
Master’s Degree in
Computer Engineering

Master’s Degree Thesis

Associative classification on
spatio-temporal sequences

Supervisors
prof. Paolo Garza, Politecnico di Torino
prof. Abolfazl Asudeh, University of Illinois at Chicago

Candidate
Niccolò Spagnuolo

Academic Year 2020-2021

Abstract

The main purpose of the study is to build a system to perform associative classification on
spatio-temporal sequences. The proposed methodology is composed of four ordered phases:
preprocessing, frequent itemsets mining, association rules generation and prediction model
training. The model presented is eventually compared to other state-of-the-art classifica-
tion algorithms such as Decision Trees, Random Forests and Support Vector Machines.
On balance, the prediction model achieves a higher precision for the critical and most rare
class with respect to its competitors.

Acknowledgements

To begin with, I would like to thank professor Paolo Garza and professor Abolfazl Asudeh
for their support and availability throughout the thesis work.

Moreover, I have to mention Jenna Stephens and thank her for being supportive and
prompt to resolve any issues that came up related to the academic program.

Then, I would love to thank my closest group of friends with whom I shared the last six
years and I sincerely hope more to come: Luca, my coffee-mate, Angelo, the one-liner man,
Fabrizio, the best tour operator in the field and last but not least Michele, the most stylish
cook I have ever known.

Next, I mention Alessandro and Giuseppe for being my brothers, not by blood, since always.

Finally, I thank from the bottom of my heart my family for being always there when I
needed and cheerful every day of my university career. In particular, I mention my sister
Annachiara, my cousins Ciu and Francesco for their unconditional support during difficult
times.

2

Contents

List of Tables 5

List of Figures 6

1 Introduction 9

2 Related Work 11
2.1 Association rules mining . 11

2.1.1 Frequent itemsets mining . 11
2.1.2 The Apriori algorithm . 12
2.1.3 The FP-Growth algorithm . 13
2.1.4 The PFP algorithm . 14
2.1.5 Association rules generation . 15

2.2 Sequential pattern mining . 15
2.3 Classification . 16

2.3.1 Associative classification . 16
2.3.2 Decision Trees . 17
2.3.3 Random Forest . 18
2.3.4 SVM . 19
2.3.5 Model evaluation . 20

2.4 Apache Spark . 22

3 The proposed methodology 27
3.1 Problem statement . 27
3.2 Preprocessing . 27

3.2.1 Filtering . 28
3.2.2 Alignment . 28
3.2.3 Sliding-window transformation . 29

3.3 Frequent itemsets mining . 30
3.4 Association rules generation . 32

3.4.1 Post processing filter . 32
3.5 Prediction model training . 33

3.5.1 Example . 34

3

4 Experimental results 35
4.1 Dataset analysis . 35
4.2 Parameters effect on association rule generation 37

4.2.1 Testing environment . 38
4.2.2 Radius . 38
4.2.3 MinSup . 39
4.2.4 Window size . 40
4.2.5 Granularity . 41

4.3 Prediction model training . 42
4.3.1 Testing environment . 42
4.3.2 Categories of event . 42
4.3.3 Timeslots . 43
4.3.4 Tested classifiers . 43

5 Conclusions 55

4

List of Tables

2.1 MAIN RDD TRANSFORMATIONS IN SPARK 23
2.2 MAIN RDD ACTIONS IN SPARK . 24
2.3 MAIN PAIRRDD TRANSFORMATIONS IN SPARK 25
2.4 MAIN PAIRRDD ACTIONS IN SPARK 25
3.1 INPUT DATASET EXAMPLE . 28
3.2 INPUT DATASET EXAMPLE AFTER ALIGNMENT 29
3.3 INPUT DATASET EXAMPLE AFTER SLIDING-WINDOW TRANSFOR-

MATION . 29
3.4 TEST SET TRANSACTIONS FOR CLASSIFICATION EXAMPLE . . . 34
3.5 ORDERED ASSOCIATION RULES FOR CLASSIFICATION EXAMPLE 34
4.1 SAMPLE OF RECORDS AND EXTRACTION OF EVENTS 43

5

List of Figures

2.1 SVM example . 20
2.2 Confusion matrix for a binary classifier . 21
3.1 Phases of the proposed methodology . 27
4.1 Locations of bike sharing stations . 35
4.2 Events per station ECDF thr = 0 . 36
4.3 Events per station ECDF thr = 0 . 36
4.4 Events per station ECDF thr = 1 . 36
4.5 Events per station ECDF thr = 1 . 36
4.6 Events per station ECDF thr = 2 . 37
4.7 Events per station ECDF thr = 2 . 37
4.8 Events per station ECDF thr = 3 . 37
4.9 Events per station ECDF thr = 3 . 37
4.10 Execution time by radius . 39
4.11 Number of itemsets by radius . 39
4.12 Number of rules by radius . 39
4.13 Distribution of rules confidence . 39
4.14 Execution time by minSup . 40
4.15 Number of itemsets by minSup . 40
4.16 Number of rules by minSup . 40
4.17 Distribution of rules confidence . 40
4.18 Execution time by window . 41
4.19 Number of itemsets by window . 41
4.20 Number of rules by window . 41
4.21 Distribution of rules confidence . 41
4.22 Execution time by gran . 42
4.23 Number of itemsets by gran . 42
4.24 Number of rules by gran . 42
4.25 Distribution of rules confidence . 42
4.26 AEAFT classifier metrics by AEAFT_minSup 44
4.27 AFT, AF classifiers metrics by AFX_minSup_ruleLen_minConf 45
4.28 AFT classifier metrics by AFT_minSup_ruleLen 46
4.29 AET, AE classifiers metrics by AEX_minSup_ruleLen 47
4.30 BFT, BF classifiers metrics by BFX_minSup_ruleLen 48
4.31 BET, BE classifiers metrics by BEX_minSup_ruleLen 49
4.32 Double binary classifiers metrics by XXX_minSup+XXX_minSup 50

6

4.33 Competitor classifiers metrics . 51
4.34 Comparison with competitor classifiers metrics 51
4.35 Mixed approach DT+AFT classifiers metrics by DT+AFT_minSup 52
4.36 Mixed approach AFT+DT classifiers metrics by AFT_minSup+DT 53
4.37 Associative classifiers comparison . 54

7

8

Chapter 1

Introduction

Associative classification is a data mining approach that integrates association rule mining
and classification to build classifiers. The structure of an associative classifier consists of
two steps. First, association rules are extracted from the training data. Then, pruning
techniques are applied to select a subset of high-quality rules, by applying support and
confidence based pruning.

The target of this work is to define a methodology to perform associative classification on
spatio-temporal sequences. The proposed methodology is composed of four ordered phases:
preprocessing, frequent itemsets mining, association rules generation and prediction model
training. The preprocessing stage is entitled to convert input time-series data to a set
of transactions. Such transactions are the input of the frequent itemsets mining stage,
accomplished by a parallel implementation of FP-Growth for Apache Spark, in which a
spatial constraint is added to prune the search space. Afterwards, given the frequent
itemsets, association rules are generated and, finally, the prediction model is trained to
conduct associative classification.

This thesis is organized as follows. Chapter 2 (Related work) provides an overview of
the main background concept the thesis takes advantage from. Chapter 3 (The proposed
methodology) describes in detail the system steps aforementioned. Chapter 4 (Experimental
results) presents the results of the proposed methodology on an example dataset. Moreover,
such results are compared to the ones obtained by competitor classification algorithms
such as Decision Trees, Random Forests and Support Vector Machines. Finally, Chapter
5 (Conclusions) draws some general conclusions.

9

10

Chapter 2

Related Work

This chapter is going to highlight the main background concepts that this Thesis takes
advantage from. To begin with, association rule mining is presented, then the second sec-
tion briefly describes sequential pattern mining. Furthermore, the third section defines the
revision of classification and, finally, the Apache Spark data processing library is outlined
since it has been used in the development of the proposed model.

2.1 Association rules mining
Mining of association rules is one of the most important data mining tasks. Its main
objective is to extract frequent correlations or patterns from a transactional database. It
was firstly introduced by Agrawal et al. [1] in 1993 and since then, several algorithms
and extensions have been released. Its classic application is in the market-basket data
analysis, in which it is used to find co-occurrence relationships among the items purchased
by customers.

An example of association rule is the following:

Diapers⇒ Beer [Support = 2%, Confidence = 30%] (2.1)

The rule says that 2% of customers buy diapers and beer together and, those who buy
diapers also buy beer the 30% of times. These two metrics are Support and Confidence
respectively, which are going to be defined in Section 2.1.5. The problem of rule mining
can be decomposed into two subproblems:

• Extraction of frequent itemsets.

• Generation of association rules from frequent itemsets.

2.1.1 Frequent itemsets mining
Let T = {T1, ..., Tn} be a transactional database where the database schema S = {A1, ..., Am}
consists of a large number of attributes and the attribute domains are binary, that is,
dom(Ai) = {0, 1}. The attributes can be seen as properties that an instance does have
or does not have. Let U = {i1, i2, ..., im} be a set of properties or items. A transaction

11

Related Work

(t1, ..., tm) ∈ dom(A1) × ... × dom(An) from our transactional database T with schema S,
can be reformulated as an itemset I by ii ∈ I ⇐⇒ ti = 1. We call a set Z ⊆ I an
association. The support of an arbitrary itemset S is the probability P (S) of observing
S in a randomly selected record of T .

Definition 1 (Support) The support of an itemset S is the fraction of transactions that
contain S as a subset.

sup(S) = |{∀Ti ∈ T |S ⊆ Ti}|
|T |

(2.2)

An itemset is frequent when its support is greater than or equal to a minSup threshold.
Extracting all possible combinations of items could be very computationally expensive,
given that in a universe U there are 2m − 1 possible itemsets. Frequent itemsets mining
deals with the extraction of frequent itemsets by exploiting different techniques: level-wise
approach such as Apriori [2] or approaches without candidate generation such as FP-growth
[3].

2.1.2 The Apriori algorithm
The Apriori algorithm [2] is based on two properties: the first one is the support antimono-
tone property which states that “if an itemset S is contained in a transaction Ti, also any
subset J of S must be contained in the same transaction Ti. Thus, the support of J will
be always greater than or equal to the support of S”. The second one is the downward
closure property, which is a consequence of the first one, stating that: “if an itemset is
frequent, then all its subsets must also be frequent”. The Apriori algorithm is a level-based
approach, which means that at each iteration it extracts itemsets of a given length k. Two
main steps for each level are executed:

• Candidate generation

1. Join step: generate candidates of length k + 1 by joining frequent itemsets of
length k;

2. Prune step: apply the downward closure property by pruning length k + 1 candi-
date itemsets that contain at least one k-itemset that is not frequent.

• Frequent itemset generation

1. Scan database to count support for k + 1 candidates;
2. Prune candidates below minSup.

Given that Lk is a frequent itemset of length k, the candidate generation is performed
as follows:

1. Sort lk candidates in lexicographical order;

2. for each candidate of length k:

(a) Self-join with each candidate sharing same Lk−1 prefix;
(b) Prune candidates by applying the downward closure property.

12

2.1 – Association rules mining

This algorithm has several bottlenecks: first of all, during the count of support for can-
didates, it scans the transaction database to count support of each itemset. This can be
computationally expensive when the total number of candidates can be large or if one
transaction may contain many candidates. Another pain-point is the candidate generation:
candidate sets might be huge, in particular, 2-itemset candidate generation is the most
critical step and, additionally n + 1 scans when longest frequent pattern length is n. The
major factors affecting performance of Apriori are:

• Minimum support threshold: lower support threshold increases number of frequent
itemsets, leading to a larger number of candidates and larger (max) length of frequent
itemsets;

• Dimensionality (number of items) of the data set: more space is needed to store
support count of each item and, if number the of frequent items also increases, both
computation and I/O costs may also increase;

• Size of the database: since Apriori makes multiple passes, run time of the algorithm
may increase with the number of transactions;

• Average transaction width: transaction width increases in dense data sets, as well as
increasing max length of frequent itemsets, and the number of subsets in a transaction
increases with its width.

2.1.3 The FP-Growth algorithm
The Frequent-Pattern Growth [3] algorithm is another method used to extract frequent
itemsets, and it is based on a main memory compressed representation of the database
(the FP-tree). This compression is suitable for dense data distributions, less so for sparse
ones. Frequent pattern mining is made by means of recursive visits of the FP-tree and
by applying a divide-et-conquer approach. Only two database scans are needed: the first
one to compute items support and the second one to build the FP-tree. The algorithm
structure is as follows:

1. FP-tree construction:

(a) count items support and prune items below the minSup threshold;
(b) build the Header Table by sorting items by a decreasing support order;
(c) create the FP-tree, for each transaction t:

i. order transaction t items in decreasing support order;
ii. insert transaction t in FP-tree by using existing path for common prefix and

creating a new branch when path becomes different.

2. Scan the Header Table from lowest support item up:

(a) for each item i in the Header Table extract frequent itemsets including item i
and items preceding it in the Header Table:

i. Build Conditional Pattern Base for item i (i-CPB) by selecting prefix-paths
of item i from FP-tree;

13

Related Work

ii. Recursive invocation of FP-Growth on i-CPB.

3. FP-Growth returns frequent itemsets and their support.

A parallel implementation of FP-Growth has been defined by Li et al [4] and it is a
solution based on the MapReduce paradigm. A version built for Apache Spark would be
exploited and modified throughout the Thesis to work for sequences and adding to it an
online filter such as a spatial constraint to prune the algorithm search.

2.1.4 The PFP algorithm
The Parallel FP-Growth algorithm [4] takes advantage from a MapReduce approach to
parallelize FP-Growth which intelligently shards a large-scale mining task into independent
computational tasks and maps them onto MapReduce jobs. PFP can achieve near-linear
speedup with capability of restarting from computer failures.

Given a transaction database DB, PFP acts in five steps, including three MapReduce
phases:

1. Sharding: dividing the DB into successive parts and store the parts in P computers.
Each part is called a shard.

2. Parallel Counting: it consists of a MapReduce job to count the support of all items
that are in the DB. Each mapper inputs one shard of the DB. This step implicitly
discovers the items’ vocabulary I. The result is stored in F-list.

3. Grouping items: dividing all the |I| items on F-list into Q groups. The list of
groups is called group list (G-list) and each group is given a unique group id (gid).

4. Parallel FP-Growth: This step takes one MapReduce job where the map and reduce
perform two different functions:

(a) Mapper - generating group-dependent transactions: the mapper reads the G-list
as a hash map which maps each item into the corresponding gid. The mapper
instance is fed with a shard of the DB, for each Ti two steps are performed:

i. For each item aj ∈ Ti, aj is replaced by the corresponding gid;
ii. For each gid, if it appears in Ti, locate its rightmost appearance L, and

output a key-value pair ⟨key = gid, value = {Ti[1], ..., Ti[L]}⟩, where the
value is a generated group-dependent transaction.

(b) Reducer - FP-Growth on group-dependent shards: when all mappers are finished,
for each gid all corresponding group-dependent transactions are grouped into a
shard of group-dependent transactions. Each reducer is assigned to process one
or more group-dependent shard. For each shard a local FP-tree is built and its
conditional FP-trees are recursively grown. During the recursion, it may output
patterns.

5. Aggregating: the results in step 4 are aggregated with a MapReduce job to produce
the final result.

14

2.2 – Sequential pattern mining

2.1.5 Association rules generation
An association rule is an implication of the form: X ⇒ Y where Z = X ∪ Y ⊆ U and
X ∩ Y = ∅. X and Y are a set of items, called an itemset, they are respectively the
antecedent and the consequent of the association rule. The rule quality metrics are support
and confidence.

Definition 2 (Rule support) The support of a rule is the fraction of transactions in T
that satisfy the union of items in the consequent and the antecedent of the rule.

sup(X ⇒ Y) := sup(X ∪ Y) (2.3)

On the other hand confidence can be seen as the conditional probability that a transaction
contains Y given that contains also X, providing us the strength of the correlation.

Definition 3 (Confidence) The confidence of a rule is defined as the fraction of item-
sets that support the rule among those that support the antecedent. It can be seen as the
frequency of Y in transactions containing X.

conf(X ⇒ Y) := P (Y |X) = sup(X ∪ Y)
sup(X)

(2.4)

The target of generating association rules is to extract rules that have support and con-
fidence greater than or equal to user specified minimum support (minSup) and minimum
confidence (minConf). After having extracted frequent itemsets, the extraction of associa-
tion rules is more straightforward. To generate rules for the frequent itemset f we use all
its non-empty subsets. For each subset α, we output a rule f − α⇒ α if its confidence is
greater than or equal to minConf.

2.2 Sequential pattern mining
Sequential pattern mining consists in discovering interesting subsequences in a set of se-
quences, where its interestingness can be measured such as its support. There are many
real-life applications, whenever data can be encoded as sequences, such as market-basket
analysis [5], text analysis [6], webpage click-stream analysis [7], e-learning [8] or bioinfor-
matics [9]. Sequential pattern mining is designed to be applied to sequences, but it can be
also applied to time-series after a preprocessing phase that uses discretization techniques.
Sequential pattern mining algorithms can be divided into two categories: breadth-first
search based or depth-first search based.

The breadth-first search algorithms such as GSP [5] proceed as follows: first the database
is scanned to find frequent 1-sequences then, 2-sequences are generated by performing
extensions on 1-sequences and so on. This approach is called level-wise since patterns are
generated in ascending length order. This methodology could result in a very large search
space as there are several ways to combine items to generate a potential sequential pattern.

Depth-first search algorithms such as SPADE [10], PrefixSpan [11], Spam [12], Lapin
[13], CM-Spam [14], and CM-Spade [14] on the other hand, explore the search space in
a different order. They start from sequences containing one item and then recursively
perform extensions to produce larger sequences. Then, when a pattern can no longer be

15

Related Work

extended, the algorithm backtracks to generate other patterns using other sequences. For
these algorithms the application of the downward-closure property is crucial. This can
greatly reduce the search space of sequential patterns.

2.3 Classification
Given a collection of class labels, and a collection of data objects labeled with a class
label (training set) the definition of classification is to find a descriptive profile of each
class, which will allow the assignment of unlabeled objects to the appropriate class. The
classification model is validated on the test set, which is a collection of labeled data objects
different from the training set.

In this section we are going to describe some classification algorithms, starting from the
Associative classification on which our proposed methodology is based, and then providing
an overview of competitor algorithms, such as Decision Trees, Random Forest and Support
Vector Machines (SVM).

2.3.1 Associative classification
Associative classification was firstly introduced by Liu et al. in 1998 [15] and aims to
integrate association rule mining and classification rule mining.

The model used to classify consists of association rules, they can be seen as a set of
“if-then” clauses: if the current record matches the antecedent of the rule, it is then labeled
according to the class of the consequent of the rule.

The model generation is composed of:

• Rule selection and sorting: based on confidence, support and correlation thresholds;

• Rule pruning: the training set is covered by selecting topmost rules according to
previous sort.

The advantages of associative classification are:

• Interpretable model;

• Higher accuracy than decision trees: when correlation among attributes is considered;

• Efficient classification;

• Unaffected by missing data;

• Good scalability in the training set size.

The disadvantages of associative classification are:

• Rule generation may be slow: it depends on the support threshold;

• Reduced scalability in the number of attributes: rule generation may become unfea-
sible.

16

2.3 – Classification

2.3.2 Decision Trees
A decision tree uses a tree-like structure where each node represents a feature (or attribute),
the branch represents a decision rule and each leaf node represents the class label. It learns
to partition on the basis of the attribute value and partitions the tree in a recursive way.
There are several algorithms dedicated to the model learning, one of the earliest is the
Hunt’s algorithm. The general structure of such algorithm is the following: let Dt be the
set of training records that reach a node t then:

• if Dt contains records that belong to the same class yt, then t is a leaf node and is
labeled as yt;

• if Dt is an empty set then t is a leaf node labeled as the default (majority) class, yd

(the class with the highest probability);

• if Dt contains records that belong to more than one class, select the “best” attribute
A on which to split Dt and label the node t as A, then split Dt into smaller subsets
and recursively apply the procedure to each subset.

To determine which is the best attribute to split the records at each node, we prefer
attributes with homogeneous class distribution. In order to evaluate the class distribution
we need measures of node impurity such as:

• GINI index;

• Entropy;

• Misclassification error.

GINI index for a given node t is the following:

GINI (t) = 1−
∑

j

[p (j|t)]2 (2.5)

where p(j|t) is the relative frequency of class j at node t.
When a node p is split into k partitions (children), the quality of split is computed as

the weighted sum of the indexes:

GINIsplit =
k∑

i=1

ni

n
GINI (i) (2.6)

where ni is the number of records at child i and n is the number of records at node p.
Entropy at a given node t is:

Entropy (t) = −
∑

j

p (j|t) log2 p (j|t) (2.7)

where p(j|t) is the relative frequency of class j at node t.
One entropy based computation is the information gain that follows this formula:

GAINsplit = Entropy (p)−
(

k∑
i=1

ni

n
Entropy (i)

)
(2.8)

17

Related Work

where parent node p is split into k partitions and ni is the number of records in partition i.
It measures reduction in entropy achieved because of the split then, it is needed to choose
the split that maximises the information gain.

Another entropy based computation is the gain ratio which adjusts information gain
by the entropy of the partitioning. It is defined as follows:

GainRATIOsplit = GAINsplit

SplitINFO
(2.9)

where

SplitINFO = −
k∑

i=1
k

ni

n
log2

(
ni

n

)
(2.10)

The misclassification error at node t is:

Error (t) = 1−max
i

P (i|t) (2.11)

The advantages of Decision Trees are:

• Inexpensive to build, low training time;

• Extremely fast at classifying unknown records;

• Easy to interpret for small trees;

• Accuracy is comparable to other classification methods for simple data sets

On the other hand, one disadvantage is that accuracy may be affected by missing data.

2.3.3 Random Forest
Random Forest is a supervised learning algorithm. It is an ensemble method of decision
trees generated on a randomly split dataset. The collection of trees is the forest, in which
the individual decision trees are generated using an attribute selection measure such as
information gain, gain ratio or GINI index. Each tree is decorrelated, feature subsets are
sampled randomly, therefore different features can be selected as the best attribute for the
split. For the classification problem each tree votes and the majority class is chosen as the
final result. Hence, the algorithm works in four steps:

• Select random samples from a given dataset;

• Build a decision tree for each sample and get a prediction from each one;

• Perform a vote for each predicted result;

• Select the one with most votes as the final prediction.

The advantages of Random Forest are:

• Higher accuracy than decision trees;

• Fast training phase;

18

2.3 – Classification

• Robust to noise and outliers;

• Provides the relative feature importance, estimating which features are important for
the classification.

One disadvantage of Random Forest is that result can be difficult to interpret compared
to a decision tree, where it is possible to check a decision by following a path in the tree.

2.3.4 SVM
Support Vector Machines are a supervised learning technique which is used in several
applications such as: Natural Language Processing (NLP), voice and image recognition and
computer vision. It achieves the maximum effectiveness in binary classification problems.
Its key idea is to find an hyperplane that better divides a data set in two classes. To begin
with, we provide some definitions:

• Hyperplane: if we consider a classification task in two dimensions, the hyperplane is
a line that classifies a data set having different class memberships. In three dimensions
the hyperplane is a plane, with more than three dimensions it is generally called
hyperplane;

• Support Vectors: they are the nearest points to the hyperplane, if removed or
modified they alter the position of the hyperplane. Therefore, support vectors are
considered the most relevant in the data set;

• Margin: it is defined as the distance between the nearest two support vectors (be-
longing to different classes) to the hyperplane.

The aim of SVM is to select a hyperplane with the maximum possible margin between
support vectors in order to have a lower classification error. SVM follows these steps:

• Searches a linearly separable hyperplane. If it finds more than one, it selects the one
with the highest margin in order to improve the accuracy of the model;

• If no hyperplane exists, SVM uses a non linear mapping to transform the training
data in a higher dimension where it is possible to use linear separation, this technique
is called kernel trick.

The kernel trick is based on transforming the input data into higher dimension, whenever
it is not possible to determine a linearly separable hyperplane. The functions that perform
this mapping are called kernel functions. The most popular ones are the following:

• linear kernel, defined as:
K(xi, yj) = xi · yj (2.12)

• polynomial kernel, defined as:

K(xi, yj) = (xi · yj + c)d (2.13)

• Radial Basis Function (RBF) kernel, defined as:

K(xi, yj) = e(−γ||xi−yj ||2) (2.14)

19

Related Work

Figure 2.1: SVM example

The advantages of SVM are:

• Effective in high spatial dimensions;

• They treat non linear problems;

• More stable in the definition of parameters.

The disadvantages of SVM are:

• Non interpretable model;

• Non probabilistic method.

2.3.5 Model evaluation
The main metrics for performance evaluation of a model are:

• Accuracy;

• Precision;

• Recall.

In order to compute them it is necessary to build a confusion matrix which summarises
the classification performance of a classifier with respect to the test set. For a binary
classifier it is a table with two rows and two columns which reports the number of false

20

2.3 – Classification

True
positivep′

p

False
negative

n Total

P′

False
positiven′

Total P

True
negative N′

N

Actual
Value

Prediction Outcome

Figure 2.2: Confusion matrix for a binary classifier

positives, false negatives, true positives, and true negatives. Figure 2.2 shows an example
of confusion matrix for a binary classifier.

Accuracy is computed as follows:

Accuracy = Number of correctly classified objects

Number of classified objects
(2.15)

for a binary classifier is:

Accuracy = TP + TN

TP + TN + FP + FN
(2.16)

However, accuracy is not appropriate for unbalanced class label distribution or for different
class relevance.

Recall and precision, instead, are class specific measures and are defined as follows:

Recall(C) = Number of objects correctly assigned to C

Number of objects belonging to C
(2.17)

Precision(C) = Number of objects correctly assigned to C

Number of objects assigned to C
(2.18)

for a binary classifier, for the positive class are:

Recall(P) = TP

TP + FN
(2.19)

Precision(P) = TP

TP + FP
(2.20)

21

Related Work

2.4 Apache Spark
Apache Spark is a unified analytics engine for large-scale data processing. In the context
of Big Data it aims to achieve the following goals: generality in terms of diverse work-
loads, operators and job sizes, low latency, fault tolerance and simplicity by means of job
scheduling and job synchronization.

Data in Spark is represented as Resilient Distributed Datasets (RDD) which contain an
arbitrary collection of objects distributed across the worker nodes of clusters so that they
can be processed in parallel. RDDs are stored in main memory whenever possible, otherwise
on the local disk. In order to provide fault tolerance and to reduce synchronization costs
among the nodes, RDDs are immutable: whenever there is the need to change content for
a RDD, a new one is instantiated. Spark programs are written in terms of operations on
RDDs.

The structure of Spark programs is based on a master/slave architecture. It has one
coordinator, the Driver, which communicates with many distributed worker nodes. The
Driver contains the main method, defines the workflow of the application, defines RDDs
which are partitioned on the nodes of the cluster and invoke parallel operations on RDDs. It
converts the user program into tasks which are the scheduled on the executors. Executors
are the processes of worker nodes who are in charge of running different computations
(tasks) in parallel. Each executor runs, on its own partition of the RDDs, the operations
specified in the driver. Once they finish running, results are recombined after distributing
them to the different nodes by means of the shuffle operation.

Two types of operations are available for RDDs: transformations and actions.

• Transformations, due to the immutability of RDDs turn a RDD into a new RDD,
whose contents varies by applying the certain operation to the input RDD;

• Actions return a value to the Driver program or write the result in the storage, the
latter could be large and in this case it is stored in the (distributed) file system.

The presence of an action throughout the Driver program is crucial because transfor-
mations in Spark are lazily computed, which means that the content of the new RDD are
computed only in the moment an action is specified. When a transformation is invoked
Spark keeps only track of the dependency between the input RDD and the new RDD.
This ensures greater efficiency and reliability. Table 2.1 and Table 2.2 summarize the main
transformations and actions.

A variant of the RDD is the PairRDD, which represents a collection of key-value pairs,
they support specific operations related to data grouping. Table 2.3 and Table 2.4 summa-
rize the main PairRDD transformations and actions.

22

2.4 – Apache Spark

Transformation Description
Filter It returns a new RDD containing only the elements of the input

RDD that satisfy a user specified condition.
Distinct It returns a new RDD containing the distinct elements of the

input RDD.
Sample It returns a new RDD containing a random sample of the input

RDD with or without replacement.
Map It creates a new RDD containing exactly one element y for each

element x of the input RDD by applying a user defined function
f on x.

FlatMap It creates a new RDD by applying a function f on each element
of the input RDD, the function f is applied on an element x of
the input RDD and returns a list of values [y], where [y] can be
the empty list.

MapToPair It creates a new PairRDD by applying a function f on each
element of the input RDD. The new RDD contains one tuple y
for each element x of the input RDD.

FlatMapToPair It creates a new PairRDD by applying a function f on each
element of the regular input RDD. The new RDD contains a
list of tuples [y] for each element x of the input RDD, where [y]
can be the empty list.

ZipWithUniqueId It creates a new PairRDD by coupling each element of the
input RDD with a unique identifier.

Union It returns a new RDD containing the union of the elements of
the input RDD and the elements of the one passed as
parameter to union(). Duplicates values are not removed. All
the RDDs must have the same data type.

Intersection It returns a new RDD containing the intersection of the
elements of the input RDD and the elements of the one passed
as parameter to intersection(). All the RDDs must have the
same data type.

Subtract It returns a new RDD containing the elements appearing only
in the input RDD and not in the one passed as parameter to
subtract(). All the RDDs must have the same data type.

Table 2.1: MAIN RDD TRANSFORMATIONS IN SPARK

23

Related Work

Action Description
Collect It retrieves all the elements of the RDD within a local collection.
Count It returns the number of elements of the RDD.
Take It returns a collection of the first n elements of the RDD.
TakeSample It returns a collection containing a random sample of size n of

the RDD, with or without replacement.
Top It returns a collection containing the top n elements of the RDD

based on the default sort order of the objects.
First It returns the first element of the RDD.
Reduce It returns a single object obtained by combining the values of the

objects of the RDD by using a user provided function. The
function must be associative and commutative. The object
returned by the function and the object of the RDD belong to
the same class.

Aggregate It returns a single object obtained by combining the values of the
objects of the RDD by means of a user provided function and an
initial zero value. The function must be associative and
commutative. The returned object can belong to a different class
with respect to the object of the RDD.

SaveAsTextFile It stores the RDD as a text file, using string representations of
elements, in a group of files in the given output path.

Table 2.2: MAIN RDD ACTIONS IN SPARK

24

2.4 – Apache Spark

Transformation Description
ReduceByKey It returns a new PairRDD containing one pair for each key of the

input PairRDD. The value of each pair of the new PairRDD is
obtained by combining the values of the input PairRDD with the
same key. The input PairRDD and the new PairRDD have the
same data type.

GroupByKey It returns a new PairRDD containing one pair for each key of the
input PairRDD. The value of each pair of the new PairRDD is a
list containing the values of the input PairRDD with the same
key.

MapValues Apply a function over each pair of a PairRDD and return a new
PairRDD. The applied function returns one pair for each pair of
the input PairRDD. The function is applied only to the value
without changing the key. The input PairRDD and the new
PairRDD can have a different data type.

FlatMapValues Apply a function over each pair of a PairRDD and return a new
PairRDD. The applied function returns a set of pairs (from 0 to
many) for each pair of the input PairRDD. The function is
applied only to the value without changing the key. The input
PairRDD and the new PairRDD can have a different data type.

SubtractByKey It returns a new PairRDD where the pairs associated with a key
appearing only in the input RDD and not in the one passed as
parameter.

Join It returns a new PairRDD corresponding to the join of the two
PairRDDs. The join is based on the value of the key.

Table 2.3: MAIN PAIRRDD TRANSFORMATIONS IN SPARK

Action Description
CountByKey It returns a local map containing the number of elements in the

input PairRDD for each key of the input PairRDD.
CollectAsMap It returns a local map containing the pairs of the input PairRDD.

Table 2.4: MAIN PAIRRDD ACTIONS IN SPARK

25

26

Chapter 3

The proposed methodology

In this chapter, the system to perform associative classification on spatio-temporal se-
quences is presented.

The proposed methodology is composed of four phases as shown in Figure 3.1.

Preprocessing Frequent itemsets mining Association rules generation Prediction model training

Figure 3.1: Phases of the proposed methodology

3.1 Problem statement
Given a dataset in which exists the concept of events associated with space and time
features, in particular, the features of the elements of such dataset should be:

• A timestamp;

• The coordinates of a location;

• An event or a state.

The target is to train an associative classification model to predict future events/states.

3.2 Preprocessing
The preprocessing phase is entitled to convert input time-series data to a set of transactions,
where the concept of sequentiality is included beneath the items of a transaction given a
particular structure that each item follows, which is going to be defined in Section 3.2.3.

As an example, the input dataset analyzed and exploited in this work to test the pro-
posed methodology is the status of Barcelona’s bike sharing stations over time, in particular
between May and September 2008. The dataset was gathered by the authors of [16], and
shared with professor Paolo Garza’s research group for research and didactics purposes.

The status of each station is characterised by:

27

The proposed methodology

• A timestamp in the following format: “YYYY-MM-DD HH:MM:SS”;

• The stationID;

• used_slots which is the number of bikes at the station, if less than or equal to a
threshold the station is considered empty;

• free_slots which is the number of available slots at the station, if less than or equal
to a threshold the station is considered full;

In addition, another related dataset is used throughout the work, which is the stations
dataset containing additional information for each stationID, such as its name, latitude
and longitude.

The preprocessing is composed of three ordered phases: filtering, alignment and sliding-
window transformation.

3.2.1 Filtering
To begin with, only the logs associated to full or empty events are filtered in order to
discard normal events which are way more frequent in the dataset as analyzed in Section
4.1. This is done in order to reduce the computational complexity of the frequent itemsets
mining, as well as the association rules generation. An example of the input dataset with
the events already extracted is presented in Table 3.1.

timestamp stationID event
2008-05-15 12:00:00 1 full
2008-05-15 12:01:00 3 full
2008-05-15 12:05:00 1 full
2008-05-15 12:05:00 2 empty
2008-05-15 12:10:00 1 full
2008-05-15 12:11:00 2 empty
2008-05-15 12:15:00 1 empty
2008-05-15 12:17:00 2 empty
Table 3.1: INPUT DATASET EXAMPLE

3.2.2 Alignment
It is then needed to align timestamps given a temporal granularity parameter of interest.
Let’s suppose we want to align events given a granularity of 5 minutes. Then, each times-
tamp has to be aligned to the lower minute 00, 05, 10, ..., 55. For example, given the data
in Table 3.1, the alignment transformation is applied to get the resulting values in Table
3.2.

28

3.2 – Preprocessing

timestamp stationID event
2008-05-15 12:00:00 1 full
2008-05-15 12:00:00 3 full
2008-05-15 12:05:00 1 full
2008-05-15 12:05:00 2 empty
2008-05-15 12:10:00 1 full
2008-05-15 12:10:00 2 empty
2008-05-15 12:15:00 1 empty
2008-05-15 12:15:00 2 empty

Table 3.2: INPUT DATASET EXAMPLE AFTER ALIGNMENT

3.2.3 Sliding-window transformation
Following the alignment, the sequences are defined by applying a sliding-window of dimen-
sion window size. Each element of sequence follows the following format: “delta_stationID_event”,
where the delta is the relative temporal offset for the given window.

The resulting output of this phase is a transactional database where the concept of
sequentiality is embedded in the items of the transaction. This is done to be able to
plug-in the data to an algorithm such as FP-growth who needs the input data to be a
transactional database.

Let’s suppose we have a window dimension window size = 3 and the data in Table
3.2 as input, the resulting transactions by applying the sliding-window transformation are
presented in Table 3.3.

transaction
0_1_full, 0_3_full, 1_1_full, 1_2_empty, 2_1_full, 2_2_empty

0_1_full, 0_2_empty, 1_1_full, 1_2_empty, 2_1_empty, 2_2_empty
0_1_full, 0_2_empty, 1_1_empty, 1_2_empty

0_1_empty, 0_2_empty
Table 3.3: INPUT DATASET EXAMPLE AFTER SLIDING-WINDOW TRANSFOR-
MATION

29

The proposed methodology

3.3 Frequent itemsets mining

The pseudocode of the frequent itemsets mining algorithm is presented in Algorithm 1,
Algorithm 2, Algorithm 3 and Algorithm 4.

Algorithm 1 is the main method of the frequent itemsets extraction and calls two func-
tions: genFreqItems (Algorithm 2) and genFreqItemsets (Algorithm 3). Moreover,
it creates the partitioner who is entitled to divide and distribute the data, this operation
is called Sharding in Section 2.1.4.

genFreqItems counts the support of all items and filter those who have a greater
support than minSup as well as ordering them by decreasing support, genFreqItems
performs the step 2 and 3 of PFP, respectively called Parallel Counting and Grouping
Items. The latter divides the items of freqItemsCount into Q groups that correspond to
the partitions aforementioned.

genFreqItemsets is entitled to generate frequent itemsets by generating conditional
transactions with function genCondTransactions (Algorithm 4) and by building the
local FP-trees. This is the key step of the PFP algorithm. The transactions are con-
verted into group-dependent transactions so that local FP-trees built from different group-
dependent transactions are independent. In particular, in genCondTransactions for
each transaction, the following step is performed: for each partition, if it appears in
the transaction Ti, locate its right-most appearance, say L, and output a key-value pair
(key = partition, value = Ti[1], ..., Ti[L]). Next, the AggregateByKey function in
genFreqItemsets, for each shard it builds a local FP-tree and growth its conditional
FP-trees recursively.

Furthermore, the implementation of the add method of the FP-Tree is modified by
adding the spatial constraint. In particular, during the addition of a transaction to the
tree, only items related to stations that are nearby each other within a radius parameter
in meters are kept. This operation allows to prune the search space in order to improve
the efficiency of the algorithm instead of applying a post-processing filter.

Algorithm 1 PFP-Growth to generate frequent itemsets
function run(RDD[Array[Item]] data)

count← data.count() ▷ number of transactions
minCount← math.ceil(minSup ∗ count) ▷ minimum support count
partitioner ← new HashPartitioner(numParts)
freqItemsCount← genFreqItems(data, minCount)
freqItemsets← genFreqItemsets(data, minCount, freqItemsCount.map(_._1))
itemSupport← freqItemsCount.map{(item, cnt)⇒ item→ cnt

count}.toMap()
return FPGrowthModel(freqItemsets, itemSupport)

end function

30

3.3 – Frequent itemsets mining

Algorithm 2 PFP-Growth genFreqItems function
function genFreqItems(RDD[Array[Item]] data, Long minCount)

return data.map(v ⇒ (v, 1))
.reduceByKey(partitioner, _ + _)
.filter(_._2 >= minCount)
.collect()
.sortBy(−_._2)

end function

Algorithm 3 PFP-Growth genFreqItemsets function
function genFreqItemsets(RDD[Array[Item]] data, Long minCount,
Array[Item] freqItems)

itemToRank ← freqItems.zipWithIndex().toMap()
return data.flatMap{ transaction⇒

genCondTransactions(transaction, itemToRank)
}.aggregateByKey(new FPTree[Int],

(tree, transaction)⇒ tree.add(transaction, 1),
(tree1, tree2)⇒ tree1.merge(tree2))

.flatMap{ (part, tree)⇒
tree.extract(minCount)

}.map { (ranks, count)⇒
new FreqItemset(ranks.map(i⇒ freqItems(i)).toArray(), count)

}
end function

Algorithm 4 PFP-Growth genCondTransactions function
function genCondTransactions(Array[Item] transaction,
Map[Item, Int] itemToRank)

output←Map.empty[Int, Array[Int]]
filtered← transaction.flatMap(itemToRank.get())
Arrays.sort(filtered)
n← filtered.length
i← n− 1
while i >= 0 do

item← filtered(i)
part← getPartition(item)
if not output.contains(part) then

output(part)← filtered.slice(0, i + 1)
end if
i← i− 1

end while
return output

end function

31

The proposed methodology

3.4 Association rules generation
The pseudocode of association rules generation is presented in Algorithm 5.

After generating the association rules we keep only the ones whose confidence is greater
than a minConf parameter.

The partition function returns two collections: one that satisfies the predicate func-
tion, the other that does not.

The Rule class is composed of five attributes:

• the antecedent as an Array[Item];

• the consequent as an Array[Item];

• freqUnion;

• freqAntecedent;

• freqConsequent.

The confidence of the rule is computed as freqUnion
freqAntecedent .

Algorithm 5 Association rules generation
function run(RDD[FreqItemset[Item]] freqItemsets, Map[Item, Double] itemSupport)

//For candidate rule X ⇒ Y, generate (X, (Y, freq(XunionY)))
candidates← freqItemsets.flatMap{itemset⇒

items← itemset.items()
items.flatMap{item⇒

items.partition(_ == item) match {
(consequent, antecedent)⇒

((antecedent.toSeq(), (consequent.toSeq(), itemset.freq)))
}

}
}

//Join to get (X, ((Y, freq(X union Y)), freq(X))), generate rules, and filter by confidence
return candidates.join(freqItemsets.map(x⇒ (x.items().toSeq(), x.freq())))

.map{ (antecedent, ((consequent, freqUnion), freqAntecedent))⇒
new Rule(antecedent.toArray(),

consequent.toArray()
freqUnion,
freqAntecedent,
itemSupport.get(consequent.head()) ▷ consequent is only one element

}.filter(_.confidence() >= minConf)
end function

3.4.1 Post processing filter
After having generated the association rules it is needed to apply a post processing filter
to keep the ones:

32

3.5 – Prediction model training

• whose delta in the consequent is after all deltas in the antecedent, in order to have
rules that predict a value in the future;

• who have at least one delta set to 0, in order to discard shifted duplicates.

Given a granularity of 30 minutes, an example of valid association rule is the following:

0_1_empty, 1_2_full ⇒ 2_3_empty [Support = 10%, Confidence = 75%] (3.1)

Which means: whenever station 1 is empty, if after 30 minutes station 2 is full, then
there is a 75% probability that station 3 will be empty after another 30 minutes, and this
happens 10% of times in the dataset.

3.5 Prediction model training
The prediction model is based on applying associative classification on the input sequences.
In particular, the input transactional dataset is partitioned into training set and test set
as follows:

• Training set: 2
3 of the input transactional dataset on which the frequent itemsets

mining and the association rule generation is performed;

• Test set: the remaining 1
3 of the input transactional dataset on which the associative

classifier is tested.

The associative classifier works as follows:

• First, the association rules extracted for the training set are ordered by in sequence:

– Decreasing confidence;

– Decreasing support;

– Rule length;

– Lexicographical order;

• Then, given for example a window size = 3, we iterate over the transactions of the test
set and we check for each station at delta = 2, following the order defined previously,
what is the first rule that can be applied (in terms of matching the elements of the
antecedent and matching the station for the consequent) and if there is a match, we
emit a prediction, which is the consequent of the rule. If no rule can be applied,
the classifier predicts for the current station the normal event. Next, we check if
the prediction is correct or not, producing a confusion matrix for each station, a
total confusion matrix collecting all the predictions, as well as computing the average
precision, average recall and accuracy metrics along with precision and recall for each
class. An overview of the several types of classifiers tested is presented in Section 4.3.

33

The proposed methodology

Transaction
0_1_full, 0_3_full, 1_1_full, 1_2_empty, 2_1_full, 2_2_empty

0_1_full, 0_2_empty, 1_1_full, 1_2_empty, 2_1_empty, 2_2_empty
...

Table 3.4: TEST SET TRANSACTIONS FOR CLASSIFICATION EXAMPLE

3.5.1 Example
To better understand how the associative classifier works, an example is presented.

Ordered association rules
0_3_full, 1_2_empty ⇒ 2_1_full
0_1_full, 1_1_full ⇒ 2_2_full

0_1_empty ⇒ 2_3_empty
Table 3.5: ORDERED ASSOCIATION RULES FOR CLASSIFICATION EXAMPLE

Given the transactions in Table 3.4 and the ordered association rules in Table 3.5 we
iterate over the elements of the first transaction until we find an item with delta = 2.

The first item is 2_1_full then, we go through the ordered association rules and we
look for the first one who has in the consequent 2_1_X (X means don’t care). The
first rule 0_3_full, 1_2_empty ⇒ 2_1_full matches the consequent we are interested
in. Afterwards we check if the elements in the antecedent of the rule are present in the
transaction, then we have a match for the rule. Therefore we predict full for station 1 at
delta = 2 and it is a correct prediction given that the item in the transaction is 2_1_full.

On the other hand, an example of wrong prediction is the following: the second item is
2_2_empty, then we scan through the association rules looking for the first one who has
in the consequent 2_2_X. The second rule 0_1_full, 1_1_full ⇒ 2_2_full matches
the consequent we are interested in. Then we check if the elements in the antecedent are
present in the transaction, consequently we have a match for the rule. Hence, we predict
full for station 2 at delta = 2 and it is a wrong prediction given that the item in the
transaction is 2_2_empty.

Moreover, when a station like station 3 as in the first transaction does not appear with
delta = 2 we assume that the station is normal (2_3_normal). Then we look for the
first rule who has in the consequent 2_3_X. The third rule 0_1_empty ⇒ 2_3_empty
matches the consequent we are interested in. Then we check if the elements in the an-
tecedent are present in the transaction, then we don’t have a match for the rule. Since
no rules can be applied, we predict normal for station 3 at delta = 2 and it is a correct
prediction given that the item in the transaction is 2_3_normal.

34

Chapter 4

Experimental results

4.1 Dataset analysis
The dataset that will be tested throughout the work contains the historical information
about Barcelona’s bike sharing system between May and September 2008, where the num-
ber of stations involved is 284. Figure 4.1 shows the location of the stations.

Figure 4.1: Locations of bike sharing stations

The first analysis is conducted on the number of events per station, it is then produced
the Empirical Cumulative Distribution Function (ECDF) varying the threshold parameter
from Figure 4.2 to Figure 4.9. The ECDF allows to plot a feature of the data in order
and observe the feature as distributed across the dataset. It can be read as follows: for

35

Experimental results

example given Figure 4.2, what is the percentage of stations that has less than 10000 full
events? Look for 10000 on the x-axis and then move vertically until hitting the curve. The
answer is: nearly 90% of stations has less than 10000 full events.

0 10000 20000 30000 40000
events with threshold=0

0.0

0.2

0.4

0.6

0.8

1.0

EC
DF

empty
full

Figure 4.2: Events per station ECDF thr = 0

0 20000 40000 60000 80000
events with threshold=0

0.0

0.2

0.4

0.6

0.8

1.0

EC
DF

empty
full
normal

Figure 4.3: Events per station ECDF thr = 0

0 10000 20000 30000 40000 50000 60000
events with threshold=1

0.0

0.2

0.4

0.6

0.8

1.0

EC
DF

empty
full

Figure 4.4: Events per station ECDF thr = 1

0 10000 20000 30000 40000 50000 60000 70000 80000
events with threshold=1

0.0

0.2

0.4

0.6

0.8

1.0

EC
DF

empty
full
normal

Figure 4.5: Events per station ECDF thr = 1

36

4.2 – Parameters effect on association rule generation

0 10000 20000 30000 40000 50000 60000 70000
events with threshold=2

0.0

0.2

0.4

0.6

0.8

1.0

EC
DF

empty
full

Figure 4.6: Events per station ECDF thr = 2

0 10000 20000 30000 40000 50000 60000 70000 80000
events with threshold=2

0.0

0.2

0.4

0.6

0.8

1.0

EC
DF

empty
full
normal

Figure 4.7: Events per station ECDF thr = 2

0 10000 20000 30000 40000 50000 60000 70000
events with threshold=2

0.0

0.2

0.4

0.6

0.8

1.0

EC
DF

empty
full

Figure 4.8: Events per station ECDF thr = 3

0 10000 20000 30000 40000 50000 60000 70000 80000
events with threshold=2

0.0

0.2

0.4

0.6

0.8

1.0

EC
DF

empty
full
normal

Figure 4.9: Events per station ECDF thr = 3

We can see that the most rare events are the full ones, as opposed to the normal events
which are the most frequent. In addition, we verify that as the threshold increases the
number of full and empty events per station increases too.

4.2 Parameters effect on association rule generation
In this section we are going to analyze the effects of model parameters on the extraction
of association rules in terms of:

• Execution time in seconds

• Number of frequent itemsets

• Number of association rules

• Distribution of rules confidence

37

Experimental results

The default parameters are:

• threshold = 0;

• granularity = 5 minutes;

• window size = 3;

• minSup = 0.2;

• radius = 500m;

• minConf = 0.8.

4.2.1 Testing environment

The parallel code used to perform frequent itemsets mining and association rule generation
was run on the machines of the SmartData@Polito cluster located at the Politecnico di
Torino, Italy. A Yarn queue was dedicated to the execution of the job, in particular for
each job 4 executors are instantiated, each equipped with 4GB of main memory.

4.2.2 Radius

The choice of having radius values between 500m, 1km and 1.5km is due to the fact that if
a user, for example, wants to reach a nearby station, those values are reasonable for a walk
route. As shown in Figure 4.10, Figure 4.11 and Figure 4.12: execution time, the number
of itemsets and the number of rules increases as the radius rises. Figure 4.13 shows the
distribution of rules confidence given different radius.

38

4.2 – Parameters effect on association rule generation

500 1000 1500
Radius (m)

0

50

100

150

200

Ex
ec

ut
io

n
Ti

m
e

(s
)

Figure 4.10: Execution time by radius

500 1000 1500
Radius (m)

0

500

1000

1500

2000

2500

Nu
m

be
r o

f I
te

m
se

ts

Figure 4.11: Number of itemsets by ra-
dius

500 1000 1500
Radius (m)

0

100

200

300

400

500

600

700

800

Nu
m

be
r o

f R
ul

es

Figure 4.12: Number of rules by radius

0.800 0.825 0.850 0.875 0.900 0.925 0.950 0.975 1.000
0

20

40

60

80

100

500m
1km
1.5km

Figure 4.13: Distribution of rules confi-
dence

4.2.3 MinSup

As shown in Figure 4.14, Figure 4.15 and Figure 4.16: the execution time, the number
of itemsets and the number of rules decreases as the minSup value increases. Figure 4.17
shows the distribution of rules confidence given different minSup.

39

Experimental results

0.1 0.2 0.3
minsup

0

20

40

60

80

Ex
ec

ut
io

n
Ti

m
e

(s
)

Figure 4.14: Execution time by minSup

0.1 0.2 0.3
minsup

0

2000

4000

6000

8000

10000

12000

14000

Nu
m

be
r o

f I
te

m
se

ts

Figure 4.15: Number of itemsets by min-
Sup

0.1 0.2 0.3
minsup

0

500

1000

1500

2000

2500

3000

3500

Nu
m

be
r o

f R
ul

es

Figure 4.16: Number of rules by minSup

0.800 0.825 0.850 0.875 0.900 0.925 0.950 0.975 1.000
0

50

100

150

200

250

300

350
0.1
0.2
0.3

Figure 4.17: Distribution of rules confi-
dence

4.2.4 Window size

The choice of having a window size between 3, 4 and 5 is due to the fact that having
a window composed by less than 3 items is not interesting for the analysis, whereas, a
window composed by more than 5 items is computationally expensive. As shown in Figure
4.18, Figure 4.19 and Figure 4.20: the execution time, the number of itemsets and the
number of rules increases as the window size rises. Figure 4.21 shows the distribution of
rules confidence given a different window size.

40

4.2 – Parameters effect on association rule generation

3 4 5
window size

0

20

40

60

80

100

120

140

Ex
ec

ut
io

n
Ti

m
e

(s
)

Figure 4.18: Execution time by window

3 4 5
window size

0

500

1000

1500

2000

2500

3000

Nu
m

be
r o

f I
te

m
se

ts

Figure 4.19: Number of itemsets by win-
dow

3 4 5
window size

0

200

400

600

800

1000

Nu
m

be
r o

f R
ul

es

Figure 4.20: Number of rules by window

0.800 0.825 0.850 0.875 0.900 0.925 0.950 0.975
0

20

40

60

80

100

120

140

160 3
4
5

Figure 4.21: Distribution of rules confi-
dence

4.2.5 Granularity

The choice of having a granularity between 5, 15, 30 and 60 minutes is due to the fact
that window dimensions are reasonable since having values less than 5 minutes and more
than 60 minutes would not be interesting for the analysis. As shown in Figure 4.22 the
execution time decreases as the granularity increases, because of the decrease of the number
of input transactions. On the other hand, as shown in Figure 4.23 and Figure 4.24, both
the number of itemsets and the number of rules increases as the granularity rises. Figure
4.25 shows the distribution of rules confidence given different granularity.

41

Experimental results

5 15 30 60
granularity

0

20

40

60

80

Ex
ec

ut
io

n
Ti

m
e

(s
)

Figure 4.22: Execution time by gran

5 15 30 60
granularity

0

1000

2000

3000

4000

5000

6000

7000

8000

Nu
m

be
r o

f I
te

m
se

ts

Figure 4.23: Number of itemsets by gran

5 15 30 60
granularity

0

200

400

600

800

1000

1200

Nu
m

be
r o

f R
ul

es

Figure 4.24: Number of rules by gran

0.800 0.825 0.850 0.875 0.900 0.925 0.950 0.975
0

50

100

150

200

250

300 5 min
15 min
30 min
60 min

Figure 4.25: Distribution of rules confi-
dence

4.3 Prediction model training
4.3.1 Testing environment
The sequential code for the prediction model training was run on a macOS Mojave 10.14.6
PC equipped with an Intel Core i7 (2.6 GHz) CPU and 16 GB of RAM. The version of the
Python interpreter is the 3.9 and we used the scikit-learn library [17] to train and test
several competitor algorithms, as well as the matplotlib library [18] to plot the graphs.

4.3.2 Categories of event
A station can be characterised by two types of critical events: empty when the value of
used_slots is lower than or equal to the threshold parameter or full when the value of
free_slots is lower than or equal to the threshold parameter. In addition, we present two
definitions of criticalities:

• All critical events, when we consider all the logs that contain an empty or full
station;

42

4.3 – Prediction model training

• Becoming critical events, when we consider only the events located at the beginning
of a series of critical events.

Given a threshold = 0 and a granularity of 2 minutes, the difference between the two
definitions is presented in Table 4.1.

timestamp stationID used_slots free_slots all critical becoming critical
2008-06-01 11:40:00 1 1 18 / /
2008-06-01 11:42:00 1 0 19 empty empty
2008-06-01 11:44:00 1 0 19 empty /
2008-06-01 11:46:00 1 0 19 empty /
2008-06-01 11:46:00 1 1 18 / /

Table 4.1: SAMPLE OF RECORDS AND EXTRACTION OF EVENTS

4.3.3 Timeslots
Some of the following experimental trials will be enriched with the concept of timeslots.
In particular, we divide the hours of the day into slots of 4-hours and we add this feature
as an item of each transaction. Therefore, some rules can also include a timeslot in their
antecedent. Given a granularity of 30 minutes we can have a rule as follows:

0_61_full, 1_70_full, ts_−1_20−24⇒ 2_61_full [Support = 1%, Confidence = 98%]
(4.1)

Which means: whenever station 61 is full, if after 30 minutes station 70 will be full and
if we are between hour 20 and 24 of the day, in another 30 minutes time there is a 98%
probability that station 61 will be full, and this happens 1% of times in the dataset.

4.3.4 Tested classifiers
In the following subsections several types of associative classifiers are presented. The
result we aim to obtain is to achieve a high precision for the critical classes empty and
full, in particular for class full since it is the most rare event. The following experiments
are characterized by different configurations. For instance, by using the all critical or
the becoming critical semantic defined in Section 4.3.2, moreover by focusing on binary
classifications like full/not full or empty/not empty. In addition, competitor classifiers
metrics are presented and compared to the associative classifiers. Eventually, multiple-
layers classifiers are described such as the double binary classifiers as well as the mixed
approach ones.

From Section 4.3.4 to Section 4.3.4 the default parameters are:

• threshold = 0;

• granularity = 30 minutes;

• window size = 3;

43

Experimental results

• minSup is variable, specified in the x-axis

• radius = 500m;

• minConf = 0.98;

• ruleLen = 0, it represents the minimum rule length.

AEAFT classifier

The AEAFT (All Empty All Full Timeslots) classifier is characterized as follows:

• In the generation of association rules it considers all empty and all full events, there-
fore rules can be composed of elements characterised by the empty event as well as
the full event;

• If no rule is matched it emits a normal prediction;

• Timeslots are included.

This experiment is being done in order to extract rules that contain both empty and full
events. Its metrics are presented in Figure 4.26.

AEAFT_0.012 AEAFT_0.01 AEAFT_0.005
0.0

0.2

0.4

0.6

0.8

1.0

precision
recall
accuracy
pre_EM
pre_FU
pre_NO
rec_EM
rec_FU
rec_NO

Figure 4.26: AEAFT classifier metrics by AEAFT_minSup

We can observe that the AEAFT classifier achieves a very high precision for the critical
class full (values higher than 80%), on the other hand precision is only around 60% for
the normal class. Moreover, a weak point is the very low values for recalls, except for the
normal class. On balance, we can see that the precision decreases as the minSup lowers
whereas, recalls slightly increase.

44

4.3 – Prediction model training

AFT,AF classifiers

The AFT (All Full Timeslots) classifier is characterized as follows:

• In the generation of association rules we consider only full events, therefore it can be
considered as a binary classifier (full/not full);

• If no rule is matched we emit a not full prediction;

• Timeslots are included.

The AF classifier is the same as AFT except that it does not include timeslots. These
experiments are being done in order to take into account only full events and see how the
classifiers perform in such conditions. Metrics for AFT and AF are presented in Figure
4.27.

AFT_0.01_5_1 AFT_0.003 AF_0.003_5 AF_0.002
0.0

0.2

0.4

0.6

0.8

1.0

precision
recall
accuracy
pre_FU
pre_NF
rec_FU
rec_NF

Figure 4.27: AFT, AF classifiers metrics by AFX_minSup_ruleLen_minConf

We can point out that accuracy is very high for both models. In addition, precision
decreases, while recall slightly increases as the minSup decreases. In particular, we can
see how the presence of timeslots in AFT is crucial since it increases the precision.

45

Experimental results

AFT_0.01_3 AFT_0.01_4 AFT_0.01_5 AFT_0.01_6
0.0

0.2

0.4

0.6

0.8

pre_FU
rec_FU

Figure 4.28: AFT classifier metrics by AFT_minSup_ruleLen

In Figure 4.28 we can observe how as the ruleLen increases the precision for the class full
grows, until 5, then decreases. Moreover, the recall for the class full gradually decreases
as the ruleLen increases.

AET,AE classifiers

The AET (All Empty Timeslots) classifier is characterized as follows:

• In the generation of association rules we consider only empty events, therefore it can
be considered as a binary classifier (empty/not empty);

• If no rule is matched we emit a not empty prediction;

• Timeslots are included.

The AE classifier is the same as AET except that it does not include timeslots. These
experiments are being carried out in order to take into account only empty events and see
how the classifiers perform in such conditions. Metrics for AET and AE are presented in
Figure 4.29.

46

4.3 – Prediction model training

AET_0.01_5 AET_0.005 AE_0.01_5 AE_0.005
0.0

0.2

0.4

0.6

0.8

1.0

precision
recall
accuracy
pre_EM
pre_NE
rec_EM
rec_NE

Figure 4.29: AET, AE classifiers metrics by AEX_minSup_ruleLen

We can see how as the minSup lowers precision for class empty decreases. In addition,
as opposed to the previous classifier AFT, the presence of timeslots in AET decreases the
precision for the class empty with respect to AE.

BFT,BF classifiers

The BFT (Becoming Full Timeslots) classifier is characterized as follows:

• In the generation of association rules we consider only becoming full critical events,
therefore it can be considered as a binary classifier (full/not full);

• If no rule is matched we emit a not full prediction;

• Timeslots are included.

The BF classifier is the same as BFT except that it does not include timeslots. These
experiments are being done in order to take into account the becoming full events and see
how the classifiers perform in such conditions. Metrics for BF and BFT are presented in
Figure 4.30.

47

Experimental results

BFT_0.003_5 BFT_0.002_5 BF_0.002_5 BF_0.001_5
0.0

0.2

0.4

0.6

0.8

1.0

precision
recall
accuracy
pre_FU
pre_NF
rec_FU
rec_NF

Figure 4.30: BFT, BF classifiers metrics by BFX_minSup_ruleLen

We can comment that the presence of timeslots increases the values of precision for
the class full, even if, above all the values of precision are low (less than 80%). Besides,
we achieve a very high value of accuracy with both classifiers and we can notice that the
precision decreases as the minSup reduces, whilst recall marginally increases.

BET,BE classifiers

The BET (Becoming Empty Timeslots) classifier is characterized as follows:

• In the generation of association rules we consider only becoming empty critical events,
therefore it can be considered as a binary classifier (empty/not empty);

• If no rule is matched we emit a not empty prediction;

• Timeslots are included.

The BE classifier is the same as BET except that it does not include timeslots. These
experiments are being carried out in order to take into account the becoming empty events
and see how the classifiers perform in such conditions. Metrics for BET and BE are
presented in Figure 4.31.

48

4.3 – Prediction model training

BET_0.03_5 BET_0.02_5 BE_0.08_5 BE_0.05_5
0.0

0.2

0.4

0.6

0.8

1.0

precision
recall
accuracy
pre_EM
pre_NE
rec_EM
rec_NE

Figure 4.31: BET, BE classifiers metrics by BEX_minSup_ruleLen

As in the previous classifiers, we can spot that the presence of timeslots increases the
values of precision for class empty. Furthermore, recall values for class empty are very low
(1% or less).

Double binary classifiers

The double binary classifiers are characterized by a 2-layer architecture:

• In the first layer we consider rules from a binary classifier (full/not full);

• If no rule is applied we consider rules from a binary classifier (empty/not empty);

• If no rule is matched we emit a normal prediction for the interested station.

These experiments are being conducted in order to analyze if using a different architecture
based on different layers could improve the metrics. Metrics for the double binary classifiers
are shown in Figure 4.32.

49

Experimental results

BFT_0.002+BET_0.02 AFT_0.01+AET_0.01
0.0

0.2

0.4

0.6

0.8

1.0

precision
recall
accuracy
pre_EM
pre_FU
pre_NO
rec_EM
rec_FU
rec_NO

Figure 4.32: Double binary classifiers metrics by XXX_minSup+XXX_minSup

We can point out that the double binary classifier AFT+AET achieves higher values
for critical classes (full and empty) precision with respect to BFT+BET. In addition,
AFT+AET reaches marginally higher value for empty recall and lower value for full recall.

Competitor classifiers

Competitor classifiers have the following characteristics:

• One model for each station is generated;

• They are trained with the same input data (transactions) as the one used for training
our models;

• The training data consists of the status of all bike sharing stations at delta = 0 and
delta = 1 for each transaction.

After performing GridSearch to tune the hyperparameters for the competitors classifiers,
their metrics are shown in Figure 4.33.

50

4.3 – Prediction model training

DT RF SVM_linear SVM_poly SVM_RBF
0.0

0.2

0.4

0.6

0.8

precision
recall
accuracy
pre_EM
pre_FU
pre_NO
rec_EM
rec_FU
rec_NO

Figure 4.33: Competitor classifiers metrics

We can observe the Decision Tree (DT) as the model that better performs, in terms
of tradeoff between precision and recall for all classes. Whereas, Random Forest (RF)
obtains higher precision for full class despite a low value of its recall. The SVM that better
performs is the one with the RBF kernel, it reaches similar values of classes precision with
respect to the Decision Tree at the expense of lower value of recall for full class.

DT RF SVM_RBF AEAFT_0.012 AFT+AET
0.0

0.2

0.4

0.6

0.8

1.0

precision
recall
accuracy
pre_EM
pre_FU
pre_NO
rec_EM
rec_FU
rec_NO

Figure 4.34: Comparison with competitor classifiers metrics

When it comes to compare our methodology to the mentioned competitor algorithms
we can notice in Figure 4.34 as we manage to achieve, for the AEAFT classifier, a higher

51

Experimental results

precision for the full class at the expense of very low values for critical classes (empty and
full) recalls, as well as a lower precision for the normal class. On balance, our methodology
does not outperform competitor algorithms if we take into account the tradeoff between
precision and recall.

Mixed approach classifiers

The mixed approach classifier DT+AFT is characterized by a 2-layer architecture:

• In the first layer we apply a binary Decision Tree classifier (normal/not normal);

• If the prediction is not normal, in the second layer we consider rules from a binary
classifier (full/not full);

• If no rule is matched we emit an empty prediction for the interested station.

These experiments are being conducted in order to analyze if using a mixed architecture
based on different classifiers could improve the metrics. In particular, the target is to higher
the recall for the critical classes empty and full. The metrics for the DT+AFT classifier
are reported in Figure 4.35.

DT+AFT_0.01 DT+AFT_0.003 DT+AFT_0.002
0.0

0.2

0.4

0.6

0.8

precision
recall
accuracy
pre_EM
pre_FU
pre_NO
rec_EM
rec_FU
rec_NO

Figure 4.35: Mixed approach DT+AFT classifiers metrics by DT+AFT_minSup

With respect to previous classifiers, the DT+AFT classifier manages to higher the recall
for the empty class despite a lower precision. Moreover, as the minSup decreases the recall
for class full increases, as well as the precision for the empty class that increases.

Furthermore, if we want to consider only the most critical and rare class, which is the
full one (as analysed in Section Figure 4.1), we can design a AFT+DT binary classifier that

52

4.3 – Prediction model training

classifies between full and not full. The AFT+DT classifier is characterized by a 2-layer
architecture:

• In the first layer we consider the association rules from the AFT binary classifier
(full/not full);

• If no rule is matched, in the second layer we apply a binary Decision Tree classifier
(full/not full).

The target of this classifier is to increase the recall for the full class, as well as achieving a
very high precision for the first layer. Metrics for the AFT+DT classifier are compared to
a binary Decision Tree classifier (full/not full) in Figure 4.36.

DT AFT_0.01+DT
0.0

0.2

0.4

0.6

0.8

1.0

precision
recall
accuracy
pre_FU
pre_NF
rec_FU
rec_NF

Figure 4.36: Mixed approach AFT+DT classifiers metrics by AFT_minSup+DT

We can mention that both classifiers reach the same values for precisions: 78% for class
full and 98% for class not full. Additionally, the AFT+DT classifier achieves a rather
higher value of recall for class full. On balance both classifiers are comparable in terms of
metrics, but the advantage is that we achieve a very high precision in the first layer (90%),
providing also explainability for those cases.

Lastly, Figure 4.37 shows a comparison between all associative classifiers tested, focusing
only on precision and recall for class full, since we would be interested in achieving high
precision for the most rare event.

53

Experimental results

DT AEAFT AFT BFT AFT+AET DT+AFT AFT+DT
0.0

0.2

0.4

0.6

0.8

pre_FU
rec_FU

Figure 4.37: Associative classifiers comparison

We can point out that the classifier that achieves the highest precision is the AFT, at the
expense of a very low recall (only 2%). The classifiers that outperform the Decision Tree
in terms of precision are: AEAFT, AFT, AFT+AET and DT+AFT, despite a significant
lower recall. The mixed approach classifier AFT+DT achieves similar value of precision
with respect to the Decision Tree, whereas reaching slightly higher value of recall.

54

Chapter 5

Conclusions

The target of this work was to introduce a methodology to perform associative classification
on spatio-temporal sequences. We believe that such methodology could be applied in a
broad range of applications, given that the dataset follows the concept of states or events
associated to space and time.

Competitor algorithms such as Decision Trees try to choose paths in the tree in order to
maximize the result quality for all classes. Whereas, each association rule is independently
extracted from the others, and it is kept if confidence is greater than a minConf threshold.
Moreover, in each association rule we have conditions on a certain set of attributes that can
be different to the set of attributes of a different rule. In addition, association rules take
into account correlation among the several events, while the decision tree is built step by
step impacting on what can be extracted. Since the Decision Tree considers one attribute
at a time, some rules are discarded during the creation of the tree. On the other hand, in
association rules, we extract all the possible frequent combinations leading to poor metrics
in terms of tradeoff between precision and recall. Furthermore, one advantage of using
association rules is the high explainability with respect to the competitor algorithms.

On balance, the advantage of performing associative classification is achieving very high
precisions for the critical and most rare class full, at the expense of a very low recall. In
order to improve the recall, we designed a 2-layer classifier, where in the first layer we
use association rules, which provide explainability and are characterized by a very high
precision (90%). Then, we pass the cases not covered by the association rules to a second
layer where we use a Decision Tree, which increases the recall of the whole architecture.

55

56

Bibliography

[1] T. Imielinski, Arun Swami, and Rajat Agrawal. Mining association rules between sets
of items in large databases. ACM SIGMOD, pages 207–216, 01 1993.

[2] R. Agrawal. Fast algorithms for mining association rules. the Proc. of 20th Int.Conf.
on Very Large Databases (VLDB), Santiago de Chile, Chile, 01 1994.

[3] Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns without candidate
generation. volume 29, pages 1–12, 06 2000. doi: 10.1145/342009.335372.

[4] Haoyuan Li, Yi Wang, Dong Zhang, Ming Zhang, and Edward Chang. Pfp: parallel
fp-growth for query recommendation. pages 107–114, 01 2008. doi: 10.1145/1454008.
1454027.

[5] Ramakrishnan Srikant and Rakesh Agrawal. Mining sequential patterns: Generaliza-
tions and performance improvements. EDBT, Lecture notes in computer science. vol.
1057, 1057:1–17, 03 1996. doi: 10.1007/BFb0014140.

[6] Pokou Jean, Philippe Fournier Viger, and Chadia Moghrabi. Authorship attribution
using variable length part-of-speech patterns. pages 354–361, 01 2016. doi: 10.5220/
0005710103540361.

[7] Philippe Fournier Viger, Ted Gueniche, and Vincent Tseng. Using partially-ordered
sequential rules to generate more accurate sequence prediction. pages 431–442, 12
2012. ISBN 978-3-642-35526-4. doi: 10.1007/978-3-642-35527-1_36.

[8] Philippe Fournier Viger, Roger Nkambou, and Engelbert Mephu Nguifo. A knowl-
edge discovery framework for learning task models from user interactions in intelligent
tutoring systems. pages 765–778, 01 2008.

[9] Jianyong Wang, Jiawei Han, and Chun Li. Frequent closed sequence mining without
candidate maintenance. Knowledge and Data Engineering, IEEE Transactions on, 19:
1042–1056, 09 2007. doi: 10.1109/TKDE.2007.1043.

[10] Mohammed Zaki. Zaki, m.j.: Spade: An efficient algorithm for mining frequent se-
quences. machine learning 42(1), 31-60. Machine Learning, 42:31–60, 01 2001. doi:
10.1023/A:1007652502315.

57

BIBLIOGRAPHY

[11] Jian Pei, Jiawei Han, Behzad Mortazavi-Asl, Jianyong Wang, Helen Pinto, Qiming
Chen, Umeshwar Dayal, and Mei-Chun Hsu. Mining sequential patterns by pattern-
growth: The prefixspan approach. Knowledge and Data Engineering, IEEE Transac-
tions on, 16:1424– 1440, 12 2004. doi: 10.1109/TKDE.2004.77.

[12] Jay Ayres, Jason Flannick, Johannes Gehrke, and Tomi Yiu. Sequential pattern mining
using a bitmap representation. pages 429–435, 01 2002. doi: 10.1145/775107.775109.

[13] Zhenglu Yang and M. Kitsuregawa. Lapin-spam: An improved algorithm for mining
sequential pattern. pages 1222– 1222, 05 2005. ISBN 0-7695-2657-8. doi: 10.1109/
ICDE.2005.235.

[14] Philippe Fournier Viger, Antonio Gomariz, Manuel Campos, and Rincy Thomas. Fast
vertical mining of sequential patterns using co-occurrence information. pages 40–52,
05 2014. ISBN 978-3-319-06607-3. doi: 10.1007/978-3-319-06608-0_4.

[15] Bing Liu, Wynne Hsu, and Yiming Ma. Integrating classification and association rule
mining. In Proceedings of the Fourth International Conference on Knowledge Discovery
and Data Mining, KDD’98, page 8086. AAAI Press, 1998.

[16] Andreas Kaltenbrunner, Rodrigo Meza, Jens Grivolla, Joan Codina, and Rafael
Banchs. Urban cycles and mobility patterns: Exploring and predicting trends in a
bicycle-based public transport system. Pervasive and Mobile Computing, 6:455–466,
08 2010. doi: 10.1016/j.pmcj.2010.07.002.

[17] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[18] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science &
Engineering, 9(3):90–95, 2007. doi: 10.1109/MCSE.2007.55.

58

	List of Tables
	List of Figures
	Introduction
	Related Work
	Association rules mining
	Frequent itemsets mining
	The Apriori algorithm
	The FP-Growth algorithm
	The PFP algorithm
	Association rules generation

	Sequential pattern mining
	Classification
	Associative classification
	Decision Trees
	Random Forest
	SVM
	Model evaluation

	Apache Spark

	The proposed methodology
	Problem statement
	Preprocessing
	Filtering
	Alignment
	Sliding-window transformation

	Frequent itemsets mining
	Association rules generation
	Post processing filter

	Prediction model training
	Example

	Experimental results
	Dataset analysis
	Parameters effect on association rule generation
	Testing environment
	Radius
	MinSup
	Window size
	Granularity

	Prediction model training
	Testing environment
	Categories of event
	Timeslots
	Tested classifiers

	Conclusions

