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Summary

The vision of the fifth generation of mobile networks (5G) lies in bringing enhanced
performances with respect to the previous mobile technologies. 5G has been planned
to provide revolutionary high throughput, extremely low latency, for miscellaneous
devices with massive and ubiquitous connections.
To achieve these goals, many advanced technologies have been introduced and
utilized in 5G, like massive MIMO, mmWave, efficient Radio Resource Management
(RRM) techniques, etc. Among all, an efficient RRM could have a significant impact
on effective spectrum utilization, massive connections. One thriving solution is
represented by virtual Radio Access Network (vRAN) technology and is profitable
in terms of cost and scalability for the mobile network operators. Indeed, in virtu-
alizing the RAN, radio processing intelligence, which was initially performed by
purpose-built hardware, will be performed at higher levels of the network. vRAN
adds the ability to scale the network resources assigned to the various demanding
entities in 5G network. This is achieved by separating networking functions from
hardware, a technique that overcomes many technical challenges in the integration
with legacy technologies.

Although vRAN has brought flexibility and cost reduction in terms of hardware,
it has introduced new challenges. Indeed, by increasing the number of connected
devices with heterogeneous demands to vRANs, the network performance will
deteriorate. Despite the mentioned issues, the conventional mechanisms might not
be sufficient to fulfill the optimal performance and resource allocation. Therefore,
a more efficient and intelligent RRM is required, which can dynamically scale and
allocate radio resources. Therefore, in recent years Machine Learning (ML) and in
particular Reinforcement Learning (RL), has introduced versatile applications in
the telecommunication area, and several intelligent resource allocation mechanisms
have been proposed.

In this regard, the main objective of this thesis is to design and to study online
learning mechanisms based on RL-based and deep RL-based RRM for vRAN, to
analyze their performance in typical network scenarios, and to compare the possible

ii



enhancement of both methods. The proposed solutions are aimed at real-time and
dynamic RRM according to user demands in vRANs and they are designed to deal
with the dynamics associated with the radio environment.

The simulations have been carried out using the Network Simulator 3 to prepare
network scenarios for the generation of traffic between vRAN and multiple users
receiving different channel conditions. For the main scenario, it is considered
to implement not only multi-user but also non-stationary users, in presence of
one eNodeB. This scenario allows analyzing the proposed approaches under more
complex situations. The first approach is grounded on a differential semi-gradient
State-Action-Reward-State-Action (SARSA) mechanism, and the second approach
is based on Deep Q Learning (DQL) mechanism for real-time RRM in vRAN. The
RL agent is responsible to receive the channel conditions, which are considered as
Channel Quality Indicator (CQI) and transmission buffer head of line delay. Then
following a greedy policy, the agent selects optimal Modulation and Coding Scheme
(MCS) values to maximize the average reward which denotes the user’s throughput.
The proposed RL-based solutions are promising and can meet the demands of the
heterogeneous spectrum of users.
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Chapter 1

Introduction

The continuous growth in wireless user devices and data usages increases the intense
demand to evolve and innovate new technologies. As it has been described in detail
in the Cisco visual networking index [1], by 2023, the number of miscellaneous
devices connected to the IP networks will exceed the global population by a factor
of 3. Cisco [1] also has expected that sheer volume of data and connections, over 10
percent of global mobile devices, will be dedicated to 5G connections. In addition
to an exponential increase in the number of connected devices, they will have
various demands on the network. For instance, mobile applications such as video
streams or cloud games demand high throughput connections and connected cars
require ultra-reliable and low latency communications, etc.

These demands always have made forced to evolve and constantly add new
features to communication. Going back to early 1980, the first generation mobile
communication known as 1G emerged. 1G was analog communication and only
supports voice services. This technology suffered from poor coverage, low sound
quality, and many other drawbacks. Despite all the shortages, 1G paved the way
for the next generations of mobile technologies.

The second generation is known as 2G mobile networks has been launched under
Global System for Mobile Communications (GSM) standard in 1991. 2G emerged
as the first digital communication, which improved voice calls, also introduced
more features like data services like text messages and multimedia messages. In 2G
data rate started with 9.6 kbits/s, finally, it offered 40 kbits/s. GSM technology
has continuously tried to offer better services and led to 2.5G known as General
Packet Radio Service (GPRS), deployed based on the original GSM system. GPRS
supports packet-based services also provides improved data rate, i.e., from 56
Kbits/s up to 384 Kbits/s.
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The third generation of mobile networks, 3G mobile cellular system, based on
the GSM standards is called universal mobile telecommunications system short
for UMTS. 3G is enabled by more complex access technology Wide-band Code
Division Multiple Access (WCDMA), which led to introducing increased data
transfer capabilities (4 times faster than 2G) and new services such as enhanced
video and audio streaming. 3G mobile communication systems have provided voice
and paging services, video calling, mobile internet, and a variety of other services.
In addition, 3G has offered wide area network (WAN) coverage of peak data rate,
384 kbit/s for non-stationary users and limited data rate, 2 Mbits/s for stationary
users. However, providing broadband services would be one of the major goals of
the 4G Wireless systems.

The fourth generation of mobile networks, 4G, also known as LTE, firstly has
been deployed commercially in 2009. In LTE, one of the major differences with the
previous generation is that in downlink orthogonal Frequency Division Multiple
Access (OFDMA) and in uplink Single Carrier Frequency Division Multiple Access
(SC-FDMA) are used [2]. Because of OFDMA, LTE has high spectral efficiency,
and also it is robust against interference. Additionally, data speed in LTE has
been increased remarkably to support huge data access by various services. LTE
uses scalable channel bandwidths of 5–20 MHz and supports a high peak data rate,
more than 100 Mbits/s for high-speed mobility and 1 Gbit/s for low-speed mobility
in the downlink.

Some crucial limitations of conventional mobile networks were the motivation to
introduce the 5G mobile networks. 5G, the fifth generation of mobile technologies
specified by 3GPP, as stated in [3] introduces significant performance improvements
depicted in 1.1. Indeed as described in [1], mobile data traffic is increasing extremely,
chiefly because of video games and high-quality video streaming, which require
a sheer volume of data to be transferred in a significantly short time and with
negligible latency. Additionally, the growing number of connections, miscellaneous
devices, energy efficiency requirements, reducing operational expenditures, etc.,
explain the necessities of 5G to bring innovative features. Therefore, 5G introduces
remarkable operational performance, e.g., increased spectral efficiency, higher data
rates, low latency, ubiquitous coverage, and seamless connection with high-speed
mobility. As it is declared in [4] the 4G and 5G comparison of key capabilities is
shown in 1.1.
In this regard, three main usage cases are defined by International Telecommuni-
cation Union (ITU) [6] that 5G has to provide:

• Enhanced Mobile Broadband (eMBB): One of the core features of 5G targets
is the eMBB. It focuses on the data rate and network capacity, to support
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Figure 1.1: 5G features [5]

extreme growth of data rates, high user density, and huge traffic capacity
for scenarios with massive connections as well as ubiquitous coverage. Some
advanced technologies enable 5G to meet these requirements namely mmWave,
massive MIMO, and beamforming, etc.

• Massive Machine-type Communications (mMTC): This key feature is intro-
duced mainly for the Internet of Things (IoT) which connects very large
numbers of devices, which requires both low data rates and low power con-
sumption. mMTC takes care of scalable and efficient connectivity for a massive
number e.g., billions of miscellaneous devices.

• Ultra-reliable and Low Latency Communications (URLLC): This feature is
considered the key enabler of 5G to support mission critical applications
e.g.,remote healthcare.

5G, as a dynamic and flexible framework of advanced technologies, has been an
effective revolution in mobile communication technology which has been developed
into both the Radio Access Network (RAN) and Core Network. In this regard, RAN
in 5G, with respect to the previous mobile network generations is not limited to be
in the same place with base station, and enabled with more intelligent architecture,
which makes 5G network architecture much more service-oriented than previous
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generations.

To achieve these goals, one thriving technology that is introduced in 5G is
Network function virtualization (NFV). NFV enables 5G infrastructure by virtu-
alizing applications i.e., by decoupling software from hardware. Thus, it replaces
various network functions with virtualized instances running as software. As a
result, complex hardware elements are not required anymore and many other costs
related to installation time are eliminated. In the core network, many different
functionalities are required, e.g., firewalls, routers, gateways, etc., previously, each
vendor used to have proprietary hardware and software for each of these functions.
Exploiting NFV, the commercial out-of-shelf (COTS) hardware is introduced. It
allows operators to get standardized hardware at a much lower cost, enables differ-
ent vendors to focus on software, rather than hardware.

Virtual Radio Access Network (vRAN) technology takes advantage of NFV and
is profitable in terms of cost and scalability for the mobile network operators (MNO).
vRAN enables new opportunities to provide open source development to ease the
deployment of new features. Indeed, in virtualizing the RAN, radio processing
intelligence which was initially performed by purpose-built hardware, will be per-
formed at higher levels of the network. vRAN adds the ability to scale and adjust
the network resources assigned to the various demanding entities in the 5G network.
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Chapter 2

Radio Access Network of 5G

2.1 LTE Overview
Long-Term Evolution (LTE) is a standard for wireless broadband communi-

cation, developed by the 3rd Generation Partnership Project (3GPP), known as
the Universal Mobile Telecommunication System (UMTS), and is specified in its
Release 8 and is the access part of the Evolved Packet System (EPS). Based on [7]
3GPP development targets of the LTE are defined in below:

• Low Latency

• High Throughput

• FDD and TDD in the same platform

• Simple architecture

In addition to the successful development targets of LTE, it has a well-organized
protocol stack which is almost resembling those of the 5G NR protocol stack. Thus,
to study the LTE technology, it is worth having a quick overview of its protocol
stack organized below:

• Physical layer: It takes care of carrying information from the MAC transport
channels1 over the air interface.

1transport channels They determine how and with what characteristics the information is
transmitted over the radio interface.
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• Medium Access Control (MAC) layer: The MAC layer is responsible for
mapping between logical channels2 and transport channels, multiplexing/
demultiplexing MAC Service Data Units(SDU) from logical channels into
transport Blocks (TBs). As well, it is responsible for error correction through
the Hybrid Automatic Repeat Request known3 (HARQ).

• Radio Link Control (RLC) layer: The RLC layer, specified by 3GPP, is the
second radio link protocol used in UMTS, LTE, and 5G. It holds three modes
of operation: Transparent Mode (TM), Unacknowledged Mode (UM), and
Acknowledged Mode (AM). RLC Layer in each operation mode performs dif-
ferent tasks, e.g., the RLC in AM and UM mode is responsible for transferring
of upper layer Packet Data Units (PDUs), Concatenation, segmentation and
reassembly of RLC SDUs, reordering of RLC data PDUs, duplicate detection,
etc.

• Packet Data Convergence Protocol (PDCP) layer: The PDCP Layer, specified
by 3GPP, for UMTS, LTE, and 5G is located in the radio protocol stack and
responsible for Header compression and decompression of IP data, Transfer
of data and ciphering, and deciphering of user plane and control plane data,
integrity protection and integrity verification of control plane data, etc.

• Radio Resource Control (RRC) layer: The RRC layer, specified by 3GPP for
UMTS, LTE, and 5G is a layer three protocol and performs between UE and
BS connection establishment. The key tasks of the RRC layer are connection
establishment and release functions, broadcast of system information, point-
to-point radio bearers establishment, etc.

• Non-Access Stratum (NAS) layer: NAS enables supporting the mobility of
UEs and session management to establish and maintain IP connectivity.

The high-level architecture of LTE is comprised of three main components:

• User Equipment (UE): An UE is defined as an end-user same as the definition
in UMTS and GSM.

• eUTRAN: eUTRAN is known as Radio Access Network (RAN) and handles
the radio communications between UEs and the core network. A RAN is

2These channels define what type of information is transmitted over the wireless channel,
either data or control messages. The MAC provides services to the RLC in the form of logical
channels.

3Hybrid automatic repeat request (hybrid ARQ or HARQ) is a combination of high-rate
forward error correction (FEC) and automatic repeat request (ARQ) error-control.
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composed of one component known as Evolved NodeB (eNodeB). An eNodeB
can connect to the core network and also other eNodeBs by different interfaces.

• Evolved Packet Core (EPC): The core network of the system is called EPC. It
is composed of multiple elements such as Mobility Management Entity(MME),
Serving Gateway (SGW), Packet-Data Network Gateway(P-GW), etc. Also,
it takes care of performing switching authentication and end to end IP con-
nections.

Although the LTE RAN has been evolved significantly with respect to the
previous generations, some key problems come to light. The most crucial issue is
that the hardware components are fully vendor-specific and have fixed capacity
with little flexibility and dimensioning, which causes high costs for any upgrading.
As it has been declared in [1], the rising sheer volume of data demand, ubiquitous
coverage, and diverse requirements on various Key Performance Indicators (KPI),
force Network Mobile Operators (MNOs) to boost the convenient networks.

2.2 Virtual Radio Access Network
Virtualization [8] is a solution that brings successful solutions to the open challenges
of previous mobile generations. Virtualization mitigates the overall cost of equip-
ment and their management by increasing the hardware utilization, decoupling
functionalities from infrastructure, easier migration to newer services, and flexible
management.

vRAN transforms the radio network intelligence from hardware to software and
runs on COTS servers, i.e., vRAN transforms softwarized radio access points (RAP)
referring to a base station, eNodeB, gNodeB, etc., into computing infrastructure in
remote servers[9]. Further, vRAN brings many benefits for MNOs, indeed, MNOs
can upgrade their network instantaneously with quick deployment, and at the same
time, with convenient hardware maintenance operate their network more efficiently.
VRAN can support and handle both LTE and 5G simultaneously and offers flexible
network operations. In addition, as stated in [10] dynamic spectrum sharing can
be applied to enable the coexistence between LTE and 5G in the same spectrum,
which brings further operational efficiency and a smooth journey to 5G.

While the traffic pattern is inconstant and a wide range of services character-
ized by diverse key performance indicators (KPIs), the legacy networks use key
algorithms e.g., channel estimation, error correction real-time signal, and packet
processing. Using the virtualized solution, all these algorithms will be performed
through the software on the COTS servers to provide the same level of service and
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KPIs to the operators. Thus the virtualized solution brings flexibility and scaling,
depending on the traffic pattern or traffic demands. In addition key benefits of
vRAN are listed below:

• Efficient scaling and pooling network resources: Basically the network can be
scaled based on the user demands, traffic patterns, and on a higher scale, at
cell requirements. As well, the network can be scaled in and out depending
on whether it is off-peak hours or peak time hours. Additionally, the other
aspect is having pooling gains in terms of sharing the resources across the
different cell sides, and implementing certain algorithms to optimize and run
the network efficiently.

• Application virtualization for optimized service performance: Numerous au-
tomation and orchestration comes in to optimize the virtualized network.

• Create more flexible and cost-efficient RAN: The goal is that the vRAN will
bring cost-efficiency in terms of CAPital EXpenditures (CAPEX) and Operat-
ing expenses (OPEX) saving for the operators as well as flexible architectures.

2.2.1 vRAN Architecture
To study the vRAN architecture, it is better apprehensible to start with the differ-
ence between traditional RAN and vRAN:

Figure 2.1 just shows the difference between traditional RAN and virtual RAN.
The traditional RAN used to have all the hardware and software in the same
place in the base station, and antennas used to connect via RF cabling on the
top of the tower. Indeed, along with the antennas, there is a Remote Radio
Unit (RRU), whose duty is RF functionalities. Further, there is another device,
called the Base Band Unit (BBU), whose main duty is RRC, coding, modulation,
etc. The BBU takes the signals from the RRU and then forwards them to the
next place in the chain called the Central Unit (CU). The CU is connected to
the multiple BBUs within a small region and concentrates them to the core network.

On the other hand, for the VRAN, still, RRU is along with the antennas and is
just hardware, and the difference is that instead of BBU, there is a Distribution
Unit (DU) connected to CU, ultimately is connected to the core network. In this
regard, the BBU is just a fixed piece of hardware, proprietary with fixed capacity,
and DU and CU run on COTS software, and then VNF is installed on that. Also,
it provides the same functionalities as the BBU but using software on COTS.
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Figure 2.1: vRAN vs traditional RAN

While deploying vRAN brings significant benefits, makes the network more agile,
and minimizes the requirement of expensive dedicated hardware, some challenges
arise [10]:

• software vs hardware competencies requirements

• increase fiber density

• network architecture changes

In addition, one other unavoidable challenge is an unprecedented increase in the
number of connected devices which try to concurrently access the vRAN, as well,
several applications compete for resources. These issues deteriorate the efficiency of
radio functions [10]. In this regard, efficient radio resource management (RRM) is
required to handle these demands, especially in heterogeneous networks. Efficient
RRM can effectively support the diverse demands and rapidly varying network and
channel conditions.

2.3 Radio Resource Management
RRM and radio resources are challenging issues that by shifting the 5G paradigm
they must be taken into account more than previous mobile generations. RRM
takes care of assigning radio and network resources to be used for wireless com-
munications. Roughly speaking, resource allocations must be designed in such a
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way to optimize the amount of successfully transmitted information to users in a
network [11]. In addition, 5G integrates many advanced technology components
e.g. massive MIMO, MM-wave communication, network slicing, vehicular networks,
broad frequency bands, etc., which makes it highly complex than in previous mobile
generations. Thus the 5G requires mechanisms for RRM to satisfy optimization
domains and meet latency demands since efficient RRM with traditional rule-based
algorithms is particularly challenging.

Cellular networks both 5G and 4G exploit Adaptive Modulation and Coding
(AMC). This mechanism refers to the selection of the appropriate modulation and
coding scheme (MCS) based on the channel quality experienced by each UE. The
AMC aims to keep the block error rate (BLER) below a predefined threshold. As
stated in [12] the BLER target in 4G is fixed at 10 %, however, 5G systems will
cover a wider spectrum of services, requiring potentially different BLER targets
[13]. In other words, by selecting different combinations of modulation types and
code rates, spectrum efficiency will be improved, and it is possible to scale in and
out the radio resources based on different channel conditions.

The AMC is a successful solution introduced to deal with the time-varying
nature of the wireless channel under mobility. To reach this goal, periodically,
each UE measures the channel quality and maps this information into a 4bit index
called Channel Quality Indicator (CQI), and transmits this information to the base
station (BS). The BS based on the CQI reported by each UE defines the best MCS
correspondingly. Typically, each CQI is associated with a given signal-to-noise ratio
(SNR). Then the BS sends MCS values to UEs, using Downlink Control Information
(DCI) embedded into the physical downlink control channel (PDCCH). MCS values
are denoted by an integer number ∈ {1,2, ..28} and each value is characterized by
different modulation order and transport block size. The mapping between MCS
index modulation order is described in table 2.1.

MCS index Modulation scheme
IMCS ∈ {1,2, ..,9} QPSK

IMCS ∈ {10,11, ..,16} 16-QAM
IMCS ∈ {17,18, ..,28} 64-QAM

Table 2.1: Mapping between MCS indices and modulation order [14]
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Chapter 3

Network Simulator 3

3.1 Ns-3 Platform
Network Simulator 3 [15], known as ns-3 is a discrete-event network simulator. It
has been used to simulate and implement different network technologies for research
and educational purposes. ns-3 is an open-source simulator written mainly in C++
and Python, provided with high modular implementation. ns-3 with comprehensive
tools paves the way for researchers, students, and developers to simulate most of
the telecommunication and network parts. The ns-3 supports researches on both
IP and non-IP-based networks, involving models for wifi, WiMAX, LTE, and 5G
NR. ns-3 has some great features that are superior to other simulators and are
listed below:

• It has been developed to support virtual networks’ elements such as nodes,
channels, applications, and also event schedulers, topology generators, timers,
random variables, and other objects. These components enable ns-3 to support
discrete-event network simulation of both internet-based and non-Internet-
based network systems.

• The useful feature that ns-3 supports is the ability to trace, log and compute
statistics on the simulation output.

• ns-3 has an integrated Gnuplot library for visualization and provides PCAP
output that enables analyzes with other tools like Wireshark. It also has
excellent support for animation of network simulation, such as NetAnim.

There are four abstracts terms that have specific meaning for ns-3 simulator:

Node
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On the internet, each computing device that can connect to the internet is called
a host or end-user. But in ns-3, as a network simulator, a node is used for a more
generic term. The corresponding class: Node includes methods for handling these
computing devices in simulations.

Application

Software typically exploits various computer resources and a user runs an appli-
cation that uses the resources controlled by the software, while an operating system
is used to enable this collaboration. In ns-3 there is no definition of an operating sys-
tem, despite that, the application concept has been provided by class: Applications
which is run on nodes to drive simulations, i.e., the Application generated some
activity similar to user programs. For an instance, UDPEchoClientApplication and
UdpEchoServerApplication in the form of client and server, serve as an Application
on top of UDP on ns-3 Node. Besides, in this class, users can develop applica-
tions by extending the existing Application class using object-oriented programming.

Channel

Usually, channels are media used to connect a computer to the network to
transmit data flows. In ns-3 the class Channel provides an abstraction of media that
connects a Node to a communication sub-network. various specialized Channels have
been provided in ns-3 such as CsmaChannel, PointToPointChannel and WifiChannel.

Net Device

To connect computers to the network, two main components are required, a
network cable and a hardware device, knowing as a peripheral card in the case
that owned Network Interface called NIC. The latter must be installed on the
computer using software drivers so-called device drivers. In other words, devices
and network devices are handled by a device driver and network device driver
respectively. In ns-3, both elements are provided in a single entity and called Net
Device and represented in class NetDevices. Connections to Nodes and Channels
are managed via NetDevices class. Moreover, specialized versions of NetDevices
have been provided by the ns-3, such as CsmaNetDevice, PointToPointNetDevice,
LteEnbNetDevice and LteUeNetDevice.

Topology Helper

The Last abstract component is Topology Helper that handles and manages
the connections of different objects. Indeed, Topology Helper classes connect
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NetDevices, Nodes, and Channels, also is responsible to assign IP addresses, etc.

3.2 LENA Module
The module that has been used in this thesis is the LENA module developed

by [16]. The proposed LTE module supports the essential features of LTE. In this
module, basic implementation of LTE devices has been provided which is composed
of MAC layer, Physical layers, and also, various propagation models. Moreover,
QoS management, scheduling algorithms in the MAC layer, and frequency reuse
techniques have been provided. The LTE module has been composed of two main
parts:

The LTE model

It provides the LTE radio protocol stack, including RRC, PDCP, RLC, MAC,
and PHY. The UE and eNodeB hold all These entities. As the LTE model plays the
role of Radio Access Point (RAP), it supports evaluation of RRM, QoS aware packet
scheduling, inter-cell interference coordination, and dynamic spectrum analysis of
LTE systems. As in real LTE networks, scheduling and RRM do not work with IP
packets, rather work with RLC PDUs. Moreover, the HARQ scheme, PDCP layer,
RLC layer, and RRC layer functionalities have been implemented the same as the
real LTE network. Moreover, the simulations can be scaled up to a large number of
eNodeBs and UEs and can be configured with different cells with different carrier
frequencies and bandwidths.

The EPC model

The LTE core network interfaces, protocols, and entities have been provided in
this model. SGW, PGW, and MME nodes include all these entities and protocols,
also the eNodeB has a portion of them. The EPC model provides end-to-end IP
connectivity over the LTE model between the UE and a remote host. It also enables
the connections of the UEs to the internet, through the RAN of the eNodeBs that
are connected to the SGW and PGW. Any ns-3 application that works on top of
TCP or UDP can be used within EPC to model realistic applications.

Figure 3.1 depicts a schematic of the LTE-EPC simulation model. The model
represents the entities and network interfaces in the EPC model and the LTE model
in ns-3.

In the following sections, the functionality and specifications of different modules
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Figure 3.1: Overview of the LTE-EPC simulation model

in the downlink are described because, in this thesis, the main goal is to evaluate
the performance of downlink transmissions.

3.2.1 MAC Entity
As the Functionality of the MAC layer is different in UEs and eNodeBs, then

the Mac entity is implemented in two different classes: LteUeMac and LteEnbMac.
The Mac entity provides an interface between the upper layers and the Physical
layer. The main task of the Mac entity is the creation of the transport blocks
composing fragments provided by RLC. In addition, The Adaptive Modulation
and Coding module resides in the Mac entity in LteEnbMac class. Also the latter
is responsible for radio resource allocation, which means that the uplink and the
downlink packet scheduler reside in this class. Whereas each UE must prepare its
CQI, thus, LteUeMac class is enabled to create CQI feedback.

The Adaptive Modulation and Coding
The Adaptive Modulation and Coding (AMC) module enables the functionalities
of the AMC defined in the LTE standard [12]. Indeed, each UE periodically sends
CQI based on the channel quality measurement and sends it to eNodeB. Then
AMC module uses the CQI to find the most suited MCS for the UE (described in
section 2.3).

In the ns-3, the AMC module resides in LteEnbMac class and provides an unique
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mapping among cqi and the MCS, the mapping function used in the ns-3 follows
the table 3.1. Generally, two types of AMCs have been provided in the ns-3. One is
based on the model described in [14]: LteAmc :: PiroEW2010 and the other which
is modified version of [14] is: LteAmc :: MiErrorModel .
In the LteAmc :: PiroEW2010 model, spectral efficiency is required and is calculated
by expression 3.1c. Then the value of spectral efficiency is discretized by the
received CQI from the UE. Afterward, the floor of the value is calculated and
is mapped to the corresponding MCS index. The expression 3.1c represents the
calculation of spectral efficiency ηi of a UE, where i denotes a generic UE, and γi
is its SINR.

BER = 0.00005 (3.1a)

Γ = −ln(5×BER)
1.5 (3.1b)

ηi = log2(1 + γi
Γ ) (3.1c)

In the LteAmc :: MiErrorModel model, MCS index is selected for the actual phys-
ical layer performance based on the reported CQI. In this model, when Physical
Downlink Shared Chanel (PDSCH) TB with the MCS and code rate correspondent
to a specific CQI index can be received and meet the error probability threshold,
i.e., error probability threshold is 0.1, then the CQI is assigned.

CQI feedback

In the ns-3, Wideband CQI and inband CQI are periodical measurements i.e.,
every Transmission Time Interval (TTI) are generated. Based on the standard,
wideband CQI is a single value of channel state which represents the status of
all RBs in use. On the other hand, inband CQI is a set of values, each of which
represents the channel state for each RB.

Generally, the eNodeB sends reference symbols over the entire downlink band-
width of each TTI. To generate the CQI feedback, each UE uses data collected
from the reference symbols and exploits them to measure SINR, then the measured
SINR will be mapped to a CQI. Then each UE will report the CQI to the target
eNodeB. However, in the ns-3, SINR calculation in downlink is done according to
two different methods:

• CtrlMethod :: Signal power from the reference signals in the ns-3 simulation is
equivalent to the PDCCH. This signal power is combined with the interference
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Interval for ηi,j CQI Index Modulation Scheme
≤ 0.15 1 4-QAM

0.15 ÷ 0.23 2 4-QAM
0.23 ÷ 0.38 3 4-QAM
0.38 ÷ 0.60 4 4-QAM
0.60 ÷ 0.88 5 4-QAM
0.88 ÷ 1.18 6 4-QAM
1.18 ÷ 1.49 7 16-QAM
1.49 ÷ 1.91 8 16-QAM
1.91 ÷ 2.40 9 16-QAM
2.40 ÷ 2.73 10 64-QAM
2.73 ÷ 3.32 11 64-QAM
3.32 ÷ 3.90 12 64-QAM
3.90 ÷ 4.52 13 64-QAM
4.52 ÷ 5.12 14 64-QAM
≥5.12 15 64-QAM

Table 3.1: Mapping function: from the spectral efficiency to the modulation
orders [14]

power from the PDCCH to calculate the SINR. Indeed, in this method, the
goal is to consider any neighboring eNodeB as interference, regardless of
whether the eNodeB is using any PDSCH or the power and RBs used in
PDSCH. In this thesis, this model has been exploited because only one cell
and one eNodeB have been considered.

• MixedMethod :: Concerning the CtrlMethod : method, signal power from the
reference signal is combined with the interference power from the PDSCH.
In this method, interference only is considered from the eNodeBs that are
actively sending and receiving data on PDSCH. So, this method allows the
generation of inband CQIs because the different amounts of interference can
be calculated on different RBs.

3.3 Ns-3-ai Platform
Artificial intelligence algorithms are playing a critical role in wireless radio

technology paradigms for the next generation networks. Next generation networks
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are supposed to support high data rates, low latency, and new applications re-
quiring intelligent adaptive learning and decision making. In recent research[17],
[18] summarized the essential accomplishments that Artificial intelligence tech-
niques have achieved in telecommunication in comparison with classical approaches.

An AI framework is a tool that helps to develop algorithms and train machine
learning models. The AI frameworks facilitate the complexity of developing ma-
chine learning algorithms by providing existing models, as well, Python is the main
programming language used by mainstream frameworks. Both TensorFlow [19]
and PyTorch [20] are two popular AI frameworks that provide a comprehensive
API among all deep learning frameworks.

ns-3-ai [21] provides an interface between ns-3 and several Python-based AI
frameworks like TensorFlow and PyTorch to develop Machine Learning and Deep
Learning algorithms. ns-3-ai uses shared memory mechanisms for transmitting
data, which outperforms the other methods by reducing transmission time and
supporting the exchange of huge data [21]. The interaction between ns-3 and AI
frameworks must be done by transferring data in multiple processes since the global
variable of any process cannot be accessed by other processes. Thus shared memory
as a practical solution has been adjusted to communicate between processes. The
ns-3-ai module composed of two main components:

• The ns-3 interface developed by C++ as core module: It supports transferring
data from C++ program to Python programs.

• The AI interface Developed by Python: It provides fast development of Deep
Learning and Reinforcement Learning algorithms.

3.3.1 Ns-3-ai System Architecture
Figure 3.2 illustrates the architecture of the ns-3-ai platform and its collabora-

tion with the ns-3 simulator. Based on this architecture it can be perceived that
the ns-3 simulator and AI frameworks run in separate processes, therefore, data
transmission is done through shared memory and in two directions:

• The ns-3 simulator -> the AI frameworks: A network topology is set up within
the ns-3 simulator to generate data which is required to be sent to the AI
algorithm to train.

• The AI frameworks -> the ns-3 simulator: An AI algorithm is provided
using the AI frameworks to train the model using the data sent by the ns-3
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simulator. Afterward, the data from the trained model have to be sent to the
ns-3 simulation for testing the data.

Thus, the ns-3-ai module must provide interconnection for the ns-3 and the AI
frameworks, and it is done by using shared memory and transferring data through
this memory pool. This shared memory is accessible by AI frameworks and ns-3.
the latter has the most control over the shared memory pool. The high-level

Figure 3.2: System architecture [21]

interface of ns-3-ai supports various dimensions and types of data, also self-defining
data types such as structures to be transmitted in both sides, the ns-3 simulation
i.e., c++ side, and AI frameworks i.e., Python side. Further, for some algorithms
e.g., Reinforcement Learning(RL) and Deep Learning (DL) sophisticated data
structures and interfaces have been developed.

The DL module in ns-3-ai is developed by exploiting PyTorch and Tensorflow
frameworks. On the Python side, well-defined data structures are used which carry
information such as features of data-set, target, and predicted values, further, on
the C++ side, several functions are defined to extract features of data sets and
feedback prediction results, etc.
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The RL module as well is developed by exploiting PyTorch and Tensorflow
frameworks. In this module, on the Python side, more or less two data structures
are defined, one of them enables receiving data from the ns-3 simulation, i.e.,
environment states, and the other enables sending the data to the ns-3 simulation,
i.e., actions. On the other hand, on the C++ side, two functions are defined: set
and get, which dealing with modifying the environment based on the received
actions and delivering the environment state to the ns-3-ai side. In this research,
the RL module is exploited which is described in detail in section 5.
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Chapter 4

Machine Learning
Background

4.1 Machine Learning Algorithm

Machine Learning (ML) is one of the most substantial artificial intelligence
branches that in recent years has been successfully applied in many fields. Machine
Learning generally can be defined as automatic computational procedures which
can use series of past experiences to learn a task, to improve the performance of a
system, or to make precise models to infer or forecast information [22]. So, the ML
can address studying and flourishing computational models. Indeed, by providing
context-related data from an environment, we can train a model to forecast, predict
the future or make a decision, while the model does not know all knowledge about
the environment. In other words, a model can be adapted to statistical learning
to learn about the environment and tries to find the best decisions, values, or
actions to reach a particular goal. Continuously train the model to get improved by
reducing potential errors using different optimization models[23]. When it comes
to talking about the problems that can be tackled using ML, it is widespread and
popular in different areas, lately, it also has played a significant role in telecommuni-
cation fields and has provided high potential innovations to the Telecom value chain.

Besides the most significant and brilliant ML paradigm, one most important
fact is studying and mastering different ML algorithm categories and trying to find
the best fit for a particular problem. The following sections describe an overview
of each ML category.
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4.1.1 Supervised Learning
Supervised Learning is one of the widely used ML algorithms, which its most

common application is in classification and regression. The supervised learning
algorithm aims at creating and learning models, that find matches of labels with the
so-called training data set. Then, training data set is used to train a model. Indeed,
the training data set includes labeled input data that pair with desired outputs and
are used to find a map between the input data and the output data. Afterward, the
obtained model is exploited to make a prediction based on evidence, for a new set
of data, in the presence of uncertainty. To name examples of Supervised learning,
we can name their application in predictive maintenance problems [24], financial
applications[25] and also biological applications like cancer detection [26].

Figure 4.1: General schematic of supervised learning algorithm

4.1.2 Unsupervised Learning
On the contrary, unsupervised learning does not deal with labels, and there is

no need to supervise the model. This category usually addresses finding all kinds
of unknown patterns in data or groupings in data. clustering such as K-means
clustering, anomaly detection, and pattern recognition are the most well-known
applications of unsupervised learning. In clustering, the main goal is to specify
different categories in a set of data that does not specify by any label. Rather it
can be done by defining the similarity measures for the clusters. There are cases
that we have to handle enormous data sets that hardly can be labeled or we have
no prior knowledge about how many or what classes that the data set is divided
into. Therefore, we need clustering to gain some insight into the structure of the
data, this is where Unsupervised Learning comes in. However, one of the important
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issues that can be mentioned related to unsupervised learning is that it is hard to
get accurate information regarding sorting data.

Figure 4.2: General schematic of unsupervised learning algorithm

4.1.3 Reinforcement Learning
Reinforcement Learning (RL) is one of three machine learning paradigms, along-

side supervised learning and unsupervised learning. The goal in using reinforcement
learning is to enable an agent (learner) to learn a policy in an environment by trial
and error. The agent uses feedback from its actions to maximize the notion of
cumulative reward [27].
Reinforcement learning will be discussed further and in more detail in section 4.3.

Figure 4.3: General schematic of reinforcement learning algorithm

4.2 Deep Learning
Deep Learning (DL), also known as the deep neural network is an artificial

intelligence function and part of the ML family. DL is based on Artificial Neural
Networks (ANN) with representation and feature learning. DL seeks to mimic the
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human brain in processing data, by exploiting the hierarchical structure of neural
networks, which allows it to take non-linear approaches, processing data across a
series of layers.

ANN are nonlinear computational models composed of interconnected processing
units, known as, artificial neurons. The artificial neurons are organized into three
layers: input, hidden, and output layers.

• Input layer: This layer is made of n1 neurons, which corresponds to network
inputs.

• Hidden layer: This layer is composed of one or multiple hidden layers and
each can be of a dimension of n2 neurons.

• Output layer: It includes n3 neurons corresponding to each network output.

Figure 4.4: The structure of an artificial neuron

As it is represented in figure 4.4 each neuron receives n inputs signal xi from multi-
ple neurons, then weights them separately,i.e., connection weights of wi, then, the
neuron sums them up and passes the sum through a function to produce the output.

The simplest neural network unit, the so-called Perceptron was introduced by
Frank Rosenblatt in 1957, mostly aimed at supervised learning of binary classifiers.
This algorithm enables neurons to learn and process in the training set, one at
a time. The expression 4.1 describes the learning rule of perceptron algorithm
through this learning rule, a binary decision is made, i.e., if the sum exceeds a
threshold, the neurons will fire, otherwise not. The output can be either 1 and 0 or
1 and -1, depending on the activation function.

Yi =
I

0 if qn
i=1 XiWi < threshold

1 if qn
i=1 XiWi > threshold

(4.1)
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Figure 4.5: Neural network architecture

Activation function Generally, an activation function in a neural network
defines how the weighted sum of the input is transformed into an output from a
node or nodes in a layer of the network. The activation function of Perceptron
applies step function which is represented in figure 4.5. It converts numerical inputs
to +1 and 0, i.e., the Step function gets triggered above a certain value of the
neuron output or it is deactivated, i.e. its output is not considered for the next
hidden layer. On the other hand, the Sign function outputs +1 or -1 depending on
whether the neuron’s output is greater than zero or not. A bias is an extra scalar
that is added to the neuron to shift the value of the output.

(a) (b) (c)

Figure 4.6: Activation function,(a) step function (b) sign function (c) Relu
function

The step function is not useful when there are multiple classes. That is one of
the limitations of the binary step function. In addition, the gradient of the step
function is zero which causes a restraint in the backpropagation process. Indeed,
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when the gradient of the function is zero, the weights and biases don’t update. In
addition to the step function, there are more sophisticated activation functions
whose output is not binary values like sigmoid, Relu, and tanh, etc.

For example rectified linear activation function or ReLU depicted in 4.6c, is the
most used activation function in the world right now. Since it is used in almost all
convolutional neural networks or DL. As it is depicted in 4.6c, the ReLU is half
rectified (from bottom). f(x) is zero when x is less than zero and f(x) is equal to x
when x is above or equal to zero.

Gradient descent

Gradient descent algorithms are commonly used to train ML models and neural
networks. Gradient denotes the slop of a function, and simply measures changes in
all weights that address the changes in error. The higher the gradient, the steeper
the slope, and the faster a model can learn. But if the slope is zero, the model stops
learning. from the mathematical point of view, the gradient is a vector of partial
derivatives of specific input values with respect to a target function. The goal of
gradient descent is to minimize the cost function or the error between predicted and
actual value. To achieve this goal, at first, the gradient, the first-order derivative
of the function at that point must be computed, and after that one step is made in
the opposite direction of the gradient, by learning rate, then it is multiplied the
gradient at that point.

In order to do this, it requires two data points—a direction and a learning
rate. These factors determine the partial derivative calculations of future iterations,
determines that they gradually arrive at the whether local or global minimum i.e.
point of convergence. More detail on these components can be found below:

Learning rate also referred to as step size or the alpha. Learning rate denotes
the size of the steps that are taken to reach the optimum value. This is typically
a small value, and it is evaluated and updated based on the behavior of the cost
function. Applying large values of learning rates leads to larger steps which increase
the risk of overshooting the minimum. Conversely, choosing small values of learning
rate leads to small step sizes. While it has the advantage of more precision, the
number of iterations compromises overall efficiency as this takes more time and
computations to reach the minimum.

Loss function or cost function measures the error in terms of difference
between actual y and predicted y at its current position. Indeed, loss function
provides feedback to the model, by adjusting the parameters to minimize the error
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and find the local or global minimum. It continuously iterates, moves along the
direction of steepest descent (or the negative gradient) until the cost function
minimizes or gets almost close to zero. At this point, the model will stop learning.
It is worth mention that, however the terms, cost function, and loss function, are
used exchangeably, there is a slight difference between them. The loss function
refers to the error of one training example, while a cost function calculates the
average error across an entire training set.

Additionally, there are three popular types of gradient descent that mainly differ
in the amount of data they use:

• Batch gradient descent, also known as vanilla gradient descent, calculates the
error for each example within the training dataset. In this algorithm, the
model gets updated just after all training examples are evaluated. Although
batch gradient descent has computational efficiency and produces a stable
error gradient and stable convergence, it can achieve sub-optimal solutions
and also requires the entire training dataset for each training cycle.

• Stochastic Gradient Descent (SGD) updates the parameters for each training
example one by one. This behavior makes SGD faster than batch gradient
descent, also provides a detailed rate of improvement. On the other hand,
frequent updates lead to high computationally expensive than the batch
gradient descent approach. Additionally, the frequency of those updates can
result in noisy gradients.

• Mini-batch gradient descent is a combination of the concepts of SGD and
batch gradient descent. In this method, the training dataset is split into
small groups called mini-batches, and then an update is performed for each of
those batches. This behavior brings robustness and efficiency to the learning
process. Common mini-batch sizes range between 50 and 256, and it is the
most common type of gradient descent within deep learning.

Backpropagation
Backpropagation or simply “backprop,” is an algorithm for calculating the gradient
of a loss function with respect to variables of a model. Backpropagation is used
to train neural network models to calculate the gradient for each weight in the
network model. The gradient is then used by an optimization algorithm to update
the model weights.

The algorithm was developed explicitly for calculating the gradients of variables
in graph structures working backward from the output of the graph toward the
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input of the graph, propagating the error in the predicted output that is used to
calculate the gradient for each variable.

4.3 Reinforcement Learning
As described in section 4.1.3, RL is one of the ML paradigms, whose underlying

idea is similar to human life, i.e., human actions turn out to be good or bad actions,
which reinforces or punishes the human’s behavior which caused taking an action.
So, the so-called software agents try to make the best actions based on a policy, to
maximize the so-called cumulative reward. The agent is in interaction with the
environment, and by exploring the environment tries to discover the best policy.
Figure 4.7 depicts a generic schematic of RL Algorithm.

Figure 4.7: The generic schematic of RL algorithm

One of the most simple and basic examples of RL applications is cartpole game.
The cartpole is a pendulum that contains a wight above its pivot. It is unstable
but it can be controlled. In the cartpole game the goal is to keep balance the pole
as long as it is possible. Figure 4.8 represents the cartpole general schematic.

The position of the cartpole is known as state and the game starts from the
pole in upright condition, i.e., the current position of the cartpole. The state
comprising the angle of pole, velocity, and position of the card, and depending
on the action the agent takes it leads to different other states. The cartpole is
controlled by inserting a force of +1 or -1 to the card to keep the pole upright, i.e.,
the agent moves the card to right or left to prevent the pole from falling over. For
every time step, the agent receives a reward for its action, a reward of +1denotes
that in that time step the pole has remained balance. In addition, the vertical
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Figure 4.8: The Cartpole schematic

degree of the pole determines the end of each episode, e.g., if the pole is more
than 15 degrees from vertical, the episode ends. The game is repeated in vari-
ous episodes, in which agents can learn more about the dynamics of the environment.

By this explanation, the difference between reinforcement learning and super-
vised learning and unsupervised learning will be clear. Indeed, in supervised
learning, the algorithm uses a training data set whose correct answer keys are used
to train the model. Whereas in Reinforcement learning, there is no training data
set, the agent must explore the environment to find the best action in each state of
the environment.

Moreover, the difference between unsupervised and RL algorithms can be de-
scribed in terms of their goals. Unsupervised learning’s goal is to learn similarities
and differences between provided samples. RL’s goal is to find an optimal policy to
be able to make the best action for each particular state to maximize the feedback
value receives from the environment.

4.3.1 Main Elements of RL
Besides an agent and an environment, as two main elements of RL, it has

other elements as well: a policy, a reward, a value function, and a model of the
environment. The latter is optional in some RL approaches [28]. Moreover, states
and actions are integral parts of each reinforcement learning algorithm that must
be specified properly [29].

State: A state is represented with si ∈ S, denotes the current situation of the
environment. The state space has N dimension, S = {s1, s2, s3, ..., sN}.

Action: An action aj ∈ A, denotes what the agent can do in any state, and the
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action space with M dimension can be described as A = {a1, a2, a3, ..., aM}.

• Policy: A policy π(.) determines a behavior that the agent has at the given
time, i.e., the policy makes a map between the current state at time t st ∈ S
into action a ∈ A. The policy is an essential part of the agent and in some
cases, it is a simple lookup table so-called Q_table, and in some cases, it has
immense computation time.
In general, the policy can be categorized into two main groups of function:
deterministic, and stochastic. A deterministic policy can be defined as a
function of the form πd() : S → A, in which for every state s ∈ S there is
a ∈ A clear defined action that will be taken. On the other hand, a stochastic
policy is function of the form πs(a|s) ∈ [0,1]. It means that for every state
s ∈ S there is no clear defined action to take but there is a probability
distribution for the action a ∈ A to take from that state s ∈ S.

• Reward: A reward signal describes environment feedback according to the
action a ∈ A that the agent made at state s ∈ S,indeed, at each time step,
the agent observes an state si ∈ S, performs an action ai ∈ A and receives
immediate reward from the environment and transit to the next state si+1 ∈ S.
So, the reward signal defines the good and bad actions for the agent. While
the agent’s main goal is to maximize the cumulative reward over the long run,
it uses the reward to alter the policy if the corresponding received reward is
low, in order to change the action in that situation in the future.

• Value Function: A value function concerns how good is the action in long run,
whereas, as discussed previously, a reward signal is an immediate response of
the environment. The notion of "how good" here is defined in terms of future
rewards that can be expected. The expected future reward also is known
as expected return from time t, can be described as cumulative discounted
rewards, following the expression 4.2:

Rt = rt+1 + γrt+2 + γ2rt+3, ... =
∞Ø
k=0

γkrt+k+1 (4.2)

where γ ∈ [0,1] is discounted factor and the idea behind using the discount
factor is not only penalizing future reward when we have infinite R but also,
discounting with a value ∈ [0,1] to avoid divergence of expected reward.
Therefore, we can define the state value as the expected value of the discounted
return if we are in the state s ∈ S at time t:

Vπ() = Eπ[Rt|St = s] (4.3)
In addition to value function we need to define state-action values, also known
as Q values, Qπ(s, a) denotes the discounted return Rt that the agent should
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have expected, starting from the state s ∈ S, getting the action a ∈ A under
policy π:

Qπ(s, a) = Eπ[Rt|St = s, At = a] (4.4)

Approximation of the value function is done repeatedly to get closer to the
current policy, in the meantime, the policy improves since, the optimal value
function produces the maximum expected return, by reproducing the value
function based on the target policy:

Vπ() =
Ø
a∈A

Qπ(s, a)π(a|s) (4.5)

where π is target policy. So, optimal policy achieves the optimal value function
V∗():

V∗() = max
π

Vπ() (4.6)

Q∗(s, a) = max
π

Qπ(s, a) (4.7)

• Model: The final element of RL is the model of the environment, generally,
the model seeks to imitate the behavior of the environment. As mentioned
this is an optional element of RL algorithms and is exploited by the so-called
model-based approaches.
On the other hand, in other RL algorithm categories, model-free approaches
only exploit the three first elements. Both approaches are described in the
following sections.

4.3.2 Model_Based Approaches
Model-based RL is defined as any Markov Decision Process (MDP) which ex-
ploits a model and then learns to approximate a policy function. In other words,
model-based algorithms can be considered as Dynamic Programming (DP) which
is categorized into two approaches, Policy Iteration and Value Iteration. These
approaches use the model’s predictions or distributions of the next state and reward
in order to calculate optimal actions. Specifically in DP, the model must provide
state transition probabilities, and expected reward from any state, action pair which
turns to high complexity. In addition, a model-based algorithm is an algorithm that
uses a transition function and a reward function in order to estimate the optimal
policy.
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4.3.3 Model_Free Approaches
In model_free approaches, there is no dependency on the environment model

during the learning process. Indeed, the transition probability distribution which is
main element in model-based RL, and also the reward function which is associated
with the MDP are not used. The model_free approaches rely on stored values
of state action pairs, which are maximum returns that the agent can expect for
each action that has been taken from each state over many trials, in other words,
model_free approaches are based on trial and error mechanisms.

There are two major model_free approaches namely: Monte Carlo (MC) and
Temporal Difference (TD). MC approach learns directly from complete episodes
with no bootstrapping, i.e., MC is based on averaging complete return. In other
words, we want to estimate vπ(s) in an episode that is computed under policy π
passing through state s, this can be done either by averaging the returns following
the first occurrence of s, or averaging the returns following all occurrence of s. One
drawback of MC is that it can only be applied to episodic MDP where all episodes
must terminate.

Further, Temporal-Difference (TD) methods can be considered as a combination
of MC and DP approaches, since similar to MC, TD uses experiences to solve
the prediction problem and also, similar to DP, uses some variation of generalized
policy iteration. TD(0), Q Learning, and SARSA are the simplest and most used
algorithms of TD learning algorithms that are explained in the following sections.

4.3.4 TD(0)
The TD uses experience to solve the prediction problem, same as MC method, i.e.,
Value function V is updated for the states st using experience following a policy π.
However, in contrast to MC, TD(0) at next time step,t + 1 immediately forms a
target and makes update using the observed reward Rt+1 and estimates the v(St+1),
rather than waiting for entire episode.

V (St+1) = V (St) + α[Vtarget(St+1)− V (St)] (4.8)

Vtarget(St+1) = Rt+1 + γV (St+1) (4.9)

The equation 4.9, is an estimate of the true value of V (St) , and also called the
TD target. Indeed it is a bootstrapping method, since a Q value is used to update
another Q value. The equivalent update can be described in 4.10:
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V (St+1) = V (St) + α[Gt − V (St)] (4.10)

Where the Gt is the total discounted return at time t, assuming a start from state
s, then taking action a, using the current policy until the episode ends.
In addition, equation 4.11 represents the error in TD(0), which measures the
difference between the estimated value and the target value. Further, the error in
TD(0) takes care of the error in the estimation made at time t + 1, since the error
in TD(0) depends on the next state and reward.

δt = Rt+1 + γV (St+1)− V (St) (4.11)

4.3.5 SARSA
State-Action-reward-State-Action for short SARSA, is a well-known on-policy
method i.e., on-policy methods have the same target policy and behavior policy.
In SARSA algorithm rather than defining and exploiting state-value functions, the
action-value function is defined. Typically in SARSA algorithm, TD method is
exploited as described in 4.8, qπ(s, a) for the behavior policy π and all states s and
actions a must be estimated.

Q(Si, ai) = Q(Si, ai) + α[Rt+1 + γQ(st+1, at+1)−Q(St, at)] (4.12)

The expression 4.12 represents the update procedure in SARSA algorithm. The
update is based on the action that is taken i.e., on-policy method, and is done
after every transition from state st . In this method, continuously both the qπ is
estimated for the behavior policy π and π is changed toward the optimal policy
with respect to qπ.

4.3.6 Q Learning
Q-Learning algorithm is one of the most popular off-policy TD algorithms, i.e.,
off-policy algorithms have different target policies than behavior policy. Unlike the
SARSA algorithm, the Q-Learning, independent of the policy, approximates the
optimal action-value function. In particular, Q-Learning uses the update equation
4.13 derived from 4.11:

Q(si, ai) = Q(si, ai) + α[Rt+1 + γ max
a

Q(st+1, a)−Q(st, at)] (4.13)

In Q-Learning algorithm, a Q table is defined that contains the values of action-
values. If the state space or action space is large, it is difficult to manage the
table and the learning process becomes inefficient, as a result, Q-Learning cannot
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learn the optimal policy. In this regard, Deep Q-Learning (DQL) is introduced to
overcome the problems of Q-Learning.

Deep Q Learning

The main difference between DQL and Q-Learning is the implementation of the
Q table. Indeed, DQL exploits NN knowing as Deep Q Network (DQN) rather
than Q table. So, the DQL maps input states to action Q-value pairs instead of
mapping state-action pairs to Q-values. Also, figure 4.9 shows the architecture of
DQL, in which the DQN is replaced with a Q table and approximates the Q-values.
If using a nonlinear function approximator in RL algorithms, as noted in [30], may

Figure 4.9: The architecture of DQL algorithm [30]

turn into an unstable average reward. In another word, it causes that optimal policy
cannot be reached with small changes of Q-values. Therefore, two mechanisms i.e.,
experience replay and target Q-network, are introduced to address these problems.

• Experience replay: In this algorithm, an experience replay or replay memory
is a buffer with limited space that can accommodate agents’ experiences as a
tuple including: [si, ai, ri, si+1]. Then, random samples know as mini baches
of the tuples from replay memory are selected to train the NN. It is worth
mentioning that the reason for random selection is to eliminate the possible
correlations between observations to obtain stable learning.

• Target Q network: In DQL, two DQN are defined whose architectures are the
same. The idea behind using two DQN is that, during training, the Q values
which is used to update Q network may be shifted. The latter issue leads to the
destabilization of the algorithm. To solve this issue, one extra DQN is defined
called target network. The weight of the target network periodically is frozen
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and after N steps these weights are updated by the DQN weights. Therefore,
the Correlation between target and Q values decreases, which stabilizes the
algorithm.
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Chapter 5

Experimental Setup

This chapter will go through the implementation and evaluation of the proposed
RL-based frameworks for vRAN. Two model-free RL algorithms are designed in
order to deal with RRM in vRAN and then their performance in typical network
scenarios is analyzed and the possible enhancement of both methods is compared.
In this regard, firstly the configuration of the simulation platform is discussed
whereby the simulation scenario is explained. Then the detail of the presented
approach is demonstrated. Eventually, the system testing and evaluation process
are described.

5.1 Configuration of Simulation Platform
The simulations that will be obtained in this chapter use the ns-3 simulator

with the LENA module and also ns-3-ai module described in section 3.2 and 3.3. It
has been chosen to consider LENA module which is the complete implementation
of LTE. Further, the generalization to 5G NR can be simply done, since the radio
access scheme in both generations, i.e., 4G and 5G, are quite analogous. It is
also chosen to address the downlink traffic in LTE link which corresponds to the
Physical Downlink Shared Channel (PDSCH).

As it is explained in section 3.2, the LENA module is provided with all the
integral elements of LTE architecture, UE, RAN, and EPC. The main scenario
is designed to have multiple UEs have connected to one eNodeB in one cell. So,
the location and mobility model of UEs are set in such a way that provides the
situation whereby the UEs receive different SINRs and channel conditions. As
well, the mobility of UEs mimics more common situations in real networks. In
this regard, 5 UEs located in different distances (descending order) connected to
eNodeB. So, GridPositionAllocator model is set, which enables UEs to locate in a
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grid-topology. Also, the RandomWalk2dMobilityModel model is set to enable UEs
to move with speed 3 m/s at random directions. Figure 5.1 represents a high-level
view of the network topology.

Figure 5.1: High-level view of the network topology

Further, a remote end-user, known as a remote host, is provided and is connected
to the core network. The connection is set by a point-to-point wired connection
to the PGW using the PointToPointHelper topology helper. This connection is
provided by 100 Gbit/s and 0 loss and delay to eliminate the effects, e.g., bottleneck,
that this link might have on the downlink channel between eNodeB and UEs. The
remote host is enabled with applications that generate traffic to be sent to UEs.
The key parameters of the application are:

• Packet size (psize): 1024 byte

• Data rate (δ)= 10 mbyte/s

• Traffic type: CBR traffic

• Protocol type: TCP

Additionally, the inter-packet intervals γ is calculated by expression 5.1:

γ = psize × 8/β (5.1)

Where the β = δ × 1e + 6 denotes the bit rate.

Above all, the parameters that are specified in the designing of the RAN are
provided in table 5.1. In this experiments, other parameters that are specified are
the scheduler type, the channel propagation model and AMC model, etc:

• Scheduler: Round Robin (RR) scheduler is set in MAC entity, for the sake of
simplicity and also in RR all active UEs get a fair share of resources.
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Simulation time 300 seconds
TCP application data rate 10 Mbit/s
Propagation loss model TwoRayGroundPropagationLossModel
MAC entity scheduler rrMacScheduler

AMC model Piro
eNodeB Tx power 30 dB

NoiseFigure 5dB
Frequency Band LTE 15 MHz- 75 RBs
LTE carrier frequency 2.1 GHz
eNodeB Tx power 30 dB

RLC mode UM

Table 5.1: Simulation parameters

• propagation model: Two-Ray ground propagation model calculates the path
losses between a eNodeB antenna and UEs antenna when they are in line of
sight (LOS). Generally, the two antennas each have different heights. Therefore,
in the simulation, the maximum height of eNodeB and UEs are set to 10 and
2 meters respectively. The other parameter is system loss which is set to 2 dB.

• AMCmodel: As described in section 3.2.1 the AMCmodel is set to PiroEW2010.

5.2 Design of RL-based Frameworks
Two well-known model-free Rl algorithms: DQL and SARSA, are designed and

applied in this thesis to improve and optimize the RRM in vRANs. Briefly, the
key RL parameters that are used in the experiments are described below:

• Context space: The environment variables that have an effective impact on
efficient resource allocation to UEs are: CQI and transmission buffer head
of line delay (TXBHLD). Indeed, CQI is used because it is a quantized
representation of Signal to Noise Ratio (SNR) as a high correlated parameter
in resource provisioning. Besides CQI, the status of transmission buffer
including the head of line delay and amount of data waiting to be transmitted
toward users are also effective in resource provisioning. In this solution, head
of line delay is considered for the sake of simplicity. Thus, context space
S ∈ R includes context vectors sn = {CQIn, TXBHLDn}, where n is the nth

monitoring slot. It is worthwhile to recall that in each monitoring slot n ∈ N
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the context vector sn is observed, sequentially an action an is taken and the
corresponding reward rn(sn, an) is received.

• Action space: The action space A with dimention of M=10 includes choices for
the eligible MCS values. Here in this implementation the MCS values defined
by the 3GPP standard are quantized to reduce the cardinality of the action
space for the sake of simplicity. Thus an action an in the nth monitoring slot
will be selected from A = {6,10,12,14,16,18,20,24,26,28}.

• Reward signal: It is chosen to consider the throughput as the KPI. So, to meet
this KPI requirement at each UE, it is essential to provide traffic flow with
radio resources such that the normalized values of throughputs are always
maximized.

• Action Selection: To estimate the action-values it is chosen to implement
Ô-greedy action selection policy. This algorithm aims to select the best actions
to maximize the total reward over time. In this regard, two main parameters
must be set: Ô and decay factor which are set to 0.5 and 0.99 respectively.
The algorithm of action selection is defined based on the algorithm below:

Algorithm 1 Choose_Action Algorithm
Parameters: si and ai: state and corresponding action in i-th monitoring slot
function CHOOSEACTION(si)

if randomuniform() ≥ Ô then
ai ←MaxQ(si, .)

else
ai ← random action from possible action space

end if
return ai

end function

Before explaining the formulation of RL frameworks, it should be stated that
making decisions is operated under two different durations. In other words, at
the beginning of each decision period, the agent decides the MCS values, and it
does not change the selected MCSs until the end of the decision period. A decision
period comprises N monitoring slots, recalling that in each monitoring slot, the
agent observes a context vector si, takes action ai, and receives reward signal ri.
Indeed, the duration of each observation period is of 1 TTI duration, i.e., 1 TTI is
equal to 1 ms, and accordingly, each decision period comprising N monitoring slots
is of N TTI duration which is N ms. Here in this work, it is chosen to consider:
N=10 and N=100.
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5.2.1 SARSA Framework Formulation
As it is described in section 4.3.5, SARSA is an on-policy TD control method

that uses TD for updating. In addition, here in this problem, we need to deal with
non-episodic tasks then it is required to adopt average reward setting rather than
discounting factor.

It is worthwhile to spend a bit of time explaining that the interaction of the RL
agent and the environment can fall into two main categories: non-episodic tasks
and episodic tasks. The latter is a basic solution and described in section 4.3.5
using discount factor in updating procedure. On the other hand, the non-episodic
tasks address the situations wherein the interaction between the RL agent and the
environment continues and there is no termination state. In such conditions, the
discounting effect will be eliminated, and instead, the term of average reward will
be added. The latter leads to the same importance between delayed reward and
immediate reward for the RL agent.

In the non-episodic tasks, the average reward term is obtained as a difference
between rewards and average reward, as shown in the expression 5.2:

Gt = Rt+1 − rπ + Rt+2 − rπ + Rt+3 − rπ + ... (5.2)

As described in [28], Gt is called differential return and the corresponding
value function is called differential value function. In this setting the TD error is
re-written as expression 5.3:

δ = Rt+1 − rπ + Q(st+1, wt+1)−Q(st+1, wt) (5.3)

In addition the corresponding weight vector is re-written by expression 5.4:

wt+1 = wt + αδtOq(st+1, at, wt) (5.4)

In our problem, UEs continuously send CQI to the RL agent and the RL
agent continuously acts on the possible solutions, then the RL agent must follow
the average reward setting. Thus, the target action-value is calculated based on
expression 5.5, as stated in [31], is the bootstrapping estimate of the action-values
of the next state:

Qt+1 = r(st, at)− rπ + Q(st+1, at+1, w) (5.5)

Then the difference of target action-value and current action-value enables the
learning procedure. Afterward, using the error value, calculated based on expression
5.3 refers to TD, enables the updating of both average reward value rπ and weight
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vector w. In the latter update, the gradient descent mechanism is used, however,
due to impacts of weight vector on bootstrapping target, the gradient descent is
biased therefore is called semi-gradient method. the following algorithm described
the entire procedure of the proposed SARSA algorithm.

Algorithm 2 Main_Procedure SARSA
Parameters: si, si+1: states at steps i and i + 1, ai, ai+1: actions at steps i and
i + 1, α: learning rate, rπ: average reward, Ô: epsilon, L: loss, N : decision making
periodicity, Initialize the action_value function Q with random weights w,
1: procedure Main()
2: for <the ith decision period> do
3: for <monitoring slot j in decision period i, j ∈ {1, .2, ..., N}>

do
4: if i=1 then
5: if j=1 then
6: observe sj, aj ← ai ← CHOOSEACTION(sj)
7: else
8: observe sj, aj ← ai
9: end if
10: else
11: if j=1 then
12: sj = si, aj ← ai ← CHOOSEACTION(sj)
13: else
14: observe sj, aj ← ai
15: end if
16: end if
17: rj ← receive the reward
18: end for
19: si+1 = qN

j=1
Sj

N
ó compute mean context vector over the i-th decision

period
20: ri = qN

j=1
rj

N
ó compute average reward over the i-th decision period

21: ai+1 ← CHOOSEACTION(si+1)
22: L = ri − rπ + Q(si+1, ai+1, w)−Q(si, ai, w) ó temporal Difference
23: rπ = rπ + αL ó Estimate average reward
24: w = w + αLÒQ(si, ai, w) ó update the weights
25: Ô = Ô ∗ 0.99
26: si = si+1
27: ai = ai+1
28: end for
29: end procedure
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5.2.2 DQL Framework Formulation
The next RL-based RRM is implemented based on DQL. As it is described in

section 4.3.6, DQL algorithm follows an off-policy method that uses NN to approx-
imate the action-value function. NN not only enables DQL to be implemented on
the non-episodic tasks Like SARSA algorithm but also helps the algorithm to learn
more effectively when dealing with infinite states. Additionally, DQL applies two
effective techniques: two separated NNs for target and predicted action-values and
also replay memory, which can ensure considerable convergence and stability in
the learning process.

The RL agent uses action-value function Q(sn, an) which is the expected cumu-
lative future reward (discounted reward) when it is in state s and selects action a.
The action-value function is given by:

Q(st, at) = E[
TØ
k=t

γk−t+1rt] (5.6)

Let γ be the discount factor, if it is equal to zero, Q(st, at) only considers the
immediate reward, if it is one, then Q(st, at) considers sum of the rewards. Here
the γ = 0.8. Recalling that the action-value function can be written as:

Q(st, at) = rt + γQ(st+1, at+1) (5.7)

A NN performs the approximation of the Q(st, at), and let the w standing net-
work weight, the action-value function at observation period t can be written as
Q(st, at|w). Then NN approximates the action-value function and will give the
optimal policy π∗(s):

π∗(s) = arg max
a

Q∗(st, at|w) (5.8)

Let the Q∗(st, at) be the optimal action-value function given by NN approximation.
Then the at+1 is followed by π∗(st+1). Successively, the target action-value is given
by:

Q̃(st, at|w) = rt + γQ(st+1, at+1|w) (5.9)

Afterward, w must be minimized using loss function. Here, Mean Square Error
(MSE) is used which performs as expression 5.10:

L = 1
T

TØ
t=0

(Q̃(st, at|w)−Q(st+1, at+1|w))2 (5.10)

Indeed, the RL agent at decision period t, at state st obtains action at according
to expression 5.8 and then observes next state st+1. Then, the tuple (st,at,rt,st+1)
is stored into replay memory.
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Algorithm 3 Main_Procedure DQL
Parameters: si, si+1: states at steps i and i+1, ai, ai+1: actions at steps i and
i+1, α: learning rate, γ: discount factor, Ô: epsilon, L: loss, N: decision making
periodicity, U no. of steps to reset target network’s weights, Initialize the Q and Q̃
network with random weights w and w̃, Initialize replay memory D to capacity D,
1: procedure Main()
2: for <each decision period> do
3: for <monitoring slot j in decision period i, j ∈ {1, .2, ..., N}>

do
4: if i=1 then
5: if j=1 then
6: observe sj, aj ← ai ← CHOOSEACTION(sj)
7: else
8: observe sj, aj ← ai
9: end if
10: else
11: if j=1 then
12: sj = si, aj ← ai ← CHOOSEACTION(sj)
13: else
14: observe sj, aj ← ai
15: end if
16: end if
17: rj ← receive the reward
18: end for
19: si+1 = qN

j=1
Sj

N
ó compute mean context vector over the i-th decision

period
20: ri = qN

j=1
rj

N
ó compute average reward over the i-th decision period

21: store (si, ai, ri, si+1) in D
22: select random batch of transitions (st, at, rt, st+1) from D
23: Q̃(st, at|w) = rt + γ maxa Q(st+1, at+1|w)
24: L = MSE(Q̃(st, at|w̃), Q(st, at|w))
25: Update and optimize Q weights w by stochastic gradient descent
26: every U steps reset Q̃ with Q network Weights.
27: Ô = Ô ∗ 0.99
28: si = si+1
29: end for
30: end procedure

Then equal to mini-batch size, here it is set to 64, random samples are selected
from replay memory, and based on them, the weight w and policy π will be updated.
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The complete procedure of the DQL algorithm is expressed in the algorithm 3.

5.2.3 Design of Neural Network
In this section, we explain the design of NN that is exploited in the DQL

framework. As it is explained in the previous section, two NN with the same
architecture must be initialized at the beginning of the simulation, calling them: Q
the action-value network and Q̃, the target action-value network. The logic behind
using this strategy is to stabilizing the learning process and also more efficient
learning. In this regard, the weight of Q̃ is frozen, and every U = 200 steps, these
weights are updated by weights of Q.

In addition, the size of NN in terms of the number of hidden layers and also
the number of neurons in each layer must be taken into account. For example, an
inordinately large number of neurons in hidden layers causes overfitting and also
it increases the time it takes to train the network. The NNs have been deployed
exploiting PyTorch framework through ns-3-ai. In this regard the following structure
is considered in the design of the NNs:

• The input layer has a number of neurons equal to the size of samples in
mini-batch and is set to 64.

• One hidden layer with size 32 is activated by ReLU function.

• The output layer has a number of neurons equal to the size of action space
and is set to 10.

Further, the training of the designed model is driven using the random samples
i.e., mini-batch, stored in replay memory. Further, the adopted loss criterion is
the MSE loss function, Also, adam optimization,i.e., an alternative to stochastic
gradient descent algorithm, is exploited in the learning process. Additionally, the
general setting of the implementation are given:

• learning rate = 0.001

• reward discount factor = 0.8

• replay memory size = 2000 trajectories

• Mini-batch size = 64 trajectories

• steps to update target network = 200
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5.3 Results
In this section, we evaluate the performance of the proposed RL-based frameworks
using the ns-3 simulation in a real-time manner. As expressed in the previous
section, the algorithms are operated under two different decision periods, when
N=10, the corresponding decision period is 10 ms, when N=100, the correspond-
ing decision period is 100 ms. Thus, (A) we discuss the learning performance
of SARSA and DQL algorithms under different decision periods, (B) We assess
the variation of performance metrics vs SINR. Additionally, the latter includes a
comparison between the result of proposed RL-based frameworks with those of the
CQI-prediction method presented in [21].

It is worth spending a bit of time explaining the CQI-prediction model [21]. This
approach uses DL and in particular, Long Term Short Memory (LSTM) to predict
CQI values received by eNodeB. In a period of times, the CQI values transmitted
by UEs are gathered, and based on them the LSTM will be trained, successively
rather than receiving CQI from UEs, the CQI’s will be predicted until the MSE
between predicted CQIs and valid CQIs reported by UEs is less than a threshold.
Then eNodeB based on the predicted CQI measures the MCS values through the
3GPP standard.

5.3.1 Learning Performance of Proposed RL-based Frame-
works

The simulations are carried out for the same duration of 300 seconds, and also
all the simulation configurations are considered adequate for the sake of fairness.
Then learning performance of the RL algorithms is provided in terms of convergence
of average reward values. Since the RL algorithms perform on all UEs, each UE
can receive different channel conditions, so, average rewards of the UEs can be
different. Thus here only the average case is provided.
Figure 5.2 represents the learning curves of the DQL framework in terms of

convergence of reward values as a function of time. Figure 5.2a depicts the average
reward values of DQL under 10 ms decision period. It can be noticed that after 75
seconds, the average reward almost converges. On the other hand, as it can be seen,
in Figure 5.2b, DQL under 100 ms decision period convergence takes more time
with respect to other cases and it can be seen that some times after convergence
there are slight variations. However, it is important to note here that the longer
decision period has a higher exploration time with respect to the shorter decision
period. It follows that the shorter decision period leads to easier convergence of
reward values which leads to fast learning.
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(a) (b)

Figure 5.2: DQL algorithm: Learning performance,(a) N=10 decision period (b)
N=100 decision period

Figure 5.3 illustrates the learning curves of the SARSA algorithm in terms
of convergence of reward values as a function of time. From Figure 5.3a it can
be noted that SARSA, when adopting decision period of 10 ms, outperforms all
the other solutions. In addition, Figure 5.3b which represents the convergence of
SARSA under 100 ms decision period, converges faster with respect to those of
DQL under 100 ms decision period.

(a) (b)

Figure 5.3: SARSA algorithm: Learning performance,(a) N=10 decision period
(b) N=100 decision period

Based on the learning performance represented in Figures 5.3 and 5.2, we can
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conclude that SARSA as an on-policy method performs better with respect to DQL
which is an off-policy method.

5.3.2 Variation of Performance Metrics Vs SINR
Figure 5.4 shows the average throughput in the function of SINR when adopting

the two decision periods for different algorithms. We observe that an increase
in SINR causes the throughput to increase, which is as expected. Further, the
throughput achieved by SARSA algorithm under 10 ms decision period is higher
than the throughput achieved by the CQI-prediction and also DQL. Since the
average values of selected MCS values in the RL frameworks are larger with respect
to those of CQI-prediction algorithm, the amount of transmitted data with respect
to the CQI-prediction method increase.

Figure 5.4: Variation of throughput vs SINR

Additionally, Figure 5.5 shows the evolution of performance metrics namely:
TX buffer size, latency, and loss ratio with respect to SINR. It is worth recalling
that, the latency (computed in ms) and loss ratio are measured at the IP layer and
the transmission buffer (computed in Kbytes) is measured at the MAC layer.

As it is expected, by increasing the SINR, TX buffer size, latency decrease,
and loss ratio decrease. It can be noticed that, in both algorithms, adopting a
higher duration of decision period deteriorates the performance of the corresponding
algorithm, and it can be noticed in all performance metrics. The reason for this
issue is that, by adopting long decision periods, more time is required to train the
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RL model, i.e. long exploration time is required. Indeed in the exploration time,
most of the MCS values are random.
Therefore, by low values of MCSs, throughput decreases, and by higher than

(a) (b)

(c)

Figure 5.5: Variation of performance metrics with SINR,(a) Latency vs SINR (b)
Loss ratio vs SINR, (c) Tx buffer size vs SINR

expected MCS values, delay and loss ratio increase. The aforementioned factors
impact TX buffer size as well. It is worth recalling that in the simulations presented,
for both decision periods, equal simulation times have been considered for the sake
of fairness.

One important issue that should be mentioned is that in the CQI-prediction
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algorithm, MCS values are obtained based on the regular way defined by 3GPP. The
selected values by the CQI-prediction algorithm most of the time- during simulation-
are smaller than MCS values that are obtained by RL algorithms. Consequently, the
CQI-prediction method will experience lower value of throughputs in comparison
with developed RL algorithms. On the other hand, high values of MCS might cause
a slightly higher loss ratio in proposed RL algorithms, as Figure 5.5b represents.
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Conclusion And Future
Work

In this thesis, we studied the benefits of the 5G technology, the new advanced
technologies that it has introduced to solve many open issues by the previous mobile
generations, and also new challenges that should have been faced. In this regard,
we proposed and designed RL-based and deep RL-based solutions to deal with radio
resource management in vRAN. Also in the previous chapter firstly we assessed the
performance of the solutions in network scenarios including multiple non-stationary
UEs, and then we compared the two proposed solutions with respect to each other.
With the scenarios and assumptions used in this thesis work, our system evaluation
has demonstrated that the proposed RL-based and deep RL-based approaches are
promising systems for dynamic radio resource management in vRANs.

Indeed, we observed that the proposed RL-based approach has better perfor-
mance in comparison with the deep RL-based approach. Indeed, the performance of
the proposed algorithms depends on the context space and action space cardinality,
while in this thesis work these parameters had limited size, then deep learning just
added some complexity and also a delay in the learning process.

Although in this solution the main goal is increasing the users’ throughputs, in
more advanced solutions it may be chosen to consider other parameters as possible
reward value, e.g., loss ratio, latency, etc.
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