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Abstract

Diseases of the circulatory system are among the chronic degenerative pathologies with
the highest morbidity, representing one of the main causes of disability. The general def‐
inition of cardiovascular diseases (CVDs) includes all the diseases of the heart and blood
vessels. These represent the first cause of access to first aid, as well as death. In order to
contain the number of hospitalizations and healthcare costs, innovative prevention and
monitoring techniques for patient’s health are needed. To date, conventional techniques
to monitor the patient’s cardiovascular activity are intrusive and invasive. The main goal
of this work is to overcome these limitations, by introducing the design of a non‐invasive
and non‐intrusive system for heart rate (HR) detection. This vital sign is obtained start‐
ing from the processing of the ballistocardiographic (BCG) signal which is acquired by a
network of four IIS2ICLX inclinometers connected to the STM32L4‐R9IJ6 microcontroller,
produced by STMicroelectronics. Themain advantage of thiswork is to use amulti‐sensor
network to detect the BCG signal during a sleep cycle, regardless of the subjects positions
during the night, suitable for both home and hospital environments. In order to acquire
the signal with the highest quality, several tests were performed by placing the sensors
in certain regions of the bed, according to the literature. Subsequently, a time‐based
algorithm was developed in order to compute the heart rate from the ballistocardio‐
graphic signal and to manage the most frequent sources of noise, such as motion arti‐
facts. In order to calculate the HR using the signal with the highest SNR among the four
acquired, two prediction models were developed: a Multi‐Parameter Model (MPM) and
a Single‐Parameter Model (SPM). The first one identifies, on 10 seconds windows of the
ballistocardiogram, the best signal among the four provided by the inertial multi‐sensor
network, by calculating three statistical parameters (the standard deviation, the kurtosis,
and the auto‐correlation function). In the sameway, the secondmethod identifies, on 30
seconds windows, the best signal by calculating the mean of the cross‐correlation coeffi‐
cients from heart beats found on the ballistocardiogram of the four sensors. To validate
the results achieved, the heart rate provided by the proposed systemwas comparedwith
the HI device, a three‐lead certified electrocardiograph designed by STMicroelectronics.

Considering the developed predictive models, the designed inertial multi‐sensor net‐
work provides the heart rate as follows. The Multi‐Parameter Model estimates the HR
every 10 and 30 seconds, with an average coverage of 87.95 % (MAE of 4.56 bpm± 7.09
bpm) and 93.76 % (MAE of 4.26 bpm ± 6.55 bpm) of the entire sleep respectively. The
Single‐Parameter Model estimates the HR every 10 and 30 seconds, with an average cov‐
erage of 93.57 % (MAE of 4.25 bpm± 6.51 bpm) and 97.66 % (MAE of 3.86 bpm± 5.81
bpm) of the entire sleep respectively. Finally, taking full advantage of the characteristics
of the network, the Ideal Model provides the heart rate every 10 or 30 seconds, estimat‐
ing the vital sign for an average coverage of 94.69 % (MAE of 2.30 bpm± 4.40 bpm) and
97.68 % (MAE of 1.80 bpm± 3.22 bpm) of the entire sleep respectively.

3



List of acronymus

AAMI American for the Advance Medical Instrumentation

ANSI American Nastional Standards Institute
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IoT Internet of Things
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Chapter 1

Introduction

Cardiovascular diseases (CVDs) are the leading cause of death [1]. According to theWorld
Health Organization (WHO), 17.9 million people die every year from CVDs, a third of
global deaths. Because of this high incidence, it is critical that individuals follow a healthy
lifestyle and place greater importance on prevention and diagnosis. Although the costs of
hospitalization are increasing due to the disproportionate demand from the population,
in recent years several devices targeting the remote monitoring of the patient’s health
have been developed. These systems fall within the scope of telemedicine and repre‐
sent a real revolution for the healthcare. In the case of CVDs, the main parameters to
be kept under control are the heart rate and the blood pressure. The portable devices
already on themarket, that are able tomonitor these parameters from home, are usually
Holter devices for pressure or for electrocardiography. However, these devices have sev‐
eral drawbacks: they are intrusive because they go into physical contact with the patient
and can give hygiene problems, as in the case of the electrodes necessary to perform the
electrocardiogram. In addition, these devices often require the presence of a caregiver
or nurse capable of housing the sensors on the patient. Finally, the intrusiveness of these
devices may be the cause of non‐acceptability for the patient.

This work presents a prototype system consisting of four inclinometers able to corre‐
late the heart activities, in a non‐invasive and a non‐intrusive way, through a mechanical
signal: the ballistocardiogram.
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1.1 Telemedicine and Cardiovascular Monitoring
The term telemedicine is composedof twowords tele, whichmeans ”remote”, andmedicine.
Although this word was coined in the 1970s, today there is not a unique definition. A
study in 2007 found 104 peer‐reviewed definitions of the word [2]. According to the def‐
inition adopted by the World Health Organization (WHO), telemedicine can be defined
as [3]:

”The delivery of health care services, where distance is a critical factor, by all health
care professionals using information and communication technologies for the exchange
of valid information for diagnosis, treatment and prevention of disease and injuries, re‐
search and evaluation, and for the continuing education of health care providers, all in
the interests of advancing the health of individuals and their communities.”

According to some, the term telemedicine refers to services that could only be pro‐
vided by physicians, while the term telehealth indicates services also offered by other
professionals, such as nurses and pharmacists [4], but WHO considers the terms inter‐
changeable.
However, telemedicine refers to:

• providing clinical supports;

• overcoming geographical barriers, connecting users who are not in the same phys‐
ical location;

• involving the use of various types of Information and Communication Technologies
(ICT);

• improving health outcomes.

1.1.1 Applications and services of Telemedicine

Telemedicine applications can be classified into two basic types [5]:

• Store‐and‐forward (or asynchronous): telemedicine involves the exchange of pre‐
recorded data between two or more individuals at different times, for example the
results of a test sent by a clinician to the patient.

• Real time (or synchronous): telemedicine requires the involved individuals to be
simultaneously present for immediate exchange of information, as in the case of
videoconferencing.

The main media that can be exchanged via synchronous or asynchronous telemedicine
are: text, audio, video or images.
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Moredeveloped societies routinely use telemedicine services as tools for clinical diag‐
nosis and management [3]. For example, monitoring and managing patients with acute
and chronic illnesses is made easier with biometric measurement devices, such as the
ones that monitor heart rate, blood pressure and blood glucose levels. On the other
hand, telemedicine has a great potential to be exploited especially in developing coun‐
tries. In fact, oneof themain advantages of telemedicine is to support traditionalmedicine
by providing effective remote services at low cost. Although telemedicine represents a
field which is growing strongly, it doesn’t have to be confused with traditional medicine,
where the role of the physician cannot be substituted.

The main telemedicine systems are [6]:

• Teleconsultation: remote consultation involves both the physician and the patient.
An example of teleconsultation is represented by a telephone conversation be‐
tween two physicians to obtain a second opinion, or the connection between a
physician and a patient who wants to receive feedbacks (i.e. consultation) regard‐
ing the treatment the subject is undergoing.

• Tele‐education: this term refers to all types of medical education that an individual
can benefit at distance, such as:

– clinical education from teleconsultation;

– clinical education via the Internet;

– academic study via the Internet;

– public education via the Internet.

• Telesurgery: it includes either the presence of the surgeon in the operating room,
who drives a robot that does the surgery (Tele Presence Surgery) and either the
assistance in real time through video or audio connection (Telementoring).

• Telemonitoring: it consists mainly in the management of vital signs at distance.
This stage is characterized by several steps, which are:

1. Data acquisition system, constituted of sensors, generally able to transduce
vital signs into a digital signal;

2. Data transmission system, which provides the data transmission from patient
to physician;

3. Data integration, integrating and updating the health status of the subject;

4. Data examination, to prevent and to suppress abnormal situation;

5. Data storage, typically cloud or local platform.
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Figure 1.1: Simple representation of the proposed telemedicine system use case.

Referring to telemonitoring, a telemedicine system is a tool capable of recording sub‐
ject’s vital signs using one or more devices, thus providing a collection of information
from the patient to the physician. Generally, in the cardiovascular field, the first cardiac
activity monitored is the electrical one, performing an electrocardiogram (ECG). As tele‐
monitoring is associated with prevention (long‐term) or control activity (as a result of the
manifestation of a pathology), it is desirable that this could be implemented taking into
account the comfort of the patient. As it will be seen in the dedicated paragraph, the
ECG suffers from several disadvantages regarding the long‐term monitoring, therefore,
the bed‐based ballistocardiographic system (BCG) developed in this work is proposed as
a future alternative solution to the classic cardiovascular monitoring.
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1.2 Physiological Background

1.2.1 Cardiovascular Physiology

The cardiovascular system consists of the heart, blood vessels and blood itself, carrying
the blood throughout the body. The cardiovascular system is responsible of the transfer
various substances to and from all the regions of the body. Among the substances trans‐
ported there are two gases: oxygen and carbon dioxide. Oxygen, which is essential for
cellular respiration, enters the circulation at the level of the lungs and is transferred to
all body cells; carbon dioxide, on the other hand, follows the reverse path.

Blood flows through three types of vessels: arteries, veins and capillaries. The arter‐
ies are the channels that carry the blood that comes out of the heart, while the veins
are the channels run through by the blood coming back to the heart. Veins and arteries
branch up to become very thin capillaries, capable of reaching every single cell of the
body [7].

The circulatory system consists of two distinct circuits:

• pulmonary circulation (or small circulation): it connects the heart to the lungs and
aims to oxygenate the blood rich in carbon dioxide and make it available to the
large circulation;

• systemic circulation (or large circulation): it connects the heart to all the tissues of
the body carrying oxygenated blood (arterial blood) that returns to the heart rich
in carbon dioxide (venous blood). Finally, the latter is re‐introduced into the small
circulation to restart a new cycle.

Figure 1.2: Blood circulation.
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In the systemic circulation, the aorta plays a very important role. It is the greatest
arteria which provides the oxygenated blood to the whole body and generally, in the
humans, it is 30 to 40 cm long and 2.5 to 3.5 cm in diameter. Two branches originate
from the base of the aorta, the right and left coronary arteries, which preside over the
arterial supply of the heart [7]. Mechanically, the aorta is a medium in which a large
amount of blood is propagated and, together with the heart, is the basic element on
which ballistocardiography is based.

1.2.2 Heart Anatomy

The heart is an organ found in the middle mediastinum, a thoracic compartment under‐
neath the sternum, wrapped in a two‐layered serous sac called pericardium. The heart
shape is like an inverted cone, similar in size to a man’s fist, and weighs approximately
230‐350 grams. By dividing the heart into two parts it is possible to distinguish the right
heart, which pumps blood to the lungs, while the left heart pushes blood to all the other
organs and tissues. The heart is made up of four chambers: the superior chambers con‐
sist of the right atrium and the left atrium, while the lower ones are constituted of the
right ventricle and the left ventricle, which are much larger than the atria. The atria are
responsible of reserving the blood flowing from the veins, whilst the ventricle producing
sufficient pressure to allow blood circulation [7].

Figure 1.3: The heart.

The heart is equippedwith four valves, called heart valves. Their function is to ensure
that during the cardiac cycle the flowof blood into the heart proceeds in a single direction,
that is established by the pressure gradient.
The heart valves are:

• two atrioventricular valves: the mitral valve and the tricuspid valve, placed be‐
tween the atria and ventricles;
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• two semilunar valves: the aortic valve and the pulmonary valve, placed between
the ventricles and arteries.

1.2.3 The Cardiac Cycle

The cardiac cycle is characterized by two main phases: systolic phase, when the heart
is contracting, and the diastolic phase, when the heart is relaxing. Both the phases are
divided into two subphases, which involve the atria and the ventricles. The atrial systol
is characterized by the contraction of the atria only and in this phase the blood is trans‐
mitted to the ventricles. In the same manner, the ventricular systole is represented by
the contraction of the ventricles only, which supply the blood to the vessels. As a conse‐
quence of the systolic phase, the heart needs to relax in the diastolic phase characterized
by the re‐expansion of the atria and ventricles [7].

Figure 1.4: The Cardiac Cycle.

In physiology, the Wiggers Diagram (Fig. 1.5) is used to show in a single graph the
following parameters:

• aortic pressure;

• ventricular pressure;

• atrial pressure;

• ventricular volume;

• electrocardiogram;

• arterial blood flow;

• cardiac tones.
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This graph summarizes all the activities that the heart does in a cardiac cycle. More
in detail, systole and diastole are identified also as cardiac contraction and cardiac relax‐
ation, in which occur the:

• isovolumic contraction;

• slow and fast ventricular ejection;

• isovolumic relaxation;

• rapid inflow;

• diastasis;

• atrial systole.

All these stages allow the heart to pump about 70‐80 mL of blood in each cardiac cycle.

Figure 1.5: The Wiggers Diagram.
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1.2.4 Cardiovascular Diseases (CVDs)

Cardiovascular diseases (CVDs) are among the main causes of morbidity, disability and
mortality. Ischaemic heart diseases, such as acute myocardial infarction and angina pec‐
toris, and cerebrovascular diseases, such as ischaemic and haemorrhagic stroke, are the
most lethal CVDs. However, the most common cardiovascular diseases are [8]:

• Heart Attack (ormyocardial infarction): a heart attack occurswhen themyocardium
is poorly perfused. This is because the blood flow that carries oxygen has been
greatly reduced or completely stopped. The main causes of a heart attack are
atherosclerotic plaques that accumulate in the coronary arteries. Therefore plaques
are an obstacle to the blood flowing through the arteries, which could block or stop
blood flow altogether and cause a heart attack.

• Stroke: although it manifests itself in the brain areas, stroke belongs to the same
cardiovascular disease as related to blood flow. In almost all cases, stroke occurs
when a blood vessel that carries blood and oxygen to the brain is occluded. Haem‐
orrhagic stroke can also occur due to malformation of the vessels or abnormal
growths of cerebral blood vessels.

• Heart Failure: this term refers to the heart not pumping blood as well as it should.
The heart is not sufficient to satisfy the metabolic requirements of the body. The
difficulty in carrying out somedaily actions, such aswalking or climbing stairs, could
be related to heart failure.

• Arrhythmia: this term refers to any alteration of the sinus rhythm. Bradycardia and
tachycardia indicate too slow and too fast rhythms, respectively. When any kind of
rhythm is completely lost, the heart does not work effectively.

• Heart Valve Complications: heart valves can have problems opening and closing.
These two conditions are indicatedwith the terms stenosis, when the valves do not
open completely, not allowing the blood to run properly and regurgitation, when
the valves do not close completely, which enables blood to leak through.

Unfortunately, the CVDs have a very strong incidence, but they can be prevented and kept
under control, by leading a healthy lifestyle and undergoing periodic visits to a specialist
doctor. A complementary solution could be to use devices capable of recording cardiac
activities during the day and making them available to a physician, who can remotely
monitor the clinical condition of the patient and possibly summon him to his practice for
a more thorough control.
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1.3 Electrocardiography
Electrocardiography (ECG) is the gold standard to monitor the heart’s health [9]. The
ECG analysis is performed by using several electrodes placed on the skin. Through this
technique it is possible to record the electrical activity of the heart and to display it on
a specific trace called electrocardiogram. The electrical activity of the heart is identified
by the depolarization of the cardiac muscle followed by its repolarization.

The ECG exam can be performed mainly in two ways: using twelve electrodes, also
called 12‐lead ECG, or using few leads. Through the first method it is possible to iden‐
tify some serious diseases, such as the acute myocardial infarction (AMI) through the ST
segment elevation on the electrocardiogram, while the second method is used in some
devices to detect suspect activities, for example arrhythmia [10].

1.3.1 ECG signal

The most important vital sign that can be obtained from the ECG is the heart rate, which
indicates the number of beats that occur in one minute (bpm). This measure can vary
depending on the physical condition of the body. In addition, certain activities such as
exercise, sleep, anxiety, stress, illness, and drug usemay affect the normal (sinus) rhythm
of the heart [11].

Froma purelymorphological point of view, the electrocardiogramof a healthy subject
has some fundamental features that make it the absolute standard of reference. These
characteristics include the signal amplitude between 1‐10 mV and the signal band be‐
tween 0.5‐125 Hz, as well as its unmistakable appearance which is constituted from (Fig.
1.6):

• intervals: which are defined starting from the beginning of a wave to the beginning
of the following wave;

• segments: which are defined starting from the end of a wave to the beginning of
the following wave.

Moreover, the ECG presents:

• P wave: the P wave represents the depolarization of the atria (80‐100 ms);

• PR interval: the PR interval identifies time needed by electrical impulses to travel
from the SA sinus node to the AV node (100‐120 ms);

• QRS complex: the QRS complex represents the rapid depolarization of the ventri‐
cles (80‐120 ms);

• QT interval: the QT interval represents the depolarization and repolarization time
of the ventricles (200‐400 ms);
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Figure 1.6: Typical ECG signal.

• ST interval: it is the period in which the ventricles are completed depolarized;

• T wave: the T wave identifies the repolarization of the ventricles (160 ms);

• U wave: sometimes this wave is present and probably describes the last repolar‐
ization signal of the ventricles.

To obtain the electrocardiogram it is necessary to arrange the electrodes on the pa‐
tient’s skin in two or more places. The placement of the electrodes is not random, but
has been defined in such a way as to best record the electrical activity of the heart. The
leads that are used to record an electrocardiogram are divided in two groups: bipolar
leads and unipolar leads. The first, second and third main leads belong to the group of
bipolar leads, also indicated by the Roman numerals I, II and III. In this case, to obtain a
cardiac monitoring it is necessary to use at least two of the three electrodes available,
which generally follow the positioning shown in Fig. 1.7. Through unipolar leads it is pos‐
sible to detect the potential in an anatomical site with respect to a reference. The three
increased leads belong to unipolar group, also known as aVR, aVL and aVF, obtained as
the combination of the three main leads and the six precordial indicated as V1, V2, V3,
V4, V5 and V6 and represented by the placement of the electrodes in the torso area (pre‐
cordium).
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Figure 1.7: Placement of 12‐Lead ECG electrodes.

As already mentioned, ECG is to date the main test that is carried out to assess car‐
diac activity. This type of examination is intrusive, as electrodes must be placed on the
patient. Although the simplest monitoring activity requires the use of two electrodes,
the problems that the patient faces are as follows:

• for each monitoring session, the electrodes must be positioned carefully so that
they do not come off;

• carrying out the activity of the day with the burden of cables;

• possible skin irritation due to electrode placement;

• not negligible cost of the device and replacement electrodes;

• patient acceptability of wearing a device in direct body contact.

The aim of this work is to release the subject from themain disadvantages of the ECG
technique, thus making easy to perform the cardiac monitoring in home or hospital bed,
in a way completely non‐intrusive, non‐invasive and especially not expensive.
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1.4 Ballistocardiography
Ballistocardiography is a non‐invasive technique based on the detection of the human
body motion caused by the ballistic forces (recoil and impact) associated to the ejection
of blood at each cardiac cycle. Through this method it is possible to identify the cardiac
rhythm or some anomalies of the circulating system, recording acceleration, velocity or
displacement of the blood flow.

The term ballistocardiography is composed by threewords: ballisto refers to the Latin
ballista, which derives from the Greek word ballein (to throw), while cardio and graphy,
both derive from Greek words kardio and grafia, which mean heart and writing, respec‐
tively.

1.4.1 The birth of the ballistocardiography

In 1877, Gordon was the first to observe a correlation between the motion of the human
body and the heartbeat. He discovered that standing on a spring weighing scale, peri‐
odicmovements were shown by the readout needle. Gordon noticed that these swinging
were synchronous with his heartbeat [12]. Therefore, he began to perform some experi‐
ments recording the swinging from a person standing erect. Afterwards, he changed his
setup constructing a suspended swinging bed, held by four ropes.

In 1905, Yandell Henderson published a work quite similar to the Gordon’s design
[13]. He used a 9 kg suspended table supported by four steel wires capable of mov‐
ing just in one direction. Nevertheless, the system proposed by Henderson encountered
some issues, for example the natural frequency of the bed was very low, which was su‐
perimposed to the breath signal. Due to this reason, Henderson asked the volunteers
to stop breathing during the trial, but then he was able to remove the breathing signal
instructing the subjects to make different tasks.

In 1939, Isaac Starr designed a modified suspension bed platform. Thanks to that he
achieved significant results [14]. Starr constrained the end of the bed with a still spring.
In this way he was capable of increasing the natural frequency of the system, in order
to minimize the problems related to the breathing. Starr is considered the pioneer in
this field, describing in a detailed manner the signal’s morphology and its physiological
meaning [14]. Even if he inspired several researchers, they lost the interest for this field.
In fact, the number of publications related to ballistocardiography decreased drastically
up until the 1980s, almost disappearing at the end of the 1990s. This was probably due
to [15]:

• a lack of standard measurement systems;

• a lack of clear physiological meaning;

• low specificity and reliability for the identification of pathological conditions;

• arising of others diagnostic methodologies, such as electrocardiography.
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However, in the last two decades, ballistocardiography aroused interest among re‐
searchers again. Accomplice of this phenomenon is certainly the meaningful develop‐
ment of technology, in terms of sensors and new sophisticated algorithms. Moreover,
the BCG, as a non‐invasive method relying on unobtrusive sensors, represents a valid
solution to monitor patients’ cardiovascular activities directly in their home place.

1.4.2 BCG signal

During the cardiac cycle, the heart impels blood at considerable speed into the aorta.
More specifically, during early systole, blood is pushed into the aorta towards the head.
Once past the aortic arch, in late systole, blood flows to reach the peripheral vessels. In
both cases, a recoil force is developed due to Netwon’s third law of motion. Ballisto‐
cardiographs simply record the action that develops as a result of this phenomenon, in
terms of displacement, velocity, or acceleration [16].

Figure 1.8: Arch aortic and force vectors.

In 1956, the CommitteeonBallistocardiographic Terminology decided to use the nomen‐
clature proposed by Starr et al. in [14]. Therefore, the BCG signal was labelled with the
capital letters fromG toO. Before explaining in detail the ballistocardiogram, a bare intro‐
duction of the BCG signal (Fig. 1.9) is provided in order to show the signal’s morphology:

• H‐I wave: it represents the blood flow directed to the head (opening of the aortic
valve);

• I‐J wave: it represents the blood flow which is pushed towards the feet, therefore
the trend is opposed than the H‐I waves;

• J‐Kwave: it represents the blood flowwhich passes through arteries, therefore the
trend changes again (closing of the aortic valve);

• K‐L‐M‐N‐O wave: this complex represents the dampening of the BCG signal.
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Figure 1.9: BCG signal nomenclature proposed by Starr.

However, the different waves of the BCG signal are classified in three different clus‐
ters: Pre‐Systolic Group, Systolic Group and Diastolic Group [17]. These groups include
the BCG waves named with the capital letters according to the convention aforemen‐
tioned proposed by the Committee on Ballistocardiographic Terminology.

1.4.3 Physiological meaning of the BCG signal

As anticipated, the BCG is associated to the cardiac phases and it may be divided in the
following three groups [17]:

Pre‐Systolic Group
The stage which precedes the contraction of the heart is described by the pre‐systolic

group. The F wave is a positive deflection, rarely seen on the ballistocardiogram, origi‐
nated by atrial contraction. The G wave is a small foot‐ward wave which is associated to
the atrial systole and it comes earlier than the H wave. Compared to the ECG signal, the
G wave precedes the QRS complex and follows the P wave.

Systolic Group
During the systole, the heart pumps the blood into the arteries. This activity is seen

by the systolic group, characterized mainly by the H, I, J and K waves. The H wave is a
head‐ward deflection which can be seen at the beginning of ejection. The I wave is a
foot‐ward deflection which is associated with ventricular eject. Themost dominant wave
which can be seen clearly on the ballistocardiogram is the J wave. The J wave occurs after
the QRS complex, later in systole. The end of systole is identified by the K wave, which
occurs due to the systemic circulation.
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Diastolic Group
In this stage the heart relaxes and fills its chamber with blood. This phase is character‐

ized by the L, M, N and O waves, which are very dumped. For this reason, these waves
may not be shown on the ballistocardiogram.

The BCG signal, being of mechanical origin, can be measured through several sen‐
sors, which exploit the swinging of the human body, transducing it into an acceleration,
a voltage, a wavelength variation, etc. Moreover, the BCG signal in a healthy subject
does not assume always the same shape, but there is a strong difference among dif‐
ferent subjects. Therefore, the association between the physiological meaning and the
ballistocardiogram is always valid, but not clearly visible in every BCG trace.

1.4.4 Mechanical Differences in the first Ballistocardiograph Designs

In 1956, Scarborough and Talbot made a revisitation and extension of the ballistocardio‐
graphic nomenclature and conventions. The first classification of the ballistocardiographs
was based on the natural frequency related to the weight and the stiffness of the system
[17]. At the time, it was really useful making this classification, because the first approach
to the BCG was similar among all the researchers. Therefore, the BCG system were clas‐
sified in:

• Ultra low‐frequency BCG (UF‐BCG): a platform or hammock supports the body.
The system is slightly dumped and the natural frequency is in range 0‐0.5 Hz.

• Low‐frequency BCG (LF‐BCG): the LF‐BCG design is quite similar to the UF‐BCG.
The natural frequency of this system is in range 1‐2 Hz. Unlike the ULF‐BCG system,
dumping is critical or more than critical.

• High‐frequency BCG (HF‐BCG): the system does not present external dumping and
the fundamental frequency is higher than the UF‐BCG and LF‐BCG; it is in range 3‐9
Hz.

• Direct Body Ballistocardiographs (DB‐BCG): the body is usually coupledwith a rigid
flat surface. Therefore, themechanical characteristic are those of the human body.
The frequency are rather similar to those of HF‐BCG.

The UF and LF‐BCG are affected from one main drawback: their low frequencies su‐
perimpose the respiratory component. For this reason, it is required fine control of the
subject’s respiration. However, these systems had higher bed displacement, which did
not require high amplification. On the other hand, HF‐BCG system permits a normal
breathing, but smaller bed displacement are possible, which required high amplification.
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Displacement records from several BCG system are shown in Fig. 1.10. The HF‐BCG
(I) is really similar to the DB‐BCG system (II), but looks quite different to the UF‐BCG (IV)
systems. Moreover, the signal can be described up to theMwave, because after that the
waves became too dumped.

Figure 1.10: Displacement records from BCG systems (I‐IV) compared to carotid pulse,
ECG and phonocardiogram: I) HF‐BCG, II) DB‐BCG, III) LF‐BCG, IV) UF‐BCG.
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1.4.5 End of the classical Ballistocardiography

The BCG reached strong interest among the researchers from the 1930s to 1970s. They
sought to demonstrate the usefulness and the clinical efficacy of this new methodol‐
ogy. However, the emergence of much more reliable diagnostic techniques, such as ECG,
played a fundamental role in the reduction of research and development of ballistocar‐
diographic systems. Interest in BCG also waned due to the small steps that technological
development was taking at that time. Therefore, in these years a real first cycle ended
which marked the beginning of a real revolution in the field of non‐invasive monitoring.

Figure 1.11: Number of Ballistocardiography Publications on PubMed over the years.
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1.4.6 State of the Art

The first era of BCG focused on the various methods of signal acquisition, developing
systems that were rather difficult to replicate in patients’ home environments. At the
time, the main purpose was to be able to associate the BCG signal with a physiological
meaning. This was the main result achieved at the end of the 50s. Due to the type of
technology, it is not possible to identify a real ballistocardiographic device attributable to
this period.

In recent years, capturing the BCG signal has become an increasingly appealing chal‐
lenge that has gained interest among researchers around the world. Several studies at‐
test that the rhythmic activity of the heart was recorded through BCG sensors integrated
in mattresses, pillows, beds, chairs, or even weighing scales. Because of these numerous
acquisition methods, BCG signal analysis is a challenging process. However, to date the
most used sensors for the acquisition of the ballistocardiographic signal are: polyvinyli‐
dene fluoride film‐based sensors, electromechanical films, strain Gauges, hydraulic sen‐
sors, microbend fiber‐optic sensors as well as fiber Bragg grating [18]. In the following
paragraphs the main characteristics of the newly introduced BCG sensors are reported.

Piezoelectric polyvinylidene fluoride‐based sensor
Polyvinylidene fluoride (PVDF) is a high performance partially fluorinated thermoplas‐

tic polymer. Due to its piezoelectric properties, this material is exploited in speaker com‐
ponents and sensors. A typical sensormade of PVDF is a fragile film, causing amechanical
bending when subjected to a pressure, thus resulting in a displacement of negative and
positive charges in the center of the film. For this reason, the transduction of a pressure
in a charge proportional to the applied pressure is obtained. Since PVDF is a very sensi‐
tive material, it is possible to detect the small oscillations of the body due to the cardiac
activity of the heart [19].

Figure 1.12: Example of PVDF sensor.
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Electromechanical film‐based sensors
ElectroMechanical Film (EMFi) is a thin, flexible polypropylene film that can function

as a sensor or actuator. It is coveredwith enduringly polarized and electrically conductive
layers. EMFi is sensitive to the force that is exerted perpendicular to the surface of the
film. When a force is applied to the film, a charge is created on the conductive surface of
the sensor, which can be measured as a voltage or a current. EMFi can hold the charge
for a long time and therefore this can cause overheating and deterioration of the sensor
itself. At the same time, several studies show that is possible to exploit this type of sensor
for the detection of the ballistocardiographic signal [20].

Figure 1.13: Example of two EMFi strips.

Pneumatic‐based sensors
A pneumatic system is a system that uses compressed air to transmit and control en‐

ergy. In this case, the ballistocardiogram is related to the rhythmic movement of the air
trapped in a cushion placed between two surfaces, i.e. bed and mattress. Several re‐
searchers have demonstrated how this system is able to measure heartbeat, respiration,
snoring and body movements [21].

Figure 1.14: Application of Pneumatic‐based sensor.
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Strain‐gauge based sensors
Strain gauge is ameasuring instrument used to detect small dimensional deformations

of a body subjects tomechanical or thermal stress. Generally, these types of sensors, built
into scales ormattresses, are able to detect the cardiac activity of the heart, such as small
movements or forces applied by the subject, and to transduce them into a variation of
resistance [22].

Figure 1.15: Example of measurement setup and Strain‐gauge sensor location.

Hydraulic‐based sensors
Hydraulic sensors are generally integrated into the beds. These sensors consist of a

pressure sensor connected to the end of the transducer, and are suitable for recording
the vibration of the discharged hose. The system provides a measurement range that
goes from 0 to 10 kPa, perfectly compatible with the pressure that is exerted by a body
and transferred to the system consisting of the sensor and the bed. With the proper
sensitivity, the hydraulic sensor is thus able to evaluate the low pressure changes due to
the heartbeat [23].

Figure 1.16: Example of Hydraulic‐based sensor placed between the bed and the mat‐
tress.
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Fiber optic‐based sensors
Fiber Bragg grating sensors (FBGS) are the most widely used fiber optic‐based sensors

for ballistocardiographic signal detection [24]. Basically, the FBGS is an optical fiber used
as a filter for a specific wavelength. The wavelength shift is due to the change in temper‐
ature, voltage or pressure, detected by the FBGS. Because light does not interact with
magnetic fields, several authors have shown how these fibers are able to detect the BCG
signal in patients lying on MRI beds [25].

Figure 1.17: Example of a Fiber Bragg grating sensor (FBGS).
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Accelerometer‐based Sensor
This work addresses a sensor network based on accelerometers, thus an in‐depth sec‐

tion describing this kind of transducers follows next.

An accelerometer is a measuring instrument capable of detecting and/or measuring
acceleration by performing a calculation of the force affecting the mass of the object
(force per unit mass). Typically, an accelerometer is modelled by a mass‐spring‐damper
system shown in Fig. 1.18, where:

• m is the mass;

• k is the spring constant;

• c is the damper coefficient;

• x is the displacement.

Figure 1.18: Mass‐spring‐damper model of an accelerometer.

The equation describing the system depicted in Fig. 1.18 is as follows:

mẍ(t) + cẋ(t) + kx(t) = ma(t) (1.1)

Eq. 1.1 represents a second‐order differential equation. In the time domain, the
solution of this equation is a function.
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In the frequency domain a second‐order system has the following response:

H(s) =
1

s2 + ζωns+ ω2
n

(1.2)

where:

• ζ is the damping ratio;

• ωn =
√

k/m is the natural frequency of the system.

In general, accelerometers operate in the frequency range of the band represented by a
horizontal line in Fig. 1.19, region indicated as useful frequency range.

Figure 1.19: Typical frequency response of an accelerometer.

In this area the acceleration is proportional to the displacement measurement:

x =
ma

k
(1.3)

The displacement that is measured by the accelerometer is relative to the axis being con‐
sidered. Devices that are able to derive acceleration along a single axis are called uni‐
axial, while accelerometers that derive acceleration along three axes are called triaxial.
However, four biaxial inclinometers were used in this work. An inclinometer is a linear
accelerometer with a reduced measuring range generally used to detect slope, or incli‐
nation, due to its high sensitivity to variations of the gravitational acceleration. Since the
BCG signal has an amplitude ranging from 0 to 7 mg [26], not all accelerometers could
detect this signal. In addition, these types of measurement devices are greatly affected
by noise and motion artifacts.
An acceleration measurement can occur if the voltage generated by the sensor has an
amplitude greater than the voltage related to noise acceleration, amin given by the fol‐
lowing relation [27]:

amin =
Noise V oltage

Sensitivity
(1.4)

Therefore, high sensitivity values are needed to detect small accelerations.
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The noise density is among the descriptive parameters found on the datasheets of
various accelerometers. This is one of the characteristics related to the quality of this
kind of device. Generally, low values of this parameter are associated with better perfor‐
mances of the device. The noise density can be expressed as:

N =
amin√

f
(1.5)

where f is limited by the natural frequency of the sensor f0 = ωn

2π
.

Studies in [28] and [29] use inertial devices for BCG detection. Nevertheless, to date
there are several devices on the market that provide some parameters related to cardiac
activity from the BCG signal. Among these, none of them relies on an inertial sensor (Tab.
1.1).

Emfit QS Beddit Withings Sleepace Beautyrest Juvo
Reston

HR YES YES YES YES YES YES

HRV YES NO NO NO NO NO

Respiration YES YES YES YES YES YES

Breathing NO NO YES NO NO NO
disturbances

Sensor Type EMFi Piezoelectric Piezoelectric Piezoelectric Piezoelectric Microbend
force sensor force sensor force sensor force sensor fiber optic

Table 1.1: Examples of consumer bed‐based sleep monitoring devices.

However, the designed system is based on amulti‐sensor inertial network. This choice
made it possible to overcome themain limitations affected by other types of transducers,
for example:

• compared to FBGS, accelerometers are mechanically more robust;

• the dimensions of the inertial sensors are much smaller than those of pneumatic‐
based and hydraulic‐based sensors;

• compared to EMFi and PVDF sensors, no external pressure (i.e. the weight of the
subject lying on the bed) acts on the designed system. The inclinometers are posi‐
tioned on the mattress and therefore do not suffer from this problem;

• compared to devices on themarket, the proposed systemconsists ofmultiple trans‐
ducers.
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Ultimately, the designed system is easily transportable in a commonbag and the users
can easily assemble it by themselves. Therefore, the proposed system is an excellent
candidate to perform the heart rate measurement in a non‐invasive and non‐intrusive
way in the home or hospital environment.
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Chapter 2

Materials and Method

The aim of this work is to detect the heart rate from the ballistocardiogram, exploiting an
inertial multi‐sensor network produced by the company STMicroelectronics. The inertial
sensors used were four IIS2ICLX inclinometers, embedded in a bed‐based recording sys‐
tem and wired‐connected to the STeval‐STWINKT1 through a SPI interface. The target is
to assess if a network of sensors could detect the BCG signal for a sleep cycle and for any
position that the subject could assume (i.e. supine, prone, etc.).

The project divides into four main steps:

• Hardware Design;

• Firmware Design;

• Signal Capture;

• Data Processing.

2.1 Hardware Design
Of all the sensors that are used for BCG signal acquisition, inertial sensors are certainly
the least used. One of the possible reasons could be that a sensor of this type should
have a high resolution and a low noise level. Therefore, these two parameters played a
key role in the choice of the sensor. In order to choose the most suitable device for this
application, it was necessary to evaluate the main inertial sensors produced by STMicro‐
electronics, simply by visiting the company website and comparing the characteristics of
each one described on their datasheet. From this analysis it turns out that the sensors
with the best features are the inclinometers IIS3DHHC [30] and the IIS2ICLX [31]. After
the most suitable sensors for this application were identified, their main characteristics
were compared with the inertial sensors used in the literature.
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STMicroelectronics

SCA61T1H1G ADXL362 ADXL355 IIS3DHHC IIS2ICLX
[32] [33] [34] [30] [31]

Supply Voltage [V] 4.75 ‐ 5.25 1.6 ‐ 3.5 2.25 ‐ 3.6 1.71 ‐ 3.6 1.71 ‐ 3.6

Min. Acceleration ± 1 ± 2 ± 2 ± 2.5 ± 0.5
Range [mg]

Sensitivity [mg/LSB] 1.221 1 3.907 0.076 0.015

Noise Density [µg/
√
Hz] 8.89 550 22.5 45 15

Table 2.1: Comparison between the inertial sensors used in the literature and the incli‐
nometers produced by STMicroelectronics.

The IIS2ICLX model has been chosen.

2.1.1 IIS2ICLX inclinometer

The IIS2ICLX inclinometer is a high‐accuracy (ultra‐low noise, high stability and repeata‐
bility) and low‐power two‐axis linear accelerometer with digital output. The IIS2ICLX has
a selectable full scale and is capable of providing the measured accelerations to the ap‐
plication over an I2C or SPI digital interface [31].

More in detail, the main features of the IIS2ICLX inclinometer are:

• Number of axis: 2 (X‐axis and Y‐axis);

• Dimensions: 5× 5× 1.7 mm;

• Sensitivity:

– 0.015 mg/LSB with a full scale of± 0.5 g;

– 0.031 mg/LSB with a full scale of± 1 g;

– 0.061 mg/LSB with a full scale of± 2 g;

– 0.122 mg/LSB with a full scale of± 3 g;

• Noise density: 15 µg/
√
Hz;

• Supply voltage: 1.71 ‐ 3.6 V;

• Current Consumption: 420 µA and 3 µA during power‐down;

• Bandwidth: 0 ‐ 260 Hz;

• Temperature range: ‐40 to 105 C°.
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Figure 2.1: STeval‐MKI209V1K and the IIS2ICLX inclinometer.

In this work, the STeval‐MKI209V1K evaluation board was used [35]. It has an em‐
bedded IIS2ICLX inclinometer sensor, which is connected through a flat cable to a simple
adapter board, the STeval‐MKIGIBV2 . As shown in Fig. 2.1 the sensor is soldered pre‐
cisely in the center of the board. The STeval‐MKI209V1K allows to communicate with
the inclinometer through the use of the STeval‐MKIGIBV2 adapter board, which makes
all of the sensor pins accessible in a fairly simple way, allowing to plug the adapter into a
compatible socket.

In general, the sensor IIS2ICLX is used for the following applications :

• precision inclinometers;

• antenna pointing and platform leveling;

• structural health monitoring;

• precise leveling instruments;

• installation and monitoring of equipment;

• robotics and industrial automation.

Figure 2.2: STeval‐MKIGIBV2 adapter board.
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2.1.2 STeval‐STWINKT1

The STeval‐STWINKT1, common named as STWIN (Sensor Tile Wireless Industrial Node),
is a development kit and reference design that simplifies prototyping and testing of ad‐
vanced industrial IoT applications such as condition monitoring and predictive mainte‐
nance [36].

This development board features the STM32‐L4R9IJ6 microcontroller, the thinking
unit of the system. The STM32L4R9ZI devices is an ultra‐low‐power microcontroller (
STM32L4+ Series MCU) based on the highperformance Arm Cortex‐M4 32‐bit RISC core,
which operates at a frequency up to 120 MHz. In fact, this microcontroller is recom‐
mended for those applications that require low power consumption, but at the same
time high performance. Considering that this work is designed for a long time monitor‐
ing application, the chosen microcontroller fully meets the desired requirements.

Figure 2.3: STWIN Core System board top and bottom.

In addition, the STWIN board includes the following sensors:

• HTS221 relative humidity and temperature sensor;

• LPS22HH digital absolute pressure sensor;

• STTS751 low‐voltage digital local temperature sensor;

• TS922 rail‐to‐rail, high output current, dual operational amplifier;

• IIS3DWBultra‐wide bandwidth (up to 6 kHz), low‐noise, 3‐axis digital vibration sen‐
sor;

• IIS2DH ultra‐low‐power high performance MEMS motion sensor;

• IIS2MDC ultra‐low‐power 3‐axis magnetometer;

• MP23ABS1 analog MEMS microphone;

• IMP34DT05 industrial grade digital MEMS microphone.
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Regarding connectivity, the STWIN can communicate with other devices through the
Bluetooth® Smart v4.2 protocol or via WiFi by connecting the STWIN to the appropri‐
ate connector STeval‐STWINWFV1 Wi‐Fi expansion board, not included in the STeval‐
STWINKT1 kit.

The STWIN components that have been exploited in this project are as follows:

• 480mAh 3.7V Li‐Po Battery: to avoid plugging the device into an electrical outlet;

• STMOD+ connector: in order to connect the four IIS2ICLX inclinometers using the
SPI interface easily accessible from this connector;

• microSD card socket: necessary for saving data during the acquisition phase of the
BCG signal;

• green and orange leds: in order to give a visual feedback to the user about the
recording session;

• buttons: to turn the device on and off (PWR button), to start (RESET button) and
to stop data acquisition (USR button).

The STMOD+ connector plays a fundamental role for the system that provides the
connection between the microcontroller and the four accelerometers. In fact, through
this connector it is possible to power the inclinometers and to exploit the SPI interface
to make the communication happen. The power supply voltage on this connector, indi‐
cated in the datasheet as Vext and selectable by the jumper J3 of the STWIN, can be at
minimum 3.7 V (if the board is powered by the supplied battery) and at maximum 5 V (if
the board is connected to the mains or to a PC). As reported in the previous paragraph
2.1.1., the inclinometers can be powered at a maximum voltage of 3.6 V, therefore, in
order to use the power supply lines of this connector, the following board modification
has been necessary: the central pin Vext of the voltage selector has been soldered on the
test point TP3, which provides a continuous voltage of 3.3 V and thus inhibiting the use
of jumper J3.
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2.1.3 Communication interface between STWIN and IIS2ICLX

To allow communication between the STWIN and the four IIS2ICLX inclinometers, the
SPI protocol accessible from the STMOD+ connector of the development board was ex‐
ploited.

The Serial Peripheral Interface (SPI) is a communication bus developed by Motorola.
The master controls the bus, emits the clock signal and decides when to start and to stop
the communication [37].

Typically, the SPI protocol is based on four signals which are:

• MOSI (Master Out Slave In): through this line the information travels from the
Master to the Slave;

• MISO (Master In Slave Out): through this line the information travels from the
Slave to the Master;

• SCLK (Serial Clock): the clock signal, that provides the time base for communica‐
tion, is shared on this line;

• SS (Slave Select): whenever themaster decides to communicate with the slave this
line changes state, generally the switching is from logic high state to logic low state.

Figure 2.4: SPI bus: example of connections between a single‐master and a single‐slave.

Fig. 2.4 shows an example of connection between a single‐master and a single‐slave.
Whatever the case, it is possible to interface more slaves to the master by sharing the
same SS or increasing the number of SS, one for each peripheral. The first method, also
known as theDaisy Chain, involves communication between amaster andmultiple slaves
by sharing the same SS. This type of connection allows the number of lines to the SS to be
minimized, but if this line was to be damaged the communication between the master
and slaves would be completely gone. The second method requires the connection be‐
tween the master and the slaves to be made via dedicated SSs, one for each peripheral.
Regarding this, if the connection between a peripheral and the master were interrupted,
the other slaves involved could continue to communicate with the master. The main
drawback of this method is that for each slave a physical line for the SS is required .
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Figure 2.5: Example of connection between master and three slaves: A) SS shared be‐
tween slaves (i.e. Daisy Chain configuration); B) SS independent for each slave.

Since this work involves the connection between four sensors, a configuration with
four separate SSs lines has been chosen for the SPI interface, in order to guarantee com‐
munication between the STWIN (master) and each IIS2ICLX inclinometer (slaves).
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2.1.4 Acquisition System

The prototype systemwas built in the STMicroelectronics laboratory, exploiting the com‐
ponents presented in the previous paragraphs. Two stripboards were used to connect
the four inclinometers, one for each pair of sensors. On each of these two sockets have
been soldered, in order to plug the STeval‐MKIGIBV2 adapter boards, fundamental for
the communication of the four sensors through the appropriate flatcables. The common
lines (i.e. power supply, ground, MISO, MOSI, CLK) and the SSs lines, were soldered to
a male IDC connector. This configuration allows the signals from each stripboard to be
collected into a bridge‐board designed to connect the STWIN.

The setup just described is shown in Fig. 2.6.

(a) The STWIN and the two stripboards with the four IIS2ICLX incli‐
nometers and the STeval‐MKIGIBV2 adapter boards.

(b) The four flat cables (on the left); the bridge‐board (at the center)
and the cable used (on the right).

Figure 2.6: The prototype system.
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2.2 Firmware Design
The microcontroller has been programmed using the C programming language and ex‐
ploiting the KEIL integrated development environment (IDE). The implemented firmware
allows the microcontroller to perform the following tasks:

• capturing data from each sensor;

• saving the acquired data on a microSD;

• providing feedback to the user by blinking LEDs;

• battery management.

2.2.1 Brief firmware description

Once the device is turned on it is possible to capture data from each sensor. This occurs
exclusively in the presence of the micro SD card. The start of the recording is confirmed
by the blinking of two leds: the orange led confirms that the micro SD card is correctly
inserted and the green led confirms that the data saving is taking place successfully. The
USR and RESET buttons are used to stop and to start recording respectively. Data acqui‐
sition is performed according to the ”polling mode”, i.e. the data is read from the single
register of each sensor and, in this case, they are saved in a CSV file stored in the micro
SD card. The recording times are managed by a timer, which enables the request of the
data to the four sensors every 0.025 s, allowing the microcontroller to sample data at a
frequency of 40 Hz. Moreover, in order to verify that the timing of acquisitions complies
with the specifications, the program records the timestamp, the time instant in which the
data is acquired. A typical example of the data returned by the microcontroller is shown
in Tab. 2.2.

X1 X2 X3 X4 Y1 Y2 Y3 Y4 Timestamp
[mg] [mg] [mg] [mg] [mg] [mg] [mg] [mg] [10‐6 s]

‐2.90 7.19 ‐9.62 4.10 19.99 ‐2.20 6.19 ‐8.81 91067201158

Table 2.2: Examples of acquired data from the BCG system.
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2.2.2 Firmware Flowchart

Figure 2.7: Firmware flowchart.
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2.3 Signal Capture

2.3.1 Sensors Placement Evaluation

The system described in the previous paragraphs is the one used to record the ballisto‐
cardiographic signals of several subjects lying on the bed. The identification of the best
areas where to place the four sensors has been a relevant part of this study. Initially, the
coupling between the sensors and the mattress has been decided, by paying attention to
the sources that could introduce noise. The first tests were carried out by positioning the
sensors directly between themattress and themattress cover. The next step was to iden‐
tify the best signal by performing a qualitative analysis, i.e. evaluating the morphology
of the BCG signal for each sensor position. To do this, four regions have been identified:
head, shoulders, hip and legs. Each region was subdivided into other sub‐areas, and in
each of these the sensors were placed in order to record, and subsequently to evaluate,
the quality of the signal.

Fig. 2.8 shows the protocol just described for evaluating the best positions.

Figure 2.8: Evaluation of the sensor placement in the four identified positions: head (H*),
shoulders (S*), hip (P*), and legs (L*), where ”*” indicates the i‐th sub‐areas. The recoil
force vector related to the BCG and the sensor orientation are shown at the bottom of
the figure.
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From this analysis it was possible to identify the best four sensors positions and the
best inclinometer axis. In accordance with the direction of the recoil force, the Y axis
represents the axis that givesmore information, being parallel to the recoil force axis. This
consideration reflects the study performedbyGubner et al. [38]. In addition, it was noted
that the BCG is also visible on the X‐axis. On the other hand, the X‐axis is very sensitive
to respiratory activity, which, however, was not addressed in this study. Ultimately, the
head and the legs were the chosen regions, because the BCG signal has a better peak‐
to‐peak amplitude and morphology than the other regions. The sub‐areas chosen are
those indicated in Fig. 2.8 with H1, H5, L1, and L5, i.e. the areas that are closest to the
corners of the mattress. This choice allows to obtain two fundamental benefits: the first
concerns the quality of the signal and the second concerns the minimum encumbrance
of the sensors on the mattress, and consequently less discomfort for the subject.

Figure 2.9: Representation of the four IIS2ICLX inclinometers in the four chosen positions.

Note that the nomenclature of Fig. 2.9 changes from Fig. 2.8 solely to make it eas‐
ier to read. From this moment on, the Y1 and Y3 axes refer to the sensors positioned,
respectively, on the right and left sides of the subject in supine position at head level.
Following the same logic, the Y2 and Y4 axes refer to the sensors positioned at leg level.
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A real example of the designed system configuration is shown in Fig. 2.10.

Figure 2.10: Real configuration of the four IIS2ICLX inclinometers.
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2.3.2 Acquisition Protocol

The acquisition protocol requires sensors to be placed in the four identified zones of the
mattress. After this, the subjects can lie downon themattress and sleep in their preferred
position. Regarding the duration of the acquisitions, this turned out to be dependent
from subject to subject. However, the signal processing phase, which will be explained
later, will not take into account the first 30 minutes and the last 30 minutes of the signal.

2.3.3 Dataset Acquisition Phase

The performance of the algorithm described later has been evaluated using a data set of
9 recordings from healthy volunteers, including 7 men and 2 women. The main subjects
characteristics are summarized in Tab. 2.3.

Subject Gender Age Height [cm] Weight [kg] BMI [kg/m2]
1 Male 25 180 80 24.69

2 Female 23 155 46 19.15

3 Male 25 165 60 20.57

4 Female 27 164 54 20.08

5 Male 22 183 63 18.81

6 Male 31 179 73 22.78

7 Male 26 173 67 21.05

8 Male 24 169 67 23.46

9 Male 25 178 73 23.04

Table 2.3: Subjects characteristics.
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2.4 Data Processing
Data processing was performed by using the MATLAB 2021 development environment,
using the Signal Processing ToolboxTM package.

2.4.1 Data Processing Flowchart

Below there is the flowchart that summarizes all the main phases of data processing.

Figure 2.11: Data Processing Flowchart.
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2.4.2 Acquisition Timing Evaluation

The issue related to timing is among the most important specifications that must be met
during the signal acquisition. In this project, the two pairs of inertial sensors are placed at
a distance of 180‐200 cm, depending on the size of themattress. This distance introduces
a delay for signal acquisition. However, by checking the timing of data acquisition from
each individual sensor, it is found that the time interval between data acquired from each
pair of sensors is much smaller than the desired sampling interval, therefore this delay
has been neglected. The timing for data acquisition is managed by two timers. The first
enables the signal capturing, allowing a sampling rate of 40 Hz, while the latter saves the
instant of time when the data is taken, i.e. the timestamp. Due to its high precision, the
timer peripheral allows a very accurate time base for the signals acquisition. However, a
preliminary analysis has been performed to verify that the timings, and consequently the
number of samples in a determinate time interval, corresponded to what was expected.
The result of this analysis is shown in Fig. 2.12, in which the timestamp (oblique line) and
the sampling rate (horizontal line) are plotted.

The results obtained through this analysis completely met the specifications. There‐
fore, the next step related to data pre‐processing has been carried out.

Figure 2.12: Timing Analysis: A) Timestamp and B) Sampling Frequency.
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2.4.3 Signal Pre‐processing

The rawdata acquired include both the BCG signal and the components related to breath‐
ing, background noise and subject movements. Therefore, the signal pre‐processing step
is necessary to manage only those components belonging to the band of interest, by re‐
ducing the effect of noise sources. The bandwidth of the BCG signal is 1‐10 Hz, thus, in
order to exclude all the components with a frequency not belonging to this range, the
data of each sensor were filtered through a digital filter.
Before proceeding with filtering, a frequency analysis was performed, calculating the
power spectral density (PSD) of the signal in order to assess that the BCG bandwidth
was in the desired range (Fig. 2.13).

Figure 2.13: Example of the PSD : A) Raw Signal and B) Filtered Signal.

The signal components belonging to the unwanted bandwidth were attenuated by
digital filtering.
The theory of digital filtering involves the use of two types of filters: the FIR (Finite Impul‐
sive Response) filters and the IIR (Infinite Impulsive Response) filters [39]. The FIR filters
are realized from a moving average (MA) representation and their representation in the
time domain is usually defined by a finite number of samples of the input signal. On the
other hand, the IIR filters are realized from an autoregressive representation (AR) and
their time domain representation requires an infinite number of samples of the input
signal. For this work, a FIR filter has been chosen for three main reasons: the first is that
FIR filters are the most widely used filters in the microcontrolled devices, the second is
that FIR filters can have a linear phase and the third is that FIR filters make it possible
to perform the filtering operation based only on the ”input” samples. This last reason
allows to perform digital filtering of a signal in real‐time.
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Data were filtered using MATLAB’s fir1 function, which takes the filter order and the
bandpass as input (Fig. 2.14).

Figure 2.14: The FIR filter designed: A)Magnitude Response (dB) and B) Phase Response.

A downside of this type of filters is that they introduce a transient equal to half the or‐
der of the filter itself. This aspect was treated by performing a realignment of the signal.
Finally, in order to obtain a smoother signal, the Savitzky‐Golay filter was implemented
in cascade with the FIR filter, using the MATLAB’s sgolayfilt function. This filter allows to
increase the precision of the data without distorting the signal tendency [40].

The filters chain providing the final data starting from the raw ones is composed of
the two filter stages previously described and the low‐pass filter integrated on each in‐
clinometer (Fig. 2.15).

Figure 2.15: Block diagram of the filtering stage.

The function of each filtering step is presented below:

• Low‐Pass Digital Filter at ODR/4: this filter represents the first stage of filtering that
is carried out on each inclinometer. The cut‐off frequency of the digital low‐pass
filter is one quarter of the ODR (Output Data Rate) of the sensor. The ODR has been
set to 208 Hz, in order to ensure the correct sampling of the data from each sensor,
thus obtaining a cut‐off frequency equal to 52 Hz;

• Bandpass FIR Filter: this step was necessary because the sensors do not integrate
a bandpass filter with the desired cutting frequencies [1,10 Hz];
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• Savitzky‐Golay Filter: this filter allows the implemented algorithm to improve the
detection of the J wave, which is fundamental for the calculation of the heart rate.
This is because the filter smooths the signal, thus preventing the occurrence of
unwanted peaks.

The effectiveness of filtering can be appreciated in Fig. 2.16, which shows the differ‐
ence between the raw and filtered data for the BCG signal.

Figure 2.16: Comparison between: A) the raw signal and B) the filtered signal.
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2.4.4 Motion artifacts management

Generally, during the acquisition phase of biomedical signals, such as ECG or X‐ray imag‐
ing, subject motion may affects the quality of the data. In most cases, for short acquisi‐
tions, the subject involved is asked to maintain a fixed position. For this application, it is
unthinkable to imagine that a subject could maintain the same posture for several hours.
In fact, during sleep it happens that the patient may moves, changing position several
times. Apart from the subject movement, the effect of the sheets must be considered
too. These just described represent the sources of disturbance that can occur most fre‐
quently in this particular application. Therefore, the management of motion artifacts is
of paramount importance.

In this work, motion artifacts were handled as follows. For every 2 s of signal the
standard deviation is calculated. If this value is greater than at least 3 times the standard
deviation value calculated over a 10 s of the adjacent signal window, most likely a motion
artifact occurred and therefore this region of the signal is set to zero.

Figure 2.17: Example of BCG signal: A) BCG signal WITHmotion artifact and B) BCG signal
WITHOUT motion artifact.
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2.4.5 Heart Rate detection

Among the waves characterizing the ballistocardiogram, the J wave is typically the most
prominent. In parallel, because of the inter‐subjects variability in BCG signal morphol‐
ogy, the search for the J wave represents one of the toughest challenges to be faced.
There are several approaches used in the literature that employ alternative methods to
search for the J peak. For example, algorithms working in the frequency domain return
the heart rate based on the PSD peak of the signal, but with low accuracy and high com‐
putational costs. For this reason, in order to detect the heart rate in the time domain, a
method based on the search of the J peak of the ballistocardiogram was implemented.
The method that will be discussed below involves a correlation based approach, inspired
by the studies performed by Xin Wen et al [41].

The BCG signal acquired during a complete sleep cycle, is divided into 30 s portions,
before being processed by the algorithm as follows:

• Pattern Determination;

• Heartbeat Detection;

• Interval Calibration and Refinement;

• Heart Rate Calculation.

Pattern Determination
The main assumption on which this phase of the algorithm is based is that in a time

span of 10 s the BCG signal is highly correlated with itself. Therefore, considering the
portion of the signal that the algorithm takes as input (i.e. 30 s), a section equal to 10 s
is selected. Subsequently, the normalized auto‐correlation function (ACF) is calculated.
This function allows to evaluate how much a signal at the time t is correlated with the
same signal translated by an amount equal to τ . Themaximumvalue of this function is as‐
sumed when the delay τ is 0, i.e. when the signal is superimposed with itself. In the case
of the BCG signal, it can be assumed that the signal morphology does not change much
in a short time span. Therefore, by calculating the auto‐correlation function, it can be
seen that in some temporal instants there are prominent peaks that occur synchronously
with the heartbeat. The region of the BCG signal identified by the temporal position of
these peaks identifies the pattern, i.e. portions of the signal that will be correlated with
the remaining region of interest of the ballistocardiogram.

Fig. 2.18A shows an example of the normalized ACF. Peaks that are useful for pattern
determination are those that have an amplitude greater than 0.25 and they must be at
least three times larger than adjacent peaks, as described in [41].
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Figure 2.18: The process of the Pattern Determination: A) The ACF function; B) Patterns
identified by the vertical green lines; C) The J peaks detected in the Pattern intervals by
the red circles; D) Pattern Update associated with the J peaks detected.
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Once the time instant at which these peaks of the ACF occur is detected (Fig. 2.18A),
the pattern can be determined by considering the BCG signal (Fig. 2.18B). It can be seen in
Fig. 2.18B that the auto‐correlation function allows only the temporal instant in which a
beat is present to be detected. Pattern accuracywas improvedby identifying the contours
of these intervals as the time instant in which the J peak occurs. This wave belongs to the
IJK complex associatedwith a ventricular cardiac ejection phase [42]. Generally, themost
prominent wave in this complex is the J‐wave, which is identified in this algorithm as the
local maximum with the largest rise and fall. The J peaks just detected represent the
contours of the adjusted patterns.
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Heartbeat Detection
The heart rate that can be calculated by the algorithm is in a range between 40‐120

bpm. Although the upper limit would seem to be a fairly low value, it must be remem‐
bered that the aim of this work is to assess the heart activity of a resting subject lying on
a bed.

Starting from the last pattern identified in Fig. 2.18D, a portion of signal of variable
length is considered. This portion represents the candidate beat and, considering an ini‐
tial signal length of 20 samples (i.e. 0.5 s), the cross‐correlation function (CCF) between
it and each identified pattern is calculated. Subsequently, the portion of the BCG signal
will be increased with each iteration of one sample. This procedure is repeated until the
length of the signal becomes of 60 samples (i.e. 1.5 s). A matrix will be constituted of
the cross‐correlation coefficients calculated in this phase of the algorithm. This matrix is
composed of 40 rows, equal to the number of times the cross‐correlation function is cal‐
culated between the candidate beat of variable size and a single pattern, and N columns,
where N indicates the number of patterns that have been identified in the previous sec‐
tion. Averaging each row, the size of the cross‐correlation coefficients matrix 40×N, be‐
comes a matrix of size 40×1, consisting of the mean of the cross‐correlation coefficients.
The index L of this column, where the maximum value R of the cross‐correlation func‐
tion occurs, represents the instant in which the portion of the signal of variable length is
maximally correlated with the patterns (Eq. 2.1).

L = argmax(R) (2.1)

Consequently, this instant represents the time interval in which the J peak is most
likely to occur, if the R cross‐correlation value is greater than 0.4. This threshold was
chosen because the value proposed in [41], equal to 0.5, does not allow the processing
of a large number of beats. On the other hand, this value leads to less accuracy in the
detection of beats, accuracy that is preserved by the later stages of the algorithm and by
using the inertial multi‐sensor network designed.

Interval Calibration and Refinement
The accuracy of the heartbeat detection is based on the average value of the cross‐

correlation coefficients: the higher this value, the higher the probability that the candi‐
date beat is similar to the reference beats. Fig. 2.19A shows that the time of each beat
may not perfectly match the time of the J peak. Therefore, a refinement phase and a
calibration phase were implemented to improve the accuracy of the heartbeat search.
In the refinement phase, the region adjacent to the candidate beat is explored and the J
peak is selected as the maximum signal value. In the calibration phase, any errors made
in the refinement phase are handled by checking that the time distance between two
consecutive beats is within the 40‐120 bpm range and that the amplitudes of the J peaks
are within a specified range.

Fig. 2.19B shows the benefit obtained by implementing the procedure described.
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Figure 2.19: J peaks detection : A) J peaks determined by performing CCF and B) J peaks
detection after refinement and calibration.

Heart Rate Calculation
The heart rate is computed according to the following formula:

HR =
60

Ji+1 − Ji
[bpm] (2.2)

i.e. considering thetimedifference as the instants atwhich two consecutive J peaks occur.
This algorithm provides the option of returning the heart rate every 10 s or every 30

s by averaging the HR values calculated in these intervals.
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2.4.6 Prediction models for selecting the best BCG signal

The proposed algorithm calculates the heart rate on the basis of a single trace of the bal‐
listocardiogram. It should be noted that the system consists of four sensors, potentially
all suitable to acquire the BCG signal, but surely only one of them is capable of provid‐
ing the ballistocardiogram with the highest SNR (Signal to Noise Ratio). Therefore, it was
necessary to establish a criterion to identify which of the four signals would be processed
by the algorithm. To do this, twomain approacheswere performed: theMulti‐Parameter
Model (MPM) and the Single‐Parameter Model (SPM).

Multi‐Parameter Model
The implemented Multi‐Parameter Model is predictive, i.e. it is possible to choose a

priori the BCG signal with the highest SNR from the four sensors. This method is based
on the calculation of the following statistical parameters on a 10 s window of the signal:
standard deviation, kurtosis and auto‐correlation function.

The standard deviation σX is a statistical index that is used to indicate howmuch the
data xi deviates from the mean value x̄ (Eq. 2.3).
After analyzing several traces of the BCG signal, it was noted that, within certain limits,
the higher this value, the greater the probability of having a high SNR.

The standard deviation is defined as follows:

σX =

√∑N
i=1(xi − x̄)2

N
(2.3)

where:

• xi is the i‐th sample of signal;

• x̄ is the mean;

• N is the number of data points.

The kurtosis is a statistical parameter indicating the degree of flattening of a distri‐
bution. Experience has shown that regarding the BCG signal, the distribution curve has
a greater number of elements in the central part, thus having very flat tails. Comparing
to the standard deviation, within certain limits, a low value of this parameter is probably
related to a high SNR of the BCG signal.
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The kurtosis is defined as follows:

KX =
1

N

∑N
i=1(xi − x̄)4

σ4
X

(2.4)

where:

• σX is the standard deviation;

• x̄ is the mean;

• N is the number of data points.

The auto‐correlation function allows to evaluate the similarity between a signal x[n]
and the delayed signal itself x[n − m]. As already explained, the maximum value of
this function is obtained when [m] is zero, i.e. when the two signals are perfectly su‐
perimposed. Moreover, if there is a strong similarity between the different segments
of the BCG signal, the auto‐correlation function will present several prominent peaks.
Consequently, the higher the sum of the positive peaks in this function, the higher the
probability that the BCG signal will have better quality.

The ACF is defined as follows:

Rxx[n] =
+∞∑

m=−∞

x[m]x[n+m] (2.5)

where:

• x[m] is the main sequence;

• x[n+m] is the delayed sequence.

Based on these observations, it is possible to create a predictive model, capable of
predicting which of the four sensors would provide the best signal. Each of the described
parameters is calculated for all four sensors, thus, computing this parameter four times.
Hence, the maximum value for standard deviation and auto‐correlation, and the mini‐
mum value for kurtosis, calculated, are replaced by fixed scores. The other values are set
to zero and a sum is computed between the scores assigned for each sensor. The highest
value of this sum will correspond to the sensor with the best BCG signal quality.

However, this method has several disadvantages. For example, the choice of the best
sensor is based on several parameters, and it is necessary to make several calculations
for each signal provided by the inclinometers. In addition, the combination of different
parametersmay sometimes lead to choose a signal trace that is not what is expected. For
example, this could occur when in a time window of the BCG signal acquired by one of
the four sensors, a motion artifact is not correctly identified. In this particular case, the
scores assigned to the standard deviation and the kurtosis may be higher for this sensor
than the others. Therefore, this favoring the choice of the unexpected sensor. On the
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other hand, a fundamental advantage of using this approach is that the search for the J
peaks is carried out only once, i.e. the calculation is performed on the basis of the i‐th
sensor chosen.

Single‐Parameter Model
The Single‐Parameter Model allows to choose the BCG signal with the highest SNR by

evaluating, on 30 s windows of the signal, a single parameter: the mean of the cross‐
correlation coefficients (MCCC). This parameter indicates how well the detected heart‐
beats on the ballistocardiogram correlate on average with the patterns. This model ex‐
ploits the main operation performed by the proposed algorithm. The SPM stores the
cross‐correlation coefficients calculated for each identified heartbeat. After that, for each
30 s window of the four acquired signals, the mean of the cross‐correlation coefficients
is computed. This value represents the MCCC and it is related to the accuracy in the
heartbeats detection. The higher the MCCC, the higher, most likely, the reliability of the
calculated heart rate.

The two main differences between the MPM and the SPM basically concerns the
number of parameters that need to be calculated and the computational cost. The tests
carried out show that theMPM requires less computing time than the SPM, although the
latter is based on the calculation of one parameter only. This occurs most likely because
of the different implementation of the two methods. As already discussed, the MPM
chooses the best signal (10 s windows) based on the calculation of the described param‐
eters, which are closely related to the signal’s morphology. This was the first method
implemented. However, due to some of its critical issues, such as the one presented in
the dedicated paragraph, an additional model that would be able to overcome these lim‐
its was implemented. Therefore, the SPM is proposed as an alternative to the MPM. It
identifies the best signal (30 s windows) based on the reliability of the detected beats.
Both methods are promising and for this reason the results obtained from these will be
shown in Chapter 3.
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Fig. 2.20 compares the two different approaches described.

Figure 2.20: Block diagramof: A) theMulti‐ParameterModel andB) the Single‐Parameter
Model.
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2.5 Evaluation of algorithm performance
The performance of the proposed algorithm was evaluated by comparing the heart rate
calculated from the ballistocardiogram against a reference device: the Hi electrocardio‐
graph.

2.5.1 Hi device

The Hi is a non‐invasive and wearable medical device of Class IIa, designed by STMicro‐
electronics and addressed for telemedicine purposes. Hi is a battery‐powered electronic
device intended to be worn on the chest in order to acquire, store and transmit the ECG
and other physiological parameters to an external device for analysis and storage.

The main features of Hi are listed below:

• 1 or 3‐lead ECG signal acquisition acquired at 128 Hz;

• automatic monitoring of events according to thresholds, possibility of manual re‐
porting of events;

• heart rate calculation;

• physical activity level estimation and body position detection via built‐in accelera‐
tion sensor;

• use of standard ECG electrodes (patches);

• flexible structure to adapt to the shape of the body, for greater comfort of use;

• IP67 waterproof rating; the device is fully protected against dust, sand and any
small solid body in general; it is also submersible to a depth of 1 m for up to 30
minutes, so it can also be used in the shower or during a bath;

• uses CR2450 (non‐rechargeable) or LIR2450H (rechargeable) button batteries, last‐
ing up to 3 days (depending on the mode of use);

• communication with external devices via Bluetooth BLE 4.1.

In order to retrieve the measurements made by the Hi, it is necessary to have an external
device that can connect to Hi via Bluetooth; this device can be a smartphone, a tablet or
a suitably configured PC, and it is not supplied with Hi.
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Figure 2.21: The Hi device.

The Hi device has only one button and three LEDs to interact with the user for basic
operations (on/off, event signalling) and to display the status of the device.

Specifically:

• One Central button:

– turns the device on/off;

– during the monitoring session, a press allows to record an event, which will
then be sent together with the recorded ECG data.

• The LED on the left (yellow):

– remains off during normal operation;

– blinks slowly when the battery charge level is low and needs to be replaced
or recharged (depending on the type of battery used).

• The LED on the right (yellow):

– blinks if the device has notifications waiting to be sent to the external device
via Bluetooth, or if one or more of the contacts is not properly connected.

• The central LED (green):
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– it is on when the device is turned on and waiting to receive commands via
Bluetooth;

– fast blinking when the device is sending the captured data to the connected
external device (Streaming mode);

– flashes slowly when the device is saving data in the internal memory (Moni‐
toring mode).

The correct positioning of the Hi’s electrodes are shown in Fig. 2.22.

Figure 2.22: Preferred electrode position on the left, alternative electrode position on
the center and on the right.

In order to compare the performance of the proposed system, the following param‐
eters were provided from Hi:

• Heart rate: every 10 and 30 seconds;

• Activity level and body posture: through the embedded accelerometer.
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2.6 Validation methods

The validation process of the designed system is based on the calculation of the following
statistical parameters:

• Mean Absolute Error (MAE): it indicates the mean deviation of a predicted value
xi deviates from the reference value yi.

MAE is expressed by the formula:

MAE =
1

N

N∑
i=1

|yi − xi| (2.6)

where:

– yi is the actual value;

– xi is the predicted value;

– N is the number of the measurement performed.

• MeanAbsolute Percentage Error (MAPE): it expresses howmuch a predicted value
xi deviates from the actual value yi. This difference is divided by the actual value yi
to obtain a relative measure that can be expressed as a percentage. Each absolute
value of this calculation is added up and finally divided by the number of items N
to obtain an averaged value of this measure.

MAPE is expressed by the formula:

MAPE =
100

N

N∑
i=1

∣∣∣∣yi − xi

yi

∣∣∣∣ (2.7)

where:

– yi is the actual value;

– xi is the predicted value;

– N is the number of the measurement performed.

These parameters are calculated considering the following indicator:

Coverage[%] =
Covered Sleep T ime

Total Sleep T ime
· 100 (2.8)

where:

• Covered Sleep T ime: it represents the duration of the subject’s sleep in which
the HR from the BCG signal could be calculated;

• Total Sleep T ime: it is the duration of the total recording.
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In Chapter 3, the curves showing the time‐varying heart rate trend provided by the
ballistocardiographic system compared to the reference and the Bland‐Altman Plot will
be shown.
The scenarios that will be compared are basically two, when the heart rate is calculated
every 10 s and when it is calculated every 30 s. The heart rate computed by Hi electro‐
cardiograph will be compared with the heart rate calculated from the:

• Each single‐sensor;

• Multi‐Parameter Model (MPM);

• Single‐Parameter Model (SPM);

• Ideal Model (IM).

The heart rate calculated from the ballistocardiogram of each sensor will be compared
with the proposed models, in order to demonstrate the usefulness and benefits that
could come from an inertial multi‐sensor network. The Ideal Model is built a posteri‐
ori, choosing the sensor (for each data window) minimizing the difference between the
computed heart rate and the reference one. This last analysis shows the potentialities of
the proposed system and the aspects that can be improved in the future.
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Chapter 3

Results

This section shows the results obtained by the designed inertial multi‐sensor network
with respect to the data provided by the Hi electrocardiograph. In addition, in order to
show the behavior of the system during data acquisition, graphs of the results obtained
from two limit cases, best case and worst case, related to Subject 3 and Subject 7 respec‐
tively, will be shown.

In order to ease the reading, the following nomenclature will be used:

• S1, S2, S3 and S4: results provided by the inclinometer according to Fig. 2.9;

• MPM: results provided by the Multi‐Parameter Model;

• SPM: results provided by the Single‐Parameter Model;

• IM: results provided by the Ideal Model.
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3.1 Heart Rate computation every 10 s
The following tables summarize the results obtained from the calculation of the heart
rate every 10 s.

Mean Absolute Error (MAE)
Subject S1 S2 S3 S4 MPM SPM IM

[bpm] [bpm] [bpm] [bpm] [bpm] [bpm] [bpm]

1 5.48± 7.60 5.24± 7.13 4.42± 7.12 4.28± 6.01 4.46± 6.59 5.27± 7.21 3.05± 5.39
2 3.61± 5.93 3.61± 5.79 3.73± 6.00 4.48± 6.92 3.36± 5.64 3.00± 4.89 1.97± 3.78
3 2.58± 4.57 2.71± 4.66 2.86± 5.20 2.91± 5.19 3.04± 5.61 2.39± 4.54 1.57± 3.33
4 3.37± 5.74 ‐ 3.59± 6.21 2.92± 5.21 3.16± 5.28 2.37± 4.25 1.52± 3.09
5 5.24± 7.78 ‐ 5.08± 7.60 7.10± 10.10 5.12± 7.76 4.28± 6.86 2.72± 4.95
6 4.49± 7.64 7.48± 9.56 4.79± 7.89 ‐ 4.21± 7.58 4.08± 7.28 2.61± 5.35
7 6.96± 9.37 7.71± 10.25 9.48± 11.35 7.82± 10.86 8.55± 10.67 8.51± 10.10 3.31± 5.58
8 3.59± 6.18 5.51± 8.60 5.01± 8.22 5.46± 8.83 4.14± 7.28 4.20± 7.05 1.86± 4.00
9 6.33± 8.79 6.24± 8.21 5.20± 7.59 6.07± 8.10 4.97± 7.41 4.14± 6.37 2.17± 4.11

Total averages 4.63± 7.07 5.50± 7.74 4.91± 7.46 5.13± 7.65 4.56± 7.09 4.25± 6.51 2.31± 4.40

Table 3.1: MAE of the HR calculated every 10 s.

Mean Absolute Percentage Error (MAPE)
Subject S1 S2 S3 S4 MPM SPM IM

[%] [%] [%] [%] [%] [%] [%]

1 11.11± 13.13 10.67± 12.47 8.85± 11.88 8.46± 10.49 9.04± 11.50 10.69± 12.78 6.12± 9.29
2 5.62± 6.94 5.68± 6.80 5.87± 7.21 7.00± 7.98 5.25± 6.59 4.73± 5.70 3.05± 4.55
3 3.78± 5.15 3.98± 5.14 4.17± 5.76 4.28± 5.88 4.47± 6.56 3.47± 4.92 2.27± 3.73
4 5.14± 7.09 ‐ 5.39± 7.37 4.35± 6.19 4.79± 6.22 3.56± 4.98 2.23± 3.54
5 7.63± 8.47 ‐ 7.33± 8.46 10.41± 10.90 7.44± 8.41 6.29± 7.44 4.42± 5.91
6 9.39± 14.20 15.87± 17.44 10.19± 15.04 ‐ 8.86± 14.37 8.67± 14.00 5.45± 10.12
7 13.69± 14.14 13.65± 14.72 18.68± 17.53 15.17± 15.82 16.83± 16.46 17.01± 16.67 6.40± 8.07
8 7.15± 10.50 11.36± 16.13 10.13± 14.43 11.13± 15.82 8.39± 13.30 8.49± 10.47 3.60± 6.66
9 9.19± 9.23 9.02± 8.26 7.53± 8.39 8.82± 8.15 7.23± 7.96 5.94± 6.68 3.02± 4.45

Total averages 8.08± 9.87 10.03± 11.57 8.68± 10.67 8.70± 10.15 8.03± 10.15 7.65± 9.29 4.06± 6.26

Table 3.2: MAPE of the HR calculated every 10 s.
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Coverage

Subject S1 S2 S3 S4 MPM SPM IM
[%] [%] [%] [%] [%] [%] [%]

1 72.14 60.02 63.50 69.86 75.01 91.07 91.07
2 85.59 85.85 93.38 65.36 92.08 97.14 97.14
3 96.82 98.49 97.73 96.97 96.37 99.39 99.39
4 96.82 ‐ 96.52 97.48 97.30 98.26 98.26
5 81.68 ‐ 82.83 74.64 87.09 93.66 93.66
6 79.89 51.08 78.49 ‐ 81.89 88.34 91.05
7 78.45 79.10 81.32 79.15 83.04 88.54 89.60
8 77.28 81.32 79.05 74.36 82.23 93.74 93.74
9 93.34 73.85 94.84 91.67 96.50 97.83 98.33

Total averages 84.67 75.67 85.30 81.19 87.95 94.22 94.69

Table 3.3: Coverage of the HR calculated every 10 s.

71



3.2 Heart Rate computation every 30 s
The following tables summarize the results obtained from the calculation of the heart
rate every 30 s.

Mean Absolute Error (MAE)
Subject S1 S2 S3 S4 MPM SPM IM

[bpm] [bpm] [bpm] [bpm] [bpm] [bpm] [bpm]

1 5.08± 7.00 5.03± 6.78 4.17± 6.64 4.14± 5.54 4.37± 6.40 4.96± 6.70 2.28± 4.04
2 3.21± 5.23 3.11± 5.00 3.36± 5.43 3.96± 6.22 2.86± 4.84 2.46± 4.01 1.35± 2.36
3 2.16± 3.99 2.30± 4.02 2.47± 4.56 2.49± 4.52 2.65± 5.07 1.87± 3.72 1.11± 2.37
4 3.25± 5.39 ‐ 3.36± 5.79 2.75± 4.66 2.98± 4.77 2.10± 3.58 1.29± 2.31
5 4.68± 6.86 ‐ 4.48± 6.65 6.45± 9.15 4.65± 6.90 3.72± 5.81 2.26± 3.68
6 4.10± 7.68 6.96± 9.00 4.54± 7.44 ‐ 4.03± 7.34 3.75± 6.67 1.83± 3.41
7 6.46± 8.31 7.07± 9.16 9.10± 10.47 7.38± 9.87 8.03± 9.68 7.91± 9.16 2.56± 4.03
8 3.32± 5.75 5.43± 8.36 4.81± 7.82 5.43± 8.82 3.88± 6.87 4.01± 6.79 1.51± 3.27
9 6.23± 8.46 6.11± 7.82 5.08± 7.34 5.89± 7.64 4.87± 7.10 3.93± 5.86 1.97± 3.49

Total averages 4.28± 6.52 5.14± 7.16 4.60± 6.90 4.81± 7.05 4.26± 6.55 3.86± 5.81 1.80± 3.22

Table 3.4: MAE of the HR calculated every 30 s.

Mean Absolute Percentage Error (MAPE)
Subject S1 S2 S3 S4 MPM SPM IM

[%] [%] [%] [%] [%] [%] [%]

1 10.32± 12.40 10.22± 11.95 8.42± 11.51 8.39± 10.08 8.86± 11.37 10.09± 12.41 4.61± 7.26
2 5.05± 6.34 4.94± 6.16 5.32± 6.78 6.27± 7.50 4.52± 5.96 3.92± 4.93 2.12± 2.84
3 3.16± 4.76 3.38± 4.66 3.61± 5.37 3.69± 5.34 3.89± 6.16 2.71± 4.30 1.60± 2.76
4 4.99± 6.86 ‐ 5.07± 7.04 4.12± 5.67 4.56± 5.85 3.18± 4.42 1.91± 2.78
5 6.93± 7.71 ‐ 6.53± 7.75 9.55± 10.08 6.86± 7.70 5.54± 6.58 3.30± 4.15
6 8.55± 13.07 14.74± 16.67 9.61± 13.95 ‐ 8.42± 13.80 7.93± 12.79 3.82± 6.15
7 12.80± 13.01 13.65± 13.38 17.91± 16.28 14.35± 14.43 15.81± 15.28 15.75± 15.37 4.95± 5.52
8 6.59± 9.85 11.22± 15.74 9.76± 13.79 11.08± 16.00 7.91± 12.79 8.11± 12.40 2.97± 5.95
9 9.06± 8.93 8.85± 8.05 7.37± 8.27 8.59± 7.78 7.10± 7.74 5.67± 5.86 2.78± 3.87

Total averages 7.49± 9.21 9.57± 10.94 8.18± 10.08 8.26± 9.61 7.55± 9.63 6.99± 8.78 3.12± 4.59

Table 3.5: MAPE of the HR calculated every 30 s.
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Coverage

Subject S1 S2 S3 S4 MPM SPM IM
[%] [%] [%] [%] [%] [%] [%]

1 85.63 69.59 74.43 81.54 86.08 98.49 97.28
2 93.51 94.03 99.09 72.24 97.02 99.61 99.48
3 98.64 99.55 98.79 98.03 98.18 99.55 99.55
4 98.34 ‐ 98.00 98.56 98.22 98.56 98.56
5 92.51 ‐ 92.65 84.47 94.87 98.75 98.61
6 88.57 61.54 90.02 ‐ 90.64 95.84 97.51
7 86.23 87.29 88.50 87.90 89.71 91.53 91.68
8 86.08 90.32 86.99 84.42 90.62 97.43 97.28
9 96.84 78.04 96.67 95.34 98.50 99.17 99.17

Total averages 91.82 82.91 91.68 87.81 93.76 97.66 97.68

Table 3.6: Coverage of the HR calculated every 30 s.
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The following graphs report the HR value calculated every 10 s from the S1, S2, S3
and S4 sensors for the entire acquisition of Subject 3.

Figure 3.1: Full acquisition of Subject 3: HR provided every 10 s by each sensor (S1, S2,
S3 and S4) vs Hi.
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The following graphs report the HR value calculated every 10 s from the threemodels
MPM, SPM and IM for the entire acquisition of Subject 3.

Figure 3.2: Full acquisition of Subject 3: HR provided every 10 s by each designed model
(MPM, SPM and IM) vs Hi.
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The following graphs report the comparable HR value calculated every 10 s from the
S1, S2, S3 and S4 sensors of Subject 3.

Figure 3.3: Covered acquisition of Subject 3: HR provided every 10 s by each sensor (S1,
S2, S3 and S4) vs Hi.
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The following graphs report the comparable HR value, calculated every 10 s from the
three models MPM, SPM and IM of Subject 3.

Figure 3.4: Covered acquisition of Subject 3: HR provided every 10 s by each designed
model (MPM, SPM and IM) vs Hi.
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The following graphs report the Bland‐Altman Plot of the comparable HR value cal‐
culated every 10 s from the S1, S2, S3 and S4 sensors of Subject 3.

Figure 3.5: Bland Altman ‐ Plot of the covered acquisition of Subject 3: HR provided every
10 s by each sensor (S1, S2, S3 and S4) vs Hi.
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The following graphs report the Bland‐Altman Plot of the comparable HR value cal‐
culated every 10 s from the three models MPM, SPM and IM of Subject 3.

Figure 3.6: Bland Altman ‐ Plot of the covered acquisition of Subject 3: HR provided every
10 s by each designed model (MPM, SPM and IM) vs Hi.
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The following graphs report the HR value calculated every 30 s from the S1, S2, S3
and S4 sensors for the entire acquisition of Subject 3.

Figure 3.7: Full acquisition of Subject 3: HR provided every 30 s by each sensor (S1, S2,
S3 and S4) vs Hi.
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The following graphs report the HR value calculated every 30 s from the threemodels
MPM, SPM and IM for the entire acquisition of Subject 3.

Figure 3.8: Full acquisition of Subject 3: HR provided every 30 s by each designed model
(MPM, SPM and IM) vs Hi.
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The following graphs report the comparable HR value calculated every 30 s from the
S1, S2, S3 and S4 sensors of Subject 3.

Figure 3.9: Covered acquisition of Subject 3: HR provided every 30 s by each sensor (S1,
S2, S3 and S4) vs Hi.
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The following graphs report the comparable HR value, calculated every 30 s from the
three models MPM, SPM and IM of Subject 3.

Figure 3.10: Covered acquisition of Subject 3: HR provided every 30 s by each designed
model (MPM, SPM and IM) vs Hi.
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The following graphs report the Bland‐Altman Plot of the comparable HR value cal‐
culated every 30 s from the S1, S2, S3 and S4 sensors of Subject 3.

Figure 3.11: Bland Altman ‐ Plot of the covered acquisition of Subject 3: HR provided
every 30 s by each sensor (S1, S2, S3 and S4) vs Hi.
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The following graphs report the Bland‐Altman Plot of the comparable HR value cal‐
culated every 30 s from the three models MPM, SPM and IM of Subject 3.

Figure 3.12: Bland Altman ‐ Plot of the covered acquisition of Subject 3: HR provided
every 30 s by each designed model (MPM, SPM and IM) vs Hi.
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The following graphs report the HR value calculated every 10 s from the S1, S2, S3
and S4 sensors for the entire acquisition of Subject 7.

Figure 3.13: Full acquisition of Subject 7: HR provided every 10 s by each sensor (S1, S2,
S3 and S4) vs Hi.
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The following graphs report the HR value calculated every 10 s from the threemodels
MPM, SPM and IM for the entire acquisition of Subject 7.

Figure 3.14: Full acquisition of Subject 7: HR provided every 10 s by each designedmodel
(MPM, SPM and IM) vs Hi.
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The following graphs report the comparable HR value calculated every 10 s from the
S1, S2, S3 and S4 sensors of Subject 7.

Figure 3.15: Covered acquisition of Subject 7: HR provided every 10 s by each sensor (S1,
S2, S3 and S4) vs Hi.
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The following graphs report the comparable HR value, calculated every 10 s from the
three models MPM, SPM and IM of Subject 7.

Figure 3.16: Covered acquisition of Subject 7: HR provided every 10 s by each designed
model (MPM, SPM and IM) vs Hi.
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The following graphs report the Bland‐Altman Plot of the comparable HR value cal‐
culated every 10 s from the S1, S2, S3 and S4 sensors of Subject 7.

Figure 3.17: Bland Altman ‐ Plot of the covered acquisition of Subject 7: HR provided
every 10 s by each sensor (S1, S2, S3 and S4) vs Hi.
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The following graphs report the Bland‐Altman Plot of the comparable HR value cal‐
culated every 10 s from the three models MPM, SPM and IM of Subject 7.

Figure 3.18: Bland Altman ‐ Plot of the covered acquisition of Subject 7: HR provided
every 10 s by each designed model (MPM, SPM and IM) vs Hi.
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The following graphs report the HR value calculated every 30 s from the S1, S2, S3
and S4 sensors for the entire acquisition of Subject 7.

Figure 3.19: Full acquisition of Subject 7: HR provided every 30 s by each sensor (S1, S2,
S3 and S4) vs Hi.
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The following graphs report the HR value calculated every 30 s from the threemodels
MPM, SPM and IM for the entire acquisition of Subject 7.

Figure 3.20: Full acquisition of Subject 7: HR provided every 30 s by each designedmodel
(MPM, SPM and IM) vs Hi.
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The following graphs report the comparable HR value calculated every 30 s from the
S1, S2, S3 and S4 sensors of Subject 7.

Figure 3.21: Covered acquisition of Subject 7: HR provided every 30 s by each sensor (S1,
S2, S3 and S4) vs Hi.
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The following graphs report the HR value calculated every 30 s from the threemodels
MPM, SPM and IM for the entire acquisition of Subject 7.

Figure 3.22: Covered acquisition of Subject 7: HR provided every 30 s by each designed
model (MPM, SPM and IM) vs Hi.
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The following graphs report the Bland‐Altman Plot of the comparable HR value cal‐
culated every 30 s from the S1, S2, S3 and S4 sensors of Subject 7.

Figure 3.23: Bland Altman ‐ Plot of the covered acquisition of Subject 7: HR provided
every 30 s by each sensor (S1, S2, S3 and S4) vs Hi.
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The following graphs report the Bland‐Altman Plot of the comparable HR value cal‐
culated every 30 s from the three models MPM, SPM and IM of Subject 7.

Figure 3.24: Bland Altman ‐ Plot of the covered acquisition of Subject 7: HR provided
every 30 s by each designed model (MPM, SPM and IM) vs Hi.
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3.3 Discussion
Under the hypothesis that a unique sensor would not be able to continuously acquire,
regardless the subject’s positions, the ballistocardiogram during sleep, a network con‐
sisting of multiple sensors has been implemented. The results obtained in Chapter 3 ac‐
tually show that the use of a multi‐sensor network allows to capture the BCG signal with
a greater coverage than the ballistocardiogram acquired by each individual sensor. By
observing the results obtained for Subject 1, it can be noted that if the system had been
based exclusively on the S2 sensor, the system would have achieved a coverage of 60.02
% and 69.59 % for heart rate calculated every 10 s and 30 s respectively. In addition, for
Subjects 4, 5 and 7, the data were not provided by all four sensors, probably because,
during sleep, the communication was lost due to an involuntary disconnection between
a sensor and the microcontroller. Nevertheless, on average, in the two described scenar‐
ios (HR computed every 10 s and 30 s) a coverage greater than 75 % and 82 % for each
individual sensor can be obtained. This result could be associated with the value of the
mean cross‐correlation coefficient chosen in Chapter 2, useful for the detection of heart‐
beats on the BCG trace. The value chosen is 0.4 and therefore it allowed the detection
of beats in a not‐rigorous way. This apparent disadvantage was overcome precisely by
the network consisting of the four sensors. On the other hand, the use of the developed
prediction models allows to obtain an average a coverage greater than 90 %, calculating
the heart rate both every 10 s and 30 s. This result highlights the main advantage that
can be obtained from the proposed multi‐sensor network. Considering the mean abso‐
lute error, even in this case it is found that the best results are obtained by combining
the information coming from each individual sensor. On average, the MPM model pro‐
vides a MAE of 4.56 bpm (HR computed every 10 s) and 4.26 bpm (HR computed every
30 s), while the SPM provides an MAE of 4.25 bpm (HR computed every 10 s) and 3.86
bpm (HR computed every 30 s). By examining exclusively this parameter obtained from
the proposed models, it is deduced that the results fully comply with the error limit of 5
bpm proposed by the Association for the Advancement of Medical Instrumentation (AN‐
SI/AAMI EC13:2002) [43]. However, considering the standard deviation of the error it is
possible to realize that the AAMI standard is no longer met. The reasons why this hap‐
pens could be related to the implementedmodels. For example, for theMulti‐Parameter
Model a problem might be related to the scores that are assigned to the different statis‐
tical descriptors. Once these are established, the algorithm will choose the best signal
based on these values. However, the results obtained from the Ideal Model built a pos‐
teriori show that, by exploiting the maximum potentiality of the multi‐sensor network
designed, it is possible to obtain an average MAE of 2.31 bpm± 4.40 bpm and a MAE of
1.80 bpm ± 3.22 bpm, for the calculation of the heart rate every 10 s and 30 s, respec‐
tively. Therefore, if the proposed models were optimized, the standard AAMI would be
almost met, when the heart rate is provided every 10 s, and fully complied, when the
heart rate is provided every 30 s.
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Chapter 4

Conclusions and future works

This study presents a bed‐based BCG system constituted of four inertial sensors for the
non‐invasive and non‐intrusive cardiac monitoring during sleep.
The steps leading up to the design of the prototype system involved both hardware and
software development. Initially, a literature review was carried out to evaluate which
inertial sensors, among those produced by the company STMicroelectronics, would be
the most suitable for this type of work. Therefore, a network consisting of four IIS2ICLX
inclinometers has been implemented. Each pair of sensors was soldered on two strip‐
boards. These were interfaced to the STM32L4 microcontroller of the STWIN via 4‐wire
SPI. Subsequently, a firmware capable of managing the sampling and data storage on the
micro SD card was developed. After that, an analysis to identify the most suitable sen‐
sors positions on the mattress for the acquisition of the BCG signal was carried out. This
analysis focused on the morphology assessment of the acquired signals, for each region
tested. The areas of themattress that have offered the possibility of recording a BCGwith
a high SNR are those closest to the corners of the mattress itself. In addition, this choice
has allowed to minimize the encumbrance of the system on the mattress. Finally, a time‐
based algorithm capable of calculating the heart rate has been implemented, while the
information from the four sensors wasmanaged through the development of two predic‐
tion models: the Multi‐Parameter Model and the Single‐Parameter Model. The results
obtained from these two models were compared with an Ideal Model built a posteriori
in order to evaluate the performance of the proposed system.
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4.1 Conclusions
This project demonstrated the usefulness of using an inertial multi‐sensor network for
heart rate detection using ballicardiographic signals. This solution offers several advan‐
tages, such as non‐invasiveness and non‐intrusiveness. Regarding the former, the pro‐
posed system does not come into direct contact with the subject. Regarding the latter,
the non‐intrusiveness of the system could result in greater acceptability by the patient
who needs to use this solution for long‐term monitoring. Moreover, it is worth mention‐
ing the low costs of this system and theminimal maintenance it requires (for example the
battery recharging) which are of no less importance. Ultimately, concerning the heart
rate computation, it could be noted that, although the system is able to provide a high
coverage, the implemented models should be optimized in order to select the sensor
that acquires the signal with the highest SNR.

However, some aspects related to each developed field that could be investigated are
reported below:

• Hardware design:

– design of a PCB (Printed Circuit Board) for the connection of the four sensors;

– making the system wireless, for example by connecting a STWIN to each pair
of sensors and synchronizing these via Bluetooth.

• Firmware design:

– embedding of the proposed algorithm for the heart rate computation.

• Signal capture:

– engaging more subjects to achieve a larger dataset;

– video recording the sleep session in order to provide a visual feedback, useful
for evaluating the performance of the system.

• Data processing:

– optimization of the proposed MPM and SPM models;

– improving the detection of the motion artifacts;

– computing other vital parameters (such as Heart Rate Variability (HRV), BR
(Breathing Rate), etc.) in order to detect sleep stages.
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