
Niccolo' Spagnuolo
Associative classification on spatio-temporal sequences.
Rel. Paolo Garza. Politecnico di Torino, Corso di laurea magistrale in Ingegneria Informatica (Computer Engineering), 2021
|
PDF (Tesi_di_laurea)
- Tesi
Licenza: Creative Commons Attribution Non-commercial No Derivatives. Download (2MB) | Preview |
Abstract: |
The main purpose of the study is to build a system to perform associative classification on spatio-temporal sequences. The proposed methodology is composed of four ordered phases: preprocessing, frequent itemsets mining, association rules generation and prediction model training. The model presented is eventually compared to other state-of-the-art classification algorithms such as Decision Trees, Random Forests and Support Vector Machines. On balance, the prediction model achieves a higher precision for the critical and most rare class with respect to its competitors. |
---|---|
Relators: | Paolo Garza |
Academic year: | 2020/21 |
Publication type: | Electronic |
Number of Pages: | 59 |
Subjects: | |
Corso di laurea: | Corso di laurea magistrale in Ingegneria Informatica (Computer Engineering) |
Classe di laurea: | New organization > Master science > LM-32 - COMPUTER SYSTEMS ENGINEERING |
Aziende collaboratrici: | UNSPECIFIED |
URI: | http://webthesis.biblio.polito.it/id/eprint/19302 |
![]() |
Modify record (reserved for operators) |