmer
than healthy subjects.

Figure 3.13: Shimmer differences between PD and HE patients
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3.3 Generation of the artificial vowels
3.3.1 Introduction
This section describes the method used to generate artificial vowels using a Monte
Carlo algorithm in order to increase the balanced dataset.

3.3.2 The MonteCarlo Method
The Monte Carlo (MC) method is an algorithm based on the generation of random
variables starting from assigned probability distributions [20].
In this work the MC algorithm has been used to generate temporal sequences that
have statistical distributions compatible with the reference statistical distributions.
One of the most famous MC algorithms is the Metropolis-Hastings algorithm [21],
which has been used to generate the artificial vowels using sequences of periods and
amplitudes obtained from the feature extraction algorithm under test.

Such algorithm considers the sequence of periods extracted from a real vowel signal
and its distribution Dt. From the periods and amplitudes vectors, a sequence of
consecutive differences is obtained (es δT = Ti − Ti−1 for all i ∈ [1,imax]) and the
correspondent distributions D(δT ) and D(δA) are evaluated.
The empirical cumulative distributions are calculated using the matlab function
“ecdf”.
The generation algorithm is composed by five steps:

1. Through the direct MC method a proposal jump is generated as the inverse
of the cumulative function using as input an uniform random number between 0
and 1.

2. The proposal jump is added to the period extracted from the actual signal,
in order to obtain a new T (i) value.

3. The proposal metric is calculated as:

A = min(1,
Dt(i)

Dt(i − 1)) (3.1)

4. A random uniform number u between 0 and 1 is generated;

• the proposal is accepted if u <= A;

• the proposal is rejected if u > A.
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5. The generation goes on until the Kolmogorov-Smirnof test, performed using
the Matlab function "kstest2", confirms the compatibility between the statistical
distributions of the real and the artificial signal with a confidence interval of 99%.

Figure 3.14 shows the distribution extracted from a vocal signal recorded by a
female patient affected by Parkinson disease and the distribution that corresponds
to an artificial signal.
The shown distributions are statistically compatible.

Figure 3.14: Periods and amplitudes distributions of the real vowel recorded by a
Parkinsonian subject in orange and artificial vowel in blue.
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3.3.3 From Numbers To Signals: the Concatenation Method
To transform the numeric sequences of periods and amplitudes generated by the
MC algorithm in an artificial vowel signal the following method has been developed.

The real voice signal has been divided into pseudo-periods, the same used for the
MC generation.

The modification of the length of the single periods took place through a linear
resampling using the matlab function “linspace”, while the modification of the am-
plitudes occurs through the equation:

y1(t) = y0(t)A1

A0
(3.2)

where y1(t) is signal vector of the desired i − th pseudo-period candidate, y0(t)
is the original pseudo-period vector, A1 is the peak-to-peak amplitude value gener-
ated, A0 is the value of the original peak-to-peak amplitude.

Lastly, the new frames have been concatenated one after the other, generating
an artificial signal.

Figure 3.15 and 3.16 show a comparison between the original recorded signal and
the obtained artificial signal highlighting the amplitude positive peaks.
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Figure 3.15: Comparison between the original signal and the artificial signal of a Parkin-
sonian subject plotted separately, highlighting the amplitude positive peaks.

Figure 3.16: Comparison between the original signal and the artificial signal of a Parkin-
sonian subject highlighting the amplitude positive peaks.

29



3 – Materials and Methods

3.4 Measurement reproducibility and repeteabil-
ity

In the second part of the work, the attention has been focused on the reproducibility
and repeatability of the performed measurements.
To achieve this, a ”Head and Torso Simulator” (HATS) has been used to emit
artificial vowels in an anechoic room.

3.4.1 Head and Torso Simulator

The ”Head and Torso Simulator” (HATS), Type 4150-C is a test dummy with a
mouth simulators and ear simulators [22]. The Type 4150-C simulator is charac-
terized by a torso over which is mounted a head. The HATS, allow to represent
the standardized average dimensions of a human adult, and offers a reproducible
simulation of its acoustic parameters and properties [22].
The model used was fitted on a turntable using a chair. Figure 3.17 and Figure
3.18 show the HATS used in the anechoic chamber.

Figure 3.17: Pictures of HATS - frontal view in the anechoic chamber.

Figure 3.18: Pictures of HATS - lateral view in the anechoic chamber.
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3.4.2 HATS Characteristics

The HATS mouth simulator has a high-compliance loudspeaker that gives powerful
low-frequency response and low distortion.
The acoustic transmission path from the loudspeaker to the mouth opening ensures
an easily equalized frequency response of the sound pressure level in front of the
mouth [4].
The mouth simulator produces a sound-pressure distribution around the opening
of the mouth simulating that of a median adult human mouth and it follows the
frequency range of human subjects [22].

The loudspeaker has an impedance of 4 ohm and a maximum power rating for
continuous operation of 10 W.
To reduce the risk of damage, the drive to the loudspeaker is limited by a protection
circuit mounted in the head of Type 4150-C.
Figure 3.19, shows the sound-pressure level spatial distribution around the mouth
obtained doing a measurement with the mouth insert in place.

Figure 3.19: The sound pressure level distribution around the mouth opening with the
mouth insert in place (average from 300 Hz to 3.3 kHz)[4]
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3.4.3 Acquisition Requirements
For the acquisition of the voice signals of the subjects the following equipment has
been used:

• a cheek microphone in air (MIPRO MU55-HR) placed at different positions:

1) Aligned to the axis of the mouth, vertically aligned to the tip of the nose,
distance 2 cm (Figure 3.20).

Figure 3.20: Microphone in air aligned to the axis of the HATS mouth.

2) Aligned to the bottom of the nose, 2 cm above the axis of the mouth, vertically
aligned to the tip of the nose, distance 2 cm (Figure 3.21).

Figure 3.21: Microphone in air aligned to the bottom of the HATS nose.
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3) Aligned with the screws on the HATS chin, 2 cm below the axis of the mouth,
vertically aligned with the tip of the nose, distance 2 cm (Figure 3.22).

Figure 3.22: Microphone in air aligned with the screws on the HATS chin.

4) Aligned to the corner of the mouth, 4 cm from the axis of the mouth in a lateral
position (Figure 3.23).

Figure 3.23: Microphone in air aligned to the corner of the HATS mouth.

• A reference microphone, model M2230 placed at 1 m from the mouth of the
HATS (Figure 3.24).

Figure 3.24: Reference microphone at 1 m from the mouth of the HATS.
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• An iPhone 8 placed at 40 cm from the mouth of the HATS (Figure 3.25).

Figure 3.25: iPhone 8 at 40 cm from the mouth of the HATS.

The cheek microphone was connected to a portable recorder (EDIROL ROLAND
R09-HR), shown in Figure 3.10.
All recordings have been performed with a sampling rate of 44100 Sa/s and a bit-
depth of 16 bit.
The lack of the use of the contact microphone is justified by the fact that the "Hats
- Head and Torso Simulator" is not equipped with vocal chords.

The HATS, in order to reproduce the artificial vowels, was connected to:

• A car amplifier (Alpine MRP-F200) [23] shown in Figure 3.26, powered by a
car battery and characterized by:
1. Selectable 80 Hz high-pass/low-pass crossover at 80 Hz, 18 dB/octave;
2.Preamp outputs and preamp speaker inputs;

Figure 3.26: Alpine MRP-F200 Amplifier
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• An audio interface (MOTU Audio Express) [24] shown in Figure 3.27 mainly
used to record and mix studio and live performances.

Figure 3.27: MOTU audio express interface

• A Macbook Pro equipped with the Audacity software.

3.4.4 Measuring Chain Evaluation Protocol
The Measuring chain evaluation protocol is structured in three parts:

1. A file has been generated containing three artificial vowels for each subject,
in order to obtain only a long file to make easier to record the signals each position
of microphone.

2. The long file acquired from the recording devices has been sliced into sepa-
rate files using an auto-correlation algorithm between the recorded signal and the
numeric signal produced by the MC algorithm.

During the measurements an issue with the gain linearity of the evaluation chain
has emerged.
This generates offsets and amplitudes which are not compatible.

Figure 3.28, shows a comparison between a vowel obtained artificially and the
same vowel after the use of the evaluation chain.
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Figure 3.28: Comparison between the MC files and the file obtained in anechoic chamber
before the alignment

A difference in the amplitude range of the two signals can be noticed.

In order to attenuate the systematic effect on amplitudes due to the measuring
chain non-linearity, an alignment of the amplitudes ranges has been performed.
The amplitudes have been normalized accordingly to the artificial signal ampli-
tudes.
No time alignment was necessary because the shift interested only the amplitude.

Figure 3.29 shows a new comparison between the two vowels after the alignment.

Figure 3.29: Comparison between the MC files and the file obtained in anechoic chamber
after the alignment

Even with the alignment done, the offset due to the measuring chain non-linearity
is still present.

3. After the amplitude alignment, the same parameters mentioned before have
been extracted from the signals.
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Chapter 4

Evaluation of the extraction
algorithm

4.1 Introduction
One of the goal of the thesis work is to evaluate the reliability of the method used
for the extraction algorithm.

4.2 Method description

Figure 4.1: Scheme for the error estimation of the extraction algorithm

Figure 4.1 shows the scheme followed to perform the extraction chain evaluation,
focusing on steps 1, 2 and 4:

1. The sustained vowel ’/a/’ performed by a subject has been recorded with a
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microphone in air and from these vowels, the sequences of measured periods and
amplitudes (TM , AM) have been extracted.

2. The measured sequences TM and AM have been used to produce known se-
quences TK and AK through the MC algorithm.

4. The artificial vowels (MC Samples), have been reproduced in the anechoic cham-
ber with the HATS and some microphones in different positions and recorded using
the same recorder used to acquire the original vowels.

4, 2. From the artificial vowels and the vowels obtained in the anechoic cham-
ber using HATS, the parameters extracted has been used to estimate the relative
error considering the known sequences TK and AK :

Err = Vm − Ve

Ve

100 (4.1)

Where Vm is the extracted parameter from the artificial signal, Ve is the parameter
calculated starting from the sequences of known periods and amplitudes.
Considering the other extracted parameters, HNR, F0, RMS and CPPS parameters,
the estimated error is:

Err = Va − Vr

Vr

100 (4.2)

Where Va is the extracted parameter from the artificial signal, and Vr is the ex-
tracted parameter from the real vocal signal.

The equation 4.2 has been used to calculate parameters such as mean, median,
mode, standard deviation, range, 5° percentile, 95° percentile.

For skewness and kurtosis instead, the relative error is not a good measure of
uncertainty, due to the fact that they are not linear.

In this case, the absolute error has been calculated as showed in equation 4.3:

Errabs = Va − Vr (4.3)

Where Va is the parameter extracted from the artificial signal, and Vr is the ex-
tracted parameter from the real vocal signal.
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4.3 Results and method evaluation
The errors of the algorithm of the extraction of parameters, calculated with the
expressions 4.1, 4.2 and 4.3, have been used to evaluate the measurement error of
the extraction algorithm.
In particular, for each class of patients, a comparison has been done between the
average of the errors that each subject has performed.
Afterwards the average errors for every trial have been compared.

4.3.1 Period and amplitude parameters
The Tables in Figures 4.2, 4.3 and 4.4 show relative errors averages obtained from
PD, PA and HE subjects and related to time parameters.
The lower values for each parameter are highlighted in light blue.

Figure 4.2: Relative Errors Averages for the PD class and related to the parameters
to evaluate the frequency stability extracted from the obtained artificial signals. In light
blue the lower values for each parameter

Figure 4.3: Relative Errors Averages for the PA class and related to the parameters
to evaluate the frequency stability extracted from the obtained artificial signals. In light
blue the lower values for each parameter
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Figure 4.4: Relative Errors Averages for the HE class and related to the parameters
to evaluate the frequency stability extracted from the obtained artificial signals. In light
blue the lower values for each parameter

The Tables in Figures 4.5, 4.6 and 4.7 show the relative errors averages obtained
from PD, PA and HE subjects and related to amplitude parameters. The lower
values for each parameter are highlighted in light blue.

Figure 4.5: Relative Errors Averages for the PD class and related to the parameters to
evaluate the amplitude stability of the obtained artificial signals. In light blue the lower
values for each parameter.

Figure 4.6: Relative Errors Averages for the PA class and related to the parameters to
evaluate the amplitude stability of the obtained artificial signals. In light blue the lower
values for each parameter.
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Figure 4.7: Relative Errors Averages for the HE class and related to the parameters to
evaluate the amplitude stability of the obtained artificial signals. In light blue the lower
values for each parameter.

The errors average of amplitude parameters are lower than those of time param-
eters.
This happens because there is an epistemic uncertainty in defining a pseudo-period,
as they can be defined in different ways, being them, in fact, periodic.
This difficulty in defining the period causes uncertainty in the definition of time
parameters unlike amplitude parameters.
When the extraction algorithm finds the periods markers, even a small error in
their identification can affects the jitter measurements.
This does not occur for the peak-to-peak amplitudes which remain the same even
if the markers shift.
The results obtained are shown in Figure 4.8 for PD subjects, in Figure 4.9 for PA
subjects and in Figure 4.10 for HE subjects.

Figure 4.8: Relative Errors Averages % for PD Patients
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Figure 4.9: Relative Errors Averages % for PA Patients

Figure 4.10: Relative Errors Averages % for HE Patients
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4.3.2 RMS parameters
The Tables in Figures 4.11, 4.13 and 4.15 show the relative errors averages obtained
from PD, PA and HE subjects and related to RMS parameters such as mean, me-
dian, mode, standard deviation, range, 5° percentile, 95° percentile.

The Tables in Figures 4.12, 4.14 and 4.16 show the absolute errors obtained from
PD, PA and HE subjects and related to RMS parameters such as skewness and
kurtosis.
The lower values for each parameter are highlighted in light blue.

Figure 4.11: RMS Relative Errors Averages for the PD class. In light blue the lower
values for each parameter.

Figure 4.12: RMS Absolute Errors Averages for the PD class, related to skewness and
kurtosis parameters. In light blue the lower values for each parameter.

The average of the relative errors of RMS parameters for each class of patients are
lower in MC Samples respect to the other recording position.
This behaviour is due to the fact that the error evaluation chain (path 4) has a non
linear gain as showed in Section 3.4.4.

When the artificial files were sliced, after being recorded, the offset introduced
due to the error evaluation chain (path 4), was still present, even after the removal
of the mean and the amplitude alignment.

The results obtained are shown in Figure 4.17 and 4.18 for PD subjects, in Fig-
ure 4.19 and 4.20 for PA subjects and in Figure 4.21 and 4.22 for HE subjects.
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Figure 4.13: RMS Relative Errors Averages for the PA class. In light blue the lower
values for each parameter.

Figure 4.14: RMS Absolute Errors Averages for the PA class, related to skewness and
kurtosis parameters. In light blue the lower values for each parameter.

Figure 4.15: RMS Relative Errors Averages for the HE class. In light blue the lower
values for each parameter.

Figure 4.16: RMS Absolute Errors Averages for the HE class, related to skewness and
kurtosis parameters. In light blue the lower values for each parameter.
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Figure 4.17: RMS Relative Errors Averages % for PD Patients

Figure 4.18: RMS Absolute Errors Averages % for PD Patients

45



4 – Evaluation of the extraction algorithm

Figure 4.19: RMS Relative Errors Averages % for PA Patients

Figure 4.20: RMS Absolute Errors Averages % for PA Patients
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Figure 4.21: RMS Relative Errors Averages % for HE Patients

Figure 4.22: RMS Absolute Errors Averages % for HE Patients
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4.3.3 CPPS parameters
The Tables in Figures 4.23, 4.25 and 4.27 show the relative errors averages obtained
from PD, PA and HE subjects and related to CPPS parameters such as mean, me-
dian, mode, standard deviation, range, 5° percentile, 95° percentile.

The Tables in Figures 4.24, 4.26 and 4.28 show the absolute errors obtained from
PD, PA and HE subjects and related to CPPS parameters such as skewness and
kurtosis.
The lower values for each parameter are highlighted in light blue.

Figure 4.23: CPPS Relative Errors Averages for the PD class. In light blue the lower
values for each parameter.

Figure 4.24: CPPS Absolute Errors Averages for the PD class, related to skewness and
kurtosis parameters. In light blue the lower values for each parameter.

Figure 4.25: CPPS Relative Errors Averages for the PA class. In light blue the lower
values for each parameter.
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Figure 4.26: CPPS Absolute Errors Averages for the PA class, related to skewness and
kurtosis parameters. In light blue the lower values for each parameter.

Figure 4.27: CPPS Relative Errors Averages for the HE class. In light blue the lower
values for each parameter.

Figure 4.28: CPPS Absolute Errors Averages for the HE class, related to skewness and
kurtosis parameters. In light blue the lower values for each parameter.

The explanation on the distribution of the values obtained can be found consider-
ing the fact that unlike for parameters such as jitter and shimmer, calculated with
respect to a reference value, a reference value for CPPS does not exist.

CPPS is a dispersion measurement, extracted from the original signal.
For this reason an absolute estimation of the measurement error between the orig-
inal and the artificial signals can’t be done.

The worst relative errors have been obtained with the iPhone 8.
This is probably due to the file compression of the audio recording app (Memo
vocali) which alter the spectral quality of the recorded material.
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The results obtained are shown in Figure 4.29 and 4.30 for PD subjects, in Fig-
ure 4.31 and 4.32 for PA subjects and in Figure 4.33 and 4.34 for HE subjects.

Figure 4.29: CPPS Relative Errors Averages % for PD Patients

Figure 4.30: CPPS Absolute Errors Averages % for PD Patients
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Figure 4.31: CPPS Relative Errors Averages % for PA Patients

Figure 4.32: CPPS Absolute Errors Averages % for PA Patients
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Figure 4.33: CPPS Relative Errors Averages % for HE Patients

Figure 4.34: CPPS Absolute Errors Averages % for HE Patients
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Chapter 5

Classification methods

5.1 Introduction
To evaluate the reliability of the features that constitute the dataset a feature
selection algorithm has been used.
Furthermore, to discriminate the Parkinson’s disease patients from healthy subjects
and pathological non-parkinsonian patients, a weighted classification algorithm has
been developed using the measurement errors evaluated in the previous sections.

5.2 Feature selection
A feature selection algorithm, allows to reduce the size of the initial dataset, pro-
viding a subset consisting of features only relevant and uncorrelated [25].
To remove related features, has been used the Correlation-Based Feature Selection
(CBFS) method.

This algorithm excludes the correlation between variables as a measure of the reli-
ability of the features.

The correlation index assumes values between -1 and 1, where a value of 1 indicates
variables totally correlated, a value of 0 indicates totally uncorrelated variables and
a value equal to -1 indicates totally inversely correlated variables.

If the correlation is higher than a certain threshold it means that the combina-
tion will not have a high predictive power [26].

In order to evaluate the reliability of the feature, considering as useful informa-
tion, their non-correlation, the squared correlation coefficient has been used.
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Considering HE, PA and PD classes, the correlation matrix rij and the correspond-
ing p-value pij have been calculated.

The Pearson correlation index, defined as the covariance of two variables X and
Y divided by the product of the standard deviations of the two variables [27]:

ρXY = σXY

σXσY

(5.1)

Where σXY is the covariance between X and Y, σX is the standard deviation of
X and σY is the standard deviation of Y. The matrices rij and pij were used to
calculate the candidate matrix:

candidatesij = [r2
ijLM ij + LM ij] (5.2)

Where LM is a binary matrix where the ij cell depends on the p-value of the ij
correlation.
LM ij is the logical complement of LMij.
LMij = 1 if pij<0.05 and LMij = 0 otherwise.
The candidatesij value is equal to 1 if the p-value is greater than 0.05, which it
means that the correlation (or non-correlation) is not significant.

The lowest values of the candidate matrix are relative to uncorrelated and therefore
non-redundant features.

For this work the threshold value has been chosen equal to 0.6.

5.3 The logistic regression
The logistic regression is a statistical model that examines the relationship between
independent variables and a dichotomous dependent variable, that assumes, as
values, only 0 or 1, providing a probability via a logistic function [28]. This function
is represented as an "S" shaped curve and is defined by the equation:

f(x) = 1
1 + ef(x) (5.3)

where f(x) is a generic linear combination of features and coefficients. An ex-
ample is shown in Figure 5.1

54



5 – Classification methods

Figure 5.1: Example of a logistic function for f(x) = x. [5]

This model used, provides the probability of belonging to the healthy class ac-
cording to the expression:

PHE = 1

1 + e
−(β0+

∑︁
i

βixi)
(5.4)

Where PHE is the probability to belong to healthy class of patients and βi are
the coefficients of linear combination with features xi, considering, as threshold for
classification PHE = 0.5.

To evaluate the performance of the classifier, the confusion matrix has been used.
In this table, the columns represent the true class and the rows represent the class
predicted by the classifier.

An example is shown in Figure 5.2
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Figure 5.2: Confusion Matrix.

The meaning of the acronyms in the table is:

• True Positive (TP): number of elements correctly classified as positive (P);

• True Negative (TN): number of elements correctly classified as negative (N);

• False Positive (FP): number of elements classified as positive but that are actu-
ally negative;

• False Negative (FN): number of elements classified as negative but that are
actually positive.

The consideration that can be done, regarding the table, is that the cells that
are on the diagonal of this table indicate the number of elements that have been
correctly classified considering their belonging class.

A parameter used to determine the performance of the considered model is the
Standard Accuracy.
It is calculated as the number of items that have been correctly classified divided
by the total number of classified:

Acc = (TP + PN)
(TP + TN + FP + FN)100 (5.5)

The standard accuracy range goes from 0% which is the worst accuracy obtain-
able to 100% which is the best accuracy obtainable.
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5.4 The Combinatorial algorithm
The combinatorial algorithm selects a group of features to train the classification
model.
For this work, groups of 2 to 4 features have been used:

1. Determine the number of combinations k of n features in p combinations with
the following formula:

k = n!
p!(n − p)! (5.6)

2. For each not repeated combination of p features do:

2.1. Check the ij cell of the candidates matrix:
- if candidatesij> 0.6, then the combination is not considered valid;
- if candidatesij<= 0.6 go to step 3:

3. Train of a logistic regression model:
- if the p-value of model coefficients <0.05, the model is valid;
- else:
• go to step 2.;

5.5 Weighted Logistic Regression
For this work a weighted logistic regression algorithm is proposed to discriminate
voices of PD patients from the voices of HE patients and the voices of PD patients
from the voices of PA patients.

The weights have been defined according to the errors evaluated in the previous
sections.

The combination of features considered by the classifier have been selected in order
to give more weight to subjects whose features have been extracted with less errors.

The relation between errors and weight has been choosen as the reciprocal of the
relative error:
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the value of the weight w was taken equal to the reciprocal of the error err:

w = 1
err

(5.7)

To estimate the uncertainty associated with the equation 5.4, the following equation
can be used:

u(p) =

⌜⃓⃓⎷ N∑︂
i=1

( δp

δxi

)2u2(xi) (5.8)

Where p is the predicted probability, xi is the i-th feature and u(xi) is the i-th
feature uncertainty.

To calculate the uncertainty of PHE, applying the equation 5.4, the expression
is:

u(P ) = eβ0+
∑︁N

i=1 βifi

(1 + e
β0+

N∑︁
i=1

βifi

)2

⌜⃓⃓⎷u2(β0) +
N∑︂

i=1
f 2u2(βi) + βiu2(fi) (5.9)

Where u(βi) is the uncertainty of the coefficients and u(fi) is the uncertainty of the
features.

To estimate the performance of the classifier, a new metric has been proposed.
Such metric is based on the classification rate of the subjects which excludes the
non-classified subjects from the accuracy estimation.
The non-classified element has a probability range obtained from the confidence
interval that crosses the classification threshold PHE = 0.5.
An example is shown in Figure 5.3 and Figure 5.4.
Using the "sortrows" matlab function, the probabilities have been sorted in ascend-
ing order.
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Figure 5.3: Probability of belonging to HE class with relative confidence limits. In the
green area the classified elements, in the red one the non-classified elements.

Figure 5.4: Probability of belonging to HE class with relative confidence limits
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Three parameters have been defined:
- Fraction of Classified;
- Pessimistic Accuracy;
- Optimistic Accuracy;

The Fraction of Classified is calculated as:

Class = NC

NT OT

100 (5.10)

Where NC is the number of classified element and NT OT is the total number of
elements.

The Pessimistic Accuracy is calculated as the sum of true positives and true nega-
tives of the classified elements NT C divided by the total number of elements NT OT :

Acc(Class)p = NT C

NT OT

100 (5.11)

The Optimistic Accuracy is calculated as the sum of true positives and true neg-
atives of the classified elements NT C divided by the total number of classified ele-
ments NClassT OT :

NClassT OT = Class ∗ NT OT

100 (5.12)

Acc(Class)o = NT C

NClassT OT

100 (5.13)
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Chapter 6

Results and discussion

6.1 Introduction

Using a weighted logistic regression model, the main goal of the classification is to:

• Discriminate PD from HE subjects;

• Discriminate PD from PA subjects;

The features extracted from the real signal and the artificial signal, together with
the measurement error, have been used to obtain two different subsets:

1. Classification 1:
• the elements to be classified are the average of the 6 vowels (3 real + 3 artificial)
associated to each subject and the errors are the standard deviation of the average
of the 6 vowels.
This classification was repeated seven times, considering as artificial vowels, the
vowels obtained directly from the MonteCarlo method (MC Samples) and those
recorded in the anechoic chamber.

2. Classification 2:
• the elements to be classified are the average of the 15 vowels (3 real + 12 artificial
considering those obtained from the recordings in the anechoic chamber considering
4 positions of the microphone in air) associated with each subject and the errors
are the standard deviation of the average of the 15 vowels.

The Table in Figure 6.1 shows the two classification methods.
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Figure 6.1: Classification Methods.

6.2 PD vs HE subjects

6.2.1 Classification 1
The classification 1 has been done considering the average of 3 real vowels and
3 artifical vowels, using as errors, the standard deviation of the average of the 6
vowels.
In this case, there is a reduction of the dataset from 30 to 10 elements for each
class of subjects.

The Table in Figure 6.2 shows the best performances obtained considering the
first classification method, for each microphone position and a number of feature
equal to 2.

Figure 6.2: Performances of classification 1, discriminating PD vs HE patients, for a
number of features equal to 2.
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Considering classification 1 for two features, the best performances have been
obtained in Position 2, 3, 4 and with the iPhone 8 as regards the Standard Accuracy
while in Position 3, 4 and with the iPhone 8 as regards the Fraction of Classified
and the Pessimistic Accuracy.
The Optimistic Accuracy, has reached values up to 100% in every position.
The features in almost every position are the same, showing that there was a good
reproducibility of measurements even if only one feature differs from the others in
MC Samples.

The Table in Figure 6.3 shows the best performances obtained for the first classifi-
cation method, for each microphone position and a number of feature equal to 3.

Figure 6.3: Performances of classification 1, discriminating PD vs HE for each micro-
phone position and a number of feature equal to 3.

Considering classification 1 for three features, the best performances have been ob-
tained in the Position 1, 2 and 4 as regards the Standard Accuracy while the worst
performances have been obtained in Position 3, with the iPhone 8 and MC Samples.

Considering the Fraction of Classified, the best performances have been obtained
in Position 3, 4, with the iPhone 8, Reference Microphone and MC Samples.

Considering the Pessimistic Accuracy, the best performances have been obtained
in Position 3, with the iPhone 8, Reference Microphone and MC Samples. The
same results have been obtained considering the Optimistic Accuracy, that in those
positions has reached values up to 100%.

In this case, the features considered are more dishomogeneous than those obtained
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in the previous classification.
While the percentage of the Optimistic Accuracy hasn’t changed, with three fea-
tures there is a reduction of the other parameters accuracies.

The Table in Figure 6.4 shows the best performances obtained for the first classifi-
cation method, for each microphone position and a number of feature equal to 4.

Figure 6.4: Performances of classification 1, discriminating PD vs HE for each micro-
phone position and a number of feature equal to 4.

Considering classification 1 for four features, the best performances have been ob-
tained in Position 1, 2 and 3 as regards the Standard Accuracy.

Considering the Fraction of Classified and the Pessimistic Accuracy, the best per-
formances have been obtained in Position 3 and 4 while considering the Optimistic
Accuracy, the best performances have been obtained in Positions 1, 2, 3 and 4.

The worst performances have been obtained with the Reference Microphone.
In this case, the features considered are more dishomogeneous than those obtained
in the previous classification.

Particular attention have to be payed because the feature selection algorithm failed
to find a valid feature combination using the chosen threshold values for the iPhone
8. This is due to the fact that the increasing number of features leads to a rise in
classification error.
This happens because this is an additive uncertainty model in which the uncer-
tainty contributions are added quadratically.
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6.2.2 Classification 2
The classification 2 was done considering the average of the 15 vowels (3 real + 12
artificial considering those obtained from the recording in the anechoic chamber in
4 positions of the microphone in air) associated with each subject and the errors
are the standard deviation of the average of the 15 vowels.
Even in this case there is a reduction of the dataset considered from 30 to 10 ele-
ments.

The Table in Figure 6.5 shows the best performances obtained considering the
second classification method for a number of feature equal to 2.

Figure 6.5: Performances of classification 2, discriminating PD vs HE for a number of
feature equal to 2.

Considering classification 2 for two features, the percentages of the Standard
Accuracy, Fraction of Classified, Pessimistic and Optimistic Accuracy are equal to
those of the classification 1.
In this classification, the same features obtained considering MC Samples in clas-
sification 1, have been selected.

The Table in Figure 6.6 shows the best performances obtained considering the
second classification method for a number of feature equal to 3.

Figure 6.6: Performances of classification 2, discriminating PD vs HE for a number of
feature equal to 3.

The values of the parameters for three features are lower with respect to those
obtained for two features.
The features considered before, have not been considered in this case, even the
Optimistic Accuracy hasn’t reached values up to 100%.
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The Table in Figure 6.7 shows the best performances obtained for the second clas-
sification method for a number of feature equal to 4.

Figure 6.7: Performances of classification 2, discriminating PD vs HE for a number of
feature equal to 4.

In this case, the percentages of the Standard Accuracy, Fraction of Classified
and Pessimistic Accuracy are lower than classification 2 for three features while the
percentage of Optimistic Accuracy has increased and reached values up to 100%.
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6.3 PD vs PA subjects
6.3.1 Classification 1
The Table in Figure 6.8 shows the best performances obtained considering the first
classification method, for each microphone position and a number of feature equal
to 2.

Figure 6.8: Performances of classification 1, discriminating PD vs PA for each micro-
phone position and a number of feature equal to 2.

The classification 1 for two features, highlights the same performances obtained
considering different positions of microphones.
In this case the accuracies show that there is a good reproducibility of the mea-
surements.
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The Table in Figure 6.9 shows the best performances obtained for the first
classification method, for each microphone position and a number of feature equal
to 3.

Figure 6.9: Performances of classification 1, discriminating PD vs PA for each micro-
phone position and a number of feature equal to 3.

Considering classification 1 for three features, the best performances have been
obtained in Position 4 regarding the Fraction of Classified and the Pessimistic Ac-
curacy.

Considering the Standard Accuracy, the best performances have been obtained
in Position 4, with the iPhone 8 and MC Samples, while the Optimistic Accuracy
has reached values up to 100% in every position.

The features highlighted are the same for Positions 1, 2, 3 of the microphone in
air and for the Reference Microphone while in the other positions there are other
features considered.
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Table in Figure 6.10 shows the best performances obtained considering the first
classification method, for each microphone position and a number of feature equal
to 4.

Figure 6.10: Performances of classification 1, discriminating PD vs PA for each micro-
phone position and a number of feature equal to 4.

Considering classification 1 for four features, the best performances have been
obtained in Position 2, 4 and Reference Microphone regarding the Fraction of Clas-
sified and the Pessimistic Accuracy.

Considering the Standard Accuracy, the best performances have been obtained
in Position 2, with the iPhone 8 and MC Samples, while the optimistic Accuracy
has reached values up to 100% in every position.

The features selected by the classifier are more dishomogeneous than those in the
previous classification and furthermore there is a reduction of the percentage of the
Fraction of Classified and of the Pessimistic Accuracy.
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6.3.2 Classification 2
The Table in Figure 6.11 shows the best performances obtained for the second clas-
sification method for a number of feature equal to 2.

Figure 6.11: Performances of classification 2, discriminating PD vs PA for a number of
feature equal to 2.

Considering classification 2 for two features, the features and the percentages ob-
tained for the various parameters are the same with respect to those of classification
1 for two features.

Table in Figure 6.12 shows the best performances obtained for the second clas-
sification method for a number of feature equal to 3.

Figure 6.12: Performances of classification 2, discriminating PD vs PA and a number
of feature equal to 3.

Considering classification 2 for three features, there is an increasing of the per-
centage of the parameters with respect to classification 2 for two features and to
classification 1 for three features. Only the percentage of Standard Accuracy hasn’t
changed.
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The Table in Figure 6.13 shows the best performances obtained considering the
second classification method considering a number of feature equal to 4.

Figure 6.13: Performances of classification 2, discriminating PD vs PA for each micro-
phone position and a number of feature equal to 4.

Considering classification 2 for four features, there is a reduction of the percentages
of the Standard Accuracy, Fraction of Classified and Pessimistic Accuracy with
respect to classification 2 for two features and to classification 1 for three features,
while the percentage of the Optimistic Accuracy has reached values up to 100%
even in this case.
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Chapter 7

Conclusions

In this thesis work a classification method has been proposed based on the estima-
tion of the extraction error of the features to discriminate healthy subjects (HE)
from patients with Parkinson’s disease (PD) and pathological non-parkinsonian pa-
tients (PA) from Parkinsonian patients (PD).

In the first part of the work, from the chosen balanced dataset, consisting of 3
repetition of the sustained vowel ‘/a/’ recorded with a microphone in air for the 10
subjects belonging to the HE, PA and PD classes, 30 new artificial vowels for each
subject with the Monte Carlo sampling method have been generated.

The second part of the thesis work has been focused on the reproducibility and
repeatability of the measurements.

The artificial vowels obtained previously have been reproduced through an “Head
and torso simulator” in an anechoic chamber.

The vocal signals produced have been acquired using 3 different measurement
chains:
- A microphone in air placed in 4 different positions;
- A reference microphone;
- A microphone embedded in an iPhone 8.

The purpose of such recordings has been to estimate the error of the feature ex-
traction algorithm by comparing the sequences of the parameters generated by the
Monte Carlo sampling method with those obtained from the recordings in the ane-
choic chamber.

The results highlight how the measurements showed no significant differences be-
tween estimated relative errors, suggesting that the measurements made can be
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considered reproducible and repeatable in different conditions.

The aim of the last part of the thesis work, has been focused on the training of
a weighted classification algorithm to discriminate HE subjects from PD patients
and PA patients from PD patients.

The combinations of features considered by the classifier have been selected in
order to give more weight to subjects whose features have been extracted with less
errors. The weights, in fact, have been defined as the reciprocal of the errors.

Cosidering the features extracted from the real signals, together with error esti-
mates, the classification method provided the probability of belonging to HE class
and to PA class.

The features extracted from the real signal, the artificial signal, and the signals
obtained in the anechoic chamber, together with the measurement error, have been
used to obtain two different subsets for the classification.

The real vowels and the artificial ones have been combined to perform two types of
classification using a limited number of features (from 2 to 4).

A new metric for evaluating the accuracy of the classification model has been pro-
posed.
Such metric is based on the classification rate of the subjects which excludes the
non-classified subjects from the accuracy estimation.
Three parameters have been defined:

- Pessimistic accuracy;
- Optimistic accuracy;
- Fraction of classified;

Discriminating PD patients from HE patients, the best performances have been
obtained in classification 1 (3 real vowels + 3 artificial vowels), for a number of
features equal to 2, in Position 3, Position 4 and with the iPhone 8.
The Fraction of Classified and the Pessimistic Accuracy, have reached values up to
73.68%, while the Optimistic Accuracy has reached values up to 100%.

Discriminating PD patients from PA patients, the best performances have been
obtained in classification 2 (3 real vowels + 12 artificial vowels), for a number of
features equal to 3.

The Fraction of Classified has reached values up 75%, the Pessimistic Accuracy
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has reached values up 75% and the Optimistic Accuracy has reached values up to
100%

The classification showed some limitations due to the reduction of the dataset size.
Such reduction highlighted a drop on the performances of the classifier regarding
the fraction of classified and accuracy.

Considering the two classifications with 2, 3 and 4 features, the increasing number
of features leads to a rise of the error on the classification.
This happens because the proposed uncertainty model is additive so the more fea-
ture are used, the more is the uncertainty.

This thesis work can be considered a first step of a study whose future objective
is to improve the model under analysis, increasing the database of the monitored
subjects, using devices such as mobile phones that allow the patient to record vo-
cals following repeatable procedures, without the need to go to health facilities and
without impairing their daily activities.
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AppendixA

Avevo un bulldog che si chiamava Bulka. Era tutto nero salvo una macchia bianca
all’estremità delle zampe anteriori.
Nei cani di questa razza, la mandibola è sempre prominente, così i denti superiori
vengono a collocarsi dietro a quelli inferiori.
Ma quella di Bulka era tanto grossa che tra gli uni e gli altri denti rimaneva molto
spazio.
Aveva il muso largo, grandi occhi neri e brillanti e i canini sempre scoperti, perfet-
tamente bianchi. Somigliava a un grugno.
Bulka era assai forte. E se afferrava qualcosa tra i denti non c’era verso che mollasse
la sua preda.
Stretti i canini nella carne dell’avversario, serrava la mascella e rimaneva sospeso
come un cencio ad un chiodo: attaccato come una sanguisuga.
Un giorno che era stato lanciato contro un orso, gli afferrò tra i denti un orecchio.
L’orso cercava di colpirlo con una zampa, scuoteva la testa, ma non se ne poteva
sbarazzare: finì per rovesciare il testone in terra per schiacciarvi il cane.
Su quest’ultimo, però, perché lasciasse la presa, dovemmo gettare una secchia di
acqua gelata. Lo avevo avuto da ragazzo e gli davo da mangiare io stesso.
Quando dovetti partire a prestar servizio ne Caucaso, decisi di non prenderlo con
me e cercai di andarmene senza che lo sapesse. Ordinai che lo tenessero rinchiuso.
Ero giunto alla prima tappa, stavo per ripartire con i cavalli freschi, quando ad un
tratto notai una palla nera e brillante che avanzava velocissima sulla strada.
Era Bulka col suo collare di rame al collo. Correva a perdifiato; si gettò su di me,
mi leccò la mano e poi, la lingua ciondoloni, si stese all’ombra sotto la vettura.
Seppi più tardi che aveva rotto un vetro per seguirmi; era saltato dalla finestra:
aveva percorso venti chilometri d’estate, sotto un sole bruciante.
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