
POLITECNICO DI TORINO
Department of

Control and Computer Engineering (DAUIN)
Master Degree in Mechatronic Engineering

Reinforcement Learning approach for
autonomous UAVs path planning and
exploration of critical environments

Supervisor
Giorgio Guglieri

Candidate
Riccardo Urban

Co-supervisor
Simone Godio

Academic Year 2020/2021

Copyright
This Master Thesis is released into the public domain using the CC BY NC 4.0 code. To the
extent possible under law, I waive all copyright and related or neighbouring rights to this work.
To view the CC BY NC 4.0 code, visit: https://creativecommons.org/licenses/by-nc/4.0/

i

https://creativecommons.org/licenses/by-nc/4.0/

ii

Abstract

Unmanned Aircraft Systems (UASs) have become an important and promising field of study in
the aerospace industry. Their versatility and efficiency have led them to be used in a considerable
number of different applications. Research in this field is constantly increasing their capabilities
and with them the number of tasks they are able to perform. For instance, it is only recently
that developments in autonomous driving, often supported by artificial intelligence algorithms,
have allowed them to work independently from human intervention. This advancement has
greatly improved the possibility of using autonomous UASs in critical environments where it
would be difficult or dangerous for a human to intervene. One of the most challenging problems
for UAS is the collaborative operation of multiple Unmanned Aerial Vehicles (UAVs) in the
same environment to perform a common set of tasks. The possibility for a fleet of UAVs to
collaborate in the execution of the same objective would greatly increase the capabilities of
UASs. The ability to work together efficiently would speed up operations in many situations,
and allow to specialise each UAV for a specific task. This could open up a whole new set of
applications where autonomous UAV fleets could be employed. Different solutions are currently
being proposed and studied to address this challenge, as will be illustrated below.

In this thesis, a new approach for collaborative exploration of critical environments using a small
fleet of UAVs is proposed. The goal is to design an algorithm able to guide an autonomous
drone fleet in the exploration of an unknown environment. This kind of task presents several
different challenges. In fact, each drone must be capable of moving in space without hitting
any obstacle or other drones in an efficient way i.e. avoiding already explored areas and crossing
path. At the same time it has to carry on the exploration task or any other task assigned to
it. While performing these tasks, the drones must also communicate with each other in order
to coordinate the exploration following a common strategy and share useful information to
optimise the execution of the task. The proposed solution consists of a combined approach
of different methods that are merged in an innovative way that allows to exploit the strong
points of each of them. Some methods used, like the Artificial Potential Field, have been used
for many years in the engineering field and widely studied. Others, like Deep Reinforcement
Learning, are far more recent and their capabilities are still being explored and tested. The
combination of these methods allows to increase the efficiency of the “classical” ones, enhancing
their capacities beyond those achieved so far.

iii

Contents

Abstract iii

1 Introduction 1
1.1 Introduction . 1
1.2 Thesis outline . 2

2 State of art 3
2.1 Path planning and obstacle avoidance . 3
2.2 Fleet coordination . 5
2.3 Reinforcement learning . 7
2.4 Applications . 7

3 Theoretical background 11
3.1 Artificial Potential Field . 11
3.2 Reinforcement Learning . 13
3.3 k-means clustering . 24

4 Algorithm design 25
4.1 Assumptions and simplifications . 25
4.2 Algorithm description . 27
4.3 Environment model builder . 30
4.4 Coverage . 36
4.5 Path Planning . 39
4.6 Dynamics and Control . 44
4.7 Reference UAV . 46

5 Training process 49
5.1 Training set & validation set . 49
5.2 Agents training . 51

6 Simulations & results 59
6.1 Path planning agent . 59
6.2 Coverage agent . 66

7 3D extension 75
7.1 3D extension . 75

8 Conclusions 77
8.1 Issues . 77

iv

8.2 Future work . 78
8.3 Conclusions . 79

Acknowledgements 81

List of Figures 83

List of Tables 84

List of Algorithms 85

Bibliography 87

Appendix 93

A Neural Networks, Backpropagation & Stochastic Gradient Descent 93
A.1 Neural Networks . 93
A.2 Stochastic Gradient Descent . 94
A.3 Backpropagation . 97

v

1. Introduction

1.1 Introduction

The goal of this thesis is to propose an algorithm to perform autonomous exploration tasks
with a fleet of Unmanned Aerial Vehicles (UAVs). UAVs have become an important area of the
aerospace industry thanks to their versatility, efficiency and cheapness. The development of
autonomous UAVs represents a very interesting research topic, with several critical challenges
and many potential application fields. This thesis is part of this large research field, and in
particular of the area concerning the development of autonomous driving algorithms though
Artificial Intelligence (AI) techniques. This research area has grown large in the last decade,
following the rapid development of AI algorithms and techniques, in particular for what regards
those based on Neural Networks. The proposed solution is based on Reinforcement Learning
methods, as it revolves around the training of two Neural Network capable of taking real-time
optimal decisions in an unknown environment in order to explore it and accomplish a given
task. The exploration algorithm is split in two parts: a coverage task, which returns as output
the objectives to reach and a path planning one, that generates the trajectory to reach them
(this is illustrated in detail in the chapter 4). Each part is carried out by a dedicated AI agent.
The training of such agents is the core of this thesis work. The rest of the document concerns
the development of the training and simulation framework, as well as the development of the
additional parts of the algorithm needed for the simulation environment such as the section
that manages the environment model, the interactions between UAVs and the dynamic model.

The proposed algorithm has been written mostly in the Python language, with the exception
of some parts written in MATLAB. The development and testing has been made mostly in
a custom-designed environment, whereas some final simulations have been conducted in the
ROS environment. The code was written in Python 3.8.3. Some relevant libraries used to
develop the code are Tensorflow 2.3.0, Keras 2.4.3, OpenAI Gym 0.17.3 and opencv 4.5.
In the simulation environment are used ROS Noetic, Gazebo and ArduPilot. As already
mentioned, some sections of the code have been written in MATLAB 2020b. Relevant parts of
the final code can be found in the GitHub repositories https://github.com/RiccardoUrb and
https://github.com/gbattocletti-riccardoUrb. In the second one, a more complete version of
the algorithm can be found, taking into account also the work of Gianpietro Battocletti, in
fact this thesis work was developed in close collaboration with him, whose MSc thesis revolved
around the same topics of this one. The entire simulation and training framework was developed
together since the algorithms proposed in the two thesis were meant to work in the same type
of environment. In both thesis, the goal was to perform the exploration tasks in an unknown
environment and given the many common traits it was decided to build a common development
framework to speed up both works.

1

https://github.com/RiccardoUrb
https://github.com/gbattocletti-riccardoUrb

1.2 Thesis outline
The thesis is organised as follows: in Chapter 2 is presented the state of art of autonomous UAVs
research, along with some examples of possible applications for the algorithm that are designed.
In Chapter 3 the mathematical and engineering methods employed in the design of the algorithm
are presented and discussed. In Chapter 4 the structure of the whole algorithm is finally unveiled,
going into detail regarding building and employing of the simulation environment. Also the
path planning and the coverage algorithm used to coordinate the drone fleet are analysed. In
addiction a brief discussion about dynamics and control is introduced, along with the description
of the reference UAV used in the dynamic model. In the following chapter 5 the training
methodologies and the maps used to obtain the two agents are discussed and illustrated. In
chapter 6 simulations performed with the implemented algorithm are analysed and discussed
and the performances achieved with this model are compared with other classical algorithms.
In Chapter 7 an extension of the algorithm to the 3D case is presented. This chapter contains a
first implementation of the code in a 3D environment and related ROS simulations. In the latter
section there is much space for refinement, however, since almost every real-world application
is in a 3D environment, it is worth showing the potential of the algorithm in such a scenario.
The conclusions of the work, along with the discussion of the algorithm issues and possible
future development, are presented in Chapter 8. At the end of the thesis, in Appendix A, there
is a discussion of Neural Networks structure and functioning, along with a brief illustration of
Stochastic Gradient Descent and Backpropagation methods, which are the two fundamental
tools used in the training of Neural Network and can be helpful to understand the approach
used in the development of the algorithm.

2

2. State of art

Before diving in the algorithm design and development, it is worth dedicating a few words to
the scientific and technical environment in which this work is developed. In fact, as autonomous
UAVs have garnered significant interest in the academic and scientific community, a considerable
number of papers and publications has been produced on this topic. In this chapter, a brief
review of these works will be performed to picture out the state of art of this research field.
In the first two sections of the chapter (Sections 2.1 and 2.2) the state of art of two areas of
interest in the autonomous UAVs world is discussed. In the third section instead (Section 2.3)
some significant employment of reinforcement learning algorithm are presented. Finally the last
section (Section 2.4) is devoted to the description of some relevant application areas.

2.1 Path planning and obstacle avoidance
A considerably large number of algorithms has been developed in the past decades to perform
path planning and obstacle avoidance operations [1] [2]. These are crucial tasks in the guidance
of UASs and for such reasons, path planning and trajectory planning algorithms assume a very
relevant importance. Path planning algorithms solve a computational problem which aims to
generate a geometric path passing through valid way-points from the starting position to the
assigned goal. In this case the geometric path do not take into account any time law for the
determination of the way-points. Instead the trajectory planning algorithms define the times of
passage at the way-points, for the given geometric path, influencing not only the kinematic
properties of the motion, but also the dynamic ones 1. In dynamic environment applications,
where mobile obstacles are present, some extra features, such as obstacle avoidance, may be
added in order to accomplish the task avoiding sudden collisions or hazard situations. In some
cases, as representation technique, a model of the environment is used as the input of the path
planner, built trough different algorithms and stored in the memory of the device where the
code is running. A second option is to give as input only the current sensor measurements and
compute the output only taking into account these data. In most data-based algorithms the
input is an image obtained from a camera, often enriched by some information about the 3D
shape of the environment (for example thanks to a stereo camera or a depth camera) [3].

There are different approaches to facing the path planning problem, the traditional major
ones are the roadmap, the cell decomposition and the potential fields methods. The roadmap

1 from now on, whenever is talk about trajectory, is actually meant to be the geometric path computed by the
path planning algorithm.

3

Approach is dependent on the concepts of configuration space and continuous path. A set of
one-dimensional curves which connect two nodes of different polygonal obstacles lie in the free
space and represent a roadmap R. All line segments that connect a vertex of one obstacle
to the vertex of another without entering in the interior of any polygonal obstacles are the
viable paths. This set of paths is called the roadmap. If a continuous path can be found in
the free space of R, the initial and the goal points are then connected to this path creating
the final path. Dijkstra, RRT, A* [4] and D* [5] are roadmap approach algorithms. For what
regarding cell decomposition, the basic idea behind this approach is that a path between the
initial configuration and the goal configuration can be determined by subdividing the free
space of the region into smaller regions called cells. After this decomposition, a connectivity
graph is constructed according to the adjacency relationships between the cells. From this
connectivity graph a continuous path can be determined by simply following adjacent free
cells from the initial point to the goal one. Finally the potential field method, such as the
Artificial Potential Field (APF) [6], involves modelling the agent as a particle moving under
the influence of a potential field that is determined by a set of obstacles with a repulsive field
and a target destination with an attractive field. All these algorithms store and use a model to
represent the available information about the environment (such as the position of obstacles
in the environment) and they are fairly light from the computational point of view.[7]. A
common characteristic of the algorithms listed above is that they are deterministic, i.e. given
a set of initial conditions they compute always the same path, following a given set of rules.
The drawback of this approach is that these rules needs to be explicitly coded in order to
obtain a trajectory with some desired characteristics. This is quite simple if the only objective
is to find the shortest path to a desired location. However, if the path is required to have
some more complex characteristics (e.g. minimum travel time, taking into account the agent
dynamics, or maximum possible distance from obstacle), those algorithms become too much
limited. In fact, the conditions listed as an example can be extremely difficult to explicitly code,
and so deterministic algorithms result insufficient to optimise the path with respect to those
characteristics. To overcome this limitations, heuristic path planning algorithms are often used.

Heuristic-search techniques implement an optimisation problem through cost estimation method
from the starting position to the goal point. These approaches due to the power and convenience
during the optimisation process are considerable interesting in the research field of optimal
path planning algorithm for UAVs. The relevant methods include Genetic Algorithm (GA) and
Particle Swarm Optimisation (PSO) [8], simulated annealing method and hybrid algorithms
(where the optimisation process is made considering multiple cost functions) [9]. These kind
of path planning algorithms allow to compute a route optimised with respect to any desired
characteristic. In this case, it is much easier to take into account any complex constraint since
it is sufficient to include them inside a cost function that will be then minimised in order to
find the optimal path. This kind of approach allows to find very efficient and robust paths.
Often the optimisation process is a stochastic one in order to speed up the computation of the
optimal solution. In fact, the main limitation of optimisation-based path planning algorithms
is that their computational cost is higher than the one of the algorithms introduced in the
section above. Since the microcomputers on which those algorithms usually run often have
limited computational power usually they have time constraints, so to keep the computational
cost sufficiently low these algorithms end up finding a sub-optimal solution (which is, however,
usually acceptable for the path planning purpose).

A class of algorithms that could be revolutionary in the path planning field is that of Artificial-

4

Figure 2.1: Comparison between a path generated with an heuristic path planning i.e.
PSO algorithm on the left and a trajectory generated with the potential field approach on
the right.

Intelligence-based path planning. This class of algorithms allows to compute optimal or
nearly-optimal solutions (like in the case of optimisation-based algorithms) but at a very low
computational cost. This is possible thanks to a training process, separated from the actual
algorithm run phase, that is performed offline, where through an offline optimisation process
result a function capable of generating optimal solution with a very low computational cost. In
particular the RL algorithms are very promising since, unlike the classical dynamic programming
methods they do not assume knowledge of an exact mathematical model of the problem and
this became relevant when exact methods become infeasible. The employment of these class of
algorithm is very recent and is still subject of research in many areas. Especially with regard to
RL ones which are still in an embryonic state from an application point of view due to a lack of
robustness. Some of work related with the navigation of autonomous UAV with RL algorithm
are: [10, 11, 12].

2.2 Fleet coordination

One particular area on which part of the research has focused is that of autonomous UAV fleets.
The idea is to create fleets of UAVs capable of coordinating and collaborating in the pursue of
a common objective. This task comes with several challenges. A number of different solutions
have been proposed or are still being researched to solve this problem [13]. The techniques
involved in the design of fleet coordination algorithms are various, and range from the use
of mechanical models to the implementation of bio-inspired methods, up to the use of Deep
Learning (DL) approaches [14]. A particular application of autonomous UAV fleets is their use
in the exploration of unknown or critical environments (i.e., where it could be dangerous for a
human operator to go). This particular topic constitutes the main focus of this thesis.

A first approach used for fleet coordination is that of flocking algorithms [15]. In this case,
fleets are usually organised to have a leader which guides the action of all the components.
The algorithm is distributed, i.e., each component of the fleet takes its own decisions, instead,
the leader has a prominent role in the decision-making centralising part of the fleet control.
Often, flocking algorithms aim at maintaining a desired formation, that can be a relative

5

position between the fleet leader and the other components, in some cases also between the
components themselves. Flocking algorithms are well suited to control large fleets that need to
maintain a formation following a leader unit, however, they are not efficient for exploration and
coverage tasks with a small number of UAVs, since the single components lack the independence
necessary to quickly cover all the area in the environment [16, 17].

A second group of methods developed to assess this problem is that of swarming algorithms
[18, 19]. Swarming algorithms are based on a decentralised intelligence approach. Each
component of the swarm follows the same set of rules, which are usually quite simple and
regard only the decisions taken by a single member of the swarm. The application of those
rules by all the members of the fleet leads to the emergence of more complex behaviours and
strategies which can not be predicted from the basic rules. These kinds of behaviours are called
emerging behaviours and stem from the concept of collective intelligence [20]. These methods
are often bio-inspired, as they get inspiration from the observation of the behaviour of swarms
of bees or insect colonies. Fleets designed following this approach are usually leaderless, so
they have no hierarchical organisation and every component of the swarm takes decisions on its
own on the basis of its current state and of the information it has about the other members.
This information can be obtained by sensing the surrounding environment or through direct
communication with the other components of the swarm. Communication, that can be direct or
indirect (where the communication is obtained by leaving a trail or marks in the environment),
is one crucial feature of swarming algorithms, as the swarm components rely on information
about the other members to take their decisions. A particular type of swarming methods based
on indirect communication is that of stigmergy -based algorithms [21, 17, 22]. In this approach,
each member of the fleet releases a virtual substance (usually called “digital pheromone” from
its biological inspiration) as it moves in the environment. The pheromone remains where it is
released for a certain time, diffusing slowly in the nearby area. While it persists, it can be used
to gain information on the past location of the other members of the fleet, and be exploited
to give rise to a collective exploration algorithm. If every member of the fleet tends to go
toward the lowest concentration of pheromone, it is possible to obtain an emerging coverage
algorithm suitable for unknown environments. The main issue in a practical implementation
of this method for a fleet of UAVs is in the simulation of the release and diffusion dynamics
of the pheromone. In fact, all these operations must be performed inside the algorithm and
can result in time-consuming. Attempts have been made to use a real substance released in
the air by the UAVs, equipping them with a sensor to detect its presence. However, this kind
of approach brings with it a series of complications about the management of this substance,
resulting sub-optimal results.

A different and not widely explored approach to swarming algorithms is obtained by exploiting
models through a Deep Learning process. In this case, the rules determining the individual
behaviour of each component of the fleet are learned through a dedicated training process. The
goal is to generate the best set of individual rules to obtain the desired collective behaviour.
This kind of method fits in the domain of Multi-Agent Reinforcement Learning (MARL) models,
which are a very recent field of study in Artificial Intelligence [23, 24]. MARL models are usually
built using special architectures to design the training process, optimised to drive the agent to
learn the desired policy. The application of the same policy by all the members of the fleet is
what leads to the desired emerging behaviour. This thesis explores this subject by implementing
a RL-based swarming algorithm for exploration and coverage of unknown environments. Some
works with the same goal of this thesis that deserve to be mentioned are: [25, 26]

6

2.3 Reinforcement learning
Reinforcement learning is an area of machine learning concerned with how software agents
ought to take specific actions in an environment so as to maximise some notion of cumulative
reward. Due to its generality, the field is studied in many other disciplines, such as game
theory, control theory, operations research, information theory, simulation-based optimisation,
multi-agent systems, swarm intelligence, statistics and genetic algorithms. Reinforcement
learning algorithms are used in that areas where it is nearly impossible to code an explicit
algorithm that manages and process a very large number of possible input states. Autonomous
vehicles and robots fall into these fields. A possible future field of these algorithms is the human
assistance, where the RL agent works with a human operator and it is able to take human
action into its considerations in order to perform operations achieving a common goal [27].

2.4 Applications
It is worth devoting some space to discuss some of the possible applications of the algorithm
presented in this thesis. As already said, autonomous UAVs fleet could be employed in a
large number of fields. An exposition of some possible areas of application can be found in
[14]. However, it is worth pointing out some applications where the usage of fleets of UAVs,
autonomous coverage and exploration algorithms could be particularly valuable.

• An application discussed in [28] is to use a UAVs swarm to map the tree population of
forest environments. In this application, the UAV fleet moves through the forest guided
by a leader drone, and maintaining a given formation, it surrounds a tree and gets all
sort of information about it such as age, species, dimension, state of health etc. This
sort of application would be helpful to monitor forest resources, especially in large areas
difficult to reach. Moreover, it would be possible to build a database containing all the
data about the forest, allowing to monitor its evolution over the years and to plan in
advance resource management, both in terms of logging and reforestation;

• UAVs can be employed in forest environments also for surveillance tasks. In particular,
an application of high interest is that of spotting and monitoring forest fires. UAVs can
be employed first of all for detection tasks, and in particular for the reduction of false
positives as in [29]. More powerful techniques, such as forest monitoring with satellites,
can be used for a more effective early detection of forest fires, but UAVs can be used to
confirm the observation and rapidly assess the extent of the fire. An even more effective
application of UAV fleets is found in the monitoring of such fires [30], [31]. UAVs can
move rapidly and safely around the emergency area, constantly collecting data that can
be crucial for an effective response and containment of the fire. In this case, the use of a
fleet of UAVs instead of a single UAV has many advantages [19]. First of all, a more wide
area can be covered and monitored, increasing the speed and efficiency of the emergency
response. Moreover, a wider set of sensors and instruments can be employed, having
them carried by different UAVs and allowing a more accurate and detailed mapping of
the fire;

• photogrammetry for infrastructure monitoring is a valid application for UAVs that are
a low-cost alternatives to the classical manned aerial vehicles. They are capable of
performing the photogrammetric data acquisition in a fully autonomous way. Automation

7

is nowadays necessary in order to obtain the accuracy needed, during the acquisition, to
perform the creation of 3D models of infrastructures or terrains starting from a collection
of images [32];

• a field in which UAVs can significantly help is in emergency response. After a disaster,
like earthquakes, floodings or avalanches swarms of UAVs can be extremely efficient for
reconnaissance tasks in order to map the extent of the damages or to look for survivors.
The autonomy and high manoeuvrability of UAVs allows them to reach virtually any
location, even in critical environments where it would be dangerous for human operators
to go [33];

• UAVs can be also employed in the precision agricultural sector. Thanks to lower and lower
costs and the approach of increasingly robust autonomous systems, precision farming is
becoming a very interesting application for UAV swarm [34]. Their usage in agriculture
in fact allows farmers to optimise agriculture operations and to monitor it, increasing
crop yield and farm efficiency [35]. UAVs are particularly useful when the farmland area
to monitor is very large. The aerial view provided by a drone combined with its sensors,
can give to the farmers or industries a richer picture of their fields ensuring rapid access
to all data needed to monitor fertility and health state of crops. This can help to inspect
the soil detecting pest and fungal infestations and to be more accurate in the application
of fertilisers reducing wastage and use of pesticides. The swarm can also monitor the
water management inside the farm revealing possible issues in the irrigation system and
communicate them to the farmers immediately. UAVs could even be employed to assist
autonomous ground robots in the harvesting operations, by supplying images and data
to support their tasks during the movement between different crops;

• One of the most fascinating and challenging applications of autonomous UAVs is in
the field of planetary exploration. It is with the landing of the Perseverance rover on
the surface of Mars that the first human-made propelled flying machine has reached
another planet. Ingenuity is the first UAV deployed in an environment different from
Earth. Since radio signals take an average of 11 minutes to reach Mars, it is mandatory
for Ingenuity to be completely autonomous in the flight operations, as there is no way to
control it in real time from an Earth-based ground station. It is only thanks to recent
development in autonomous flight and control that this kind of mission has become
possible [36]. The Ingenuity helicopter has been designed to be able to fly autonomously in
the challenging martian atmosphere for about 90s to perform exploration tasks thanks to
a set of dedicated sensors. The Ingenuity mission is designed to be primarily a technology
demonstrator, but in case of success the employment of autonomous UAVs (both alone
and organised in fleets) could become one of the most powerful tools to rapidly explore
large martian regions, where the currently used ground rovers would take many years
to fulfil the same task. On 19th of April 2021 Ingenuity performed its first flight in the
martian atmosphere [37], demonstrating the technical possibility of flying a completely
autonomous UAV on another planet in order to perform exploration and scientific tasks;

• An even more exciting example of employment of autonomous UAVs for planetary
exploration comes from the Dragonfly mission [38]. The Dragonfly mission is designed to
be deployed on Titan (the largest moon of Saturn) by 2035, and will be a completely
autonomous UAV capable of flying over Titan surface. Dragonfly will map Titan surface
from above through its cameras, collect and study soil samples with dedicated instruments

8

Figure 2.2: Frames from the Perseverance video of Ingenuity first flight (from [37]).

in search of clues of life presence [39]. Radio signals take an average of 1.5 hours to
reach Titan from Earth, rendering even more crucial the autonomy of each operations,
including exploration planning, path planning and flight control operations. Artificial
intelligence algorithms will be crucial for the success of such a complex mission, especially
since the environment where Dragonfly will move is almost completely unknown, with
the only available information coming from satellite photographs.

9

10

3. Theoretical background

In this chapter, the methods used in the development of the algorithm will be briefly illustrated.
The focus will be on the theoretical background of each method, with some attention on the
assumptions that lie at their base. In section 3.1 the Artificial Potential Field will be illustrated
and discussed, along with some modifications made to the original formulation to better fit the
problem. In section 3.2 the theoretical background of Reinforcement Learning and of some
learning algorithms will be introduced.

3.1 Artificial Potential Field
The Artificial Potential Field (APF) is an algorithm presented in 1985 as a path planning
method. APF is based on the creation of a virtual force field in the environment where the
robot (or, more in general, the agent) has to move. The main idea is that the field is generated
so that, by following the negative direction of the potential gradient, the agent is able to reach
the goal. This behaviour is obtained by associating a repulsive force to obstacles (higher close
to them and decreasing to zero after a certain distance) and an attractive force to the goal. At
every time instant, the agent computes the potential field value in the point where it is located
and computes the gradient of the field. Then, it moves in the direction of the negative gradient
at the desired speed (or, as in the original formulation, the gradient can be used to generate a
velocity vector, taking into account also its magnitude). The potential, given agent position x,
is found as:

U(x) = Uattr(x) +
nØ
i=1

Urep,i(x) (3.1)

where Uattr(x) is the attractive potential generated by the goal and Urep,i(x) is the repulsive
potential generated by the i-th obstacle. The two contributions are defined as follows. The
attractive potential is usually defined as a cone or a paraboloid with the vertex in the goal,
obtaining, in the 2D case, a potential shaped as in Figure 3.1. When the attractive potential is
defined as a cone, the equation describing its intensity in a generic point x is:

Uattr(x) = ka||x− xg|| (3.2)

where ka is a positive constant and xg is the goal position. The negative gradient of this
potential always points toward the goal xg and is the component of the gradient that allows to
the agent to reach the goal. The obstacle avoidance part of the path planning algorithm is
instead implemented by the repulsive potential. A high potential value is associated to each
obstacle following an hyperbolic or gaussian distribution (depending by the definition - the
former is more common). In this way, the closer a point is to the obstacle, the higher is its
potential. When computing the negative gradient of this potential distribution, the resulting

11

Figure 3.1: Attractive potential distribution over a 2D space. On the left, the shape
resulting from parabolic definition; on the right, the one obtained from conic definition (as
in equation 3.2).

vector points away from the obstacle itself, allowing to the agent to avoid any collision. The
equation implementing the repulsive potential distribution when defined as a gaussian curve2 is:

Urep,i(x) =


krep

1
σ

√
2π e

− 1
2

!
d(x)
σ

"2

if d(x) < d0

0 otherwise

(3.3)

where x is the point where the repulsive potential is computed and d(x) = |x − xg| is the
distance from the goal. It is worth noting that the repulsive potential goes to zero after a
certain distance d0 from the obstacle. This distance is called distance of influence or safe
distance. The constants σ and krep are used to tune the shape of the repulsive potential field
around obstacles. Once all the potential contributions are summed, the agent can compute
the potential gradient in order to obtain a versor þv pointing toward the direction of maximum
steepness of the potential, corresponding to the direction of movement.

þv = − ∇U(x)--∇U(x)
-- (3.4)

The traditional algorithm main issue is the presence of local minimum points. Local minima
easily emerge when the complexity of the environment grows in terms of number and shape
of the obstacles. Those points can be very difficult to deal with, since their presence cannot
be easily predicted and they trap the agent into a region where the gradient vector is null. In
fact, when the gradient magnitude is zero the versor of eq. (3.4) does not exist and so the
agent does not have a direction to move to. Since this problem has been known for a long
time, different solutions have been developed to deal with it, as for example in [40, 41, 42, 43].
The actual solution implemented in the algorithm will be discussed in chapter 4.

2 it must be said that very few implementations of the APF use this equation to define the repulsive field, at
least according to the available literature. In fact, as mentioned above, the majority of APF studies use a
hyperbolic repulsive potential distribution, like in the original proposal of the APF algorithm [6]. The reasons
for the choice of the gaussian shape will be discussed in chapter 4. For completeness, the equation defining
the hyperbolic potential field is reported here: Urep,i(x) = krep

γ
(1
di(x) −

1
d0

)γ if di(x) < d0, Urep,i(x) = 0
otherwise. It is worth noting that, while the equation is different, the general shape of the repulsive potential
is the same - growing quickly approaching to the obstacle and decaying to zero after a certain distance from it.

12

3.2 Reinforcement Learning
Machine learning (ML) is the study of computer algorithms that improve automatically through
experience and by the use of data. This type of algorithms build a model based on “training
data”, in order to make predictions or decisions without being explicitly programmed to do
so. They are used in a wide variety of applications, in particular where the developing of
conventional algorithms to perform the needed tasks it is unfeasible. Reinforcement Learning
(RL) is a branch of Artificial Intelligence, and in particular it is one of the main ramifications of
Machine Learning, along with Supervised Learning and Unsupervised Learning. Reinforcement
learning differs from supervised learning in not needing labelled input/output data, and in not
needing sub-optimal actions to be explicitly corrected. Instead the focus is on finding a balance
between exploration (of uncharted territory) and exploitation (of current knowledge). The
goal of Reinforcement Learning is to train an agent to take optimal actions inside a certain
environment. To reach this goal, an iterative trial-and-error process is performed inside a
training environment. The basic idea in RL is to deploy the untrained agent in this environment
and have it perform actions and according to it a reward is assigned. If the reward is positive,
the agent will increase the probability of repeating the same action when faced with the same
situation. On the contrary, if the reward is negative the likelihood of repeating the same action
is decreased. At the end of the training process, the trained agent will consist of a function
called policy that associates the optimal action to every situation the agent is faced with.

3.2.1 Markov Decision Process (MDP)

The classical mathematical framework through which most Reinforcement Learning problems
are formalised is the Markov Decision Process (MDP) [44, 45]. A Markov Decision Process
is a discrete-time stochastic process that is mathematically defined as a tuple (S,A,P,R).
S is a set of states; a state s fully represents the environment at a certain time instant. Its
definition resembles the one used in control theory, where states are defined as “the smallest
possible subset of system variables that can represent the entire state of the system at any
given time”. An important property of the state variables is that they allow to fully know
the system configuration without requiring any information about the system past history. A
is the set of actions, and contains all the possible actions that the agent can take from any
state. In some instances this set could be indicated with As ⊆ A, which represents the set
of actions that can be taken from state s. Both s ∈ S and a ∈ A can be continuous or
discrete variables, depending on the problem definition. Ps is a probability transition function,
which determines the probability to reach state sÍ from state s when action a is taken, namely
Pa(s, sÍ) = P(st+1 = sÍ|st = s, at = a). The probability transition function implies that, in
general, the MDP is a stochastic process, since there is no way to determine the state at time
t+ 1 other than through a probability distribution. However, in some situations (like the one
that will be analysed later in the algorithm) the environment is fully deterministic and the state
at time t+ 1 can be derived from s and a at time t, so Pa(s, sÍ) = 1 only for the state sÍ and
0 for all the others. Lastly, R is a reward function associated to the transition from state s to
sÍ due to action a. For any combination of s, a, sÍ the function returns R = Ra(s, sÍ). The
block scheme in Figure 3.2 represents the relationship between all the variables involved in a
MDP: given a state st, the agent takes an action at which modifies the environment leading to
a new state st+1 and to a reward rt+1.

From this block scheme representation the equations governing the time evolution of a MDP

13

Figure 3.2: Simple block-scheme representation of MDP (image taken from [45]).

can be derived. The evolution over time of this system, given an initial state s0, is described
by the system of equations (3.5). An important property that the equations point out is that a
MDP benefits of the Markov Property, which states that the future state st+1 depends only on
the current state st and on the action at.

st ∈ S
at = arg max

a∈A
π(a|s = st)

st+1 is derived from st, at through Pa(s, sÍ)
Rt+1 = Ra(s, sÍ)

∀t = 1...N. (3.5)

In the MDP mathematical framework, the agent takes its decisions based on a function called
policy which is usually indicated with π. For the sake of simplicity, it could be said that the
policy is the agent.3 Once correctly trained, for any input state the policy returns a probability
distribution over the action set (i.e. it returns π(a|s) = P(at = a|st = s) ∀a ∈ A) that
indicates how likely is every action to return the highest reward. From this distribution, the
action with the highest probability of returning the greatest return is selected. A policy that
always points to the action that returns the highest reward is called optimal policy and is
denoted as π∗. The goal of Reinforcement Learning is to find such an optimal policy through
a suitable training process. As mentioned, the optimal policy is the one that maximises the
reward. Usually the discounted cumulative reward is considered, in order to take in account
long-term strategy by the agent. The discounted cumulative reward function (also called
discounted return) is defined as:

Gt =
∞Ø
k=0

γkRt+k+1 = Rt+1 + γGt+1 (3.6)

where Ri is the reward obtained at time step i − 1 selecting an action through the policy.
The discount factor γ < 1 progressively reduces the importance of future rewards in the sum.
Depending on the type of policy that is used, the maximisation of the expected return is
obtained following different strategies. In the next sections, the RL training process through
which this goal is achieved will be introduced.

3 this definition is correct in the MDP framework. On the contrary, in the RL framework this is not completely
true since the agent also includes the reinforcement learning training algorithm.

14

3.2.2 Optimal policy and Bellman Equation

A brief discussion about optimal policy properties is helpful before getting to the discussion of
the RL learning process. As already said, the goal of a RL problem is to obtain a policy π that
is as close as possible to the optimal policy π∗. To reach this goal, it is useful to study the
properties of the optimal policy function. To mathematically define the optimal policy, two
functions have to be introduced first. The first is the state-value function:

vπ(s) = E[Gt|st = s] (3.7)

where E is the expected value function. The state-value function gives back the expected
return when starting from a given state and following policy π for all the subsequent action
choices. The second function used to measure the optimality of a policy is the action-value
function:

qπ(s, a) = E[Gt|st = s, at = a] (3.8)

This function measures the goodness of action a in state s by evaluating the expected return
when starting from state s, choosing action a, and following policy π thereafter. These two
functions, and in particular the action-value function q(s, a), are useful to measure the optimality
of a policy. The optimal policy π∗ can be defined as:

π∗ : π∗ ≥ π ∀ π ∈ Π (3.9)

where Π is the set of all possible policies, while the operator ≥ is defined as:

π ≥ πÍ ⇐⇒ vπ(s) ≥ vπÍ(s) ∀s ∈ S (3.10)

The optimal policy definition can also be rewritten in function of the action-value and state-
value functions. In fact, the optimal policy is that where the state-value function is maximum
for every state and, for every state, the action chosen is that which leads to the maximum
action-value function, as expressed in equations (3.11) and (3.12):

v∗(s) = max
π

vπ(s) (3.11)

q∗(s, a) = max
π

qπ(s, a) (3.12)

Equation (3.12) is the most interesting, since it allows to connect the action choice to the
optimal policy. The idea that emerges is that, knowing the q function, it is possible to choose
the optimal action by evaluating all actions available in state s and perform the one which
returns the highest value of q. This would allow to perform optimal actions without having
to approximate the policy function. This means that the agent Neural Network would not
approximate the function π∗. Instead, the function approximated would be the action-value
function q, which would allow to evaluate the quality of all the available actions and choose the
best one.4 A Neural Network that approximates the action-value function is called a critic,5

4 this statement assumes that the number of actions is finite. If, on the contrary, the number of actions is
infinite e.g. in case of a continuous action space then the use of the q function approximation is a bit different,
as will be shown in the DDPG algorithm in section 3.2.5.

5 on the contrary, a Neural Network that directly approximates π is called an actor.

15

and is at the base of different learning algorithms like DDQN, where in those algorithms, the
NN is trained to approximate the q∗ function and use it to choose the best action. Again,
the issue is that function q∗ is not known, and so an approximation of it is used during the
training. In the majority of critics, the q∗ function is approximated starting from the Bellman
equation, reported below in (3.13). This equation is obtained by substituting (3.8) in (3.12)
and manipulating the equation starting from the expression of Gt seen in equation (3.6).

q∗(s, a) = E
5
Rt+1 + γmax

aÍ
q∗(sÍ, aÍ)

6
(3.13)

3.2.3 Policy approximation with Neural Networks

As introduced above, the goal of a reinforcement learning problem is to find a good approximation
of the optimal policy π∗ or the optimal action-value function q∗, depending on the type of
agent that is being trained. As already shown in equation (3.8), q∗ is a function of a and s.
Under the assumption of stationary agents6 the policy π can also be written as a function of s.
In both cases, the goal of the training process is to approximate a function; in the first case,
the function to be approximated is a mapping from the state space S to the action space A,
while in the second the approximation is from set S ×A to the scalar value q ∈ R. Different
strategies can be exploited to approximate those functions. The one that will be discussed in
this section, which is the leading ones in the RL world, is to approximate the functions with an
Artificial Neural Network (ANN or just NN). The Universal Approximation Theorem guarantees
that any function between two sets can be approximated with arbitrarily small error through a
NN [46], guaranteeing that such an approximation is legitimate. At this point the new goal is
to find the NN that approximates the desired function.

A Neural Network is a function composed by a layered structure of neurons connected between
them. An example of NN is represented in Figure 3.3. The function takes Ni inputs, which are
stored in an equal number of neurons collected in the input layer, and returns No output values
in the output layer. Between the input and output layer, a series of hidden layers are placed.
The basic working principle of a NN is that each neuron performs a specific mathematical
operation and stores its result. The result is then passed to the neurons in the following layers
through the connections. Each connection is associated to a weight, which multiplies the
neuron value before passing it to the following layer. The operation performed by each neuron
includes a usually very simple nonlinear function called activation function. The usage of the
layered structure and the nonlinear functions allows to approximate any desired function by
just tuning some parameters. A more detailed discussion of the functioning of Neural Networks
can be found in Appendix A. The only relevant information, for the moment, is that a NN is a
parametric function. The vector of parameters is indicated with θ. Being the NN a parametrized
function, the policy can be written as πθ(s) and the action-value function as qθ(s, a). These
two functions, built through a NN, must get as close as possible to their optimal correspondents
π∗ and q∗. In the end, the objective of an RL problem is to find the parameter set θ to build a

6 a stationary agent is an agent that chooses the best action only on the base of the current state [44, 45].
Every agent that will be considered in this discussion and in the algorithm development fits in this category.

16

Figure 3.3: Simple Neural Net scheme. The input, output and hidden layers are put in
evidence. Each neuron holds a value a(L)

j and a bias b(L)
j , while each connection holds a

weight w(L)
jk . The colours represent fictitiously the higher or lower value of the neurons.

NN that approximates the desired optimal function as well as possible.7

3.2.4 Policy training in the Reinforcement Learning framework

In the previous section it was defined that the goal of a RL training process is to obtain a set
of parameters θ so that the policy NN function πθ(s) matches the optimal policy π∗ as close
as possible.8 The issue is that the function to be approximated is not known. In fact, the
mapping from S to A is typically a complex function, quite difficult to be described analytically
and at this point the Reinforcement Learning main idea comes into play. As shown in the block
scheme of Figure 3.4, the RL training process is based on an iterative proceeding which is
derived from the MDP structure. As illustrated in the figure, the policy is trained by having it
choose an action, performing it in the environment and updating the policy on the base of the
reward obtained. The basic idea is that, given a state si, if the reward obtained for action ai is
positive, the policy will be updated to encourage the choice of the same action when state si
or a state very similar to it is received as input. On the contrary, if the reward is negative, the
choice of the same action will be discouraged. This learning strategy, characteristic of the RL
framework, is implemented through a family of learning algorithms. Each algorithm has its own
distinctive characteristics, but the general working principle is the same:

1. given the current environment state st, choose action at through policy π or randomly,
depending on the exploration/exploitation strategy adopted;

7 it is worth mentioning that, in general, many NN can approximate the same function, so the goal is to find
the optimal set of parameters for a given NN. The NN architecture choice is important to reduce the training
time and computational complexity of the net.

8 for simplicity, in this chapter the policy π∗ will be used as function to be approximated. All the discussion and
results hold also when approximating the action-value function q∗ with a critic agent.

17

Figure 3.4: Block scheme representation of a RL training process. The basic structure is
the same of the MDP represented in figure 3.2. However, in this case the agent internal
structure and the presence of the RL training algorithm are put in evidence.

2. perform action at in the environment to get reward rt+1 = Rat(st) from the environment,
along with the next state st+1. Here, it is assumed that the state transition function is
deterministic (as in the deterministic case of the MDP introduced in section 3.2.1) so,
given st and at, st+1 = sÍ can be exactly determined. This is also the reason why rt+1
does not depend on st+1;

3. compute the loss value (∼ estimation error) through an arbitrarily defined loss function.
The loss function commonly used is:

L =
NoØ
i=1

3
a

(o)
i − yi

42
(3.14)

where a(o)
i is the value of the output layer neurons, No is the number of neurons in the

output layer and yi is the desired (“correct”) value of the output;

4. use the loss value to update the NN parameters (following the algorithm explained in
detail in Appendix A);

5. repeat from the beginning updating the state with the one obtained in step 2 (st ← st+1).

The only issue of this training algorithm lies in step 3, since, from the moment that the function
to be approximated is not analytically known, the correct value of the output is unknown too.
One of the RL training algorithms main goals is, therefore, to find a way to compute the
loss without knowing the "real" value of y. Different methods can be used to approximate
or estimate y and the loss value, mainly by starting from the reward value r. One of these
methods will be presented in section 3.2.5 along with the corresponding training algorithm.9

9 this is also the method used for the training of path planning and coverage model in the chapter 5.

18

A last consideration before getting to the learning algorithms regards step 1. In fact, one key
aspect of RL training is to try as much different strategy as possible, in order to be sure that the
one implemented by the trained NN is the best possible. To do so, during training the action
at is chosen through a strategy that balances exploration and exploitation. Exploration means
that the actions are selected independently from the current NN output, in order to try new
strategies and possibly find better ones with respect to the current ones. Exploitation, instead,
means that the action is selected only on the base of the NN and is necessary to verify that
the NN action choice is truly efficient, as well as to strengthen good strategies already learned.
There are several ways to promote exploration (it is not necessary to promote exploitation
since it is obtained simply by choosing the actions though the NN). Two of them are ε-greedy
strategy and Ornstein-Uhlenbeck random noise process, the latter will be presented in the
DDPG learning algorithms section below.

19

3.2.5 Deep Deterministic Policy Gradient (DDPG)

The learning algorithm that has been used during all the thesis development is the Deep
Deterministic Policy Gradient (DDPG) algorithm.10 As can be seen in Figure 3.5, DDPG is a
model-free and off-policy learning method, it is suitable for continuous action spaces and is an
actor-critic method.

Figure 3.5: Scheme of the categorisation of some of the most popular RL algorithms.
DDPG is the one chosen for the development of the path planning and coverage algorithms
and the other three algorithms evidenced in yellow (PPO, SAC, T3D) are also suitable
to work with a continuous action space, but are more advanced and more complex to
implement. Image is taken from [47].

The fact that it is an actor-critic method means that, in the end, this algorithm produces a
function µθ that approximates the optimal policy π∗(s) (where s is the input state). This
function can be directly used to find the optimal action for state s by computing action a = µθ(s).
To train the actor, DDPG also trains a critic network Qφ(s, a) capable of approximating the
Q-value function. The network Qφ(s, a) becomes able to evaluate the goodness of action a in
state s by approximating the optimal Q-value function introduced in equation (3.13) of Section
3.2.2. The fact that DDPG trains both an actor and a critic network is the reason why, in the
image above, it is categorised both as a Policy Optimisation method and a Q-Learning based
one. In the training process, the critic network learns the Q-value function directly from the
sampled data; the Q-value function approximation obtained in this way is then used to train the

10 at the beginning of the development process DDQN (Double Deep Q-Network) was also considered. However,
the fact that DDQN only works with a discrete action space severely limited its capabilities, and in the end it
was discarded in favour of DDPG.

20

actor. In fact, in this method the goal of the actor is to find the action a that maximises the
Q-value, so the data provided by the Q-value function are sufficient to train it. The complete
learning routine of DDPG is illustrated in Algorithm 3.1 [48, 49].

Algorithm 3.1 DDPG learning algorithm
1: initialise the actor and critic µ(s|θ) and Q(s, a|φ) with random parameters θ and φ
2: initialise the target networks µÍ(s|θÍ) and QÍ(s, a|φÍ) with parameters θÍ = θ and φÍ = φ 11

3: initialise the experience buffer B with size NB

4: for e in Nepisodes do
5: initialise a random Ornstein-Uhlenbeck noise process N for action exploration12

6: reset episode initial condition (i.e. obtain state s0)
7: for t in Nsteps do
8: select action according to the current actor policy and exploration noise as:

at = µ(st) +Nt (3.15)

9: execute action a in the environment and collect the new state sÍ and the reward r
10: store the experience sample (s, a, r, sÍ) in the experience buffer B
11: randomly pick Nm samples from B and store them in the minibatch M
12: compute the critic target ∀i in 1...Nm as:

yi = ri + γ QÍ
3
sÍ, µÍ(sÍ)

4
(3.16)

13: compute the minibatch cost function and use it to update the critic parameters φ
by performing one step of Stochastic Gradient Descent (as described in Appendix
A). The cost function is defined as:

C = 1
Nm

NmØ
i=1

3
yi −Q(si, ai)

42
(3.17)

14: update the actor policy performing one step of gradient ascent using:

∇θJ = 1
Nm

NmØ
i=1
∇θQ (s, µ(si))

= 1
Nm

NmØ
i=1
∇aQ(s, a)|s=si,a=µ(si)∇θµ(s)|s=si

(3.18)

15: update the target networks parameters following the smoothed-upgrade law:

θÍ = τθ + (1− τ)θÍ (3.19)
φÍ = τφ+ (1− τ)φÍ (3.20)

16: end for
17: end for

21

Before proceeding with the algorithm description and the actual implementation of this training
algorithm, it is worth dedicating them a few words to the main features of the learning process.

• as already introduced, the critic network Q(s, a) is trained using the data sampled in the
environment. During each step, a training sample (s, a, r, sÍ) is stored in memory. These
data can be used to train Qθ by exploiting the Bellman equation. At each critic learning
step, the gradient of the cost function

C(φ) = 1
Nm

NmØ
i=1

3
yi −Q(si, ai)

42
(3.21)

is computed (as an average of the loss computed for each element of the minibatch).
The value of yi, which is, in general, unknown, is approximated by the Bellman equation
written at line 12 of the algorithm. The resulting equation can be substituted in equation
(3.21) to obtain the cost function:

C(φ) = 1
Nm

NmØ
i=1

A
ri + γ QÍ

3
sÍ, µÍ(sÍ)

4
ü ûú ý

critic target value yi
computed by using

the target network QÍ

− Q(si, ai)
B2

(3.22)

It is worth noting that in equation (3.22) the Q-value of the action aÍ is not computed
directly by the critic network, but is instead obtained from a “delayed” copy of it called
target network (since its goal is to compute the target value yi that the function has to
reach). The usage of a target network highly increases the training process stability, since
it decouples the network computing the target from the network being updated, and so it
avoids a “network chasing its own tail”- like situation, in fact, the target networks output
will be different from the one of the “base” networks since the former ones are updated
through a smoothed update law and so the value of their parameters is “delayed” in time
with respect the actor and critic ones. The smoothed update law, as already seen in the
algorithm, is:

θÍ = τθ + (1− τ) θÍ (3.23)
where the value of τ (which is called smoothing factor and is smaller than 1, e.g.
τ = 0.05) determines how fast the target networks are updated to match their actor/critic
counterparts;

• in DDPG, the role of the actor is to learn a deterministic policy µ(s) that maximises the
function Q

!
s, µ(s)

"
. In fact, critic function approximating the Q-value function can be

used to find the best action to perform by solving the maximisation problem

a = arg max
a

Q(s, a) (3.24)

11 in the algorithm description the expression µÍ(s) and QÍ(s, a) will be used instead of µÍ(s|θÍ) and QÍ(s, a|φÍ)
in order to streamline the notation. The same will be done for µ(s) and Q(s, a). The difference between the
actor/critic networks and their target counterparts will be expressed by the Í superscript.

12 in DDPG a random noise is used to promote action exploration instead of the ε-greedy approach seen in
DDQN.

22

However, in a continuous action space this maximisation problem is not easy to be solved,
since Q is, in general, non linear and its analytical expression is not known. Therefore,
the actor network is specifically trained to compute an action a = µ(s) that maximises
equation (3.24). To do so, a gradient ascent problem is solved:

θ ← θ + α∇θJ (3.25)

where α is the actor learning rate (some more details about gradient descent/ascent
methods are discussed in Appendix A). The function J , whose gradient is computed, is
simply the Q-value function, as shown in equation (3.18). The passages performed to
derive equation (3.18) are:

∇θJ = ∇θQ(s, a)
= ∇θQ(s, µ(s|θ))
= ∇aQ(s, a|φ)φ=const∇θµ(s|θ)

(3.26)

where the last passage is performed by just applying the chain rule to the derivation of Q.
The subscript “φ = const” means that, during the computation of the gradient of J , the
critic parameters are considered constant and thus Q is not derived with respect to them;

• off-policy learning is used to train the NNs. In fact, in step 11 of Algorithm 3.1 a
random set of data samples are extracted from the experience buffer B and stored in the
minibatch M to be used for the training part of the routine. The fact that these data are
randomly sampled from B means that the data with which the NNs (and in particular
the critic one) are trained are not the data generated by the NNs in their current state of
training, but they could have been produced by an “older” and less trained version of
them. This is not a problem in terms of training efficiency. On the contrary, since the
Bellman equation used to train the critic network must work for any given set of data,
this usage of older data guarantees the robustness of the Q-value function approximation.
The approach of using older data to train the NNs (i.e. data which have not necessarily
been produced by the agent in its current state) is called off-policy learning;

• as mentioned at the end of Section 3.2.4, during the learning process it is necessary to
promote the exploration of the action space. This is required to try new possible actions,
different from the ones computed by the agent in its current state which could lead
to the discovery of new strategies to get more reward in the environment. In the case
of DDPG, the exploration strategy is to sum, to the action computed by the agent, a
noise value produced through a Ornstein-Uhlenbeck process. This kind of noise process,
differently from random Gaussian noise, is not uncorrelated and keeps track of its past
value. Therefore, the noise shows a trend toward an arbitrary direction, and this helps
exploration that specific direction of the action space.13 Over time, the trend inverts so
that each direction is explored after a sufficient amount of steps.

13 some critics have been made against the use of an Ornstein-Uhlenbeck noise process instead of a random
Gaussian one. In fact, some paper discussing more advanced versions of DDPG state that the Ornstein-
Uhlenbeck noise process does not improve training performances and is actually just an over-complication of
the algorithm [50], [51]. During the training of this thesis agents, an Ornstein-Uhlenbeck process was used
nonetheless.

23

3.3 k-means clustering
K-means is one the most widespread and efficient clustering method, which exploits an
unsupervised learning algorithm in order to assign a set of points to different clusters according
to the nearest mean from the cluster centroid (i.e. the geometrical centre of the cluster). The
result is a subdivision of the points space into Voronoi cells where points are assigned minimising
within-cluster variances (i.e. squared Euclidean distances). The problem is computationally
difficult (NP-hard), however, efficient heuristic algorithms converge quickly to a local optimum.
A brief description of the mathematical fundamental and how the standard algorithm work are
explained below.

Given a set of points X = (x1, x2, ..., xN), where each point is a n-dimensional real vector,
k-means clustering aims to partition the N points into k 6 N sets S = {S1, S2, ..., Sk} so as
to minimise the within-cluster sum of squares i.e. variance. Formally, the objective is to find:

arg min
S

kØ
i=1

Ø
x∈Si
ëx− µië2 = arg min

S

kØ
i=1
|Si|VarSi (3.27)

where µi is the mean of points in Si. This is equivalent to minimising the pairwise squared
deviations of points in the same cluster:

arg min
S

kØ
i=1

1
2|Si|

Ø
x,y∈Si

ëx− yë2 (3.28)

Since the total variance is constant, this is equivalent to maximising the sum of squared
deviations between points in different clusters as in:

arg max
S

1
n

Ø
ëx− yë2 ∀

I
x ∈ Si
y ∈ Sj

i Ó= j (3.29)

The most common algorithm uses an iterative refinement technique.
Given an initial set of k means m1(1), ...,mk(1) randomly generated, the algorithm proceeds
by alternating between two steps:

1. Assignment step: Assign each points to the cluster with the least squared Euclidean
distance.

S
(t)
i =

;
xp :

...xp −m(t)
i

...2
≤
...xp −m(t)

j

...2
∀j, 1 ≤ j ≤ k

<
, (3.30)

where each xp is assigned to exactly one S(t).

2. Update step: Recalculate means (centroids) for points assigned to each cluster.

m
(t+1)
i = 1---S(t)

i

Ø

xj∈S
(t)
i

xj (3.31)

The iterative process stops when algorithm has converged, i.e., when the difference in the
centroid position between two subsequent steps is minor than a desired threshold. However,
convergence to the optimum clustering is not guaranteed.

24

4. Algorithm design

In this chapter, the whole algorithm developed during the thesis is presented and described.
The chapter starts with a section about the assumptions done prior to the design process of
the algorithm (Section 4.1). The chapter continues with the description of the algorithm,
composed of the training and the simulation environments (Section 4.2.1), where the training
process and the environment used during the simulations are described, then the logic tree is
presented and all the high-level choices are described. After this section, the model with which
the environment is represented and updated dynamically is explained (Section 4.3). After this,
the path planning algorithm is discussed (Section 4.5), accompanied by the coverage algorithm
(Section 4.4). Follow the description of the dynamic model of a quad-rotor UAV reported
along with a suitable control system (Section 4.6). Finally, the reference UAV used for the real
simulations is revealed (Section 4.7).

4.1 Assumptions and simplifications
A few assumptions have been made in order to start the design of the exploration algorithm. it
is worth mentioning them to clearly point out the limits of applicability of the proposed method
within real cases, along with possible issues and implementation solutions.
The assumptions and simplifications done in the algorithm design are:

1. 2D environment: to simplify the design of the algorithm and the RL agent training the
method implemented works in a 2D environment where it assumes the UAVs always fly
at the same altitude. Two solutions can be considered to extend the algorithm to the
3D case: the first is to add the third coordinate to the output of the RL agent, however
this implies a new agent training to take into account the third dimension and to return
the additional action. The second solution, simpler but less efficient, is to slice the 3D
environment in “layers” with some arbitrary spacing between them, and navigate each
2D layer separately from the whole environment. 3D extension will be discuss more in
detail in section 7;

2. the environment dimensions are known: each drone stores an internal model of the
environment, which is built starting from the environment dimensions. Therefore, this
data have to be known in order to initialise the environment. An upper bound on the
dimensions is sufficient to identify the operating area and initialise all the required matrices.
An additional issue linked to the environment dimension is that, for environment that
are too large, the map stored in the drone memory would be quite large and potentially
slow to be accessed and manipulated. Therefore, map dimensions should not be too
large (approximately 100m x 100m could be a good upper limit for what regarding indoor
maps), however a possible solution to manage larger environments would be to store

25

two maps, one at lower resolution that considers the whole environment and one at high
resolution that represents only a neighbourhood of the drone;

3. the exact position of the drones is always known: in real applications this is not
possible since any method employed to estimate the drones position would be affected
by some error. For instance, if the position is computed through a GPS sensor in an
outdoor application, this would be affected by some uncertainty, especially due to the
fact that the drone is constantly moving. If, as another possibility, the drone position was
computed through integration of the acceleration measured by an on-board sensor, an
integration error would be added, and potentially grow indefinitely. A possible solution
to this problem would be to use an IMU combined with a tracking camera which through
a sensor fusion approach it is possible to get a very accurate estimation of the position.
However, this kind of problem is not considered in this work and thus in the algorithm
but is left to a possible future implementation;

4. the initial absolute position of the drones is known: in addition to the exact position
of the drones being known, the initial position of each drone with respect to the
environment is known. This is equivalent to knowing where the (0, 0) point is. The
reason for this assumption is that the environment model is built from the position of
the drones expressed in absolute coordinates and not in relative ones;

5. only static obstacles are stored: obstacles position is stored in the local model of the
environment of each drone. At the moment, there is no way to understand if an obstacle
is moving or not, and therefore all obstacles are assumed to be static (except for the
other drones, which are the only mobile obstacles considered since their position over
time is assumed to be known);

6. map resolution is limited: the drone environment model is stored with a given resolution,
which means the space is discretised and information are saved for areas of space of size
r x r, where r is the spatial resolution with which the map is represented. Resolution is
approximately in the range 5cm-20cm. Any obstacle smaller than this size (e.g. a rope)
must be represented as a bigger obstacle as a conservative solution;

7. communications are instantaneous and have infinite bandwidth: the communica-
tion between drones is not assessed in the algorithm development and is simplified as
much as possible. Therefore, communications between drones are considered to be
always possible, have infinite speed and infinite bandwidth, so any amount of data can be
transferred instantaneously between any two UAVs. A better model of the communication
system could be implemented to obtain a more realistic algorithm, but it is outside the
scope of the project.

Any other information about the environment is unknown. This means the number, shape, and
disposition of any obstacle is not known, i.e. at the beginning the environment is represented
with an empty map. The only additional available datum is the mission objective. The goal
could be simply to explore the map, discovering as many information as possible about its
geometry, or to find a specific point/object etc. The algorithm is flexible in terms of objective
and can easily be adapted for different kind of tasks.

26

4.2 Algorithm description
The algorithm is divided into two distinct parts, the first one is the training environment, where
the agents dedicated to the exploration part and to the generation of the trajectories are trained.
In this part the agents are dipped in a simulation created in order to simulate movements and
interactions between drones. In this environment the agents receive a reward according to the
action taken inside the simulation. Whereas the second part of the algorithm is the simulation
environment where the agents, previously trained, are tested in a simulation of the real world.

4.2.1 Training & simulation environment

Training process

In the training process of Figure 4.1 the two agents will be inserted in a virtual simulation
where they are rewarded or punished according to the action taken while the Model Builder
receives some sensor data from the environment and uses them to update the APF model. The
model is used by the Coverage and Path Planning agents to choose which actions to apply
and to communicate information about interactions. The learning algorithm works alongside
this process. At each time step, the action a = a(t) chosen by the agent, the current state
s = s(t), the next state sÍ = s(t+ 1) (i.e., the state of the environment after the action a has
been performed) and the reward r = r(t) are collected. The tuple (s, a, r, sÍ) is stored in a
memory buffer and used to perform the DDPG learning operations and at each time step, the
state sÍ obtained in the previous iteration is used as the new input state. The training process
continues iteratively in this fashion.

Figure 4.1: Block diagram of the learning process. The yellow blocks are the two RL
agents and the learning algorithm, whereas the blue ones are the parts used for the
environment simulation in the training process.

27

Simulation environment

The algorithm in charge of the simulation procedure is composed by four main parts, as shown
in the figure 4.2. These four parts run continuously in parallel, constantly exchanging data
between them. Here a brief description of each of them will be made in order to outline their
role. In particular, the data exchanged between the parts will be put in evidence. The four
parts are:

1. the Environment Model Builder: this part of the algorithm is the one that manages
the UAV internal representation of the environment. It takes in input the data from
the on-board sensors of each UAV and the positions of all the other drones. Then, it
uses them to update in real-time the environment model, modifying the potential field
representation considering newly discovered obstacles and mobile obstacles and changes
in the goal position. The world model is stored in each UAV internal memory to be used
by the other parts of the algorithm. In addition, the model is transmitted to the other
UAVs to share all possible information. In particular, this allows to each UAV to know a
larger portion of the map that the one it explored by itself;

2. the Coverage Planning algorithm: this part of the algorithm is used to coordinate the
fleet during its operations assigning different goals to each drones. It takes into account
the world model and the position of all the UAVs then uses these information to compute
a target location for every drone. This part of code aims to generate different positions
to be reached in order to optimise the task execution as much as possible spreading the
UAVs avoid crossing areas already explored and minimise non-useful travels;

3. the Path Planning algorithm: Once the goal computed by the single drone is set the
Path Planning Algorithm uses the APF world model to compute an optimal trajectory
in order to reach it. The trajectory is constantly updated since the world model is
continuously updated by the environment model builder. The trajectory is computed
by a properly trained RL agent that is trained to optimise the trajectory in function of
smoothness, collision avoidance and travel time;

4. the Control algorithm: this last part of the algorithm has the task of translating the
trajectory generated by the Path Planning algorithm in actuation signals. Those signals
are applied by the UAV to fly and reach the goal position. This part of code consists
simply in a control loop, designed on the base of the UAV dynamic model.

After the training process, the yellow blocks of Figure 4.1, are extracted from the training
environment. They constitute the exploration algorithm, and are available to be deployed in a
real-world application. This passage requires some code adaptation: in fact, the exploration
algorithm will run side by side with other applications in the UAV on-board computer. An
high-level block scheme representation of the algorithm deployed for a real-world application
is shown in the figure 4.2 where is shown how the UAV operating system interacts with the
real world. It is worth noting that the latter can be the real world or a simulation of it. In fact
the first tests have been carried out in a python simulation without implementing dynamics
and control of the UAV, then the algorithm was moved in a ROS-Gazebo simulation where the
dynamic of the UAV is taken into account. This part will be discussed in more detail in 7. The
green block of the figure 4.2 shows the sensors section which interacts with the real world in
order to compute the positions of the obstacle inside the vision range and the UAV position.
Whereas the blue block is the UAV plant which receives the actuation input from the control

28

algorithm. The control algorithm is the one which translates the trajectory computed by the
Path Planning algorithm in actuation signals for the rotors and allows the UAV to move in the
desired way. The control algorithm completes the workflow that goes from the sensor data to
the actuation of the motors. This part will be deepened in section 4.6.

Figure 4.2: Block scheme of the simulation environment at an high-level structure.

The main part of the algorithm in charge of manage the inputs received from the real world
and to update the trajectory of the UAV is illustrated in the algorithm 4.2. This algorithm is
the core of the UAV. It receives the new obstacle positions from the vision sensors, manages
the communication with other UAVs or with a ground station avoiding collisions between them
and exploits the two RL agents for update the goal position and compute suitable trajectories.
All these applications are managed by this dedicated OS, that performs all the scheduling
operations. Follows the main routine of the action cycle.

29

Algorithm 4.2 UAV OS action routine
1: while the operating condition of the UAV is set to action do
2: detect obstacles with the sensor vision
3: share the exploration matrix updated during the vision step
4: if new obstacle position has been found then
5: update the potential map with the new obstacles positions
6: end if
7: receive the communication with the position of the others drones
8: update the potential map with the mobile obstacles in the positions received
9: if the proximity sensor has detect obstacles too close then

10: change the emergency path planning flag state to true
11: end if
12: if the goal position is not updated then
13: call the coverage algorithm which returns as output the position of the new goal
14: recall the environment model builder in order to update the attractive layer with

the new goal
15: check if the goal is a suitable one and in case of wrong position it changes the state

of goal position as not updated
16: else
17: if the drone is in a local minimum then
18: switch to the local minima path planning algorithm
19: else if the emergency path planning flag is set to true then
20: switch to the emergency path planning algorithm
21: else
22: switch to the main RL path planning algorithm
23: end if
24: end if
25: end while

4.3 Environment model builder

First of all, it is necessary to explain how the environment is modelled inside the algorithm.
The Environment Model Builder (EMB) has the task to translate environment measurements
in a numerical model that can be used by the other parts of the algorithm to navigate the
environment. The model used is based on a numerical implementation of the Artificial Potential
Field or APF (see chapter 3, section 3.1 for the theoretical explanation of this method). The
basic idea is to associate to each point of space a potential value that is higher near obstacles
and lower near the goal. This potential field can be exploited to reach the goal by moving
toward the direction of minimum potential. To create the APF model, the environment is
discretized in volumes of space all of the same size that depends on a parameter: the model
resolution. A potential value is then associated to each of these volumes, in this way, the
APF model resulting in a matrix, where each cell corresponds to a small volume and holds the
potential value associated to it. In each position of the matrix, the potential field is computed
as the sum of three contributions:

U(x) = Uattr(x) + Urep(x) + Uexp(x) (4.1)

30

The various terms of equation (4.1) correspond to different elements in the environment. They
are computed and managed separately and summed only when all parts have been updated.
So, each UAV computes the different “layers” and sums them to have the final environment
model. The different parts of which the APF environment model is composed are shown in
figure 4.3, where each layer corresponds to one term of equation (4.1).

Figure 4.3: Layers forming the environ-
ment model used in the APF algorithm.
The bottom one is the final environment
model, corresponding to the sum of all
the ones above.

Uattr(x) is an attractive term. It is defined as a cone
having vertex in the goal position, as expressed by the
equation:

Uattr(x) = ka||x− xg|| (4.2)

The attractive layer Uattr is updated every time the
Coverage Planning algorithm computes a new goal for
the UAV.

The second contribution, Urep(x), corresponds to the
repulsive layer or obstacle layer. In this layer, a repulsive
shape is added each time an obstacle is detected. The
way an obstacle is added to this layer will be explained
in more detail below.

The third term, Uexp(x), is called experience layer. It
is used to store some temporary information about the
environment, mainly linked to the management of local
minima in the APF (this point will be discussed in more
detail in section 4.5.4). In the image, local minima are
evidenced in red and a temporary repulsive field can be
observed.

The sum of the contributions of the layers above returns
the final environment model. Each point in space has a
potential value corresponding to the linear sum of the
contributions. The matrix with all the potential values
(one for each volume of space) is the one that will be
passed along to the other parts of the algorithm.

The main advantage of using this layered structure to
compute the APF model is that in this way it is very
easy and quick to remove/modify the value of one of
the layers thanks to the superposition principle. For
example, when the goal position changes, it is sufficient
to subtract the current attractive layer, re-compute its value and sum it back into the model.

In fact, since the environment is not known a-priori, all the layers are continuously changing to
incorporate new information about the map in real time. For the attractive layer, the update
happens every time the Coverage Planning Algorithm computes a new goal for the UAV. When
this happens, the attractive layer is removed and completely recomputed as a cone having
vertex in the new goal position. For the obstacle layer the procedure is a bit different, since
this layer is never deleted (the UAV needs to keep track of all the obstacles positions). In this

31

case, the potential field is built iteratively. In fact, at the beginning of the exploration there is
no available information about the obstacle (e.g. their number, position, shape...). For this
reason, the obstacle layer is initialised as empty and filled as the exploration proceeds.

4.3.1 Vision

Every time the position of a new obstacle is detected through sensors or communicated by
the other UAVs, the obstacle layer is locally updated around the obstacle position. In fact,
obstacles are assumed to have only a local effect: after a certain distance from them (safe
distance, which is another model parameter) their presence can be neglected. To achieve this
behaviour in the environment model, a small matrix is placed in the obstacle location. This
matrix raises the potential value in the exact location of the obstacle and around it, helping
with the collision avoidance task. Figure 4.4 shows the procedure of obstacle detection and
placing in the environment model. An interesting feature of the Environment Model Builder

Figure 4.4: Obstacle detection and creation procedure in the the environment model
builder. In the leftmost image, the obstacles (black dots) are out of vision range. In the
image in the middle obstacles are detected. In the rightmost image the potential is raised
around the newly discovered obstacles.

that can be observed in Figure 4.4 is the way the environment is discretized. The small wall in
the leftmost figure is divided in three point-like obstacles, each one located in the centre of one
elementary volume of space. As already introduced above, this happens since the environment
is discretized in small portions of space in order to be represented as a matrix.

Figure 4.5: Simulation of the vision part of the algorithm. The parameters used to set
the vision simulation are shown. All the parameters used in the environment model builder
are explained in section 4.3.3.

32

4.3.2 Obstacles prediction

As can be observed in 4.6, as the agent moves it discovers new obstacles but, for simplicity, in
all the training and validation environments only rectangular obstacles have been considered.
This limitation has been introduced to allow the implementation of a shape-prediction algorithm
(based on OpenCV) to estimate the shape and dimension of the obstacles without knowing
all their contour points locations. This allowed to speed up the exploration process and to
manage more easily obstacles. An extension of the shape-prediction algorithm in order to
taking into account every possible obstacle shape (such as “L”, “T” or “C” shape) is possible,
but has not been implemented in the work yet. The prediction algorithm exploits the function
“find_contours” of the OpenCV library. This function takes as input the obstacle map, that
is a matrix where obstacles are represented as one, whereas the other points are zeros. This
matrix is rescaled in the interval [0, 255] in order to increment the contrast between obstacles
and free areas. In order to help this function find the contours of closed figures recognising
them without the perimeter of the obstacle being continuous, a blur function is used. In this
way, close points are seen as continuous walls. After the points that belong to the edges of the
identified figures have been collected, the figure is closed assuming the presence of obstacles
within the area enclosed by the most extreme edges. In this way, even if the figure has not
been entirely discovered, it is possible to predict and anticipate the discovery of a part of the
obstacle as can be seen in figure 4.6.

Figure 4.6: Detection and prediction of the full shape of an obstacle in the environment
model builder. The grey areas are the unexplored obstacles whereas the black ones are
the already explored obstacles. In the leftmost image the obstacle is identified as a wall
whereas in the rightmost image the full shape of the obstacle is revealed.

When the UAV approaches an obstacle the first part seen is identify as a wall, then as the
exploration progresses and new parts of the obstacle are discovered, the whole shape is revealed.
Once two sides of the same obstacle are completely seen, the whole shape is predicted and
added as a rectangular obstacle in the drone’s memory also considering this area explored.

33

4.3.3 Parameters and routine of the environment model builder

Having explained the role and update strategy of each layer, the working of the Environment
Model Builder routine is quite straightforward to illustrate. The model builder routine is called
at a frequency fEMB and every time it runs it follows the operations listed in Algorithm 4.3.

Algorithm 4.3 Environment Model Builder routine
1: if goal position xg has changed then
2: subtract Uattr from the model
3: recompute U Í

attr for the new xg
4: subtract Uexp from the model and reset it
5: end if
6: if new obstacles are detected or communicated by other UAVs then
7: check if obstacles are already known
8: for new obstacle o do
9: sum the local potential matrix in the obstacle position xo as in Figure 4.4

10: end for
11: end if
12: if local minima is detected then
13: sum the local potential matrix into the Uexp in the local minima position xlm
14: end if
15: subtract the mobile obstacle layer from the model
16: recompute the mobile obstacle layer with the new positions communicated by other UAVs
17: sum the mobile obstacle layer back into the model
18: end routine

The parameters used in the environment model builder are shown in the table 4.1. Where safe
distances, peak values and vision parameters are defined. The value of the safe distance must
be intended as the dimension in number of cells of the Gaussian matrix (that is a matrix with a
Gaussian distribution) added in the potential matrix in order to add the repulsive zone, whereas
the peak value is the maximum potential value that can be assumed. In figure 4.7 an example
of a matrix with a Gaussian distribution used for the obstacle is shown and in figure 4.8 various
peak value with their distribution are revealed.

Figure 4.7: Matrix with a Gaussian distribution used for obstacle avoidance. The higher
values of the matrix are visualised with the yellowest colour and they are the value associated
with the highest risk (in this case the centre is the obstacle position.)

34

Figure 4.8: Distribution of the potential value within the obstacle matrix seen from a one
dimensional point of view. Different distributions with disparate peak values are indicated.

The other parameters are the map resolution, the speed of the drone, the attractive constant,
that indicates how steep is the cone centred in the goal, the vision parameters and the Nlm−steps.
The last one is the number of steps that the drones have to perform with the assistant algorithm
in case of detection of local minima. Instead the vision parameters include the maximum range
of vision dcam, the angle describing the cone of vision ∆β and how densely filled the cone
proportional to the minimum angle between consecutive vision ray β. Follows the table with
the parameters of the environment model builder used in this thesis work.

Table 4.1: Parameters of the environment model builder.

Parameter Name Variable Value
map resolution rmap 0.10 [m]
drone speed δdrone 0.12 [m/step]
attractive constant ka 35
max steps in local minima algorithm Nlm−steps 50
mobile obstacle safe distance ∆m 150
fixed obstacle safe distance ∆f 150
local minima obstacle safe distance ∆lm 150
peak value of mobile obstacle ρm 500
peak value of fixed obstacle ρf 300
peak value of local minima obstacle ρlm 50
vision range dcam 3 [m]
vision resolution β 0.25°
vision angle ∆β 50°

35

4.4 Coverage
This section is dedicated to the algorithms in charge of managing the position of the temporary
goals in order to coordinate the drones in a efficient way. The first approach is the RL one,
where a specific trained agent computes the goal of each UAV considering their relatives
positions and the unexplored areas. The second approach, used only for reference purpose, is a
explicit algorithm called K-means clustering, that it is very useful when the total exploration is
greater than 85%.

4.4.1 Reinforcement Learning coverage approach

As explained previously, the task of the coverage agent is to provide a temporary objective
for each UAV. The motion of each UAV toward its designed temporary goal leads to the
observation of new regions of the environment, contributing to the exploration process. The
simultaneous use of the coverage algorithm by each member of the fleet leads to the collective
exploration. A first requirement on the Coverage agent is that the UAV fleet must be leaderless.
This means that the algorithm is distributed, and each drone computes its own goal position.
This increases the flexibility of the Coverage agent, since it is not required that the UAVs
can communicate with each other. It is worth noting that each drone use the same agent to
compute the goal position, but the only difference is the input state that varies according to
the coordinate of the UAV itself and the relative position with the other ones. This approach
leads to the implementation of a coordinated behaviour, where each UAV try to cover as many
areas as possible taking into account the position of other drones and the unexplored areas
thus avoiding coverage of previously explored areas or trajectory entanglements. A second
requirement regards the scalability of the Coverage algorithm. The Coverage agent is trained
to work for any number of UAVs in the fleet (at least in a reasonable range, e.g. between 2
and 10 UAVs). This requirement directly translates into a constraint on the input of the agent
NN. In fact, the input must be independent from the number of UAVs, but at the same time,
it must contain all the necessary information for the agent to take into account all the other
UAV positions.

The requirements discussed above lead to the design of a state composed of two parts. The first
is a 2-node input layer containing the normalised current position of the UAV in the range [0, 1].
The second is a n ×m matrix containing all the necessary information about the coverage
state of the map and the other UAV position. The matrix is initialised as a matrix of zeros
with the same dimension of the environment and is build in the Environment Model Builder
summing the following components:

• obstacles found during exploration are added as ones;

• covered areas represented by ones are summed;

• the areas of influence of the other UAVs are represented by a matrix with a Gaussian
distribution (whose dimensions depend on the map size) summed to the input matrix.

This matrix is finally normalised into the interval [0, 1] obtaining the input state of the NN.
The resulting state contains all the required information about the environment status and
highlights the best allowed position for the future goals, i.e. the regions of the matrix with
lower values. The Gaussian matrix associated to other UAVs represents their “area of influence”,

36

i.e. the region they are more likely to explore and to not overlap. This way, exploration paths
should be more efficient and the areas to explore are well divided between UAVs. An example
of the resulting input state is displayed in Figure 4.9.

Figure 4.9: Example of two Coverage agent input states. The matrices displayed have
dimension [200× 200], representing an environment of size [20m× 20m] with a resolution
of 0.1m. The colour bar shows the value of each point.

The NN designed to build the Coverage agent is shown in Figure 4.10. In the image, the main
sections composing the NN can be observed. The input state, divided into the two channels
described above, is processed by initial dense layers. Here, the most relevant part is represented
by the convolutional part that elaborates the matrix input, applying some “filters” to the
input in order to extract relevant features that are then passed to the fully connected section,
where the two inputs are merged and elaborated together. All the neurons in the dense and
convolutional layers are associated with a ReLU activation function. Finally the output layer of
the agent is composed of 2 neurons holding a sigmoid activation function σ(x) = ex

1+ex . The
two outputs correspond to the computed position of the UAV temporary objective normalised
with respect to the environment size. It is sufficient to multiply the outputs for the environment
dimension to obtain the position of the designated goal.

Figure 4.10: Representation of the neural network structure of the Coverage actor.14

37

4.4.2 K-means clustering coverage approach

A different approach to the coverage problem is through explicit programming. The goal is to
obtain n points evenly spaced over an area A of interest. The points are assigned to the drones,
that acquire them as their new objectives. The focus of this algorithm is to keep the drones well
spaced over the map, avoiding overlapping in their paths. The implemented method consists
of a function that first defines an area of interest A where the exploration objectives has to
be placed, in this case is the unexplored parts of the map. Then, this area is divided in parts
(called Voronoi cells) following the Lloyd’s Algorithm, see section 3.3. The centroids of these
cells (i.e. the geometric barycentre of each area) are the drones goals. Several modification
have been made in order to increase the algorithm performance. These improvements are
obtained following the routine presented in Algorithm 4.4.

Algorithm 4.4 Routine for the K-means clustering coverage approach
1: compute the list of points that represent the location of the unexplored areas
2: find the best number of cluster in order to minimise the variance of the points from the

centroid
3: compute the nc centroids with the Lloyd’s algorithm
4: for centroids from 1 to nc do
5: if ith centroid is not already present in the goals list and in the memory list then
6: the centroid is inserted in the goals list
7: else
8: the centroid is skipped
9: end if

10: end for
11: if a goal in the goals list is inside an already explored area then
12: the goal is deleted from the list
13: end if
14: the closest goal is assigned to the drone that call the algorithm
15: goal assigned is deleted from the goals list and added to the memory list

This code, dedicated to compute the goals for the drones, is executed by a ground station that
communicates with them. In this way when an UAV reaches a goal it recall this algorithm
inside the ground station returning a new objective. This approach guarantees that the average
distance between the goals is maximum, however This does not necessarily result in an optimal
exploration strategy, especially for the fact that the UAV positions and their paths are not taken
into account. This approach results quite efficient during the last 15% of the environment
exploration, where the unexplored areas are only few fragmented part of the map. The k-mean
clustering has been used, in addition to reference and benchmark purposes, to support the
RL coverage algorithm during the last part of exploration. In fact, as will be explained below,
the training time has not been sufficient to build a coverage algorithm able to reach 100% of
exploration, therefore the last goals are placed with this explicit algorithm.

14 The figure shows only the actor Neural Network, that is the NN used for choose the correct action, whereas
the critic one (not shown in figure) it is composed of an additional input, that is the action of the actor.

38

4.5 Path Planning

In this section, the path planning algorithm will be presented. Two types of path planning
algorithm will be developed. The first one is based on the traditional APF algorithm [6] and is
mostly used as reference. The second one is based on an innovative Reinforcement Learning
approach and constitutes the core of the Path Planning algorithm.

4.5.1 Artificial potential field path planning

The traditional artificial potential field path planning is implemented in this work only for a
reference purpose. In order to adapt it to the environment model builder some changes has
been made. The new algorithm exploits the pre-computed potential map making it faster and
relieving the computational cost of calculating the repulsion vector from the obstacles step by
step. This simple approach to the path planning problem is quite robust and reliable, but has
some drawbacks. The main issue of this algorithm is that the drone is subject to stalling in
the local minima of the potential map (this issue will be well explained in the section 4.5.4).
Another issue is the quality of the output trajectories that are non-smooth and dynamically
inefficient. This is due to the fact that it is not able to foresee the obstacles in advance.
This improvement of the traditional APF path planning method, still based on the numerical
computation of the gradient starting from the APF environment model, is obtained following
the routine presented in Algorithm 4.5.

Algorithm 4.5 Routine for advanced numerical computation of the APF negative gradient
1: initialise sweep angle α = 0, a = +1 and a small δ (e.g. δ = 0.1)
2: compute the initial vector þv that goes from x to xg (i.e. with α = 0)
3: while β <= 180 do
4: if U(x+ δ · þv) < U(x) then
5: move in direction þv
6: break from the loop
7: else
8: a = a · −1
9: α← α+ a · β

10: compute a new vector þv Í equal to þv but rotated of α with respect to point x
11: repeat cycle with þv = þv Í

12: end if
13: end while

The basic idea in 4.5 is to go straight toward the goal, following vector þv which goes from x to
xg. If the potential in the direction of the goal is lower than the one in x, the UAV will follow
direction þv to move. Otherwise, a new vector þv Í is computed rotated of an angle α = 1° from
þv. If the potential in direction þv Í is lower than the one in x, þv Í will become the direction of
motion. Otherwise, the procedure is repeated with α = −1°. The procedure is repeated until
a suitable motion direction is found (i.e. a direction leading to a lower potential, even if it
is not the lowest possible in the neighbourhood of x). The strategy followed here privileges
directing toward the goal over going in the direction of the lowest possible potential. This
second approach performs quite well and present a consistent and efficient way to implement a
path planning algorithm based on an APF model.

39

4.5.2 Reinforcement Learning APF path planning

The reinforcement learning artificial potential field path planning agents is trained in order
to contribute to the realisation of the exploration algorithm. Inside each UAV the temporary
objective computed by the coverage agent is passed to the Path Planning agent. The task
of this agent is to compute a suitable trajectory to reach this goal. As already introduced
in the Section 4.2, the Path Planning agent exploits the APF environment model to get all
the information necessary to perform its computations. The neural net designed for the path
planning agent will be illustrated below and it is shown in figure 4.12.

At each time step, a portion s(t) of the APF model is extracted and passed as input state to
the Path Planning agent µθ(s(t)). The state has fixed dimension ([75× 75] cells, representing
a [7.5m × 7.5m] area with a resolution of 0.1m) and represents the environment in the
neighbourhood of the UAV. A wider portion of the potential map, taken as a matrix, means
that the agent is able to use more information to calculate its trajectory and therefore has a
wider range of perception. The state is then manipulated in order to promote the learning
process of the agent. Firstly the state is clipped to a maximum value of potential, in order to
restrict the possible states. Then a differential state is set, i.e the value of the potential of the
cell where the agent is located is subtract to all other cells, in this way the value of this cell is
set to 0, whereas the other cells of the state will acquire a value related to it. After this the
state will assumes values in the interval [−1000, 1000] that are mapped into the range [−1, 1]
further reducing the variability of the state and compressing the input to the NN in order to
better train the agent. The state is finally ready to be given as input to the NN.

Figure 4.11: Three example of input state. An higher value of risk is associated with an
higher value in the state matrix.

The NN designed to build the Path Planning agent is shown in Figure 4.12. It is composed of
three convolutional layers, with ReLU activation functions, that processes the input matrix (a
portion of the potential map) seen as an image, extracting features by mean of some trained
filters. Convolutional layers are fundamentals when operating with images, because they are
able to extract information from them in a very efficient way. In this case one of the main
features to identify is the obstacles conformation of the map, in this way a consistent obstacle
avoidance algorithm will be produced. Afterwards, these “abstracted” features are passed to six
fully connected layers where are elaborated to produce the output value. The output of the last
dense layer is mapped between 0 and 1 through the sigmoid activation function σ(x) = ex

1+ex .
Then this value is rescaled from 0 to 2π in order to convert it into an angle ψ, corresponding
to an angle in the plane that is the best direction to assume in order to reach the goal.

40

Figure 4.12: Neural net of the actor used in the path planning. The input of the neural
net is a portion of the potential map around the drone and after the convolutional and
dense part the output is obtained as the direction to follow.

4.5.3 Trajectory interpolation

The direction obtained is called by the path planning algorithm n times in order to compute a
series of points, interpolate them and use the resulting trajectory instead of a single direction
to follow. The points are interpolated with a B-spline curve, that is a composite curve, build
with joining adjacent segments of polynomial curves with appropriate continuity. The C2 type
conjunction is used. In this type of conjunction the last point of the first curve coincides
with the first point of the second curve and at these two points there is the same tangent
(first derivative) and curvature (second derivative). The routine of Algorithm 4.6, with the
interpolation process, is performed to compute the desired path. The trajectory resulting from
the interpolation of points computed by the agent can be seen in the figure 4.13.

Algorithm 4.6 Path Planning routine
1: compute the starting state s0 in the current position x0
2: for i = 1...n do
3: compute the motion direction as ψ = 2π · µ(si−1)
4: move from position xi−1 of a distance δ in direction ψ to obtain position xi
5: compute the new state si in position xi
6: end for
7: compute the trajectory by applying a fitting function to the n points (x0, x1... xn)
8: pass the trajectory to the controller to follow it

The main limit of the Path Planning routine is the fact that the distance between each step
is fixed (δ). A significant improvement could be obtained by adding a second output node
to the agent, representing the desired speed. This way, one of the agent outputs would be a
velocity vector, and it would be possible to compute more dynamically efficient trajectories.

41

However, this improvement in the NN structure has not been introduced due to the difficulty
to define an effective reward function for the second node output. Therefore, this enhancement
is postponed to future developments.

Figure 4.13: Interpolation of a series of points computed by the path planning agent.

The only exception to the use of the RL path planning is represented by some unwanted
situations in which the UAV is led to approach an obstacle closer than the safe distance. This
situation can be generated by a bad interpolation (e.g. when the interpolating curve “cuts”
a turn and get too close to the corner of an obstacle), but more frequently it is generated
by a bad prediction by the RL agent. This is one big limit of the use of RL algorithms, and
even if the policy should be robust with respect unexpected input statuses, sometimes the NN
prediction fails and the result is a bad trajectory. To tackle this issue a good solution is to pair
the RL agent with a “classical” deterministic algorithm that comes into operation only when
a failure on the part of the main algorithm is detected. In our case a specific agent trained
during risky situations is exploited. This security implementation significantly reduced the risk
of a critical malfunctioning of the RL agent.

4.5.4 Management of local minima

An issue encountered in the model validation has been its management of local minima. Local
minima are a common problem in APF-based algorithms. The model presented above, in a
situation where it found itself near some particularly difficult local minima problems (< 10% of
the local minima encountered), has not been able to consistently reach the goal. For this reason,
in the final implementation it has been paired with a second agent (named “assisting” agent),
trained on different environments and with a slightly different reward function (in which the
penalty for going against the potential was lowered and the time penalty was increased). This
second agent produces, in general, sub-optimal trajectories, but is able to effectively manage
all local minima in which the “main” agent would get trapped. If the agent falls into a local
minima even during the use of the assisting agent a series of operations are performed. These
operations involve placing a Gaussian matrix directly under the drone centred in the matrix cell
with the higher potential with the aim of compensating the potential pit and creating a “slide”
to follow in order to exit the local minimum. At this point there are two algorithms that can be
used, the RL assisting agent and the local minima APF algorithm, which is a modified version
of the classic implementation of the APF. The performances of the local-minima-avoidance
agent are shown in the simulations and results section (section 6).

42

4.5.5 Emergency Collision Avoidance

The path planning agent is in charge of computing the trajectory towards the objective. However,
as any RL agent it can fail since during the training process it is nearly impossible to feed it all
possible states. Therefore, even if NN theoretical study guarantees the stability of the output
with respect to new states, it can happen that the agent fails to find the best trajectory and
returns a sub-optimal one15. This is one of the most critical drawbacks in the use of RL agents,
and can lead to dire consequences. In particular, the most critical failure happens when the
RL agent takes the trajectory too close to an obstacle leading to collisions and resulting in a
loss of control of the UAV or even to the loss of the UAV itself. To tackle this problem, an
Emergency Collision Avoidance system (ECA) is implemented. For the purposes of this thesis, a
quite simple but effective ECA algorithm has been implemented. The ECA is a sensor-triggered
system. Whenever one of the proximity sensors on board of the UAV16 detects an obstacle
closer than a given safe distance, the ECA is activated. The ECA overwrites the path planning
algorithms and computes a new trajectory that has the objective to keep the UAV at a safe
distance from the obstacle. For the ECA operations the “assisting” agent is used, that during
the training has developed the capability of maintain a safe distance between the obstacles.
in the event of failure of the algorithm and therefore in the event of extreme approach of the
drone to an obstacle even using the ECA, another algorithm will be activated. In this specific
case will be adopted the advanced APF path planning described in Section 4.5.1.

The interactions between the various algorithms and callbacks during the local minima detection
and the activation of the ECA are described in the following figure.

Figure 4.14: Logic diagram of the path planning algorithm.

15 NN agent robustness is one of the most critical fields of study in the AI area.
16 we assume that the UAV used as test has some form of proximity sensing tool, as for example the ultrasonic
sensors of the reference UAV presented in Section 4.7.

43

4.6 Dynamics and Control

4.6.1 Dynamics

A dynamic model can be used to take in account the UAV dynamics and optimise the trajectory
planning according to it. In practice, during this thesis the UAV dynamic model has been used
only in the ROS simulation phase. The dynamic model used for the simulations is almost
entirely based on Chapter 16 of the Handbook of Unmanned Aerial Vehicles [14]. The model
proposed by Powers, Mellinger and Kumar [14] starts from the definition of a motor model to
represent the UAV rotors. The vertical force generated by each rotor is equal to:

Fi = kF ω
2
i (4.3)

Each motor also produces a moment equal to:

Mi = kM ω2
i (4.4)

Finally, the internal dynamic of each motor can be represented as a first order differential
equation:

ω̇i = km(ω̂i − ωi) (4.5)

where ω̂i is the desired speed of each rotor (as computed by the controller). Equation (4.5),
as well as the parameters kF , kM , km, are obtained from experimental tests. The motor
model and equations are necessary to build the dynamic equations. Before analysing them, it is
necessary to define a couple of reference frames.
The frame F is a fixed inertial reference frame, while frame M is a mobile reference frame
attached to the drone. The origin of the mobile reference frame is pointed by the vector
þr whose origin is in OM . A rotation matrix [R]FM can be constructed to translate the UAV
attitude between the two reference frame. The shape of the matrix depends on the choice of
the angles used to describe the rotation between the two reference frames. A common choice
for aerial vehicles is to use the Roll-Pitch-Yaw angles (or Euler angles), which will be defined
here respectively as φ, θ, ψ. At this point, it is possible to write a system of Newton-Euler
equations to describe the UAV dynamics with respect to the fixed reference frame. The set of
Newton equations describing the relationship between the UAV linear accelerations and the
rotor forces is:

m

ẍÿ
z̈

 =

 0
0
−mg

+RFM

 0
0

F1 + F2 + F3 + F4

 (4.6)

For what regards the attitude and angular accelerations, the Euler equation for the UAV dynamic
system are:

I

α̈β̈
γ̈

 =

 l(F1 − F3)
l(F2 − F4)

M1 −M2 +M3 −M4

−
αβ
γ

× I
αβ
γ



=

 l 0 −l 0
0 l 0 −l
ρ −ρ ρ −ρ



F1
F2
F3
F4

−
αβ
γ

× I
αβ
γ


(4.7)

44

where l is the distance between the centre of mass and each propeller, while ρ = kM
kF

is the
ratio between lift Fi and drag Mi (as can be derived from the motor model of equations (4.3)
and (4.4)). In equation (4.6), the vector of external forces contains only gravity along the
direction zF . An interesting aspect that emerges from the dynamic equations above is that, of
the degrees of freedom of the UAV, only four of them are linked to an input force, because ẍ
and ÿ have no link to the rotor forces. This results in an under-actuated system, and has to
be taken into account during the controller design. In [14] there is a complete analysis of the
system differential flatness, which results in the fact that, despite the under-actuation of the
system, it is able to follow any desired trajectory in space.

4.6.2 Control

The control algorithm is in charge of computing the motor inputs that allow to follow the
desired trajectory. Motor inputs are usually rotor speeds, which are translated into voltages and
then fed to the Electronic Speed Controller (ESC), which in turns translates the voltages in
power values and supplies them to the motors. The controller has not been specifically designed
while writing the algorithm. In fact, any closed-loop controller can be used for this application.
If a new controller is wanted, it is sufficient to derive a dynamic model of the UAV and design
a controller starting from it. Otherwise, an already existing flight controller can be used. Many
efficient and well-studied UAV flight controllers are available and can be implemented in this
algorithm with few modifications. Once a controller is selected or designed, it is sufficient to
put it in the control loop of the Control Algorithm section. The control algorithm structure
is the one represented in Figure 4.15. The control loop of Figure 4.15 takes the trajectory

Figure 4.15: Block scheme of the control loop algorithm.

computed by the Path Planning Algorithm as input, and computes the rotor speeds (collected
in the vector u). The UAV turns the rotors at the desired speeds and, following its dynamics, it
moves in space. The output of the UAV dynamics is the UAV state, i.e. the variables x, ẋ, ẍ,
φ, φ̇, φ̈ (respectively: UAV position, velocity, acceleration, attitude, angular speed and angular
acceleration). Some of those variables are measured by the sensors on board of the UAV and
fed back to the controller to compute the next rotor speed values.

45

4.7 Reference UAV
The algorithm described above and all its subsections have been developed to be as generic
as possible. This means that the algorithm can be employed on any kind of UAV (quadrotor,
hexacopter, fixed-wing...), with any set of sensors mounted on it (a possible exception is
constituted by the necessary presence of a LIDAR camera), different types of camera could
be used to detect the presence and position of obstacles, since the algorithm must receive a
list of obstacles coordinates as input in order to build the environment model. The only part
that would differ from one UAV to the other is the dynamic model. Up to now, this model has
not been required. However, to optimise the trajectory as well as to design a suitable flight
controller, the dynamic model of the drone is required. However, to get the dynamic model it is
necessary first to select a reference UAV. The UAV that has been selected is the one developed
by the DRAFT team17 (a student team working within the PIC4SeR research group18) in order
to compete in the Leonardo Drone Contest.19

Figure 4.16: DRAFT team quadcopter that has been used as reference.

17 https://www.draftpolito.it/
18 https://pic4ser.polito.it/
19 https://www.leonardocompany.com/it/innovation/open-innovation/drone-contest

46

https://www.draftpolito.it/
https://pic4ser.polito.it/
https://www.leonardocompany.com/it/innovation/open-innovation/drone-contest

The UAV, shown in Figure 4.16, is an octacopter (the structure is that of a X4 quadcopter but
each arm holds two coaxial propellers) equipped with a set of cameras and sensor that allow it
to sense the surrounding environment and collect information about it. The inertial properties
used for the dynamic model are the ones of the reference UAV. The total mass m is 2.8kg,
while the inertia tensor I (computed in the centre of mass, i.e. in the origin of the mobile
reference frame) is shown in Equation (4.8). The technical specifications of the UAV and its
sensors are listed in Table 4.2.

I =

Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

 =

0.0275 0.0005 0.0002
0.0005 0.0330 −0.0002
0.0002 −0.0002 0.0307

 [kg ·m2] (4.8)

Table 4.2: DRAFT team quadcopter technical specifications.

Characteristic Value

Physical dimensions 500 mm x 500 mm x 350 mm
Weight (max weight at take-off) 3300 g
Max payload weight 500 g
Max flight time 15 minutes
Architecture OctaQuad X8 (8 coaxial propellers)
Thrust-to-weight ratio 2.4
Electronic Power System LI-PO battery 1200mAh @ 14.8V
On-board Computer NVIDIA®Jetson Xavier NXTM

Sensor suite board Raspberry Pi 4 Model B
Flight controller Pixhawk 2.4.8
Navigation cameras Intel®RealsenseTM D435 + T265
Precision landing camera Raspberry Pi Camera Module v2
Proximity sensors Ultrasonic sensors (Adafruit®HC-SR04)

47

48

5. Training process

In this chapter the training process of the two agents is discuss. Firstly the training and the
validation set along with the general settings for the training procedure are explained in section
5.1. After this section the training of the path planning agent is analysed in every detail (section
5.2.1). Finally the training of the coverage agent is examined in the same way of the path
planning agent (section 5.2.2).

5.1 Training set & validation set
First of all the training and validation data are presented. This mostly consists on the creation of
simulation environments used to train the RL policies in order to test and compare the different
agents. The training set has been generated using a generator function of random maps,
whereas the validation set has been generated with the manual positioning of the obstacles in
the maps.20 The map parameters that have been used to generate the training and validation
environments are collected in Table 5.1:

Table 5.1: Parameters used for the generation of training and validation maps.

x y

training

dimension [m] 10 10
resolution [m] 0.1 0.1
cell number 100 100

average complexity 7.15%

validation

dimension [m] 20 20
resolution [m] 0.1 0.1
cell number 200 200

average complexity 30.68%

The training set composed of 200 maps with a medium-low complexity has been generated in
order to show to the agent as many scenarios as possible. The map complexity measure the
density of obstacles in the map. This metric is very helpful in order to understand how complex
is the exploration process in a specific map, defined as C = Atot

Aobs
%. where Atot is the total

environment explorable area while Aobs is the area occupied by obstacles. In these sets only

20 Both functions have been written in Matlab language.

49

linear and rectangular obstacles are considered, thus the only way to modify the environment
complexity is to change the obstacles number, shape and positioning. In particular, positioning
and shape can lead to an higher or lower number of local minima that can be encountered
during the exploration. This can lead to a much difficult path planning process by the agent.
The possible shapes for the obstacles are points, wall, rectangles, “T”, “L” and “C” shape.
The points obstacles have been used in the first training set with poor performance result
for the agent in the training process, whereas T and C shape obstacles creates very complex
environments, which makes policy learning difficult. Moreover the prediction shape function
implemented in the algorithm (as discuss in chapter 4) works only with rectangular obstacles
since it recognises edges and corners starting from an image (in this case is the obstacles matrix,
where obstacles are represented by ones and the free areas are represented by zeros). Some
example of training maps are shown in Figure 5.1 plotted as 2D obstacle maps (viewed from
above).

Figure 5.1: Examples of training maps of medium complexity. Dimensions are in meters.

The agent uses the same maps to learn all the aspects of its policy that are path planning,
obstacle avoidance and local minima management, for this reason, the maps have been carefully
designed to contain a sufficient number of different scenarios for the agent to manage while
not being to difficult for the agent to learn in the training process. Validation maps have been
designed to be more complex in order to test the agent’s performances. The three validation
maps on which the simulations have been performed will be displayed in Figure 5.2.

(A) (B) (C)

Figure 5.2: Validation maps used for simulations. Dimensions are in meters.

50

5.2 Agents training
In this section the focus will move to the details of the training process of the two different
agents.

5.2.1 Path Planning agent training

The Path Planning agent training sequence is quite similar to the generic DDPG learning process
previously illustrated in section 3.2.5. However, it is worth described the training process of
the path planning agent and how interacts with the simulation environments. At each time
step the potential matrix that represents the environment is updated by taking into account
the positions of all the newly-discovered obstacles sensed by the UAV simulated vision. Once
an episode is terminated the simulation is reset and a new map with a predetermined goal is
picked. Training is performed only for the single agent case, in fact in this process it is not
need any kind of coordination between multiple UAVs. The routine, in which each detail of the
path planning training process is explained, is show in the algorithm 5.7.

Algorithm 5.7 Learning process routine of the path planning agent
1: initialise the actor and critic µ(s) and Q(s, a) with random parameters θ and φ
2: initialise the target networks µÍ(s) and QÍ(s, a) with parameters θÍ = θ and φÍ = φ
3: initialise the experience buffer B with size NB

4: define hyperparameters H
5: # start main training loop
6: for e in Nepisodes do
7: initialise a random Ornstein-Uhlenbeck noise process N for action exploration
8: change map, randomly selecting one from the training data
9: reset the episode initial condition and obtain state s0

10: set goal position xg
11: for t in Nsteps do
12: update the Environment Model using the Environment Model Builder routine

presented in section 4
13: select the action according to the current actor policy and exploration noise
14: multiply the action by 2π to get an angle in radiants, then clip the result to keep

the action inside the interval [amin, amax]
15: execute action at in the environment. To do so, use the motion simulation functions

implemented in the simulated environment. The result is a movement of a fixed
distance δ in direction at ∈ [0, 2π]

16: use the simulated vision function to detect obstacles inside the field of view of the
agent. Store in memory the positions of the obstacles.

17: compute the new state sÍ

18: compute the reward r
19: store the experience sample (s, a, r, sÍ) in the experience buffer B
20: update s←− sÍ for the next step
21: randomly pick Nm samples from B and store them in the minibatch M
22: compute the critic target ∀i in 1...Nm

51

Algorithm 5.8 Learning process routine of the path planning agent (Part 2)
23: compute the minibatch cost function and use it to update the critic parameters φ

by performing one step of Stochastic Gradient Descent
24: update the actor policy parameters by performing one step of gradient ascent
25: update the target networks parameters
26: if termination T (sÍ) = True then
27: end episode e
28: end if
29: end for
30: # save data for learning progress analysis
31: save episode cumulative reward
32: end for

The set of hyperparameters H used during the training, along with their value, are listed in
Table 5.2 Since different agents have been trained, the hyperparameter values reported in the
third column correspond only to one specific training, which is the one that will be used for all
the simulations.

Table 5.2: Hyperparameters used for the Path Planning agent training.

Parameter Name Variable Value
number of episodes Nepisodes 250 000
number of steps Nsteps 150
step movement distance δ 0.12
agent input state size N ×N 75×75
smoothing factor τ 0.005
discount factor γ 0.95
actor learning rate αθ 0.0001
critic learning rate αφ 0.001
action lower bound amin 0
action upper bound amax 2π

The design of a reward function for the path planning training is one of the more difficult
parts of the training work, in fact, the RL approach is extremely reward-sensitive, i.e. trainings
passed from convergence to failure with a small variation in the reward parameters. Thus is
quite difficult to define a function capable of distinguishing between good behaviours, like going
toward the goal, and seemingly-good ones, like being trapped in a local minimum. The issue is
that, given the input state defined in Section 4.5.2, both those behaviours are obtained by going
towards a low potential. The chosen reward allowed the drone to not choose in every situation
the lowest possible potential, that would promote, in some cases, to stuck in local minima.
Another important parameter which if changed varies the agent’s performance considerably
during the training is the input size. An higher input size means that the agent is able to early
detect obstacles and in this way taking into account of it earlier since the input size is linked
with the sense radius of the UAV. The reward function with which the agents chosen for the
simulation has been trained is shown above:

52

r =


−10 if an obstacle is hit

20 if goal xg is reached
−w1 ·∆U + w2ψ + w3τ else,

(5.1)

The first piece of the reward function is intended to punish the agent whenever it collides with
an obstacle. The second one assigns a large prize to the reaching of the goal, which is the final
objective of the path planning agent. Whereas the last part is composed of three components:

• w1∆U - this is a proportional term which is the difference between the current potential
value and the potential at time t − 1, that is: ∆U = U(x(t)) − U(x(t − 1)). If the
difference is negative the term will assume a positive value proportional to the ∆U thanks
to the negative sign. Whereas if the delta is higher than the potential value 100, the term
will assume a negative value always proportional to the difference between the potential
value. Instead if the difference is between the potential value 0 and 100, the term will
became flat and equal to w1∆U = −1.
In the first two case w1 = 0.1

• w2ψ - this term punishes the agent with a negative reward if the variation of direction
∆ψ between two subsequent steps is too large. This term is meant to incentive long-term
trajectory planning to produce smooth trajectories.21

In this case w2ψ = −2

• w3τ - this last term is constant and represents a time penalty. It brings the agent to find
the goal quickly avoiding this negative reward. This is the term that helps to reduce the
number of steps in a single episode during the training.
In the training of this agent it is assigned the value w3 = −0.2

The parameters of the reward are tuned through a trial-and-error procedure. A lot of trainings
have been performed in order to obtain an agent able to perform obstacle avoidance and to
reach the designated goal in a efficient way. The agent with the best performances has been
obtained using the hyperparameters listed in Table 5.2 and the reward function of equation
5.1. The training data collected during the training process of the agent 22 (which is the one
used in all the simulations) are shown in Figures 5.3 and 5.4. In the following figure the overall
trend of the training process is shown.

21 This term could be modified to take in account dynamical properties, such as the actuation control or the
energy consumption during manoeuvres, in order to produce dynamically-optimal path

53

Figure 5.3: Average reward over the episodes during the Path Planning agent training.

Figure 5.4: Number of steps per episode during the Path Planning agent training process.

Figure 5.3 shows the value of the average reward among episodes. The thin line represents
every episode rewards, whereas the thick one represents the average reward computed through
a moving average. It can be observed that after about 2 · 105 episodes the NN parameters
go to convergence an the average reward stabilises around the value +20 while its variance
diminishes significantly. This indicates that the agent has learned an efficient policy to deal
with the training environments and is able to consistently move towards the goal avoiding
obstacles and local minima. Another metric that confirms the parameter convergence is the
average episode length, shown in Figure 5.4, where after about 2 · 105 episodes, it becomes
shorter and constant as confirmed by the small oscillations of the thin line around the average.
Since the agent has learned how to act efficiently in the environment, it takes less time to reach
the goal. The performances of the trained Path Planning agent in the validation environments
are illustrated and discussed in Chapter 6.

54

5.2.2 Coverage agent training

In this training procedure it is necessary to simulate the actions and movement of each UAV,
in fact, at each training step after the goal computation performed by the coverage actor,
which is the actor NN µ(s) that is being trained, the UAVs compute their trajectory with the
path planning algorithm in order to reach the goal. This steps (called substeps in order to
differentiate them from normal steps) necessary to move toward it are computed using the
action cycle described in chapter 4. During this movement, any new part of the environment
discovered by the UAV sensors is stored and used to compute the reward. When the substeps of
an UAV are terminated (and so one step is concluded), the next UAV computes its goal e and
starts moving towards it. In the action cycle, communication between drones is active, thus
the explored area and the information stored are shared in the swarm. The routine followed for
the coverage training process is illustrated in the algorithm 5.9.

Algorithm 5.9 Learning process routine of the coverage agent
1: initialise the actor and critic µ(s) and Q(s, a) with random parameters θ and φ
2: initialise the target networks µÍ(s) and QÍ(s, a) with parameters θÍ = θ and φÍ = φ
3: initialise the experience buffer B with size NB

4: define training hyperparameters H
5: # start main training loop
6: for e in Nepisodes do
7: initialise a random Ornstein-Uhlenbeck noise process N for action exploration
8: change map, randomly selecting one from the training data
9: reset the episode initial condition, obtaining state s0

10: for t in Nsteps do
11: # repeat the exploration sequence for each UAV of the fleet
12: for UAV u in fleet F do
13: build state s as described in section 4.4 taking into account obstacle positions,

other UAV positions and the already explored regions
14: select action according to the current actor policy and exploration noise

where the bar over the outputs of the actor µ(st) indicates that they are in
the interval [0, 1] and have to be rescaled to find the goal position in space

15: multiply each action by the corresponding environment side size to get the
goal position [x, y] in meters, expressed with respect to the point (0, 0) of
the map. Due to noise presence, the resulting value may need to be clipped
to stay in the interval [0, map side length]

16: # simulate movement during exploration.
17: for i in Nsubsteps do
18: use the numerical APF path planning algorithm to make one step of length

δ toward the current goal position
19: use the simulated vision function to “explore” the area in front of the UAV.

This includes obstacle detection. The size ∆ of the “new” area explored is
memorised to compute the reward at the end of the step

20: end for
21: # exploration step ended for UAV u
22: share information with other UAVs through communication channels
23: # store experience collected by UAV u in the experience buffer

55

Algorithm 5.10 Learning process routine of the coverage agent - Part 2
24: compute the new state sÍ

25: compute the reward r = R(A)
26: store the experience sample (s, a, r, sÍ) in the experience buffer B
27: update s←− sÍ for the next step
28: end for
29: randomly pick Nm samples from B and store them in the minibatch M
30: # action simulation ended, proceed with NN learning
31: perform the Stochastic Gradient Descent and update actor policy and target

networks parameters
32: # verify if the current state sÍ is a termination state
33: if termination T (sÍ) = True then
34: end episode e
35: end if
36: end for
37: # save data for learning progress analysis
38: save episode cumulative reward
39: end for

In order to speed up the learning process, the gradient computation and the parameters update
can be done multiple times, since at each training step every UAV of the fleet adds an experience
sample to the experience buffer. This strategy is not in conflict with the fact that multiple
experience samples are added to the buffer, since a minibatch is used and also the learning is
performed off-policy so the data used to compute the gradient have no relationship with the
ones added to the buffer in the same step.

The hyperparameters of the Coverage agent training process are listed in Table 5.3.

Table 5.3: Hyperparameters used for the Coverage agent training.

Parameter Name Variable Value
number of episodes Nepisodes 500 000
number of steps Nsteps 7
number of substeps Nsubsteps 50
step movement distance δ 0.12
agent input state size N ×N 200×200
smoothing factor τ 0.005
discount factor γ 0.95
actor learning rate αθ 0.01
critic learning rate αφ 0.001
action lower bound amin 19.99
action upper bound amax 19.99
influence matrix of the other UAVs M ×M 75×75

56

The reward function used to train the Coverage agent is:

r = R(s, a) =


−5 if xg is in an illegal location
−2 if xg is in an unwanted location
w1 ·∆ else,

(5.2)

where xg is the temporary goal position and ∆ is the size of the region explored while moving
toward a valid goal, which is multiplied by a weight w1. A temporary goal xg is considered to be
in an illegal location if it is over a known obstacle. An unwanted location, instead, is defined as
an already explored point, or a point under the area of influence of another UAV. The first two
terms of the reward function aim to punish the positioning of the goals in unwanted locations,
whereas the third term is the one that promotes the exploration task. The explored area is
that area that the simulated vision of the drone has captured during the movement towards
the goal. This is done by performing a certain number of steps using an already trained Path
Planning agent.It is worth noting that the Coverage agent does not receives reward for the
other UAVs exploration or goals positioning, in fact, this approach leads to the implementation
of a coordinated behaviour, but not a cooperative one. After a considerably large number of
episodes the training process should encourage UAVs to explore unexplored areas as individually
as possible accumulating positive rewards avoiding approaches or crossing path with the other
drones, that lead to a drop of the reward.

Figure 5.5: Average reward over the episodes during the path planning agent training.

Figure 5.5 shows the value of the average reward among episodes. As in the training process
of the path planning agent the thin line represents the episode reward, whereas the thick one
represents the average reward. The trend of the average reward not converges and it is always
negative for the whole duration of the training. At about 2.5 · 104 episodes the slope turns
positive and starts rising. This is due to the fact that the number of episodes sufficient to learn
an optimal policy is much higher (probably > 2 · 105). This indicates that the agent has did
not have enough time to learn a consistent policy and able to find optimal goal positions in the
training environment. The performances of the trained coverage agent in the validation maps
are illustrated in the simulation and result (Chapter 6).

57

58

6. Simulations & results

In this chapter, the practical implementation of the algorithm is finally presented, along with
the results of the tests performed. First the path planning agent as a single agent is analysed.
Finally all the part that contributes to the exploration algorithm are integrated and merged in
order to evaluate the whole exploration algorithm by assessing the performance of the coverage
algorithm.

6.1 Path planning agent

6.1.1 Evaluation metrics

To evaluate the performances of the Path Planning agent a series of metrics needed to be
defined. The metrics have been selected on the base of computational cost, safety and energetic
efficiency of the path planning algorithm. The metrics through which the agent performances
have been evaluated are:

• Goal Reached : a boolean value indicating whether or not a trajectory reaching the goal
has been found;

• ε: the minimum measured distance between the agent and any obstacle point;

• t: the time required by the algorithm to compute the trajectory;

• ∆̄IO: the average value of ∆IO, which is the difference between the “input angle” and
“output angle” computed at each point of the trajectory.22 ∆̄IO quantifies how sharp
are, on average, the turns in a trajectory. A low value of ∆̄IO is associated with a less
optimal trajectory from the dynamical and energetic point of view (that is, once the UAV
dynamics is taken into account the trajectory is more difficult to follow, requiring lower
speed or a higher actuation force).

22 for each discrete point xi of the trajectory (obtained by ignoring the fitting step in Algorithm 4.6), the input-
output angle difference is computed as ∆IO = |ψ(xi, xi+1)− ψ(xi−1, xi)| where ψ is the angle determining
the direction of a given vector. The vectors considered are the one “exiting” from xi (i.e., going from xi to
xi+1) and the one “entering” in it (i.e., going from xi−1 to xi).

59

6.1.2 Path planning results

Various simulations have been carry out in order to measure the performance of the path
planning agent. The simulations shows in this chapter are performed in the validation maps
of Figure 5.2. The RL path planning agent has been compared with two other path planning
algorithms to compare its performances with other classical implementations. The other Path
Planning algorithms chosen as reference are A∗23 and APF.24 First of all, the qualitative results
of the RL path planning agent in terms of quality of the trajectories are shown in Figure 6.1.

Figure 6.1: Simulation of path planning agent in validation map B.

Figure 6.1 shows a simulation of a path planning operation, in each frame is represented an
instantaneous configuration of the simulation environment. The UAV i s represented by a red
dot, the goal by a red cross and the red line connecting each other is the computed trajectory.
Black regions represent obstacles known by the agent, whereas the grey ones indicate the
unknown obstacles. The background represents the APF model value in each point. The colour
scale starts from blue tones, associated with low potential values (i.e., the goal neighbourhood)
and goes up to yellow tones, that indicate high potential values associated to the area close to
an obstacle. Time is represented by the step counter located in the upper left corner, it starts

23 The code used for A∗ was adapted from https://github.com/AtsushiSakai
24 in this case, the APF is intended as a path planning algorithm, differently than in the algorithm design were
the APF was used only as a representation of the environment.

60

https://github.com/AtsushiSakai

from 0 and increases by 1 at each step performed by the agent in the simulated environment. At
each time step, the agent re-computes the trajectory from its current position using Algorithm
4.6 and performs a single step of 0.12m along the trajectory. As can be observed in the images
during the movement of the agent in the environment new obstacles are discovered and added
to the environment model. The discovered obstacles are the black areas whereas those still to
be discovered are the grey areas. Once the goal is reached (as can be seen in frame 99) the
attractive layer is subtracted, a new goal is computed and the attractive layer associated with it
is added to the APF model. An interesting behaviour of the agent can be seen among frame 8
and frame 22. In the first frame the agent detect only the left obstacle and in order to compute
a conservative trajectory (avoiding possible risky situation) maintain a certain distance from it.
When the right obstacle is revealed (frame 22), the trajectory is re-computed and the distance
from the left obstacle is reduced maintaining the same distance from the two obstacles (as can
be seen in frame 36). The trajectory has a constant length because the trajectory planning of
Algorithm 4.6 uses a finite number n of intermediate points to obtain the final path, thus if
the maximum number of steps has been reached, the trajectory end in that final point and not
in the goal.

Figure 6.2: Simulation of Path Planning agent in validation map C.

Simulations of Figure 6.2 shows effective choices in trajectory generation, as the drone always
maintains safe distance from the walls, does not change direction abruptly and always reaches
the goal consistently (even in the presence of local minima). In the last figure the attractive
layer is not plotted in order to highlight the trajectories. It is worth noting that the trajectories
of this RL algorithm are always computable despite the possibility that the result may not
converge to the desired solution.

61

6.1.3 Comparison of Path Planning algorithms

As mentioned at the beginning of this section, the RL-based Path Planning algorithm has been
compared with other Path Planning algorithms in order to have a reference while evaluating
its performances. A series of tests has been performed in the three validation maps of Figure
5.2. For each test, the starting and the goal position in the map are chosen in order to create
specific condition of testing. Then the trajectories of the 3 algorithms under consideration are
analysed. These algorithms are the proposed RL agent, A∗ and APF. The results of some of the
simulations performed are listed in Table 6.1. For each test the maps used, the achievement or
non-achievement of the goal and the metrics ∆̄IO and Ô are shown. The approximate length of
the trajectory and the computational time spent are also listed, but they are discussed in more
detail later.

Table 6.1: Results of the Path Planning simulations in the test environments.

Test Map Start/End
Point [m] l [m] Algorithm Goal

Y/N ε [m] ∆̄IO [deg] t [s]

1 A x0 : (17, 4)
xg : (14.5, 13) 9.80

RL yes 0.53 10.01 0.49
A∗ yes 0.36 9.84 0.42
APF no - - -

2 B x0 : (7, 3)
xg : (16, 18) 20.00

RL yes 0.72 6.06 1.06
A∗ yes 0.45 10.43 1.66
APF yes 0.76 6.81 -

3 C x0 : (17, 4)
xg : (17, 18) 19.00

RL yes 0.67 14.17 0.92
A∗ yes 0.42 8.64 0.69
APF no - - -

4 A x0 : (10, 10)
xg : (5, 5) 8.00

RL yes 0.61 15.59 0.399
A∗ yes 0.57 10.52 0.218
APF yes 0.60 10.89 -

5 B x0 : (2, 13)
xg : (14, 9) 14.00

RL yes 0.61 15.82 0.70
A∗ yes 0.36 20.61 0.52
APF yes 0.60 17.50 -

6 C x0 : (2, 18.8)
xg : (6, 17.2) 4.75

RL yes 0.70 8.70 0.258
A∗ yes 0.40 20.54 0.05
APF yes 0.58 16.58 -

As can be observed in Table 6.1 the RL path planning is always able to find a suitable trajectory
in order to reach the assigned goal. conversely the APF algorithm in test 1 and test 3 has not
reach the goal getting stuck in a local minimum point. Test 2 shows an interesting behaviour
of the RL agent (orange line). It chooses a different path with respect to the others algorithm.
The reason behind this behaviour is that the RL agent is optimised to minimise the turns. In
this way the energetic cost associated with the path following is optimise. As can be seen in
Table 6.1 the proposed algorithm always has the highest value among the other ones in terms
of the minimum distance from the obstacles. In fact the trajectory computed is always safe
without losing consistency. This behaviour does not lead to sub-optimal trajectories, as can
be observed in the column reporting the values of ∆̄IO. The average angle difference of the
trajectory of RL agent, as can be seen in Test 2, 5 and 6, is lower than the one of the other
algorithms because it aims to find a more dynamically-efficient trajectory. In fact turns are

62

smoother in the trajectory computed by the RL agent, which also keeps the highest distance
from obstacles. However, in this case the other two trajectories which stay close to the corner
are more efficient in terms of minimum distance travelled and energy consumption, but less safe
and robust. These results can be observed in Figure 6.3, where the three trajectories computed
to solve all the tests are displayed.

Test 2 Test 5

Test 4 Test 6

Figure 6.3: Comparison of the trajectories computed by the path planning algorithms.
Orange lines represents RL trajectories, blue ones are A∗ trajectories, and yellow ones are
APF trajectories.

63

6.1.4 Computational time performances

Another interesting results can also be observed about the computational time. It is worth
noting the trend of computational time of RL and A∗ algorithms when they are plotted against
the approximate trajectory length. In Figure 6.4 time t is plotted against length l for both the
proposed RL agent and the A∗ algorithm. For what regarding the computational time of APF,
it has not been measured because the algorithm implementation exploits the already computed
APF environment model, in this way the time spent finding the direction to the lowest potential
is very low (< 0.1s).

Figure 6.4: Comparison of the computational time 25required by the RL agent (orange
line) and A∗ (blue line) to obtain trajectories of various lengths.

As can be observed from the plot of Figure 6.4, the computational cost of the RL agent grows
linearly with the length of the trajectory. It has a linear trend because it is independent from the
number of obstacles or the complexity of the environment maintaining in this way a constant
computational time per step. On the contrary, A∗ is far more sensitive to those parameters,
this is due to the way the algorithm is constructed. In fact in order to reach the objective it
operates a sort of “propagation of the trajectories” and the more the distance increases the
more the propagation takes longer to be calculated. So the computational cost of A∗ grows
exponentially with the trajectory length and is more sensitive to the presence of obstacles. The
variability of the computational time in figure 6.4 is due to the complexity of the map, in
fact the presence of obstacles introduces a significant increase in the computation time for A∗

algorithm.

25 all computation time tests have been carried out on 64-bit Windows 7 system with Intel i7-4710HQ processor
and 16GB memory through Python 3.8.3.

64

6.1.5 Local minima performances

In order to ensure the computation of effective trajectories in a consistent way, an agent has
been developed to compensate for the problem of local minima, as described in chapter 4.5.4.
A specific training procedure has been made to create an “assisting agent” able to manage
efficiently the most common issue of the APF models.
This agent is called by the main RL agent when it detects a consequential repetition of position
of the UAV. Results obtained with the “assisting agent” are shown in Figure 6.5. The trajectories

Figure 6.5: Examples of trajectories computed by the “assisting” agent.

displayed in Figure 6.5 show an effective avoidance of the local minima by the assisting agent.
This task is very relevant because it allows the drone to create trajectories that a classic APF
algorithm would not be able to calculate. The location of local minima is indicated by an
orange circle. As can be observed, the agent is able to avoid the local minima by computing
a suitable trajectory to reach the goal. In both the images the trajectory passes through an
unknown obstacle: this is not a problem, since once the simulation proceeds the presence of
the obstacle will be discovered and the trajectory will be updated to avoid it, re-computing
also the position of the goal to put it outside the obstacle.

65

6.2 Coverage agent
In this section, simulation and results of the complete exploration algorithm will be presented
and discussed. The focus is on the performances of the coverage agent, since the path planning
one was already analysed in the previous part of this chapter. As for the path planning agent,
some evaluation metrics are defined to quantitatively measure the performances of the coverage
agent (section 6.2.1). Then, simulation and results obtained evaluating the exploration process
are presented (sections 6.2.2 and 6.2.3).

6.2.1 Exploration evaluation metrics

Some evaluation metrics have been defined in order to measure the efficiency of the coverage
algorithms during the exploration task. The environment is considered “explored” when at least
90% of its surface has been covered.26 The metrics that will be used to evaluate the different
agent performances are:

1. d̄(t): average distance between UAVs during the exploration task. This metric highlights
how UAVs are spreading in the environment during the exploration.

d̄(t) = 1
3
Ø
ëdijë where

I
i, j = 1, 2, 3
i Ó= j

(6.1)

2. dmin(t): minimum distance registered between two UAVs. This parameter is important
to evaluate both the effectiveness of the inter-UAV collision avoidance system and how
well the UAVs were spread in the environment.

dmin(t) = min ëdijë where i Ó= j (6.2)

This metric is measured over all the UAVs (indicated by the i and j subscripts) and
during the whole exploration task;

3. σ(d̄): variance associated to the metric d̄(t) is also significant, since it measures how
well the exploration task is divided amongst the UAVs. In fact, if the variance is low then
the distances between them is more or less constant resulting in a optimal disposition of
the UAVs in the space:

σ(d̄) = Var(M2(t)) (6.3)

4. tN%: the number of simulation steps after which the fleet has explored at least N% of
the environment surface area. This value is measured for different values of N ;

5. A%(t): is the evolution over time of the explored area percentage, computed as:

A%(t) = Aexplored
Aexplorable

% (6.4)

This metric is evaluated both for the whole fleet and for each individual UAV.

26 a piece of environment is considered covered when it has been observed by the UAV camera. This means that
it is not necessary for the UAVs to physically cover every single point of the environment, but it is sufficient to
observe them with vision sensor.

66

6.2.2 Exploration simulations

Multiple simulations have been performed to test the performances of the complete exploration
algorithm. Different configurations of the exploration algorithm have been tested. First, the
coverage agent has been evaluated singularly. However, due to the limitations in the training
process, the agent is resulted able to effectively drive the exploration process only up to ∼70%
of the exploration. After that, the temporary goal placement resulted inefficient and repetitive.
For this reason, the finalisation of the exploration process has been assigned to the explicit
algorithm, based on the k-means partitioning of the environment (introduced in section 3.3,
whereas the implementation in the whole exploration algorithm is explained in section 4.4.2).
All the simulations presented in this chapter have been obtained by a combined use of the RL
agent and the k-means algorithm. Some additional simulations have been obtained by using
only the k-means agent in order to use them as reference. Two simulations, obtained using a
fleet of four UAVs in validation map A, are shown in the next pages. The first is a simulation
obtained through the combined use of the RL coverage agent and the k-means algorithm, and
is shown in figures 6.6 and 6.7. The second one, obtained using only the k-means algorithm,
is displayed in figures 6.8 and 6.9. Each frame of the simulations displays the location of the
four UAVs with different colour, as well as the four temporary goals. The explored regions
are marked in blue, whereas known obstacles are coloured in black. The total explored area
is reported as a percentage in the top-left corner of each frame. Before each simulation, the
environment obstacles configuration is displayed (corresponding, in both cases, to validation
map A).

Figure 6.6: Simulation of the exploration task using the RL agent + k-means algorithm.

67

Figure 6.7: Simulation of the exploration task using the RL agent + k-means algorithm
(pt 2).

For what regards the RL + k-means coverage algorithm displayed in the simulation of figures
6.6 and 6.7, the switch between the two coverage methods happens after 70% of the total
environment surface has been explored (which happens between the sixth and seventh frames
of the simulation). In the first six frames, the goal placing of the coverage algorithm can
be observed. Some interesting behaviours can be observed. First of all, the agent is able to
differentiate the goal location from one UAV to the other, which is a first good result. However
the temporary goal placing is not always optimal. For example, in the first frame the red goal is
too close to the blue UAV, although the goal placement is effective to initiate the exploration
process. It must be said that in this first section of the training it is difficult for the UAV
to learn a consistent policy. This has a simple reason: since the environment is completely
unexplored in the first steps of an episode, almost any goal positioning leads to a positive
reward in the training process. In this case, the objective for the agent is to learn an efficient
long-term strategy so that the placement of the initial goals positively influences the future

68

exploration, by positioning the UAV in a way where it is able to continuously observe new
areas, without having to go back over an already-explored region. Unluckily, behaviours like
require many training episodes. As already discussed, this was not the case in the coverage
agent training, and so the goal placement is not completely optimised. In frames 5 and 6 the
goals are moved since the previous ones are reached. Here it can be observed that the blue,
purple and green agents decide to move toward the bottom side of the map, which is the most
unexplored one. This, in general, is a smart choice. However, the fact that all three UAVs start
moving toward the same region is inefficient (especially since the purple UAV is much closer to
the objectives than the other two). The reason for this behaviour lies in the choice to make the
agent a greedy and selfish one (so each of the UAVs just wants to reach the biggest unexplored
area). All this observations can be very useful to optimise a future training process that could
allow to obtain a much more efficient coverage agent. In any case, despite the issues detected,
the agent policy is able to quickly reach an exploration percentage equal to 70% of the total
environment surface area.

Figure 6.8: Simulation of the exploration task using k-means coverage algorithm.

69

Figure 6.9: Simulation of the exploration task using k-means coverage algorithm (pt 2).

Some observations can be made also for what regards the k-means coverage agent, used in the
second part of the first simulation (figures 6.6 and 6.7) and in the whole second simulation
(figures 6.8 and 6.9). The k-means algorithm computes an adaptive number of clusters, which
is computed through a dedicated piece of algorithm that aims to find the best trade off between

70

the number of clusters and the in-cluster variance (see appendix 4.4.2 for more details). The
k-means coverage algorithm returns a list of points, corresponding to the centroids of the
Voronoi cells in which the environment is clustered. From the list, each UAV selects the closest
point as chooses it as temporary goal. Also in this case, the placing of the points is not optimal.
This is particularly true at the beginning of the exploration process, as can be observed in
the second simulation. The k-means coverage algorithm is, instead, quite efficient towards
the end of the exploration process, where it is effective in localising and isolating the single
unexplored regions and assigning goals to them. This can be observed particularly well in the
first simulation. Due to the good results that this algorithm has shown in the completion
of the exploration process it has been decided to pair it with the RL agent to improve the
performances of both methods. It is worth mentioning, at this point, that the reason why the
RL coverage agent is not efficient after 70% of the environment has been explored is that the
final stages of the exploration process can be obtained only if a good policy is used for the first
part. To reach this point, it is necessary that the training process is long enough. In fact, the
policy learns gradually how to behave in later scenarios of the exploration, and so only a long
training process can lead to learn efficient end-simulation behaviours. The shortness of the
training process performed on the coverage agent is, once again, a significant limitation.

6.2.3 Exploration results

Several simulations have been performed in the validation maps to evaluate the efficiency of
both the RL coverage agent and the k-means one. In particular, both the single k-means
coverage algorithm and the combined RL + k-means one have been tested in all the three
validation maps. The simulation results in map A have been shown in figures 6.6 and 6.7 for
the combined agent and in figures 6.8 and 6.9 for the k-means alone. The same simulation
process has been repeated in maps B and C. From all the simulations, numeric values have
been collected for all the evaluation metrics introduced in section 6.2.1. The numeric results
obtained are collected in table 6.2.

Table 6.2: Numerical results obtained from the coverage simulation in the test environ-
ments. The values of tN% are expressed as number of simulation steps.

Test Algorithm Map A% d̄ [m] σ(d̄) [m] dmin [m] t50% t70% t80%

1

k-means

A 95.01 9.51 3.36 1.18 96 169 246

2 B 95.70 12.05 3.88 1.58 114 224 271

3 C 93.24 9.94 3.95 1.16 96 161 230

4
RL +

k-means

A 93.64 10.27 3.24 1.62 82 148 228

5 B 95.58 8.90 2.88 1.64 93 156 211

6 C 93.25 9.64 3.35 2.34 84 140 255

71

For each of the six tests performed, the coverage algorithm and map used are reported in table
6.2. In addition, the value of all the metrics is reported in the table. The variable σ(d̂) gives
a quantitative evaluation of how much the fleet is spread in the environment (a low value is
associated to a packed fleet, a high value to a well-spread one). From the table it can be
observed that in all the six tests the coverage algorithm employed is able to reach a coverage
percentage value between 93% and 95%. With only small differences between the different
tests, the average distance between the UAVs of the fleet is around 10m, whereas the standard
deviation associated to it is ∼ 3.3m. As can be observed in the table, the Coverage agent
efficiency decreases as the map complexity grows (see Figure 5.2 for details about each map
complexity). The average distance between the UAVs is similar in the three cases, whereas in
the third one the minimum distance between the agents is smaller than in the other two. The
reason for this is that the UAV swarm is still not efficient at moving in an environment rich in
obstacles and so the drones end up getting closer, especially in the final steps. The resulting
graphic can be observed in figure 6.10.

Figure 6.10: Comparison of the time employed to reach some coverage percentage
thresholds in the six exploration tests.

The three full lines represent the three tests performed using the combined RL+k-means
coverage algorithm (indicated in the legend just as “RL”). On the contrary, the dotted lines
correspond to the tests where only the k-means algorithm was used. The plot shows on the x
axis the coverage percentage and on the y axis the number of simulation steps employed to
reach each threshold (50%, 70% and 80%). A lower number of steps corresponds to a faster
exploration process. As it can be observed, the combined algorithm performs better than the
k-means one in almost every test. In particular, the points corresponding to the 70% threshold
are always lower for the RL+k-means algorithm. It is worth noting that, up to 70% of the
exploration, the coverage is driven only by the RL coverage agent. It results that the coverage
agent is more efficient than the k-means one in the beginning of the exploration, confirming
the proposed model to be viable to coordinate the exploration task.

Some additional information about the exploration speed can be obtained by plotting, for a
single test, the coverage percentage of each UAV as a cumulative plot. Two of these plots
are analysed. The first is obtained plotting the coverage percentage of each UAV during test

72

number 1 of table 6.2 (which is the one represented in figures 6.8 and 6.9), whereas the second
corresponds to test 4 (obtained using the combined coverage algorithm and displayed in figures
6.6 and 6.7). The two coverage percentage plots are shown in figure 6.11.

Figure 6.11: Coverage percentage of the single UAV contributions in the exploration
process for tests 1 and 4. The plot on the top shows the results of test 1, whereas the
one on the bottom shows results of test 4. The colours correspond to those of the UAVs
represented in the simulations of figures 6.8, 6.9, 6.6, and 6.7.

As can be observed, in both the exploration process the coverage percentage ends above
90%. In case of the combined algorithm (bottom plot), the exploration is very well distributed
amongst the four members of the fleet. Instead in the case where only the k-means was used,
one of the UAVs contributes significantly less with respect to the other ones. In fact, in the
plot it can be observed that the blue region is much smaller than the other ones. This is due
to the fact that the k-means algorithm is not optimised to coordinate the exploration process,
and produces simply viable locations for the goals. In the bottom plot, where the coverage
process was started with the RL agent, the coordination of the fleet is much more efficient.
The only issue is that sometimes a couple of UAVs tend to stick together and move close one
to the other for some time. This is a kind of behaviour that should be punished during the
training process. However, early results are good in this sense.

73

74

7. 3D extension

7.1 3D extension
There are different ways to face the 3D extension, the first one is a simple extension of the 2D
approach previously discussed, whereas the second one is a more complicated implementation,
where a new training is set in order to taking into account the augmented matrix as input state.

7.1.1 Slicing method

The first possibility is the “slicing” of the environment in a number of sections along the z-axis
where each of them is treated as a 2D portion of the environment. This strategy allows to
use the exact same path planning and coverage algorithms presented for the 2D environment
augmenting all the matrices in 3D ones. In this way, the potential matrix representing the
environment would become a 3D matrix, i.e. each cell, representing a volume of space instead
of an area determined by three coordinates, contains a potential value, which works in the same
way as in 2D case. This strategy is very easy to implement starting from the 2D algorithm
developed, at the cost of some efficiency in the exploration process since the coverage and
path planning are optimised only with respect to 2D level and not in the whole environment.
In fact the movement between different layers is not optimised because it has not been taken
into account in the training process. However in case of environments where obstacle shapes
are constant along the z-axis (like in an urban environment) this simplified 3D algorithm could
produce satisfactory results.

This approach brings with it some issues that need to be solved. First of all, the memory
usage grows quickly. In particular, the dependence of the number of elements on the resolution
grows as n3 instead of n2. This can lead to a massive memory usage increase, as well as to
a considerable slow-down in the computational times in order to manages high dimensional
matrices. An increase in the environment model dimension leads to the same exponential
growth in the memory usage. This needs to be taken into account when initialising the
environment model. A possible solution to keep memory usage low could be to create two
different environment models, one with high dimensions but low resolution, and the other
with small dimension and higher resolution. The former one would be used for global path
planning operations, while the latter one would be employed to locally optimise the trajectory.
Furthermore, in the 3D extension, a new motion model has to be introduced. The most
immediate extension of the motion model used in the 2D case would be spherical coordinates,
adding a second angle to the agent output to represent the angle between the trajectory and the
horizontal plane. However, some other possibilities could be considered, e.g. the quaternions
avoiding in this way the numerical problems that spherical coordinates bring with them (in
particular the singular configurations of the angles).

75

Figure 7.1: Simulation performed with the “slicing” approach in the python simulation
environment.

7.1.2 Neural Network updating method

The second possible implementation can be done modifying the structure of the agents NN.
The two sections that need to be modified are the input section and the output one. The
latter one requires a rather simple modification, in fact the output nodes will change to having
two angles as output for the path planning agent (this number depends on the type of 3D
coordinates is chosen, two nodes in case of spherical coordinates, whereas four if quaternions
have been chosen) and three for the coverage one. The modification of the input layer, instead,
is a bit more complex. The input section of the NN, before the dense layers, is composed by a
succession of convolutional layer mixed to pooling and batch normalisation layers. All these
layers must be changed in order to works with 3D matrices. The filters of the convolutional
layers will be changed into 3-dimensional filters, i.e. they will multiply a 3D volume of the
input state. A temporary drawback is that the number of weights composing the NN grows
significantly and this leads to an increase in the required training time for the convergence
towards a good behaviour of the agent.

76

8. Conclusions

8.1 Issues
The algorithm proposed to present some issues that negatively influence its efficiency. In this
section, they will be illustrated and discussed.

• one of the main problem of the method proposed lies in the use of Reinforcement Learning.
In fact, despite being a very powerful and versatile tool, RL (and more in general Artificial
Neural Networks) presents some critical points. One of them was already discussed in
Section 4.5.5, and is the fact that during training it is impossible to provide the model
with all the possible inputs it could encounter, and therefore there is always the possibility
that some new input will lead to undesired or dangerous behaviour. A consistent solution
to this problem is to pair the RL algorithm with an explicitly-programmed system that
captures any unwanted behaviour and safely corrects it. However, designing such a
system is not always easy and negates some of the benefits of RL methods;

• a second issue, still linked to the intrinsic issues of RL, is that when a RL agent is
implemented, it has to be treated as a black box. In fact, because of the way NNs are
constructed, it is almost impossible to understand their “internal reasoning”. It is not
easy to correlate weight values and NN architecture to the way the agent processes the
inputs. This means that, when a model works correctly, it is very difficult to understand
why it does so. Unfortunately, the same is also true when it does not work correctly,
which makes debugging and fixing faulty models very difficult;

• A third problem, which did not arise during this thesis but could be critical in more
complex applications, is the difficulty of defining an effective reward function. The use of
the reward function is a powerful tool as it does not require to explicitly compute the
optimal output that the NN should return; however, finding the best reward function
could be difficult for complex problems where it is unclear which metric is related to the
optimal solution (e.g., when computing an optimal trajectory the best metric to reward
could be the smoothness of the curve, travel time, or both, etc.). Methods different
from the reward-guided training are being proposed, such as [52], but they are still under
research;

• a fourth and final issue, still linked to NNs, is the fact that NN working is constrained
to a specific input typology. This leads to a loss of generality. For example, each path
planning agent trained in section 5.2.1 has a very specific input size. If, for any reason,
the size of such input has to change (e.g. to increase the “awareness radius” of the agent),
a new agent has to be trained, as there is no way to adapt the already existing one to the
new input shape. This leads to some relevant limitations in terms of algorithm versatility.

77

The piece of algorithm mostly influenced by this factor is the coverage algorithm. In this
case, in fact, the input shape is connected to the environment dimension, limiting the
usability of an agent to the environments with the same dimensions. Some solutions
have been implemented in order to manage map dimension different from the input state.
However, in some aspects, the generality of the algorithm proposed had to be reduced
due to this limitation of NNs.

8.2 Future work
• The main open point regards the further training of the Coverage agent. Further

investigation of the reward function and NN structure design is programmed, as well as
the tuning of the training hyperparameters. It is also possible that the overall architecture
of the training process will be modified (mainly to implement some MARL-specific
techniques) if it becomes evident that the current one is not suitable to obtain the desired
behaviour);

• one goal for future developments is to merge the two path planning agents into a single
one. This could be obtained by performing two successive training processes, the first
one to learn the generic Path Planning operations (the one carried out by the “main”
agent) and the second one to specialise in the management of local minima The addition
of a second output node to the Path Planning agent NN, through which the UAV speed
in each point of the trajectory can be computed, is also being considered;

• the integration of the dynamic model in the path planning algorithm is an open point,
the easiest place to include it in the trajectory generation process is probably in the phase
of trajectory interpolation, where it can be considering actuation force and any sort of
energy optimisation process;

• another future refinement could be the use of more advanced training algorithms, such
as the Twin Delayes DDPG (TD3), the Proximal Policy Optimization (PPO) or the Soft
Actor Critic (SAC). This could lead to better results for the same training time;

• a topic that has not been covered but that could be very interesting to explore further
is the implementation of communications. In fact, it would be interesting to add the
management of communications between drones and simulate interactions between them
in a more realistic way;

• Once all the missing pieces are added and the 3D extension is completed with the second
method described in chapter 7, it will actually be possible to test the performance of the
algorithm in a real swarm of drones and field-test its true performance;

78

8.3 Conclusions
An efficient Path Planning agent based on RL was designed and implemented. The results
show that it is an efficient algorithm, capable of calculating safe and dynamically efficient
trajectories even in obstacle-rich environments. It also achieved remarkable results compared
to classical and widely used algorithms such as A∗ and APF. The Coverage agent, designed to
handle high-level exploration operations, shows some positive results up to 70% in exploration
operations. In fact, it is able to position targets efficiently while keeping the drones well spaced
out. The agent combined with the k-means algorithm succeeds in overcoming the problems
encountered in the final part of the exploration and achieves full coverage of the map. The
whole algorithm is also absolutely usable in a real drone, although with some refinements, as
the computation times are compatible with the hardware specifications of the micro controllers
used. It should be noted that the computation time of the path planning algorithm is linear,
whereas the computational time needed to compute A∗ scales with the square of the distance.
This means that the proposed algorithm can be used efficiently to calculate trajectories in
large environments without encountering computation times that could compromise system
performances. In conclusion, the RL agent needs to be refined to become fully effective in
complete exploration of unknown environments. But the results achieved so far open up a
world of possibilities for a new type of innovative and promising algorithms for all kinds of
applications.

79

80

Acknowledgements

Some parts of this work required quite a lot of computational resources, mainly to speed
up the development of Reinforcement Learning agents. I would like to thank Pietro and
Massimiliano for allowing me to access their computers overnight and have them train some
initial (and very bad) agents. I would also like to thank HPC@POLITO for providing a significant
part of the computational resources used, expecially in more advanced development stages.
HPC@POLITO is a project of Academic Computing within the Department of Control and
Computer Engineering at the Politecnico di Torino (http://hpc.polito.it).

81

http://hpc.polito.it

List of Figures

2.1 Comparison between the PSO algorithm and the APF one 5
2.2 Frames from Ingenuity first flight . 9

3.1 Attractive potential distribution over a 2D space 12
3.2 Block scheme representation of MDP . 14
3.3 Simple Neural Net scheme . 17
3.4 Block scheme representation of RL training process 18
3.5 Scheme of the categorisation of some of the most popular RL algorithms . . . 20

4.1 Diagram of the learning process . 27
4.2 Block scheme of the algorithm high-level structure 29
4.3 Layers forming the environment model used in the APF algorithm 31
4.4 Obstacle detection and creation procedure in the the environment model builder 32
4.5 Simulation of the vision . 32
4.6 Closed obstacle prediction procedure . 33
4.7 Gaussian matrix . 34
4.8 Peak value of Gaussian matrix . 35
4.9 Example of two Coverage agent input states 37
4.10 Neural network of the coverage agent . 37
4.11 Input state of the path planning NN . 40
4.12 Neural net of the actor used in the RL path planning 41
4.13 Trajectory interpolation . 42
4.14 Logic diagram of path planning . 43
4.15 Control loop algorithm . 45
4.16 DRAFT team quadcopter . 46

5.1 Examples of training maps . 50
5.2 Validation maps . 50
5.3 Average reward over the episodes during the Path Planning agent training . . . 54
5.4 Average episode length over the episodes during the Path Planning agent training 54
5.5 Average reward in path planning training . 57

6.1 Simulation of path planning agent . 60
6.2 Simulation of path planning agent . 61
6.3 Comparison between path planning algorithms 63
6.4 Computational time of path planning algorithms 64
6.5 Trajectory of assisting agent . 65
6.6 Simulation of the exploration task using the RL agent + k-means algorithm . . 67
6.7 Simulation of the exploration task using the RL agent + k-means algorithm (pt 2) 68

82

6.8 Simulation of the exploration task using k-means coverage algorithm 69
6.9 Simulation of the exploration task using k-means coverage algorithm (pt 2) . . 70
6.10 Comparison of the coverage time in the six exploration tests 72
6.11 Coverage percentage of the single UAV in exploration tests 1 and 4 73

7.1 3D simulation with slice approach . 76

A.1 Simple Neural Network scheme - copy of Figure 3.3 93
A.2 Common choices for the activation functions 94

83

List of Tables

4.1 Parameters of the environment model builder 35
4.2 DRAFT team quadcopter technical specifications. 47

5.1 Parameters used for the generation of training and validation maps. 49
5.2 Hyperparameters used for the Path Planning agent training 52
5.3 Hyperparameters used for the Coverage agent training 56

6.1 Results of the Path Planning simulations in the test environments. 62
6.2 Numerical results obtained from the coverage simulations 71

84

List of Algorithms

3.1 DDPG learning algorithm . 21
4.2 UAV OS action routine . 30
4.3 Environment Model Builder routine . 34
4.4 Routine for the K-means clustering coverage approach 38
4.5 Routine for advanced numerical computation of the APF negative gradient . . 39
4.6 Path Planning routine . 41
5.7 Learning process routine of the path planning agent 51
5.8 Learning process routine of the path planning agent (Part 2) 52
5.9 Learning process routine of the coverage agent 55
5.10 Learning process routine of the coverage agent - Part 2 56

85

86

Bibliography

[1] X. Yu and Y. Zhang, “Sense and avoid technologies with applications to unmanned aircraft
systems: Review and prospects,” Progress in Aerospace Sciences, vol. 74, pp. 152–166,
2015.

[2] A. Gasparetto, P. Boscariol, A. Lanzutti, and R. Vidoni, “Path planning and trajectory
planning algorithms: A general overview,” Mechanisms and Machine Science, vol. 29,
pp. 3–27, 03 2015.

[3] H. Choi, M. Geeves, B. Alsalam, and F. Gonzalez, “Open source computer-vision based
guidance system for uavs on-board decision making,” in 2016 IEEE Aerospace Conference,
pp. 1–5, 2016.

[4] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic determination
of minimum cost paths,” IEEE Transactions on Systems Science and Cybernetics, vol. 4,
no. 2, pp. 100–107, 1968.

[5] A. Stentz, “Optimal and efficient path planning for unknown and dynamic environments,”
INTERNATIONAL JOURNAL OF ROBOTICS AND AUTOMATION, vol. 10, pp. 89–100,
1993.

[6] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile robots,” in Proceed-
ings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 500–505,
1985.

[7] S. Aggarwal and N. Kumar, “Path planning techniques for unmanned aerial vehicles: A
review, solutions, and challenges,” Computer Communications, vol. 149, pp. 270–299,
2020.

[8] A. Mirshamsi, S. Godio, A. Nobakhti, S. Primatesta, F. Dovis, and G. Guglieri, “A 3d
path planning algorithm based on pso for autonomous uavs navigation,” in Bioinspired
Optimization Methods and Their Applications (B. Filipič, E. Minisci, and M. Vasile, eds.),
(Cham), pp. 268–280, Springer International Publishing, 2020.

[9] V. Roberge, M. Tarbouchi, and G. Labonte, “Comparison of parallel genetic algorithm
and particle swarm optimization for real-time uav path planning,” IEEE Transactions on
Industrial Informatics, vol. 9, no. 1, pp. 132–141, 2013.

[10] M. Theile, H. Bayerlein, R. Nai, D. Gesbert, and M. Caccamo, “Uav path planning using
global and local map information with deep reinforcement learning,” 2021.

87

[11] C. Wang, J. Wang, X. Zhang, and X. Zhang, “Autonomous navigation of uav in large-scale
unknown complex environment with deep reinforcement learning,” in 2017 IEEE Global
Conference on Signal and Information Processing (GlobalSIP), pp. 858–862, 2017.

[12] D. B. Megherbi and A. T. A. J. Boulenouar, “A Time-varying environment based machine
learning technique for autonomous agent shortest path planning,” -, vol. 4364, pp. 419–428,
2001.

[13] T. M. Cabreira, L. B. Brisolara, and R. Ferreira Paulo, “Survey on coverage path planning
with unmanned aerial vehicles,” Drones, vol. 3, no. 1, pp. 1–38, 2019.

[14] K. Valavanis and G. J. Vachtsevanos, eds., Handbook of unmanned aerial vehicles.
Dordrecht: Springer Reference, 2015.

[15] A. Barve and M. Nene, “Survey of Flocking Algorithms in Multi-agent Systems,” Interna-
tional Journal of Computer . . . , vol. 10, no. 6, pp. 110–117, 2013.

[16] J. N. Yasin, S. A. Mohamed, M. H. Haghbayan, J. Heikkonen, H. Tenhunen, and J. Plosila,
“Navigation of Autonomous Swarm of Drones Using Translational Coordinates,” Lecture
Notes in Computer Science, vol. 12092 LNAI, pp. 353–362, 2020.

[17] A. L. Alfeo, M. G. Cimino, N. De Francesco, A. Lazzeri, M. Lega, and G. Vaglini, “Swarm
coordination of mini-UAVs for target search using imperfect sensors,” Intelligent Decision
Technologies, vol. 12, no. 2, pp. 149–162, 2018.

[18] J. N. Yasin, S. A. Sayed Mohamed, M. H. Haghbayan, J. Heikkonen, H. Tenhunen, M. M.
Yasin, and J. Plosila, “Energy-efficient formation morphing for collision avoidance in a
swarm of drones,” IEEE Access, vol. 8, pp. 170681–170695, 2020.

[19] M. S. Innocente and P. Grasso, “Self-organising swarms of firefighting drones: Harnessing
the power of collective intelligence in decentralised multi-robot systems,” Journal of
Computational Science, vol. 34, pp. 80–101, may 2019.

[20] J. F. Kennedy, R. C. Eberhart, and Y. Shi, Swarm intelligence. The Morgan Kaufmann
series in evolutionary computation, San Francisco: Morgan Kaufmann Publishers, 2001.

[21] H. V. Parunak, M. Purcell, and R. O’Connell, “Digital Pheromones for Autonomous
Coordination of Swarming UAV’s,” in 1st UAV Conference, no. May in -, (Reston, Virigina),
pp. 1–9, American Institute of Aeronautics and Astronautics, may 2002.

[22] T. Kuyucu, I. Tanev, and K. Shimohara, “Superadditive effect of multi-robot coordination
in the exploration of unknown environments via stigmergy,” Neurocomputing, vol. 148,
pp. 83–90, 2015.

[23] L. Buşoniu, R. Babuška, and B. De Schutter, “Multi-agent Reinforcement Learning: An
Overview,” in Technology, vol. 38, pp. 183–221, Springer, Berlin, Heidelberg, 2010.

[24] S. Gronauer and K. Diepold, “Multi-agent deep reinforcement learning: a survey,” Artificial
Intelligence Review, vol. 2, apr 2021.

[25] Y. Huang, S. Wu, Z. Mu, X. Long, S. Chu, and G. Zhao, “A Multi-agent Reinforcement
Learning Method for Swarm Robots in Space Collaborative Exploration,” in 2020 6th
International Conference on Control, Automation and Robotics (ICCAR), pp. 139–144,
IEEE, apr 2020.

88

[26] H. X. Pham, H. M. La, D. Feil-Seifer, and A. Nefian, “Cooperative and Distributed
Reinforcement Learning of Drones for Field Coverage,” CoRR, vol. abs/1803.0, mar 2018.

[27] U. Kartoun, H. Stern, and Y. Edan, “A human-robot collaborative reinforcement learning
algorithm,” Journal of Intelligent and Robotic Systems, vol. 60, pp. 217–239, nov 2010.

[28] M. R. Brust and B. M. Strimbu, “A networked swarm model for uav deployment in the
assessment of forest environments,” aXiv, pp. 1–6, 2015.

[29] S. Sudhakar, V. Vijayakumar, C. Sathiya Kumar, V. Priya, L. Ravi, and V. Subra-
maniyaswamy, “Unmanned aerial vehicle (uav) based forest fire detection and monitoring
for reducing false alarms in forest-fires,” Computer Communications, vol. 149, pp. 1–16,
2020.

[30] V. C. Moulianitis, G. Thanellas, N. Xanthopoulos, and N. A. Aspragathos, “Evaluation
of uav based schemes for forest fire monitoring,” in Advances in Service and Industrial
Robotics (N. A. Aspragathos, P. N. Koustoumpardis, and V. C. Moulianitis, eds.), vol. 67 of
Mechanisms and Machine Science, (Cham), pp. 143–150, Springer International Publishing,
2019.

[31] O. Tkachuk, “Detailed design of a forest surveillance uav,” 2018.

[32] F. Remondino, L. Barazzetti, F. Nex, M. Scaioni, and D. Sarazzi, “UAV PHOTOGRAM-
METRY FOR MAPPING AND 3D MODELING – CURRENT STATUS AND FUTURE
PERSPECTIVES,” The International Archives of the Photogrammetry, Remote Sensing
and Spatial Information Sciences, vol. XXXVIII-1/, pp. 25–31, sep 2012.

[33] P. Boccardo, F. Chiabrando, F. Dutto, F. Tonolo, and A. Lingua, “UAV Deployment
Exercise for Mapping Purposes: Evaluation of Emergency Response Applications,” Sensors,
vol. 15, pp. 15717–15737, jul 2015.

[34] C. Ju and H. Son, “Multiple UAV Systems for Agricultural Applications: Control, Imple-
mentation, and Evaluation,” Electronics, vol. 7, p. 162, aug 2018.

[35] M. Mammarella, G. Ristorto, E. Capello, N. Bloise, G. Guglieri, and F. Dabbene, “Waypoint
tracking via tube-based robust model predictive control for crop monitoring with fixed-wing
uavs,” in 2019 IEEE International Workshop on Metrology for Agriculture and Forestry
(MetroAgriFor), pp. 19–24, 2019.

[36] B. Balaram, T. Canham, C. Duncan, H. F. Grip, W. Johnson, J. Maki, A. Quon, R. Stern,
and D. Zhu, “Mars helicopter technology demonstrator,” 2018 AIAA Atmospheric Flight
Mechanics Conference, 2018.

[37] NASA/JPL-Caltech, “Nasa’s ingenuity mars helicopter succeeds in historic first flight. first
video of nasa’s ingenuity mars helicopter in flight..” https://mars.nasa.gov/news/8923/
nasas-ingenuity-mars-helicopter-succeeds-in-historic-first-flight/. Accessed: 2021-04-25.

[38] Ralph D. Lorenz, Elizabeth P. Turtle, Jason W. Barnes, and Melissa G. Trainer, “Dragonfly:
A rotorcraft lander concept for scientific exploration at titan,” Johns Hopkins APL Technical
Digest, vol. 34, no. 3, 2018.

[39] N. S. Website, “Saturn’s largest moon, titan.” https://solarsystem.nasa.gov/moons/
saturn-moons/titan/in-depth/. Accessed: 2021-4-27.

89

https://mars.nasa.gov/news/8923/nasas-ingenuity-mars-helicopter-succeeds-in-historic-first-flight/
https://mars.nasa.gov/news/8923/nasas-ingenuity-mars-helicopter-succeeds-in-historic-first-flight/
https://solarsystem.nasa.gov/moons/saturn-moons/titan/in-depth/
https://solarsystem.nasa.gov/moons/saturn-moons/titan/in-depth/

[40] L. Zhou and W. Li, “Adaptive artificial potential field approach for obstacle avoidance
path planning,” in 2014 Seventh International Symposium on Computational Intelligence
and Design, pp. 429–432, IEEE, 13/12/2014 - 14/12/2014.

[41] M. Gronemeyer and J. Horn, “Collision avoidance for cooperative formation control of a
robot group,” IFAC-PapersOnLine, vol. 52, no. 8, pp. 434–439, 2019.

[42] R. L. Galvez, G. E. U. Faelden, J. M. Z. Maningo, R. C. S. Nakano, E. P. Dadios, A. A.
Bandala, R. R. P. Vicerra, and A. H. Fernando, “Obstacle avoidance algorithm for swarm
of quadrotor unmanned aerial vehicle using artificial potential fields,” in TENCON 2017 -
2017 IEEE Region 10 Conference, pp. 2307–2312, IEEE, 05/11/2017 - 08/11/2017.

[43] Q. Yao, Z. Zheng, L. Qi, H. Yuan, X. Guo, M. Zhao, Z. Liu, and T. Yang, “Path planning
method with improved artificial potential field - a reinforcement learning perspective,”
IEEE Access, vol. 8, pp. 135513–135523, 2020.

[44] W. Ertel, Introduction to Artificial Intelligence. Springer International Publishing, 2nd ed.,
2017.

[45] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. Adaptive
computation and machine learning series, Cambridge Massachusetts: The MIT Press,
second edition ed., 2018.

[46] G. Cybenko, “Approximation by superpositions of a sigmoidal function,” Mathematics of
Control, Signals and Systems, vol. 2, no. 4, pp. 303–314, 1989.

[47] OpenAI, “Deep deterministic policy gradient algorithm.” https://spinningup.openai.com/
en/latest/algorithms/ddpg.html, February 2021.

[48] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra,
“Continuous control with deep reinforcement learning.”

[49] OpenAI, “Key concepts of reinforcement learning.” https://spinningup.openai.com/en/
latest/spinningup/rl_intro.html, February 2021.

[50] S. Fujimoto, H. van Hoof, and D. Meger, “Addressing Function Approximation Error in
Actor-Critic Methods,” CoRR, feb 2018.

[51] G. Barth-Maron, M. W. Hoffman, D. Budden, W. Dabney, D. Horgan, D. TB, A. Muldal,
N. Heess, and T. Lillicrap, “Distributed Distributional Deterministic Policy Gradients,”
CoRR, apr 2018.

[52] B. Eysenbach, “Recursive classification: Replacing rewards with examples in rl.” https:
//ai.googleblog.com/2021/03/recursive-classification-replacing.html. Accessed: 2021-03-
29.

90

https://spinningup.openai.com/en/latest/algorithms/ddpg.html
https://spinningup.openai.com/en/latest/algorithms/ddpg.html
https://spinningup.openai.com/en/latest/spinningup/rl_intro.html
https://spinningup.openai.com/en/latest/spinningup/rl_intro.html
https://ai.googleblog.com/2021/03/recursive-classification-replacing.html
https://ai.googleblog.com/2021/03/recursive-classification-replacing.html

Appendix

91

A. Neural Networks, Backpropagation
& Stochastic Gradient Descent

A.1 Neural Networks
As introduced in section 3.2.3, Neural Networks are functions composed by a layered structure
of neurons connected between them. An example of a simple Neural Network is shown in
Figure A.1 (the image is the same of Figure 3.3 already seen in section 3.2.3).

Figure A.1: Simple Neural Network scheme. Input, output and hidden layers are put in
evidence. In general, any number of hidden layers can be used (copy of Figure 3.3).

The NN function takes Ni inputs, assigned to the input neurons, that are elaborated through
the layered structure of the NN to return No outputs. Each neuron performs a single operation.
This operation involves a weighted sum of the values held by the precedent layer neurons,
as well as a (usually simple) non-linear function, called activation function. The operation
performed by each neuron to compute its value is:

a
(L)
k = σ

A nL−1Ø
j=1

w
(L)
jk · a

(L−1)
j + b

(L)
k

B
∀ k = 2...NL (A.1)

a
(L)
k is the value of the k-th neuron of layer L; its value is computed through the activation

function σ, whose argument is the weighted sum of the values of the neurons of layer L− 1.
The weights of the sum are denoted as w(L)

jk (which represents the weight between neuron j

93

of layer L− 1 and neuron k of layer L), while b(L)
k is a bias associated to each neuron. NL

represents the total number of layers, where the first layer is the input one and the last is the
output layer. k starts from 2 since the input layer values are already defined and do not need to
be computed through this equation. Equation (A.1) can be rewritten in matrix form, collecting
all the neurons of a layer in the column vector a and the weights in the matrix W :

a(L) = σ
!
W (L)a(L−1) + b(L)" (A.2)

Clearly, to compute a(L−1) it is necessary to apply the same equation using a(L−2) as input.
More in general, the neuron values of each layer are computed by recursively applying equation
(A.2) for all precedent layers. The output of the NN is obtained by applying equation (A.2)
NL − 1 times. In this way, the analytical equation of the output vector becomes quite complex,
but can be written in a compact way as:

a(o) = g (a(i)) (A.3)

It is worth mentioning that the activation function σ(z) can be chosen arbitrarily; the only
important property that it must have is to be nonlinear. In fact, the combination of the
non-linear activation function and the layered structure allows a NN to approximate any desired
function. Two common choices of activation function are the sigmoid function and the rectifying
linear unit (ReLU), represented in Figure A.2.

Figure A.2: Common choices for the activation functions. On the left the sigmoid
activation function, whereas on the right the ReLU.

Weights w and biases b represent all the parameters that determine the behaviour of a NN. In
fact, given a NN architecture, the approximation of any desired function is obtained by properly
selecting all the parameters. The vector of all the parameters of a NN is indicated as θ. The
issue is that the parameters space is, in general, a space with very high dimension (it is quite
common to find parameter spaces containing a number of parameters between 103-106).

A.2 Stochastic Gradient Descent
Once defined the structure and the working principle of a NN, the only remaining problem is to
find the right parameters to put in it. There is no way to perform this operation analytically.
First of all, because the analytical expression of the NN is very complex (equation (A.3) hides a
lot of this complexity); secondly, the parameter space has very high dimension, which combined
to the non-linearity of function g makes it difficult to find a solution to the problem. Therefore,
to find the parameters that allow to best approximate a desired function (or target function)

94

ĝ(x), a numerical optimisation method is employed. The optimisation method commonly used
to optimise a NN parameters is the Stochastic Gradient Descent (SGD). The goal of this
optimisation method is to find a set of parameters θ so that:

gθ(x) ≈ ĝ (x) (A.4)

i.e. the NN function must approximate the target function as close as possible. To reach this
goal, a minimisation process is performed. The quantity to be minimised is the error between
the outputs of the two functions, i.e.:

e = ĝ (x)− gθ(x) (A.5)

The quantity e is the difference between the outputs of the target function ĝ and the NN
function g, which are two vectors; therefore, e is a vector of errors ei. Starting from the error
vector e, the loss function l can be defined:

l =
noØ
i=1

3
gi(θ)− yi

42
(A.6)

The loss is defined as the squared sum of the difference between each output element and its
target value. Some relevant manipulations have been performed to obtain equation (A.6). First
of all, each element of the target vector ĝ (x) is indicated as yi, with i ∈ 1...no (being no the
length of the output vector). Secondly, the dependency of g and ĝ from x has been hidden,
since the input is known when computing the loss function, and most importantly since the
relevant variables in equation (A.6) is the parameter vector θ. In fact, for a given input vector
x the loss value is only function of θ:

l = l(θ) (A.7)

At this point, the SGD approach aims to find θ in order to minimise the value of l for any
input x, which is equivalent to finding the function that better approximates ĝ(x). To do so,
the gradient descent method is implemented. The basic idea of this method is to follow the
negative direction of the gradient in order to reach the global minimum of the function l. The
standard Gradient Descent optimisation method updates the parameters through the following
equation:

θ ← θ − α∇l(θ) (A.8)

The issue in equation (A.8) is that the gradient value cannot be computed analytically, since
its expression is too complex to be solved. On the other hand, the numerical computation of
the “true” gradient is infeasible too, since it would require to compute the loss gradient for
every possible input x and average all the results, requiring a huge (if not infinite) amount of
time. Therefore, instead of considering the “true” gradient, an approximation of it is computed.
To do so, a small set of nm inputs is randomly sampled from the input domain, the gradient is
computed for each one of them and the average of the results is taken as the gradient to be

95

used in equation (A.8). The set of inputs is called minibatch and is indicated asM.27

The approximated gradient is computed as in the following equation:

∇l(θ) = 1
nm

nmØ
i=1
∇li(θ) (A.9)

A further step can be made to speed up the gradient computation. In fact, for the linearity of
the operators involved, the following equivalence holds:

1
nm

nmØ
i=1
∇li(θ) = ∇

A
1
nm

nmØ
i=1

li(θ)
B

(A.10)

i.e. the average of the loss gradients is equal to the gradient of the losses average. This
equivalence allows to perform the gradient computation only once, cutting a lot of time-
expensive computations. The right-hand term of equation (A.10) can be rewritten in a more
compact way by defining the cost function C:

C(θ) = 1
nm

nmØ
j=1

lj(θ) = 1
nm

nmØ
j=1

C
noØ
i=1

3
gi(θ)− yi

42 D
j

(A.11)

where the rightmost term is found by substituting the definition of the loss function seen in
equation (A.6). The cost function is the one used in practice to compute the approximated
gradient, since it requires to compute the gradient only once. The SGD iterative procedure to
update the parameters becomes:

θ ← θ − α∇Cm(θ) (A.12)

which is just a more efficient version of equation (A.8). The parameter α, which appeared also
in the previous version of this equation, is the step size of the gradient descent, called learning
rate, and determines how fast the solution converges to the global minimum (α must be chosen
trough a trade-off between convergence speed and optimisation stability). The subscript m
underlines the fact that the cost function is computed only over the minibatchM.

At this point, the only operation necessary to be able to apply this method is the computation
of the gradient. This operation, in the NN framework, is performed through a numerical process
called backpropagation.

27 the fact that an approximation of the gradient is used instead of the “true” one is the reason why this method
is called Stochastic Gradient Descent. In fact, since the minibatch data are sampled randomly from the
input domain, the gradient computed at each step differs some times more, other times less from the “true”
gradient. This discrepancy between the true and approximated gradient, however, has some advantages. In
fact, it allows to escape from local minima encountered in the minimisation process. The minibatch, however,
must not be too small, since in that case the gradient error becomes too large and leads to instabilities in the
minimisation process.

96

A.3 Backpropagation
Backpropagation - which stands for backward propagation of the error - is a numerical method
used to compute the cost function gradient in the NN framework. As previously mentioned, the
cost function C, for a given input x, is a function of the parameter vector θ. Therefore, the
computation of the gradient of C(θ) with respect to the parameter vector θ is performed by
computing the partial derivative of C(θ) with respect to each one of the parameters θi. The
gradient vector expression is:

∇C(θ) =


...

∂C(θ)
∂θi...

 (A.13)

The gradient vector is then computed one term at a time. Each term is computed through
the chain rule of derivation, expanding the expression of C(θ) and decomposing it in simple
derivation terms that can be solved analytically. The resulting equations only differ slightly,
depending on whether the derivation parameter is a weight w or a bias b. In the case of
derivation of C(θ) with respect to a weight, the derivative is computed as:

∂C(θ)
∂w

(L)
ij

= ∂C(θ)
∂a

(L)
j

∂a
(L)
j

∂w
(L)
ij

=

=
nL+1Ø
k=1

A
∂C(θ)
∂a

(L+1)
k

∂a
(L+1)
k

∂a
(L)
j

B
ü ûú ý

∂C(θ)
∂a

(L)
j

∂a
(L)
j

∂z
(L)
j

∂z
(L)
j

∂w
(L)
ijü ûú ý

∂a
(L)
j

∂w
(L)
ij

=

=
nL+1Ø
k=1

AnL+2Ø
l=1

(· · ·)ü ûú ý
∂C(θ)
∂a

(L+1)
k

∂aL+1
k

∂z
(L+1)
k

∂z
(L+1)
k

∂a
(L)
j

B
∂a

(L)
j

∂z
(L)
j

∂z
(L)
j

∂w
(L)
ij

(A.14)

The equation above shows how the derivative of C is expanded in a product of simple derivatives,
that keeps expanding until the output layer is reached (i.e. when the sum

qno
i=1 appears). The

derivative of the cost function with respect to a neuron value a expands in a sum of derivatives,
as can be seen in the expression in the third row. The equation seems quite complex at this
point, but it quickly simplifies once each term of the derivation is explicitly computed. In
fact, all the derivative terms can be analytically computed and result in simple equations. The
derivative of z with respect to a weight can be computed as:

∂z
(L)
j

∂w
(L)
ij

= a
(L−1)
i (A.15)

while the derivative of a with respect to z results just in:

∂a
(L)
j

∂z
(L)
j

= σÍ(z(L)
j) (A.16)

97

where σÍ (the first derivative of the activation function) is known. As previously mentioned,
the “expansion” of the equation goes on recursively until the output layer is reached. At that
point, the derivative ∂C(θ)

∂a(o) is computed, whose result is simply:

∂C(θ)
∂a

(o)
i

= 2(a(o)
i − yi) = 2ei (A.17)

i.e. twice the error on neuron i (this result can be easily derived from equation A.6). At this
point, each parameter of the NN is directly connected to the output error through a chain
of derivation terms which goes backward from the output layer to the parameter in question
(from which the name of the backpropagation method). So for example, the gradient term
corresponding to the weight w(o)

jk (the weight associated to a connection between a neuron of
the second-to-last layer and one in the last layer) is computed as:

∂C(θ)
∂w

(o)
ij

= ∂C(θ)
∂a

(o)
j

∂a
(o)
j

∂z
(o)
j

∂z
(o)
j

∂w
(o)
ij

=

= 2(a(o)
j − yj) σ

Í(z(o)
j) a(o−1)

i

(A.18)

As already mentioned, this last equation differs slightly in case of derivation with respect to a
bias. The only difference, in this case, is that the derivation term ∂z

∂b appears instead of ∂z
∂w at

the end of the derivation chain. This new term is computed as shown in the following equation
(as can be easily derived from equation A.1):

∂z
(L)
j

∂b
(L)
j

= 1 (A.19)

98

	Abstract
	Introduction
	Introduction
	Thesis outline

	State of art
	Path planning and obstacle avoidance
	Fleet coordination
	Reinforcement learning
	Applications

	Theoretical background
	Artificial Potential Field
	Reinforcement Learning
	k-means clustering

	Algorithm design
	Assumptions and simplifications
	Algorithm description
	Environment model builder
	Coverage
	Path Planning
	Dynamics and Control
	Reference UAV

	Training process
	Training set & validation set
	Agents training

	Simulations & results
	Path planning agent
	Coverage agent

	3D extension
	3D extension

	Conclusions
	Issues
	Future work
	Conclusions

	Acknowledgements
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography
	Appendix
	Neural Networks, Backpropagation & Stochastic Gradient Descent
	Neural Networks
	Stochastic Gradient Descent
	Backpropagation

