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Summary

ConnectionLens is a Java-based project which integrates a set of heteroge-
neous data sources (e.g. CSV, plain text, RDF, JSON, PDF, etc.) into a
single graph [1]. Such a graph is stored into a relational database (i.e. Post-
greSQL). Furthermore, a keyword search query algorithm has been developed
in Java, consulting ConnectionLens nodes and edges from the PostgreSQL
back-end [2].

At the same time, the size of the main memory in modern servers has been
growing significantly in the past decade, while data management research has
been leading to several database engines running entirely in main memory.
Therefore, in the present work, we seek to improve the performance of the
query algorithm by:

1. Migrating graphs built by ConnectionLens into a new graph store, de-
veloped in C++ and memory-resident;

2. Developing a novel query algorithm that accesses the graph from such
an in-memory store and takes advantage of multi-thread parallelism.

In doing so, we pay special attention to in-memory data layout, leveraging
storage bandwidth. Furthermore, we design and employ concurrent and se-
quential native data structures, which are specialized in performing the tasks
required by the scenario at hand.

This accompanies the methodical yet flexible design of a multi-threaded
query algorithm, which eventually implements effective data partitioning
policies in order to even the workload among the threads.
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Chapter 1

Introduction to
ConnectionLens

ConnectionLens (hereinafter also CL) [1]–[3] is a system developed by the
Cedar research team aiming to answer a class of application needs encoun-
tered in the field of data journalism (i.e. journalistic work significantly based
on digital data). Specifically, CL identifies connections across a set of hetero-
geneous, independently produced data sources. In this context, journalists
face several challenges that arise from the following factors:

1. The data is large (ref. big data) and therefore precludes any manual
analysis.

2. The data comes from heterogeneous sources, more or less structured (e.g.
JSON files, HTML pages, RDF graphs, plain text, etc.).

3. The information must be properly integrated and interconnected.

4. The structure, size, and shape of such data is unknown, favoring
keyword-based queries.

5. The set of data sources is highly dynamic, as more information can be
added at any moment and combined with the existing one.

6. Data provenance must be preserved since it is important to be able to
show where each piece of information in an answer came from, and how
the connections were created.

In response to these issues, CL is a system capable of:
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1 – Introduction to ConnectionLens

1. Ingesting data from different kinds of data sources into a graph, which is
then stored into a persistent store (i.e. PostgreSQL). The graph is then
available for future processing without requiring to integrated and load
the data again.

2. Answering keyword-based queries over the graph, where an answer is a
tree connecting a set of nodes such that one node matches each keyword.

In particular, CL can ingest a relational database, files in CSV, text,
RDF, JSON, HTML, or XML format, as well as a PDF files, the latter being
transformed in JSON and possibly some RDF files and then actually ingested
in the graph.

To make this report self-contained, the sequel of this chapter recalls the
main functionalities of ConnectionLens prior to our work. Specifically, Sec-
tion 1.1 details the construction of a graph out of multiple heterogeneous
data sources. Then, Section 1.2 discusses the main features of graph con-
struction. Finally, Section 1.3 outlines the keyword-based query answering
algorithm devised and implemented in prior work on ConnectionLens [2].

1.1 Graph Construction
ConnectionLens integrates JSON, XML, RDF, HTML, relational or text data
into a graph, as illustrated in Figure 1.1 [4].

First of all, there exists one data source node for each data source, and
each source is mapped to graph entities as close to its data model as pos-
sible (e.g. XML edges have no labels while internal nodes all have names).
Next, CL extracts named entities from all text nodes, regardless of the data
source they come from, using trained language models. In Figure 1.1, blue,
green, and orange nodes denote ENTITY_ORGANIZATION, ENTITY_LOCATION,
and ENTITY_PERSON respectively. Each of those entity nodes is connected
to the source node it has been extracted from by an extraction edge, which
records also the confidence of the extraction (i.e. in the figure, they are
depicted as dashed edges). Entity nodes are shared across the graph (e.g.
Person:Alice has been found in three data sources, Org:BestPharma in two
sources, etc.). ConnectionLens includes a disambiguation module that avoids
mistakenly unifying entities with the same labels but different meanings. Fi-
nally, nodes with similar labels are compared and, if their similarity is above
a user-specified threshold, a SAME_AS edge is introduced connecting them,
labeled with the similarity value (in Figure 1.1, they are depicted in red).
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1.1 – Graph Construction

Figure 1.1: Graph data integration in ConnectionLens

A SAME_AS edge with similarity 1.0 is called an equivalence edge. Then, p
equivalent nodes (e.g. the ABCPharma entity and the identical-label RDF
literal) would lead to p(p−1)

2 equivalence edges. To keep the graph compact,
one of the p nodes is declared to be the representative of all p nodes so that
we only store the p− 1 equivalence edges adjacent to the representative.

We also build a metric called specificity on edges, which is used in order to
favor edges that are rare for both nodes they connect. For a given node n and
label l, let N l

→n be the number of l-labeled edges entering n, and N l
n→ the

number of l-labeled edges exiting n. The specificity of an edge e = n1 →l n2
is defined as s(e) = 2/(N l

n1→ + N l
→n2). s(e) is 1.0 for edges that are unique

for both their source and their target, and decreases when the edge does not
stand out among the edges of these two nodes. Such a metric was inspired
by experiments on real-world data, as it helped returning interesting answers
according to empirical evidence.

Further details on graph construction can be found in [1]. Formally, a
CL graph is denoted G = (N, E), where nodes can be of different types (e.g.
URIs, XML elements, JSON nodes, extracted entities, etc.) and edges encode
data source structure, entities extracted from text and node label similarity.
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1.2 Relational Graph Storage
The data loading process ends up with a relational database stored in
PostgreSQL, representing graph entities and auxiliary information. Each
database describes a single graph. Therefore, from this point on, the terms
graph and database are employed interchangeably and equivalently.

In the following, we describe the structure of the tables and their attributes
that are relevant for future purposes:

• catalog. It stores the information related to the data sources that are
loaded in a given graph. Attributes:

– id - an automatically assigned integer;
– type - the nature of the data (RDF, JSON, XML...);
– path - the path in the file system from where the data has been
loaded;

– original_uri - the source of the data (e.g. an external URI).

• nodes. It stores the nodes of the graph that have been extracted from
the sources. Attributes:

– id - the node identifier (an automatically assigned integer);
– ds - the source identifier, i.e. foreign key into catalog;
– type - the category of the node which can be: (a) the different
nodes that we can encounter in a dataset (e.g. XML element, XML
literal, RDF URI, RDF literal, JSON map, etc.), (b) all the types
of nodes that CL creates (e.g. ENTITY_PERSON, ENTITY_LOCATION,
RECORD_ORGANIZATION, EMAIL, etc.);

– label - the node label which can be empty as a structural object
like JSON map does not have its own name;

– normalabel - a normalized (i.e. post-processed) label; by default,
it is the exact node label; however for some nodes, it differs from
the label and CL computes the normalized one to ease matching or
indexing (e.g. if the label is Mr. François Ruffin or Mr. Ruffin
François and the node is of type ENTITY_PERSON the normalized
label ends up being "françois ruffin").

• edges. It stores the edges that connect the nodes. Attributes:

10
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– id - the edge identifier (an automatically assigned integer);
– ds - if both nodes are from the same data source, the data source of
the edge; otherwise, one of the two data sources (not very meaning-
ful);

– type - the category of the edge, edges that come from the data are
just of type EDGE, but we can also have EXTRACTED_* edges (that
connect an entity with the parent text it has been extracted from)
and SAME_AS edges;

– source and target - the two nodes connected by the edge; if the
edge is oriented, then we keep the orientation; but we will see that
the query algorithm doesn’t care about the orientation of the edges;

– label - the edge label;
– confidence - the edge confidence, which is 1.0 for parent-child edges
and in general for all edges that come from the data; <1 for SAME_AS
edges and for extraction edges.

• weak_same_as. It stores similarity edges strictly smaller than 1 and
greater than a user-specified threshold; its schema is equivalent to
edges’.

• specificities. It stores the specificities of the nodes, as the number of
input and output edges.

• edge_specificity. It actually materializes the specificity of the edges,
as described in Section 1.1.

1.3 The GAM (Grow and Aggressive Merge)
Keyword Search Algorithm

Given a graph G and a set of keywords {k1, k2, . . . , km}, the algorithm aims
at identifying the set of all minimal trees connecting nodes matching each
keyword [2]. Here, by minimal we mean that no node or edge can be removed
from the tree while still keeping both one leaf matching each keyword and a
single connected tree.

In practice, since the search space is huge, the algorithm runs until a
timeout or a given number of solutions have been found (whichever happens
first). An important point to note is that, from a semantic point of view,
the root of a tree does not bring any information. Therefore, from the user
perspective, each solution is just a set of edges.

11
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1.3.1 Algorithm Outline
The main algorithmic steps are:

1. Init. With the help of an index, the nodes matching each keyword are
identified. Each of them becomes a 1-node tree.

2. Build the first Grow/Grow2Rep opportunities. Starting from such
1-node trees, Grow/Grow2Rep opportunities are defined as (tree, edge)
pairs, with edge being every edge adjacent to tree’s root or the edge
connecting tree’s root to its representative node.

3. Grow/Grow2Rep. Given a Grow/Grow2Rep opportunity, a new tree is
created by “growing” the previous tree by one edge (the tree is said to
be growing at the root). Grow/Grow2Rep opportunities are built from the
new tree.

4. Merge. Two trees having the same root are merged into a new tree
having the same root and all the edges of the input trees. Grow/Grow2Rep
opportunities are built from the new tree.

Init, Grow/Grow2Rep (also simply Grow), and Merge are the three steps that
generate new trees, each of which may or may not be a solution. A tree that
is not a solution may or may not have been encountered before. To keep
track of the trees generated throughout the search, specific data structures
are employed.

1.3.2 Exploration Order
Grow/Grow2Rep opportunities are pushed in a priority queue whose sorting
criteria are defined based on what is meant by best solution. Therefore, given
pair1 = (tree1, edge1) and pair2 = (tree2, edge2) and supposing that pulling
from the priority queue gives the highest ranked pair:

1. pair1 > pair2 if tree1 matches more keywords than tree2 going toward
complete answers;

2. pair1 > pair2 if tree1 and tree2 match the same number of keywords
but tree1 is smaller than tree2; this ensures that we do not miss smaller
answers, which users may find more intuitive;

3. pair1 > pair2 if tree1 and tree2 are equally big and match the same
number of keywords but edge1’s specificity is higher than that of edge2.

12
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It is worth noting that if none of the above criteria for determining a
priority order between two (tree, edge) pair allows discriminating two pairs,
the tie will be broken in an implementation-dependent way. This includes a
(small, but real) opportunity for non-determinism.

1.3.3 Preconditions for Creation of Grow Opportunities
Any (tree, edge) pair that gets out of the priority queue will be used to Grow
a new tree. Therefore, the decision of whether to consider a certain Grow
move or not is taken when we feed the priority queue. Of course, a necessary
condition for an opportunity to exist is edge being adjacent to tree’s root.

Moreover, a (tree, edge) pair is not pushed onto the queue if:

1. edge is a node loop, that is edge.source = edge.target;

2. edge connects a pair of nodes that already belong to tree;

3. edge closes a dataset loop, i.e. it connects a node equal to tree’s root
another one lying in another dataset that already belongs to datasets
explored by tree’;

4. edge connects tree’s root to its representative, but tree already grew by
Grow2Rep;

5. edge brings redundancy, i.e. edge.source and edge.target match
the same keyword(s) but edge.target is not the representative for
edge.source.

Furthermore, we keep track of the history of all pairs inserted in the prior-
ity queue since the beginning of the query: we don’t push a Grow opportunity
in a priority queue if it has been already seen and exploited.

1.3.4 Preconditions to Merge

The decision whether to consider a certain Merge move on tree1 and tree2 is
made as follows:

1. tree1.root = tree2.root;

2. tree1.keywords ∩ tree2.keywords = ∅ (possibly except for the root of
the trees);

3. tree1.nodes ∩ tree2.nodes = ∅.

13
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To find Merge candidate efficiently, we index the (partial) answer trees by
their root, since it appears to be the most restrictive condition. In this way,
whenever we have to find candidates to Merge for a given tree, we firstly look
for other trees rooted in tree’s root and then check for the other conditions
to be met on each of these trees.

1.3.5 Solution Score
Given an answer tree to a query Q = {k1, k2, ..., km}, we need to evaluate
the quality of the solution by means of a score. In this regard, we employ a
weighted sum of a scoremarching and a scoreconnection so that 0 < score < 1.
In details:

• scorematching states how much tree is semantically relevant as an answer
to Q. It is the average, over {k1, k2, ..., km}, of the similarity between
the tree’s node matching a given keyword and the keyword itself. Here,
we employed the Levenshtein distance.

• scoreconnection aims at discouraging trees with low-confidence edges
and/or low-specificity edges. It is the sum of the product of tree.edges’
specificity and the product of tree.edges’ confidence.

14



Chapter 2

In-Memory Data Layout

The size of the main memory in modern servers has grown significantly over
the past decade. For instance, AWS EC2 offers nodes providing up to 24TB
of main memory and 448 hardware threads [5]. Data management research
has by now led to several mature products (i.e. DB engines) running en-
tirely in main memory, such as Oracle Database In-Memory, SAP HANA,
and Microsoft Hekaton. Moving the data from the hard disk to the main
memory significantly boosts performance, avoiding disk I/O costs. However,
it introduces new challenges on the optimization of the data structures and
the execution model for a different bottleneck: the memory access [6].

In the following, we will move from ConnectionLens to in-memory Con-
nectionLens (hereinafter CLMem), a novel in-memory graph database, which
we have built and optimized to execute a parallel implementation of GAM
search algorithm (hereinafter P-GAM), as described in Chapter 3. To do
so, data need to be migrated from one system to the other. As we use the
permanent storage as a buffer between the two, we split the discussion into
two parts: Section 2.1 explains how data is read from PostgreSQL and stored
into binary files; Section 2.2 starts from binary files deserialization and brings
data into memory realizing a specific layout.

2.1 Moving Data from ConnectionLens to
Disk

Suppose that we have built a PostgreSQL relational database on top of sev-
eral heterogeneous data sources by running CL’s engine, as explained in
Section 1.1. Our purpose is to move information out of such database into

15
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CLMem’s data structures; for this purpose, we will use the permanent stor-
age (i.e. disk) as a buffer. Therefore, we will store on disk several files, each
of them representing a partition of the overall graph. The main steps of the
migration pipeline are illustrated in Figure 2.1.

Figure 2.1: Migration pipeline

In detail, the data migration task is carried out by a Python script (here-
inafter CLMig). In the very first place, it connects by means of psycopg [7] to
a given PostgreSQL database, whose name is specified on the command-line
interface along with several other connection parameters.

Therefore, 3 cursors are instantiated in order to retrieve the information
we need from the database, whose details are outlined in Section 1.2. These
cursors are:

1. curCatalog, which queries catalog table to retrieve information about
the sources ingested by CL — the attributes we keep are in order (id,
type, path, original_uri);

2. curEdges, which queries a temporary view putting together information
coming from edges table (which is joined with edge_specificity to re-
trieve edges’ specificity) andweak_same_as table — the attributes we
keep are in order (id, type, source, target, label, confidence,
specificity);

16
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3. curNodes, which queries nodes table and computes the degree of
its entries by means of id = source OR id = target join condi-
tion with the temporary view previously created — the attributes
we keep are in order (id, ds, type, normalabel, representative,
num_connections), with num_connections being the degree of the
node.

It’s important to highlight that an implicit filtering operation is executed
on the data so that we keep only the attributes that we need in CLMem
in order to implement GAM search and build final query results. Such at-
tributes can be also found in Protocol Buffers’ messages definition, which is
the method we employ to serialize structured data [8]. Pre-compiled head-
ers are going to be produced both for Python and C++ before starting the
migration process.

It is worth mentioning the migration pipeline is also in charge of building
integer encodings for the node labels. In fact, working with strings and
comparing them would end up being a major bottleneck located at the core
of the query algorithm. Practically, a query is asked in the form of keywords
(i.e. strings), which are meant to be encoded so that the query engine can
efficiently work with integers. Eventually, before returning answers to the
user (e.g. on the command-line interface), node labels are decoded into
strings again. Such a conversion is ruled by a dictionary that is built while
migrating the data to the disk and serialized into a separate file labels.bin.
Analogously, the information related to catalog table is going to be serialized
in catalog.bin.

As far as the rest of the graph is concerned, partitioning policies represent
the core of CLMig as they describe how nodes are edges are split across differ-
ent partition files. Therefore, a specific partitioner is instantiated according
to a parameter passed on the command-line interface. Currently, the only
implemented partitioning policy just splits nodes on one side and edges on
the other, for an equal amount of files.

2.2 Moving Data from Disk to CLMem
Once a graph has been serialized on disk, we can finally load it inside CLMem.
Therefore, from now on, we will leave everything related to CL and CLMig
behind and solely describe CLMem, entirely implemented in C++.

The loading routine takes care of building the graph starting from the
binaries, while implementing the memory configuration shown in Figure 2.2.

17



2 – In-Memory Data Layout

Figure 2.2: CLMem’s in-memory data layout

Our design includes all the data needed by applications as described in
Section 2.1, while also aiming at high performance, parallel query execution
in modern scale-up servers, in order to tackle huge search spaces. In fact, the
physical layout of a graph database is important, given that graph processing
is known to suffer from random memory accesses [9]–[12]. Therefore, spatial
locality of reference plays a crucial role as we want to limit TLB misses as
much as possible and, at the same time, exploiting caching and pre-fetching
mechanisms. Exploratory graph queries are almost unpredictable so making
efficient use of memory and cache is an object of research. In our memory
layout, we adopt a conservative approach and we split the data required for
the search, from the rest, as the former is critical for performance; in the
following, we will also refer to the latter as metadata.

Before describing the data layout, we need to mention that memory al-
location is entirely managed by a memory pool. As extensively outlined in
Appendix A, it allows us to acquire page groups, which are arrays of memory
pages for which contiguous allocation is granted and whose size matches the
one of L1 cache. In Figure 2.2 the grey boxes are meant to be intended as
page groups.

So, starting to focus on CLNode objects, we may notice that they are
allocated one after the other inside a page group, as much as they can fit.
As soon as the last page of the group is full, we just request another page
group to the memory pool. As a matter of fact, we first compute the number
of page groups we need for all the nodes inside a given graph partition, and

18
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then we request them to the memory pool once for all.
A CLNode object includes the identifier of the data source where the node

comes from, a reference to the representative, and a reference to node meta-
data. Such metadata includes information about the type of each node (e.g.,
JSON, HTML, etc.) and its label, comprising the keywords that we use for
searching the graph. Furthermore, we need an array of references to CLEdge
objects connected to each node, which should be then allocated contiguously
in one or more page groups. However, following several experiments, we
found that the nodes’ degree can be high enough to spread such an array
across one or more page groups, thus shattering the CLNode object itself. For
this reason, we keep k references inside the object and we define k such that

k · sizeof(CLPtr<CLEdge>) + sizeof(CLNode) < page_group_sz (2.1)

In this way, we know that is always possible to instantiate a CLNode object
in a page group. Then, we store the rest of the references to the edges into
another memory segment (i.e. a separate heap area) so that we can still
preserve locality. This logic is implemented by means of a dedicated class
called CLImmutableArrayHeap_TS<T>, which is described in Appendix B.2.5
and represented by the fields depicted in green in Figure 2.2. In general, other
criteria might play a role in choosing a value for k, e.g. the average degree of
the graph nodes. Further improvements might include a smarter policy for
splitting the edges according to some criteria (e.g. confidence, specificity).

Then, a CLEdge object includes a reference to the source and the target
node of every edge, the edge specificity and type, and a reference to the edge
metadata, which includes the confidence and the label of each edge.

Finally, we build a keyword index kwd_index_ stored in CLGraph object,
i.e. hash-based map associating every label with the list matching nodes.
P-GAM probes kwd_index_ when a query arrives to find the references to
the nodes that match the query keywords and start the search from there.

We conclude the present discussion by saying that the above storage is
row-oriented (i.e. node-oriented), even though column-oriented storage of-
ten speeds up greatly analytical processing; this is due to the nature of the
keyword search problem, which requires traversing the graph from the nodes
matching the keywords, in BFS style. Since we consider fully ad-hoc queries
(i.e. any keyword combinations), there are no guarantees about the order of
the nodes P-GAM visits. Therefore, in our setting, the vertically selective
access patterns, which are optimally exploited by column-stores, do not ap-
ply. Instead, the crucial optimization here is to find the neighbors of every
node fast: in fact, this is leveraged by our algorithm.
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Chapter 3

P-GAM Algorithm

This chapter describes the main technical contributions of the present work.
The stated goal is a parallel, in-memory variant of the GAM algorithm, lever-
aging the in-memory graph representation described in Section 2.2. Below,
we start with a discussion that was not initially planned but which turned out
to be necessary: an analysis of the role that a pruning strategy, not described
in previous GAM write-ups [2], [3], plays with respect to the algorithm com-
pleteness (Section 3.1). We then describe the design choices made for our
P-GAM algorithm (Section 3.2), detail its data structures (Section 3.3), and
finally outline the algorithm itself (Section 3.4).

3.1 GAM Completeness Analysis
Prior writings on GAM algorithm did not include a formal analysis of its
completeness [2], [3]. In fact, since GAM’s moves (i.e. Grow and Merge) are
inspired from those of prior work [13], the completeness claim made in such
a context was tacitly assumed to carry to GAM and it is straightforward to
prove.

However, GAM as implemented contained an additional pruning tech-
nique, as follows:

Definition 3.1.1 (Edge-set pruning (ESP)). During GAM search process,
when a tree t1 consisting of the edges Et = {e1, e2, . . . , en} (n ≥ 1) is created
such that another tree t0 with the same edge set Et had been created previ-
ously, the edge set pruning (ESP, in short) consists of discarding (ignoring)
t1 for the rest of the search.

While testing our parallel implementation of GAM (described below in
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Section 3.4), its behavior on some inputs required further investigation which
established that solutions were sometimes missed even if the algorithm was
executed in single-threaded mode. Testing the original GAM implementation
on the same inputs as in CL turned out to pose the same problem! This
required us to study the completeness of GAM with ESP in further detail,
whose findings are described below. The following analysis naturally also
carries to our parallel algorithm since both GAM and P-GAM follow the
same search steps.

We first introduce some terminology. All the definitions below apply
within one solution (i.e. answer tree) for a query on a ConnectionLens graph.

Definition 3.1.2 (Leaf). A leaf is a node connected to only one edge.

The three definitions below enable us to refer to trees at three different
levels of precision. They are important since they enable us to make specific
statements in our discussion of completeness:

Definition 3.1.3 (Edge set). An edge set is a set of edges that, together,
form a tree and such that at most 1 leaf does not match a query keyword.

Definition 3.1.4 (Rooted tree). A rooted tree is an edge set together with
one distinguished node present in these edges, called the root.

Observe that (k + 1) potential rooted trees correspond to each edge set
of k edges; one such tree is rooted in each node. We say potential because
in general, there is no guarantee that all these rooted trees will actually be
built.

Definition 3.1.5 (Provenance). A provenance is a formula of the forms
described below, together with a tree node called the root of the provenance:

1. Init(n) where n is a node matching a keyword; the root of such a
provenance is n itself;

2. Grow(t, e) where t is a provenance, its root is n0, e is an edge going from
n0 to n1 and n1 does not appear in t; in this case, n1 is the root of the
Grow provenance;

3. Grow2Rep(t, e), where t is a provenance rooted in n0, e is an equivalence
edge going from n0 to n1, n1 is the representative of n0; in this case, n1
is the root of the Grow2Rep provenance;

4. Merge(t1, t2), where t1 and t2 are provenances, rooted in n1 = n2; in
this case, n1 = n2 is the root of the Merge provenance.
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Observe that there may be several provenances for the same rooted tree. In
this regard, a provenance is more specific than a rooted tree (the provenance
not only describes the tree but also enforces one specific way to build it);
similarly, a rooted tree is a more specific notion than an edge set. Conversely:
a given edge set might come from several different rooted trees, each of them
being the result of several provenances.

Intuitively, the goal of ESP is to limit the construction of provenances
that correspond to the same edge set, given that a solution is an edge set.
Thus, ideally, if we built just one provenance for each edge set (while still
guaranteeing that one such provenance is built for each solution), this could
suffice to ensure search completeness.

Based on these notions, below, we start by showing the completeness of
GAM with (despite) ESP for some situations only, before exhibiting cases
where this completeness is not guaranteed.

3.1.1 Restricted Completeness Guarantees for GAM
with ESP

In this section, we establish the completeness of results for the GAM algo-
rithm with ESP.
Property 1 (Restricted completeness). Assume we are given a graph G, a
query Q, and a solution (answer tree for Q on G) denoted t, such that no
keyword is matched in an internal node of t. Then, the solution t is
guaranteed to be found by GAM with ESP.

We show this below. Recall that the solution t, as per the definition of
solutions in Section 1.3, is an edge set (its root is irrelevant).

(a) Rooted paths (b) Maximal merges

Figure 3.1: Illustrations of concepts introduced for the restricted complete-
ness discussion.
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Definition 3.1.6 (Rooted path). Within a solution t as above, a rooted path
is a path that goes from a leaf (which is guaranteed to match a keyword) to
its nearest node that has at least 3 edges.
Observe that our restricted assumptions imply that that the root of a rooted
path does not match any keyword.

Rooted paths can be visualized in Figure 3.1a as light blue rectangles.

Lemma 3.1.1. Any rooted path in a solution t as above is guaranteed to be
built by (and not pruned) by GAM with ESP.

Proof. We prove this in a constructive way, by exhibiting a provenance that
is guaranteed to be built (and not pruned) by GAM with ESP. A guarantee
on the provenance directly ensures a guarantee that the corresponding rooted
tree is built by GAM and not pruned by ESP, which in turn leads to a similar
guarantee for the corresponding edge set.

1. For each keyword match in t, the 1-node Init provenance corresponding
to this node is guaranteed to be built and pushed in the priority queue.
ESP pruning does not apply.

2. Any provenance applying only successive Grow steps on top of such an
Init provenance, is guaranteed to be built by GAM (given how the algo-
rithm works). Further, such a provenance is not pruned by ESP, because
it is the only provenance for its edge set. Thus, the ESP condition does
not apply.

Next, we introduce:

Definition 3.1.7 (Maximal merge). Within a solution t as described above,
a maximal merge is a rooted tree merging all the rooted paths having a
common root node.

Maximal merges are illustrated in Figure 3.1b, for the same solution as
the one in Figure 3.1a.

Lemma 3.1.2. Any maximal merge of rooted paths appearing in a solution
t as above is guaranteed to be built by GAM and not pruned by ESP.

Proof. Lemma 3.1.1 entails that any rooted path is built. This, along with
the aggressive application of Merge within the GAM algorithm, concludes
the proof.
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Lemma 3.1.2 can be also stated as: one among all the provenances cor-
responding to a maximal merge is guaranteed to survive ESP pruning. It
is easy to see that this will be the first maximal merge developed for the
specific edge set: based on it, ESP eliminates all the other maximal merges
subsequently developed for the same edge set.

Lemma 3.1.3. Within a solution t as above, any rooted tree that can be built
by a sequence of Grow on top of a maximal merge, and whose root is not a
leaf of t, is guaranteed to be built by GAM and not pruned by ESP.

Proof. Lemma 3.1.2 entails that any merge of rooted paths is built (as a
rooted tree). This means one of its provenances is built. By the GAM
algorithm design, all Grow steps on top of this provenance will be tried. Let
tg be one such provenance.

• By the assumption made on t (the solution of which tg is a subtree)
and given that the root of tg is not a leaf, this root does not match any
query keyword. Thus, tg is the only provenance for its rooted tree, since
it is the only way to build with tg’s leaves and not rooted in a keyword.
Therefore, tg is not pruned by ESP.

• Given that each such tg is not pruned by ESP, all Grow steps will be
attempted on it, and, by similar reasoning, not pruned by ESP.

Based on the above Lemmas, we can finalize the proof of Property 1, that
is: establish that a restricted solution such as t is guaranteed to be built by
GAM and not pruned by ESP. We rely on the following observations:

1. If Q has just 1 keyword, the property is trivially proved.

2. If Q has two keywords, any solution is a merge of two rooted paths and is
guaranteed to be built by GAM and not pruned by ESP, by Lemma 3.1.1.

3. If Q has 3 or more keywords:

(a) t has that number of leaves (at least 3) and thus t contains one or
more maximal merge trees, each of which are guaranteed to be found
(by Lemma 3.1.2). Figure 3.2 shows such a solution, highlighting the
maximal merge trees as light blue triangles.
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Figure 3.2: Sample solution satisfying the restriction of Property 1.

(b) Since t is a connected tree, Grow paths on top of the maximal merges
of t are bound to intersect each other, which leads to one or more
Merge provenances being built from them.

(c) There exists at least one such provenance that covers exactly t.
(d) If there are several such provenances, ESP will prune all but the first

one encountered; this still guarantees that the solution (edge set) t
is found.

Further, one can easily show:
Property 2 (GAM with ESP completeness for 3-keyword queries). Let G be
a graph, Q be a query of 3 keywords. Any solution of Q on G is guaranteed
to be found by GAM and not pruned by ESP.

Let t be a solution for Q on G. There are two cases:

1. If in t no keyword is matched on a path between the two other keyword
matches, Property 1 ensures t is found.

2. On the contrary, assume (without loss of generality) that the query
keyword kwd2 is matched on the path between the t nodes matching the
keywords kwd1 and kwd3. GAM builds paths starting from the three
nodes, and as long as their roots do not match any keywords, they are
not pruned by ESP (reasoning similar to Lemma 3.1.1). Further, these
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paths have to intersect (Merge) into a tree matching 2 keywords, which
necessarily will encounter (and Merge with), immediately or after some
Grow steps, the third path. Thus, such solutions are also guaranteed to
be found.

3.1.2 Incompleteness of GAM with ESP
The solutions left out by Property 1 and Property 2 may be missed by GAM
with ESP. Formally:
Property 3 (ESP incompleteness for at least 4 keywords). There exists a
graph G, a query Q of four keywords, and a solution such that ESP may
prevent GAM from finding the solution.

Figure 3.3: Example where GAM with ESP could be incomplete

Figure 3.3 exhibits such an example. The nodes in red (n1, n2, n4 and n5)
match four query keywords. Depending on the priority used in its queue, and
also on how priority ties are broken (this includes some non-determinism),
GAM search with ESP may take the following course:

1. Search starts from all the node matching keywords.

2. The first tree tree connecting n2, n3 and n4 is t3
2,3,4, found by Merge on

the root n3. From now on, ESP discards any other tree with the same
edges.

3. No Grow can apply on t3
2,3,4 because it already contains all the edges

adjacent to its root. No Merge can apply on it either, because Merge
only applies on trees whose nodes are disjoint except for the root, and
no such tree rooted in n3 exists.
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4. Separately, the paths grown from n1, n4 and n5 intersect in n6 and lead
to a tree t6

1,4,5,6 rooted there. We assume this is the first tree with this
set of edges; any future tree with the same edges will be pruned by ESP.

5. At this point, the search is "stuck" as there is no way to connect the upper
left subtree t6

1,4,5,6 with the lower right one t2,3,4, given that they do not
have the same root. Further, none among these trees can Grow towards
the other, because each already contains all the edges adjacent to the
root. It is easy to see that building on the other subtrees, developed
prior to t3

2,3,4 and t6
1,4,5,6, does not allow to find the solution, either.

Thus, in the above exploration sequence, the only solution will be missed.
Observe that the search space could be traversed in a different, more

favorable order, for instance:

1. Build the tree t6
1,5,6 rooted in n6, then, based on it, t4

1,4,5,6 rooted in n4;

2. Build the tree t4
2,3,4 rooted in n4;

3. Merge these into a provenance for the solution.

The exact exploration sequence depends on the properties of the G edges
involved, which are inputs to the priority function used attached to the queue
used by GAM. Thus, in general, one cannot be sure which exploration se-
quence will be taken.

Thus, we conclude that:

• GAM with ESP is complete for at most 3 keywords (Property 2); note
that these are the most frequently encountered;

• GAM with ESP is potentially incomplete for 4 or more keywords and
should be used only if execution speed is favored over completeness guar-
antees.

3.2 Algorithm Design
In the following, we start designing a parallel implementation of GAM search
algorithm by adopting a systematic approach based on a permeable partition
of the design process as suggested in [14]. However, we do not rigidly follow
the scheme and instead try to adapt the guidelines to the situation at hand
and its peculiarities.
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3.2.1 Partitioning
First of all, the computational task that has to be performed and/or the
data operated on by such a task need to be decomposed into smaller chunks.
At this stage, practical issues (e.g. the number of processors in the target
computer) are going to be ignored, while the focus is kept on identifying
opportunities for parallel execution.

We choose to adopt a data-driven approach, namely domain decomposi-
tion: we start by trying to get a data decomposition as fine-grained as possi-
ble; then, based on the result of such a process, we partition the computation
that is to be performed on these data. Therefore, the most fine-grained data
decomposition corresponds to bootstrapping GAM with a thread per prior-
ity queue and a priority queue per Grow/Grow2Rep opportunity generated
by the 1-node trees. At this point, let’s suppose that each of these threads
might execute GAM independently from each other, working on their own
local structures, namely (besides the priority queue, hereinafter pQueue):

1. Memory of all the explored trees JmemoryTreesK. It holds the his-
tory of all trees built during the exploration of the graph. Such a data
structure is crucial in that it precludes further investigation of trees that
have already been observed, allowing to move computational resources
to essential and meaningful tasks.

2. Memory of all the pairs inserted in the priority queue
JmemoryPairsK. It holds the history of all the Grow/Grow2Rep oppor-
tunities generated during the exploration. As memoryTrees, it serves
optimization purposes.

3. Root → trees rooted in that node map JtreesByRootK. It gives
access to all trees rooted in a certain node. Since trees are merged only at
the root, such a map is essentially an index on memoryTrees, returning
the Merge candidates for a given tree.

4. List of query answers JqueryAnswersK. It is a collection of final an-
swer trees.

At its own pace, each thread will end up exhaustively exploring the search
space: therefore the correctness of the results and the convergence towards
the complete solution space is guaranteed, as shown in Section 3.1. On the
other hand, only drawbacks come from adopting such a naive parallel design,
as performances will be worse than single-threaded GAM’s. We might need
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proper communication channels and protocols in order to synchronize the
activity and the tasks among the threads.

3.2.2 Communication Requirements

We identify the following communication requirements for the current sce-
nario:

1. Global, since each task requires to communicate with all the others con-
current tasks;

2. Structured, as tasks’ communication partners form a regular pattern
(such as a tree or a grid) and do not change over time;

3. Static, because the identity of communication partners does not change
over time;

4. Asynchronous, since producers are not able to determine when con-
sumers may require data, hence, consumers must explicitly request data
from producers.

Giving a closer look at possible implementations, we can deal with com-
munication in two different ways: (i) shared data structures, with the help of
locks and condition variables mechanism; (ii) messages, so that each thread
can keep on working on its own structures solely, at its own pace.

Both of these solutions have their own computational costs and complexity.
Furthermore, it should be noted that communication has not to be real-time,
since it only serves to speed up the convergence towards the solution space.
However, it is not straightforward to determine a proper rate so that overall
communication costs end up being lower than the benefits.

On the other hand, as we have outlined in Section 3.2.1, GAM itself is
heavily based on certain collections for both optimization (e.g. memoryTrees)
and strictly functional purposes (e.g. treesByRoot). Therefore, the use of
shared data structure as communication channels seems to be the natural
choice. Moreover, by doing so, we leave room for optimization towards a scal-
able parallel algorithm, since we can improve the design of the data structures
and extremely specialize it in order to fit specific needs. Therefore, we choose
to implement communication channels by means of shared data structures.
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3.3 Thread-Safe Data Structures Design
In order to move forward with the design of the parallel algorithm, it is
imperative to predispose shared and centralized data structures to concurrent
use, thus making them thread-safe. To this end, we discouraged the use of
data structures offered by the Standard Template Library then protected by
high-level locks, since they have been deemed particularly inefficient for the
current purposes that require maximum performance. Therefore, through the
use of POSIX-native synchronization mechanisms, we preferred to design ad-
hoc data structures, highly specialized in performing the operations required
by the current operational scenario, exploiting its limits and peculiarities.

The implementation details behind the following data structures are ex-
tensively described in Appendix B.2. In the following, we only refer to the
classes implementing each object and relate them to the requirements dic-
tated by the working scenario.

Specifically, the following data structures have been implemented:

1. memoryTrees. It is implemented by CLSet_TS<T, Hash, KeyEqual>
(ref. Appendix B.2.4), which is a hash set involving only one opera-
tion: insertion with a simultaneous check for any duplicates. In this
regard, we want any thread that is running GAM to know with total
confidence whether a tree has already been discovered and explored at
any given time. Likewise, we don’t want read requests resulting from
duplicate checking to block concurrent writes. Hence, a trade-off has
been found to provide these guarantees without affecting the scalability
of the data structure.

2. queryAnswers. It is an object of class CLList_TS<T>, which is out-
lined in Appendix B.2.2 as a list-type class implemented like a relo-
catable array, involving insertion and random access operator. However,
CLList_TS<T> is also employed to store Merge candidates, implying that
whenever we try to Merge we should iterate on the list of interest. To this
end, following approaches similar to copy-on-write techniques, the class
allows us to obtain a local, independent copy of the list holding Merge
candidates. In general, we might assert that the higher the average
number of Merge candidates the higher the performance improvement
resulting from such an approach.

3. treesByRoot. It is implemented by CLUnorderedMultimap_TS<K, V,
Hash, KeyEqual> (ref. Appendix B.2.6), which is a multimap with a
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hashed index built on the keys. We expect both the keys (i.e. the nodes)
and the values (i.e. the trees) to be unique. However, any duplicate
is inherently granted to be avoided for the values, since tress are only
inserted in this map after verifying that they have not been found before
(i.e. checking is delegated to memoryTrees).

4. memoryPairs. Since the operations demanded to the data structure are
the same as the ones requested to memoryTrees, we can use the same
design principles without any problems also in this setting. However,
in order to better distribute the high workload, we add another level of
indexing, thus ending up with a double-indexed hash set. Practically,
this is easily accomplished by creating an array of CLSet_TS<T, Hash,
KeyEqual> (ref. Appendix B.2.4).

3.4 P-GAM Algorithm Outline
We split the discussion into two parts. In the first part (Section 3.4.1),
we sketch a first version of the algorithm according to the design principles
outlined in Section 3.2. The second part (Section 3.4.2) seeks to release
the constraints on strict initial data partitioning, to evenly distribute the
workload among threads.

3.4.1 Naive Algorithm
The algorithm is launched by a bootstrap routine (outlined in Algorithm 1)
which primarily sets up all the data structures, both local and shared. There-
fore, it initializes or cleans up the memory of all the explored trees, the list of
query answers, and the memory of all the pairs inserted in the priority queues.
Regarding the latter, it should be pointed out that it will only be mentioned
here and then set aside, in order to exhibit a simpler overview of the al-
gorithm. However, it is straightforward to understand where memoryPairs
might come into play, that is: before inserting any (tree, edge) pair into any
priority queue, thus assuming a role analogous to memoryTrees’s.

Furthermore, the bootstrap routine creates create num_threads, as many
as available based on the computing hardware resources, thus taking care of
initializing or cleaning up threads’ priority queues.

At this stage, the actual search already begins: an index is probed (line 3)
to search for all nodes matching at least one query keyword, thus building
the corresponding 1-node trees. Starting from such trees, we build Grow
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opportunities and distribute them evenly among pQueuei, with 1 ≤ i ≤
num_threads (e.g. round-robin). It is good to notice that, if necessary, it is
possible to probe the index and generate the initial Grow opportunities also
in parallel, with minimal modifications to Algorithm 1.

Algorithm 1: P-GAM bootstrap routine
Input: G = (N, E), query Q = {w1, . . . , wm}, maximum number of

solutions M , time limit T
Output: Answer trees for Q on G

1 initialize/clean memoryTrees, queryAnswers (and memoryPairs,
hereinafter omitted for simplicity);

2 initialize/clean pQueuei, 1 ≤ i ≤ num_threads;
3 init_nodesQ ← ∪wi∈Q kwd_index_.lookup(wi);
4 for node ∈ init_nodesQ do
5 for edge adjacent to node do push (node, edge) on pQueuei, with

i ∼ U{1, num_threads} ;
6 launch num_threads P-GAM workers, running Algorithm 2;

Next, num_threads threads run in parallel Algorithm 2: each of them
keeps working until a global stop condition is met, which could happen after
a timeout or when the maximum number of solutions has been reached or
the priority queue ends up being empty.

Essentially, any worker repeatedly picks the highest-priority (tree, edge)
pair from its queue and applies Grow on it (lines 2 and 3 in Algorithm 2),
leading to a 1-edge larger tree. Thus, the stack priority orders the possible
Grow steps at a certain point during the search, as outlined in Section 1.3.2.

Successively, if the Grow result tree had not been found before (this is
determined after looking at memoryTrees), the worker tries to Merge it with
all compatible trees, found within treesByRoot (line 9 in Algorithm 2). It
is worth underlining that Merge partners should match disjoint sets of key-
words, as this condition ensures minimality of the solution.

Merging potentially translates into recursive calls to Aggressive Merge,
outlined in Algorithm 3. As a matter of fact, we immediately try to Merge
any newly merged tree with any possible candidate. In other words, Merge
results are repeatedly merged with all compatible trees explored so far as
soon as they are found since in this way we are able to detect as quickly as
possible if some of our trees might form an answer. Essentially, the thread
switches back to Grow only when no new Merge on the same root is possible.
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Algorithm 2: P-GAM threadi routine
Input: pQueuei, memoryTrees, treesByRoot, queryAnswers
Output: Answer trees for Q on G added to queryAnswers

1 repeat
2 opportunity ← pop (tree, edge), the highest-priority pair in

pQueuei;
3 tG ← Grow(tree, edge);
4 if tG /∈ memoryTrees then
5 add tG to memoryTrees;
6 if tG.keywords ∩Q = Q then add tG to queryAnswers;
7 else
8 for edgeG adjacent to the root of tG do push (tG, edgeG) in

pQueuei;
9 for treecand ∈ treesByRoot.get(tG.root) AND

tG.keywords ∩ treecand.keywords = ∅ do
10 Aggressive Merge(tG, treecand) → Algorithm 3;

11 until reached time limit T OR found M solutions OR pQueuei empty;

Algorithm 3: Aggressive Merge(tree, treecand) recursively called
by threadi

Input: pQueuei, memoryTrees, treesByRoot, queryAnswers
Output: Answer trees for Q on G added to queryAnswers

1 tM ← Merge(tree, treecand);
2 if tM /∈ memoryTrees then
3 add tM to memoryTrees;
4 if tM .keywords ∩Q = Q then add tM to queryAnswers;
5 else
6 for edgeM adjacent to the root of tM do push (tM , edgeM) in

pQueuei;
7 for treecand_rec ∈ treesByRoot.get(tG.root) AND

tM .keywords ∩ treecand_rec.keywords = ∅ do
8 Aggressive Merge(tM , treecand_rec);
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In any case, after a newly created tree has been seen for the first time
and it is not a solution, Grow opportunities are generated and push into the
worker’s queue (line 8 in Algorithm 2 and line 6 in Algorithm 3). Otherwise,
if such a new tree matches all the query keywords, it is added to the solution
set and not pushed in any queue (line 6 and line 4 in Algorithm 3).

It should be noted that the threads intensely compete for access to
memoryTrees and treesByRoot. As we demonstrate in Section 4.3.2, our
design allows excellent scalability as the number of threads increases.

3.4.2 Work Stealing Implementation
The current implementation hides a critical bottleneck which is be exem-
plified in the following. Suppose that, based on the computing hardware
resources of a given machine, we can run num_threads = 10. Suppose
that we have 2 nodes matching some query keywords at the extremes of a
highly-connected graph and that those nodes have only one adjacent edge:
2 (tree, edge) pairs are generated in the bootstrap phase. According to the
algorithm outlined in Section 3.4.1, GAM will run just on 2 parallel threads
(each of them having a priority queue fed with one of the 2 previous Grow
opportunities) and therefore we will have 8 idle threads. Furthermore, each
of these Grow opportunities will generate an increasing number of trees and
Grow opportunities that will be spread only across these 2 threads, even
though the degree of parallelism allowed by the current machine is much
higher.

Essentially, we instantiate as many threads as the number of (tree, edge)
pairs generated in the bootstrap phase, which tells us nothing about the
computational scenario that may arise in the future. Not only is the compu-
tational load determined at the beginning, but it may stay distributed in a
totally uneven manner. All this results in underused computational possibil-
ities. A further example might consist of a given thread that, for whatever
reason, runs out of all (tree, edge) pairs in its priority queue and stays idle
while everyone else is still performing intensive computations.

It is clear that we need to make inter-thread barriers more permeable so
that it is possible to even the workload in case of disparity. As a matter of
fact, such an issue is inherently related to data partitioning issue we have
several options to address it. For instance, when a (tree, edge) pair is gen-
erated, we might push it into a given pQueuej, with j = H(tree, edge) and
H being an hash function taking a Grow opportunity as input and return-
ing j ∈ N ∩ [1, num_threads]. Following a radically different approach, we
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could instead bypass data partitioning and delegate (tree, edge) pairs redis-
tribution to a routine that periodically aligns the priority queues. However,
both these methods significantly increase contention on priority queues and
massively require lock mechanisms, threatening the scalability of the entire
algorithm. Therefore, we propose a solution aimed at minimizing contention.

In Algorithm 4 we rewrite Algorithm 2 tackling issues related to data
partitioning by means of work stealing policies. An alternative visualization
of the situation is shown in Figure 3.4, as a flowchart displaying the local
viewpoint for a given threadx.

Essentially, the core of the algorithm remains almost unchanged, but
searching for (tree, edge) pairs and checking for termination conditions vary
slightly. In detail:

1. Each threadi looks at its own priority queue pQueuei (line 2): as long
as it’s not empty, it pulls a (tree, edge) pair at a time and processes it,
pushing any resulting Grow opportunity in pQueuei again;

2. When pQueuei is empty, threadi may steal a pair from any pQueuej, with
1 ≤ j ≤ num_threads (line 4), then → 1;

3. If threadi has nothing to steal, it checks for termination (line 6); if
termination conditions are not satisfied yet, threadi waits for another
pair to be inserted in any pQueuej, with 1 ≤ j ≤ num_threads (line 7):
if threadi is able to steal the pair → 1; otherwise → 3 again.

Figure 3.4: Flowchart for threadx executing P-GAM with work stealing
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We can easily notice that work stealing goes much easier on priority queues
than any data partitioning or redistribution approach. Indeed, once a pair
has been stolen by threadi, it is very likely to bring back many other Grow
opportunities, which will be pushed to pQueuei itself. Performance improve-
ments are experimentally proved in Section 4.3.2.

Algorithm 4: P-GAM threadi routine with work stealing
Input: pQueuei, memoryTrees, treesByRoot, queryAnswers
Output: Answer trees for Q on G added to queryAnswers

1 repeat
2 if pQueuei not empty then opportunity ← pop (tree, edge), the

highest-priority pair in pQueuei ;
3 else
4 opportunity ← try to steal (tree, edge) from pQueuej,

1 ≤ j ≤ num_threads;
5 while opportunity not found do
6 if reached time limit T OR found M solutions OR all

pQueuej empty, with 1 ≤ j ≤ num_threads then return;
7 wait for (tree, edge) to be inserted in any pQueuej,

1 ≤ i ≤ num_threads;
8 opportunity ← try to steal (tree, edge) from pQueuej,

1 ≤ j ≤ num_threads;

9 tG ← Grow(tree, edge);
10 if tG /∈ memoryTrees then
11 add tG to memoryTrees;
12 if tG.keywords ∩Q = Q then add tG to queryAnswers;
13 else
14 for edgeG adjacent to the root of tG do push (tG, edgeG) in

pQueuei;
15 for treecand ∈ treesByRoot.get(tG.root) AND

tG.keywords ∩ treecand.keywords = ∅ do
16 Aggressive Merge(tG, treecand) → Algorithm 3;

17 until reached time limit T OR found M solutions OR all pQueuej

empty, with 1 ≤ j ≤ num_threads;
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Chapter 4

Experimental Results

In the present chapter, we test CLMem system and P-GAM algorithm with
work stealing described in the previous pages of this work, precisely in the
context of the pipeline illustrated in Figure 4.1. In detail, the graph loaded
by CLMem (Chapter 2) and processed by P-GAM (Chapter 3) has always
to be intended as the result of graph construction process carried by CL
(Chapter 1). Therefore, in the following, we omit the description of the data
sources ingestion process and we focus solely on comparing performance on
query execution.

Figure 4.1: Overview on data analysis pipeline

We deployed the following experiments on a server with a 2x10-core In-
tel Xeon E5-2640 v4 (Broadwell) CPUs clocked at 2.4GHz, and 128GB of
DRAM. We do not use Intel Hyper-Threading and we bound every CPU core
to a single worker thread. The query engine is a NUMA-aware multi-threaded
C++ application. Furthermore, throughout the chapter, we frequently em-
ploy the terminology exhaustive query to designate a search that comes to
an end just because all pairs in every pQueuei, with 1 ≤ i ≤ num_threads
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have been consumed, and thus regardless of any termination condition.
Firstly, we introduce the synthetic graphs (Section 4.1) employed to com-

pare single-threaded P-GAM (as implemented by CLMem) and GAM (as
implemented by CL). After, we test P-GAM performance on the same syn-
thetic topologies (Section 4.3, exploiting the maximum parallelization degree
offered by our server. Finally, we build (Section 4.4) and query (Section 4.5)
a 20M+ nodes graph, based on a real-life use case scenario involving conflict
of interest.

4.1 Synthetic Graphs
First of all, we introduce different synthetic graphs, whose size and topology
we can fully control. Next Section 4.3 will deal with querying those graphs
by keywords that are matched exclusively by the nodes at the extremes.
Examples are shown in Figure 4.2, with matching nodes colored in yellow.

(a) Linear graph
with 4 nodes

(b) Chain graph
with 4 nodes

(c) Star graph with 4
branches, each of them 2-
nodes long

Figure 4.2: Illustrations of synthetic graph topologies introduced for experi-
ments.

The topologies at hand are as follows:
• Linear graph Jline(n)K. It consists of (n−2) triples chained together

in a single path, plus 2 additional triples attaching the keyword nodes to
the first and the last node in the line, matching w1 and w2 respectively.
An example is shown in Figure 4.2a. On this graph, the query Q =
{w1, w2} has only 1 solution which is the complete graph. Furthermore,
we can state that there exist 2n + 1 partial trees.
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• Chain graph Jchain(n)K. It is totally similar to line(n), with the
only difference that edges are doubled. Therefore, we end up with a
pair of opposite edges between every pair of adjacent nodes. At the
extreme of the chain, w1 and w2 are matched. An example is shown in
Figure 4.2b. On this graph, the query Q = {w1, w2} has 2k solutions,
since any two neighbor nodes can be connected by two opposite edges;
furthermore, 2k+1−2 partial trees are built, each containing one keyword
plus a path growing toward (but not reaching) the other.

• Star graph Jstar(n, k)K. It is composed by k line(n) graphs, each
of them having a keyword wi, 1 ≤ i ≤ k at one extremity; at the other
extremity, all lines have wc. As explained in Section 1.1, CL recognizes
that all the nodes matching wc are equivalent. Therefore, one of them is
designated to be their representative while and the others are connected
to it through SAME_AS edges. An example is shown in Figure 4.2c, where
the nodes matching the query keyword are coloured in yellow as usual,
while the node matching wc is displayed in green. On this graph, the
query Q = {w1, w2, . . . , wk} has exactly 1 solution which is the complete
graph. Furthermore, we can state that there exist O(n + 1)2k partial
trees.

4.2 Single-Threaded P-GAM vs. GAM
We start by comparing single-threaded P-GAM (i.e. num_threads = 1)
implemented by CLMem with the Java-based GAM implemented by CL,
which is single-threaded by design and accesses the graph from a PostgreSQL
database. We run the two algorithms on the synthetic topologies and queries
described in Section 4.1, with a time limit T set to 15 minutes: both can
stop earlier if they exhaust the search space. In Table 4.1 we compare the
number of solutions S, the time T 1

P−GAM (ms) until the first solution is found
by single-threaded P-GAM and its total running time TP−GAM (s), as well
as the corresponding times T 1

GAM (ms) and TGAM (s) for GAM.
On these tiny graphs, both algorithms find all the expected solutions.

However, even without parallelism, P-GAM is 10× to more than 100× faster.
In particular, on all but the 3 smallest graphs, GAM can not exhaust its
search space in 15 minutes. For instance, it’s interesting to notice that P-
GAM takes 44.7 s to exhaustively query star(5000,4), while CL takes about
108 s to find the first (and unique) solution but it’s not able to explore the
entire search space in 15 minutes.
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Graph S T 1
P−GAM (ms) TP−GAM (s) T 1

GAM (ms) TGAM (s)
chain(12) 4096 2 0.8 160 674.5
chain(13) 8192 4 3.8 203 900.0
chain(14) 16384 4 13.7 234 900.0
chain(15) 32768 8 53.2 315 900.0
star(1000,4) 1 233 0.6 4063 60.2
star(2000,4) 1 969 3.3 12580 243.9
star(3000,4) 1 2469 10.1 36261 900.0
star(4000,4) 1 5149 23.3 67984 900.0
star(5000,4) 1 9111 44.7 108960 900.0

Table 4.1: Single-thread P-GAM (i.e. CLMem) and GAM (i.e. CL) compar-
ison

The present experiment validates the expected orders of magnitude speed-
up of a carefully designed in-memory implementation as described in Sec-
tion 2.2, even without parallelism (since we restricted P-GAM to run on just
1 thread).

4.3 Scalability Analysis
We perform scalability analysis on synthetic topologies introduced in Sec-
tion 4.1. Each of them aims at testing a feature of the system and it is
associated with a specific query leading to very different search space sizes.
In detail, in the following experiments, we gradually increase the size of each
graph.

4.3.1 Theoretical Limits
We illustrate the performance measurements resulting from an exhaustive
query Q = {kwd0, kwd1} on line(1000) (Figure 4.2a). Here, we want to
study the scalability of the algorithm as we increase the graph size.

We recall that work stealing policies are the only agents responsible for
data partitioning between threads, as outlined in Section 3.4.2. We immedi-
ately notice that they perform quite evenly: the pie chart in Figure 4.3a
shows the distribution of (tree, edge) opportunities across threads, with
num_threads = 20 (i.e. 1 color per thread). However, Figure 4.3b starts to
show some serious criticalities since threads find their priority queues empty
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(a) Distribution of (tree, edge) pairs (b) Frequency of empty priority queues

Figure 4.3: Work stealing performance for an exhaustive query on
line(1000), with num_threads = 20

with dramatic frequencies: thread19 is rarely able to find any Grow opportu-
nity in its own pQueue19! This results in tremendously aggressive stealing by
the threads against each other.

Figure 4.4: Execution time for an exhaustive query on line(1000), as the
number of threads increases

Furthermore, Figure 4.4 plots the execution time (ms) as the number of
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threads increases from 1 to 20: at first glance, the system doesn’t seem to
be scalable. The execution time approximately halves in going from 1 to 2
threads, as we would expect from a scalable system. However, performance
doesn’t improve beyond such a threshold, ending up worsening as the number
of threads increases.

As a matter of fact, we underline that the maximum parallelization degree
for the query at hand is exactly equal to 2 workers, due to the algorithm
design and the graph topology. Indeed, there is no work to be distributed in
such a case: every Grow opportunity generates just another one, so there are
always ≤ 2 (tree, edge) pairs into play. We end up iterating over all pQueuej,
with 1 ≤ j ≤ num_threads, looking for a Grow opportunity to steal for no
good: we just waste resources in order to acquire and release locks.

This leads us to the conclusion that, as far as any linear graph is con-
cerned, having num_threads > 2 not only doesn’t bring any performance
improvement but it also increases the execution time due to threads violently
operating lock mechanisms.

4.3.2 Contention on Shared Data Structures
Next, we illustrate the performance measurements resulting from exhaustive
queries on chain(n), with 12 ≤ j ≤ 15 (Figure 4.2b). Here, we want to study
the behavior of the algorithm as we increase the chances for Grow and Merge.
In other words, we want to study to what extent contention in concurrent
access to data structures impacts scalability.

In Figure 4.5a we report the execution time (ms) for a exhaustive query
Q = {kwd0, kwd1} on chain(15), as we increase the number of worker
threads from 1 to 20. Furthermore, in Figure 4.5b, we also compare the exe-
cution time (in logarithmic scale) for a exhaustive query Q = {kwd0, kwd1}
on different chain(j), with 12 ≤ j ≤ 15.

For every topology, we observe a clear speedup as the number of threads
increases, which is on average 13×. The speedup is not exactly linear: as the
size of the intermediate results grows, it exceeds the size of the CPU caches,
while threads need to access them at every iteration. Our profiling revealed
that, as several threads access the shared data structures, they evict content
from the CPU cache that would be useful to other threads. Instead, we did
not notice overheads from our synchronization mechanisms.

Furthermore, we revisit work stealing performance in the present con-
text, benchmarking an exhaustive query on chain(12). The pie chart in
Figure 4.6a shows that (tree, edge) pairs are perfectly distributed across
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(a) Query execution time
on chain(15)

(b) Logarithmic comparison of query exe-
cution times on chain(j), 12 ≤ j ≤ 15

Figure 4.5: Performance plots for exhaustive queries on chain graphs, as the
number of threads increases

(a) Distribution of (tree, edge) pairs (b) Frequency of empty priority queues

Figure 4.6: Work stealing performance for an exhaustive query on chain(12),
with num_threads = 20

threads; at the same time, Figure 4.6b displays that is extremely unlikely
for any threadj to find its own pQueuej empty. Therefore, we demonstrate
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that the policies in charge of distributing the workload are indeed efficient
and operate fairly. Such an experimental result can be extended to any future
scenario and to the entire system in general.

4.3.3 Graph Size
Finally, we outline the performance measurements resulting from exhaustive
queries on star(n,4) with n ∈ {1000, 2000, 3000, 4000, 5000} (Figure 4.2b).
Here, we want to study again the scalability of the algorithm as we increase
the graph size. In fact, after having isolated and studied the limitations of
the algorithm on linear topologies as we did in Section 4.3.1, we rather exploit
its constraints by building a synthetic scenario that can serve our intended
purposes.

(a) Query execution time
on star(5000,4)

(b) Logarithmic comparison of query ex-
ecution times on star(n,4) with n =
1000k, 1 ≤ k ≤ 5

Figure 4.7: Performance plots for exhaustive queries on star graphs, as the
number of threads increases

In Figure 4.7a we report the execution time (ms) for an exhaustive
query Q = {kwd0, kwd1, kwd3, kwd4} on star(5000,4), as we increase the
number of worker threads from 1 to 4. Furthermore, in Figure 4.7b,
we also compare the execution time (in logarithmic scale) for a exhaus-
tive query Q = {kwd0, kwd1, kwd3, kwd4} on different star(n,4) with
n ∈ {1000, 2000, 3000, 4000, 5000}. We obtain an average speed-up of 3.2×
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with num_threads = 4, regardless the size of the graph, which shows that
P-GAM scales well for different graph models and graph sizes.

After profiling, we observed that the size of the intermediate results im-
pacts the performance, similar to the previous case of the chain graph out-
lined in Section 4.3.2. We need to point out that, in the present experiments,
we used up to 4 threads since the graph has a symmetry of 4 (however, threads
share the work with no knowledge of the graph structure). When the nodes
matching the query keywords are poorly connected (e.g. in our star graphs,
at the end of simple paths) P-GAM starts by exploring these paths, moving
farther away from each keyword; if N nodes match query keywords, up to
N threads can share this work. In contrast, as soon as these explored paths
intersect, Grow and Merge create many opportunities that can be exploited
by one thread or another. Indeed, on any chain(n) topology, the presence
of 2 edges between any adjacent nodes multiplies the Grow and Merge op-
portunities, which can be shared by many threads. This is why on chain
graphs we see scalability up to the maximum number of threads that our
server supports.

4.4 Real-Life Use Case Scenario
In the current section, we introduce the real-life data that we query in the
experiments described in Section 4.5. In detail, we focus on a particular use
case, that is conflicts of interest (CoI, in short) in the biomedical domain.

As a matter of fact, biomedical experts such as health scientists and re-
searchers in life sciences play an important role in society, advising govern-
ments and the public on health issues. They also routinely interact with
industry (pharmaceutical, agrifood, etc.), consulting, collaborating on re-
search, or otherwise sharing work and interests. To trust advice coming from
these experts, it is important to ensure the advice is not unduly influenced
by vested interests. Yet, investigative journalism work has shown that dis-
closure information is often scattered across multiple data sources, hindering
access to this information [15]–[17].

In the following, we refer to Figure 1.1 reported in Section 1.1 in order to
show a tiny fragment of data that can be used to find connections between
scientists and companies. For the current purposes, we consider only the
nodes shown as a black dot or as a text label, and the solid, black edges
connecting them: these model directly the data. The others are added by
ConnectionLens as we discuss in Section 1.1.
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Thus, hundreds of millions of bibliographic notices (in XML) are published
on the PubMed website; the site also links to research (in PDF). In recent
years, PubMed has included an optional CoI statement element where authors
can declare in free text their possible links with industrial players; less than
20% of recent papers have this element, and some of those present are empty
(i.e. “The authors declare no conflict of interest”). Nevertheless, within the
PDF papers themselves, paragraphs like “Acknowledgments” and “Disclosure
statement” may contain such information, even if the CoI statement is absent
or empty. This information is accessible if one converts the PDF in a format
such as JSON. In Figure 1.1, Alice declares her consulting for ABCPharma
in XML, yet the “Acknowledgments” paragraph in her PDF paper mentions
HealthStar.

Furthermore, a subset of a knowledge base (in RDF) such as WikiData de-
scribes well-known entities (e.g. ABCPharma). However, less-known entities
of interest in a scenario related to investigative journalism are often missing
from such knowledge bases (e.g. HealthStar, in our example). Specialized
data sources, such as a trade catalog or a Wiki website built by other in-
vestigative journalists may provide information on some such actors: in our
example, the PharmaLeaks website shows that HealthStar is also funded by
the industry. Such a site which is established by a trusted source (or col-
league), even if it has little or no structure, is a gold mine to be reused since
it saves days or weeks of tedious investigative journalism work. In this and
many scenarios, sources are highly heterogeneous; at the same time, time,
skills, and resources to curate, clean, or structure the data are not available.

In short, a database of known relationships between experts and interested
companies, built by integrating heterogeneous data sources, would be a very
valuable asset. For instance, in Europe, such a database could be used to
select, for a committee advising EU officials on industrial pollutants, experts
with few or no such relationships. In the US, the Sunshine Act [18] requires
manufacturers of drugs and medical devices to declare such information, but
this does not extend to companies from other sectors.

For this reason, we loaded 400,000 PubMed bibliographic notices (XML),
corresponding to articles from 2019 and 2020: they occupy 803MB on disk.
Then, we have downloaded 85,400 PDF articles corresponding to these no-
tices (those that were available in Open Access), transformed them into JSON
using an extraction script integrated in ConnectionsLens’ pipeline. Further-
more, we preserved only those paragraphs starting with a set of keywords
(e.g. “Disclosure”, “Competing Interest”, “Acknowlegments”, etc.) which
have been shown to encode potentially interesting participation of people
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(other than authors) and organizations in an article [19]. Together, these
JSON fragments occupy 173MB on disk. The JSON and the XML con-
tent from the same paper are connected (at least) through the URI of that
paper, as shown in Figure 1.1. Finally, we have crawled 375 HTML web-
pages from a set of websites describing people and organizations previously
involved in scientific expertise on sensitive topics (such as tobacco or en-
docrine disruptors), specifically: DeSmog, TobaccoTactics, WikiCorporates
and SourceWatch. These pages total 32MB.

Table 4.2 shows the number of edges |E| and the numbers of nodes |N | re-
sulting from loading the data sources; furthermore, it displays the number of
nodes of type ENTITY_PERSON, ENTITY_ORGANIZATION and ENTITY_LOCATION
in columns |NP |, |NO| and |NL| respectively. The statistics are split by data
model and overall.

Source |E| |N | |NP | |NO| |NL|
XML 32,028,429 19,851,90 1,483,631 584,734 126,629
JSON 1,025,307 432,303 75,297 7,320 4,139
HTML 246,636 185,479 3,726 7,227 320
Total 33,300,372 20,469,686 1,562,654 665,167 131,088

Table 4.2: Statistics on Conflict of Interest graph.

4.5 Querying Real-Life Data
We want to test CLMem on the database that we built by loading real-life
data described in Section 4.4.

Table 4.3 shows the results of executing 15 queries, until we get M = 1000
solutions or a time limit T = 60000 ms is reached. From left to right, the
columns show: a query identifier, the query keywords Q, the time T 1 until
the first solution is found, the time T last until the last solution is found,
the total running time T , the number of solutions found. We pay particular
attention to the last column #DS, which describes the distribution of the
number of data sources spanned by the solutions, and we underline the most
frequent element: for instance, the solutions for the query #1 span at least
2 and at most 10 data sources, while most solutions spanned over 6 sources.

We have anonymized the keywords that we use, not to single out individu-
als or corporations since the queries are selected aiming not at them, but at a
large variety of P-GAM behavior. We use the following codes: A for author,
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# Keywords T 1 T last T S #DS

1 A1, A2 4462 5315 5316 1000 2-10, 6
2 A3, H1 4671 5140 5140 1000 3-7, 6
3 U1, H1 4832 4981 4981 1000 2-5, 5
4 A4, I1 8520 13711 13712 1000 2-5, 5
5 A5, I2 5800 6366 6366 1000 2-8, 8
6 A6, I3, P1 4657 5072 60000 16 4, 4
7 A7, I3, P2 44256 44273 60000 10 5, 5
8 A8, I4, P3 12560 12560 60000 2 5, 5
9 A9, I4, P3 28982 33435 60000 3 5, 5
10 A10, U1, I3 7577 17383 17383 1000 4-6, 6
11 A11, I4, I5 10396 32320 60000 6 3, 3
12 A12, I4, I6 7320 7467 60000 24 4, 4
13 A3, A13, U2, P4 15759 35025 60000 5 5-6, 8, 6 and 8
14 A3, A14, U3, G1 10711 10711 60000 1 7, 7
15 A3, A15, U4, P4 8560 9942 60000 16 9, 9

Table 4.3: Statistics on Conflict of Interest graph.

G for government service, H for hospital, P for country, U for university,
and I for industry (i.e. company).

We make several observations based on the results. The termination con-
ditions were set here based on what we consider as an interactive query re-
sponse time and a number of solutions that allow further exploration by the
users (e.g. through an interactive GUI available in CL). Furthermore, solu-
tions span over several datasets, demonstrating the interest of multi-dataset
search enabled, and that P-GAM exploits this possibility. Finally, we re-
port results after performing queries including different amount of keywords
and the system remains responsive within the same time bounds, despite the
increasing query complexity.
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Related Work

In the present chapter, we review and discuss existing literature pertaining to
our work. As a matter of fact, ConnectionLens (along with CLMem) is placed
at the intersection of diverse research areas. Therefore, Section 5.1 addresses
the matter of data integration from diverse and heterogeneous sources. Sub-
sequently, in Section 5.2, we review several studies related to keyword search
on a variety of documents and databases. Finally, Section 5.3 goes through
relevant work in the field of graph processing, with a specific focus on in-
memory systems.

5.1 Data Integration
The ConnectionLens project and software system discussed in the present
work and all its components (including CLMem) belong to the area of data
integration. As outlined by Doan et at. [20], data integration is the process
of abstracting away the fact that data come from several data sources, possi-
bly with different schemas. They distinguish two main possible approaches,
with hybrid and intermediate architectures in between: (i) data warehousing
extracts, transforms, and loads data from heterogeneous sources into a single
physical warehouse; (ii) virtual integration preserves the data in their origi-
nal repositories and accesses them only at query time by means of mediators,
which are specialized modules that distribute the work to each source and
combine the results.

The first prototype of ConnectionLens was indeed a mediator [21], de-
ploying solutions that are very similar to those of polystores. As described
by Duggan et al. [22], a polystore is meant to unify querying over multi-
ple data models by enabling: (i) location transparency, allowing users to
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ask queries without having to deal with the physical locations of the differ-
ent data management system and the work distribution among them; (ii)
semantic completeness, which preserves any capability provided by the un-
derlying storage engines. Similar work has been proposed by Kolev et at. [23],
which introduce a functional SQL-like language, capable of querying and in-
tegrating heterogeneous cloud data stores within a single query, supporting
nested queries across data stores, schema independence and optimizability;
furthermore, this comes with a fully distributed query engine.

However, the ultimate applicative scenario of the present work must not
be disregarded. In fact, ConnectionLens certainly originates as a research
project with all of its inherent challenges, but it also faces the practical
needs of investigative journalists, as described in Chapter 1. Therefore, we
found that: (i) their datasets are changing, text-rich and schema-less; (ii)
running a set of data stores (plus a mediator) was not feasible for them;
(iii) knowledge of a schema or the capacity to devise integration plan was
lacking. Consolidating the graph in a single store and centralizing GAM
algorithm [1] greatly sped up and simplified the tool, whose performance is
further improved in the present work.

We share the goal of exploring and connecting data with data discovery
methods [24]–[27], which mostly focus on tabular data. While our data is
heterogeneous, focusing on an investigative journalism application partially
eliminates risks of ambiguity, since in our context the name of one person or
organization typically denotes a single concept.

5.2 Keyword Search
ConnectionLens’ first iteration [3] obviated the need for knowing the schema
underlying the data by introducing keyword search (hereinafter also KS, in
short). As a matter of fact, KS is indubitably popular among search engines
and in general for unstructured data. On the other hand, as databases con-
tinue to grow, Yu et at. [28] propose KS as a search method for structured
data as well, which is particularly effective if users do not know exactly what
kind of data they are querying and its underlying schema. According to the
authors, structural keyword search is about finding interconnection among
object structures and answers enabled by several tuple connection networks.

Congruently, Hristidis et al. [29] represent tuples as nodes, joined by means
of their primary and foreign keys, thus returning a network of tuples contain-
ing all the query keywords. De Oliveira et al. [30] perform a similar work with
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a focus on the size of the search space and the set of candidate networks. The
authors propose ranking as a way to identify relevant answers that might be
evaluated and eventually returned to the user. Furthermore, Yan et al. [31]
describe an active learning approach that incorporates user feedback in or-
der to return informative and relevant answers. Vu et at. [32] extend KS
on relational data by providing support for keyword-based data sharing and
querying over multiple database management systems. Similarly, Sayyadian
et al. [33] integrate tuples from multiple and heterogeneous databases, in-
troducing schema matching techniques that establish connections based on
similarity of values for different attributes. However, as outlined in Sec-
tion 1.3, we process edges as if they were undirected and, in general, paths
ends up being much longer than those based only on primary key/foreign
key.

Guo et al. [34] study keyword-based search on XML documents, targeting
their peculiarities. In particular, they point to the need for identifying a
lower granularity in the computation of ranks, which no longer operates at
the level of documents (e.g. HTML pages) but rather at the level of nested
elements. Similarly, Liu et al. [35] focus on formulating an appropriate re-
turn clause that is able to mirror the semantics of the query by enumerating
eligible and desirable nodes with no need for the user to explicitly give pref-
erences. However, querying XML documents based on keywords has a lower
complexity than our problem’s: (i) an XML document defines a tree, with
just a single hierarchical edge between any pair of nodes; (ii) the search space
for a given answer is bounded to the height of an XML tree.

Keyword-based search on RDF graph has been studied by Elbassuoni et
al. [36], which propose backtracking algorithms to retrieve subgraphs that
match the query keywords, ranked by means of structure-aware statistical
language models. Even more, Le et at. [37] introduce summarization tech-
niques over RDF data which eventually leads to pruning the search space
for exploratory KS, resulting in scalability. However, the work imposes some
degree of regularity on the graph structure whose exploration is ruled by the
direction of the edges, as well as in [36].

In conclusion, our KS problem is harder in several aspects: (i) we make
no assumption on the shape and regularity of the graph; (ii) we allow answer
trees to explore edges in both directions; (iii) we make no assumption on the
score function, invalidating dynamic programming methods such as [35] and
other similar pruning techniques. In particular, researcher from Cedar team
has shown in [2] that edges with a confidence lower than 1, such as similarity
and extraction edges in our graphs, compromise, for any reasonable score
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function which reflects these confidences, the optimal substructure property
at the core of dynamic programming.

Works on parallel keyword search in graphs either consider a different set-
ting, returning a certain class of subgraphs instead of trees [38], or standard
graph traversal algorithms like BFS [39]–[41]. To the best of our knowledge,
GAM is the first keyword search algorithm for the specific problem that we
consider.

5.3 Graph Processing Systems
In the present work, we have parallelized GAM into P-GAM, by drawing
inspiration and addressing common challenges raised in graph processing
systems in the literature.

Lissandrini et al. [42] provide a comprehensive study of the existing graph
database systems. In particular, the authors distinguish graph processing
systems (i.e. which analyze graphs to discover characteristic properties)
and graph databases (i.e. which focus on storage, high-throughput querying
tasks and transactional operations) and they direct their analysis specifically
at graph databases. In designing the evaluation methodology, the authors
follow a microbenchmarking approach, which is an evaluation model based
on primitive operators derived by decomposing complex queries and allow-
ing to identify the exact components that underperform for a given system.
Therefore, the evaluation methodology has been applied on the major graph
databases available today, using different real and synthetic datasets. There
follows an exhaustive list of the systems considered in the present work:
ArangoDB [43], BlazeGraph [44], Neo4J [45], OrientDB [46], Sparksee [47],
SQLG [48], Titan [49]. Essentially, the work is a compendium of state-of-
the-art systems and the primitive operators implemented by them. On the
other hand, it allows us to identify which of such operations are in fact im-
plemented and required by CLMem. As a matter of fact, we don’t need to
support any database modification operation since we assume that our graph
is immutable once it has gone through the migration pipeline described in
Section 2.1. Furthermore, many query operators making up the microbench-
marks described in [42] have nothing or very few points in common with
GAM/P-GAM. In conclusion, designing a native query engine allows us to
relax many requirements that do not serve the context at hand and rather
specialize in addressing its peculiarities.

In [50], Malicevic et al. state that improvements in algorithm execution
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time often come at the cost of increased pre-processing time. In detail, pre-
processing costs are a direct consequence of data layout: indeed, realizing
the most straightforward data layout translates into O(n), with n being
the size of the data. Therefore, the authors study and benchmark various
data structures to represent the graph in memory, various approaches to
pre-processing and various ways to structure the graph computation. They
also investigate approaches to improve cache locality, synchronisation, and
NUMA-awareness. In doing so, they take a cue from a number of graph
processing systems and implement the techniques they propose in a single
system. The paper identifies in the literature 3 main approaches to graph
data layout: (i) edge arrays, (ii) adjacency lists (i.e. per-node edge ar-
rays), (iii) grid. Then, the authors differentiate edge-centric algorithms (e.g.
PageRank) from node-centric algorithms (e.g. BFS). Eventually, they prove
that unsorted adjacency lists represent the solution with the best end-to-
end execution time. In particular, sorting the per-node edge arrays degrades
the end-to-end performance with respect to unsorted adjacency lists: the
pre-processing time increases, while the algorithm execution time does not
decrease and the cache miss ratio does not improve. As outlined in Sec-
tion 1.3, when executing GAM/P-GAM, we explore the graph by building
Grow opportunities: we iterate over all the edges adjacent to the current root
before processing another node. Therefore, GAM/P-GAM is a node-centric
algorithm. As a consequence, adopting adjacency lists as data layout allows
us to bring into last level cache only and exactly the data we are interested in
when building Grow opportunities starting from a tree rooted in a given node.
Therefore, although GAM/P-GAM has substantial differences with any algo-
rithm that is benchmarked in [50], adjacency lists represent the layout that
is realized in Section 2.2.

Elyasi et al. [10] carry out a study involving emerging storage devices (e.g.
SSDs) as opposed to relying on DRAM to perform large-scale graph pro-
cessing. By proposing a specific methodology for partitioning vertex data to
reduce computational overhead, the authors prove that their optimizations
outperform the state-of-the-art solutions by a factor of 2X. Future develop-
ments for CLMem could certainly consider emerging storage devices as an
alternative to DRAM. However, we highlight that [10] draws its conclusions
based on classical algorithms such as BFS and PageRank as benchmarks.

Several works have focused on studying and leveraging storage bandwidth.
In [6], Boncz et at. investigate the impact of main memory access as the main
performance bottleneck in database applications. Thus, the authors propose
a set of guidelines in terms of data structure and algorithm design. Similarly,
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Ahn et al. [9] highlight the critical points of graph processing systems work-
ing in main memory, in particular their scalability challenges due to severe
memory bandwidth limitations. In this regard, the authors propose a pro-
grammable accelerator that is specialized for graph processing and able to
exploit internal memory bandwidth efficiently. Also, in [12], Roy et al. pro-
pose an edge-centric approach to the scatter-gather programming model. The
authors state that exploiting sequential bandwidth for a given storage me-
dia by streaming completely unordered edge lists might perform better than
indexing the edge list, thus performing random access. Furthermore, Hong
et al. [11] state that, in general, distributed environments end up being less
performative than single-machine systems making efficient use of resources.
Then, they outline a distributed graph process engine which outperforms an
implementation optimized for single-machine execution.

Finally, we followed the work done by Binnig et al. [51] in order to index
node labels while allowing for prefix matching. However, we extended the
structure to support characters of type wchar_t, since ASCII encoding is not
sufficient to represent our strings.
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Conclusion

The ConnectionLens project developed by the Cedar team at Inria answers
the practical need to aggregate and link information coming from different
sources, in order to support investigative journalism based on digital data. In
this regard, CL is a software capable of receiving more or less structured data
sources (e.g. JSON, HTML, PDF, RDF, textual files, etc.) and connecting
them in the form of a graph [2]. Moreover, by means of natural language
processing techniques, the system is able to isolate and disambiguate entities
(e.g. people, organizations, universities, etc.). Such a graph is then stored in
a relational database (i.e. PostgreSQL). Therefore, the GAM keyword search
algorithm has been developed to answer queries. However, the responsiveness
of the system is largely bounded by PostgreSQL and, in general, by disk
I/O. This is even more dramatic in the context of large amounts of data that
characterize the present context.

The goal of the present work has been to improve CL’s pipeline in terms of
scalability. To that end, firstly we developed a data migration module that
retrieves the graph from PostgreSQL and loads it into a scalable in-memory
store (i.e. CLMem). Special attention has been paid to memory layout, in
order to favor spatial locality of reference and limit cache evictions.

Then, a parallel, in-memory variant of the GAM algorithm has been de-
signed and implemented (i.e. P-GAM), which also enabled a completeness
analysis of a previously proposed pruning heuristic. In this context, sequen-
tial and concurrent data structures have also been developed and highly
specialized in performing the specific operations required by the operational
scenario at hand.

Subsequently, we have tested CLMem’s performance on synthetic graph
topologies, in order to validate scalability in a controlled environment. We
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verified that CLMem scales successfully on both the graph size and the data
structures. Finally, we built real-life graphs out of data sources suggested by
our partnership with Le Monde, and we confirmed CLMem’s features.

The work presented here and carried during the candidate’s internship at
Inria contributed to a full paper submitted for evaluation at the PVLDB
Journal 2021 (Scalable Data Science track) and at the IEEE Bulletin of the
Technical Committee on Data Engineering.
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Appendix A

Memory Pool

In the present chapter, we outline the principles behind CLMem’s memory
pool. Inspired by related work [52]–[54], we have equipped our system with
a software abstraction that allows efficient management of the memory al-
located by the operating system to a given process. Indeed, a memory pool
implements a collection of ready-to-use memory resources thus avoiding con-
stantly requesting services to the operating system.

In general, crossing the barrier of the system call often requires a context
switch, whose costs can easily turn out to be unsustainable, especially in the
context of graph processing systems. Clearly, in order for a process to acquire
a given resource, such a barrier must be crossed at least once. However,
as soon as a resource stops being useful and used, a memory pool allows
the process not to return it to the operating system, but rather to keep
and manage it internally. In this way, requesting such a resource will not
be as expensive as executing a system call, instead it will be a matter of
calling a function of the memory pool and managing some of its internal
data structures. Indeed, everything happens within the address space of the
process itself and there is no need to perform any context switch. Thus,
all memory requests end up being centralized and meant to be made to the
memory pool.

Every memory request made the memory pool to the operating system is
intended to be performed by calling int posix_memalign(void **memptr,
size_t alignment, size_t size) [55], which allocates size bytes aligned
according to alignment and returns the address of the allocated memory
chunk in *memptr. Clearly, this makes CLMem compilable and runnable only
on POSIX-compliant systems, as enforced by synchronization mechanisms
used on shared data structures mentioned in Section 3.3 and B.2.
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Also, our memory pool is actually a collection of pools, i.e. one pool per
allocation method, further divided into one pool per thread. As a matter of
fact, we deal with a shared pools, which allow for a block owned by a given
thread to be freed by any other worker. As a result, each pool is protected
by a dedicated lock.

Finally, it is worth noting that the more likely a given memory resource is
to be reused, the more beneficial this software abstraction is. For this reason,
memory pools usually handle fixed-size blocks; however, this inevitably leads
to internal fragmentation. Therefore, we decide to adopt a hybrid strategy
consisting of the methods that follows.

A.1 Fixed-Size Page Groups
A page group is an array of memory pages, for which contiguous allocation
is granted. Therefore, we set the size of a page group so that it can match
the size of L1 cache and we align its address to multiples of the size of a
memory page. Effectively, the aim is not just to catch the right and fair
size but to limit evictions: by allocating contiguous address space, we have
some guarantees that a page will not evict its next one within a group. As a
matter of fact, it boils down to the OS allocation policies establishing whether
physical addresses are indeed contiguous, even if they usually end up being
so.

From an implementation perspective, when a given thread asks for a page
group and its pool turns out to be empty, it requests memory blocks to the
operating system in order to fill the pool. In doing so, the process doesn’t
request just a single page group, rather it makes as many requests as set by
a properly tuned constant. In this way, we conservatively ask for a certain
amount of page groups, assuming that we will need them later.

It goes without saying that, if the pool is not empty, we pull a page group
from there. Similarly, when we free a page group, we push it into the owner’s
pool.

A.2 Fixed-Size Small Page Groups
A small page group is just a different way of calling a memory page, for which
contiguous allocation is granted by definition. Therefore, also in this case, we
align the address of a small page group to multiples of the size of a memory
page.
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The memory pool provides two sets of APIs allowing to acquire and release
small page groups. The first one operates in the exact same way as it does
for page groups, as described in Section A.1. Furthermore, a second interface
implements a deferred and cumulative release policy. In detail, when a small
page group is requested, as usual we check if it is already available in the pool
and possibly request it to the operating system. In any case, before being
returned to the user, it is stored in a buffer keeping track of all small page
groups currently in use by a given thread which are meant to be released
cumulatively. Thus, when the cumulative release method is finally called,
every small page group stored in a given thread’s buffer is released to the pool
and the buffer is eventually cleared. The above policy has been implemented
to speed up massive cleaning operations of certain data structures based on
small page groups, such as memoryTrees mentioned in Section 3.3.

A.3 Variable-Size Allocation

Our memory pool also supports variable-size memory allocation in order to
potentially limit internal fragmentation when needed. Thus, it is possible
to request a block of memory aligned to multiples of the size of the cache
line. At this point, a hybrid policy first attempts a static allocation, and
eventually a dynamic allocation.

In detail, given a constant size factor sizestatic, there exist cntstatic pools,
each pool pooli storing blocks of size sizei such that sizei = i∗sizestatic, with
1 ≤ i ≤ cntstatic. Thus, static allocation takes place in case the size sizeblock of
the requested block is multiple of sizestatic and sizeblock < cntstatic ∗sizestatic.
In this case, we try to pull a memory block from poolt, with t = sizeblock

sizestatic
; if

poolt is empty, we request memory to the operating system.
If conditions for static allocation are not satisfied, we move on to dynamic

allocation. Then, the pool turns out to be a hash index that associates a
given size with any possible address of a usable block of memory of that size.
If we cannot find anything in the pool, we eventually request memory to the
operating system.

When releasing a variable-size memory block, its size must be passed to
the memory pool. Indeed, by means of this information, it is possible to
state whether the block has been allocated statically or dynamically, and
thus place it in the correct pool for later usage.
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A.4 Explicit Allocation
The explicit acquire method allows us to request to the operating system a
contiguous block of memory of any size whose alignment can eventually be
set by the user (by default, it is aligned to multiples of the size of the cache
line). On the other hand, the release method bypasses the pools and returns
a given block of memory directly to the operating system. In practice, this
interface is deployed for the sole purpose of fulfilling the design principle of
operationally centralizing memory management via the memory pool. No
pool is actually involved in explicit allocation.
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Appendix B

Data Structures Design

The present chapter outlines the work that has been carried out in the domain
of data structure design.

Each of the following classes originates in a definite context that requires
specific functionalities to support certain algorithms or operations. As a
matter of fact, we take a highly specializing approach that aims to identify
the essential services required by a given operational context. Eventually,
this leads to the possibility of pinpointing possible optimizations in terms of
memory resources and computational performance in order to properly tune
the backbone of the software system to the specific needs. This chapter also
serves as a developer guide, in that it describes the interfaces and operations
allowed by each data structure.

Therefore, Section B.1 describes containers operating in a single-threaded
context, while Section B.2 outlines thread-safe classes designed for concurrent
use.

B.1 Sequential Data Structures

In the following section, we outline containers designed to operate in sequen-
tial environments. Section B.1.1 describes two possible implementations of a
fixed-size array, while Section B.1.2 delineates a pair of classes implementing
variable-size arrays. Finally, Section B.1.3 details the principles behind the
implementation of a hash set.
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B.1.1 CLImmutableArray<T> and CLIntegerMap<T>

CLImmutableArray<T> implements a finite, fixed-size collection of fixed-size
elements, which are contiguously stored in memory. When the object is in-
stantiated, it explicitly asks the memory pool for a given contiguous memory
segment (ref. Appendix A.4) of size equal to the maximum number of ele-
ments multiplied by sizeof(T). The class exhibits the random read access
operator and a push back method, allowed by an internal element counter.
No checks are performed on the boundaries, and it is not possible to store
elements at any position or to request the size of the container. As a matter
of fact, the interface forces the user to sequentially insert new objects and
requires the information about the size to be stored and managed externally
to the class itself.

CLIntegerMap<T> also implements a finite, fixed-size collection of fixed-
size elements stored contiguously in memory, but it exhibits a slightly dif-
ferent interface. In fact, as the name suggests, the class explicitly pro-
vides the integer-key map semantics, thus supporting the random access
operator not only for reads but also for writes, although no checks are
performed on the boundaries during both operations. Therefore, unlike
CLImmutableArray<T>, the user is able to write at any position. As
CLIntegerMap<T> internally stores the size of the map, it can also exhibits
forward iterators.

B.1.2 CLList<T> and CLResizableArray<T>

CLList<T> implements a finite, variable-size collection of fixed-size objects
contiguously stored in memory. Therefore, upon object creation, we ask the
memory pool for a block (ref. Appendix A.3) of a given size representing
the resize factor of the list. Then, we keep track of such a factor along with
the capacity of the list and the thread owning the block. The class exhibits
a push back method that, via a counter keeping track of the last appended
element, allows us either (i) to store the element directly at a proper address
or (ii) to resize the list in case we have filled the available memory. This is
achieved by asking for a new block of the same size as the current one plus
a resize factor, so that we can copy the array of objects to the new memory
address and release the source to the memory pool. Finally, we can keep
track of the owner of the new block. As a matter of fact, we have performed
a memory reallocation, which now allows us to insert the required item at
a valid address. Those features come at the additional cost of checks on
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indexes and list size for each insertion. CLList<T> also exhibits random read
access operator and a clean method which keeps the allocated memory but
sets the element counter to 0. Furthermore, we can get forward iterators and
check whether a given object is contained in the list with linear complexity
in the number of elements.

CLResizableArray<T> is very similar to CLList<T>, as it also implements
a finite, variable-size collection of fixed-size objects contiguously stored in
memory. On the other hand, it exhibits the same integer-key map semantics
as in CLIntegerMap<T> outlined in Section B.1.1: as a consequence, rather
than appending a new object, we insert it at a given position. If such a
position ends up being beyond the boundaries defined by the size of the
current allocated memory chunk, we perform reallocation following the same
policies described above. However, suppose that we have an object of class
CLResizableArray<T> with resize factor resizef ; therefore, each memory
segment of size resizef can host resizee = resizef

sizeof(T) consecutive elements.
Then, suppose that we want to insert a new element at position pos such
that pos

resizee
> 1. As a result, we may end up with several empty positions

between pos and the last element inserted into the array. Essentially, by
employing this class, the users account for the possibility of sub-optimal
memory usage or, equivalently, they take responsibility for using every slot
in the array.

B.1.3 CLSet<T, Hash, KeyEqual>

CLSet<T, Hash, KeyEqual> implements an associative container holding a
set of unique objects of type T. The elements are organized into buckets ac-
cording to their hash value computed by Hash (std::hash<T> by default),
while their identity is determined by KeyEqual (std::equal_to<T> by de-
fault).

Internally, the buckets are an abstraction built over small page groups
(ref. Appendix A.2). Specifically, when the container is instantiated, we ask
a small page group to the memory pool and we store its address and its owner
in two objects of class CLResizableArray<T> (ref. Appendix B.1.2), which
we call allocated_buckets and buckets_owners respectively. A small page
group is then divided into an array of b buckets such that, for a given elem
of type T, we can find its bucket by Hash(elem) mod b. So, if a small page
group has size szsmall_P G, each bucket will have size szbucket = szsmall_P G

b and
contain max_elembucket = szbucket

sizeof(T) elements. Furthermore, we keep track of
the number of elements num_elemi contained in each bucket, with 1 ≤ i ≤ b.
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Therefore, we can insert a new element following two different ap-
proaches, i.e. checking for duplicates or assuming that none exist. In
both cases, in the actual moment the new element elem will be inserted
inside bucket i = Hash(elem) mod b, its position is going to be deter-
mined by two pieces of information: (i) the selector for the small page
group possel = num_elemi

max_elembucket
inside allocated_buckets; (ii) the index

posidx = num_elemi mod max_elembucket of elem inside the selected small
page group allocated_buckets[possel]. If possel is greater than the num-
ber of elements contained in allocated_buckets, we have practically filled
the current bucket and we need to allocate a new small page group which
is going to expand every bucket by a factor equal to szbucket; we ap-
pend the new small page group and its owners to allocated_buckets and
buckets_owners respectively. Otherwise, we simply insert the new element
at offset = allocated_buckets[possel] + i · szbucket + posidx · sizeof(T).
Eventually, we update any possible counter. Clearly, if we want to check for
duplicates, we verify that the set does not contain elem beforehand by ap-
plying KeyEqual. On the other hand, inserting new elements without checks
for duplicates clearly threatens to break the whole semantics of sets: in fact,
in this case the responsibility is completely delegated to the user.

The internals on the insert operation give many technical insights into
the underlying design idea of the class. By iterating over the buckets, the
structure also implements union with another set, with the aforementioned
optional checks for duplicates. In addition, the interface allows to check for
equality between two sets or their disjointedness. Finally, forward iterators
are also exhibited.

B.2 Concurrent Data Structures
In the following, we outline relevant internals of thread-safe data strctures.
Synchronization mechanisms, such as latches or condition variables, are al-
ways implemented with the direct support of the POSIX standard, with the
only exception of atomic variables provided by the Standard Template Li-
brary (e.g. std::atomic<T> defined in <atomic>).

Most of the classes described below extend their counterpart operating in
a single-threaded environment. Section B.2.1 outlines the implementation of
a variable-size array, while Section B.2.2 describes a list-type class. Further-
more, a thread-safe hash set is documented in Section B.2.4. In these cases,
we will point to the reference class and highlight any major differences.
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On the other hand, a few more containers do not have a sequential counter-
part and will be described in appropriate detail. Thus, Section B.2.5 outlines
a class implementing a list of fixed-size arrays, while Section B.2.6 describes
a hash index with duplicated keys.

B.2.1 CLResizableArray_TS<T>

CLResizableArray_TS<T> is the thread-safe counterpart of the class
CLResizableArray<T> outlined in Appendix B.1.2. However, the present
data structure is completely lock-free, in order to allow for scalability even
in case of extreme contention. In particular, we assume that reads at a given
position never occur simultaneously with a write request at the same posi-
tion. Also, we mention that the integer-key map semantics allow us to insert
elements at any position. Following this, we underline that the class does not
provide any guarantee as to the outcome of two concurrent write requests
operating at the same position. Therefore, the user is responsible for neither
reading nor writing at any position where another thread might be writing
at the same time.

On the other hand, all writes and reads are protected from any possible
reallocation of the array. This is achieved through memory barriers imple-
mented by means of atomic variables. In particular, through a meticulous
usage of release-acquire memory ordering, we enable threads to write and
read to addresses that are always valid and ensure that no write is lost.

B.2.2 CLList_TS<T>

CLList_TS<T> is the thread-safe counterpart of CLList<T> outlined in Ap-
pendix B.1.2. As for CLResizableArray_TS<T> described in Appendix B.2.1,
also here we assume that reads at a given position never occur simultaneously
with a write at the same position. Indeed, the class has been optimized for
reads, as required by a specific operational context; alternatively, each read
request would have to wait for each concurrent write to complete, even though
these two transactions are operating on conflict-free positions. However, the
class guarantees that reads always occur in mutual exclusion with possible
resize operations of the list and thus reallocations. Finally, in other words,
the class guarantees that each read occurs at a valid memory address, but
does not guarantee that the read data is valid. On the other hand, writes
always occur in mutual exclusion with each other, and in mutual exclusion
with reallocations.
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This class is also employed in CLUnorderedMultimap_TS<T, V, Hash,
KeyEqual> (ref. Appendix B.2.6) to store lists of V. As outlined in Section 3.3,
such lists are intensively read at the core of P-GAM. Therefore, we can adopt
an approach inspired by copy-on-write techniques, by enabling the creation
of a copy of the list in a separate object of class CLImmutableArray<T> (ref.
Appendix B.1.1). This way, we require the lock guaranteeing mutual ex-
clusion with reallocations just once and keep it as long as the time span
of the copy operation (i.e. std::memcpy); thereafter, the copy is completely
independent on the original object of class CLList_TS<T>. Clearly, this gran-
ularity of locks is suitable only in case we don’t need to read the most recent
status of the list.

B.2.3 CLResizableArrayList_TS<T>

CLResizableArrayList_TS<T> implements a finite, variable-size collection
of fixed-size objects. As we instantiate an object, we ask the memory pool
for a block (ref. Appendix A.3) of a given size representing the resize factor of
the array. Then, we store the address of such a block and its owner in two ob-
jects of class CLResizableArray_TS<T> (ref. Appendix B.2.1), which we call
allocated_chunks and chunks_owners respectively; also, we keep track of
the resize factor of the array. Differently from CLList_TS<T> outlined in Ap-
pendix B.2.2, the class supports the integer-key map semantics, thus allowing
to insert a new element at any position. Therefore, suppose that we have
an object of class CLResizableArrayList_TS<T> with resize factor resizef ,
such that each block of size resizef can hold resizee = resizef

sizeof(T) consecutive
elements. Also, suppose that allocated_chunks has size num_chunks and
that we want to insert a new element at position pos ≥ resizee·num_chunks.
In this case, we avoid reallocating the entire structure to a bigger memory
block by just asking for another chunk of size resizef to the memory pool,
thus appending it to allocated_chunks. Essentially, the interface handles
the class as if it was an array when in fact it implements a list of arrays, as
the name suggests.

Therefore, we no longer require reads to be mutually exclusive with any
reallocation, as there is no reallocation in the first place. Reads end up being
completely lock-free: however, the guarantees and responsibilities mentioned
for CLList_TS<T> apply here as well. Writes are also lock-free in case they
occur at any position pos < resizee · num_chunks. So again, the user is
responsible for avoiding race conditions in this case. On the other hand, mu-
tual exclusion is guaranteed if concurrent write requests operate at positions
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that require additional memory chunks. In this case, it is necessary to wait
until there are no other concurrent memory requests that might have already
extended the boundaries as needed.

B.2.4 CLSet_TS<T, Hash, KeyEqual>

CLSet_TS<T, Hash, KeyEqual> is the thread-safe counterpart of CLSet<T,
Hash, KeyEqual> outlined in Appendix B.1.3, with a reduced interface in
order to boost performance where strictly required. In particular, the union,
the check for equality and disjointedness between two different sets are not
implemented.

As a matter of fact, the class implements only insertion with a simul-
taneous check for any duplicates. However, locking an entire bucket while
reading would be extremely expensive, even more since a writing request al-
ways implies a reading request. On the other hand, the absence of locking
mechanisms while reading would be dangerous, since not only would we have
no guarantee of correctness but we might also end up inserting duplicates
which result in wasted memory and loss of set semantics. For this reason,
we find a trade-off between minimal synchronization cost and complete in-
formation consistency.

In detail, given an object of class CLSet_TS<T, Hash, KeyEqual> with
b buckets, before inserting an element elem in a given bucket i =
Hash(elem) mod b, we atomically read the index lasti of the last element
inserted in that bucket. Thus, we check without any kind of lock whether
elem is present in bucket i up to lasti, by applying KeyEqual. If elem has
not been found then we acquire a lock in mutual exclusion with any possible
concurrent writers. Then, we check again from lasti to the index of the last
element inserted in bucket i, which might have been changed. If we don’t
find any duplicate, we finally insert elem element according to the policies for
bucket expansion outlined in Appendix B.1.3. Lastly, we atomically update
the index of the last element contained in bucket i and release the lock.

B.2.5 CLImmutableArrayHeap_TS<T>

Given a constant number of elements th, CLImmutableArrayHeap_TS<T> im-
plements a finite, fixed-size collection of fixed-size ei elements (with 1 ≤ i ≤
num_elem) which are: (i) if num_elem ≤ th, stored contiguously in mem-
ory; or (ii) if num_elem > th, split into two subgroups G1 = {e1, . . . , eth}
and G1 = {eth, . . . , enum_elem}, both stored contiguously in two separate
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memory areas.
As it has been described, this class may not seem particularly interesting.

However, it provides a constructor that does not take care of allocating mem-
ory itself, but rather receives the addresses of the two memory areas being
allocated beforehand. This means that we can allocate memory blocks in
an external context whereby we have prior knowledge of the available mem-
ory resources and the way we want to manage them, thus handle such blocks
through this interface. Indeed, the present class has a central role in realizing
the data layout outlined in Section 2.2, as it allows to contiguously allocate
fixed-size CLNode object and overflowing excess connections into a separate
heap area.

By means of an internal counter of class std::atomic_uint64_t,
CLImmutableArrayHeap_TS<T> allows to insert new elements in push back
mode. Therefore, writes always occur in mutual exclusion and race condi-
tions are prevented by construction. On the other hand, reads occur without
checking the state of any concurrent writes or the number of elements cur-
rently in the container. Therefore, the user is responsible for avoiding race
conditions.

B.2.6 CLUnorderedMultimap_TS<K, V, Hash, KeyEqual>

CLUnorderedMultimap_TS<K, V, Hash, KeyEqual> implements an
unordered associative container, associating a list of values of type V with
equivalent keys of type K. In particular, the list of values is implemented by
an object of class CLList_TS<V>, outlined in Appendix B.2.2.

The data structure carries out the same concept of bucketing as in
CLSet_TS<T, Hash, KeyEqual> (ref. Appendix B.2.4), i.e. abstractions
on small page groups. The only difference consists in the elements be-
ing inserted into these buckets, which are actually of type std::pair<K,
CLList_TS<V>*> (hereinafter key_list_t). To further delve into the dif-
ferences in implementation with CLSet_TS<T, Hash, KeyEqual>, we might
also state that a small page group is divided into an array of b buckets such
that, for a given key k of type K, we can find its bucket by Hash(k) mod b.
So, if a small page group has size szsmall_P G, each bucket will have size
szbucket = szsmall_P G

b and contain max_elembucket = szbucket

sizeof(key_list_t) elements.
In detail, given an object of class CLUnorderedMultimap_TS<K, V, Hash,

KeyEqual> with b buckets, suppose that we want to append a value val to
the list of values associated with a given key k. Thus, we compute bucket
i = Hash(k) mod b, and we atomically read the index lasti of the last element
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inserted in that bucket. Therefore, we check without any kind of lock whether
k is present in bucket i up to lasti, by applying KeyEqual on the attribute
first of objects of type key_list_t. If k has not been found then we acquire
a lock in mutual exclusion with any possible concurrent writers. Then, we
perform similar checks again from lasti to the index of the last element
inserted in bucket i, which might have been changed. If we don’t find any
duplicate key, we finally insert a new element elem of type key_list_t,
according to the policies for bucket expansion outlined in Appendix B.1.3;
here, we also instantiate an object list of class CLList_TS<V>. So, we store k
as first of elem and a pointer to list as second of elem. Lastly, we append
v to list, then atomically update the index of the last element contained in
bucket i and release the lock. Clearly, if the search for equivalent keys turns
out to be successful, we only append the value v to the list associated with
the key k already in place.

The interface of the class also exhibits a method allowing to get the list
of values associated with a given key. However, this is performed without
involving any lock, similar to the aforementioned lock-free checks. Thus,
no information is given to the user about which state of the map is being
observed. Eventually, if a list of values associated with the key is found,
a pointer to an object of class CLList_TS<V> is returned, which handles
concurrency on its own as described in Appendix B.2.2.
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