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ABSTRACT 

 

Digital Twin (DT) is one of the most promising enabling technologies for realizing smart 

manufacturing and industry 4.0. DTs are characterized by the seamless integration between the 

cyber and physical spaces. The important of DTs is increasingly recognized by both academia and 

industry. Keeping up to date with these demands, in particular, testing the products regularly could 

be testing for the manufacturers. The only way they can win this battle is by going digital. 
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3. Introduction to Digital twin  
 

3.1 Introduction 

In the Industry 4.0 era, the Digital Twin (DT), virtual copies of system that are able to interact 

with the physical counterparts in a bi-directional way, seem to be promising enablers to replicate 

production systems in real time and analyse them. A DT should be capable to guarantee well-

defined services to support various activities such as monitoring, maintenance, management, 

optimization and safety. Through an analysis of the current picture of manufacturing ana a 

literature review about the already existing DT environment, till now we don’t have final and 

approved concept of digital twin. 

The introduction of information and communication Technologies (ICT) and the advent of the 

Industry 4.0 era have deeply changed the interpretation of simulation and its related role in 

manufacturing. Simulation is seen as the imitation of the real-world process or system over the 

time. From this perspective, simulation is used as an engineering tool for different purposes, 

from the early design  phases to run time phases of complex systems resulting in higher 

efficiency, accuracy and economic benefits for companies. Generally speaking, Industry 4.0 

provides with its tools new ways of thinking and doing business. Its related technologies such as 

Big Data, Cloud Computing, Internet of Things (IoT), Autonomous Robot and sensors introduce 

a new generation of Systems with integrated computational and physical capabilities called 

cyber physical Systems (CPSs) that can interact with human through many new modalities 

consequently, the introduction of CPSs in manufacturing systems reflects in the generation of 

big amount of data.  

“A digital twin (DT) is a real time digital replica of a physical device” 

The concept of the digital twin can be compared to other concept such as cross-reality 

environment of co-spaces and mirror models. 

The correct management of this data potentially represent a big advantage for companies and 

reflect in a faster decision making process and can improve the productivity of systems. The 

continuous improvement of this kind of systems enable the real time monitoring of physical 

assets and the synchronization with virtual environment. 

 

Figure 1: Digital Twin example 
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The Digital Twin (DT) can be identified as a simulation technique which differs from the 

traditional ones as it uses synchronized real data from the shop-floor, in order to get 

information, such as machine reliability and availability and to elaborate more accurate 

diagnostics and prognostics that use up-to-date field data, instead of leveraging on estimations 

by equipment suppliers. 

Below Figure 2 are given complete view of the definitions of the DT appeared in literature  

 

 

Figure 2:  Definition of  Digital twin in literature 

 

 

3.2 Digital Twin (DT) and its applications 

 

The concept of digital twin can date back to grieves presentation about product lifecycle 

management in 2003. However at that time the concept of digital twin is not mature enough 

because of technology limitations. Along with the data acquisition technology, processing 

technology, simulation technology and many other related technologies development, the concept 

of digital twin becomes more mature and specific.  

Industry and academic define digital twin in many different ways. It is generally accepted that a 

digital twin is in an integrated Multiphysics, multiscale probabilities ultra-realistic simulation of the 

systems or products which can mirror the life of its corresponding twin using available physics 

models, history data real time data, etc.  

Developed by NASA believe that digital twin is the model which can interact between autonomous 

system behaviours and the environment in the physical world. There are many other definitions in 

particular fields. In our opinion digital twin is a real mapping of all components in the product life 

cycle using physical data, virtual data and interaction data between them. 
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Because the digital twin can allow companies or users to have a complete digital footprint of the 

product they concerned from design and development through the end of the product lifecycle, so  

digital twin has increasing attention by both industry and academic. Existing primary applications of 

the digital twin in industry are briefly summarised as follows.  

 

 

 

Figure 3: Evaluation of digital twin (Source: PTC) 

 

 

The concept of DT was first proposed and primarily used in product or equipment prognostics and 

health management (PHM). Typical applications are described in the following paragraph. DT used 

to predict the reengineering aircraft structural life. Seshadri and Krishnamurthy proposed a damage 

characterisation methods base on digital twin for aircraft structural health management , which 

demonstrated great advancement in predicting the damage location, size and orientation. Airframe 

Digital Twin (ADT) to assess the flight state which helps find the subsequent damage in a real-time 

way. Besides aircrafts, general Electric pays attention to using digital twin to forecast product health 

in product lifecycle, which can make operations and maintenance more accurate.  

 

 

The notion of digital twin should be differentiated from cyber twin. Cyber twin is based on the 

conception of CPS. Generally speaking, the notion of cyber twin is derived based on development 

of cyber physical system (CPS). Cyber space is defined as a networked space that consists of multiple 

interconnected cyber twins of critical objects. In other words, cyber twins purely exits and are 

merely meaningful within the cyber space. In sharp contrast, a complete DT must include a physical 

model, a virtual model, and connections between the physical and virtual methods. In other words, 

it emphasises interaction, communication and collaboration between physical space and cyber 

space. 



   

11 
 

Now a days as the application of new it in manufacturing, the smart manufacturing era has arrived. 

DT can be regarded as a critical milestone towards smart manufacturing and smart industry, while 

cybernetics provides the theoretical basis for DT. Cybernetics studies the concepts of control and 

communications in living organisms, machines and organisations, including self- organisation. It 

studies how a system processes information and depends on information to make decisions and 

take actions, with respect to automatic control and communication. Cybernetics provides the 

theoretical foundation for developing smart systems that are capable of collecting, processing and 

understanding various contextual information, based on which, DT can make ore contextually smart 

decisions. In short, relevant studies about cybernetics can be regarded as the technological 

backbones of DT.  

Figure 4: Digital twin applications 

Some Countries proposed their national strategies such as industry 4.0, CPS-based Manufacturing, 

service-oriented manufacturing, and made in chine 2025. Throughout the above national  

manufacturing strategies, one common goal is smart manufacturing. In order to realise the 

intelligent management, digital twin was introduced into manufacturing stage.  

 

 

For example, the concept of DT shop-floor (DTS) was proposed, and DTS characteristics, 

architecture, system composition, operation mechanism, and enabling key technologies are studied 

in detail. Vachalek investigated the application of digital twin in an industrial production line and 

analysed its superiority. Additive manufacturing’s digital twin and used It to make predictions about 

properties and serviceability of components. 
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Recently, studies shows digital twin-based real-time geometry assurance in individualised 

production. DXC company tries to build digital twin model to improve manufacturing efficiency and 

flexibility. 

 

Furthermore, some researchers have studied the application of DT in engineering optimisation. DT 

application in optimising equipment operation and Bantegnie created a pump’s digital twin to 

optimise its performance in physical world. The above mentioned DT applications stay primarily in 

the production stage and after-product stage, and are heavily dependent on the product digital twin 

mode. Not much attention was paid to make use a digital twin in the first stage of product creation. 

As point out and stated by Dassault, there is huge potential of digital twin in product design. In 

addition, if one could establish the product DT mode from the design phase, then more related 

design data, marketing data , user experience data, etc., can be integrated into the product digital 

mode, and this will result in better serve for production stage and after-product stage. 

 

 

Figure 5 : General digital twin mode  for a product 
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4. Industry 4.0 

The term Industry 4.0 was manifested for the first time at the Hannover Fair with the 

presentation of the "Industry 4.0" initiative. Following the first Industrial Revolution 

"Mechanization" as a result of the invention of the steam engine, the second "Mass production" 

with the help of electricity and the third "Digitization" by the use of Electronics and IT, this marks 

the dawn of the fourth Industrial Revolution through the use of cyber physical systems (CPS) and 

the Internet of Things and Services. In the field CPS, Germany has a leading role and can draw 

on almost 20 years of experience. The integration of cyber technologies that make the products 

Internet-enabled facilitates innovative services to achieve, among other things, Internet-based 

diagnostics, maintenance, operation, etc. in a cost-effective and efficient manner. Moreover, it 

helps realization of new business models, operating concepts and smart controls, and focusing 

on the user and his or her individual needs. The goal of the Industry 4.0 is the emergence of 

digital factories that are to be characterized by the following features. 

 

Figure 6: Industry 4.0 – digital transformation of manufacturing revolution (source: i-scoop.eu) 
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4.1  Digitalization and simulation in Industry 4.0 

With the technological evolution present in the last years, we have a scenario of radical changes 

that has been called the fourth industrial revolution. With this, many changes are being noticed in 

the production management models, where new ways of managing production appear. These made 

it possible to increase production customization, make manufacturing processes more flexible, 

support decision making with online data, improve resource efficiency, in addition to creating value. 

One of the factors that triggered the fourth industrial revolution was the increased capacity for 

digitization of both factories and products. 

 

 

Figure 7 : Digitalization portfolio of digital industry (Source: Engusa) 

 

Digitization began in the 1970s with the insertion of controls and microprocessors in factories, along 

with the evolution of information technology (IT). Today's digitization is broader and covers 

operations, product development as well as supply chain and customer relation. One of the 

challenges of digitization is to cover the entire supply chain. 

 

Basically, digitalization consists of creating a twin computational model in a physical environment. 

This computational environment will serve to simulate and optimize conditions without 

intervention in the real environment, thus allowing the experiments to be extrapolated without 

consequences for the production system. This requires that digital transformation be based on four 

pillars ability to collect, manage and analyse digital data ability to work independently and organized 

Supply chain connectivity and timing and Digital customer access for more transparency and new 

products. 
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Due to the complexity of digital factories, it is necessary to build intelligent physical environments, 

combining physical and cyber technologies. Another important factor for the good functioning of 

the digital factory is the good architecture in mining and data storage in the Big Data concept. This 

data collection must be performed in real time, for this the MES and RFID tools stand out. 

Over the next five years, it is estimated that digitalization will provide annual revenues of $493 

billion and a reduction in operating costs of $421 billion. The key to this success comes from two 

factors: The Company’s digital transformation in both the factory environment and customer 

relationships through products; Know-how protection that is the protection of the company's 

intellectual capacity. 

 

The use of digitalization and simulation in Industry 4.0 was demonstrated by Lee (2015) in a 

framework that demonstrates the evolution levels of the production system beyond the attributes 

needed to make the factory level 4.0 this architecture can be seen in figure below. 

 

 

Figure 8: functions and attributers for industry 4.0 

 

Smart Connection Level: To implement this level it will be possible to collect data from the 

production system in real time, for this it’s necessary to install sensors that allow the collection of 

data and receivers that store this data. 

Data-to-Information Conversion Level: At this level, machine life is known to be beyond 

performance, in this case use of sensors that monitor temperature, vibration, noise or wear are 

important. 

Cyber level: At this level machines gain the ability to self-evaluate and compare current performance 

with other machines. This is possible because the data sent to the exchange compares it with the 

digital sister of the machine. 
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Cognition level: At this stage, the whole system is integrated, and decisions are made through 

graphs that cover the entire production system and all process variables. Comparative graphs are 

generated, individual equipment graphs, prioritization decisions to optimize the process. However, 

decisions are still made by users. 

 

 

 

5. Digital Twin application in Manufacturing 
 

5.1 CPS-based production systems 

In recent years, the traditional manufacturing industry is challenged worldwide with the amazing 

growth and advancement in digital technologies that allow easy integration of interconnected 

intelligent components inside the shop floor, that is at the basis of the so-called industry 4.0 and 

that is made possible by the widespread adoption of information and communication 

technologies by manufacturing companies. Industry 4.0 has been recognized at international 

level as one of the strategical responses of the manufacturing companies to the economic crisis, 

to the tendency to delocalize production and to the increased market complexity. The 

technological basis of industry 4.0 root back in the internet of things (IoT), which proposed to 

embed electronics, software, sensors, and network connectivity into devices, in order to allow 

the collection and exchange of data through the internet.  

 

Figure 9: Digital Twin (DT) scheme 

 

As such, IOT can be exploited at industrial level: devices can be sensed and controlled remotely 

across network infrastructures, allowing a more direct integration between the physical world 

and virtual systems, and resulting in higher efficiency, accuracy and economic benefits. Although 

it is a recent trend, Industry 4.0 has been widely discussed and its key technologies have been 

identified among which Cyber physical systems (CPS) have been proposed as smart embedded 

and networked systems within production systems.  
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They operate virtual and physical levels interacting with and controlling physical devices, sensing 

and acting on the real world. According to scientific literature, in order to fully exploit the 

potential of cps and IOT, proper data models should be employed. Such as ontologies, which are 

explicit, semantic and formal conceptualizations of concept in a domain. 

 

They are the core semantic technology providing intelligence embedded in the smart CPS and 

could help the integration and sharing of big amounts of sensed data. Through the use of Big 

Data analytics, it is possible to access sensed data, through smart analytics tools, for a rapid 

decision making and improved productivity. 

 

 

 

Figure 10: CPS- Model for industrial robot monitoring 

 

 

With the use of these technologies, industry 4.0 opens the way to real-time monitoring and 

synchronization of the real world activities to the virtual space thanks to the physical-virtual 

connection and the networking cps elements. The DT is mean as the virtual and computerized 

counterpart of the physical system that can be sued to simulate it for various purposes, 

exploiting a real-time synchronization of the sensed data coming from the field, such a 

synchronization is possible thanks to the enabling technologies of Industry 4.0 and, as such, the 

DT is deeply linked with it. 
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 The DT was first born in the aerospace field and only recently has been adopted also in 

manufacturing contexts such a term is used in industrial environments and in governmental 

research initiatives however, scientific literature that describes the contextualisation of the 

concept in the manufacturing domain is still at its infancy. A review of the contributions on this 

would be highly beneficial, in order to pave the way and clarify the conceptual foundations for 

future research works on the topic. 

 

 

 
 

Figure 11: CPS based production systems 

 
 
 

Research on the DT in manufacturing is an evolution of the already ongoing research stream 
about Virtual Factories (VF). These are defined as the digitalization of the plant integrated with 
the real system coming in help to the production during all the lifecycle of each asset. In the 
robotics field, the simulations are mainly performed for the Virtual Commissioning to optimize 
the control algorithms for robots during development phase. 
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5.2 CPS in context of Industry 4.0 
 
An interface to the Internet or a similar network is necessary to extend an embedded system, 
which is usually made of control units, sensors and actuators, to a CPS. In order to achieve this, 
there are various approaches that have been investigated in the context of this development 
and will be briefly presented below. 

 
 

 
Figure 12: Direct system control 

        
 
 

Direct system extension 
 
In this individualized solution variant, the embedded system, if not available yet, is extended 
by a communication interface to access the Internet and the software is changed accordingly 
to enable communication over the internet, e.g. with the cloud. To this end, all the sensor 
signals of the system must be transmitted by the control unit to the cloud. Methods should 
be implemented to control the actuators via Internet.  

      
      System expansion by microcontroller board 
  

In this solution variant, a microcontroller board that has the various communication 
interfaces such as CAN, UART, WLAN, Ethernet, etc. is developed. This is connected to the 
embedded system and takes over the communication to the Internet or a cloud. However, 
this requires uniform interfaces, over which the board can be connected to the embedded 
system. The software of the board must be adjusted separately to each system. However, 
the entire code need not to be rewritten every time, but only the mapping is to be reworked 
accordingly so that it is relatively easy to transfer this variant to other systems. This 
arrangement is dimostrate by the following figure: 

 
 

 
Figure 13: System extension by Microcontroller Board 



   

20 
 

       
 

 Extension by smart actuators and sensors 
 

Traditional embedded systems usually consist of a control unit, several sensors and 
actuators, which are connected to the control unit via field buses. The control unit assumes 
the signal processing function in such systems. Should smart sensors and actuators be used 
now, the sensors take over even the processing of the signal and the actuators 
independently check their current status, and correct it, if necessary. These sensors transmit 
their data to a central control unit, e.g. via field buses. In order to extend such a system to a 
CPS, it would be conceivable to also send data from the sensors and actuators, which are 
sent via the field bus, to a cloud, and process it there. However, a high data volume is the 
result here and the cost of smart sensors and actuators must not be underestimated.  

 
Figure 14: usage of intelligent actuators and sensors 

 
 

5.3 Relation to the Automation pyramid 
  
Each industrial automated process is commonly based on the automation pyramid, a centralized 
structure composed of five layers, on the left of the figure  lies the automation pyramid. On the 
right the corresponding production management level the figure also shows the manufacturing 
execution system (MES) functions listed by the manufacturing execution system association. 
 
  

 
Figure 15: The automation pyramid 
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(i) The three lower layers(0-1-2) are summarized as the control layer, including: 

electrical engineering layer, programmable logic controllers (PLCs) / Distributed 
control systems(DCS) and Scada/HMI Layers. 

(ii) The middle layer (3) is the manufacturing execution system (MES) that guides the 
process. 

(iii) Finally on the top there is the enterprise resource planning(ERP) layer (4) aimed at 
integrating organizational functional for better customer support and planning. 

 
 
In this structure, the MES guides the manufacturing process, monitoring all the steps of a 
product in production system in a centralized way. Among the MESA- identified functions, 
some are directly linked to the production process (such as scheduling and quality control)., 
while others (such as resource management and traceability) are best described as cross 
functions, not strictly related to the production process but supporting a higher point of 
view. Thus, all MES functions are not on the same level. 
 

6.   The use of FMU’s for the Digital twin 

 
From literature emerges that a digital twin is a coupled model of a real system, that is stored in a 
cloud platform and represents its status based on data analysis and physical sensory information. 
The core simulation model is built with the representation of the pieces of equipment of the 
production system Each of these pieces will be connected to one or more modules that represent 
the specific behaviour of interest. The behaviour modules are black-boxes that take standard input 
data from both the simulated and field environments and that output computed data also in a 
standard format. Functional Moke-up Interface (FMI) standard is used for the black-box modules, 
creating functional Moke-up Units (FMUs). The chosen standard allows the function to be exported 
to different simulation environments, in this way granting the independence of the FMU modules 
from to be exported to different simulation environments. 
 

 
Figure 16: FMU module reuse in different simulation 

 
 
 
in this way granting the independence of the FMU modules from the single simulation tool and 
allowing them to be reused with little arrangements. This standard has already been successfully 
used in CPS-based systems. 
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The FMU modules are created to be recalled by Discrete Event Simulation (DES) and constituted by 
a unique FMU zip-file composed of three main parts: 
 • an XML file to define the variables inside the FMU 
 • the equations used by the model (which is a set of C functions)  
 • other data, such as tables or comments about the model 
 
 
 
 
 
The built FMU in the application case  is created for a Discrete Event Simulation (DES) model and 
takes as an example of behaviour module the energy consumption computation. The energy 
consumption highly depends on the actual state each equipment piece is in at each moment, as 
shown in  where the FMU is connected to the field to get information on the updated machine states  
 
 
 
 

 
Figure 17: Relationship between field, ontology and simulated environment                           

 
 
 
6.1 Laboratory application 
 
The proposed FMU modules approach, supported by a semantic data model, was tested in a 
laboratory environment: the industry 4.0 Laboratory (I40LAB) at Politecnico di Milano. The 
production line installed in the laboratory showed in Fig. below has been designed to assemble a 
mobile phone. 
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Figure 18: Production line installed in the I40LAB Polimi 

 
 
The production line in the figure 18 is composed of six stations: Manual Load/unload station, 
housing, drilling station, robot cell, camera check station, back cover station, press station. In this 
system, a certain number of carriers moves around the line and are stopped in each module to 
read/write the information about them using the RFID (radio frequency identification) technology. 
Each machine in the I40LAB is equipped with a PLC server, that uses the open platform 
communications (OPC) unified Architecture (UA), a machine to machine (M2M) communication. To 
enable the communication with non-windows computer applications, the new OPC UA specification 
introduced in 2009. 
 
The laboratory gives the opportunity to realize a first implementation of a DT environment. The 
MATLAB Simulink environment was chosen to construct the FMU modules, and the OPC UA toolbox 
of MATLAB is used to establish the server/client connection and extract data from the system. The 
starting point is a single station of the production line in laboratory, since the embedded sensors 
are the same in each station. The next stations simulation will be obtained by replicating the first 
one. As said before, the energy consumption computation is based on the sum of the energy 
consumption in each machine state. The identified states of the machines in the laboratory are Idle, 
Working, Energy Saving and Fault mode.  
 
 
6.2 FMU Simulation results 

 
The first step is to model in the simulation environment the single states and their energy 
consumption curves in the FMU module. Then, through the OPC UA standard, the client/server 
connection can be established with the PLCs (Programmable Logic Controllers) of the line. The 
established connection allows to construct the ontology-based dataset used for the laboratory 
application, that is fundament to restrict the variety of the data present in the laboratory (i.e. at PLC 
level) into the relevant set of data used to replicate in a virtual environment the machine state. Once 
identified the dataset, the signals from the field that are part of it can be read directly in the 
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simulated environment and their combination reconstructs the actual state of the machine. Both 
the reconstructed machine states and the signals read directly from the PLCs can be used as an input 
of the FMU modules. In this way it is possible to replicate in real time both the states of the station 
and its energy behaviour in the virtual copy of the physical system.  
 

 
 

Figure 19: input and output signals of the FMU module 

 
The connection with the PLCs of the line and the reconstruction of the machine state for each station 
are the basis to build a function that computes the energy consumption of the station. The FMU 
block of the application case built in the simulation environment is shown in figure. The inputs of 
the module in are the reconstructed states of the station, the sample frequency of the simulation 
and the instantaneous power at each sample time. The outputs of the function are the energy 
consumption for each of the machine states (Energy Idle, Energy Work, Energy Saving, Energy 
Failure) and the total amount of energy consumption, as the sum of the energy consumed in each 
state. In fact, the function stores the amount of time in which the station was in a determinate state 
and, according to the equation. 
 

 
 

Computes the energy consumption for each state and the total one will be the sum of all Em. (In the 
equation Em is the consumed energy in the machine state m[J], P is the instantaneous power [kW], 
Pavg is the average power of the machine state m and Tm-1 the initial time instant at which the 
machine state starts ).This function can be then extracted from the simulated environment through 
the FMI standard and be used as a black box function that computes the energy consumption in 
different simulation environments. 
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 Figure 20: laboratory energy consumption results 

 
 
 
 
 
 

7. New era of data-driven product design and manufacturing 

 
Nowadays, the success of product design increasingly on manufacturing capability to handle data. 
Data can be accumulated through different phases of a product’s lifecycle including design, 
production, distribution, usage, maintenance, upgrade and recycle. Some data are related to the 
products status, behaviour and performance (e.g. state sampling in utility, maintenance and failure 
information, upgrade information, degradation status, remaining values and recycle scheduling 
records). Some data are related to the context in which a product is being used with respect to for 
example, when, where, how, by whom and under what circumstances the product is used. Some 
data are related to customers in regards to their demographics information. The technological 
backbones of data-driven product design are IoT and big data analytics. 
 
The enabling technologies of IoT include sensors, software, electronics, actuator, etc. The 
applications of IoT can be found in many fields such as healthcare, transportation, and smart city. 
IoT can lead to countless benefits, such as significantly enhanced automation, accuracy, efficiency 
and productivity. Made possible using the IoT technologies, data can be collected directly from the 
physical products in real-time a group of physical products can communicate and collaborate 
directly with each other; a physical product connected to IoT can interplay with an intangible service 
on the Internet; a physical product can be monitored, controlled, and upgraded remotely. 
 
Big data are valuable information assets that are characterised by high volume, velocity and variety. 
Big data analytics aims to abstract useful information to facilitate a certain human creativity out of 
an enormous amount of highly unstructured and seemingly unrelated data. Design-related big data 
are richly available on the Internet and the Internet of Things. On one hand, some big data are 
generated by customers from the Internet. For example, countless text-heavy customer reviews are 
published on e-commerce platforms (e.g. Amazon.com) and social platforms (e.g. Facebook.com). 
On the other hand, made possible using advanced sensor technologies, big data can be collected 
from the physical products using Internet of Things. 
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7.1  DT- Driven Task clarification 
 
In the task clarification phase, customer needs are translated into functional requirements under 
design constraints, where DT serves as an ‘interpreter’ to facilitate the ‘translation’ process. 
 
Firstly, DT serves to deepen designers’ understandings about target customers and customer voices. 
So far, the vast majority of customer-related data are collected from various e-commerce, social 
and searching platforms based on the Internet. Increasingly, customer-related data (e.g. bio 
activities and personal habits) can be directly collected from various smart devices (e.g. smartphone, 
smart watch, smart coffee machine) based on the Internet of Things. The customer related 
information is useful for enhancing product personalisation and adaptability. The massive customer 
voices must be processed to be useful for task clarification. For example, a function recommender 
system can be incorporated into DT to recommend exciting new functions for a target product 
through analysis of readily available customer reviews published on e-commerce platforms.  
 
Secondly, DT serves to guide designers to rationally formulate functional requirements. Functions 
can be represented as the input–output transformation of energy, materials and signal, all of which 
can be possibly detected by different sensors and analysed by DT. Furthermore, DT can provide key 
information such as how often the function is used, how long it is used every time, how many 
customers use the function, etc. According to the Axiomatic Design Theory, the information content 
of a product or its components can be calculated by measuring the overlapping area between the 
system curve and design range. The design range is determined by designers based on their 
estimations of the system curve. Based on the information directly collected from the physical 
product, a system curve (i.e. variance, mean value, bias) can be drawn in a much more precise 
manner. As a result, designers can adjust the design range accordingly . 
 
Thirdly, DT serves to provide designers with affordance information. By definition, affordance refers 
to a possible action on a product performed by users in the real world. A fundamental difference 
between affordance and function is that the former is necessarily dependent on a particular 
artefact, whereas the latter can be artefact-independent (new functions can be formulated purely 
based on customer needs or abstracted entirely based on artefact behaviours). Traditionally, 
designers can only obtain affordance information through the time-consuming ethnographic 
observations and contextual inquires. Since affordance concerns with product–customer 
interactions, made possible by the DT, certain affordance information can be directly collected from 
various smart products. In the future, through the VR technologies, it is even possible to obtain 
affordance information based on customer behaviours in a completely virtual environment. 

 
Last but not least, DT serves to clarify various design constraints imposed on a particular product. 
Since DT is oriented from product lifecycle management, it is potentially capable of synthesising a 
comprehensive collection of design constraints imposed by all the relevant stakeholders. Some 
examples of constraints include weight, size, budget, schedule, manufacturing capability, 
environmental standards, safety standards and government regulations. In the following conceptual 
design phase, designers can further validate whether and to what extent a new concept complies 
with various constraints through virtual verification. In the future, it is also interesting to explore 
how and in what ways constraint information can be collected by means of sensors directly from 
the physical product. For example, it is possible to utilise a car’s rear camera to detect various 
parking constraints in the physical world 
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8. Framework of digital twin-driven product design (DTPD) 
 
Once a DT is successfully built, it can facilitate designers to perform different design activities. 
According to the design theory and methodology (DTM) classification by CIRP, DTM plays the  role 
in generating new solutions, enrich functional information of design solution, and represent design 
knowledge. New solutions are generated based on creativity, combination and modification. DT is 
expected to be most useful for the combination-based design. The most commonly used 
combination-based DTM is the systemic design approach prescribed by Pahl and Beitz. which divides 
the design process into four phases: task clarification, conceptual design, embodiment design and 
detail design.  
 
Each phase can be further divided into multiple sub-steps. Relevant DTMs can be incorporated into 
different phases of the systemic design process. For example, during the conceptual design phase, 
Axiomatic Design, TRIZ, Robust Design and Adaptable Design can be incorporated to reduce 
unnecessary design complexities, resolve undesirable design contradictions, make a product less 
sensitive to uncertainties, and increase a product’s adaptability to changing Requirements, 
respectively. Since DTPD is characterised by the ability to make full use of data to build a virtual 
model, a specific design phase called virtual verification is proposed as the last phase of the design 
process. The complete process is shown in Figure 21 . Various design activities and their associated 
data are divided into five parts, which correspond to the five design phases. 
 
 

 
 

Figure 21: framework of DTPD 
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8.1 Theory support for DTPD 
 
As illustrated in Figure 21, the proposed framework DTPD integrates relevant design theory and 
methodology (DTM), data lifecycle management (DLM), and digital twin (DT). 
 
Firstly, DTPD develops based on existing DTMs. They are included to structure the design process 
and decide where, how, and in what ways different kinds of data are exploited for various design 
activities. In addition, DTMs explains the internal conflict and contact among the various design 
phases, which are conducive to coordinate the relationship between the design factors. 
 
Secondly, design process becomes increasingly digital. DTPD depends on the massive amounts of 
historical and real-time data, etc., relevant studies about DLM can deal with the data throughout 
the product lifecycle. DLM can collect, transfer and storage the date from physical world. It also 
motivates the DTPD by integrating and processing the data, which promotes the communication 
and interaction of different kinds of data. In addition, it can make sure the purity and accuracy by 
cleaning, analysing and mining the data. 
 
Thirdly, relevant studies about DT are included to explain how to build a digital twin to serve the 
data-driven design of consumer products. It can also make designers have a complete digital 
footprint of products through design. It should be noted that DTPD is essentially a design 
framework, in which, digital twin serves as an ‘engine’ to convert big data managed by DLM into 
useful information that can be directly utilised by designers to make informed decisions at different 
design phases as prescribed by DTM. 

 
Figure 22: theoretical formulation of DTPD 
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8.2  Collaborative design between designers and digital twin in DTPD 
 
From the perspective of design, DT can be regarded as a special kind of intelligent design machine, 
which is capable of providing designers with information, recommendation, and assessment 
throughout a product design process. If the design language is used to describe digital twin, it can 
be regarded as an overlapped representation of both designer’s intentions and real-world realities. 
According to the situated FBS framework design involves back-and-forth interactions between three 
worlds expected world, interpreted world and physical world 
 
product can be described with respect to its function, structure and behaviour in all three worlds. 
When a product is projected from the expected world to the interpreted world, and eventually to 
the physical world, more details and specifics are gradually added to the product. 
 
The product is moved to the physical world from the digital world (in the designer’s mind), because 
practical uncertainties and constraints have been imposed on the product. The essence of digital 
twin is to create a digital representation of the physical product in the interpreted world. Note that 
this virtual product should be seen as a dual-reflection from both the expected world and the 
physical world. On one hand, as much as possible, the virtual product should reflect the designer’s 
expectations on how the product ought to function, behave, interact with customers, respond to 
uncertainties, and be physically structured. On the other hand, as accurate as possible, the virtual 
product should reflect the real-time state of the physical product in the real world. Moreover, digital 
twin also enables the physical product and virtual product to communicate with each other in real-
time and coevolve with each other over time. 
 
 

 
 

Figure 23: understanding of DT in the FBS framework 
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Above figure: illustrates the role played by DT in data-driven product design. In the expected world, 
based on their understanding of customers and knowledge of the physical world (arrow 2 in figure), 
designers propose a product’s expected function, behaviour and structure ( arrow 3 in figure). Next, 
the expectations are visualised, simulated, analysed and optimised in the interpreted world (arrow 
4 in figure), by means of CAD, FEM, 3D modelling, virtual prototyping and so forth. Then the product 
is projected from the interpreted world to the physical world (arrow 5 in figure). Traditionally, as 
the product enters the physical world, the designers will gradually lose the track of the various 
product-related information. 
 
In particular, while a product is manufactured in outsourced factories, distributed by the third-party 
retailors, purchased by globally distributed customers, and maintained by third party dealers. As a 
result, designers have to employ design methods (e.g. survey, interview, lead-user theory, 
ethnography, etc.) to solicit feedbacks from customers, which are probably divided into two-ways, 
one is to collect the user’s online comments on the website, like Amazon and YouTube, to 
understand the user’s demand for the product; another is to collect product running data through 
the sensors to analyse the users’ habits and preferences. The essence of digital twin is to create a 
digital representation of a physical product in the interpreted world (i.e. arrow 6 in Figure) and then 
reflect from the interpreted world back to the expected world.  
 
 
some new values created through the communication between designers and digital twin, as well 
as the synergy between the virtual product and physical product (the subscript number indicates 
the product generations). The designers are guided to adjust their expectations based on those 
‘facts’ that are cross-examined in both interpreted and physical worlds, and hence make more 
informed design decisions. The inconsistency among the expected product, virtual product, and 
physical product (with respect to their function, behaviour and structure) are gradually minimised. 
Lastly, the physical product is made more personalised and intelligent through various ‘lessons’ 
learned from the virtual product. Last but not least, the zigzagging interactions between the virtual 
product and physical product lead to a coevolution for the digital twin. 
 
It should be noted that, unlike the complex systems, consumer products involve intensive back-and-
forth interactions between product and user. Since DT is a real-time digital representation of the 
physical product, it can directly interact with end users and provide not only real-time product state 
information but also timely recommendations of utilisation, maintenance and upgrade services. In 
that regard, Thorsten et al. proposed the notion of ‘product avatar’, which is a digital representation 
of the physical product . 
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In order to interact with the end user on Facebook. Moreover, rich information is readily available 
on the Internet to build user profiles. In some sense, a user profile can be regarded as the digital 
representation of a certain user in the digital world. Therefore, it is also interesting to investigate 
the interplay between user profile with digital twin. 
 
 

 
 

Figure 24: collaborative design between designers and DT in DTPD 
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8.3 Case study: Digital twin application in bicycle design 
 
Recently, a new paradigm for bicycle use is rising in China, which is called ‘Bicycle-sharing’. The most 
famous companies are OFO and Mobike bicycle. They provide the users with bicycle as a kind of 
public service, and charge some cycling fee at a very cheap price, e.g. 0.5 RMB one time. The working 
flow of shared-bicycle paradigm is shown in Figure 25 below. 
 

 
 

Figure 25: The use flows and interaction mode of shared bicycles 
 
When a user wants to find a shared bicycle, he only needs to open the Mobike apps in his IPhone, 
then he will be told where to get a bicycle because of the automatic positioning function service. 
Next, after the shared bicycle is found, he scans the QR code on the plate. The password will be sent 
to his app interface, or the smart lock of the bicycle will automatically unlock. Then, he could ride 
the bicycle to his destinations. Last, when the user arrives at the destination, he just locks the bicycle 
lock and pays for riding via app. ‘Bicycle-sharing’ is a success case using New IT in public 
transportation.  
 
lot of new ITs are used in ‘Bicycle-sharing’. For example, the real-time and physical-related bicycle 
data (e.g. location, route, status, etc.) can be collected and communicated using IoT during riding. 
Based on cloud computing, all the shared bicycles data storage, processing and analysis (such as 
computing, statistics and positioning, etc.) are implemented and finished in a ‘Sharing Cloud’. 
Mobile Internet connects the users, shared bicycles and ‘Sharing Cloud’. For instance, the users send 
the unlock request and arrival instruction to the ‘Sharing Cloud’. The ‘Sharing Cloud’ would feed the 
location, the password, as well as the time and cost back to the users. The user comments are also 
collected from apps through smart terminals (e.g. smart phones, PADs, etc.). With big data analysis, 
the bicycles are becoming smart, and are used more conveniently and efficiently. New IT has 
injected fresh energy to bicycles. Massive data of bicycles are acquired and analysed via New IT in 
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the new paradigm of ‘Bicycle-sharing’. These data would help build the digital twin for bicycles and 
support designer for bicycle redesign. 
 
 
 
8.4 Digital twin (DT) driven bicycle redesign 
 
Traditional bike design methods are mostly based on designers knowledge and experience. 
However, the digital twin  paves a new way for bicycle design. As shown in figure 26 below, the 
digital twin for bicycle primarily consist three parts.  
 
 

 
Figure 26: DT-driven bicycle design and virtual verification 

 
 
The virtual bicycle in the virtual space, the real bicycle in the physical space, and the interactive data 
between virtual and real bicycle . Based on IOT  and mobile internet, the virtual space could obtain 
a lot of data from the real bicycle, such as the speed, acceleration, wheel pressure, user comments, 
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as well as the relevant environment data, etc. with these data, a virtual model can be established in 
the virtual space, which is the real mapping and reflection of the real bicycle.  
 
During the entire bicycle lifecycle, the virtual space would coevolve with the physical space. The 
virtual space would constantly collect, analyse and accumulate the data from the physical space, 
which could be use for design or redesign of next generation bicycle. 
 
The lifecycle of bicycle includes the design, manufacturing, sales, maintenance and retirement, etc. 
designers can obtain all the data of the last generation bicycle through the digital twin, to redesign 
the next generation. In the task clarification phase, the designers could easily access the online user 
comments, rather than the questionnaire or telephone interview. By analysing these comments, the 
designers can discover the design flaws of the bicycle, the particular needs of the users, and the 
vision for the future development. Through the translation process based on the digital twin for the 
bicycle, the user demands are interpreted into functional requirements. For example, most of the 
shared bicycles do not have the backseats. So many users may make a request for the backseats, 
which are useful for carrying something or a friend. As a result, the designers would have a basic 
judgement that the design of the backseats should be considered. 
 
Once the functional requirements are confirmed by the designers, they would be mapped to design 
parameters, working principles, and physical structures based on the digital twin for the bicycle. 
Taking the backseat design as example, the designers would compare the difference between the 
actual and the expected backseat, to deepen their understandings of the ideal and real contexts. 
With the digital twin-driven product design method, the designers could comprehensively compare 
and analyse the parameters of the bicycle, the height distribution of the user crowd, and the user 
comments about the use purpose. Eventually, the bicycle’s backseat is designed to be an 
appropriate height based on the digital twin for the bicycle. Besides, as the backseat should be able 
to bear a certain weight, so the material selection of the backseat should be considered at the same 
time, as well as the shape, area, etc. 
 
As shown in above figure, bicycle is still taken as an example to illustrate the virtual verification in 
DTPD, which includes three steps, namely performance prediction, verification of manufacturing 
process and verification of functions. In the performance prediction, the designers use the 
maintenance and failure history information, as well as the knowledge of engineering and material 
science, to simulate the various operations and predict the change of the performance indicators. 
For example, the digital twin for the bicycle could predict the change of the backseat wheels and 
tyre pressure, etc., when more weight is put on the backseat.  
 
Next, in the verification of manufacturing process, designers use the digital twin model to simulate 
the manufacturing process of bicycles. On one hand, the specific links are optimised. Through 
simulation in virtual space, designers could determine the optimum process with the shortest time 
and print out the production instructor. On the other hand, the high defective rate steps would be 
reduced by accurate simulation. For example, through the simulation about key steps and a data 
relation mapping about material and equipment, the fractures of some components could be 
reduced. At last, the designed functions are verified. 
 
For one thing, the ergonomics of the bike is verified by integrating the customer’s physical data, and 
possible problems in design would be found. For another, the functions of the bicycles under 
different circumstance are verified by integrating various environment data. For example, the brake 
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distance, tyre wear speed, backseat life, etc., are tested in different weather condition through the 
digital model. In the virtual verification, once the unqualified problems are found, the design scheme 
would be improved through iteration of design process. 
 
The digital twin for bicycle would facilitate the iterative optimisation of bicycle design. The design 
cycle, cost, etc., would be greatly decreased, and the design efficiency, satisfaction, security, etc., 
would be generally improved. 
 

 

9. Process of Building functional digital twin model 
 
In general, it takes six steps to create a fully functional digital twin but it could be more. It should be 
made explicit though, in practice, manufacturers may not strictly follow the sequence to build DTs. 
It is also possible that steps can be carried out concurrently. 
 
9.1 Step(1): Build the virtual representation of the physical product 
  
The enabling technologies of this step are computer aided design (CAD) and 3D modelling. Both are 
commonly used technologies in product design. The virtual includes tress aspects: elements, 
behaviours, and rules. At the level of elements, the virtual product model mainly includes the 
geometric model and physical model of the product, use the environment, etc. at the level of 
behaviours, the authors not only analyse the behaviour of products and users, but also focus on the 
analysis of the product and user interaction generated by the behaviour and modelling. At the rules 
level, it mainly includes the evaluation, optimisation and forecasting models established following 
the law of product operation. 
 
9.2 Step(2): process data to facilitate design decision-making 
  
Data collected from different sources mainly from the physical product, and also from the internet 
are analysed, integrated and visualised. Firstly, data analytics is necessary to convert data in to more 
concrete information that can be directly queried by designers for decision-making. Secondly, since 
product data are collected from diverse source, data integration is useful for discovering the hidden 
patterns that cannot be uncovered based on a single data source. Thirdly, data visualisation 
technologies are incorporated to present data in a more explicit fashion. Finally, advanced artificial 
intelligence techniques can be incorporated to enhance a DT’s cognitive ability, so that certain 
relatively simple recommendations can be made automatically. 
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Figure 27: enabling technology of digital twin 

 
 
 
 
9.3 Step(3):  Simulate product behaviours in the virtual environment 
 
The enabling technologies to this include simulation and virtual reality (VR). The former is used to 
simulate key functions and behaviours of the physical product in the virtual world. In the past, 
simulation technologies are widely used in product design. On the other hand, virtual reality (VR). 
Technologies play the role of involving designers and even users to directly interact with the virtual 
product in the simulated environment. Recently, VR technologies are increasingly employed to 
support virtutal prototyping and product design . Many readily available VR hardware devices can 
be directly adopted for digital twin.  
 
9.4 Step(4): Command the physical product to perform recommended behaviours 
 
Based on the recommendations of DT, the physical product is equipped with a capability, by means 
of various actuators, to adaptively adjust it function, behaviour and structure in the physical world. 
Sensors and actuators are the two technological backbones of a DT. The former plays the role in 
sensing the external world, whereas the latter plays the role in executing the desirable adjustments 
requested by DT. In practice, the commonly used actuators that are suitable for consumer products 
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include, for example, hydraulic, pneumatic, electric, and mechanical actuators. In Addition, 
augmented reality (AR) technologies can be used to reflect some parts of the virtual product back 
to the physical world. For example, AR enables end users to view the real-time state of their 
products. Recently, AR technologies are increasingly applied in the factory domain production 
engineering. 
 
9.5 Step(5):  Establish real-time, two-way, and secure connections between physical and virtual 
product 
 
 
The connections are enabled using a number of technologies, such as network communication, 
cloud computing and network security. Firstly, networking technologies enable the product to send 
its ongoing data to the cloud to power the virtual product. The feasible networking technologies for 
consumer products include, for example, Bluetooth, QR code, barcode, wifi, Z-wave, etc. secondly, 
cloud computing enables the virtual product to be developed, deployed and maintained completely 
in the cloud, so that it can be conveniently accessed by both designers and users from anywhere 
with an internet access. Lastly, since product data are directly and indirectly concerning user-
product interactions, it is critical to guarantee the security of connections. In light of the internet of 
Things (IOT), much effort has been devoted to connecting the physical and virtual product, which 
can be adapted for the DT research. 
 
 
9.6 Step(6): Collect all kinds of product-related data from different sources 
 
Generally speaking, there are there types of product- related data that should be processed by DT. 
For ordinary products, physical product data is usually divided into product data, environment data, 
customer data and interactive data. Product data contains customer comments, viewing and 
download records. Interactive data consist of user-product-environment interaction, such as stress, 
vibration, etc. using the sensor technology and Iot technology can collect some of above data in real 
time, and analyse from the product manual, web page customer browsing records, download 
records, evaluation feedback, etc. , can obtain the rest of the data. The collected data are fed to the 
step(1) in order to close the loop towards building more functional virtual product.  
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10.    Data Exchange between Real Environment and Virtual Simulation Environment 

 

The change in the behavior of global consumption and with the new technologies inserted in the 
products, demand that the production systems to adapt and become more and more agile. For this 
reason, some tools that contribute to the decision to change production systems are being used 
more frequently. 

Among these tools, the Simulation of Discrete Events (DES) stands out, which has the function of 
reproducing the system studied in a digital environment. For this, the development of the model is 
based on the data collected, on the programming logic and on the validation of the results. Thus, 
the simulation model becomes an applicable tool in the evaluation of changes in production systems 
without any intervention in the production system. 

 

10.1 Model Development (System Choice and Data Collection) 

 Achieving the goal of this work is to demonstrate the steps required to model a production system 
integrated with the virtual environment. In this sense, the work was developed in a small prototype 
(Big Loader Construction Set, from Tomy®) that represents the displacement of parts along a rail, 
passing through three workstations. In addition, the system is closed, and after delivery of the parts 
at the end point the entire process is repeated. 

Thus, the necessary data were collected from the modeling of the system in a simulation software. 
The necessary data were: Total cycle time; Time between workstations; Distance between points; 
Transport speed between points; and Workplace failures analysis. Figure 28 shows the system 
chosen for this pilot model. 
 
In addition, this prototype has components that collect data on its operation, these components 
are: Sensors capable of collecting time between workstations; data sharing system; data receiving 
system; car speed controllers along the way. Thus, this one is able to send and receive operating 
data in real time, thus, it is able to change its way of working according to the management needs 
of the system. 
 
With the help of this system we can receive the data from sensors and check how many iteration 
have been done in specific time period. So, we can increase the production capacity of system and 
make required changing in the system. 
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Figure 28: Production System prototype 

 

 

10.2 Real time modelling and data collection 

With the previously collected data it was possible to develop a simulation model that represent the 
real system. Figure 29 below demonstrates the simulation model. 

 

 

Figure 29: simulation model 
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For the development of the simulation model, we used Siemens Plant Simulation® software. This 
model was programmed to receive real time data from the physical model. 
 
The data collection is made through sensors that identify the vehicle positioning and the real time 
of the displacement between the points, this happens similarly to the use of a MES System. All this 
information is stored in a database. During the process, the travel time may be influenced by 
discharging the batteries or by events along the way. Because in this prototype some events are 
deliberately provoked. 
 
Thus, the data collected in the real system feeds the simulation model. So, the variables that control 
the speed of the vehicle cause it to change speed in the virtual environment automatically. 
This model is also capable to receive programming data, which happens by reading into tables that 
can come from ERP. In this case, this information serves to evaluate whether work orders are being 
fulfilled correctly. 
 
 
 
 
 

 

Figure 30: CAD model of production system prototype 
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10.3 Reprogramming proposal 

As the simulation model receives data from both the real environment and the production schedule, 
the decisions made can be considered more accurate than the decisions made through simulation 
models that do not collect data in real time. 
 
Thus, the main objective of this integration is to allow the optimizations generated in the virtual 
environment to be sent to the real environment. Figure 31 shows the proposal for exchanging 
information between real and virtual environments. 
 
 
 
 

 

Figure 31: Data Exchange between environments 

 
Assuming that the current system is delayed in fulfilling production orders, it is possible for the 
simulation model to determine the ideal vehicle speed to fulfill orders. In this proposal the vehicle 
will vary its speed in the real environment following the information from the simulation model. 
Thus, it can be said that the real environment has autonomy to reprogram itself without human 
intervention, only with data exchange. 
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Thus, the necessary steps for the development of a simulation model integrated with the production 
system: 

• know the production system to be analyzed; 

• Choose the main parameters of the production system; 

• Develop a data mining system of the chosen parameters; 

• Model the production system in simulation software; 

• Develop an algorithm to insert the data collected in the simulation model; 

• Create the optimization rules in the simulation model; 

• Develop an algorithm that inserts the optimized data into the production system; 

• Create production scheduling rules with new optimized data. 

 

Figure 32: Digital twin cycle 

 
It is important to certify that this work aims to show only the steps necessary for the development 
of a model with the highlighted characteristics. Thus, the results of this prototype are not valid, 
which should be presented in another work. 
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After building this simulation model, we want to research the advantages of decisions made with 
data exchanged in real time against decisions made with conventional models. 
 
 
 

 
 

Figure 33: production line prototype at FEM-UNICAMP (Brazil) 
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10.4  Digital twin Based Scheduling Framework 
 
The framework is supported by an architecture that lies at the basis of a scheduling tool represents 
its architecture that is composed of the following parts: 
 
REAL MACHINE (or machine sub-system) feeds the database with signals about the interesting 
variables of the real behaviour of the analysed system. is being acquired from field devices from 
multiple sources such as add-on sensors, actuators, PLC (Programmable Logic Controllers), CNC 
(Computer Numerical Control machines) etc. Signals could be data on different levels, as described 
in the ISO 13374. 1- Acquired data; 2- Manipulated data; 3- Detected state; 4- Assessed health; 5- 
Assessed prognosis. 

 
Figure 34: Architecture of scheduling tool 

 
SIMULATION MODEL of the analyzed system feeds the database with the simulated signals 
replicating those generated by the real machine. The simulation model is a DT, as an EHI module is 
embedded and connected to the field devices that continuously update it according to the 
equipment health, through Prognostics Health Monitoring models, in order to carry out the 
reliability of the system, considering time and conditions variables. 
 
The DATABASE collects data from both the real machine and the simulated model, decoupling the 
two levels of the DT (physical and cyber). By storing historical series of data from both the sources, 
it is possible to compare them and detect the deviations between the behavior of the real system 
and its simulation model. 
 
The DATA-DRIVEN MODEL takes the behaviour deviations between the real and simulated system 
as input, which is detected in the historical series of data. The output of the data-driven model is an 
adjustment of the simulation model parameters. This adjustment provides incremental updates to 
the simulation model to synchronize it with the real system 
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Figure 35: Application Case result (without EHI model) 

 
 
 
 
 

11.  Structural life prediction using Digital Twin 

The operation of the Digital Twin for life prediction would proceed as diagrammed in Figure  below. 

The Digital Twin is represented in the figure as a single entity, but it may consist of several 

components that are intimately linked, such as a thermal/heat transfer model, a dynamics model, a 

stress analysis model, and a fatigue model. The CFD model of that specific aircraft is then “flown” 

virtually through those flights to estimate the loads and environments the aircraft will experience. 

 

The CFD and FEM models are closely coupled so that the effect of aeroelastic vibrations and 

structural deflections on the aerodynamic flow, if any, can be captured, and vice versa. Traditionally, 

any effect between structural deflections and aerodynamic flows has been discounted, but for a 

realistic high fidelity model, the possible interactions between physical phenomena should not be 

ignored from the start. 
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Figure 36: Digital twin life prediction concept 

Many of the physical phenomena discussed above are nonlinear. As a result, the structural FEM 

must perform nonlinear analysis. Since the evolution of the material state and the development of 

damage affect the stiffness of structural components, the coefficient of thermal expansion, and the 

load at which inelastic deformations begin, among other properties, the material state evolution 

and damage models must pass information back to the “stiffness matrix” of the FEM so that the 

thermal and stress fields are accurately determined.  

 

In addition to having sensors for damage detection at critical locations, the SHm system also senses 

and records strain histories at select locations during the flight. The strains in the Digital Twin at the 

selected locations are compared to the strains recorded on the physical aircraft. The damage state 

at locations in the Digital Twin corresponding to aircraft locations with SHm sensors is compared to 

the condition detected by the SHm system. Differences between the Digital Twin and the condition 

of the aircraft are resolved with a formal mathematical process such as Bayesian updating. In this 

way, the Digital Twin undergoes continuous improvement and becomes more reliable the longer 

the aircraft is in service 

The use of the Digital Twin is not limited to decisions about a single flight. The usage for a particular 

aircraft can be projected forward for any desired length of time. 
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11.1 E3 Application 

The Digital Twin is typical of what is called an “E3 Application”, a complex system in high-

dimensional spaces. The HPC community has identified certain application characteristics and math 

and algorithms needs which have already been discussed for the Digital Twin. Within the context of 

the Digital Twin, there is a need to solve coupled PDEs, quantify uncertainty, design and optimize 

the structure, while handling large and noisy data. 

 

Figure 37: Common application characteristics E3 application 

 

The HPC community has accurately described the computational problems of the Digital Twin. 

Solving very large systems of PDE’s with uncertainty everywhere is at the core of the Digital Twin 

concept. 

Kestrel integrates multiple single executable modules. The most significant for the purposes of the 

Digital Twin are a CFD solver and a linear modal representation of the aircraft along with fluid-

structure interfacing operations. Aerodynamic loads are applied directly to the structure. However, 

the stresses in the structural components still need to be determined to enable life prediction. 
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Conclusion 

The concept of Digital Twin is not old as other industrial revolutions, Anyhow research in this are 

keeping going and researchers and working hard to find the final are reliable solution to implement 

this concept to industrial and other activities.  There are several research and publications on 

Concept of digital twin but none of them give you the exact answer how to you can directly 

implement this concept.  

We as a team of Engineers and researchers from State university of Campinas at department of 

Mechanical and Manufacturing engineering try to implement this concept to an industrial 

application. We development and prototype (physical) which is a Truck loader toy who work and a 

production line on the other hand we developed a CAD model using software Solidworks. And try 

to integrated these two with the help of plant simulation software to monitor the simulation 

environment of this system. 

As, I mentioned this concept is not fully matured and research is keep going so we were not able to 

get final results from this research but a satisfying outcome has been achieved by integrating 

different environments. 
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Appendix 

Research paper (Under review will published until end of July 2021) 
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