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SUMMARY

Il presente lavoro di tesi si focalizza sullo studio dell’utilizzo dell’hardware e del software di

una telecamera Time-of-Flight e successivamente sulla creazione di codici in C++ che cercano

di gettare le basi per futuri programmi che sarebbero in grado di a↵rontare e risolvere i problemi

più comuni relativi alla 3D Machine Vision. Tutti i codici e programmi presenti nella tesi sono

nati e sviluppati con l’idea chiave in mente che possono costituire, in un lavoro futuro, un

punto di partenza per progetti più complessi legati alla 3D Computer Vision e quindi essere

implementati in applicazioni come bin-picking, guida autonoma, controllo qualità e cos̀ı via.

I programmi C++ sviluppati in questa tesi, insieme a questioni minori, a↵rontano quattro

problemi principali nel campo della visione artificiale: Registrazione, Creazione di modelli CAD,

Segmentazione e Riconoscimento di oggetti. La registrazione consiste nell’allineare varie nuvole

di punti 3D, dette “point cloud”, ottenute da diversi punti di vista dello stesso oggetto in modo

da ricostruire un modello 3D completo dell’oggetto. La creazione del modello CAD è solitamente

il passaggio successivo alla Registrazione e consiste nella creazione di una mesh 3D dell’oggetto

registrato. Questa mesh può essere esportata in AutoCAD o in qualsiasi altro software CAD

3D per eseguire ulteriori studi e analisi dell’oggetto. La segmentazione consiste nel dividere i

point cloud in più parti, che possono essere poi studiate indipendentemente. Infine, l’ultimo

argomento studiato e sviluppato nella tesi è il Riconoscimento di oggetti, che consiste nella

capacità di localizzare e riconoscere oggetti in un 3D point cloud.
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CHAPTER 1

INTRODUCTION

Three dimensional (3D) machine vision has been firstly discussed in the 1960s by Larry

Roberts, considered the father of Computer Vision, in his PhD thesis at MIT, where he in-

troduces the possibility of extracting 3D geometrical information from 2D perspective views of

blocks. Later, in 1978, a milestone was set by David Marr, an MIT researcher, which proposed

a bottom-up processing approach to the scene study, that involves the building of an image

from the smallest pieces of sensory information. Marr’s work has been highly praised for years

and his work is probably the single most influential work in computer vision ever. Nonetheless,

some researchers tried to move away from Marr paradigm going into the opposite direction and

tried a top-down processing approach, especially in autonomous vehicle applications, where it

is not necessary to know the complete 3D object model, but only some partial general informa-

tion, such as if an element is moving towards or away from the car. [31]

Nowadays, 3D machine vision is an evolving and maturing technology that can be used in a

variety of applications. It takes life from the necessity of having more accurate, precise and

meaningful information from systems previously adopting simple 2D vision technology. In re-

cent years it has been a force in the marketplace and the proliferation of 3D components has

been tremendous.

The global 3D machine vision market size has been valued at USD 1.13 billion in 2019 [1] and

it is expected to grow at an annual rate of 14.7% from 2020 to 2027 reaching a value of USD

1
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3.46 billion in 2027. Hardware accounted for more than 70% of the revenue share in 2019, while

the market for software is more fragmented, being application specific. PC-based products lead

the market. The product with the highest potential growth is 3D cameras, which are projected

to grow at the fastest rate. Automotive industry accounts for 18% of the share of the global

revenue in 2019, while the most important applications are quality assurance and inspection,

holding approximately 52% share of the global revenue in 2019.

Figure 1: Pie chart representing 3D machine vision market share by application in 2019 [1]
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The biggest companies in the market in the countries that lead the world in 3D vision are

Cognex Corporation (USA), Keyence Corporation (Japan), Omron (Japan), Teledyne Tech-

nologies (USA), National Instruments Corporation (USA), Sick AG (Germany), ISRA Vision

AG (Germany), Stemmer Imaging (Germany), LMI Technologies (Netherlands), and Basler AG

(Germany) [1].

Figure 2: Revenues of leading companies in 2019 [2][3][4][5][6][7][8]

The possible applications of 3D machine vision are multiple, ranging from automotive to

gaming, to military to health and robotics. In particular, this technology is increasingly being
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used in the automotive and robotic sector. Automotive strives for better cameras and data

to improve the performances of self-driving cars. One of the most important feature that a

self-driving car needs to have is collision avoidance, mainly required after the high number of

accidents due to negligence of the driver, and 3D machine vision has been proven to be useful

in this area. For what concerns robotics, 3D vision is employed in quality control, assembly

lines and collaborative robots. For quality control, 3D vision is helpful thanks to its ability to

analyze complex surfaces at a higher rate than humans. In assembly lines 3D vision gives more

flexibility, independence and reliability to the system with respect to their 2D counterparts,

since it gives the ability to recognize di↵erent parts and grab them on a conveyor belt in the

most correct way even if all parts do not have the same orientation. Finally, collaborative robots

rely on camera systems to avoid humans around them and 3D vision helps this procedure by

making it safer and thus allowing the collaborative robot to reach higher speeds and higher

loads.



CHAPTER 2

3D VISION

The most common technologies used in 3D machine vision are stereo vision, structured light

and time-of-flight (ToF).

2.1 Stereo Vision

Stereo vision technology uses two 2D cameras positioned at a distance in a way that re-

sembles the human eye. Measuring the same point on the object, the two cameras will give

di↵erent positions with di↵erent angles ↵ and β. Thanks to these angles the depth z can be cal-

culated. [9] This technology has a lot of advantages, but at the same time presents important

Figure 3: Stereo vision depth measurement [9]

5
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disadvantages and challenges difficult to overcome. Stereo vision has between its advantages

the fact that it is a low-cost intuitive method working with simple 2D cameras and that is ca-

pable of capturing high resolution images without any energy emission or moving part. On the

other hand, there are two significant drawbacks that need to be considered: the correspondence

problem and the limited Field of View (FOV). [32]

The latter is caused by the limited field of view of the arrangement of the two cameras and

it becomes an issue since it is problematic to change configuration once it has been chosen

for a specific application. Instead, the correspondence problem takes life from the difficulty of

finding on both cameras the same exact point on the object, especially if the object does not

present any special feature on the surface that could help the process. For instance, obtaining

the same point of a uniformed colored wall can be quite difficult, leading to an important depth

resolution error.

2.2 Structured Light

Structured light is considered an active method of 3D imaging technology since it uses an

active illumination to project structured patterns on the object under study. The projector

sends a known pattern that will be distorted by the object geometry, then a camera captures

the distorted patterns and, by analyzing the di↵erences between the know pattern and the

distorted one, is able to reconstruct (x, y, z) coordinates [10] [33]. The structured light

technology includes among its advantages the fact that it is a really accurate system, it is

faster than laser scanning and it is incredibly compact. On the other hand, the limitations

are numerous. First of all, it has a slow response time; then, it is sensitive to light conditions
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Figure 4: Structured light mechanism [10]

and to transparent or reflective materials similarly to other technologies using optical sensors,

making it more suitable for indoor rather than outdoor use. Finally, it has a really high cost of

material, making it not cost-e↵ective as other technologies, such as Time-of-flight [9] [34].

2.3 Time-of-Flight

The final technology considered is the Time-of-Flight (ToF). Time-of-Flight cameras employ

an array of laser light and observe the reflected arrays through a sensor. It can calculate the

dimensions of the 3D object by analyzing the phase change of the reflected light with respect
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to the source laser. In order to calculate all the object distances it is necessary to calculate the

time of flight. The relation between these quantities is the following:

d =
1

2
· c · ⌧ (2.1)

where d is the depth, ⌧ is the TOF (time of flight) and c is the speed of light (3 ·108m/sec).

Figure 5: Time-of-Flight principle [11]
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Figure 6: Time-of-Flight mechanism [12]

There are two main methods for TOF calculation: Pulse Based (PB) approach and Con-

tinuous Wave Modulation (CWM) approach. The former emits short pulses of light while the

latter uses a continuous modulated signal, which can be squared or sinusoidal. In both methods,

in order to increase the Signal-to-noise ratio (SNR) millions of cycles of pulses or samples are

collected and the final depth is the result of an average [35].

The Pulse Based method emits short pulses of light that will be reflected and captured

by a sensor, equipped with shutters, that will detect the light in one or two small temporal

windows, the gates [36]. The first shutter happens at the same time the light is emitted from

the source, while the second one happens immediately after the first light pulse is ended. The
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electrical charge accumulated in the first gate is stored in the camera memory as Q1, while the

one accumulated in the second gate is saved as Q2. Denoting ∆t as the pulse width, the final

TOF is given by:

⌧ = ∆t · Q2

Q1 +Q2
(2.2)

Figure 7: Pulse Based method principle [9]

Depth resolution can reach 1 mm, however it would require emitting a light pulse every 6.6

picoseconds, which is basically impossible to achieve with current silicon-based technology [9].

Today’s cameras can easily reach a depth accuracy of 1 cm.

The Continuous Wave Modulation (CWM) approach is the most common method imple-

mented in 3D ToF cameras. In this approach, the scene in continuously illuminated by a near

infrared light (NIR) that will reflect on the object and will be received by a sensor. Sub-
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sequently, the phase shift between emitted and reflected light will be computed in order to

calculate the TOF:

φ = 2⇡ · f · ⌧ (2.3)

Where f is the modulation frequency and ⌧ is the TOF (time of flight). Multiple samples per

measurement are taken, with every sample shifted of 90° degrees, with a technique similar to

the pulsed light one.

Figure 8: Continuous wave method principle [9]
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The process of measurement of the phase is called cross-correlation and it helps finding the

following:

φ = arctan
Q3 −Q4

Q1 −Q2
(2.4)

Replacing φ with what has been obtained in equation (2.3), it is possible to write:

2⇡f⌧ = arctan
Q3 −Q4

Q1 −Q2
(2.5)

⌧ =
1

2⇡f
· arctan Q3 −Q4

Q1 −Q2
(2.6)

Using equation (2.1), it is possible to write:

d =
c

4⇡f
· arctan Q3 −Q4

Q1 −Q2
(2.7)

Which can be rewritten as

d =
c

4⇡f
· φ (2.8)

Since φmax = 2⇡, it is immediately apparent that there is a maximum measurable distance that

depends only on the speed of light and on the modulation frequency, which is dmax = c
2f . This

distance, defined ambiguity distance, with a single frequency technique can only be extended
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by reducing the modulation frequency. This means reducing the accuracy of the camera, as

proven, after some mathematical steps, by [9]. The final formula they obtain is:

σ =
c

4
p
2⇡f

·
p
A+B

cdA
(2.9)

where σ is the depth measurement accuracy, A and B are the amplitude and o↵set of the

reflected wave. Advanced ToF cameras employ multi-frequency technologies that allow to

amplify the measurable range using di↵erent frequencies: lower frequencies to identify the

coarse position of the object (i.e. approximately where it is located) and higher frequencies

to accurately describe it. The beat frequency is the frequency at which the two modulation

frequency agree, that corresponds to the true location of the object under study [13].

Figure 9: Top figure: Single frequency ambiguity problem. Bottom figure: Multi-frequency

ambiguity problem solved. [13]
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Summarizing, pulse method gives low accuracies but a higher operating range, while CMW

gives higher accuracies, but it presents ambiguity problems regarding the operating range [35].

Once all the measures are performed, the camera can save and output the data in di↵erent

formats. There are two main formats that the majority of cameras use: depth image and point

cloud. Depth image consists in a 2D image where every point has assigned x and y values and

a depth value based on the distance from the sensors. Point cloud instead collects data of the

3D camera so as to have x, y and z coordinates of every point. This method is usually able to

give more information to the user, since it can show hidden objects too, that in a depth image

could not be represented. Most cameras are able to provide both outputs and convert one into

the other.

3D ToF cameras are a technology that still has some limitations in its possible applications.

They are mainly due to problems related to lighting, changes in color or curvatures. In fact,

many 3D systems show some level of “3D data drop-out”, a condition where light, curvature or

colors cause some voids in the 3D data.

The first main limitation is represented by unwanted reflections: bright close objects quickly

scatter too much light into the lens and can lead to creating artefacts. Multiple reflections can

disturb the measurement too, since a ToF cameras wants light that has been reflected only once

to perform precise calculations of the waves phase di↵erence. This is usually referred to as a

”multipath error”. Moreover, ambient light can cause a quick saturation of sensor pixels causing

the actual reflected light to not be detected. This problem can actually be partially overcome by

using a band pass filter that allows to only collect within the NIR range, cutting out every other
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wavelenght. Finally, if an application requires multiple ToF cameras, it is necessary to careful

study the setup since they can disturb each other in the measurement. Another limitation

happens when an object under study is in motion. The motion can cause measurement errors

that need to be considered. Moreover, it is difficult to predict how the materials will react to

NIR illumination and these di↵erent interactions could modify and change the 3D data obtained

from object to object.

2.4 Time-of-Flight 3D Vision Applications

Time-of-Flight cameras can be implemented in a variety of application so as to go a step

forward towards a fully automated industry. In the following pages 4 di↵erent example of pos-

sible applications will be described: Bin Picking, Dimensional Metrology, Autonomous Driving

and 3D Mapping.

2.4.1 Bin Picking

Bin picking is a benchmark example in the world of robotics and 3D vision. It consists in

gripping and handling objects placed on a convoy belt in order to store them or move them to

another working station in the factory.

It can be classified in three di↵erent types: Structured Bin Picking when the parts are placed on

the convoy belt in an organized manner so as to be easily recognized and picked; Semi-structured

Bin Picking when parts are partially organized on the assembly line; Random Bin Picking when

there is no organization on the convoy belt and the robot needs to be able to recognize the

geometry and the orientation of the part and grab it correctly. The last Bin Picking category

is the most interesting and challenging one and it needs to be solved employing 3D imaging
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Figure 10: Bin Picking application example [14]

techniques such as Time-of-Flight cameras [37].

When used to face the bin picking problem, Time-of-Flight cameras usually implement sensors

based on the technology of Photonic Mixing Devices, a particular ToF system which presents

multiple error sources, but that, with proper calibrations, can reach an overall mean accuracy of

3 mm [38]. Time-of-Flight cameras have been proven to be noticeably fast in object detection,

but not as precise as other 3D technologies such as 3D triangulation [39].

2.4.2 Dimensional Metrology

Dimensional metrology is another application where Time-of-Flight cameras can make a

di↵erence. It consists in the control of the correct size, volume and placement of objects under
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study and it is a fundamental step in the quality control of the product. In some application, a

simple 2D camera can perform the task, but sometimes a 3D vision system can be necessary or

significantly improve the results. The Time-of-Flight camera can be placed over a convoy belt

and quickly check dimensions of products certifying if the part is Good or Not Good, giving

a binary output [11]. In Figure 11 it is represented a possible application for quality control.

The camera in the image is not a ToF camera, but it illustrates correctly how the system would

work.

Figure 11: Quality control application [12]
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Moreover, the dimension and volume control can impact the logistic choices of a factory,

influencing factors such as palletizing or truck transportation. In fact, in an automated pal-

letizing system, robots at the end of the convoy belt need to take a decision on how to place

products’ pallets, and 3D vision systems, in particular ToF cameras, can be helpful in speeding

up the procedure. In loading trucks procedures instead, ToF cameras can be useful avoiding

obstacles and in real time monitoring the volume of cargo to realize efficient transportation

planning [15].

Figure 12: Truck loading application [15]



19

Figure 13: Palletizing application [16]

Another possible application related to the quality control field is the defect and failure

inspection of cast parts. Nowadays ToF cameras do not reach the necessary accuracies requested

by the market and that is mainly the reason why some other technologies such as 3D line

scanning are being preferred by companies. However, the constant growth of ToF camera will

eventually bring this technology to have success in the high accuracy field too.

2.4.3 Autonomous Driving

Another possible application where Time-of-Flight cameras have proven to be efficient is in

autonomous driving systems, both for in-cabin and outdoor applications. Autonomous driving
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consists in a technology that enables a vehicle to sense its environment and work without the

help of human intervention.

Figure 14: Indoor and outdoor possible driving applications [17] [18]

Consequently, in autonomous driving it is fundamental to obtain 3D information about the

world surrounding the vehicle so as to detect and avoid obstacles. To achieve this important

task, Time-of-Flight cameras are nowadays being implemented and tested, representing the

future of self-driving cars. In fact, Tesla CEO Elon Musk mentioned during Tesla Autonomy

Day in April 2019 that ”everyone simply relying on LiDAR is doomed and that important steps

need to be taken in the direction of computer vision” [40]. The solution could be to develop

machine learning softwares that can be trained so as to use cameras to better understand

the world around them in order to gain more information from the surroundings, such as if a

pedestrian is distracted or if a car is about to turn or not. ToF cameras can be the solution
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to this problem since they are able to combine the information of a LiDAR with the image

sensing of a simple 2D camera. Moreover, ToF cameras are being efficiently used for in-cabin

application too such as airbag pressure regulation or gesture control [41].

2.4.4 3D Mapping

Finally, a last application for Time-of-Flight cameras is 3D mapping of indoor or outdoor

environments. 3D mapping consists in profiling of objects in three dimensions to map the

objects in real world[42]. In general, ToF cameras have not been extensively used in the field of

mapping since laser scanners and stereo camera systems have been proven to be highly efficient.

On the other hand, ToF ease-of-use, cost e↵ectiveness and compactness allow these types of 3D

vision system to be implemented in this application field too [43]. As it has been proven [44],

3D mapping of indoor and outdoor environments is feasible with a ToF camera, after a correct

calibration of the system. Moreover, ToF cameras can be implemented in drones designed

for building envelope scanning, a procedure that today is done either by human testers or by

technologies that present di↵erent limitations, such as sca↵olding robot manipulators, mobile

robots or 3D SLAM systems.
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Figure 15: 3D Mapping application [19]

2.5 State-of-the-Art in 3D Vision Systems

There are a few companies that lead the way in the market for what concerns Time-of-

Flight cameras; among them there is Basler, a German company that sells two di↵erent ToF

cameras: Basler Time-of-Flight and Basler Blaze. The former is a convenient camera that

o↵ers an attractive price/performance ratio while the latter is the latest and most performing

ToF camera produced by Basler. The Basler Blaze main features are the following:

• Working range: 0-10m

• Field of View: (H x V): 67° x 51°

• Accuracy: ± 5mm (0.5-5m)

• Frame rate: 30fps
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• Resolution: 640px x 480px / VGA

• Dimensions: 100mm x 81mm x 64mm (L x W x H)

The average price for this camera on the market is around $1600.

Figure 16: ToF 3D vision camera by Basler [20]

Obtaining the Basler Blaze features has been possible thanks to the implementation of the latest

sensor produced by Sony, the DepthSense IMX556PLR sensor. This sensor has a resolution of

0.3M, a pixel size of 10 µm x 10 µm with a size of only 1/2”. This back-illuminated, time-

of-flight 3D image sensor is perfect to capture accurate depth maps and be used in basically

every application mentioned earlier. Sony is a leader in the field of sensors destined to 3D
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applications and remarkably helps to meet the increasing demand of a more automated society.

After releasing in 2018 IMX556, Sony will release an upgraded sensor in March 2021 called

IMX570 with improved features. Among several improvements it is worth mentioning that the

size is significantly reduced to 1/4.5” to allow more compact cameras, the pixel size is reduced

to 5 µm x 5 µm and the modulation frequency range is broader.

Figure 17: Sony Sensors. Left : IMX570. Right : IMX556 [21]
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These Sony sensors are unique thanks to their incredible ability to capture more efficiently

reflected light compared to their competitors. This is done thanks to a back-illuminated image

sensor technology that allows a wider incident angle [15].

Another Time-of-Flight camera that employs the Sony DepthSense IMX556PLR sensor is

LUCID Helios2 3D camera. Launched in July 2020, this camera is a state-of-the-art device with

impressive features that make it perfect for all application previously listed. Its main features

are:

• Working range: 0.3-8.33m

• Field of View: (H x V): 69° x 51°

• Accuracy: ± 4mm (0.3-1.5m)

• Frame rate: 30fps

• Resolution: 640px x 480px

• Dimensions: 60 x 60mm x 77.5mm (L x H x W)

The price for this ToF camera is $1495.
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Figure 18: LUCID Helios2 3D camera [22]

On the market there are several other 3D ToF cameras that have less interesting characteristic,

but more a↵ordable prices. Some examples are: BlasterX Senz3D, Microsoft Azure Kinect DK,

DepthEye Wide or Turbo ToF camera, Mesa Imaging SR4500, Swift-G by Odos Imaging , SICK

Visionary-T and PMD CamCube3.0.



CHAPTER 3

THESIS WORK

3.1 Hardware and Software Description

The 3D camera used to perform all the research in the thesis is the Basler Blaze 101 Time-

of-Flight (ToF) camera. The main features of the camera, such as the sensor implemented or

the main specifications, have been already described at the end of the previous chapter.

Figure 19: Basler Blaze 101

27
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The camera, in order to be fully functional, needs to be connected to a power source able to

provide 22 W and to a vision processor through an ethernet cable. It is important to point out

that the camera will communicate with the vision processor thanks to the GenICam protocol,

which is a global standard and thus allows the user to use the ethernet cable. There is no need for

a lighting controller since the camera operates in NIR and has its own source. Subsequently, in

order to access the camera functionalities, Basler provides a Software Development Kit (SDK)

downloadable on its online page. The SDK contains useful folders such as ”Applications”,

”Development” and ”Documentation”. The Application folder contains the Basler blaze Viewer,

which helps the user in operating the camera, visualizing the point cloud and depth map live

and allowing to change the camera settings to the user specific needs. It has been simply used

at the beginning of the study for verification that everything was functioning correctly. Instead,

in the Development folder there is a useful folder that provides di↵erent C++ prebuilt sample

files that teach you how to configure and integrate the main features of the camera in future

applications.
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Figure 20: Fully functional setup for Basler Blaze 101 with a sample object

3.2 Image Acquisition

Before starting to work on any program, it is necessary to obtain point clouds from the

Basler Blaze 101 3D camera. In order to do so, the program “Blaze101” has been created

programming on C++ on the Microsoft Visual Studio 2019 platform. The code is mainly taken

from the sample codes o↵ered by Basler in the SDK folders and it has been slightly modified

according to the user necessities.

The parameters that significantly a↵ect the resolution and quality of the point cloud, and that

consequently need tuning, are Confidence Threshold, Operating Mode, DepthMin, DepthMax
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and Exposure Time. The Operating Mode can be set either as Long Range or Short Range,

depending on the distance of the object under study. If the object is closer than 1.5 meters it

is recommended to use the Short Range, otherwise the Long Range is more suitable.

DepthMin and DepthMax are the most intuitive parameters, since they define the depth range

of the point cloud. These measures need to be input in millimeters.

Confidence threshold allows us to take into account only pixels that exceed a specified threshold.

Basically, the camera calculates an internal confidence value, in a 16-bit register, between 0 and

65335. The confidence value will increase if the amount of light collected by the pixel increases

as well. Having a higher confidence means that the camera system is more certain that the

measured point is correct.

Finally, the exposure time is a parameter that controls for how long the photosensitive cells are

exposed to light. Basler suggests an exposure time of 250 ms for the Short Range application,

while an exposure time of 1000 ms for the Long Range one. The practice of reducing the

exposure time is necessary only when the image is overexposed since it may reduce measurement

accuracy. This parameter needs to be set in microseconds.

After tuning these parameters in order to get the best point cloud with the highest quality and

resolution, the C++ code can be built and launched. It will take the picture and save it as a

.PCD file in the same folder containing the program.

3.3 Point Cloud Library

After having obtained the points clouds, in order to build programs that can process and

work with these type of file, the open source library PCL (Point Cloud Library) is used.
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Figure 21: Point Cloud Library [23]

The Point Cloud Library is an open source library originally released in March 2010 by

Willow Garage, a robotics research lab located in Menlo Park, California. It contains algorithms

for filtering, segmentation, feature estimation and more [45]. In order to make PCL run correctly

the user needs to install third-party libraries:

1. Eigen library to perform mathematical operations;

2. VTK to visualize the Point Clouds properly;

3. Boost for shared pointers;

4. FLANN for quick k-nearest neighbor search.

PCL is able to save file in the PCD format, the most common way to store 3D point cloud

data, but it is able to save and load data in many other formats such as PLY, IFS, VTK, STL,

OBJ or X3D.

The official website https://pointclouds.org o↵ers clear and detailed instruction on how to pro-
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ceed to install and run PCL on di↵erent operating systems.

The operating system used in this thesis is Windows.

3.4 Registration

The process of aligning various 3D point cloud views into a complete model is known as

Registration. This technique finds the relative pose (position and orientation) of the di↵erent

point of views so as to make the intersecting areas overlap as much as possible. The final goal

is to merge all these point clouds into one single point cloud where the user can subsequently

apply processing steps such as segmentation or object detection.

Figure 22: 6 di↵erent Point Clouds taken from di↵erent view points [24]
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Figure 23: Registered Point Cloud model [24]

The particular 3D Registration technique applied in this thesis is called Pairwise Registration

of 3D point clouds, that consists in aligning two point clouds at a time. The output of the

algorithm is typically a rigid transformation matrix (4x4) which represents the translation and

rotation that needs to be applied to one point cloud (selected as source) to perfectly match and

overlap the second point cloud (selected as target or model).

The pipeline used to perform pairwise registration is illustrated in Figure 24.
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Figure 24: Registration pipeline [24]

3.4.1 Data acquisition

The first step is the data acquisition. It consists in obtaining correct, precise and clean

point clouds of the object under study. First of all, it is necessary to utilize the Basler Blaze

101 3D ToF camera to get the pictures that will be used later in the registration process. The

program “Blaze101” is used and the PCD file is saved in a folder selected by the user.
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Subsequently, the PCD file needs to be downsampled so as to make it less heavy for the computer

for future post-processing operations. In order to downsample the file, the program “voxel grid”

is created. The program takes as input the original full file and outputs the new PCD file

downsampled, saving it to the same folder of the program. The most important parameter is

the LeafSize, which needs to be tuned according to the user necessities. LeafSize takes three

values, one for each of the axis x, y and z. It basically creates voxels (i.e. 3D boxes) with the

specified dimensions, and all the points present inside these boxes will be approximated (i.e.

downsampled) with their centroid.

Finally, so as to properly proceed with the registration process, it is important to remove

everything that the user does not want to register, such as close objects or the table on which

the object is lying on. In order to accomplish this task, the program “remove table” has been

created. It takes the downsampled file as input and it outputs the new PCD file. The first

thing that the program does is create a pcl::SACSegmentation object, setting the model and

method type. The model that the algorithm needs to look for is a plane, and the method

is RANSAC. Random sample consensus (RANSAC) is an iterative method whose goal is to

determine parameters of a mathematical model (the plane) from a dataset (the point cloud)

[46]. In this part of the code, it is also possible to specify the distance threshold, which

determines how close a point must be to the model to be considered an inlier. The code will

find all points belonging to the biggest plane model, which is the table, and will remove them

from the point cloud. Subsequently, the code implements a passthrough filter on the X axis

and on the Z axis. These filters allow to remove all the points that were not removed by the
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plane removal algorithm and that do not belong to the object under study. Finally, a statistical

and radius filter can be applied if the result is still not satisfying.

3.4.2 Keypoints estimation

All the following steps are implemented in the program called ”Registration”.

The second step in the registration process is finding keypoints. A keypoint is a special point,

also called ”interest point”, that best represents the scene in the dataset. PCL o↵ers several

ways to find keypoints such as with NARF, SIFT and FAST keypoints algorithms. In this

thesis, the keypoints estimation step has been carried out through a uniform sampling of the

cloud. This choice reflects the intent of the program to make the process as generalizable

as possible, i.e. not relying on specific keypoints that work better on certain cloud datasets

rather than other. This has been done in the code by using UniformSampling class, which

creates a local 3D grid over a given PointCloud. In each 3D box, all the points present will

be approximated with the closest point to the center of the voxel [47]. It can be considered a

random way to get uniformly distributed keypoints. In this part of the code, it is necessary to

tune the radius keypoint parameter, which represents the nearest neighbors search radius for

each point.

3.4.3 Feature descriptors estimation

The third step is to estimate feature descriptors for each of the found keypoints. In fact,

using only keypoints will not allow the user to perform a proper registration since they do not

carry enough information with themselves: only their XYZ coordinates; on the other hand, fea-

ture descriptors will help distinguish points since they will have similar values when calculated
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for the same area in di↵erent point clouds.

The normals of each keypoint are an example of a very simple feature. Feature descriptors, in-

stead, consist of a ”more detailed signatures of points” [48] that will help later on to determine

correspondences between the two point clouds.

There are two types of descriptors: local and global descriptors. A global descriptor describes

an entire object or a whole point cloud, while the local descriptor is a representation of a point’s

local neighborhood and encodes a lot about the surrounding geometry, thus becoming suitable

and useful when it comes to identify and describe various points and match them [30].

After the algorithm calculates the necessary values for the descriptor, the result is binned into

a histogram so as to reduce the descriptor size. Each value range of each descriptor’s variable is

divided into n subdivisions, and the number of occurrences in each subdivision is counted [49].

The Fast Point Feature Histograms (FPFH) descriptors are the local descriptors that have been

used in the code. FPFH is born as a simplification of the Point Feature Histogram (PFH) formu-

lation and it reduces the computational complexity of the algorithm from O(nk2) to O(nk) [25].

The PFH algorithm and theoretical aspects will be explained first and then the improvements

brought by FPFH will be described.

3.4.3.1 Point Feature Histograms (PFH)

In order to estimate PFHs it is necessary to start with having 3D coordinates and surface

normals of each keypoint. The subsequent steps that need to be followed are:

1. All the points enclosed in a sphere of a given radius r and centered in point p are selected

(k-neighborhood);
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Figure 25: K-neighborhood of point p [25]

2. For every pair of points ps and pt in the k-neighborhood of p a uvw frame is defined and

the di↵erence between the two normals ns and nt are calculated thanks to their angular

variations [25].

Figure 26: Graphical representation of points ps and pt with their normals and their angular

PFH features [26]
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The frame is centered at ps and is defined as:

8
>>>>>><

>>>>>>:

u = ns

v = u⇥ (pt−ps)
||pt−ps||2

w = u⇥ v

(3.1)

While the angles are:

8
>>>>>><

>>>>>>:

↵ = v · nt

φ = (u · (pt − ps))/||pt − ps||

✓ = arctan(w · nt, u · nt)

(3.2)

3.4.3.2 Fast Point Feature Histograms (FPFH)

The simplification introduced with the FPFH reduces the computational complexity of the

algorithm, but manages to keep most of the discriminative power of the PFH. The procedure

for FPFH is the following:

1. For each point p calculate the relationships only between itself and its neighbors. This is

then called the Simplified Point Feature Histogram (SPFH).

2. For each neighbor calculate their SPFH and finally use these values to weight the final

histogram for the original point p. The final formula that summarizes this concept is the

following:
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FPFH(p) = SPF (p) +
1

k

kX

i=1

1

wk
· SPF (pk) (3.3)

where the weight wk represents the distance between point p and a neighbor pk [25].

Figure 27: New region of influence of point p in FPFH algorithm [25]

In the code, the FPFH function requires the keypoints and their normal as input as well as

the sphere radius that is used for determining the nearest neigbhours used for feature estimation

(radius fpfh). The normals are computed thanks to the NormalEstimation class, where the

parameter radius normals is tuned. The class FPFHEstimation then proceeds in calculating
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the feature descriptors. The parameter that needs to be tuned is radius fpfh, which represents

the nearest neighbors search radius for each feature descriptor.

3.4.4 Correspondences estimation (matching)

The fourth step in the registration process consist in finding correspondences between the

keypoints in the two point clouds. This is made using the CorrespondenceEstimation class,

which is going to determine all reciprocal correspondences. In order to work it has to receive

the source and target FPFH descriptors of the two point clouds as an input. The algorithm

simply associates each keypoint on one cloud to its nearest neighbor keypoint on the other cloud

based on the fact that their descriptors are in the same descriptor space [30].

It is clear that not all the areas of the two point clouds will be overlapping and this is why,

after having found all the correspondences, it is necessary to reject the bad ones. This is made

through the CorrespondenceRejectorDistance class. This class implements a simple correspon-

dence rejection method based on thresholding the distances between the correspondences. Cor-

respondences more distant than the parameter maxDistanceCorrespondences will be removed.

Finally, the code is now ready to calculate the 6DOF transformation of the source file to match

the target one. This is done by the TransformationEstimationSVD class, which takes the good

correspondences, the source and the target keypoints as inputs.

3.4.5 ICP

Iterative closest Point (ICP) is an algorithm used to minimize the distance between points

of the source and the target point clouds. It can be considered a ”brute force method” since it

pairs every point from one cloud to its ”twin” and tries to reduce their distance [50].
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ICP has been used as final step in the pairwise registration process to try to refine the results

previously obtained with the 6DOF matrix. In the code the inputs are, first, the source cloud

where the transformation matrix has already been applied and, secondly, the target point cloud.

The algorithm will then proceed to [51]:

1. For each point in the source cloud finds the closest match in the target cloud based on

distance;

2. Transform the source point cloud minimizing a root mean square point to point distance

metric;

3. Iterate the previous step until the metric used reaches a global minimum

3.4.6 Remarks on Registration

ICP is the last step of the registration process adopted in this thesis and is implemented in

the program ”icp simple live”, which provides a live visualization of the point clouds aligning.

The source and target point cloud are now correctly aligned. Since the registration is a Pairwise

Registration method, the program aligned only two of the multiple point clouds taken of the

object. It is instead necessary to iterate this process until all views of the object are integrated

in the final model. Consequently, the two aligned point clouds are merged into one that will

become the new source point cloud for the following registration iteration. After finishing this

process for all the points of view the user will have a complete 3D model of the selected object.



43

3.5 Geometry evaluation of point clouds

After acquiring a complete point cloud model of an object, the user may want to get basic

geometry information out of it, such as length, height and width. In order to accomplish this

task, the program ”Geometry” has been created.

A quick method to obtain reasonable accurate geometry measures is to build a bounding box

around the object. After having built a bounding box the user can obtain information on the

width, depth and height of the box: these measures can be used to describe the enclosed object

too. The bounding box needs to be correctly oriented so as to be the one with the smallest

possible volume and so as to be the one that correctly describes the dimensions of the object.

The bounding box that respects these characteristics is called Oriented Bounding Box (OBB).

In PCL there is a class that is able to extract the necessary information to properly build

an OBB: the MomentOfInertiaEstimation class. After using this class, the procedure is quite

simple since the user only needs to call the function ”getOBB” to get all the necessary data to

build the box.

Instead of using the pre-built functions in PCL, the user can manually obtain the same results

following some easy steps. The procedure originates from user Nicola Fiorario on the PCL

forum [52]. The first step would be to calculate the centroid and the normalized covariance

matrix of the point cloud. Subsequently a Principal Component Analysis (PCA) is performed:

the three eigenvectors of the normalized covariance matrix are found and they are used to

form a new reference system. The new reference system will be (e0, e1, e0 ⇥ e1) (note: e0

⇥ e1 = ±e2). The eigenvectors are used to transform the point cloud to the origin point
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with the eigenvectors corresponding to the axes of the space. Subsequently, for all axis, the

maximum point, the minimum point and the middle of the diagonal between these two points

are calculated for the transformed cloud. Finally, the user will build a box centered at the

origin with size (max pt.x−min pt.x,max pt.y −min pt.y,max pt.z −min pt.z). In order to

enclose correctly the point cloud the box needs to receive a rotation and a translation too, that

are calculated thanks to the eigenvectors. The rotation is in quaternions and is (e0, e1, e0 ⇥

e1), while the translation is obtained through: Rotation ⇥ center of diagonal + centroid.

3.6 AutoCAD model creation

If a more precise and accurate study on the object’s geometry is required, it is possible to

create an AutoCAD model from the final registered point cloud and perform additional studies

on the CAD software. The programs ”Triangulation” and ”AutoCAD” have been created to

solve this problem.

The algorithm used to perform this task and create the mesh models is the Greedy Projection

Triangulation algorithm.
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Figure 28: Greedy projection triangulation algorithm [27]

The process can be divided into 4 steps [27][53]:

1. Nearest neighbor search: Given a reference point M in the point cloud, the program looks

for all the closest neighbors, with a maximum number given as input by the user.

2. Point cloud projection: Point M and its k-neighborhood are projected to the tangent plane

which is perpendicular to the normal vector generated by point M. All points belonging

to the k-neighborhood are projected to this plane and they form the so-called point set

{G}.
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3. Triangulation in plane: The greedy triangulation takes place on the tangent plane. It

follows a greedy schema, which consists in adding every edge starting from the shortest

one in increasing order by length, with the condition that an edge can not cut an already

existing edge [54].

4. Triangulation re-projection: After obtaining the mesh on the tangent plane, the triangu-

lation is returned to the 3D space. Every step of the algorithm is then repeated for all

reference point in the cloud until the full mesh model is ready.

In the code there are some parameters that need to be set and tuned to specify the wanted

features and to obtain the best possible mesh:

• setMaximumNearestNeighbors : It defines the maximum number of neighbors to consider

when performing the greedy triangulation;

• setMu: It sets the multiplier of the nearest neighbor distance to obtain the final search

radius. It is used in order to adapt to point clouds with di↵erent densities;

• setSearchRadius: It defines the maximum distance between connected points. Conse-

quently it sets the maximum triangle edge length;

• setMinimumAngle and setMaximumAngle: They set the maximum and minimum angles

of triangles;

• setMaximumSurfaceAngle and setNormalConsistency : If normal are not oriented consis-

tently, the former sets the maximum angle between normals to still consider points for

triangulation. It is useful when there are sharp edges or corners.
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After reconstructing all the triangles of the model, it is likely that some holes are still present

in the mesh. In order to overcome this problem, the fillHolesFilter class is helpful. The user

can input the maximum area of the missing triangle and the program will proceed to fix the

holes.

Since the Point Cloud Library is not able to provide a file format that is readable by

AutoCAD, the Visualization and Computer Graphics Library (VCG) has been used. VCG is

an ”open source portable C++ templated library for manipulation, processing and displaying

with OpenGL of triangle and tetrahedral meshes” [55]. This library allows to receive the .PLY

file, output by PCL, and export it into a .DXF file, which can be easily opened on any of the

latest AutoCAD versions.

3.7 Segmentation

Segmentation consists in the process of dividing a point cloud in multiple segments or

pieces, which take the name of clusters. The goal is to separate objects in a scene in order

to perform di↵erent studies or analysis on them indipendently. There are several techniques

that can be used to perform segmentation on a point cloud, such as based on point distance,

point normals or even texture [56]. The method used in this thesis is one of the simplest:

the Euclidean Segmentation, which is based on the distance between two points. The program

”Segmentation” has been created to perform this task.

First of all, the program starts by eliminating possible tables, planes and points that the user

does not need to keep in his final file. This is made in a really similar way it has been done at

the beginning of the registration process. This time the ”remove table” code is implemented in
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a while loop so as to find multiple planes and not just only the biggest one. Following this step,

the Euclidean segmentation algorithm analyzes the distances between points, and if it is lower

than a specified threshold, they are considered belonging to the same cluster. The algorithm

goes on following this step until no more points can be added. It then creates a new cluster

and the procedure starts again until all points in the cloud have been considered [56].

In the code there are some parameters that need to be set and tuned to specify the wanted

features and to obtain the best possible segmentation:

• setClusterTolerance: It defines the search radius for neighbors;

• setMinClusterSize and setMaxClusterSize: They define the boundaries for the number of

points in the cluster.

The program also contains a section where the point cloud is filtered and the eventual plane

(table) is removed from the scene. After finally running the program, the clusters found will

be saved in the same folder of the program with di↵erent names.

3.8 Object Recognition

3D Object Recognition is the technique through which the user is able to locate and recognize

objects from a 3D point cloud. Basically, the problem consists in finding the object (model) in a

scene and being able to locate it. In this thesis, correspondence grouping algorithms, contained

in the pcl module, have been used to cluster the correspondences found in the model that are

present in the scene. The program ”Object Recognition” has been created to perform this task.

The process can be seen as quite similar to the registration process previously described in
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the thesis since it uses the local shape feature-based matching paradigm too. In the object

recognition application, the local feature-based matching proceeds finding keypoints and feature

descriptors of the cloud, then generating an initial set of correspondences between the model

and the scene. However, there will be a high amount of false positive due to multiple reasons

such as noise, clutter, occlusions and overlaps in the scene point cloud [28]. At this point, the

correspondence grouping algorithm is used to filter and find the correct correspondences.

Figure 29: 3D Object Recognition algorithm [28]
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The correspondence clustering algorithm used in the program takes the name of Hough3DGrouping

and it is based on a 3D Hough voting scheme described in [29]. In the algorithm proposed by

Tombari and Di Stefano each correspondence casts a vote in 3D Hough space.

For every ith correspondence denoted by ci = {pi, p
0
i}, the vector between the source centroid

CS and the model feature point pi is calculated in the coordinates of the global reference system

of the source as:

VS
i,G = CS − pi (3.4)

then it is transformed in the local reference system (LRF) of pi as:

VS
i,L = RS

i ·VS
i,G (3.5)

where RS
i is the rotation matrix where each line is a unit vector of the LRF of the feature pi.

The LRF is an independent coordinate system created around the surface of the keypoint and

gives the vector invariance to rigid transformation.

Given that pi and p
0
i are a good correspondence, vectors VS

i,L and VS0
i,L should coincide. Conse-

quently we can proceed to calculate VS0
i,L for p0i. Finally, the vector VS0

i,L is transformed in the

global reference system of S’ as:

VS0
i,G = RS0

i ·VS0
i,L + p

0
i (3.6)
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now the feature f 0
i can vote for the centroid position in a tiny 3D Hough space thanks to vector

VS0
i,G. Consequently, the presence of a correct centroid (and consequently of a particular object)

can be confirmed by analyzing the peaks of the Hough space [28][29].

Figure 30: Reference systems transformations (top) and 3D Hough Voting scheme [29] (bottom)
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Figure 30 can give a visual idea of the algorithm and of the voting process. The top figure

illustrates the di↵erent changes in the reference system, while the bottom figure shows the

voting process. The green vectors will cast a vote in the correct red 3D Hough space of the

centroid. The red wrong vectors will cast votes too, but, at the end, the amount of votes in the

correct hough space will be higher consequently forming a peak in the position of the correct

centroid. This is how the object is found.

Another important thing to mention about the object recognition algorithm is that the

feature descriptors used are not the FPFH anymore, as in the registration process, but the

SHOT descriptor has been implemented.

The SHOT descriptor is a 3D descriptor that successfully combines the robustness to noise of

histograms with the discriminative power of the descriptor [57].

Figure 31: SHOT Descriptor [30]
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The SHOT descriptor relies on a 3D grid centered on the keypoint and oriented according

to a unique LRF. In every section of the grid, the angles between the keypoint normal and

the normal of each point inside that sector is accumulated to build a histogram. The final

descriptor is obtained by putting together all obtained histograms [30].

Finally, there are some parameters in the code that needs tuning in order to get the best

possible result:

• model ss and scene ss: they represent the nearest neighbors search radius of the sphere

used to determine keypoints in the uniform sampling part of the code.

• rf rad: It is the LRF support radius. It is used to find the local reference system of the

keypoints.

• descr rad : It is the SHOT descriptor radius. It is used when calculating the feature

descriptors of the keypoints.

• cg size: It defines the spatial length of each Hough bin. In order to be set correctly it

should be enough large to solve the problem of noise of the 3D Hough votes but not too

large to create too many useless peaks in the Hough space.

• cg thresh : It represents the threshold for the number of votes received of each object

hypothesis.

After giving as input the model and the scene, the program will calculate the position of

the model and it will superimpose it in red the scene point cloud. There are further options

for the visualization of results, such as the option to see keypoints, correspondences or even the
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connections between the model and scene correspondences. How to use all these options is well

explained in the code comments.



CHAPTER 4

RESULTS

4.1 Registration Results

The objects that have been studied and registered are a shoe and a little model of a cater-

pillar excavator.

Figure 32: Setup for shoe and caterpillar excavator Registration process

The downsampling process for all the objects in the thesis has been usually done with a

LeafSize of (5,5,10) mm. An example of the results obtained for the first step of downsampling

the multiple views of the object is the following:

55
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Figure 33: Left: original point cloud, Right: downsampled point cloud

Subsequently, the plane has to be removed together with everything that is not related with

the object the user wants to register. Together with the plane removal, the cloud is also filtered

and corrected by removing outliers present because of possible ToF camera imprecisions.

In Figure 34 the red points have been removed and identified as a plane, while the green points

are saved as a new final point cloud of the object. The grey points have been removed by the

statistical filters applied to the cloud.
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Figure 34: Example result of the plane removal algorithm

After applying these pre-processing steps to all the clouds for all viewpoints of both the

shoe and the excavator, the actual registration process and ICP final iteration takes place. As

it can be seen in Figure 35, the two point cloud are aligned by the initial registration algorithm.

However, they are not perfectly aligned on the back of the shoe, this is why the user needs to

use the ICP process to refine the obtained results. In fact, after the ICP process the results are

clearly more acceptable as shown in Figure 36.
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Figure 35: Example result of two shoe point cloud registered

Figure 36: Example result of two shoe point cloud registered after ICP



59

The final results obtained for the shoe and the excavator have been successful and they are

shown below:

Figure 37: Final registered objects
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4.2 Geometry evaluation Results

After having obtained the final registered objects, we gave them as inputs to the Geometry

program, that, building an Oriented Bounding Box around them, has been able to output their

width, height and depth.

Figure 38: OBB for the Caterpillar excavator and related measures
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Figure 39: OBB for the shoe and related measures

4.3 AutoCAD model creation Results

The first result for the AutoCAD model creation is obtained after creating a mesh with

the PCL Library. The file format is .VTK and can be correctly be visualized through the

program pcl viewer. As it can be seen in the figures below the holes have been successfully

closed almost everywhere in the cloud. Then, after using the VCG Library, the .VTK file can

be easily converted first in a .DXF file that can be read in AutoCAD.
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Figure 40: VTK meshes
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Figure 41: Autocad models
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4.4 Segmentation Results

The scene on which segmentation has been performed is shown in Figure 42 and it is

composed by two simple objects:

Figure 42: Scene point cloud

The program was able to eliminate the table and to find correctly two objects, which have

been saved as two di↵erent point clouds in the same folder of the program. The two objects

can be visualized on the same visualizer, with di↵erent colors.
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Figure 43: Two di↵erent object segmented, shown in di↵erent colors

After trying several times, it is important to point out that the Euclidean segmentation

algorithm has an important limit: when the two objects are too close together (usually when

they are touching), their points are closer than the threshold given as input and the algorithm

will consequently mistakenly recognize them as one big object, as shown in Figure 44.
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Figure 44: Two di↵erent object wrongly segmented

4.5 Object Recognition Results

The first step to do, before even running the program, is to create scenes with multiple

object present and even possible occlusions. In Figure 45 there are examples of created scenes.

After creating the scenes it is possible to play around with the algorithm and test wether it can

recognize di↵erent models (mug, shoe or bug spray) and locate them correctly in the scene.
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Figure 45: Examples of occluded scenes for object detection application

Starting with the mug, it is possible to see that the algorithm is able to successfully locate

the object in the scene. The program output can also illustrate the correspondences with the

model, shown on the side, drawing lines connecting them. In Figure 46 the scene chosen is a

simple one, where the mug is quite visible in front. Instead, in Figure 47 and Figure 48, it has

been tried to hide the mug a bit behind the bug spray, making the handle and some of the cup

itself not visible in the cloud. This has been done to test the robustness of the algorithm and

the results show that the program is still able to correctly locate the object.
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Figure 46: Mug correctly recognized in a simple scene

Figure 47: Mug correctly recognized in an occluded scene
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Figure 48: Another point of view of the mug correctly recognized in an occluded scene

The other two objects that have been fed to the algorithm are the bug spray and the shoe.

As it can be seen, the program is able to recognize them successfully too in the scene. Moreover,

in Figure 51 and Figure 52, the algorithm has been tested again in a difficult occluded situation

and it managed to locate correctly the shoe even though almost half of it was covered by other

objects. This proves again the robustness of the algorithm and its positive results.
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Figure 49: Bug spray correctly recognized

Figure 50: Shoe correctly recognized
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Figure 51: Shoe correctly recognized in an occluded scene

Figure 52: Another point of view of the shoe correctly recognized in an occluded scene



CHAPTER 5

CONCLUSION

The goal of this thesis was to learn how to work with one of the latest 3D ToF cameras on

the market, to understand its hardware and software, and to develop C++ programs that lay

the basis for future work in the robotics applications world.

The results highlight that this has been possible and the goals have been successfully reached.

In fact, the C++ codes work smoothly and some of the developed programs can be implemented

in robotics application. For instance, every program developed in this thesis can be useful in a

bin-picking application.

Further improvements to this work consist in using all the software developed in the thesis

in an actual robotic application to test its quality. Moreover, another applicable improvement

is to use other libraries together with the PCL library so as to improve the results and increase

the potential of what can be done with a 3D ToF camera.
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Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics,
26(11-12):934–965, 2009.

45. Wikipedia: Point cloud library. https://en.wikipedia.org/wiki/Point Cloud Library, [On-
line; accessed on 2021-5-13].

46. Wikipedia: Random sample consensus. https://en.wikipedia.org/wiki/Random sample co-
-nsensus, [Online; accessed on 2021-5-18].

47. Point Cloud Library (PCL): pcl::uniformsampling< pointt > class template refer-
ence. https://pointclouds.org/documentation/classpcl 1 1 uniform sampling.html,
[Online; accessed on 2021-5-19].
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