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Introduction 

In 2018, more than half of world crude oil consumption came from the transportation sector1. 

Despite the Covid-19 pandemic and consequent reduction of world oil demand experienced by 

every sector (especially the transportation one) in 2020, it is expected that the above-mentioned 

trend will strengthen, increasing over the next years, as the growth rebound is already visible.  

Talking about road transportation, the immense world fleet of land vehicles, equipped with 

internal combustion engines (ICE), contributes primarily to the deterioration of the air quality 

due to the polluting emissions characteristic of this kind of thermal volumetric machine. The 

emitted pollutants lead to a general increase in health problems and a higher incidence of 

cardiovascular and respiratory diseases and tumours. Pollutants are chemical species that have a 

direct negative (carcinogenic or poisonous) effect on human health, and they can be classified in 

primary and secondary pollutants. The former ones are direct products of the combustion 

process, while the latter ones are formed later starting from the primary pollutants which can be 

subjected in the atmosphere to chemical reactions between them and with other chemical species 

present in the environment. The main primary pollutants are carbon monoxide (𝐶𝑂), unburnt 

hydrocarbons (HC), nitrogen oxides (𝑁𝑂𝑥) and particulate matter (PM). On the other hand, the 

main secondary pollutants are acid rains (which contain 𝐻2𝑆𝑂4 and 𝐻𝑁𝑂3) and “photochemical 

smog”, that is a mixture of harmful substances including mainly ozone (𝑂3) and volatile organic 

compounds (VOC).  

Particulate matter is a mixture of fine powders of different origin, size, and composition which, 

being very small, tend to remain suspended in the air and are mainly produced by CI engines. 

Medical evidence has shown how these suspended particles are among the major causes of 

respiratory diseases. For this reason, stringent legislations have been adopted, both nationally 

and internationally, in order to place severe limits on both the mass and the size of the particles 

emitted by the vehicles. These regulatory restrictions have fostered the resumption of research 

activities aimed at deepening the mechanisms of formation and oxidation of PM. Furthermore, 

new devices have been adopted over the years, with specific reference to after-treatment 

technologies, as the main consequence of the tightening in the emissions limitation imposed by 

the standards.  

This thesis work stems from the desire to find a valid alternative to the use of physical sensors, 

called soot sensors, for measuring the quantity of soot emitted (carbonaceous fraction of the 

particulate) by the engine. While the emission limits set by the legislation are defined in relation 

to the specified driving cycles, the engine output emissions can vary significantly due to the 

 
1 “World oil final consumption by sector, 2018”, IEA, World Energy Balances, 2020 



8 
 

behaviour of the driver and the different operating conditions of the engine itself. So, the main 

objective of this thesis is to apply and validate a virtual model that accurately estimates the 

engine-out soot mass. For this purpose, predictive models, based on Machine Learning and Deep 

Learning algorithms, will be designed and developed using the main engine parameters 

processed in the ECU (Engine Control Unit). 
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Chapter 1  

Theorical Background 

In order to better understand this thesis work, a briefly introduction is needed about the 

compression ignition engines combustion model and the polluting emissions formation 

mechanisms characterizing this type of ICE operations. These theorical concepts will help the 

reader to deep dive more easily into this thesis work.  

 

1.1 Combustion in Compression Ignition Engines 

In CI engines fuels with relatively low ignition delays are used, that are fuels characterized by 

high reactivity levels (examples are Diesel, biodiesel). Therefore, unlike what happens in spark 

ignition engines, fuel cannot be premixed with air and then compressed in the combustion 

chamber because it would burn up well before this process completes. Thus, to allow a good 

combustion control, the fuel should be injected in the cylinder at the compression stroke end, 

when the piston is reaching the TDC. Multi-hole electronic injectors release fuel at very high 

pressures (values up to 2000 𝑏𝑎𝑟 are quite common) and high speeds (around 100 𝑚 𝑠⁄ ) 

allowing the liquid fuel jet to be atomized in a cloud of microscopic droplets (with diameters of 

10 micron circa). The fuel gets in touch with the hot (at around 900 𝐾) and compressed air (at 

20-30 𝑘𝑔 𝑚3⁄ ) in the combustion chamber, vaporizes and mixes with it, then it ignites 

spontaneously without the need of an external spark. 

Thanks to the fuel high reactivity, in CI engines the air-fuel mixture can ignite also with air to 

fuel ratios quite far from the stoichiometric conditions (with low oxygen concentrations). This 

behaviour causes a fuel molecules dehydrogenation which results in carbon skeletons. They can 

then agglomerate giving rise to solid carbon particles (i.e., soot) which are accountable for 

particulate emissions of this type of engines. 

The oxidation process (combustion) of fuels like gasoline and Diesel can be represented by the 

following chemical reaction between reactants and products: 

𝐶𝑥𝐻𝑦 + (
𝑦

4
+ 𝑥) (𝑂2 +𝛹𝑁2) ⟶ 𝑥𝐶𝑂2 +

𝑦

2
𝐻2𝑂 + 𝛹 (𝑥 +

𝑦

4
)𝑁2 

where 𝛹 represents the ratio between nitrogen and oxygen moles in the air, 𝑥 indicates the 

carbon atoms in the fuel molecule, and 𝑦 is the relative number of hydrogen atoms.  

The reaction shown above describes an ideal (complete) and stoichiometric combustion where 

carbon dioxide, water vapour and molecular nitrogen (it should not react during the process) are 

the products obtained. Unfortunately, the fuel oxidation process takes place through a series of 



10 
 

intermediate reactions whereby it could happen that not all fuel molecules are completely 

oxidized, resulting in the previously mentioned polluting emissions. The 𝐶𝑂2 is a product of the 

ideal combustion process previously mentioned and it is not considered a pollutant because it has 

no effects on human health However, it is a greenhouse gas with a global scale impact, so it is 

one of the major causes of the global warming.  

 

Figure 1. Typical CI engine HRR diagram highlighting the different combustion phases [10]  

Observing the trend of the Heat Release Rate (HRR) curve versus the crank angle reported in 

Figure 1, it is possible to identify four different phases in the overall duration of the injection and 

combustion processes:  

• Ignition delay period: this phase begins with the start of fuel injection and ends with the 

start of combustion 

• Premixed combustion phase: fast combustion of the fuel accumulated in the cylinder 

during the previous phase and mixed with air (fuel rich conditions), causing a great 

pressure increasing and a spike in the energy released 

• Mixing-controlled combustion phase: start and development of the diffusive flame at the 

jet periphery 

• Late combustion phase: the combustion is completed with the burning of the fuel injected 

lastly. 

We will see in detail phase by phase, identifying for each one the contribution made to the global 

combustion process and underlining the most important aspects that characterize it. 

Before that, it is necessary a brief consideration regarding the amount of fuel that accumulates 

inside the combustion chamber before the process begins. This accumulation must be kept under 
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control, within certain limits, to reduce the premixed combustion peak. This can be 

accomplished by modifying the injection rate, that is instant flow rate introduced into the 

cylinder. However, a considerable reduction of this parameter could lead to a combustion 

efficiency drop due to the widening of the process on a greater crank angle range. This imply 

having the last part of the combustion in the expansion phase. To solve this issue the main 

alternatives are: 

• Injection rate shaping – It consists in the modulation of the fuel flow rate by keeping it 

relatively low in the early stages of injection, so that a small amount accumulates in the 

combustion chamber and increasing it in the subsequent phase. 

• Pilot injection – It is a small amount of fuel (about 5-10 % of the total quantity) injected 

before to the main injection. Trough properly timing the pilot injection, we can ensure 

that the accumulated quantity burns when the main injection starts. Thereby the 

temperature raises locally and the oxidation of the fuel subsequently introduced into the 

chamber accelerates, reducing the accumulation during the main event. This solution 

makes it possible to considerably reduce the pressure peaks which are responsible for the 

characteristic noise of CI engines. 

 

1.1.1 Ignition Delay 

The ignition delay in a CI engine is defined as the timeframe (in the order of 𝑚𝑠) between the 

Start of Injection (SOI) and the Start of Combustion (SOC), which does not occur 

simultaneously for all the fuel molecules injected. This parameter is very important because it is 

accountable for the subsequent combustion at almost constant volume. This process is 

advantageous in terms of thermal efficiency, but harmful from the stresses and vibrations (noise) 

point of view. The fundamental reasons of this delay are the following: 

• physical causes: phenomena that modify the aggregation state of the fuel molecules and 

regulate mixing processes between different substances 

• chemical causes: oxidation reactions that modify the chemical structure of the fuel 

molecules. 

A duration is associated with each of the foregoing causes, whose sum gives the overall time 

corresponding to the ignition delay: 

𝜏𝑡𝑜𝑡𝑎𝑙 = 𝜏𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 + 𝜏𝑐ℎ𝑒𝑚𝑖𝑐𝑎𝑙 
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The phenomena associated with the two causes never occur strictly in series but can overlap each 

other. Furthermore, the physical rate is predominant, as the fuel is highly reactive, resulting in a 

high reaction rate and, therefore, reduced time required by the chemistry of the phenomenon.  

 

Figure 2. Fuel droplet break-up process schematization [15]  

By going into details, the physical phenomena can be divided into a set of phases that 

characterize the changes occurring in the fuel jet penetrating the combustion chamber: 

• Atomisation (pulverisation) – The liquid fuel jet must vaporize so that it can mix with the 

air. This phase change occurs through the breaking process of the liquid column and is 

mainly governed by fuel physical characteristics, such as the surface tension and the 

intensity of aerodynamic interaction with the surrounding high-density air. The 

aerodynamic forces tend to pulverize the fuel jet in a two-step process. Firstly, they act 

on the outer surface of the jet, causing the formation of fuel drops (primary break up), 

and they subsequently act on these droplets formed, which lose their spherical shape and 

divide into myriads of microscopic size drops (secondary break up). The entire process is 

represented in Figure 2. Therefore, this physical interaction is controlled by the 

opposition of the aerodynamic forces, which push toward the atomisation of the jet, and 
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surface tension forces, which tend to keep the liquid droplets cohesive. The parameter 

that expresses the opposition of these two contributions is represented by the Weber 

number: 

𝑊𝑒 =
𝜌𝑔𝑣

2𝐷

𝜎
 

where ρ𝑔 represents the fuel density, 𝑣 the injected liquid velocity, 𝐷 the droplets 

diameter and 𝜎 the fuel surface tension. The value of 12 for the Weber number is taken as 

the limit below which no pulverisation of the liquid jet occurs. 

• Droplets evaporation – Due to the heat received from the surrounding air, the fuel drops 

heat up, causing a simultaneous speed-up in the speed of the vaporization process. The 

consequent reduction of the droplets size and their deceleration produced by the 

aerodynamic resistance cause a decrease in the heat flux and a consequent slowdown of 

the process. Hence, the speed of the evaporation process is not constant but decreases 

over time.  

• Fuel vapours mixing with air – It is the last phase of the ignition delay and strongly 

depends on the engine operating point. In fact, the higher the rotational speed of the 

engine, the shorter the time that will be available for the mixing process. Therefore, the 

turbulence in the combustion chamber must be stronger in order to accelerate the mixing 

between fuel vapours and air, that is to avoid an efficiency drop. 

On the other hand, the chemical phenomena mainly concern: 

• formation reactions of intermediate compounds, such as radicals and peroxides: highly 

reactive fuels are made of long and flexible molecules (alkanes with high molecular 

weight) which favour the formation of intermediate compounds, such as peroxides and 

hydroperoxides 

• strongly exothermic phenomena, such as thermal cracking reactions, preceding the 

oxidation process. 

 

1.1.2 Premixed Combustion Phase 

One of the main problems encountered in the design of a diesel engine is to be able to obtain a 

correct mixing between the injected fuel and the air. Once the ignition delay of the injected 

nuclei has ended, their combustion causes a sudden increase in temperature and this allows an 

extreme acceleration of the oxidative process of the accumulated fuel which burns almost 

simultaneously, i.e. in an almost isochoric way, giving rise to a sudden surge in pressure. This 

increase, although advantageous in terms of thermodynamic efficiency, is responsible, in 
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addition to the noise previously mentioned, for the onset of vibrations and stresses of important 

entity, resulting in more robust mechanical structures which, resulting in high inertia of the 

engine, limit the rotation speeds of an engine of this type. 

During this phase, a further drawback is added: reaching the high final temperatures creates 

suitable conditions for the formation of nitrogen oxides (better known as 𝑁𝑂𝑥). In fact, their 

creation does not occur during premixed combustion because there are still rich mixture 

conditions (𝜆 values of 0.25- 0.5).  

 

1.1.3 Mixing-controlled Combustion Phase 

Once the rapid combustion of the accumulation is exhausted, the process is regulated by the 

speed with which the new fuel fractions are available to burn, that is, by the speed with which 

they evaporate, mix with the combustion air and oxidize. Usually in this phase the maximum 

pressure of the cycle is reached, and the speed with which the energy is released can be 

controlled by acting on the injection rate. As the process progresses, the new injected fuel finds 

less and less oxygen available to react due to the progressive increase in the combustion gases 

inside the combustion chamber. Following processes of dehydrogenation, condensation and 

pyrolysis, unburnt carbonaceous nuclei, or soot, can form, consisting of solid particles containing 

a high number of 𝐶 atoms (with 𝐻 𝐶⁄  equal to 0.1 circa). This phase corresponds to diffusive 

combustion, in which about 90 % of the total fuel is burned.  

 

1.1.4 Late Combustion Phase 

The injection is now complete, but the chemical reactions are still progressing, gradually fading. 

Combustion can involve the carbonaceous nuclei that formed in the previous phase, allowing 

their oxidation. This last part is promoted by the turbulent motions that mix the gases inside the 

chamber, but it is necessary that this is not prolonged excessively so as not to reduce the 

efficiency of the engine heat release around the TDC). 

After the brief description of the combustion process, we proceed by analyzing the polluting 

emissions produced by diesel engines, in particular we focus our attention on what concerns the 

causes and formation of the soot.  

 

1.2 CI Engines Polluting Emissions 

One of the main defects of internal combustion engines is linked to the production of pollutants 

during the combustion phase. In fact, they suck in air from the atmosphere, subsequently 
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discharging the combustion products into it, thus altering their natural composition, generating 

the phenomenon more commonly known as atmospheric pollution. 

Pollutants can be divided into three macro-categories: 

• products of incomplete combustion (𝐶𝑂, unburnt hydrocarbons, peroxides, etc.), which 

are toxic and capable of producing different physiological damage depending on their 

chemical composition 

• complete oxidation products of substances present in the fuel such as sulphur and 

nitrogen 

• complete oxidation products, already present in the atmosphere as 𝐶𝑂2 and 𝐻2𝑂, but for 

which the natural production cycles alternate, helping to modify the balance between 

absorbed and released energy, generating the phenomenon more commonly known as the 

greenhouse effect. 

Road traffic has always been the main cause of nitrogen oxide emissions and a significant source 

of fine dust, as well as particulate matter, produced by diesel engines. Despite the sharp increase 

in traffic, emissions have decreased over the years thanks to technological innovations, necessary 

for the increasingly stringent limitations imposed by the European directives, in the automotive 

sector. In 2016, the percentages of emissions from world road transportation compared to the 

total were2: 

• over 50 % for nitrogen oxides (𝑁𝑂𝑥) 

• over 25 % for carbon monoxide (𝐶𝑂) 

• 15 % circa for sulphur dioxide (𝑆𝑂2) 

• 7 % circa for fine powders (𝑃𝑀2,5). 

These values are undoubtedly alarming, given the effects they have on human health. Following 

studies conducted on diesel engines, it has been seen that for this kind of engines, the presence of 

unburnt hydrocarbons (HC) and 𝐶𝑂 is much less relevant than that of 𝑁𝑂𝑥 and particulate matter 

(PM).  

 

1.2.1 Pollutants Formation Mechanisms 

Old models for the description of the combustion phenomenon were based exclusively on the 

pressure and heat release signals and hypotheses and assumptions were advanced on the 

behaviour of the fuel jet in the chamber. Thanks to the advent of instruments for optical analysis, 

more recent models based on scientific evidence have spread. The traditional combustion process 

in a compression ignition engine can be described by conceptual model proposed by Dec, who 
 

2 “Special report on Energy and Air Pollution, 2015”, IEA, WEO 2016 
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conducted experiments on engine equipped with optical access. To understand the formation of 

polluting particles, it becomes essential to analyze the fuel jet behaviour and its transformations 

through the multi-hole injector. In Figure 3 evidence from Dec’s experiments is disclosed and it 

is possible to see what happens to the injected fuel during the combustion process. The liquid 

phase penetration inside the chamber is limited by the evaporation of the jet itself, which tends to 

occur rapidly following the conditions of high pressure and temperature. During the experiments, 

the injection pressure is kept as constant as possible.  

 

Figure 3. Schematic temporal sequence of a fuel spray in CI engines combustion [5,7] 

Some injectors today are of the electromechanical indirectly operated type: thus, there is a delay 

between the electric control and the moment in which the injector opens (hydraulic injection 

start). The first phase corresponds to the penetration of the jet inside the chamber up to 3° ASI 

(After the Start of Injection, it refers to the actual injection start, not the electric command) 
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where it stops and subsequently becomes smaller, simultaneously with the formation of fuel 

vapours around the jet itself. The evaporation phenomenon determines the area in which we no 

longer have liquid penetration and depends on the thermodynamic conditions present in the 

chamber. After just 5° chemiluminescence appears: in correspondence with the creation of the 

mixture zone, a weak luminosity begins to come, not due to combustion, but to the initial 

reactions of the fuel with oxygen forming some radicals, without an important release of energy 

and increase of pressure. In this phase there is a rich combustion and, following the descent 

below the flash point, fragments of fuel are found: the fuel molecules do not undergo oxidation 

but breakage, so the 𝐶 − 𝐶 bond gives rise to the formation of polycyclic aromatic hydrocarbons 

(PAH), which correspond to the precursors of soot. As the process continues, PAHs grow into 

quite large particles: this represents the so-called growth mechanism. Subsequently, the diffusive 

flame can be observed, characterized by a substantial release of chemical energy and an 

approximately unitary dosage value. Proceeding with the injection, the spray continues to 

enlarge and the temperature increases, continuing to create conditions suitable for the formation 

of carbonaceous particles, which are more numerous at the tip of the jet thanks to the longer time 

available and the higher thermodynamic conditions. If the diffusive flame intersects the bowl, 

obtained on the head of the plunger, it goes out due to the heat exchange and the lack of oxygen, 

causing the non-oxidation of the carbonaceous particles that we will find at the discharge, but 

only partially after having participated in soot burnout. Nitrogen oxides 𝑁𝑂𝑥 are formed under 

conditions of high temperatures and, unlike soot, in the presence of oxygen. In fact, the diffusive 

flame zone is the best one for their formation.  

 

Figure 4. Schematic picture of CI engine fuel spray [7,10] 
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In Figure 4 the description of the pollutant formation in CI engines exposed above is 

summarized. Briefly, the soot begins to form as soon as the premixed combustion (rich 

combustion products such as fuel fragments, HC and PAH) has been overcome and with 

temperatures of about 1600 𝐾. Once reached the level of the diffusive flame, the temperatures 

increase (up to at 2700 𝐾) and the concentration of oxygen, thanks to its diffusion from the 

outside, allow the oxidation of the soot and any unburnt hydrocarbons. However, these 

conditions facilitate the formation of 𝑁𝑂𝑥. The right compromise between the two pollutants, 

determining the well-known soot-𝑁𝑂𝑥 trade-off, is described by the Kamimoto-Bae diagram, 

reported in Figure 5. It represents a map of the equivalence ratio 𝜙 (the inverse of the relative 

air-fuel ratio 𝜆) as a function of the temperature and it highlights the formation zones of the two 

pollutants, hence also the conditions (from thermodynamic and chemical composition points of 

view) that lead to their development.  

 

Figure 5. Kamimoto-Bae diagram with conventional and advanced combustion processes [13] 

In Figure 5, together with the pollutant formation zones, the typical areas where advanced and 

conventional combustion processes develop are highlighted. The portion of the diagram with 

new generation HCCI and PCCI combustions is a coveted research objective as it shows the 

absence of both pollutants but is still difficult to achieve.  
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1.2.1.1 Nitrogen Oxides Formation 

In CI engines, nitrogen oxides (𝑁𝑂𝑥) are formed for the most part by 𝑁𝑂 (70-80 %) and the 

remainder by 𝑁𝑂2. The main formation mechanism is the thermal one, which occurs within the 

combustion products, and consists of the Zeldovich model, according to which the formation of 

nitrogen monoxide is described by the following reactions: 

𝑁2 + 𝑂 ⟷ 𝑁𝑂 + 𝑁 

𝑁 + 𝑂2 ⟷𝑁𝑂 + 𝑂 

𝑁 + 𝑂𝐻 ⟷ 𝑁𝑂 + 𝐻 

The first reaction is the one that requires the highest activation energy, available thanks to the 

high temperatures and presence of oxygen. Compared to the combustion process, the formation 

of nitrogen oxides is slow, but with times compatible with the duty cycle of the engine. This 

reaction takes place in the combustion products and not in the diffusive flame, remaining at a 

high temperature for a long time to allow the reactions to take place. The process is strongly 

influenced by chemical kinetics, but this is beyond the scope of this thesis work. As regards, 

instead, the formation of 𝑁𝑂2, we refer to the reactions:  

𝑁𝑂 + 𝐻𝑂2 ⟷𝑁𝑂2 + 𝑂𝐻 

𝑁𝑂2 + 𝑂 ⟷ 𝑁𝑂 + 𝑂2 

In Diesel engines the first reaction always takes place, while the second one is easily interrupted 

due to the lower temperatures in the combustion products compared to spark ignition engines, 

therefore the conversion into carbon monoxide stops, allowing the presence of carbon dioxide 

and nitrogen to the exhaust.  

 

1.2.1.2 Particulate Matter Formation 

Particulate Matter (PM) derives from carbon particles (soot) developed during the incomplete 

combustion of the fuel and brought into suspension by the exhaust gases. This pollutant can be 

present both in SI engines with direct injection and, above all, in CI engines. PM is usually 

referred to using an operational definition which indicates as particulate matter everything that 

can be collected on a filter through which the exhaust gases (diluted with air to bring their 

temperature below 52 °𝐶) are passed. A PM particle model is schematically drawn in Figure 6.  

The development of the particulate begins during the combustion process in the cylinder and 

continues along the path that brings the exhaust gases into the atmosphere, thus passing through 

the ATS (After Treatment System). PM precursors develop immediately after the start of 
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combustion at the central parts of the jet which are unable to undergo an optimal mixing process 

with oxygen. These areas are in fact characterized by a rich mixture (low λ) with a low presence 

of oxygen.  

 

Figure 6. Schematic picture of a PM particle [14] 

In this phase there is a rich combustion and, following the drop below the ignition point, 

fragments of fuel are found: the fuel molecules, not undergoing oxidation but breaking, generate 

polycyclic aromatic hydrocarbons (PAH), which correspond to the precursors of the soot. In this 

area the hydrocarbon molecules (having a 𝐻 𝐶⁄  slightly lower than 2) decompose due to the 

thermal effect, progressively losing hydrogen due to a phenomenon called pyrolysis. Molecular 

agglomerates of carbon atoms very poor in hydrogen (with 𝐻 𝐶⁄  equal to 0.1 circa) are thus 

generated.  

Subsequently, the precursors interact with the molecules of unsaturated hydrocarbons and 

radicals poor in hydrogen, thus forming the primary constituent elements of PM with dimensions 

in the order of nanometers. There is thus a surface growth caused by the attachment to the 

surface of the precursors of chemical species with a high carbon content, generating nuclei, also 

called spherules. Part of these nuclei are put into suspension by the exhaust gases, while others 
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become the constituent elements of larger particles, resulting from the agglomeration of several 

nuclei by collision, coagulation, or aggregation.  

In each of the various stages of the PM formation process, oxidation phenomena can develop (in 

the presence of high temperatures and concentration of oxidizing species) which lead to the 

combustion of the particulate, obtaining 𝐶𝑂2 and 𝐶𝑂 between the burnt gases. Consequently, the 

final emission of particulate matter from the engine will depend on the balance between the 

oxidation and formation processes. 

As a result of its development, the particulate is put into suspension by the exhaust gases by 

strongly decreasing its temperature. If the temperature is below 500 °𝐶, the carbonaceous 

particles are coated by low vapor pressure substances, such as high molecular weight 

hydrocarbons, sulphates, and water, which are absorbed due to the high porosity of the surface.  

 

Figure 7. PM composition changes by varying engine speed and load conditions [15] 

The PM is made up of:  

• A solid part (SOL) – Made up of carbonaceous elements and ashes, it is the main 

component of PM and is known as soot. During the combustion process, the particulate 

precursors generate these carbonaceous particles which grow and aggregate. Initially they 

have hexagonal structures (order of nanometers) that can stack on top of each other to 

give lamellar structures that sometimes aggregate into more or less spherical particles. 

These particles are not compact and have non-negligible interstices and spaces. The ashes 

are instead incombustible substances (due to metal additives, iron oxides) that can form 

in the combustion chamber or in the exhaust manifolds.  
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• A soluble part (SOF) – It consists of organic compounds (hydrocarbons) that may derive 

from the lubricating oil or fuel. The largest organic fraction derives from the former one 

and it is mainly rich in compounds such as 𝐶20. 

• Sulphates (𝑆𝑂4): they can derive from water or sulfuric acids and are formed downstream 

of the combustion process, when temperatures decrease, therefore in the exhaust pipe. 

The percentages of these three categories present in the particulate matter depend on the 

operating conditions of the engine, that is the load and the rotational speed. Figure 7 reports a 

real-world example of the PM composition for a particular engine. 

The problem of particulate emissions has become increasingly important for manufacturers of 

vehicles that mount Diesel engines since the latest anti-pollution regulations no longer require 

only a limitation of the mass emissions of PM, but also that of the number of particles emitted by 

the engine. In fact, the particulate particles can have different sizes, and for this reason, the 

smallest have been neglected for a long time; however, recent studies have shown that also these 

are harmful to human health. In this sense, a classification of the PM particles can be carried out 

with reference to the relative size: 

• Nuclei mode – It is composed of ultrafine particles and nanoparticles, which are 

characterized by a different quality. The finer ones are carbonaceous compounds 

surrounded by organic elements that have been adsorbed by the solid particle; most are 

SOF molecules condensed to form larger droplets. This does not happen during 

combustion, but at the exhaust or outside when temperatures are particularly low. These 

types of particles are very unstable.  

• Accumulation mode – Fine particles of this type are mostly all carbonaceous and, on 

them, during the discharge phase, organic compounds are deposited. 

• Coarse mode – This type is formed by wear of the exhaust parts and are the largest 

particles. They are low both in number and in mass, so they have a low incidence, but 

some of these can also form downstream of the particulate filter.  

In Figure 8, the trend of the normalized concentration of PM particles as a function of the 

diameter shows that the distinction (pursued in current regulations) between the number of PM 

particles and the total mass of PM is relevant. In fact, profoundly different distribution curves 

can be noted from the figure. The particle number distribution shows that a large number of very 

small and light particles will be emitted from an exhaust from a compression ignition engine; 

vice versa, the distribution relative to the mass of PM shows that, despite being emitted in a 

decisively lower number, the particles in accumulation mode or coarse mode are those of greater 

weight and size.  
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Figure 8. PM particles number and mass (normalized) distributions versus the particle diameter [15] 

 

1.2.2 Regulatory Framework 

To reduce polluting and climate-altering gas emissions, car manufacturers must comply with 

regulations that require the engines emissions to be assessed in order to obtain vehicle approval. 

For what concerns European legislation, the emissions standards are highly changing over time 

and have the aim of reducing emissions from internal combustion engines in an increasingly 

stringent trend.  

It started from the Euro 1 directive, adopted for all homologated cars until December 1991. For 

now, the last step arrived in September 2014, the year in which the Euro 6 legislation has been 

published, which must be applied for all new models approved from that year on. Figure 9 

reports the full emission standards history for SI and CI engines (referred to passenger cars).  

Subsequently, starting from January 2016, different versions of the Euro 6 legislation are 

introduced: 

• Euro 6a, compulsory for vehicles registered since January 2016. The limits for 𝐶𝑂 

emissions are 0.5 𝑔 𝑘𝑚⁄  for diesel and 1 𝑔 𝑘𝑚⁄  for petrol, those of 𝑁𝑂𝑥 0.080 𝑔 𝑘𝑚⁄  for 

diesel and 0.060 for SI engines, those of particulate matter (PM) 0.005 𝑔 𝑘𝑚⁄  for both 

types of engines. 

• Euro 6b, PM emission limits are reduced to 0.0045 𝑔 𝑘𝑚⁄ .  

• Euro 6c, mandatory for homologations since September 2017, requires petrol cars to 

reduce PM from 6000 billion particles per km to 600 billion per km. In addition, a new 

WLTP (Worldwide harmonized light vehicles test procedure) test cycle was introduced, 
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which replaces the NEDC (New European driving cycle) and the RDE (Real Drive 

Emission) road test only for monitoring.  

• Euro 6d-temp, for homologations from September 2018, also introduces the measurement 

of on-road emissions known as RDE. In this test the differences between the emissions in 

the cycle in the laboratory (limit for 𝑁𝑂𝑥 equal to 80 𝑚𝑔 𝑘𝑚⁄  for Diesel) and in that on 

the road can reach a maximum of 110 % (limit of 168 𝑚𝑔 𝑘𝑚⁄  for Diesel).  

• Euro 6d complete, for registrations from January 2021, establishes that the difference 

detected between the WLTP emissions and those measured in the RDE test cannot 

exceed 50 % (limit for diesel 120 𝑚𝑔 𝑘𝑚⁄ ).  

 

 

Figure 9. EU pollutant emissions standards for passenger vehicles (source: dieselnet.com) 

 

1.3 After-treatment Systems 

The combustion gases coming out of compression ignition engines, before being released into 

the atmosphere, are treated through a system of devices designed to reduce polluting emissions, 

bringing the values within the limits imposed by the regulations. Two ways are used to meet this 

requirement, the first is to adopt techniques for reducing pollutants in the combustion chamber 

through various techniques such as: 
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• the use of a fuel with better characteristics 

• optimization of the geometry of the intake ducts and the combustion chamber to ensure 

appropriate mixing in the chamber 

• the development of advanced injection systems, with appropriate injection laws 

• control of the engine thermal state, which influences the fuel vaporization rate. 

However, although these techniques are effective, they do not allow to reach the complete 

achievement of the stringent regulatory limits. For this purpose, exhaust gases after-treatment 

systems (ATS) are then used downstream of the engine exhaust manifold to reduce the 

concentrations of the polluting species produced.  

The ATS system is generally composed of: 

• DOC (Diesel Oxidation Catalyst), which is used to convert HC, 𝐶𝑂 and the PM 

carbonaceous fraction into 𝐶𝑂2 and 𝐻2𝑂 

• DPF (Diesel Particulate Filter), that has the task of filtering the emitted particulate 

through a ceramic monolith with a honeycomb structure, drastically reducing its quantity 

• SCR (Selective Catalytic Reduction), which is used to reduce 𝑁𝑂𝑥 through a series of 

chemical reactions that involve the use of a reducing agent (generally ammonia or urea) 

to break down nitrogen oxides into 𝑁2 and 𝐻2𝑂. 

Since the core subject of this work is represented by the soot (the solid fraction of PM), reference 

will be made to the functioning of the DPF, as its main abatement system.  

 

1.3.1 Diesel Particulate Filter 

As mentioned in the previous paragraph, the actions developed in the combustion chamber are 

not sufficient to significantly reduce the products of the combustion product, and especially the 

PM. To reduce this pollutant, it is necessary to use a device, known as Diesel Particulate Filter 

(DPF), that allows to filter the gases by partially removing the soot particles, which remain 

trapped by the filter itself.  

This system is a mechanical filter that consists of a certain number of blind channels: in 

particular, they are blind towards the entrance or exit in an alternating manner, to force the flow 

of gas to pass through the walls equipped with a certain porosity, as shown in Figure 10. The 

separation between gas and particulates occurs mechanically and can occur in two ways (Figure 

11): 

• Deep bed filtration – Particles which have smaller diameters than the pores of the filter 

matrix are trapped passing through it thanks to electrostatic actions. 
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• Soot cake filtration – Particles that have slightly larger diameters than the porous matrix, 

instead of passing through it, settle on the matrix itself and, consequently, the following 

ones will deposit on the previous ones, forming layers and generating what is commonly 

called soot cake. As its thickness increases, the filtering property of the device increases 

and therefore also its filtering efficiency. 

 

 

Figure 10. DPF structure and operating principle (source: Emission Control Technologies for Diesel-
Powered Vehicles, White paper, MECA) 

 

Figure 11. DPF soot filtration principles [15] 

The advantages of using a particulate filter are here disclosed: high filtering efficiency; low 

pressure drop (approximately 2 𝑘𝑃𝑎 with clean filter, 20 𝑘𝑃𝑎 with dirty filter); high thermal and 

mechanical resistance; good accumulation power of carbonaceous particles.  
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However, as the accumulation of soot inside the filter increases, there is a risk of its clogging 

with the consequent increase in the pressure drop across the filter (𝛥𝑝𝐷𝑃𝐹). This has a negative 

effect in terms of engine performance, since in a turbo-diesel engine upstream of the ATS there 

is a turbine, whose operation is strictly linked to the pressure upstream of the ATS. Therefore, 

the increase in 𝛥𝑝𝐷𝑃𝐹 causes a back pressure downstream of the turbine, reducing its 

performance and consequently those of the engine, also causing an increase in fuel consumption.  

Cleaning the filter is therefore necessary to eliminate accumulated soot particles. To do this, the 

regeneration of the particulate filter is carried out through the oxidation of the PM. This process 

can be developed in different ways depending on the following factors: 

• oxidizing agent used (𝑂2, 𝑁𝑂2) 

• periodicity (continuous, intermittent) 

• cause producing the regeneration event (active, passive). 

DPF regeneration can thus be classified as: 

• Periodic – It refers to a forced regeneration that uses 𝑂2 as an oxidizing agent and to 

which we must supply heat. Since the use of oxygen involves high temperatures (650 °𝐶), 

a catalyst is used to lower them. 

• Continuous: 𝑁𝑂2 is used as an oxidizing agent and, since it reacts at low temperatures, it 

does not require a catalytic agent. 

The regeneration process can be of two types: 

• Active – The oxidation reactions of the PM are activated by a controlled external energy 

supply. Appropriate fuel injection strategies, such as delayed (“after”) injections, or the 

development of heat through a separate device (burners, electric heaters, etc.) are used. 

• Passive – The use of suitable catalytic reactants allows the PM oxidation reactions to take 

place at the temperatures typically reached by the exhaust gases in normal engine 

operating conditions. The catalysts are added to the fuel in small percentages or are used 

to coat the filter channels, distributing them over a wider surface area (platinum and 

palladium are usually employed). In the oxidizing catalyst placed upstream of the DPF, 

the oxidation of 𝐶𝑂, HC and 𝑁𝑂 occurs, causing the exhaust gas temperatures to increase 

by about 50 °𝐶, thus managing to reach the threshold of about 250 °𝐶, sufficient for the 

DPF passive regeneration start. The oxidation reactions that take place are the following:  

[𝐶] + 2𝑁𝑂2 ⟶ 𝐶𝑂2 + 2𝑁𝑂 

[𝐶] + 𝑂2 ⟶ 𝐶𝑂2 
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Chapter 2  

Introduction to Machine Learning 
The use of Artificial Intelligence algorithms and in particular neural networks are widely used in 

most industrial and research sectors; only a few years ago these algorithms began to be used in 

the automotive field to make improvements in terms of safety, control and emissions of cars. 

The field of Artificial Intelligence (AI) is quite complex and vast, it includes several categories 

including that of Machine Learning (ML), which refers to the science of programming 

computers so that they can learn from data. A sub-category of ML is Deep Learning, which 

includes neural networks. A schematic representation of the relationship between these Data 

Science fields is reported in Figure 12.  

 

Figure 12. Schematization of the relationship between the different Data Science fields (source: 
interestingengineering.com) 

In the following paragraphs we will develop a brief description of the Machine Learning and 

Deep Learning fields, in order to provide the definitions and basic concepts on these topics.  
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In this thesis work, scripts are used, written in Python language, which exploit various Machine 

Learning algorithms. We will see later in detail how these algorithms are constituted and how 

they work.  

 

2.1 Algorithms Categorization 

There are different types of Machine Learning algorithms, and they can be divided into multiple 

categories according to the following criteria:  

• they may or may not be trained with human supervision (Supervised, Unsupervised, 

Semi-supervised and Reinforcement Learning) 

• they may or may not learn incrementally during application 

• whether they work simply by comparing the new data to those already known, or they 

detect the models through the training data and then build a predictive model. 

These criteria are not exclusive but can be combined with each other to compose a more 

complex model. ML algorithms can be classified according to the type and degree of supervision 

they can obtain during training.  

 

2.1.1 Supervised Learning 

Currently, the most common types of algorithms are those that automate decision-making 

processes by generalizing from known examples.  

In this setting, the user provides the algorithm with a series of input (features) and output (label) 

data on which to develop the learning phase. Subsequently, the algorithm will then be able to 

generate an output starting from an input never seen before. 

A typical task of supervised learning is the Classification (it is schematically represented in 

Figure 13), in which the algorithm is trained on different known data, each with their own class, 

and then, subsequently, learn how to classify the new ones. A different type of task is constituted 

by the Regression (Figure 13 reports a schematic example of it) in which the algorithm itself 

must predict a certain numerical target value, given a certain set of features, called predictors. To 

train this system it is necessary to provide, in general, a lot of data containing both predictors and 

target values (labels) which can therefore be considered respectively inputs and outputs of the 

system. Hence, solving a regression problem corresponds to learning an approximating function 

of the given input-output pairs. 

It can be seen how some regression algorithms can be used for classification, as well as the other 

way around. The most important and well-known supervised learning algorithms are the 

following ones: Nearest Neighbors, Linear Regression, Logistic Regression, Support Vector 
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Machines, Decision Trees and Random Forests, Artificial Neural Networks. Of these, only the 

algorithms applied in designing the models used in this thesis work will be dealt with in detail.  

 

2.1.2 Unsupervised Learning 

In unsupervised learning algorithms, the training set is not labelled, that is, it does not contain the 

output values through which to train the model and, therefore, the classes for the data used for 

training are not known.  

Among the algorithms of this type the most important are: 

• Clustering – It involves identifying groups (clusters) of observations with similar 

characteristics in which the problem classes are not known and the data not labelled 

(without output). Often the number of clusters is not known a priori, but those identified 

in learning can then be used as classes. The unsupervised nature of the problem makes 

them more complicated than the classification ones. A schematic representation of this 

learning task is reported in Figure 13. 

• Dimensionality reduction – It consists in reducing the number of dimensions of the input 

data, without losing too much information. The operation involves a loss of information, 

but the goal is to keep the important ones for the case, therefore dependent on the 

application. It is therefore very useful for making problems with very high dimensionality 

treatable, discarding redundant and unstable information, thus allowing the code to 

calculate faster thanks to the smaller disk space occupied by the data and, sometimes, to 

have higher performance. 

 

2.1.3 Semi-supervised Learning 

Semi-supervised learning algorithms work with only partially labelled training sets and 

distributing patterns with no output can help optimize the classification rule. Many such 

algorithms are combinations of supervised and unsupervised ones. A schematic representation of 

this kind of learning is shown in Figure 13. 

 

2.1.4 Reinforcement Learning 

A Reinforcement Learning algorithm aims to learn optimal behaviour from past experiences. The 

acquisition of knowledge is dedicated to an agent, who observes the surrounding environment 

and performs actions to modify it, causing changes from one state to another and receiving 

rewards which can also be penalties in the sense of negative rewards. The goal is to learn the 
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optimal action in each state, in order to maximize the sum of the rewards obtained in the long 

run. 

It is considered important to underline an aspect concerning ML in general: since the main 

purpose is to train a learning algorithm on a certain set of data, its selection is extremely 

important as we could end up with a “bad algorithm” or “bad data”, in the sense that they may 

not be compatible, or the chosen algorithm is not compatible with the application itself, or even 

there is only a small number of data available for training.  

  

 

Figure 13. Schematic example of different Machine Learning tasks (source: Carrasquilla J., Machine 
learning for quantum matter, Advances in Physics: X, 5, 1797528, 2020) 

 

2.2 Algorithm Training and Evaluation 

Generally, the behaviour of a ML algorithm is governed by a set of parameters that characterize 

it. Learning an algorithm consists in determining the optimal value of these parameters. 

Therefore, given a training set and a set of parameters, the objective function 𝑓 (training set, 

parameters) can indicate: 
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• the optimality of the solution to be maximized 

• the error or loss function to be minimized. 

This function 𝑓 can be optimized explicitly, with methods that operate starting from its 

mathematical definition (for example through partial differential calculus), or implicitly, using 

heuristic methods that modify the parameters coherently with the function itself. 

Most of the algorithms ask to define, before the actual learning, the value of the so-called 

hyperparameters. These are the parameters that characterize the structure, behaviour and 

performance of the algorithm, such as the degree of a polynomial used in a regression, the type 

of loss function, the number of neurons or layers used in a neural network, and so on. 

 

2.2.1 Dataset Subdivision and Cross-validation 

To train the chosen algorithm and to know how it will behave on new data, the available dataset 

is divided into two parts: the training set and the testing set, in turn the first is divided into the 

actual training set and the validation set: 

• Training set: observations through which to train the algorithm to recognize the patterns 

present in the data 

• Validation set: observations on which the system calibrates the hyperparameters 

• Testing set: data never seen before by the algorithm on which its performance is 

evaluated 

To avoid using too much training data in the validation set and therefore not having enough for 

the algorithm training, a common technique to estimate the performance of a machine learning 

algorithm is that of cross-validation: the validation set is not separated from the entire training 

dataset, but the latter is split into 𝑘 complementary subsets, after which the model is trained on 

𝑘 − 1 subsets and validated on the remaining one. This operation is repeated so that each subset 

is given a chance to be the held back test set ending up with 𝑘 different performance scores that 

you can be averaged. After running cross-validation, the hyperparameters values are selected 

based on those showing the best performances. Then, the final model is trained on the complete 

training set and, subsequently, applied to the test set to provide the generalization error. Cross-

validation approach is characterized by less variance than a single train-test set split. It gives 

more reliable estimates of the model performance on new data. This technique is also more 

accurate because the model is trained and evaluated multiple times on different data. A complete 

schematization of cross-validation procedure is reported in Figure 14.  

One of the first objectives to be pursued during the training phase is the convergence of the 

model on the training set and on the testing set. One of the main methods for studying this 
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convergence of a model is to evaluate the trend of the loss function obtained during the training 

and validation phases. Convergence is achieved if the output of the loss function has a 

decreasing trend compared to the number of iterations performed, however this is not always 

enough.  

 

Figure 14. Cross-validation schematic representation (5-fold example case) [18] 

If the loss function does not decrease (or oscillates) the system does not converge and the causes 

can be many: the optimization method is not effective, the hyperparameters are out of range 

(mainly an inadequate learning rate), there can be implementation errors, and so on. 

A valid and widely used tool to verify the performance/behaviour of a machine learning model is 

the learning curve, which reports the evolution/trend of the learning capabilities of a model. 

The training learning curve gives an idea of how the model learned from the training set, while 

the validation learning curve gives insights about how much the model is able to generalize. 

Generalization refers to the ability of the model to maintain the high performance achieved on 

training data even when applied to new data. Now, a complete machine learning pipeline can be 

drawn, as represented in Figure 15. 

 

2.2.2 Performance Evaluation 

The performance of an algorithm can be evaluated in two different ways: the first consists in 

directly using the objective function to quantify the performance, while the second consists in the 
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use of mathematical parameters of the field statistics and probability, more closely related to the 

characteristics of the problem. 

 

 

Figure 15. Typical machine learning pipeline [18] 

With reference to a classification problem, accuracy is defined as the percentage of correctly 

classified data, while the error is the complement of this: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
∙ 100   [%] 

𝐸𝑟𝑟𝑜𝑟 = 100 − 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦   [%] 

In the case of a regression problem (object of the thesis), reference is mainly made to MSE 

(mean squared error). It is a quality measure of an estimator and it is always a positive value. 

This error embodies both the variance of the estimator (how wide the estimated values are spread 

among the observations) and its bias (how far the average of the estimated values is from the true 

mean value). The MSE represents the average of the squared errors, that is the average of the 

squared differences between the predicted and actual values, and is defined over 𝑁 samples as: 

𝑀𝑆𝐸 =
1

𝑁
∑(𝑦𝑖 − �̂�𝑖)

2

𝑁

𝑖=1

 , 

where �̂�𝑖 is the estimated value for the 𝑖𝑡ℎ sample and 𝑦𝑖 is its corresponding actual value. It is 

also widely used in regression problems as loss function for algorithms fit or optimized using the 
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least squares framing. It is worth noting that the squaring has the effect of enlarging magnifying 

large errors because the larger the difference between the predicted and real values, the larger the 

resulting squared positive error. When MSE is used as a loss function this effect “punishes” 

models more for larger errors, when the error is used as a metric the same models are also 

penalized by inflating the average error score.  

The RMSE (root mean squared error) is an extension of the mean squared error. It is obtained by 

calculating the square root of MSE, which means that the units of the RMSE are the same as the 

original units of the target value that is being predicted. This can give us an idea of the 

proportion of the error magnitude with respect to our problem scale. It is defined as the square 

root of the mean of the squares of the differences between target value and predicted value and it 

is scale dependent. RMSE then provides an estimate of how far the model is deviating from the 

real data and the relative formula for a dataset of 𝑁 samples is: 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 = √
1

𝑁
∑(𝑦𝑖 − �̂�𝑖)2
𝑁

𝑖=1

  , 

where �̂�𝑖 is the estimated value for the 𝑖𝑡ℎ sample and 𝑦𝑖 is its corresponding actual value. 

MAE (mean absolute error) is a popular metric because, as we have described for RMSE, the 

units of the error score is equal to the units of the actual value that is being predicted. 

Importantly, the changes in MAE are linear and intuitive, unlike what we have seen for the 

previous metrics. In fact, MSE and RMSE punish larger errors more than smaller errors, 

magnifying the mean error score due to the squaring of the error value. Instead, MAE scores 

increase linearly with increasing errors. It evaluates the average dispersion present between the 

real and predicted values and is defined as the average of the absolute error values. The MAE is 

a scale-dependent metric whose mathematic formulation for a dataset of 𝑁 samples is: 

𝑀𝐴𝐸 =
1

𝑁
∑|𝑦𝑖 − �̂�𝑖|

𝑁

𝑖=1

 , 

where �̂�𝑖 is the estimated value for the 𝑖𝑡ℎ sample and 𝑦𝑖 is its corresponding actual value. 

While RMSE is generally preferable as a measure of performance in a regression algorithm, 

sometimes MAE (also called average absolute deviation) can be used. 

Furthermore, it is possible to evaluate the coefficient of determination, usually referred to as 𝑅2. 

It indicates a proportion between the variability of the data and the correctness of the statistical 

model used. In fact, it represents the proportion of output values variance that can be explained 
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by the features (i.e., independent variables) in the model, also known as explained variance. It is 

very useful to understand how close the predicted values are to the real target value because it 

provides an estimate of the goodness of the model fit. The relative formulation is the following:  

𝑅2 = 1 −
∑ (𝑦𝑖 − �̂�𝑖)

2𝑁
𝑖=1

∑ (𝑦𝑖 − �̅�)2
𝑁
𝑖=1

 , 

where 𝑦𝑖 is the observed value for total 𝑛 samples, �̅� is the mean of the true values, �̂�𝑖 is the 

value predicted for the 𝑖-th sample. The best possible score for the coefficient of determination is 

one and it can be negative (that means the model can be arbitrarily worse). Instead, a constant 

model that always predicts the mean value (i.e., the expected value) for the output, disregarding 

the input attributes, would get a 𝑅2 score of zero. In other words, it is a measure of how well the 

model will perform in predicting output values for unseen samples. Note that comparing 

coefficients of determination across different datasets may not be meaningful because the 

variance is dataset dependent.  

 

2.2.3 Overfitting and Underfitting 

The purpose of an ML algorithm is to maximize performance on the test set, thus ensuring good 

generalization skills. After training, as said before, the learning algorithm should be able to 

predict the outputs for input data never seen before, that is, it should be able to generalize.  

 

Figure 16. Illustration of underfitting and overfitting phenomena, and an optimal fit example (source: 
fastaireference.com) 

However, especially in cases where the training develops over an excessive number of iterations 

or when a limited number of training examples are available, or if the choice of hyperparameters 

is not optimal, the model could adapt to specific characteristics of the training set, but which are 

not reflected in the rest of the cases. When this happens, because for example the model is 

characterized by an excessive number of parameters compared to the number of observations, we 

speak of overfitting, that is the model achieves high accuracy on the training set but not on the 
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validation one (poor generalization). It is therefore good practice to start with a few degrees of 

freedom, controllable through the hyperparameters, and gradually increase them, simultaneously 

monitoring the performance on the training and validation sets. 

The opposite concept to overfitting is underfitting, which occurs when the model is too simple to 

learn from the structure of the data provided during the training phase, failing to obtain a 

sufficiently low error for the training set. This can happen when the parameters that define the 

algorithm are too few compared to the complexity of the data used for learning. The main 

strategies to solve this problem are here disclosed: to choose a model with more parameters (i.e., 

with greater learning capabilities, the degrees of freedom of the model are not sufficient to 

handle the complexity of the problem); to provide a higher number or more significant features 

to the algorithm; to reduce model constraints.  

Examples of both underfitting and overfitting phenomena are shown in Figure 16, together with 

an optimal fit of the data. A model affected by underfitting can be diagnosed through the training 

curve, as it remains constant or decreases without ever coming to an end. An inconsistency in the 

training or validation dataset might also occur if the samples used are not representative of the 

entire dataset. To solve this problem, it is often necessary to use larger training and validation 

sets to have samples that are more representative of the problem. 

 

2.3 Virtual Sensoring Applications 

One of the most important applications in the field of Machine Learning is virtual sensoring, that 

is the use of software and applications (virtual sensors) to monitor certain physical parameters of 

interest or to optimize predictive maintenance techniques. In recent years there has been an 

increasing use of this type of sensors to replace real sensors. In fact, many times it is not possible 

to measure a certain quantity through physical instruments for various reasons, such as cost, 

feasibility, reliability, convenience, and so on. In addition, real sensors can be affected by natural 

aging with consequent lowering of reliability and performance. 

To overcome these drawbacks, the use of virtual sensors is thus used. By virtual sensor we mean 

a software that, starting from a series of quantities (system variables) that are easy to measure, 

returns an accurate estimate of values that are difficult to acquire or measure directly.  
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Chapter 3  

Introduction to Deep Learning 

Machine learning algorithms perform well on a large number of tasks with excellent results. 

However, it is often necessary to use algorithms belonging to the Deep Learning category. This 

is partly due to the failure of some types of algorithms to perform the tasks imposed by artificial 

intelligence. In particular, one of the main reasons is related to the difficulty that simpler 

algorithms encounter in solving problems with multidimensional data (for example, observations 

characterized by tens or hundreds of thousands of features). This problem is known as the 'curse 

of dimensionality': it is a phenomenon that often occurs in many fields of computer science 

posing important challenges, difficult to solve with high accuracy through traditional algorithms. 

As the complexity of the problems increases, the number of features also increases, which in turn 

entails a sustained growth in the number of observations necessary to train the algorithm. 

Formally, Deep Learning (DL) is a sub-field of machine learning that is based on algorithms that 

attempt to learn several levels of representations, corresponding to different levels of abstraction. 

These levels can be thought as a hierarchy of features or concepts, where higher-level concepts 

are defined from lower-level ones, and in turn they can help to identify other higher-level 

concepts. Deep learning is part of a broader family of machine learning methods based on 

learning representations and it typically uses artificial neural networks (ANN) for supervised or 

unsupervised feature extraction and transformation, and for pattern analysis, regression and 

classification. The capability of learning features at multiple levels of abstraction allow a system 

to learn complex functions mapping the input to the output directly from data, without depending 

too much on features provided by user. An observation can have many representations, but some 

of them make it easier to learn interesting patterns from fed examples, and research in this area 

attempts to define what makes better representations and how to learn them. Deep learning 

achieves great power and flexibility by learning to represent the world in the above-described 

nested hierarchy of concepts because it allows to reduce the computational cost and to reduce the 

huge use of memory required in the case of multilayer structures. The main applications of Deep 

Learning are image, speech and text recognition, automatic text generation and machine 

translation.  

 

3.1 Artificial Neural Networks 

Neural Networks are a pretty old algorithm that was originally motivated by the goal of having 

machines that can mimic the brain. The origins of Neural Networks were as algorithms that try to 
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mimic the brain, perhaps the most amazing learning machine we know about, to build artificial 

learning systems. Neural Networks came to be very widely used throughout the 1980's and 

1990's and for various reasons as popularity diminished in the late 90's. But more recently, 

Neural Networks have had a major resurgence. One of the reasons is that Neural Networks are 

computationally very expensive algorithms and so, it was only more recently that computers 

became fast enough to really run large scale Neural Networks and because of that (as well as a 

few other technical reasons) modern Neural Networks today are the state-of-the-art technique for 

many applications. The idea of mimicking comes from the fascinating hypothesis (provided with 

many evidence) that the way the brain does all of the amazing different things it does is just 

using a single learning algorithm. And instead of needing to implement a thousand different 

programs or algorithms to do the thousand wonderful things that the brain does, maybe if we can 

figure out what the brain's learning algorithm is and implement it or some approximation to that 

algorithm on a computer, maybe that would be our best shot at making real progress towards the 

AI, the artificial intelligence dream of someday building truly intelligent machines.  

So, artificial neural networks (ANNs) are born with the aim of reproducing the activities 

typically developed by the human brain. Their structure is in fact inspired by the network 

generated by neurons, synapses and dendrites. In reality, this sort of biological inspiration does 

not bring out from the operational logic behind this computing system called neural network. 

An ANN consists of a group of connected units called neurons or nodes, which loosely mimic 

the biological neurons in the brain. Each link, known as edge, between these neurons can 

transmit signals or information, like the synapses do in the biological counterpart. Every neuron 

can have multiple input and output connections to other neurons. Each edge of the network 

generally is assigned a parameter, called weight, that represents its relative importance (can 

modify the strength of the signal by increasing or decreasing it) and that changes as learning 

proceeds. In ANN each neuron receives signals (that are real numbers, products of other 

neurons’ outputs and relative weights) in input, then processes them and send them to neurons 

connected with it. To compute the input of a neuron from the outputs of neurons connected to it a 

propagation function is used that performs a weighted sum, sometimes called the activation. It 

usually includes also a bias term. The output of each neuron is produced by applying an 

activation function (often nonlinear) to the above-mentioned weighted sum. Neurons may have a 

threshold that allows the output signal to be sent only if the activation function output crosses 

that threshold. In deep learning, neurons are arranged to form multiple layers in a way such that 

nodes of a layer are connected only to neurons of the immediately previous and following layers. 

Information travels from the input layer (i.e., the first one) that receives external data, to the 

output layer (that is the last one) which produces the final result, after passing through a variable 
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number of intermediate layers, called hidden layers. Different layers may perform different 

transformations on their inputs. A number of patterns are possible for the connections between 

two layers: they can be fully connected (i.e., each neuron in a layer is connected to each one in 

the next layer), or they can be of the pooling type (that means a group of neurons in a layer is 

linked to a single neuron in the successive layer). Networks presenting only these types of 

connections are known as feedforward networks. On the other hand, networks presenting links 

connecting neurons in a layer between them or with previous layers are known as recurrent 

networks. 

 

Figure 17. Deep Fully Connected Feedforward Neural Network architecture (source: 
neuralnetworksanddeeplearning.com) 

Learning represents the modification of the network to better perform a task by considering 

sample observations. Learning implies tuning network weights (and thresholds if there are any) 

to improve the results and this is done by minimizing the measured error. Practically a cost (loss) 

function is defined and evaluated periodically during learning. This function is defined as a 

statistics metric and its choice can be determined by some function's desirable properties (such as 

convexity). Learning attempts to reduce the total of the differences across the observations, that 

is the training error. To this end, connection weights should be adjusted, and backpropagation is 

the applied method. It computes the gradients (partial derivatives) of the cost function associated 

with a given network configuration with respect to the weights. Their updates can be done via 

gradient descent or other optimization methods. If the training error continues to decline, 

learning continues. Learning is complete when the error rate does not meaningfully reduce 

feeding the network with additional observations. If the error remains too high after learning, the 

network should be redesigned. A parameter, known as learning rate, defines the size of the steps 

to be taken to decrease errors in each observation. A high value shortens the training time, at the 

cost of lower final score, while a lower learning rate takes longer time, but with the potential for 
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greater results. The goal of optimization is primarily speeding up error minimization. An 

adaptive learning rate which increases or decreases as appropriate can be used to avoid 

oscillation (in the weight values) inside the network and to improve the rate of convergence.  

There are different neural networks architectures, among these the most important are the 

following: 

• Deep Feed-forward Neural Networks. They are multi-layer perceptrons and are made of 

multiple layers of neurons. They are interconnected in a feed-forward way: each neuron 

of a layer has direct connections to the neurons of the subsequent layer.  

• Convolutional Neural Networks. They are the most used networks for image 

classification and derive their name from the layers they are made of, that are multiple 

convolution layers which oversee the extraction of relevant features from the input 

object, such as an image. The earlier layers address low-level, simple details while the 

later layers are in charge of detect high-level features. The convolution operation 

principle uses a custom matrix, also called filter, to convolute over the input image and 

produce maps. These filters are randomly initialized and during training are updated 

through backpropagation. After the convolution layer, there is a pooling one which is 

responsible for the aggregation of the maps produced from the previous layer. For 

regularization purposes, CNNs allow for adding dropout layers which drop or make 

certain neurons inactive to reduce overfitting and speed up convergence of the solution. 

The output layer of CNNs have a fully connected dense layer. 

• Recurrent Neural Networks. They are used when handling predictions using sequential 

data, such as a sequence of images, words, etc. The RNN structure is similar to that of a 

Feed-Forward Network, except that the layer neurons also receive a time-delayed input of 

the previous output prediction. This is stored in the network cell which is used as a 

second input for every prediction. The main disadvantage of RNN the difficulty to 

remember earlier layers’ weights due to the vanishing gradient problem.   

• Long Short-Term Memory Neural Networks. This type of network overcomes the above-

mentioned issue of vanishing gradient by adding a particular memory cell that can store 

information in the network for long periods of time. LSTM uses three gates to define 

which output prediction should be retained or forgotten: input gate, output gate and forget 

gate. The first one tells what data should be kept in memory. The second controls 

information given to the next layer and the forget gate controls when to dump useless 

data not required. LSTMs are used in a wide range of applications such as gesture, speech 

recognition and text prediction. 
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In this thesis, only Deep Feedforward Neural Networks will be used, in particular those of the 

fully connected type, as shown in Figure 17. 
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Chapter 4  

Predictive Models for Soot Emissions Evaluation 

In the previous chapters a brief overview of the theory underlying this thesis has been presented. 

The phenomenological part of diesel combustion, the mechanisms of pollutant formation and a 

brief description of the main Machine Learning and deep learning algorithms were discussed. In 

this chapter we want to enter into the specifics of the actual experimental work carried out.  

The models that are used in this paper, as already mentioned above, exploit different supervised 

learning ML and DL algorithms called k-Nearest Neighbors, Support Vector Machines and. 

These can perform both classification and regression tasks (the latter corresponding to our case) 

and are implemented in an open source integrated development environment using the Python 

programming language. For this purpose, specific open-source machine learning libraries are 

used, such as Scikit-Learn, Keras (Tensorflow) and XGBoost, and within which the previously 

mentioned algorithms are present. Other libraries for data processing and visualization are also 

used, such as NumPy, SciPy, Pandas and Matplotlib. 

 

4.1 Nearest Neighbors 

The Nearest Neighbors algorithm is a simple, easy-to-implement ML algorithm that provides 

functionalities for both unsupervised and supervised learning tasks. Unsupervised nearest 

neighbors is the foundation of many other algorithms, such as manifold learning and spectral 

clustering. Instead, supervised neighbors-based learning is mostly used to solve both 

classification (data with discrete labels) and regression (data with continuous labels) problems.  

The principle behind nearest neighbor methods is to store in memory observations given during 

training and predict the label of a new unseen point from those of a group of training samples 

found by the algorithm closest in distance (in the multidimensional space of the features) to the 

above point. Essentially, the nearest neighbors algorithm assumes that similar things exist in 

close proximity, that is similar things come near to each other. The number of samples can be a 

constant defined by the user (k-nearest neighbor learning) or can vary based on the local density 

of points (radius-based neighbor learning). The distance can be any metric measure: standard 

Euclidean distance is the most common choice, but also the Manhattan, Chebyshev and the more 

general Minkowski distances are used. In other words, nearest neighbors capture the idea of 

similarity (called also proximity, or closeness) with some basic mathematics. 

Neighbors-based algorithms are known as non-generalizing machine learning methods, since 

they simply keep track of (“remember”) all the training dataset (possibly transformed into a 
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faster-accessible structure). This type of learning is also known as instance-based learning: it 

does not try to learn a general internal function to be used in prediction, but simply stores 

instances of the training data for their later use for the evaluation of a new query point. This 

approach is also referred to as ‘lazy learning’ because of the algorithm behaviour which takes 

almost zero time to learn. 

Although it is disarmingly simple, nearest neighbors algorithm has been successful in many 

problems, both in classification and regression settings, including handwritten digits and image 

scenes. 

For classification tasks a simple majority vote of each new sample nearest neighbors is 

computed, that is a query point is assigned the data class which has the most representatives 

within the nearest neighbors (saved training samples) of the point. In regression tasks, instead, 

the query point target is predicted by local interpolation of the labels associated to the nearest 

neighbors in the training set. A query point is a new observation (unseen by the algorithm during 

training) whose label has to be predicted by the model.  

Learning can be implemented based on the 𝑘 nearest neighbors of each query point, where 𝑘 is 

an integer value specified by the user, or based on the neighbors within a fixed radius 𝑟 of the 

query point, where 𝑟 is a floating-point value specified by the user. The optimal choice of the 

value 𝑘 is highly data-dependent: a larger 𝑘 generally suppresses the effects of noise (outliers), 

but makes the approximation less accurate. A value of 𝑘 extremely large will result in underfit, 

on the contrary choosing it too small gives rise to overfitting as the algorithm will be more 

sensitive to outliers. In cases where the data is not uniformly sampled, radius-based neighbors 

regression can be a better choice. The user specifies a fixed radius 𝑟, in order that points in 

sparser neighbourhoods use fewer nearest neighbors for the regression. For high-dimensional 

attribute spaces, this method becomes less effective due to the so-called “curse of 

dimensionality”. 

Generally, uniform weights are used, that is each point in the local neighborhood contributes 

uniformly to the approximation of a query point. Under some circumstances, it can be better to 

weight points in a way that closer points contribute more to the regression than further points. 

This can be accomplished through assigning weights that are proportional to the inverse of the 

distance from the query point. 

 

4.1.1 Brute-force Algorithm 

As already said, making a prediction with nearest neighbors involves calculating the distance in 

the multidimensional feature space between a query point and the stored training observations, 
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and finding the nearest neighbors. Fast computation of these neighbors is still an area of research 

in machine learning and the most artless neighbor search implementation involves the “brute-

force” calculation of distances between all pairs of points in the dataset. This approach scales as 

𝑂(𝐷𝑁2) for data consisting of 𝑁 samples with 𝐷 features (dimensions): thus, brute-force 

neighbors searches can be very efficient for small datasets, however, as the number of 

observations grows, this approach becomes computationally infeasible very quickly.  

 

4.1.2 KD Tree Algorithm 

To solve the inefficiencies of the brute-force approach, a particular type of tree-based data 

structures has been introduced. These structures generally try to reduce the number of required 

distance computations by efficiently handling aggregate information for the sample about 

distance, that is deducing distances between points (by knowing information about relative 

position) without having to explicitly calculate them. In this way, the computational cost of a 

nearest neighbors search can be significantly improved to 𝑂(𝐷𝑁 log𝑁) or better, for large 𝑁.  

A first approach adopted to take advantage of the above-described concept was the KD (K-

Dimensional) tree data structure. This is a binary tree structure which iteratively partitions the 

feature space along the data axes, creating nested orthotropic regions where data points are 

arranged. Since this partitioning is performed only along the data axes and no multidimensional 

distances computations are required, the construction of a KD tree is very fast. After that, the 

nearest neighbor of a query point can be determined with a computational cost of only 𝑂(log𝑁). 

Although the KD tree approach is very fast for low-dimensional neighbors searches, it becomes 

computationally inefficient as features (dimensions) number grows very large: this is an 

evidence of the so-called “curse of dimensionality” previously mentioned.  

 

4.1.3 Ball Tree Algorithm 

A new data structure, the ball tree, was developed to cope with the inefficiencies of KD trees in 

higher dimensions. This new method partitions data in a series of nesting hyper-spheres whereas 

KD trees partition data along Cartesian axes: this makes the construction of ball trees more 

costly than that of KD trees, but results in a data structure which can be really efficient even on 

highly structured data (i.e., high dimensional). A ball tree divides in an iterative way the data 

into a series of nodes, each defined by a centroid 𝐶 and radius 𝑟, and data points in the node stay 

within the hyper-sphere defined by 𝐶 and 𝑟. The following triangle inequality is used to reduce 

the number of candidate points for a neighbour search:  
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|𝑥 + 𝑦| ≤ |𝑥| + |𝑦| 

In this way, only a single distance calculation between a test point and the centroid is needed to 

determine lower and upper bound values on the distance to all examples within the node. The 

spherical geometry of the ball tree nodes allows them to outperform KD trees in high 

dimensions, even if the actual performance is strictly dependent on the structure of the training 

data.  

 

4.1.4 Choice of Nearest Neighbors Algorithm 

As previously mentioned, the optimal algorithm for a given dataset can be a complicated choice, 

it will strongly influence the query time and depends on many factors:  

• Number of samples 𝑁 and number of features (dimensions) 𝐷. In the case of brute-force 

approach query time grows as 𝑂(𝐷𝑁), while it grows approximately as 𝑂(𝐷 log𝑁) for 

the ball tree algorithm. Instead, KD tree query time changes significantly with 𝐷: for 

small values, the cost scales as roughly 𝑂(𝐷 log𝑁) and it can result to be very efficient, 

on the other hand, for large values of 𝐷 the computational cost increases nearly as 

𝑂(𝐷𝑁) and the overwork due to the tree construction can lead to queries which are 

slower than brute-force approach. Regarding the dataset size, for small values log𝑁 is 

similar to 𝑁 and brute-force algorithm can compete and even do better than tree-based 

approach. This problem can be solved by introducing the leaf size hyperparameter: it 

controls the dataset sizes at which a query switches to brute-force method. 

• Number of query points. Both the ball tree and the KD tree require a construction phase 

and its cost in terms of time required becomes negligible when amortized over many 

points. However, in the case a small number of queries will be executed, the construction 

can make up a significant fraction of the total time required and only if very few query 

points will be required, then brute-force method is better than a tree-based one.  

• Number of nearest neighbors 𝑘 requested for a query point. Brute-force approach query 

time is quite unaffected by the value of 𝑘. Rather, ball and KD tree query time will 

intuitively become slower as 𝑘 increases, mainly because a larger value leads to the need 

to search a larger portion of the parameter space. Moreover, as 𝑘 becomes large 

compared to the number of samples, the ability to prune branches in a tree-based query is 

reduced and brute-force queries can result more efficient. 
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4.2 Support Vector Machines 

Support vector machines (SVMs) consist of a set of popular machine learning tools for 

classification, regression, and other learning tasks, and in their present form have been largely 

developed by Vapnik and his colleagues from 1992 onwards. Today, SVMs show comparable 

outcomes to neural networks and other statistical models on the most popular benchmark 

problems. 

SVMs belong to the supervised learning algorithms class and are considered a nonparametric 

technique because it relies on kernel functions. This does not mean that the SVMs models do not 

have parameters at all, but the parameters are not predefined, and their number depends on the 

data used during training. To put it another way, model parameters are data-driven such that they 

match model capacity to data complexity.  

Like neural networks, SVMs possess the well-known ability to be universal approximators of 

any multivariate function to any desired degree of accuracy. Therefore, they are of particular 

interest for applications to unknown, highly nonlinear, complex problems.  

Initially developed for solving classification problems, Support Vector techniques can be 

successfully applied in regression, as stated before. In this chapter, the theory behind SVM 

regression will be presented briefly describing both linear and nonlinear problems.  

 

4.2.1 Overview of SVM Regression 

In the case of SVM’s regression, we measure the error of approximation instead of the margin 

used in classification. There is also a difference in respect to classic regression, that is the use of 

the Vapnik’s linear ε-insensitivity loss function, which defines an 𝜀 tube. This loss function 

ignores errors that are within ε distance of the target value (the predicted value is within the tube) 

by treating them as equal to zero (i.e. the loss or cost is equal to zero if the difference between 

the predicted f(xi,w) and the measured value is less than 𝜀). In contrast, for all other predicted 

points outside the tube, the loss or error is measured based on the distance between observed 

value y and the 𝜀 boundary: if the difference is larger than 𝜀, the loss equals the magnitude of the 

difference between the predicted value and the radius 𝜀 of the tube. This is formally described 

by:  

𝐿𝜀 = {
0                            𝑖𝑓 |𝑦 − 𝑓(𝑥)| ≤ 𝜀
|𝑦 − 𝑓(𝑥)| − 𝜀               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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In other words, in linear epsilon-insensitive SVM (𝜀-SVM) regression the goal is to find a 

function 𝑓(𝒙) that deviates from yn by a value no greater than 𝜀 for each training point 𝒙, and at 

the same time is as flat as possible.  

 

4.2.2 Linear SVM Regression 

Given a set of training data with 𝑁 observations where each one present a predictors vector 𝒙𝑖 ∈

𝑅𝑛 with the relative observed response value 𝑦𝑖 ∈ 𝑅. 

To find parameters 𝒘 and 𝑏 of the linear approximation function 

𝑓(𝒙) = 𝒘𝑇𝒙 + 𝑏 

and ensure that it is as flat as possible, meaning to find 𝑓(𝒙) with the minimal norm value 

(𝒘𝑇𝒘). This is formulated as the following objective function (convex optimization problem): 

min
1

2
𝒘𝑇𝒘 = min

1

2
‖𝒘‖2 , 

subject to all residuals (differences between predictions and target values) having a value less 

than 𝜀, that is in equation form: 

∀𝑖 ∶  |𝑦𝑖 − (𝒘
𝑇𝒙𝑖 + 𝑏)| ≤ 𝜀 . 

It is assumed that the convex optimization problem is feasible, that means such a function 𝑓 

really exists that approximates all pairs (𝒙𝑖, 𝑦𝑖) with at least 𝜀 precision. Sometimes, however, 

this may not be the case, or we also may want to allow for some errors. To deal with otherwise 

infeasible constraints, slack variables 𝜉𝑖 and 𝜉𝑖∗ are introduced for each point. This approach is 

analogous to the “soft margin” loss function concept in SVM classification, because the slack 

variables allow regression errors to exist up to the value of 𝜉𝑖 and 𝜉𝑖∗, yet still satisfy the required 

conditions. 

Including these slack variables leads to the objective function: 

min  
1

2
𝒘𝑇𝒘+ 𝐶∑(𝜉𝑖 + 𝜉𝑖

∗)

𝑁

𝑖=1

 

subject to:  

∀𝑖 ∶  𝑦𝑖 − (𝒘
𝑇𝒙𝑖 + 𝑏) ≤ 𝜀 − 𝜉𝑖 , 

∀𝑖 ∶  (𝒘𝑇𝒙𝑖 + 𝑏) − 𝑦𝑖 ≤ 𝜀 − 𝜉𝑖
∗ , 

∀𝑖 ∶  𝜉𝑖, 𝜉𝑖
∗ ≥ 0 . 



49 
 

The constant 𝐶 is a design parameter chosen by the user and is the box constraint, a positive 

numeric value that controls the penalty imposed on observations that lie outside the ε margin and 

helps to prevent overfitting (regularization function). This value determines the trade-off 

between the flatness of 𝑓(𝒙) (that means the weight vector norm 𝒘) and the amount up to which 

deviations larger than ε are tolerated (approximation error). An increase in 𝐶 penalizes large 

errors i.e., it forces 𝜉𝑖 and 𝜉𝑖 to be small. This leads to an approximation error decrease which is 

achieved only by increasing the weight vector norm 𝒘, however, this increase does not guarantee 

a small generalization error of a model. The choice of a ‘suitable’ value of 𝐶 is always done 

experimentally by using cross-validation techniques.  

Another design parameter selected by the user is the required precision, through the 𝜀 value that 

defines the size of the 𝜀-tube. The choice of this hyperparameter is easier than the choice of 𝐶 

because can be given as either a maximum allowed value or some desired percentage of the 

output values 𝑦𝑖. 

The above objective function is a constrained quadratic optimization problem which is solved by 

the following primal variables Lagrangian: 

𝐿𝑝 =
1

2
𝒘𝑇𝒘+ 𝐶∑(𝜉𝑖 + 𝜉𝑖

∗)

𝑁

𝑖=1

−∑(𝛽𝑖𝜉𝑖 + 𝛽𝑖
∗𝜉𝑖
∗)

𝑁

𝑖=1

−∑𝛼𝑖(𝒘
𝑇𝒙𝑖 + 𝑏 − 𝑦𝑖 + 𝜀 + 𝜉𝑖)

𝑁

𝑖=1

−∑𝛼𝑖
∗(𝑦𝑖 −𝒘

𝑇𝒙𝑖 − 𝑏 + 𝜀 + 𝜉𝑖
∗)

𝑁

𝑖=1

 

where 𝛼𝑖 , 𝛼𝑖∗ are the nonnegative Lagrange multipliers. It can be shown that this function has the 

saddle point at the optimal solution (𝒘𝑜, 𝑏𝑜, 𝜉𝑖,𝑜, 𝜉𝑖,𝑜∗ ) to the original (optimization) problem. 

This primal objective function can be solved in the space of the parameters 𝒘, 𝑏 (primal space) 

or in the space of the multipliers 𝛼 (dual space): the second approach is chosen because it gives 

meaningful results. 

At the saddle point the partial derivatives of the Lagrangian with respect to the primal variables 

should vanish due to optimality so the following Karush-Kuhn-Tucker conditions for finding the 

optimum of a constrained function are used: 

𝒘𝑜 =∑(𝛼𝑖 − 𝛼𝑖
∗)𝒙𝑖

𝑁

𝑖=1

 , 

∑(𝛼𝑖 − 𝛼𝑖
∗) = 0

𝑁

𝑖=1

 , 

𝐶 = 𝛼𝑖 + 𝛽𝑖 , 
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𝐶 = 𝛼𝑖
∗ + 𝛽𝑖

∗ . 

Substituting these expressions into 𝐿𝑝 the problem of the maximization of a dual variables 

Lagrangian is obtained: 

𝐿𝑑 = −
1

2
∑(𝛼𝑖 − 𝛼𝑖

∗)

𝑁

𝑖,𝑗=1

(𝛼𝑗 − 𝛼𝑗
∗)𝒙𝑖

𝑇𝒙𝑗 − 𝜀∑(𝛼𝑖 + 𝛼𝑖
∗) +∑(𝛼𝑖 + 𝛼𝑖

∗)𝑦𝑖

𝑁

𝑖=1

𝑁

𝑖=1

 

subject to constraints: 

∑(𝛼𝑖 − 𝛼𝑖
∗) = 0

𝑁

𝑖=1

 , 

0 ≤ 𝛼𝑖, 𝛼𝑖
∗ ≤ 𝐶 ,   𝑖 = 1,… ,𝑁 . 

After the calculation of Lagrange multipliers, the desired weight vector of the regression 

hyperplane can be found as: 

𝒘𝑜 =∑(𝛼𝑖 − 𝛼𝑖
∗)𝒙𝑖

𝑁

𝑖=1

 . 

The so-called Support Vector expansion is obtained, that is the parameter 𝒘 can be completely 

described as a linear combination of the training examples 𝒙𝑖. 

The best regression hyperplane (i.e., the decision function used to make new predictions) is 

obtained by: 

𝑓(𝒙,𝒘, 𝑏) = 𝒘𝑜
𝑇𝒙 + 𝑏 =∑(𝛼𝑖 − 𝛼𝑖

∗)𝒙𝑖
𝑇𝒙 + 𝑏

𝑁

𝑖=1

 

It is worth noting that the complete algorithm can be written in terms of inner products between 

the training samples: even when evaluating 𝑓(𝒙) it is not necessary to explicitly compute the 

parameter vector 𝒘. These remarks will be used for the formulation of the nonlinear case. 

At the optimal solution, the KKT complementary conditions reported below must be met: 

∀𝑖 ∶  𝛼𝑖(𝒘
𝑇𝒙𝑖 + 𝑏 − 𝑦𝑖 + 𝜀 + 𝜉𝑖) = 0 , 

∀𝑖 ∶  𝛼𝑖
∗(𝑦𝑖 −𝒘

𝑇𝒙𝑖 − 𝑏 + 𝜀 + 𝜉𝑖
∗) = 0 , 

∀𝑖 ∶  𝜉𝑖(𝐶 − 𝛼𝑖) = 0 , 

∀𝑖 ∶  𝜉𝑖
∗(𝐶 − 𝛼𝑖

∗) = 0 . 
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These expressions state that for all samples strictly inside the 𝜀-tube the Lagrange multipliers 𝛼𝑖, 

𝛼𝑖
∗ vanish. Therefore, the Support Vector expansion written before is sparse because we do not 

need all 𝒙𝑖 to describe the weight vector 𝒘. 

The observations that come with nonvanishing coefficients (i.e., either 𝛼𝑖 or 𝛼𝑖∗ is not zero) are 

called support vectors: in particular, data points for which 0 ≤ 𝛼𝑖 ≤ 𝐶 or 0 ≤ 𝛼𝑖
∗ ≤ 𝐶 are 

identified as free (unbounded) support vectors (observations located at the boundary of the ε-

tube) and samples for which 𝛼𝑖 or 𝛼𝑖∗ equals 𝐶 are the so-called bounded support vectors (data 

points outside of the 𝜀-tube).  

To summarize, after the learning stage, the number of support vectors is equal to the number of 

nonzero multiplier pairs (𝛼𝑖, 𝛼𝑖∗) and this number does not depend on the dimension of input 

space (i.e., training data set size). In other words, the complexity of a function represented by 

support vectors is independent of the input space dimensionality and depends only on the 

number of SVs. This property will be particularly important when working in very high 

dimensional spaces.  

Free support vectors as defined above allow also computing the value of the bias term 𝑏 by 

exploiting the KKT conditions just mentioned.  

 

4.2.3 Nonlinear SVM Regression 

Most of real-world regression problems cannot adequately be described using a linear model, so 

more useful and more interesting would be trying to solve nonlinear regression tasks. Thus, the 

next step is to make the SV algorithm nonlinear. 

The idea at the base of designing nonlinear SVMs is to map the input vectors 𝒙𝑖 into vectors 

𝛷(𝒙𝑖) of a high dimensional feature space 𝑆 (where 𝛷 represents a mapping, i.e. a fixed 

transformation function chosen in advance) and then apply the linear standard SVM regression 

algorithm in this feature space: 

𝑥 ∈ 𝑅𝑛 →  𝛷(𝒙) = [𝜙1(𝒙), 𝜙2(𝒙),… , 𝜙𝑠(𝒙)]
𝑇 ∈ 𝑅𝑠 . 

By performing such a step, it is hoped that in a 𝛷-space, the learning algorithm will be able to 

identify a linear regression hyperplane by applying the linear regression SVM formulation 

discussed above. It is expected to again obtain a quadratic optimization problem with inequality 

constraints to solve, this time in the feature space. The solution for the regression hyperplane 

𝑓 = 𝒘𝑇𝛷(𝒙) + 𝑏, linear in the feature space, will create a nonlinear regression hypersurface 

(function) in the original input space. 
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Unfortunately, there are two main problems when using the feature mapping 𝛷 although it 

allows to deal with nonlinear dependency: firstly, the choice of the mapping should result in a 

“well-populated” class of decision hyperplane (can be overcome by the fact that a linear 

regression hyperplane always exists for a whole class of mappings); secondly, performing the 

scalar product 𝛷𝑇(𝒙)𝛷(𝒙) can be computationally very expensive if the dimensionality of the 

feature space (i.e., the number of features) is very large. 

The second problem is related to the well-known ‘curse of dimensionality’ issue and clearly a 

computationally cheaper way has to be found. The key consideration to avoid this explosion in 

dimensionality is that the SVM algorithm, both in the quadratic optimization problem and in the 

final expression, only depends on scalar products 𝒙𝑖𝑇𝒙𝑗 between training samples. These products 

will be replaced by 𝛷𝑇(𝒙)𝛷(𝒙𝑖) = [𝜙1(𝒙), 𝜙2(𝒙),… , 𝜙𝑛(𝒙)][𝜙1(𝒙𝑖), 𝜙2(𝒙𝑖), … , 𝜙𝑛(𝒙𝑖)]
𝑇 in a 

feature space S, which in turn will be expressed by using the kernel, which is a function such that 

𝐾(𝒙𝑖, 𝒙𝑗) = 𝛷
𝑇(𝒙𝑖)𝛷(𝒙𝑗). 

It is worth noting that a kernel 𝐾(𝒙𝑖, 𝒙𝑗) is a function in the input space, so the required inner 

products in the feature space are calculated directly by computing the kernel function for the 

given training data in the input space. In this way, it is not needed to work in the possibly very 

high dimensionality of the feature space S because using the kernel function 𝐾(𝒙𝑖, 𝒙𝑗) it is 

avoided performing a mapping 𝛷(𝒙) at all, it is not even necessary to know what the actual 

mapping 𝛷(𝒙) is. This is very well known under the popular name of the kernel trick and it 

allows to construct SVMs that operate even in an infinite dimensional space.  

Kernel Type (Name) Kernel Function 

Linear 𝐾(𝒙𝑖, 𝒙𝑗) = 𝒙𝑖
𝑇𝒙𝑗 

Gaussian 𝐾(𝒙𝑖, 𝒙𝑗) = exp (−𝛾‖𝒙𝑖 − 𝒙𝑗‖
2
) 

Sigmoid 𝐾(𝒙𝑖, 𝒙𝑗) = tanh[𝛾(𝒙𝑖
𝑇𝒙𝑗) + 𝑟] 

Polynomial 𝐾(𝒙𝑖, 𝒙𝑗) = [𝛾(𝒙𝑖
𝑇𝒙𝑗) + 𝑟]

𝑑
 

Table 1. Most popular and widely used kernel functions 

There are many possible kernels, and the most popular ones are given in Table 1. Each of these 

functions builds a different nonlinear regression hypersurface in input space, but all of them 

should fulfil the so-called Mercer’s theorem. It states that 𝐾(𝒙𝑖, 𝒙𝑗) is a valid kernel function if 

and only if for any given training data point the corresponding kernel matrix is positive 

semidefinite (meaning all its eigenvalues are greater or equal to zero). The kernel matrix is a 
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symmetric 𝑛-by-𝑛 matrix whose elements are the inner product of the training examples vectors 

as transformed by the mapping 𝛷.  

Coming back to the learning stage, the nonlinear regression problem can be again formulated as 

the maximization (i.e., optimization objective) of the following dual Lagrangian: 

𝐿𝑑 = −
1

2
∑(𝛼𝑖 − 𝛼𝑖

∗)

𝑁

𝑖,𝑗=1

(𝛼𝑗 − 𝛼𝑗
∗)𝐾(𝒙𝑖, 𝒙𝑗) − 𝜀∑(𝛼𝑖 + 𝛼𝑖

∗) +∑(𝛼𝑖 + 𝛼𝑖
∗)𝑦𝑖

𝑁

𝑖=1

𝑁

𝑖=1

 

subject to: 

∑(𝛼𝑖 − 𝛼𝑖
∗) = 0

𝑁

𝑖=1

 , 

∀𝑖 ∶  0 ≤ 𝛼𝑖, 𝛼𝑖
∗ ≤ 𝐶 . 

After calculating Lagrange multiplier vectors 𝜶 and 𝜶∗, we can compute an optimal weight 

vector as 

𝒘𝑜 =∑(𝛼𝑖 − 𝛼𝑖
∗)𝛷(𝒙𝑖)

𝑁

𝑖=1

 . 

Note here that, in a nonlinear SVM regression, the optimal weight vector 𝒘𝑜 could be of very 

high or even infinite dimension. Consequently, 𝒘𝑜 is neither computed nor given explicitly (i.e., 

expressed in closed form). The function used to predict new values may be written as 

𝑓(𝒙,𝒘, 𝑏) = 𝒘𝑜
𝑇𝛷(𝒙) + 𝑏 =∑(𝛼𝑖 − 𝛼𝑖

∗)𝛷𝑇(𝒙𝑖)

𝑁

𝑖=1

𝛷(𝒙) + 𝑏 =∑(𝛼𝑖 − 𝛼𝑖
∗)

𝑁

𝑖=1

𝐾(𝒙𝑖, 𝒙) + 𝑏 

The last result follows from the very setting of the learning (optimizing) stage in the feature 

space where in all the equations shown for the linear case 𝒙𝑖 is replaced by the corresponding 

feature vector 𝛷(𝒙𝑖).   

The KKT complementarity conditions are  

∀𝑖 ∶  𝛼𝑖(𝑓(𝒙𝑖) − 𝑦𝑖 + 𝜀 + 𝜉𝑖) = 0 , 

∀𝑖 ∶  𝛼𝑖
∗(𝑦𝑖 − 𝑓(𝒙𝑖) + 𝜀 + 𝜉𝑖

∗) = 0 , 

∀𝑖 ∶  𝜉𝑖(𝐶 − 𝛼𝑖) = 0 , 

∀𝑖 ∶  𝜉𝑖
∗(𝐶 − 𝛼𝑖

∗) = 0 . 
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The bias term 𝑏, for a nonlinear SVM regression, can be explicitly calculated from the upper or 

lower SVs. 

It can be note that in the nonlinear setting the solution to the optimization problem corresponds 

to finding the flattest function in the feature space, not in the input space. 

It is worth to highlight that the way in which the kernel trick was applied in designing a 

nonlinear SVM can also be used in all other algorithms that depend on the inner product 𝒙𝑖𝑇𝒙𝑗.  

To summarize, a few learning hyperparameters have to be set in constructing SVMs for 

regression. The three most important ones are the insensitivity zone 𝜀, the penalty parameter 𝐶 

(that determines the trade-off between the training error and simplicity of the obtained 

approximation hyperplane), and the shape parameter of the kernel function (i.e., variance of a 

gaussian kernel or degree of the polynomial one). The user should set all three hyperparameters 

and, to this end, the most popular method is the cross-validation. 

 

4.2.4 Solver Algorithms for SVM Regression Optimization Problem 

The primal objective minimization problem can be expressed in standard quadratic programming 

(QP) form and solved using common techniques available for QP problems. However, it can be 

expensive from the computational point of view to use QP algorithms, as well as the elements of 

the kernel matrix can be too many to be stored in memory.  

Using a decomposition method instead allows to speed up the calculations and do not run out of 

memory. Decomposition methods are also called chunking methods or working set methods 

because they essentially separate all observations into two different sets: the working set and the 

remaining one. In each iteration these methods modify only the elements in the working set and 

thus, only few elements of the kernel matrix are needed at each iteration, reducing the amount of 

storage needed. 

Sequential minimal optimization (SMO) is the most popular algorithm for solving SVM 

problems. SMO performs iteratively a series of two-point optimizations. In each iteration, two 

points are chosen as working set based on selection rules, then the Lagrange multipliers for this 

active set are solved analytically. In SVM regression, after each iteration the gradient vector 𝛻𝐿 

for the working set is updated and the decomposed equation for the gradient vector is 

(𝛻𝐿)𝑗

{
 
 

 
 ∑(𝛼𝑖 − 𝛼𝑖

∗)𝐾(𝒙𝑖, 𝒙𝑗) + 𝜀 − 𝑦𝑗

𝑁

𝑖=1

, 𝑗 ≤ 𝑁

−∑(𝛼𝑖 − 𝛼𝑖
∗)𝐾(𝒙𝑖, 𝒙𝑗) + 𝜀 + 𝑦𝑗

𝑁

𝑖=1

, 𝑗 > 𝑁
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Iterative single data algorithm (ISDA) is another decomposition method and works updating one 

Lagrange multiplier with each iteration. ISDA is often executed without the bias term 𝑏 by 

adding a small positive constant to the kernel function. Dropping the bias term cancels out also 

the sum constraint in the dual equation: this allows to update one Lagrange multiplier in each 

iteration, making it easier than SMO to remove outliers. To choose the working set to update, 

ISDA selects the worst KKT violator among all the 𝛼𝑖 and 𝛼𝑖∗ values. 

Convergence Criteria 

Each of the above-mentioned solver algorithms runs iteratively until the specified convergence 

condition is met. There are several options for convergence criteria: 

• Feasibility gap - It is expressed as 

∆=
𝐽(𝒘) + 𝐿𝑑(𝜶)

𝐽(𝒘) + 1
 

where 𝐽(𝒘) is the primal variables objective function and 𝐿𝑑(𝜶) is the dual variables 

Lagrangian. The algorithm evaluates the feasibility gap after each iteration and if it is less 

than the value specified, then the algorithm met the convergence criterion and the 

software returns a solution. 

• Gradient difference - The gradient vector 𝛻𝐿 is evaluated after each iteration and if the 

difference in its values between two consecutive iterations is less than the value 

specified, then the algorithm met the convergence criterion and the software returns a 

solution. 

• Largest KKT violation - After each iteration, the algorithm evaluates the KKT violation 

for all the 𝛼𝑖 and 𝛼𝑖∗ values. If the largest violation is less than the value specified, then 

the algorithm met the convergence criterion and the software returns a solution. 

SVMs are powerful tools, but their computational and storage requirements rapidly rise with the 

number of training observations. As previously stated, the core of an SVM is a QP problem, 

separating support vectors from the rest of the training data. The time required by the QP solver 

generally scales between 𝑂(𝑁𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠2 ) and 𝑂(𝑁𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠3 ) depending on dataset 

size.  

Finally, SVM algorithms are not scale invariant, so it is highly recommended to scale your data 

for better results. For example, each feature on the input observations can be normalized or 

standardized. Note that the same scaling must be applied to the test vector to obtain meaningful 

results.  
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4.3 Gradient Tree Boosting 

Gradient Tree Boosting or Gradient Boosted Decision Trees (GBDT) is a non-parametric 

supervised learning technique, one of the most powerful for building predictive models. 

Boosting is a general approach that can be applied to many statistical learning methods, but here 

we restrict the description of boosting to the context of decision trees. GBDT is an accurate and 

effective off-the-shelf procedure that can be used for both regression and classification problems 

in a wide range of areas. Before embarking upon this topic, a brief overview of tree-based 

methods and their characteristics will be beneficial for the reader. 

 

4.3.1 Decision Trees 

The simplest tree-based method for classification and regression is the decision tree algorithm. It 

involves the segmentation (or stratification) of the multidimensional predictors (i.e., features) 

space into a number of different simple regions. Each one of them is characterized by a value 

which is the mean or the mode of the labels of the training observations which belong to that 

region. When making a prediction for a new unseen observation the value corresponding to the 

region to which this new sample belongs is output. This approach is known as decision tree 

because the set of splitting rules used to segment the feature space can be represented by a tree.  

The problem of learning an optimal decision tree is known to be NP-complete under several 

aspects of optimality and even for simple problems (i.e., it is infeasible from the computational 

point of view to consider every possible partition of the predictors space into a number of 

regions). Consequently, practical decision-tree learning algorithms are based on heuristic 

approaches like that named recursive binary splitting. This is a ‘top-down’ technique because it 

starts with all observations in a unique region and then splits the feature space successively. It is 

also a ‘greedy’ method in the sense that at each step (i.e., node) of the building tree the best split 

is chosen based on locally optimal decisions, not looking ahead to search for the split that at the 

end of tree construction will lead to the optimal feature space subdivision. Commonly adopted 

criteria to minimize for determining features and thresholds for future splits are Mean Squared 

Error (MSE) as well as Mean Absolute Error (MAE).  

Decision trees are simple to understand (they can be visualized) and to interpret (they use a white 

box model) and they require very little data preparation. However, they suffer from high 

variance and can be unstable (even small variations in the data may generate a completely 

different tree), and they are not good at extrapolation (because are piecewise constant 

approximations), hence generally are not competitive with the best supervised learning 

approaches in terms of prediction performance. The process described before may produce very 
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good predictions on the training set, but leading to poor test performance because the resulting 

tree might be over-complex and is likely to not generalize the data well (in other words, it 

overfits). To overcome these issues a valid strategy may be to apply a pruning mechanism: that 

means, to grow a very large tree, and then prune it back to obtain a subtree that should intuitively 

lead to the lowest test error rate. Given a subtree, this can be evaluated using cross-validation or 

the validation set approach. However, due to the extremely large number of possible subtrees, 

estimating the cross-validation error for all of them would be too cumbersome. Cost-complexity 

pruning (also called weakest link pruning) gives us a way to select a small set of subtrees, rather 

than considering every possible subtree, through a nonnegative tuning parameter α. It controls 

the trade-off between a subtree’s complexity and its fit to the training data: as α increases, the 

price to pay for having a tree with many terminal nodes increases, and so the loss associated with 

α will tend to be minimized for a smaller subtree. A proper value of α can be selected, as usual, 

using a validation set or using cross-validation.  

 

4.3.2 Bagging Methods and Random Forests 

To cope with the above-mentioned weaknesses of decision trees, ensemble methods are 

introduced. In general, ensemble learning is concerned with approaches that combine predictions 

from two or more models, based on the same algorithm or not. We can identify a model as an 

ensemble learning technique if it comprises two or more models and if predictions are combined. 

The main goal of ensemble methods is to combine the predictions of many base estimators built 

with a given learning algorithm in order to improve robustness (i.e., stability) and generalization 

(prediction performances) capabilities over a single estimator. Ensemble methods are usually 

subdivided into two main families: averaging methods and boosting ones. In the former case, the 

driving principle is to build several estimators independently and then to average their 

predictions. The combined estimator is usually better than any of the single base estimator 

because its variance is reduced. In the latter case, base estimators are built sequentially and the 

last one created tries to reduce the bias of the combined estimator. The motivation is to combine 

several weak models to produce a powerful ensemble with enhanced performance. 

In our case, by training and aggregating multiple decision trees, using methods like bagging and 

random forests, an ensemble learner is built that has substantially improved predictive 

performance: we use trees as building blocks to construct more powerful models. 

In ensemble algorithms, bagging methods form a class of algorithms which build several 

instances of a black-box estimator on random subsets of the original training set and then 

aggregate their individual predictions to form a final prediction. Bagging methods get different 
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names depending on the way they draw random subsets of the training set: pasting when random 

subsets of the samples are drawn without replacement from the original dataset, bagging when 

samples are drawn with replacement. In many cases, bagging methods constitute a very simple 

way to improve with respect to a single model, without making it necessary to adapt the 

underlying base algorithm. Now we briefly explain this method. Since, in general, averaging a 

set of observations reduces variance, an intuitive way to reduce the variance and hence increase 

the prediction accuracy of a statistical learning method is to draw many training sets from the 

population, use each of them to build a different prediction model, and average the resulting 

predictions. Repeated samples from the available training data set are usually taken because in 

most cases we do not have access to multiple training sets. So, bagging (or bootstrap 

aggregation) is a general-purpose procedure for reducing the variance of a statistical learning 

method and is frequently used in dealing with decision trees because particularly useful. To 

apply bagging to regression trees, a number of them is constructed using a randomly different 

bootstrapped training set for each of them, and then the resulting predictions are averaged. Note 

that these trees are grown deep and are not pruned in order to have trees with high variance, but 

low bias, since the following averaging reduces the variance. In fact, as they are able to reduce 

overfitting, bagging methods work best with complex models (i.e., deep and fully developed 

decision trees), in contrast with boosting methods which usually performs best with weak models 

(i.e., shallow trees or stumps). Bagging has shown impressive improvements in prediction 

performance by combining even thousands of trees into a single procedure. 

Another averaging algorithm is Random Forest that is a perturb-and-combine technique 

specifically designed for trees. This means a diverse set of estimators is created by introducing 

randomness in their construction. Random forest algorithms provide an improvement over 

bagged trees through a small tweak that decorrelates the trees. Firstly, we start building, as in 

bagging, a number of decision trees on bootstrapped training samples (i.e., draw samples with 

replacement from the original dataset). Furthermore, each time a split in a tree is considered, a 

random subsample of predictors (i.e., features) is chosen as split candidates from the full set of 

the available predictors. Hence, the split is allowed to use only one of those preselected 

predictors and at each split a fresh new subsample of the features is taken. The number of 

predictors considered at each split is typically chosen equal to the square root of their total 

number, that means, in building a random forest, the algorithm is only allowed to consider a 

minority of the available features at each split in the tree. This is the keystone of this approach, 

and here we explain why. Suppose having in the dataset a predictor much stronger than the 

others, then in the ensemble of bagged trees built during training, most or even all of the trees 

will use this strong predictor in the first split. Consequently, all these trees will be quite similar 
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to each other and thus their predictions will be highly correlated. Averaging many highly 

correlated quantities unfortunately does not lead to a large reduction in variance as averaging 

many uncorrelated quantities do. This setting means that even bagging will not result in a 

substantial reduction in variance over a single tree. Random forests overcome this problem by 

forcing each split to consider only a random subset of the predictors. Therefore, on average most 

of the splits will not even consider the stronger feature, and so other predictors will have more 

chances to be used for splits. We can think of this process as decorrelating the trees, hence 

making the average of the trees output less variable and thus more reliable. In other words, the 

injected randomness in forest ensembles yield decision trees with “decoupled” prediction errors 

and, by taking an average of those predictions, some errors can cancel out. To summarize, the 

main difference between bagging and random forests is the choice of a random feature subset 

when splitting each node and the second method achieves a reduced variance by combining 

diverse trees (that individually, as said, exhibit high variance and an overfitting tendency), 

usually at the cost of a little increase in bias, which is anyway widely countervailed by the 

former variance reduction. Using a small number of predictors in building a random forest will 

generally help when we have many correlated predictors. 

 

4.3.3 Boosting 

Boosting is another approach for improving decision tree predictions performance. Like bagging, 

boosting is a general approach that can be applied to many statistical learning methods for 

regression or classification, but here we refer to boosting application to the context of regression 

decision trees. The idea of boosting came out of the one of whether a weak learner can be 

modified to become better. A weak hypothesis or weak learner is defined as one whose 

performance is at least slightly better than random guessing, for example a small decision tree. 

Boosting a hypothesis was the idea of filtering observations, leaving those ones that the weak 

learner can easily handle and focusing on developing new weak learners to handle the remaining 

difficult observations. The first popular boosting algorithm was Adaptive Boosting or AdaBoost 

for short. The core principle of AdaBoost is to fit a sequence of weak learners on recursively 

modified versions of the data and the predictions from all of them are then combined through a 

weighted sum to produce the final prediction. The weak learners in AdaBoost are decision trees 

with a single split, called decision stumps. The data modifications at each ‘boosting’ iteration 

consist of applying weights to each training sample: initially, those weights are all set equal (the 

first learning step simply trains a weak learner on the original dataset), while for each successive 

iteration the sample weights are individually modified and the learning algorithm is reapplied to 
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the reweighted data. Therefore, at every step, training examples incorrectly predicted by the 

boosted model induced at the previous step have their weights increased, whereas the weights are 

decreased for those that were predicted correctly. Thus, examples that are very difficult to 

predict receive ever-increasing influence as learning process proceeds. New weak learners are 

thereby added sequentially and each one is forced to concentrate its training on patterns that are 

missed by the previous ones in the sequence. After AdaBoost, boosting was recast in a statistical 

framework (later called gradient tree boosting) as a numerical optimization problem where the 

objective is to minimize the loss of the model by adding weak learners using a procedure like 

gradient descent. These algorithms were described as a stage-wise additive model because at 

each iteration one new weak learner is added and the existing ones in the model are frozen and 

left unchanged. This generalization allowed arbitrary differentiable loss functions to be used. In 

fact, a benefit of the gradient boosting framework is that it is generic enough that any loss 

function can be used, that is a new boosting algorithm does not have to be derived for each loss 

function chosen. The loss function used depends on the type of problem being solved, but we 

emphasize that it must be differentiable.  

A gradient descent procedure is used to minimize the loss when adding trees. Traditionally, 

gradient descent is used to minimize a set of parameters, but here, instead of them, we have weak 

learners, more specifically decision trees. To perform the gradient descent procedure, we must 

compute the loss and then add a tree to the model that reduces it. We do this by parameterizing 

the tree and modifying its parameters in order to move in the direction that reduce the residual 

error. This is the so called functional gradient descent approach, even known as gradient descent 

with functions. Following this procedure, a fixed number of trees are added or training is stopped 

once the loss reaches an acceptable level or no longer improves on an external validation dataset. 

Boosting and bagging work in a similar way, both involve combining many decision trees, but 

the first difference can be already noted. Recall that the former involves fitting multiple decision 

trees to different subsamples of the original training dataset, and then combining all of the trees 

in order to create a single predictive model. Therefore, each tree built is independent of the 

others, while in boosting trees are grown sequentially and each one is grown using information 

from previously grown trees (i.e., the construction of each tree depends strongly on the trees that 

have already been grown).  

As described before, decision trees are used as the weak learner in gradient boosting. In our case, 

regression trees are used that output real values for splits and those ones can be added together, 

allowing subsequently added tree outputs to correct the residuals in the predictions. Recall that 

trees are constructed in a greedy manner, choosing the best split points to minimize the loss. It is 
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common to constrain the weak learners in specific ways (that we will show later) to ensure that 

the learners remain weak, but can still be constructed in a greedy manner. 

Instead of fitting a single complex decision tree to the data, which means fitting the data hard 

and potentially overfitting, the boosting approach learns slowly. It means that, given the model at 

the current iteration, we fit a decision tree to the residuals from the model: in other words, we fit 

a tree using the current residuals as the response, rather than the output value. Then, we add this 

new decision tree into the fitted function to update the residuals. Each of these trees can rather be 

simple and small, with just a few terminal nodes. By fitting them to the residuals, we slowly 

improve the model in predictions where it makes bigger errors. The reason for this proceeding is 

that, in general, statistical learning approaches that learn slowly tend to perform well. 

It is worth underline one key difference between boosting and random forests: in the former 

method, because the growth of each tree takes into account the trees that have already been 

grown, smaller trees are typically sufficient. Moreover, using smaller trees can aid in 

interpretability as well.  

We have seen that gradient boosting is a greedy algorithm and can quickly overfit our training 

dataset. Hence, it can benefit from regularization methods that penalize in many different ways 

the algorithm and generally improve its performance by reducing overfitting. A first 

implementable enhancement is adding tree constraints because it is important that the weak 

learners have skill but remain weak. A good general heuristic is that the more constrained tree 

creation is, the more trees will be required in the model, and vice versa. There are many 

constraints that can be imposed on the construction of decision trees: increasing the number of 

trees (adding more trees to the model generally can slow the overfitting occurrence); limiting 

tree depth (deeper trees are more complex and tend to overfit) or the number of nodes (it 

constrains the size of the tree too); imposing a minimum number of samples per split to constrain 

the amount of observations at a training node before a split can be considered; setting a 

minimum improvement to loss that any split added to a tree need to generate. 

As previously mentioned, the predictions of each tree are added together sequentially. So, 

another improvement to the algorithm can be made by weighting the contribution of each tree to 

this sum to slow down even further the learning of the model. This weighting is called a 

shrinkage or a learning rate. Slowing down the learning requires in turn more trees to be added to 

the model, and this implies in turn longer time to train, providing a configuration trade-off 

between the number of trees and the learning rate. It is common to select small values for this 

hyperparameter.  

We can think of one more possible regularization method. Allowing trees to be greedily created 

(like with bagging ensembles and random forests) from subsamples of the training dataset can be 
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used to reduce the correlation between the trees in the sequence in gradient boosting models. 

This variation of boosting is called stochastic gradient boosting. A few variants of stochastic 

boosting are available: subsample rows before creating each tree; subsample columns before 

creating each tree; subsample columns before considering each split. Those approaches have 

been described in the previous paragraphs. Generally, aggressive sub-sampling has shown to be 

beneficial.  

Additional constraints can be imposed on the parameterized trees in addition to their structure. 

For example, the leaf weight values of the trees can be regularized using regularization 

functions, such as the widespread 𝐿1 and 𝐿2 weights regularization.  

Mathematically, for gradient boosting regression trees the prediction �̂�𝑖 for a given input 𝑥𝑖 is of 

the following form:  

�̂�𝑖 = 𝐹𝑀(𝑥𝑖) = ∑ ℎ𝑚(𝑥𝑖)

𝑀

𝑚=1

 , 

where the ℎ𝑚 are the weak learner output in the context of boosting and the parameter 𝑀 

represents the number of estimators. 

The greedy fashion in which these trees are built can be represented as 

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + ℎ𝑚(𝑥) , 

where the newly added tree ℎ𝑚 is fitted to minimize a sum of losses 𝐿𝑚, given the previous 

ensemble 𝐹𝑚−1: 

ℎ𝑚 = argmin
ℎ
𝐿𝑚 = argmin

ℎ
∑𝑙(𝑦𝑖, 𝐹𝑚−1(𝑥𝑖) + ℎ(𝑥𝑖))

𝑛

𝑖=1

 , 

where 𝑙(𝑦𝑖, 𝐹(𝑥𝑖)) represents the loss function used. By default, the initial model 𝐹0 is chosen as 

the constant that minimizes the loss. Using a first-order Taylor approximation, the value of 𝑙 can 

be approximated as follows:  

𝑙(𝑦𝑖, 𝐹𝑚−1(𝑥𝑖) + ℎ𝑚(𝑥𝑖)) ≈ 𝑙(𝑦𝑖, 𝐹𝑚−1(𝑥𝑖)) + ℎ𝑚(𝑥𝑖) [
𝜕𝑙(𝑦𝑖 , 𝐹(𝑥𝑖))

𝜕𝐹(𝑥𝑖)
]
𝐹=𝐹𝑚−1

 . 

The quantity [𝜕𝑙(𝑦𝑖,𝐹(𝑥𝑖))
𝜕𝐹(𝑥𝑖)

]
𝐹=𝐹𝑚−1

 is the derivative of the loss with respect to its second parameter, 

evaluated at 𝐹𝑚−1(𝑥). It is easy to compute for any given 𝐹𝑚−1(𝑥𝑖) in a closed form since the 

loss is differentiable. We will denote it by 𝑔𝑖. Removing the constant terms, we have: 



63 
 

ℎ𝑚 ≈ argmin
ℎ
∑ℎ(𝑥𝑖)

𝑛

𝑖=1

𝑔𝑖 . 

This is minimized if ℎ(𝑥𝑖) is fitted to predict a value that is proportional to the negative gradient 

−𝑔𝑖. Thus, the estimator ℎ𝑚 is fitted to predict the negative gradients of the samples at each 

iteration and the gradients are updated at each iteration. This can be thought of as gradient 

descent applied in a functional space. 

Gradient boosting has three main tuning parameters: 

• The number of trees (estimators). Boosting can overfit if the number of weak learners is 

too large, although this overfitting tends to occur slowly if at all. We use cross-validation 

to select this hyperparameter and later we will explain this technique. 

• The shrinkage parameter or learning rate. It is a small positive number that controls the 

rate at which boosting learns, as explained above. The right choice can depend on the 

problem, anyway very small value can require a very large number of estimators to be 

used in order to achieve good performance. 

• The number of splits in each tree. It controls the complexity of the boosted ensemble. 

Generally, it represents the interaction depth, and controls the interaction order of the 

boosted model (the number of splits indicates variables at most involved).  

 

4.4 Deep Feedforward Fully Connected Neural Networks 

The deep feedforward fully connected neural networks, also called multilayer perceptrons 

(MLPs), are algorithms widely used in the field of deep learning. In the case of application to 

regression problems, these algorithms aim to find an approximation function 𝑓, function of 

parameters 𝜃, which outputs a value given certain features 𝑥. 

They are called feedforward because the information flows forward: from the input data, through 

the intermediate stages of processing to the output of function 𝑓. They are called fully connected 

because each neuron of a given layer provides its output (suitably weighted) to all the neurons of 

the next layer, as well as receives all the outputs (again suitably weighted) of the neurons of the 

previous layer. 

The function to be optimized, representing the neural network, will consist of several functions 

nested one inside the other, each corresponding to a layer. The longer this chain is, the deeper the 

model. The final layer is called the output layer (to which the label is associated), the first is the 

input layer (to which the features are associated) and the intermediate ones are called hidden 
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layers. During the training phase we try to approximate through 𝑓(𝑥) the target value 𝑦 

associated with a set of features 𝑥, provided by the examples used.  

The main and simplest unit of a Deep Feedforward Neural Network is the perceptron also called 

unit or node. This communicates with adjacent nodes through links generating the network itself. 

The perceptron is characterized by three fundamental elements: 

• the connections, each of which characterized by a parameter 𝑤 (weight) 

• an adder, capable of summing the inputs coming from the various connections 

(appropriately weighted) with the previous layer, producing a linear combination of the 

input data 

• the activation function, which is used to limit the width of the output and make nonlinear 

the function 𝑓. 

A neuron can be characterized by the following equation: 

𝑦𝑘 = 𝜑(∑𝑤𝑘,𝑖𝑥𝑖

𝑚

𝑖=1

+ 𝑏𝑘) , 

where: 

• 𝑤𝑘,𝑖 are the parameters (weights) assigned to the inputs of neuron 𝑘 

• 𝑥𝑖 is the input value received by the neuron 

• 𝑏𝑘 is the bias 

• 𝜑 is the activation function. 

Regarding the activation function, generally three types are used in neural networks: 

• The step function: it is a discontinuous function that returns 0 for all negative values and 

1 for positive values. 

𝜑(𝑥) = {
0   𝑖𝑓 𝑥 < 0
1   𝑖𝑓 𝑥 ≥ 0

 

• Sigmoid function: it is strictly increasing and develops a balance between linear and non-

linear trend. 

𝜑(𝑤) =
1

1 + 𝑒−𝑎𝑤
 , 

where 𝑎 allows to vary the slope of the function. This activation function can generate 

problems related to the back-propagation of the gradient, generating the vanishing 

gradient phenomenon. 

• Rectified Linear Unit (ReLU) function: solves the vanishing gradient problem, and for 

this reason they are among the most used.  
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𝜑(𝑧) = {
0   𝑖𝑓 𝑧 < 0
𝑧   𝑖𝑓 𝑧 ≥ 0

 

 

4.4.1 Neural Networks Training 

As already said, the main goal of a deep learning algorithm (as well as ML) is to be able to 

achieve high performance when using unknown inputs. To do this it is necessary to be able to 

optimize the network training phase to the maximum. 

The first step to take is to define a function that measures the error between the model outputs 

and the target values (labels). The function in question is called a cost or error function (loss 

function). The optimization of a network is developed through a function whose goal is to 

modify the parameters of the network (weights, bias, etc.) to obtain a loss function that is as low 

as possible. The modification of weights and bias takes place through a learning algorithm that 

calculates a gradient vector which, for each weight, indicates how much the error increases or 

decreases if the weights are varied by an infinitesimal amount. 

The most used approach in order to minimize the error is developed by an algorithm called 

Stochastic Gradient Descent (SGD). It consists in calculating the output of a network, the 

associated error and the average gradient by varying the weights. This procedure is iterated for 

smaller sets of samples (batches) taken from the training set until the mean of the error function 

stops decreasing. 

Loss functions are usually convex functions having local minimums and a global minimum. In 

both cases the gradient of the function is zero, this can be a problem as if it converges on a local 

minimum it will no longer be possible to obtain convergence on the global minimum. 

It is supposed to analyse the cost function optimization process starting from the output of a 

neuron: 

𝑦𝐴𝑁𝑁 =∑𝑓(∑ 𝑤𝑖𝑗
(1)𝑥𝑖

𝑛𝑣𝑎𝑟

𝑖=1

)𝑤𝑗𝑖
(2)

𝑛𝑏

𝑗=1

 

where: 

• 𝑤𝑖𝑗
(1) is the weight between the input neuron i and the neuron 𝑗 of the hidden layer 

• 𝑤𝑗𝑖
(2) is the weight between the neuron 𝑗 of the hidden layer and the neuron leaving the 

network 

• 𝑛𝑣𝑎𝑟 is the number of neurons at the entrance 

• 𝑛𝑏 neurons in the hidden layer. 
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The network is trained with a sample containing 𝑁 examples: 

𝑥𝑚 = (𝑥1, … , 𝑥𝑛𝑣𝑎𝑟) 

For each training event 𝑚, the output function 𝑦𝐴𝑁𝑁 is calculated and compared with the 

expected value �̂�𝑚, defining the error function 𝐸: 

𝐸(𝑥1, … , 𝑥𝑁|𝒘) = ∑ 𝐸𝑚(𝑥𝑚|𝒘)

𝑁

𝑚=1

= ∑
1

2
(𝑦𝐴𝑁𝑁,𝑚 − �̂�)

2
𝑁

𝑚=1

 

where w represents the set of weights of the neural network, the best is the one that minimizes 

the loss function. The set of weights that optimize the network is calculated through the SGD 

starting from a set of causal weights 𝑤(𝜌) which are varied by small displacements in space in 

the directions 𝛻𝑤𝐸: 

𝑤(𝜌+1) = 𝑤(𝜌) − 𝜂𝛻𝑤𝐸 , 

where 𝜂 indicates a positive number between 0 and 1, it represents the learning rate. ρ instead 

indicates the layer of connections to which the networks refer. 

∆𝑤𝑖𝑗
(2) = −𝜂 ∑

𝜕𝐸𝑚

𝜕𝑤𝑖𝑗
(2)

𝑁

𝑚=1

= −𝜂 ∑(𝑦𝐴𝑁𝑁,𝑚 − �̂�)𝑦𝑗,𝑚
(2)

𝑁

𝑚=1

 

The phase in which the weights are updated in this way is called back-propagation: the weights 

are in fact modified starting from the last layer and proceeding backwards. A cycle of 

presentation to the network of all the observations belonging to the training set is called an 

epoch. 

Following this procedure, what is commonly called the test phase is developed to evaluate the 

model's ability to generalize. 

 

4.4.2 Overfitting in Neural Networks 

As already described, one of the main problems related to the use of artificial intelligence 

algorithms and in particular deep learning ones is overfitting. To avoid or reduce this 

phenomenon, there are several techniques that can be applied directly. Among these are mainly 

distinguished:  

• 𝐿2 Regularization – It is the most common one and it consists of adding a term to the loss 

function called the regularization term. Also known as weight decay, it is a way to force 



67 
 

the network to learn weights of small value, which reduces the complexity of the model 

and therefore its ability to pick up the noise of the data. 

• 𝐿1 Regularization – It is analogous to the previous one, the only change concern the 

function used to deploy the weight decay. 

• Dropout – Unlike the previous techniques, the dropout does not modify the loss function, 

but modifies the network itself. The dropout technique consists in randomly ignoring a 

certain set of neurons in the hidden layers during the training phase, that is, they are not 

considered in the calculation of a certain epoch. At every training round, each neuron is 

maintained with a certain probability 𝑝 or neglected by the network with probability 1 −

𝑝. This forces the network to reproduce the output without the contribution of a random 

subset of parameters. Therefore, the dropout procedure is equivalent to averaging the 

results of a large number of different networks: each network will tend to have overfitting 

in a different way and the overall effect will be a global reduction of overfitting. 
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Chapter 5 

Analysis and Results 

In this chapter, we enter in the core part of this thesis work. The dataset relating to the diesel 

engine subject of this study and used for the application and validation of the ML and DL 

algorithms described in the previous chapter will be presented. A necessary pre-processing stage 

will be carried out before proceeding with the model simulations. The last part of this chapter 

will also involve the work of a colleague of mine whose thesis related the use of a neural 

network model for the same data. 

Let us start, therefore, defining which are the quantities with which the models will work to 

determine the final prediction. 

 

5.1 Working Datasets 

For the models building and development, experimental data provided by AVL Italia were used, 

collected in various tests carried out in quasi-stationary conditions with the engine mounted on 

the vehicle and this positioned on a roller bench. Each test consists of load and EGR sweeps at a 

constant rotation speed, which was then varied between tests in this way: 1250 rpm, 1500 rpm, 

1750 rpm, 2000 rpm, 2250 rpm. Hence, we have at disposal 6 datasets and each of them is 

characterized by the number of samples shown in the Table 2. The reference engine is a 2.2 L 

compression ignition engine whose specifications have not been given.  

Engine Speed Dataset Size 

1250 rpm 16834 samples x 24 parameters 

1500 rpm 22363 samples x 24 parameters 

1750 rpm 11192 samples x 24 parameters 

2000 rpm 12318 samples x 24 parameters 

2250 rpm 10988 samples x 24 parameters 

2500 rpm 11486 samples x 24 parameters 
Table 2. Dataset size and composition 

For the acquisition of soot emissions values, AVL Micro Soot Sensors were used, both in 

engine-out and in tail pipe positions. These sensors are of the photoacoustic type (PASS, 

Photoacoustic Soot Sensors) and their operation principle is schematically represented in Figure 

18 and here described: sampled raw or diluted exhaust gases are conveyed through a measuring 

chamber, then a modulated laser beam thermally animate soot (black absorbing) particles in the 

gas stream, consequently periodic pressure pulsations are produced by this modulated heating of 
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the particles. Finally, a microphone detects the acoustic waves produced by this process and the 

signal is properly amplified and filtered before the record.  

 

Figure 18. PASS operating principle (source: AVL Micro Soot Sensor Applications, AVL Tech Days 
2012, AVL) 

It has been demonstrated that this sensor signal is directly proportional to the soot concentration 

in the exhaust gases, with excellent intrinsic linearity. Furthermore, experimental evidence has 

also shown that soot emissions calculated from the photoacoustic measurement correlate 

excellently with the non-volatile gravimetric PM emissions.  

In Table 3 and Table 4 we have divided the engine and environment parameters present in the 

supplied dataset into features and labels. Since this work focuses on engine-out soot emissions, 

available variables related to the after-treatment system and tail-pipe emissions has been 

removed.  

 

5.2 Data Pre-processing 

An important phase, which has already been mentioned, is dataset preparation. It consists of 

some pre-processing steps to prepare the data to be used as input of the ML and DL models. To 

this end, the following operations are carried out: 

• changing of data sampling frequency 
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• cleaning of the dataset (outlier elimination) 

• feature scaling.  

Variable (Feature) Name Unit of Measure Description 

Intake Temperature °C Air temperature at engine intake 

Air Temperature °C Ambient air temperature 

Rail Press bar Fuel injection pressure 

Air Mass mg str⁄  Air mass measured with HWA 

Air Set point mg str⁄  Expected air mass 

Air Mass Flow kg h⁄  Measured air mass flow rate 

Coolant Temp °C Engine coolant temperature 

Amb press mbar Ambient air pressure 

Abs boost Pressure mbar Air pressure in the intake manifold 

Intake Pressure mbar Air pressure at engine intake 

Injected Quantity mm3 cyl⁄  Fuel injected quantity 

Lambda - 
Ratio between actual air-fuel ratio 

and stoichiometric air-fuel ratio 

RPM rpm Engine speed 

Speed km h⁄  Vehicle speed 

Exhaust gas Flow rate m3 s⁄  Exhaust gas flow rate 

Exhaust gas Temperature °C Exhaust gas temperature 

EGR Position % EGR valve position 

EGR Target Position % Expected EGR valve position 

Table 3. Dataset variables (features) 

Label Name Unit of Measure Description 

MSS_EO_CONC mg m3⁄  Engine-out soot concentration 

Table 4. Dataset label 

 

5.2.1 Data Sampling Frequency 

The data was acquired with a sampling frequency of 20 𝐻𝑧, which is very high considering the 

quasi-stationary conditions. This could easily lead to a sharp overfitting of the models we will 

use due to the high number of similar samples. To solve this issue, it is necessary to reduce the 

sampling frequency of the data from 20 𝐻𝑧 to 2 𝐻𝑧. The dataset sizes shown in the Table 5 are 

thus obtained. Combining the newly sampled datasets we get as result 8521 samples. 
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Engine Speed Dataset Size 

1250 rpm 1683 samples x 24 parameters 

1500 rpm 2236 samples x 24 parameters 

1750 rpm 1119 samples x 24 parameters 

2000 rpm 1231 samples x 24 parameters 

2250 rpm 1098 samples x 24 parameters 

2500 rpm 1148 samples x 24 parameters 
Table 5. Dataset size and composition after resampling 

 

5.2.2 Dataset Cleaning 

The dataset cleaning operation consists in eliminating all outliers (null values, measurement 

errors, and so on). In particular, we have found points characterized by an anomaly in the 

sampling system and for this reason they should be discarded from the dataset in order to have 

optimal learning, even if these points are only a few with respect to the total number of available 

samples. 

 

Figure 19. ‘Lambda’ outlier points (highlighted in blue) present in the dataset [17] 

The determination of these points is of paramount importance because most of the algorithms 

used can be sensitive to outliers in the sense that they can make training less stable. Moreover, 

they can enhance overfitting tendency, thus leading to drops in performance and in 
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generalization capabilities of the models, especially for those able to adapt particularly well to 

the training data. 

 

Figure 20. ‘EGR Position’ outlier points (highlighted in blue) present in the dataset [17] 

 

Figure 21. ‘EGR Target Position’ outlier points (highlighted in blue) present in the dataset [17] 
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Outliers were found for the ‘Lambda’ (17 points with a value greater than 3), ‘EGR Target 

Position’ (4 points with a value higher than 80 %) and ‘EGR Position’ (4 points with a value 

higher than 60 % and 8 points with a negative value) variables, as is shown in the Figures 19-20-

21. 

 

5.2.3 Feature Scaling 

Due to the high variability of the samples present in the datasets provided, input features might 

have different units of measure that, consequently, may imply the variables have very different 

scales. These differences between features scales can increase the learning process difficulty for 

the model. For example, large input values can result in a model that learns large parameter 

values. A model with large weight values is quite unstable, meaning poor performance during 

learning and higher generalization error due to great sensitivity to input values. On the other 

hand, a target variable (label) with a wide spread of values might result in large error gradient 

values causing values of model parameters to change dramatically and making the learning 

process unstable. The solution is represented by feature (and label) rescaling. Feature scaling, or 

data normalization, is a method used to normalize the range of features (variables) and labels of 

our dataset. As just said, we use this technique to avoid algorithm objective functions will not 

work properly. Another reason why feature scaling is applied is that gradient-descent-based 

optimization algorithms will converge much faster. It is also important to apply feature scaling if 

regularization is used as part of the loss function used, so that penalties are appropriately given to 

its parameters. 

The two most common data scaling methods are normalization and standardization. 

Normalization consists of rescaling each real-valued numeric feature into the range which is 

usually between zero and one. It is useful to scale the input attributes for an algorithm that relies 

on the magnitude of their values, such as distance measures used in k-nearest neighbors. A first 

flavour, and also the simplest, of this method is called min-max normalization, also known as 

unity-based normalization, and consists in rescaling the values in the range between 0 and 1. Its 

general formula is given as: 

𝑧 =
𝑥 −min(𝑥)

max(𝑥) − min(𝑥)
 , 

where 𝑥 is the original value and 𝑧 the normalized one. 

Another version of this method is the mean normalization:  
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𝑧 =
𝑥 −mean(𝑥)

max(𝑥) − min(𝑥)
 , 

where 𝑥 is the original value, 𝑧 the normalized one. 

Standardization refers to shifting the distribution of each feature to have zero-mean and a 

standard deviation of one (unit-variance). It is useful to standardize attributes for a model that 

relies on the distribution of attributes. 

𝑧 =
𝑥 −mean(𝑥)

𝜎
 , 

where 𝑥 is the original feature vector, 𝑧 the normalized one and 𝜎 is its standard deviation.  

For the construction of the models used in this work, we have applied the min-max 

normalization described above which is implemented by the MinMaxScaler function in the 

Scikit-learn library for Python. Its unique important parameter is feature_range: a tuple must 

be passed to it with the indication of the minimum and maximum values of the desired range of 

transformed data. 

SVM algorithms are not scale invariant, so it is necessary to scale data to obtain meaningful 

results. The same goes for Nearest Neighbors algorithms as they have to compute distances 

between two points in multidimensional feature space and if one of the attributes has a broad 

range of values, the distance will be governed by this particular feature. This consideration still 

holds true for neural networks: in fact, the high variability, due to the different units of 

measurement, can give rise to anomalies within the network, causing some features to take 

precedence over others. Instead, in the case of gradient boosting for regression it is not strictly 

necessary to perform feature scaling. So, we have followed these guidelines in building the 

models used for the simulations performed. 

 

5.3 Experimental Setting 

After having performed the pre-processing stages described so far, the next step consists in the 

splitting of the dataset in two parts: a training set dedicated to the learning process and a test set 

for evaluating model performance. As said in the previous chapters, this is a common procedure 

carried out to avoid a methodological mistake, that is let the model to learn the parameters of its 

approximation function and testing it on the same data. The model would have a perfect score 

just repeating the labels of the samples it has already seen but would fail to make predictions on 

yet-unseen data (i.e., overfitting). 
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In order to perform this split, the function train_test_split from the Scikit-Learn Python 

library is used. The most important parameters of this function are reported below: 

• test_size – If set to a float number, it should range between 0 and 1 and it represents 

the proportion of dataset that will be included in the test. If it is set to an integer number, 

it stands for the number of samples that will end up in the test split. Obviously, in both 

cases the complement indicates what is assigned to the training set.  

• random_state - Controls the randomness of the shuffling applied to the data before 

applying the split. Passing to it an integer number it is possible to obtain reproducible 

outputs across multiple function calls. 

• shuffle – It is a Boolean value that state whether to shuffle the data before splitting. If 

set to True it will randomly mix samples in the dataset before generating the training and 

test sets, otherwise the dataset will be split without mixing the samples.   

In the construction of the models described below, we have chosen a test set size of 20 % of the 

original dataset, in order to balance the samples in the two splits having enough of them to train 

properly the models and also to evaluate their performance. We have decided to shuffle the data 

before splitting to avoid the learning process to be influenced by the ordering in which samples 

were collected. To allow the reproducibility of results and the comparison between different 

algorithms, a seed is fixed to control the randomness of the shuffling applied. In this way, 

models performance can be compared because obtained using the same data. The code snippet 

used to set the seed, when building the models, is the following: 
import numpy as np 

import random as python_random 

seed = 23 

np.random.seed(seed) 

python_random.seed(seed) 

Since every machine learning algorithm has its own hyperparameters that characterize its 

operative configuration and govern its learning process, another step to take is choosing their 

values in order to obtain a model optimized for the available data and ready to be trained. At this 

point is worth to highlight a key point: the difference between parameters and hyperparameters. 

A model parameter is a configuration variable that is part of the model, and its value is estimated 

or learned from data. It is internal to the model and thus cannot be set manually by the user. It 

defines the model skills on the learning problem to which it is applied. On the other hand, a 

model hyperparameter, also called tuning parameter, is a configuration variable that is external to 

the model and whose value cannot be estimated from data. It is specified by the user, usually 

using heuristics, and it is tuned for a particular predicting problem. Coming back to our 
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experimental setting, we have to set model hyperparameters, also called tuning, before starting 

the learning pipeline. To select their optimal values, a possible procedure is to train a series of 

models with different settings (hyperparameter values) on the training set and hence evaluate 

them on the test set, keeping the model that best performed. However, there is a high risk of 

overfitting on the test set because the parameters can be tweaked until the estimator performs 

optimally and, doing so, knowledge about test set samples can “leak” into the model and thus 

evaluation metrics are no longer useful to rate model generalization performance. To solve this 

problem, another part of the original dataset can be held out, the so-called validation set: learning 

proceeds on the training set, after which evaluation is done on the validation set, and when the 

optimal hyperparameter combination is found, final performance estimation can be carried out 

on the test set. However, by partitioning the available data in this way, the number of samples 

which can be used for learning the model is drastically reduced, and the results can heavily 

depend on the specific choice for the training and validation sets.  

As already mentioned, the cross-validation (CV) procedure can be used to overcome this issue. 

The test set should still be held out for final evaluation, but the validation set is no longer needed 

when applying this technique. In the basic approach, called k-fold cross-validation, the training 

set is split into 𝑘 smaller “folds” and the following procedure is recursively applied: 

• the model is trained using 𝑘 − 1 folds as training set 

• the resulting model is validated on the remaining 𝑘𝑡ℎ fold (i.e., it is used as a test set to 

evaluate the model performance). 

The performance metric output by k-fold cross-validation is then the average of the values 

computed in each iteration (they will be 𝑘 in total) of the loop. This approach allows to avoid 

wasting too much data (as in the case of fixing a validation set) at the price of an increase in the 

required computational time. Anyway, it represents a major advantage in cases where the 

number of samples is very small. Attention must be paid to the choice of 𝑘 in order to allow the 

size of each test partition to be large enough to be a valid sample of the problem, at the same 

time enabling enough iterations of the model evaluation to provide a fair estimate of its 

performance on unseen data.  

We have said that before starting the learning process we need to set the model hyperparameters 

to their optimal values for the current problem. Note that models based on different algorithms 

will require the setting of diverse hyperparameters. Moreover, models based on the same 

algorithm but applied on different problems (that is, given different datasets to learn from) will 

show different optimal values of the tuning parameters from each other. Note that it is common 

that a small subset of those parameters can have a large impact on the predictive or computation 

performance of the model while others can be left to their default values. To tune the 
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hyperparameters of a model, one way could be to manually try different values, changing them 

each time until the best combination is found. Obviously, this will result in a long and tedious 

searching work. Fortunately, the Scikit-learn library for Machine Learning provides the function 

GridSearchCV that automates this task. In fact, it is the implementation of the approach that 

exhaustively generates all parameter combinations from a list containing ranges of values for 

each hyperparameter considered. Through cross-validation the best combination of values is 

selected as the hyperparameters setting with the best value of a chosen scoring parameter. To 

summarize, this method of grid searching optimal model hyperparameters consists in an 

estimator (i.e., our model), a parameter space (containing the ranges of candidate values for each 

hyperparameter), a cross-validation scheme and a scoring function. In fact, the most important 

parameters of the GridSearchCV function are: 

• estimator – It represents the model based on the algorithm we want to apply. 

• param_grid – It consists of the hyperparameters names and the lists of parameter 

settings to try as values. 

• scoring – It is the strategy to evaluate the performance of the cross-validated model on 

the test set (i.e., the 𝑘𝑡ℎ fold), that means it controls what metric is applied to the 

estimator evaluated. All metrics follow the convention that higher return values are better 

than lower return values. Thus, score parameters which represent a measure to be 

minimized are changed in sign. 

• cv – It determines the cross-validation splitting strategy to be used. The most common 

input for this parameter is an integer that specifies the relative number of folds. 

For the hyperparameter optimization routines run in the following sections to find the best values 

for the models used, we have selected the negative mean squared error as the scoring metric to 

evaluate the different combinations of hyperparameter values. Moreover, we have chosen a value 

of 3 for the number of the cross-validation folds. For modest sized datasets, as in our case, 

recommended values for this parameter range from 3 to 10 and the most common are 3, 5 and 

10. The choice made here is motivated by the limited number of samples available in our dataset 

and the hardware at our disposal to carry on the computations required: these constraints prevent 

us from selecting a higher value of folds. The estimator and the list of hyperparameters (with 

their corresponding ranges of values explored) change between different algorithms, as already 

mentioned. For this reason, they will be specified later in each of the following paragraphs, 

where the different models will be introduced.  
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5.4 KNN Regression Model 

In this part of the chapter, the model based on the Nearest Neighbors regression algorithm is 

built. Moreover, the results of the model training and hyperparameter tuning processes are 

reported together with model’s behaviour analyses about learning and parameter variations. The 

chosen implementation is represented by the KNeighborsRegressor function provided by the 

Scikit-learn library. It is the formulation based on the k-nearest neighbors concept. Recall that 

the target of each query point is predicted by local interpolation of the labels associated to the 𝑘 

nearest neighbors of that point in the training set. The main parameters to be set for this function 

are the following: 

• n_neighbors – It specifies the number of neighbors to consider by default for each 

query point.  

• weights – It determines the weight function used when making predictions. The user 

can define and use a custom function or choose two available options: uniform and 

distance. The former assigns uniform weights to all points in each neighborhood, that 

means they are equally weighted. The latter, instead, weights nearest points 

proportionally to the inverse of the distance from the query point: in this way, closer 

neighbors will have a greater influence than those further away.  

• algorithm – It is the algorithm used to compute the nearest neighbors and those 

available are brute-force search (brute), ball tree (ball_tree) and KD tree (kd_tree) 

types. There is an additional option, ‘auto’, which tries to decide the most appropriate 

algorithm based on the values passed to the function.  

• leaf_size – It represents a parameter passed to ball tree or KD tree, in case they are the 

selected algorithm, and it allows to internally switch to brute force searches within leaf 

node points. It can affect the memory required to store the tree as well as the speed of its 

construction and query. The optimal value depends on the type of the problem. 

• metric – It is the distance metric to use for the tree. The two most common ones are the 

Chebyshev and Minkowski distances. The latter is characterized by an internal parameter 

that allows to decline the metric into other two. 

• p – It represents the above-mentioned power parameter for the Minkowski metric. When 

𝑝 = 1, this is equivalent to using Manhattan distance, and Euclidean distance for 𝑝 = 2. 

For arbitrary p, general Minkowski distance is used with the following expression: 

𝐷𝑀𝑖𝑛𝑘𝑜𝑤𝑠𝑘𝑖(𝒙, 𝒚) = (∑ |𝑥𝑖 − 𝑦𝑖|
𝑝

𝑖
)

1
𝑝⁄
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For our model built with this KNeighborsRegressor function, the Minkowski metric is 

chosen since it allows including different distance metrics that can be selected changing the 𝑝 

parameter. The choice of its optimal value will be then demanded to the hyperparameter search 

function used in the next step.  

Hyperparameter Explored Values 

n_neighbors 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 15 - 20 - 50 - 100 

weights distance - uniform 

algorithm ball_tree - kd_tree - brute 

leaf_size 5 - 15 - 30 - 45 - 90 - 200 

p 1 - 2 - 3 - 4 
Table 6. Grid-searched hyperparameters values for the KNN model 

Hyperparameter Best Value 

n_neighbors 5 

weights distance 

algorithm ball_tree 

leaf_size 30 

p 1 
Table 7. Best combination of hyperparameters values for KNN model 

To find the optimal values for the above disclosed hyperparameters, a grid search is carried out 

using the GridSearchCV function already described. The estimator parameter is set to 

KNeighborsRegressor and the candidate values explored for each hyperparameter are 

displayed in Table 6. In Table 7 are reported the results of the procedure, that is the combination 

of the hyperparameter values that lead to the best cross-validated performance (in terms of mean 

squared error reduction). 

Evaluation Metric Value 

Test R² 0.951 

Training R² 1.000 

Test MSE 0.0471 

Training MSE 0.0000 

Test RMSE 0.2170 

Training RMSE 0.0000 

Table 8. KNN model performance evaluation metrics 
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Finally, the model is retrained on the whole training set using the values just found as 

hyperparameters and then its performances are evaluated on the test set. The findings are 

disclosed in Table 8, where evaluation metrics are reported for both the training and testing 

phases. The former ones should not be considered quantitatively since they have been obtained 

on already seen data but comparing them with testing performance can help getting qualitative 

insights about model generalization capabilities.  

 

Figure 22. Correlation between actual and predicted emission values on the training set for the KNN 
model 

In Figures 22-23 the correlations between predicted and true (real) values of the label for both 

the training and testing phases are displayed. As already outlined, the KNN algorithm stores the 

training observations (features and target) and use them for predicting labels of new samples: 

this is the reason why predicted and actual values correlate perfectly in the case of training set, as 

it is shown in Figure 22.  

Figure 23 shows us a more meaningful insight on the model predictive capabilities reporting the 

correlation between observed and predicted label values for the unseen testing data. As can be 

seen from the plot, the designed model exhibits good performances. 

In the plot reported in Figure 24, the model performance along with its fitting and query 

(prediction) times for different n_neighbors parameter values are shown. It can be seen that 

for very low and very high values of the number of neighbour samples used during prediction the 

validation MSE is relatively poor, while for values around 5 it is quite good. In the first case, the 
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reason is that the model’s prediction relies only on a single or a couple of stored observations 

nearest to the query point (overfitting-like situation) and these are the only ones able to affect the 

model’s output. On the other hand, in the second case, the model’s prediction can rely on a large 

number of stored observations nearest to the query point (underfitting-like situation).  

 

Figure 23. Correlation between actual and predicted emission values on the test set for the KNN model 

As can be easily spotted, model prediction time rises as n_neighbors (𝑘) increases. This 

behaviour is typical of ball and KD tree algorithms and it is caused by two concurrent effects: the 

first is that a larger n_neighbors value leads to the need of searching a larger portion of the 

feature space; secondly, using a parameter value greater than one requires internal queueing of 

results due to tree traversing. As n_neighbors becomes quite large, the ability to prune 

branches in a tree-based query is fairly compromised and thus brute force queries can result more 

efficient. On the other hand, fit times are not remarkably affected by varying the value of 

n_neighbors.  

Generally, for small dataset sizes a brute force search can be more efficient than a tree-based 

query, as already discussed. This evidence is accounted for in the ball and KD tree algorithms by 

the possibility to internally switch to brute force algorithm: the threshold for this switch is stated 

by the leaf_size parameter. Its selected value causes many effects, as highlighted by the 

Figure 25. Choosing a larger leaf_size speeds up the tree construction leading to lower fitting 

times, because fewer nodes are required to be created during training. On the other hand, 

concerning the query times the opposite situation takes place: for high values of leaf_size 
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searches become basically brute force and thus prediction times grow up, instead for small 

values query times tend to decrease. 

 

Figure 24. KNN model performance (normalized MSE) and time required for fitting and prediction 
versus n_neighbors parameter (model settings: weights=distance, algorithm=ball_tree, 

leaf_size=30, p=1, metric=minkowski) (shaded area represents ± 1σ range) 

 

Figure 25. KNN model performance (normalized MSE) and time required for fitting and prediction 
versus leaf_size parameter (model settings: n_neighbors=5, weights=distance, 
algorithm=ball_tree, p=1, metric=minkowski) (shaded area represents ±1σ range) 
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Approaching leaf_size values around one, issues in traversing nodes can lead to high 

variability in query times. A good trade-off can be achieved choosing leaf_size equal to 30 

circa, which is also the default parameter value in the function used. As it can be noted from the 

plot, this parameter does not influence the model’s performance at all.  

Finally, it is a good practice to check that our model does not suffer from high bias or high 

variance problems and for this purpose the most common method is based on the analysis of the 

model learning curves. They show the validation and training score of a model when the number 

of training samples is varied. They represent a useful tool to find out how much our model can 

benefit from adding more training data and whether it suffers more from a high variance problem 

or a high bias one. Every model has its advantages and drawbacks, and its generalization error 

can be decomposed in terms of bias, variance, and noise. The bias of an estimator is its average 

error for different training sets. Simplifying assumptions give bias to a model. The more 

erroneous the assumptions with respect to the true relationship, the higher the bias, and vice 

versa. Instead, the variance of a model determines how sensitive it is to varying training sets, that 

is the amount by which it changes as training sets do. Noise is a property of the data and leads to 

the so-called irreducible error. It can be mathematically demonstrated that both bias and variance 

can only add to a model’s error. Therefore, to obtain a low error, both bias and variance has to be 

kept at their minimum. However, it is not possible to pursue these two objectives together 

because they are conflicting: this represents the well-known trade-off between bias and variance.  

 

Figure 26. KNN model training and cross-validation learning curves (normalized MSE) by varying the 
training set size (shaded area represents ±1σ range) 
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In Figure 26 are reported the learning curves related to our model. As mentioned before, the 

KNN algorithm stores the training observations and use them for predicting labels of new 

samples. For this reason, the training error reported in the plot as the number of examples 

increases is practically zero. The validation error curve has a good shape, that is it drops to a 

fairly low MSE value as the number of training observations grows. The two previous remarks 

allow us to state that the model does not suffer from high bias. It seems the curve reaches a 

plateau and for this reason adding more training instances is not likely to help to reduce the error, 

at least in a remarkable way. The resulting gap between the two curves can be considered fairly 

small and hence it suggests our model does not suffer from high variance.  

 

5.5 SVM Regression Model 

In this section, the model based on the SVM regression algorithm is built. Furthermore, the 

results of the model training and hyperparameter tuning processes are reported together with 

model’s behaviour analyses about learning and parameter variations. The selected 

implementation of Support Vector Regression is represented by the SVR function provided again 

by the Scikit-learn library. It is the formulation based on the epsilon-insensitivity concept. Recall 

that fit time scales more than quadratically with the number of samples, thus making it hard to 

scale to datasets bigger than 20000 samples circa. Since our training set is adequately smaller 

than this threshold, we selected this implementation, which is based on LIBSVM. The main 

parameters to be set for this function are the following: 

• kernel – It specifies the type of kernel to be used in the algorithm and those available 

are linear, sigmoid, polynomial (poly) and gaussian (rbf) kernel.  

• gamma – It is the coefficient (i.e., the free parameter) that appears in the kernel 

formulations, as they have been reported in Table 1. The user can use a floating number 

or choose two additional options: ‘auto’ and ‘scale’. The former sets this parameter to 

1 𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠⁄  , while the latter to 1 (𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 ∙ 𝑋. 𝑣𝑎𝑟())⁄ . 

• C – It represents the regularization parameter and must be strictly positive. The strength 

of the regularization obtained is inversely proportional to its value. The penalty is of the 

squared 𝐿2 type. 

• epsilon – It specifies the radius of the tube within which no penalty is associated in the 

training loss function for points predicted within it, that is at a distance smaller or equal 

to epsilon from the actual value.  

For the model built with this SVR function, we selected a gaussian kernel. Also known as radial 

basis function (RBF) kernel, it is a popular choice and widely used in various kernelized learning 
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algorithms where it has proved to be very effective. In particular, it is very common in support 

vector machine applications. In the case of RBF kernel, gamma can also be named the shape 

parameter.  

Hyperparameter Explored Values 

C 0.001 - 0.01 - 0.1 - 0.5 - 1 - 5 - 10 - 50 - 100 - 500 - 1000 

epsilon 0.0001 - 0.0005 - 0.001 - 0.005 - 0.01 - 0.05 - 0.1 

gamma auto - scale - 0.01 - 0.1 - 0.5 - 1 - 5 - 10 - 25 - 50 - 100 

Table 9. Grid-searched hyperparameters values for the SVR model 

To find the optimal values for the above disclosed hyperparameters, a grid search is carried out 

using the GridSearchCV function already described. The estimator parameter is set to SVR and 

the candidate values explored for each hyperparameter are displayed in Table 9. 

Hyperparameter Best Value 

C 5 

epsilon 0.01 

gamma 10 
Table 10. Best combination of hyperparameters values for SVR model 

In Table 10 are reported the results of the procedure, that is the combination of the 

hyperparameter values that lead to the best cross-validated performance (in terms of mean 

squared error reduction). 

Finally, the model is retrained on the whole training set using the values just found as 

hyperparameters and then its performances are evaluated on the test set. The findings are 

disclosed in Table 11, where evaluation metrics are reported for both the training and testing 

phases. Here, the same considerations about training metrics exposed in the previous section 

hold here. 

Evaluation Metric Value 

Test R² 0.945 

Training R² 0.964 

Test MSE 0.0529 

Training MSE 0.0382 

Test RMSE 0.2300 

Training RMSE 0.1954 
Table 11. SVR model performance evaluation metrics 
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As displayed in Figures 27-28, it is also interesting to plot the correlation between predicted and 

true (real) values of the label, for both the training and testing phases.  

 

Figure 27. Correlation between actual and predicted emission values on the training set for the SVR 
model 

 

Figure 28. Correlation between actual and predicted emission values on the test set for the SVR model 
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In Figure 27 the satisfactory degree of correlation achieved by the model on the training set can 

be noted. It is also possible to spot the effect of the “epsilon tube”: there is a very high 

concentration of points near the perfect-correlation line because the algorithm assigns no 

penalties to predictions that are no further than epsilon from the observed target. 

Figure 28 gives us an interesting insight on the model predictive capabilities reporting the 

correlation between observed and predicted label values for the unseen testing data. As can be 

seen from the plot, the designed model confirms the good performance expressed by the 

evaluation metrics disclosed in the Table 11. 

In machine learning applications understanding model’s behaviour is of paramount importance. 

To this end, the effects on our model of the hyperparameters gamma and 𝐶 can be investigated 

and the Figures 29-30 illustrate the results.  

In Figure 29 training and cross-validation MSE of our model are reported for different values of 

the kernel parameter gamma. For very small values of gamma, you can see that both the training 

and the cross-validation MSE are quite high: the model is underfitting the data. Instead, medium 

values of gamma will result in small values for both errors, that means our model is performing 

fairly well. If gamma is too high, the model overfit the data, that is the training MSE continues to 

decrease while the cross-validation one starts increasing again.  

 

Figure 29. SVR model training and cross-validation performance (normalized MSE) versus gamma 
parameter (model settings: C=5, epsilon=0.01) (shaded area represents ± 1σ range) 

Training and cross-validation MSE of our model for different values of the 𝐶 parameter are 

shown in Figure 30. As for the previous case of gamma, for small values of 𝐶, you can see that 
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both the training and the cross-validation MSE are quite high: the model is underfitting the data. 

Instead, medium values of 𝐶 will result in small values for both errors, that means our model is 

performing well. If 𝐶 is too high, the model overfit the data, that is the training MSE continues to 

decrease while the cross-validation one starts increasing again.  

 

Figure 30. SVR model training and cross-validation performance (normalized MSE) versus C parameter 
(model settings: gamma=10, epsilon=0.01) (shaded area represents ± 1σ range) 

As already explained, the parameter 𝐶, common to all SVM kernels, trades off good 

approximation of training examples against flatness of the regression hyperplane. A low 𝐶 makes 

the latter smooth (i.e., flat) at the cost of higher training error. A high 𝐶 aims at approximating 

all training examples correctly, accepting a less regular hyperplane. For this reason, 𝐶 is said to 

behave as a regularization parameter in the SVM model. On the other hand, the gamma 

parameter states how far the influence of each training example reaches, with low values 

meaning ‘far’ and high values meaning ‘close’. The gamma parameter can be seen as the inverse 

of the influence radius of samples found by the model as support vectors.  

In order to exhaustively describe the influence of the hyperparameters gamma and C, it is 

necessary also to study the relationship between them and the joint effects they have on the 

model behaviour. For this purpose, the heatmap of the model’s cross-validation MSE as a 

function of the two hyperparameters is built and reported in Figure 31. As it can be easily 

spotted, the model’s behaviour is very sensitive to the gamma parameter. If it is very large, the 

radius of the influence area of the support vectors only includes them and no amount of 

regularization, given by 𝐶, will be able to prevent overfitting. On the contrary, when gamma is 
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too small, the model is too constrained and cannot capture the intrinsic complexity of the data 

because the influence region of each selected support vector would include the whole training 

set. For intermediate values, we can see that good model settings can be found on a diagonal of 𝐶 

and gamma. 

 

Figure 31. SVR model training and cross-validation performance (normalized MSE) versus gamma and C 
parameters (model settings: epsilon=0.01) 

If our model is smooth (i.e., with lower gamma values), we can make it more complex by 

increasing the importance of approximating each sample correctly (i.e., larger 𝐶 values), hence 

the represented behaviour is explained. Moreover, it is clearly visible that for intermediate values 

of gamma we get equally performing model settings at increasing 𝐶 values: this can suggest that 

the set of support vectors is not changing anymore. Thus, we can state that gamma alone acts as 

a good regularization parameter. Scores being equal, it is better to use lower 𝐶 values, since 

higher values typically means increased fitting time.  

As for the previous algorithm, we check that our model does not suffer from high bias or high 

variance problems and to this aim the relative learning curves are plotted in Figure 32. The 

training MSE curve shows the peculiar trend rising from almost zero as the number of training 

samples grows and reaching a quite low error value. The validation MSE curve has a satisfactory 

shape, that is it decreases to a quite low error value as the number of training observations 
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increases. The two previous remarks allow us to state that the model does not suffer from high 

bias. It seems that both the curves reach a plateau and for this reason adding more training 

instances is very unlikely to help reducing the error. The resulting gap between the two curves is 

nearly optimal which means our model does not suffer from high variance.  

 

Figure 32. SVR model training and cross-validation learning curves (normalized MSE) by varying the 
training set size (shaded area represents ± 1σ range) 

 

Figure 33. SVR model fitting time by varying the training set size (shaded area represents ± 1σ range) 
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Finally, in Figure 33 the fit time required to train the model is reported versus the dataset size 

used for training. As already discussed, the fitting time scales between the square and the cubic 

power of the number of training samples employed depending on the peculiar dataset used. The 

reason is that the exploited solver speed depends on how efficiently the implementation library 

cache is used.  

 

5.6 Gradient Tree Boosting Regression Model 

In this section, the model based on the gradient boosting algorithm for regression is built. 

Furthermore, the results of the model training and hyperparameter tuning processes are reported 

together with model’s behaviour analyses about learning and parameter variations. The selected 

implementation of Gradient Tree Boosting is represented by the XGBoost algorithm. The name 

stands for eXtreme Gradient Boosting and it is a library focused on computational speed and 

model performance, besides offering a number of advanced features. We will use XGBoost 

through the Scikit-learn wrapper interface XGBRegressor: this is done to allow Scikit-learn 

functions to work with model output and parameters. Recall that gradient boosting builds an 

additive model with a forward stage-wise approach and in each stage a regression tree is fit on 

the negative gradient of the given loss function. Remember also that boosting allows for the 

optimization of arbitrary differentiable loss functions. The main parameters to be set for this 

function are the following: 

• n_estimators – It represents the number of gradient boosted trees in the ensemble, and 

is equivalent to the number of boosting rounds to perform (iterations). It must be an 

integer number greater than or equal to 1. Gradient boosting is quite robust to overfitting 

so a large value for this parameter usually results in better performance.  

• max_depth – It is the maximum tree depth for individual base learners. This parameter 

limits the number of nodes in the tree and the best value depends on the dataset used. 

Note that rising this value will consumes more memory during training and will make the 

model increasingly more complex and more likely to overfit. It must be set to an integer 

number greater than or equal to 1. 

• learning_rate – It determines the step size shrinkage of each tree contribution, used 

in update to prevents overfitting. In other words, after each boosting step, this parameter 

shrinks the feature weights to make the boosting process more conservative. There is a 

trade-off between learning_rate and n_estimators. A low learning rate may reach 

the best optimum but makes computation slower and requires more rounds to achieve the 
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same reduction in residual error as a model with a higher learning rate. The value must be 

between 0 and 1. 

• objective – It specifies the learning task and the corresponding learning objective. The 

available options for regression are: reg:squarederror (regression with squared loss), 

reg:squaredlogerror (regression with squared log loss), reg:gamma (gamma 

regression with log-link), reg:pseudohubererror (regression with Pseudo Huber 

loss), reg:tweedie (Tweedie regression with log-link). A custom objective function 

can also be specified by the user.  

• min_child_weight – It represents the minimum sum of instance weight needed in a 

leaf node. This means if the tree partition step gives rise to a leaf node with the sum of 

instance weight lower than this value, then the building process will give up further 

partitioning. The larger this parameter is, the more conservative the model will be. The 

user should use a positive integer number for its value. 

• gamma – It determines the minimum loss reduction required to make a further partition 

on a leaf node of the tree and it is considered a pseudo-regularisation parameter. 

Increasing its value, the same considerations made for min_child_weight hold. 

Practically, the higher gamma value is, the higher the resulting regularization effect. 

• subsample – It is the subsample ratio of the training observations to help preventing 

overfitting. Its value must be between 0 and 1 and indicates the fraction of training data 

that would be randomly subsampled by the algorithm prior to growing trees. This type of 

subsampling will occur at each boosting iteration. A lower value prevent overfitting but 

might lead to underfitting. 

• colsample_bytree – It belongs to a family of parameters for subsampling of training 

dataset columns. This parameter represents the subsample ratio of features (i.e., columns) 

when constructing each tree. Subsampling occurs once for every tree constructed. It must 

take on values between 0 and 1. It might improve overfitting.  

For the model built with the illustrated XGBoost function, we have selected the squared loss 

regression objective function. It is a popular choice and widely used for regression problems 

where it has proved to be very effective. In the chosen implementation additional parameters are 

available for 𝐿1 and 𝐿2 regularization on the weights. Initially, it has been decided not to use 

regularization and the good performance obtained, and exposed in the following, together with 

the absence of overfitting demonstrate the correctness of this assumption.  

To find the optimal values for the above disclosed hyperparameters, a grid search is carried out 

using the GridSearchCV function already described. The estimator parameter is set to 
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XGBRegressor and the candidate values explored for each hyperparameter are displayed in 

Table 12.  

Hyperparameter Explored Values 

n_estimators 100 - 200 - 300 - 400 - 500 - 600 - 700 

learning_rate 0.002 - 0.005 - 0.01 - 0.02 - 0.05 - 0.1 

max_depth 2 - 4 - 6 - 8 - 10 - 12 

min_child_weight 1 - 2 - 3 - 4 - 5 

subsample 0.25 - 0.5 - 0.75 - 1 

colsample_bytree 0.2 - 0.4 - 0.6 - 0.8 - 1 

Table 12. Grid-searched hyperparameters values for the XGB model 

In Table 13 are reported the results of the procedure, that is the combination of the 

hyperparameter values that lead to the best cross-validated performance (in terms of mean 

squared error reduction). 

Hyperparameter Best Value 

n_estimators 300 

learning_rate 0.02 

max_depth 10 

min_child_weight 1 

subsample 1 

colsample_bytree 0.8 

Table 13. Best combination of hyperparameters values for the XGB model 

Evaluation Metric Value 

Test R² 0.960 

Training R² 0.997 

Test MSE 0.0388 

Training MSE 0.0033 

Test RMSE 0.1971 

Training RMSE 0.0572 
Table 14. XGB model performance evaluation metrics 

Finally, the model is retrained on the whole training set using the values just found as 

hyperparameters and then its performances are evaluated on the test set. The findings are 

disclosed in Table 14, where evaluation metrics are reported for both the training and testing 
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phases. Here, the same considerations about training metrics exposed in the previous section 

hold here.  

 

Figure 34. Correlation between actual and predicted emission values on the training set for the XGB 
model 

 

Figure 35. Correlation between actual and predicted emission values on the test set for the XGB model 
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As displayed in Figures 34-35, it is also interesting to plot the correlation between predicted and 

true (real) values of the label, for both the training and testing phases. In Figure 34 the very good 

correlation achieved by the model on the training set can be noted, it is also better than what has 

been reached by the SVR model.  

Figure 35 gives us an interesting insight on the model predictive capabilities reporting the 

correlation between observed and predicted label values for the unseen testing data. As can be 

seen from the plot, the designed model confirms the good performance expressed by the 

evaluation metrics disclosed in the Table 14. 

Often features do not contribute equally to predict the target response and in many situations 

most of the features are in fact irrelevant. A benefit of using gradient boosting is that after the 

boosted trees ensemble is constructed, it can provide estimates of feature importance from the 

trained predictive model. Individual decision trees intrinsically perform feature selection by 

selecting appropriate split points. This information can be used to measure each feature 

importance which provides a score that indicates how valuable each feature is in the construction 

of each boosted tree within the model. The more a predictor is used to make key splits in 

decision trees, the higher its relative importance. This importance is calculated explicitly for each 

feature in the dataset, allowing them to be ranked and compared to each other. Importance is 

calculated for a single tree by the amount that each attribute split point improves the performance 

metric, weighted by the number of observations the node handles. In other words, the relative 

rank of a feature used in a tree node can be used to assess the relative importance of that feature 

in predicting the target variable. Features used at the top of the tree contribute to the final 

prediction decision of a larger fraction of the input samples and thus, this fraction can be used as 

an estimate of the relative importance of the features. The performance measure may be the least 

squares error (loss) function used to select the split points. The fraction of samples a feature 

contributes to is combined with the decrease in error from splitting them to create a normalized 

estimate of the predictive power of that feature. This notion of importance can be extended to 

boosted tree ensembles by simply averaging across all the estimators the obtained feature 

importance values. We will indicate this type as “standard” feature importance. 

The standard feature importance approach suffers from two flaws that can lead to misleading 

conclusions. Firstly, they are computed on statistics derived from the training dataset and 

therefore do not necessarily give us indications on which features are most important to make 

precise predictions on held-out dataset. Secondly, they favour high cardinality features (i.e., 

features with many unique values). Permutation feature importance is an alternative approach 

that does not suffer from these blunders.  
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The permutation feature importance can be considered as the decrease in the model score when 

the values of a single feature are randomly shuffled between different samples. In this way, the 

relationship between the shuffled feature and the labels is broken, thus the drop in the model 

score suggests how much the model relies on that feature. This technique can be computed many 

times with different permutations of the feature. Using a held-out (test) set to calculate 

permutation importance values, it is possible to spot which features contribute mostly to the 

generalization capabilities of the model. In other words, permutation importance states how 

important a particular feature is for the given model.  

 

Figure 36. XGB model feature relative importances 

 

Figure 37. XGB model permutation importance of features 
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These two methods of obtaining feature importance are explored considering our model and the 

available dataset. The obtained results are disclosed respectively in Figure 36 and Figure 37. A 

quite good general matching can be noted from the two plots. However, it can be observed that 

few features, like ‘Intake Pressure’, ‘EGR Target Position’, ‘Air Temperature’, are considered by 

the model more important on the training set than on the held-out set and this may cause the 

model to overfit due to the reasons just mentioned. Despite the just mentioned impeding issue, 

the good performances of the model disclosed in the Table 14 reflect the previous-stated remark 

on the positive qualities of the algorithm used. 

 

Figure 38. XGB model training and test learning curves by varying the number of estimators 

In order to exhaustively describe the behaviour of the model, in Figure 38 the plot of the training 

and testing MSE curves versus the number of boosted trees (i.e., the number of boosting rounds) 

composing the ensemble model is reported. This type of plot is referred to as learning curves too, 

it is typically used for models based on algorithms that contemplate a number of iterations during 

learning, like gradient tree boosting and neural networks, as we will see in the following section. 

A quite natural and clean trend can be observed for both the training and test MSE curves 

meaning the model learning was not affected by overfitting or underfitting phenomena. The 

remarkably low error value achieved point up that the designed model is a good one and its 

hyperparameters have been correctly tuned. 
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Figure 39. XGB model training and cross-validation learning curves (shaded area represents ± 1σ range) 
by varying the training set size 

 

Figure 40. XGB model fitting time by varying the training set size (shaded area represents ± 1σ range) 

As for the previous algorithms, we check that our model does not suffer from high bias or high 

variance problems and to this aim the relative conventional learning curves are plotted in Figure 

39. The training MSE curve rises particularly slowly from almost zero as the number of training 
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samples grows and it reaches a very low error value. The validation MSE curve has a satisfactory 

shape, that is it decreases to a quite low error value as the number of training observations 

increases. The two previous remarks allow us to state that the model does not suffer from high 

bias. It seems that the validation MSE curve can further decrease and for this reason adding more 

training instances is likely to help to reduce the relative error. The resulting gap between the two 

curves can be considered fairly small and hence it suggests our model does not suffer from high 

variance.  

Finally, in Figure 40 the fit time required to train the model is reported versus the dataset size 

used for training. In this case the fitting time scales almost linearly with the number of training 

samples employed. This behaviour can represent an advantage with respect to the SVR algorithm 

for larger training dataset sizes. 

 

5.7 Neural Network Regression Model 

In this part of the chapter, the model based on the Neural Network regression algorithm is built. 

Moreover, the results of the model training and hyperparameter tuning processes are reported 

together with model’s behaviour analyses about learning and parameter variations. The chosen 

implementation is represented by the Sequential function provided by the Keras library, 

included in the TensorFlow package. This function is appropriate for building a model consisting 

of a plain series of layers where each of them has exactly one input tensor and one output tensor. 

In fact, it is the formulation based on the fully connected deep feedforward concept. The model 

built and described in this section is a development of the activities carried out by Gabriele 

Valvo in his thesis, upon which the work reported in this section is partly based. The main 

parameters to be set for this function are the following: 

• Number of layers – It determines how many layers of neurons to be used. They are 

usually included in the model through an adding function. For our purpose only layers of 

the Dense type are used. This parameter is an integer number greater than or equal to one. 

Increasing the number of layers, the neural network becomes deeper and generally able to 

deal with more complex problems.  

• Number of neurons for each layer – It specifies how many neurons compose each layer 

and it is a parameter that must be passed to the function used to add a new layer to the 

model. A different number of neurons can be set for each layer in the network but using 

the same number of neurons across all the layers is advisable and a good default choice. 

As for the network layers, increasing the number of neurons makes the network capable 
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to face more complex problems. It must be set to an integer number greater than or equal 

to 1. 

• activation – It is the activation function applied to the outputs of the layer neurons, 

that are the weighted sums of their inputs. It is used to introduce nonlinearities into the 

network enabling it to solve nontrivial problems. This parameter can be set into the 

network model using a dedicated adding function or it can be specified by the function 

used to add a new layer to the network, as for the definition of the number of neurons. 

The proper choice of the activation function heavily depends on the type of predictive 

modeling problem (classification and regression) the network has to face and on the layer 

to which it is applied (typically, output layer requires a different activation function with 

respect to the other network layers). The most commonly applied activation functions are 

the rectified linear unit (relu), the softmax (softmax), the sigmoid (sigmoid) and the 

hyperbolic tangent (tanh).  

• kernel_initializer – It defines, together with bias_initializer (which is less 

commonly specified, letting the model to use the default value of 1 for the bias terms), 

the way to set the initial weights associated to the neurons output of each layer: it defines 

the type of numeric distribution from which initial weights are randomly selected. This 

parameter can be set into the function used to add a new layer to the network, as in the 

case of the previous hyperparameters. As for the activation function, also the suitable 

choice of the weight initializer depends on the framing of the specific predictive 

modeling problem the network has to tackle. 

• loss – It represent the loss function used to compute the quantity that the model should 

seek to minimize during the learning phase. In other word, to repeatedly estimate the 

current model error the optimization algorithm requires the definition of a loss function, 

that can be used to estimate the model error so that its internal weights can be updated to 

reduce the error on the following learning rounds. The chosen loss function must be 

compatible with the framing of the specific predictive modeling problem. Moreover, the 

output layer configuration should be suitable for the chosen loss function. For regression 

tasks, the most used metrics are MSE and MAE. 

• optimizer – It is the algorithm used for the optimization of the model learning process, 

that is for updating the network weights. The most commonly used is SGD (gradient 

descent), other ones are RMSprop, Adam, Adamax and Nadam.  

• learning_rate – It determines the amount of change to the model internal parameters 

during each round of the learning process, that is the step size of the optimization 
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algorithm. This hyperparameter controls the rate or speed at which the model learns. In 

other words, it controls the amount of error that is reduced as the model weights are 

updated. This parameter is set inside the definition of the model optimizer. It is a float 

and its value often ranges between 0 and 1. 

• metric – It is the list of metrics to be evaluated by the model during learning on the 

training and validation datasets. A metric is a function used to assess the model 

performance. Metric functions are very similar to loss ones, except that the results from 

evaluating a metric are not used during model training. In fact, any loss function may be 

used as a metric. For regression tasks, the most used metrics are 

mean_squared_error, root_mean_squared_error and mean_absolute_error. 

Custom metrics can be specified by the user. 

• batch_size – It represents the number of training observations the algorithm has to 

work through before updating the internal weights of the model. A batch can be thought 

as a for-loop iterating over one or more observations and making predictions. After that, 

the predictions are compared to the measured target values and an error is calculated. The 

latter is then fed into the optimization algorithm that tries to improve the model updating 

its internal parameters. The dataset to be used for training the network can be divided into 

one or more batches. In the following, different cases are reported that refer to the 

gradient descent algorithm: when all the observations in the training dataset are grouped 

into a single batch, the optimization algorithm is called batch gradient descent; in case 

each batch contains only one sample, it is referred to as stochastic gradient descent; if the 

batch size is more than one sample and less than the size of the training dataset, the so 

called mini-batch gradient descent is used. It must be an integer number greater than or 

equal to 1. 

• validation_split – It is the fraction of the training dataset to be used as validation 

data. It will be set apart by the model which will not train on it. At the end of each epoch 

the loss and any selected metrics are evaluated by the model on this data to obtain the 

validation metrics. The validation data is selected from the last samples in the x and y 

data provided, before shuffling. It must be set to a float between 0 and 1. However, if you 

want to use a test set as the data on which to evaluate the model performance at the end 

of each epoch in terms of loss and metrics, the validation_data parameter should be 

set with a tuple reporting the test dataset (feature values and labels). 

• epochs – It represents the number of times that the algorithm will work through the 

whole training dataset during the learning process. An epoch means that each available 
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training sample is used by the algorithm only once to update the model internal weights. 

An epoch consists of one or more batches depending on the value of the batch_size 

parameter. The number of epochs can be thought as the number of iterations a for-loop 

containing the learning algorithm executes over the training dataset. It must be an integer 

number greater than or equal to 1. The number of epochs is generally large (hundreds or 

thousands) in order to allow the learning process to proceed until the model error has 

been minimized up to a decent value or until overfitting symptoms start to appear. 

• Dropout rate – It defines the frequency rate at which the algorithm sets inputs of layer 

neurons to zero at each training round. It allows to implement the dropout regularization 

method which helps prevent overfitting. This parameter is passed to a function that adds a 

dropout stage to the network. Its value must a float ranging between 0 and 1 and 

determines the fraction of input to the layer neurons are dropped to zero. 

For the model built with the illustrated ‘Sequential’ function, we have selected the MSE loss 

function. It is a popular choice and widely used for regression problems and we have used it in 

the models developed in the previous sections. To obtain reproducible results within neural 

network models, the following lines of code have to be used in addition to the ones reported in 

section 5.3: 
import tensorflow as tf 

tf.random.set_seed(seed) 

The chosen activation function for the hidden layers is the ReLU (rectified linear unit) because it 

makes models easier to train and allows to achieve better performance. It is commonly used for 

many types of neural network and it is a piecewise linear function that returns directly the input 

if it is a positive number, otherwise it outputs zero. Instead, for the output layer, a linear 

activation function is used to avoid limiting the output (predicted) values range.  

Hyperparameter Explored Values 

N° hidden layers 1 - 2 - 3 - 4 - 5 

N° neurons per layer 50 - 100 - 150 - 200 - 250 

kernel_initializer glorot_uniform - he_uniform - glorot_normal - he_normal 

optimizer Adam - RMSprop - Adamax - Nadam 

learning_rate 0.0005 - 0.001 - 0.005 - 0.01 

epochs 50 - 100 - 150 - 200 - 300 - 500 

batch_size 64 - 125 - 250 - 500 

Dropout rate 0 - 0.1 - 0.2 - 0.3 - 0.4 - 0.5 - 0.6 

Dropout rate (output layer) 0 - 0.1 - 0.2 - 0.3 - 0.4 - 0.5 - 0.6 
Table 15. Grid-searched hyperparameters values for the Neural Network model 
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To find the optimal values for the above disclosed hyperparameters, a grid search is carried out 

using the GridSearchCV function already described. The estimator parameter is set to the 

model built with the Sequential function and the candidate values explored for each 

hyperparameter are displayed in Table 15.  

In Table 16 are reported the results of the procedure, that is the combination of the 

hyperparameter values that lead to the best cross-validated performance (in terms of mean 

squared error reduction). 

Hyperparameter Best Value 

N° hidden layers 5 

N° neurons per layer 200 

activation relu 

activation (output layer) linear 

kernel_initializer he_uniform 

optimizer Adamax 

learning_rate 0.005 

epochs 200 

batch_size 125 

Dropout rate 0 

Dropout rate (output layer) 0.1 
Table 16. Best combination of hyperparameters values for the Neural Network model 

Finally, the model is retrained on the whole training set using the values just found as 

hyperparameters and then its performances are evaluated on the test set. The findings are 

disclosed in Table 17, where evaluation metrics are reported for both the training and testing 

phases. Here, the same considerations about training metrics exposed in the previous section 

hold here. 

Evaluation Metric Value 

Test R² 0.939 

Training R² 0.958 

Test MSE 0.0583 

Training MSE 0.0447 

Test RMSE 0.2414 

Training RMSE 0.2113 

Table 17. Neural Network model performance evaluation metrics 
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As displayed in Figures 41-42, it is also interesting to plot the correlation between predicted and 

true (real) values of the label, for both the training and testing phases. In Figure 41 it is possible 

to spot that the correlation achieved by the model on the training set is fairly good.  

 

Figure 41. Correlation between actual and predicted emission values on the training set for the Neural 
Network model 

 

Figure 42. Correlation between actual and predicted emission values on the test set for the Neural 
Network model 
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Figure 42 gives us information about the model predictive capabilities reporting the correlation 

between observed and predicted label values for the unseen testing data. As can be seen, the 

figure confirms the decent performance expressed on the training set, although it does not reach 

the optimal performance obtained for some of the models previously disclosed.  

In order to exhaustively describe the behaviour of the model, in Figure 43 the plot of the training 

and testing MSE curves versus the number of epochs is reported. As we have already seen in the 

previous section, this type of plot is referred to as learning curves and it represents a common 

tool to check the learning process of neural networks.  

 

Figure 43. Neural Network model training and test learning curves (normalized MSE) versus the number 
of epochs 

A little bit of noise can be noted, especially in test MSE curves, but the trend of both errors 

indicates that the model learning was not affected by overfitting or underfitting phenomena. It 

can be noted that the convergence has been reached, in particular on the test error. The fairly low 

error value achieved point up that the designed model is a good one and its hyperparameters 

have been correctly tuned.  
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Conclusions 

This thesis work has dealt with the design, development and validation of models based on 

Machine Learning and Deep Learning algorithms, for the estimation of the given CI engine soot 

emissions in quasi-stationary conditions. All the implemented models have achieved very good 

performances and their robustness, along with their correct learning process, has been verified 

through the analyses carried out. The XGBoost model turned out to be the most performing one, 

even if it was not perfectly optimized. In fact, given the large number of available 

hyperparameters and the relative range of possible values, it was possible to carry out the grid 

search only on a limited feature space. On the other hand, the optimization process of the models 

based on the SVM and KNN algorithms has been carried out more deeply, given the small 

number of hyperparameters to be set, some of which are categorical and, therefore, with a 

discrete (and small) number of possible values.  

For what concerns the neural network model, the same problem has been experienced: the grid 

search carried out for its optimization could not explore the entire range of possible values for 

the hyperparameters, given their huge number. Conversely, the neural network performances 

cannot be considered equal to those shown by the XGBoost model. It sounds quite strange 

because neural networks algorithm is a very powerful and complex one and from the theoretical 

point of view it should perform better than most of ML algorithms. However, the latter ones may 

not be underestimated since they are very popular, due to their simplicity and usability, and have 

proved capable of solving even complex problems in different fields of application (for example, 

XGBoost is the most used algorithm among many winners of the most important AI and ML 

competitions). 

In any case, it can be noted that the performances of the various models are very similar in terms 

of evaluation metrics. Therefore, it can be observed that a sort of limit on the minimum 

obtainable error (and therefore on the maximum achievable score) has been reached and that the 

remaining one is the so-called irreducible error, which is due to the noise in the data used to train 

and validate the models.  

It was decided not to apply the feature selection process for the following reasons. Firstly, 

another algorithm should be used to carry it out, with the consequent need to train and optimize 

the algorithm: this fact implies the request of additional resources and its performance could 

affect positively or negatively the model used to carry out the main task. Secondly, the objective 

of the thesis is to analyse and compare the employed models performances on a dataset 

containing also not relevant features for the examined problem and to evaluate their consequent 

behaviour.  
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The results obtained are certainly a good starting point for the development of a stable and 

reliable virtual sensor, capable of replacing real sensors present on cars. The future 

improvements that can lead to an evolution of the studied models are the following: 

• the use of larger datasets with additional parameters that can characterize more accurately the 

problem 

• the application of a grid search exploring more combinations of hyperparameters values in 

order to identify better model configurations. 

Finally, other future steps may consist in the use of datasets containing pollutant emissions data, 

recorded in transient conditions, for the design and development of predictive models to be 

implemented in mass-production cars.  
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Sitography 

18. Scikit-learn Python library website: https://scikit-learn.org/stable/index.html 

 

19. Keras Python library website: https://keras.io/api/ 

 

20. Machine Learning Mastery blog: https://machinelearningmastery.com/blog/ 

 

21. Dataquest blog: https://www.dataquest.io/blog/ 

 

22. Neptune blog: https://neptune.ai/blog/ 

 

23. Data Science Learner: https://www.datasciencelearner.com/ 

 

24. MIT Deep Learning 6.S191 course: http://introtodeeplearning.com/  

 
25. Stanford Coursera Machine Learning course: https://www.coursera.org/learn/machine-

learning 
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