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Summary

Low-Density Parity-Check code, known as LDPC code, or Gallager code, has
been introduced by Robert Gallager in 1963. After 18 years, In 1981, Michael
Tanner extended Gallager’s LDPC code paper to graph theory. In 1996, Mackay,
Spielman, and Wiberg found out the advantage of LDPC code regarding its low
linear decoding complexity and its excellent performance, close to Shannon’s Limit.
Since then, the LDPC code was massively studied in the search field. Nowadays, it
became a coding standard of 5G technology.

This thesis work builds on top of an existing research focusing on hardware
acceleration on FPGA based on a software implementation of an LDPC decoder
provided by OpenairInterface Software Alliance Consortium (OAI). It included two
versions of the code, Advanced Vector eXtension2 (AVX2) solution and Compute
Unified Device Architecture (CUDA) solution. An attempt to synthesize the AVX2
version for acceleration on FPGA was made using the High-Level Synthesis (HLS)
tool provided by Xilinx. The synthesis did not succeed because the original C code
had unsynthesizable constructs. In consequence, the CUDA solution was adopted,
imported in OpenCL language, then optimized inside the SDAceel development
environment by Xilinx. For this version, the bitstream was generated and tested on
the FPGA board. The final performance of CUDA solution on FPGA is 41.152ms,
whilst the software emulation result of the AVX2 solution running at 3.2GHz is
0.257ms and the GPU solution is 0.107ms, which are 160× and 400× better than
the CUDA solution on FPGA, respectively.

This work adopts the AVX2 code focusing mainly on converting the source code
for synthesizability, accepted by the HLS synthesis tool. The conversion proved
highly time-consuming and error-prone due to the multiple constraints on coding
style. Firstly, the AVX2 instructions supported by Intel processors have to be
explicitly implemented utilizing intrinsic functions, which has been already started
in the previous work. During the work, multiple pointer casting problems have to be
solved, because the HLS tool does not accept pointer casting among non-native C
data types. The data type used in the whole project has been modified to solve this
type of problem. Instead of having an alignment of 32 bytes composed of 4× 64 bit
long integers in the processing buffer, the basic composition of the processing array
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is modified to 32× 8 bit, maintaining the alignment of 256 bits and performing the
calculations on 8 bits instead of 64 bits. Another issue is related to the constraint of
pointers to unique addresses, as well as the system calls and the usage of dynamic
memory. In computation functions and memory transfer functions, the directives
that contain pointers as operands are replaced by explicit expressions on arrays
in favor of eliminating synthesis errors caused by pointers. And then the address
offsets of each involved processing buffer are re-calculated. In top-level function,
the functions that measure the execution time of software emulation are removed
since they are system calls.

Once synthesizable, the code requires a very long synthesis time. Therefore, the
configuration of the LDPC decoder was limited to the most commonly used one,
which is Z = 384, BG1, CodeRate = 1/3, BlockLength = 8,448, and in this way the
synthesis time was reduced from 3d to approximately 15min.

The implementation of the chosen configuration represents the most critical case,
since it requires the longest clock cycle to finish. Therefore, the worst-case scenario
is analyzed for performance evaluation. Different LDPC decoder configurations
modify the loop bounds of the grouped processing, because the number of check
nodes or bit nodes varies in each group. The maximum loop bounds obtained from
the selected configuration contribute to not only determining the worst case in
performance, but also to the generalization of the decoder, because the unrolling
method can be applied on a loop with fixed bound and conditional execution inside,
with which can be generated the other LDPC decoder configurations.

For the High-Level Synthesis of the C source onto the FPGA accelerator, Xilinx
Vivado HLS 2018.2 was chosen initially. However, this version did not support well
array partitioning. Thus we ported the code to Vitis HLS 2020.2, the latest HLS
tool version provided from Xilinx.

Several HLS techniques were adopted to improve the implementation perfor-
mance. The code functions are divided into two broad groups, namely computation
functions and memory transfer functions. Before performing optimization on the
function level, data is copied from the off-chip memory to the on-chip memory
in order to take advantage of the parallel access provided by the on-chip BRAM.
Then, the internal processing buffers are cyclically partitioned by a factor of 32 to
fully support the operations in parallel, which is adopted from the mechanism of
AVX2. Optimization methods are performed group by group, starting from memory
transfer functions: Firstly, observing that the loop bounds of all innermost loops
are variable because of the characteristic of the quasi-cyclic algorithm, I wrote a
sub-function in which the loop bounds are set to a fixed number and the loop body
is conditionally executed. This way, the innermost loops could be unrolled by a
factor of 32 since we have 32 ports on each partitioned buffer. However, copying
between unaligned ports inhibits some synthesizer optimizations, hence three cases
of memory transfer blocks are proposed: 32 bytes aligned starting ports of source
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buffer with unaligned destination buffer, aligned destination buffer with unaligned
source buffer, and both source and destination buffer aligned. Compared to the
ideal case, in which both buffers are port aligned and results in a 32× increase
of performance, the functions that meet the first case could obtain 16× better
performance, whilst functions that meet the second case could obtain only 4×
performance improvements, along with higher resources occupation. Secondly, loop
unrolling and pipelining were also exploited to accelerate the computation functions.
The pseudo AVX2 functions are fully unrolled and the outermost loops in each
function are pipelined. Moreover, the dependency pragma is essential to improve
the performance of computation functions and memory transfer functions, because
the synthesizer may not be able to determine the data dependency by itself.

The work stopped at the RTL exporting phase due to the extremely long running
time. Thus, the final report is an estimation of actual performance on execution on
the FPGA. In summary, the non-optimized performance is around 10,120,000 clock
cycles. After performing all optimization directives, the computation functions
are approximately 40× better than the initial performance, whilst the memory
transfer functions are approximately 20× better. The final performance is 424,379
clock cycles, which is 24× better. Comparing to the result of previous work and
references, while counting the configuration of Z = 384, BG1, CodeRate = 1/3,
blocklength = 8,448, the execution time of the current AVX2 solution running
on FPGA at 250MHz is 1.701ms, 25× better than the CUDA solution running
at 250MHz. However, the software emulation result of AVX2 solution running at
3.2GHz is still 8× better than the current FPGA implementation, and the GPU
implementation is 16× better.
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Chapter 1

Introduction

The purpose of communication is to transmit information known from part of
the transmitter and unknown from part of the receiver in a reliable manner.
With the rapid growth in demand for high-efficiency and high-reliability digital
communication systems, the development of large-scale high-speed broadband
networks has made it possible to transmit voice, images, and other multimedia
information. Communication system designers are concerned chiefly about achieving
as accurate information transmission as possible with limited data source power,
channel bandwidth, system complexity, and equipment cost, minimizing the bit
error rate of information transmission. This contributes to the development of the
Internet of Things (IoT).

The Internet of Things (IoT), which is also called the Internet of Everything or the
Industrial Internet, is a new technology paradigm envisioned as a global network of
machines and devices that are capable of interacting with each other [1]. It allows
the real-time capture of data from sensors [2]. The existing 4G networks have been
widely used in the IoT and are continuously evolving to match the needs of future
IoT applications [3]. With the research of 5G technology in recent years, fast and
reliable wireless communication is no longer a bottleneck [4].

Channel coding is an effective method to eliminate or reduce the probability of
information error during transmission. With the arrival of the information era
and the fast development of information science, error correction codes are no
more an issue. In theory, they have become an indispensable standard of the
modern communication field [5]. Because of the continuous and rapid development
of wireless and mobile communication applications, the requirements for error
correction coding technology used in high data rate digital mobile communications
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and other fields are getting higher and higher. The signal will inevitably be interfered
with in transmitting through the channel, resulting in signal distortion. Therefore,
error control codes are used to detect and correct information transmission errors
caused by channel distortion.

In the noisy channel coding theorem, C.E. Shannon gives a method for achieving
reliable communication in digital communication systems and the upper limit of
the information transmission rate for reliable communication on a specific channel
[6]. Nowadays, the theorem still has a profound impact on communication science.
Recent research [7] proves its applicability in a different aspect.

Shannon put forward three primary conditions in his theorem:

1. Random encoding and decoding method

2. Construct an extended code with good progressive characteristics

3. Use the maximum likelihood decoding algorithm

Since when in the 1940s R. Hamming and M. Golay presented the first practical error
control coding scheme, the development of coding theory in applied mathematics
has been extensively promoted. The method used by Hamming is to combine every
4 bits of the input data into a group and then linearly combine these information
bits of one group to obtain three parity bits. The obtained 7 bits are sent to a
computer that reads these codewords following certain principles. Using specific
algorithms, one can detect whether an error has occurred and find the position
of the bit where a single bit error has occurred. This code can effectively correct
single-bit error occurred in 7 bits. The coding scheme proposed by Hamming was
later named Hamming code. Although the idea of Hamming code is relatively
advanced, it also has many unacceptable disadvantages. First, the requirement of 3
redundant check bits for every four information bits decreases the coding efficiency.
In addition, only one single bit error can be corrected in each code group. Based on
the principle idea of coding, many coding methods are presented in the following
decades, such as Golay code [8], which accepts 12 bits as a group and generates 11
parity bits by encoding and detects three errors in each group. Reed-Muller code
[9] is more advanced than Hamming code and Golay code as it has more robust
adaptability in terms of code length and error correction capabilities.

RM code still has a high research value [10] [11], its fast decoding algorithm is
very suitable for optical fiber communication systems. One of the most widely
researched codes is Bose Chaudhuri Hocquenghem code (BCH code) [12], the
BCH code can be used to correct multiple random error patterns in multi-level,
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cyclic, error correction, and variable-length digital coding with error-correction
solid ability, especially for short and medium code lengths, its performance is close
to the theoretical value thanks to the strict algebraic structure. Reed-Solomon
code (RS code) also has good error correction performance for short and medium
code lengths. Both BCH codes and RS codes belong to the category of linear block
codes [13].

Before the Turbo code was proposed, there was always a gap of 2 dB to 3 dB between
the gain and the Shannon theoretical limit. The channel cut-off frequency R0 has
always been considered as the practical limit of error control code performance. The
Shannon limit is only a theoretical limit, and it is impossible to reach it. Turbo code
was first proposed in 1993. Because of its good application of the random coding
and decoding conditions in Shannon’s channel coding theorem, it has obtained
decoding performance close to the Shannon theoretical limit [14]. However, Turbo
code defects result from unsatisfied randomization in encoding and decoding: large
delay in decoding, high computation, and error-floor effectively prevent it from
applications in Communication systems with low latency requirements (e.g., Digital
phone). In 1996, Mackay, Spielman, and Wiberg rediscovered the LDPC code [15],
which Gallager proposed in 1963, a code with a higher potentiality of reaching
Shannon limit than Turbo code. In the next chapter, more theoretical background
of LDPC code will be given.

In this thesis, one software implementation of LDPC decoder published by Ope-
nairInterface Software Alliance Consortium (OAI) is selected for acceleration in an
FPGA implementation. After being converted to synthesizable code, it is trans-
formed into HDL and accelerated in RTL by the HLS tool of Xilinx. These parts
will be illustrated in chapters third and fourth, respectively.

Xilinx HLS tools provided an interface from software design to hardware design. It
reduces the complexity of HDL coding by means of transforming C, C++, or system
C into VHDL or Verilog. It essentially increases the effectiveness and flexibility of
Hardware design by accepting software languages that facilitate the logic design and
description of complex computation as a starting point [16]. Vivado HLS provides
the following design flow: Compile, simulate, and debug the C/C++ algorithm,
view reports to analyze and optimize the design, synthesize the C algorithm into
an RTL design, verify the RTL implementation using the RTL co-simulation and
finally package the RTL implementation into a compiled object file (.xo) extension,
or export to an RTL IP which is further used by other tools in the Xilinx design
flow. Several pragmas are supported to optimize the RTL design and explore the
design space to find an optimal solution according to specific space and throughput
requirements.
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Chapter 2

Low-Density Parity-Check
code

2.1 Theoretical background

All digital communication systems such as radar, remote control and measurement,
internal calculations of digital computer storage systems, and data transmission
between digital computers can be depicted as the model shown in Figure 2.1. The
information source generates the information that needs to be transmitted. It can
be either an analog signal or a digital signal. If the information source was an
analog signal, it needs to be sampled and digitized before being sent to the digital
system for transmission. Instead, if it was a digital signal, it can be symbols such
as words, codewords, etc. The output of the information source is converted into a
symbol series according to a given code table. Generally, the binary symbol series
are commonly used, and the code elements are taken from the binary set {0, 1}.
If the output signal of the source encoder is Rb bit/s, then Rb is called the Data
Transmission Rate, or Data Rate for short.

The task of the source encoder is to convert the message sent by the source, such
as language, image, text, etc., into a specific form that can resist channel noise
and distortion and is in favor of transmission. The number sequence is called the
information sequence after encoded and sent into the information channel.

Channel coding is one of the necessary means to achieve reliable signal transmission
from the transmitter to the receiver. The transmission channel has inevitable noise
and attenuation, introducing distortion and signal-decision errors to the transmitted
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Low-Density Parity-Check code

Figure 2.1: Basic architecture of digital communication system

data. Therefore, it needs to adopt error control codes to detect and correct bit
errors by inserting redundant symbols in the information sequence to improve its
error correction capability and system reliability.

The digital modulator transforms the information into signals transmitted via
the channel because the information in the form of digital bits is not suitable for
transmission on the physical channel, so it is necessary to convert these coded
bits into a continuous waveform signal which is suitable for transmission. In our
case, we only care about channel encoding and decoding in which both input and
output are binary sequences. A simplified model is depicted as the model shown in
Figure 2.2.

Figure 2.2: Simplified architecture of digital communication system

2.1.1 Tanner graph

Codeword of LDPC code consists of message bits and parity bits formed by firstly
calculating modulo 2 of specific pair of message bits and then being concatenated
to message bits. In this way, parity bits check the parity of message pair at receiver
favoring correct possible bit flips. The codeword is obtained by multiplication of
message bits and the Generator matrix. From (2.1), we can see that the first three
columns of the matrix keep the message bits unchanged, and the rest columns
outputs modulo 2 of m1,m1; m1,m2; m0,m2, respectively. p0 protects m0, and m1.
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p1, and p2 provide corresponding protection in the same manner

è
m0 m1 m2 p0 p1 p2

é
=
è
m0 m1 m2

é 1 0 0 1 0 1
0 1 0 1 1 0
0 0 1 0 1 1

 (2.1)

We notate the first part of the Generator matrix as Identity Matrix [I] and the
second part as Parity Matrix [p]. In order to evaluate the correctness of the codeword,
a checking matrix is required. In theory, modulo 2 of message bits in pair and
their protection bit is supposed to be 0. In (2.2) shows the construction of the
Parity-check matrix [H]. In case (2.3) is satisfied, all message bits alone with their
parity bits are successfully recovered.

1 1 0 1 0 0
0 1 1 0 1 0
1 0 1 0 0 1




m0
m1
m2
p0
p1
p2


=

0
0
0

 (2.2)

è
HCT

é
= 0 (2.3)

LDPC code is a linear block code with a sparse parity-check matrix [15] in which
the number of 1s is dramatically less than the number of 0. Tanner graph provides
a graphical representation of parity-check matrix that contributes effectively to
later research on LDPC code. In Figure 2.3, an example of H matrix with row
length 3, which stands for the number of message bits, and column length 7, which
stands for the number of codeword bits. Conventionally notation of (3,7) linear
code [17] is used to describe the parity-check matrix that consists of 3 message bits
and four parity bits. On the left side of the Tanner graph, each column is listed
vertically and denoted as round node. The first node stands for the first column
in the H matrix and the following node as so. Instead, on the right side of the
Tanner Graph, each row of the H matrix is denoted as a square node and listed
from top to bottom in the same manner. Edges in between represent the relation
among different bit nodes and check nodes, e.x. H14 is 1, and then in Tanner Graph,
the 4th-bit node is connected with the 1st check node, H23 is 0, then there is no
connection between the 3rd bit node and the 2nd check node.

Tanner graph is helpful for its direct topology that helps to denote the parity-check
matrix in terms of recursive passing algorithm, which will be explained in detail
later.
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Figure 2.3: Graphical representation of a parity-check matrix

2.1.2 LDPC in New Radio

New Radio (NR), a new radio access technology (RAT) developed by the Third
Generation Partnership Project (3GPP) for the 5G (Fifth Generation) mobile
network. It was designed to be the global standard for the air interface of 5G
networks. In NR LDPC code, two base matrices of fixed size are used:

BG1 : 46× 68, BG2 : 42× 52 (2.4)

Several expansions are needed to obtain the accurate scale of the H matrix; indices
and expansion factors are reported in Appendix A, Table A.1. Given a certain Base
Graph and expansion factor Zc, values in Base Graph are constrained within a
range of −1 ∼ Zc − 1. The expansion factor does a specific transformation to base
graphs to obtain the H matrix’s full scale. If an entry of the base graph equal to
−1, then it needs to be expanded into an all-zero matrix of size (Zc, Zc). For 0 or
any value less than Zc − 1, assumed as I, the entry is expanded into an identity
matrix of size (Zc, Zc) then shifted right I times. So that the full H matrix is
recovered employing an indicated specification. The full Zc table of 3GPP standard
is reported in Appendix A, Table A.2.
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2.1.3 Performance considerations

The code rate is defined as the ratio of the length of message bits k over the length
of codewords n

R = k

n
(2.5)

The new code rate after channel encoding is

Rc = Rb

R
= Rb × n

k
(bit/s) (2.6)

where Rb is the data rate of the source being sent into the channel.

Signal to Noise Ratio (SNR) and Bit Error Rate (BER) are two critical parameters
that evaluate the performance of an LDPC decoder, and the BER is the number of
bit errors divided by the total number of transferred bits during a specific time
interval. Channel with higher SNR means information bits are less contaminated
by noise. An exemplary implementation of LDPC encoder/decoder should achieve
BER under the condition of SNR as low as possible. In Appendix A, Figure A.1
shows the comparison of OAI LDPC software implementation performance ran
at five iterations and 50 iterations, respectively, with the reference performance
provided by HUAWEI.

2.2 Encoding

As discussed in Chapter 2.1.1, the parity-check matrix is obtained by interchanging
the identity matrix [I] and the transposed parity matrix [P ] of the generator matrix.
In Figure 2.4 given an example of a base matrix with 10 rows, 20 columns of BG2,
expansion factor is 48, according to 5G NR the message part has 10× 48bits, and
the parity-check part has an equal size, starting from the left edge of the square
till the last column. It usually does not enough to protect a set of message bits by
a single parity bit because the erased bit may not be one. If several bits are erased
during transmission, one parity bit cannot recover correctly original information
since it might be erased as well. A more feasible way is to protect the parity bit
in the same way as message bits. Standard of 5G NR adopts the multi-protection
encoding method, which effectively handles the multi-erasure issue.

An interesting code structure is presented in the square part shown in Figure 2.4,
and it is given another simplified example which emphasizes the top-middle part
shown in Figure 2.5, H matrix [4,8] stands for 4 message bits on the left side and 4
parity bits in the right side, overall 8 codewords to be encoded. Considering the
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Figure 2.4: Example of parity-check matrix

decoding phase, which is the reversed case of encoding, we modify the notation by
replacing the entries number by In, which means an identity matrix right-shifted
by n times. As discussed previously, the −1 value in the H matrix means all-zero
matrix after expanded, 0 and other values are expanded to identity matrix with a
proper right shift. 0 stands for all-zero matrix instead. Parity bits always have a
double-diagonal structure of identity matrix, as shown in Figure 2.5.

Figure 2.5: Double-diagonal structure of parity-check matrix

The first equation of (2.7) is the condition to be satisfied for successful decoding.
Apply it to our illustrated case, and we could obtain the following four equations
with corresponding alignment depending on the parity check bit pi .

H
è
m1 m2 m3 m4 p1 p2 p3 p4

éT
= 0

I1m1 + I3m3 + I1m4 + I2p1 + I p2 = 0
I2m1 + I m2 + I3m3 + I p2 + I p3 = 0
I4m2 + I2m3 + I m4 + I1p1 + I p3 + I p4 = 0
I4m1 + I2m2 + I m3 + I2p1 + I p4 = 0

(2.7)

If we add all four equations together, we can see the advantage of the double-
diagonal structure. Entries with the same codeword are cancelled so we eventually
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can obtain (2.8)

I1p1 =I1m1 + I3m3 + I1m4 + I2m1 + I m2 + I3m3+
I4m2 + I2m3 + I m4 + I4m1 + I1m2 + I m3

(2.8)

From the equation, we can see that the value of 4 message bits expresses the p1
and it is able to find p2 using the value of p1, then find the p3 from the value of p2,
etc. After all four codewords are retrieved, the fifth one is easier to be obtained as
it has only one unknown value at the fifth row of the H matrix, shown in Figure 2.4.
To be noticed that the double-diagonal structure always has the same size that
assures the reliability and applicability in all configurations of the LDPC encoder.

2.3 Decoding

Before Gallager [15] published his method, which takes a posteriori probability as
a decision mechanism. Hard-output was proved to be less accurate alone with low
applicability. Two kinds of decisions are widely studied in the decoding field:

1. Hard decision: At output takes the strictly closest value as confirmation value

2. Soft decision: At output takes confidence value to determine the stronger belief

The hard decision method has been dropped in consequence of its low reliability in
results. In the actual case of the channel, the noise usually is less deterministic,
could not be within a range of quantity. If the noise is high enough to flip the bit,
the hard decision probably gives back the wrong value. Thus the information will
not be retrieved correctly. Gallager [15] proposed the soft decision method, namely
soft-in soft-out (SISO) that takes a sequence of beliefs on received values, where
soft-in stands, then for output a sequence of the beliefs of the decoded messages
are decided using hard decision, noticed that soft-out stands for the believe to be
calculated and taken into account, finally a hard decision is necessary since the
decoded messages are much more reliable compared to pure hard decision and
believes cannot be considered as information, they are the probability of being 0 or
1.

In NR LDPC provided by OAI, the channel is simulated as if it went through
an Additive White Gaussian Noise (AWGN) with variance δ2 and modulated
employing Binary Phase Shift Keying (BPSK), given a specific bit, Log-Likelihood
Ratio (LLR) is used to determine the log value of the ratio between the probability
of being 0 and the probability of being 1.

10



Low-Density Parity-Check code

In (2.9), c is one bit of codeword at the output of the encoder and r is the
corresponding bit received by the decoder. In other words, r is the contaminated
value of c. Pr(c = 0) and Pr(c = 1) are the prior probabilities so both values are
equal to 0.5.

Pr(c1 = 0 | r1) = f(r1 | c1 = 0) · Pr(c1 = 0)
f(r1)

Pr(c1 = 1 | r1) = f(r1 | c1 = 1) · Pr(c1 = 1)
f(r1)

(2.9)

Take the ratio of the two probabilities. We obtain (2.10)

Pr(c1 = 0 | r1)
Pr(c1 = 1 | r1)

= f(r1 | c1 = 0)
f(r1 | c1 = 1) (2.10)

Where f(r | c = 0) and f(r | c = 1) are the Probability Distributed Functions, in
the AWGN channel, the normal density is 1√

2πδ , so the equation can be rewritten
as (2.11)

Pr(c1 = 0 | r1)
Pr(c1 = 1 | r1)

=
1√
2πδe

−(r1−1)2

2δ2

1√
2πδe

−(r1+1)2
2δ2

= e
2r1
δ2 (2.11)

Considering the channel modulation is BPSK, which transmits the value 0 as +1
and transmit value 1 as −1, another expression of (2.11) could be as following:

c1 = 0 =⇒ symbol = +1 =⇒ r1 = 1 + N(0, δ2)
c1 = 1 =⇒ symbol = −1 =⇒ r1 = −1 + N(0, δ2)

(2.12)

The conventional expression of likelihood ratio can be concluded as:

Pr(c1 = 0 | r1)
Pr(c1 = 1 | r1)

= e
2r1
δ2 (2.13)

Calculate the log value on both sides of the formula. Eventually, we obtain the
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expression of Log-Likelihood Ratio:

li = log Pr(ci = 0 | ri)
Pr(ci = 1 | ri)

= 2
δ2 · ri (2.14)

Message passing algorithm, which exploits Tanner Graph that explained in Chapter
2.1.1 is adopted by OAI LDPC implementation. The hardware could take advantage
of its recursive and iterative feature; thus, the parallelism of calculation helps to
optimise the total computation latency. Two types of LLR are presented:

1. Intrinsic LLR: Passed belief on the same edge

2. Extrinsic LLR: Passed belief came from other edges

Deriving from the topology of Tanner Graph, each check node can be considered
as a Single Parity Check (SPC) code. It eases the process for each check node and
bit node because beliefs passing on each edge are analysed separately. The left side
of the graph shown in Figure 2.6 contains Bit nodes and on the right side are all
Check nodes.

Several steps to complete the first iteration in Tanner Graph:

1. The first estimate li comes from the channel

2. All li pass from Bit node i to all neighbouring Check nodes

3. Estimates for Bit 1, l11, l13, l17, l19 are calculated at Check nodes c1, c3, c7, c9

4. Estimates pass from Check nodes back to neighbouring Bit nodes

5. The steps above are repeated in parallel for all nodes

After the first iteration, bit nodes start to pass the corresponding LLR alone to
the neighbouring edges by taking into account together with the intrinsic LLR and
extrinsic LLR. Channel LLR remains l1 then þm11 = l1 + l13 + l17 + l19 in which
l13, l17, l19 are extrinsic LLR and l1 are considered as intrinsic LLR in replacement
of l11. The same rule applied on other bit nodes, e.x. þm17 = l11 + l13 + l1 + l19.
Figure 2.7 shows the BN to CN operation.

As reported in Figure 2.8. The next iteration performs the same LLR passing
operation from Check nodes to Bit nodes. Each Check node receives from its
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Figure 2.6: Interconnection between bit nodes and check nodes

Figure 2.7: Bit nodes to Check nodes

neighbouring Bit nodes, calculates the corresponding LLR and transmit them back
in parallel. Intrinsic LLR is l11 that replaces the received estimate of the right edge
for each Check node.

2.3.1 Min-sum algorithm

Previous introduction of message passing algorithm reveals the fact that compu-
tation of LLR is sophisticated so that in hardware implementation it could be
deduced that plenty resources will be wasted to support the enormous amount
of calculation in case of strick demand on high throughput. Min-sum algorithm
provides an approximation method on passing effortlessly the LLR back and fourth.
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Figure 2.8: Check nodes to Bit nodes

Given an example of (3,2) code:

l1 = log Pr(c1 = 0 | r1)
Pr(c1 = 1 | r1)

l2 = log Pr(c2 = 0 | r2)
Pr(c2 = 1 | r2)

l3 = log Pr(c3 = 0 | r3)
Pr(c3 = 1 | r3)

(2.15)

Replace Pr(c1 = 0 | r1) by p1, then Pr(c1 = 1 | r1) is replaced by 1− p1, same rules
applied on l2 and l3, then the equations above become:

l1 = p1

1− p1
; l2 = p2

1− p2
; l3 = p3

1− p3
(2.16)

In (3,2) code, one parity bit protects the other two information bits. In SPC code,
one Check code is responsible for all connected message bits. In this respect, the
rules that will be listed below are valid also for general SPC code in the NR LDPC
decoder.

According to the relation among three codewords: c1 = c2 ⊕ c3 , it can be deduced
the (2.17)

P1 − (1− P1)
P1 + (1− P1)

= P2 − (1− P2)
P2 + (1− P2)

P3 − (1− P3)
P3 + (1− P3)

(2.17)
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Divide the numerator and denominator by P1, P2 and P3 respectively.

1− (1−P1)
P1

1 + (1−P1)
P1

=
1− (1−P2)

P2

1 + (1−P2)
P2

1− (1−P3)
P3

1 + (1−P3)
P3

(2.18)

Then the equation becomes:

1− e−lext,1

1 + e−lext,1
= 1− e−l2

1 + e−l2
· 1− e−l3

1 + e−l3
(2.19)

In order to express the conformity of each term, tanh function is adopted thanks to
its monotonous characteristics that for x < 0, tanh(x) < 0; for x > 0, tanh(x) > 0.

tanh(x) = ex − e−x

ex + e−x
= 1− e−2x

1 + e−2x (2.20)

The (2.20)can be re-expressed as:

tanh
A

lext,1

2

B
= tanh

A
l2
2

B
· tanh

A
l3
2

B
(2.21)

Function sgn() is able to replace the tanh() in our case of study because of its
strong monotonicity.

sgn(lext,1) = sgn(l2) · sgn(l3) (2.22)

The following (2.23) has interesting characteristics :

f(x) =
-----log tanh( |x|2 )

----- ; f−1(x) = f(x) (2.23)

Extrinsic log-likelihood ratio of one codeword can be expressed as the minimum
among the absolute value of other LLR. The algorithm digs the minimum absolute
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value of receiving LLR to be applied for the rest estimates as extrinsic. The second
minimum absolute value is served for the minimum absolute value itself.

|lext,1| = f(l2) + f(l3) ≈ f(min(|l2|+ |l3|))
≈ f(f(min(|l2|+ |l3|)))
≈ min(|l2|+ |l3|)

(2.24)

A significant advantage of the min-sum algorithm can be expected since it prevents
the message passing from being previously calculated. The structure of the LDPC
decoder can be implemented in a straightforward way which provides the possibility
of achieving a good decoding speed in favour of 5G technology.
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Chapter 3

Implementation of OAI
LDPC Decoder

OpenAirInterface(OAI) is a french non-profit consortium that provides advanced
software solutions for 5G wireless networks. They released a software emulation
solution for LDPC decoder using message passing and min-sum algorithm, of which
instructions and vectors exploit Advanced Vector Extension2 (AVX2) which Inter
processor supports. These instructions are Single Input Multiple Data instructions
(SIMD) that take vectors data type consisting of 4× 64 bits integer and 2× 64 bits.
The primary data type is integer of 8 bits, so there are 8 integers concatenated in
one vector. AVX2 instructions are able to perform operations on vectors in parallel,
thus accelerate the execution time effectively.

In the following subsections, main configurations and novelties in implementation
with respect to code structures and vector alignments are described in detail, and
then the code structure is illustrated block by block.

3.1 Supported configurations

Two base graphs are supported by the OAI LDPC decoder. According to the 3GPP
standard, BG1 is of size 46× 68, BG2 is of size 42× 52. All expansion factors listed
in Appendix A.2 are supported. Block size is the size of the message, and total size
codewords can be obtained by multiplying the column number of the base graph
by the expansion factor, e.g., BG1 has 68 codewords, considering Z = 384, then
actual codewords should be 68× 384 = 26112. Code rate 1/3 can be achieved if the
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block size is 8448 since 8448/26112 = 1/3.

Base Graph BG1 46x68 BG2 42x52
Block Size[bits] 3841~8448 192~3840
Code Rate R 1/3 2/3 8/9 1/5 1/3 2/3

Table 3.1: Configurations of OAI LDPC Decoder

Generally, BG1 is used for a high payload because of the code rate of 8/9, which
means the number of codewords is close to the number of message bits, fewer
parity bits are dedicated to protecting massages. On the other hand, BG2 supports
a smaller code block and a code rate down to 1/5, which means most parts of
codewords consist of parity bits that protect strongly message bits. The expansion
factor Z is determined by the equation shown is:

Zc = min
z∈Z

5
z >

m

Nb

6
(3.1)

To be noticed that in order to achieve different code rates and improve the perfor-
mance, rate matching is applied by means of puncturing and shortening.

In NR LDPC, before sending the encoded message into a channel, the first 2Zc bits
for BG1 are always punctured and will be considered as erasures by the decoder.
Thus code rate is increased. These 2Zc values are not transmitted but still received
by the decoder. Since they are “erasures”, their corresponding LLR is equal to zero,
and the decoder will manage to recover these punctured bits as if there were sent
into the channel. Moreover, the rightmost part of parity bits is punctured in case a
specific code rate is required. The puncturing technique has a negative impact on
performance because more erased bits are supposed to be decoded apart from the
erasures caused by the noise channel. However, more code rates can be supported.
Therefore the trade-off between performance and code rates to be supported stands.

Shortening happens only on message bits before encoding. A certain number of
zero are concatenated to the message bits to adapt the length. Since they are
determined to be zero, then their LLR will be high. Before being sent to the
channel, additional bits are removed from codewords. Shortening has a positive
impact on performance, and those removed bits are zeros. Therefore their high
LLR contributes to decoding. Two techniques are complementary in the aspect
of performance so that they are usually adopted together in favour of improve
performance and enrich the supported code rate.
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3.2 Top-level structure

Implementation of OAI LDPC decoder is based on message passing algorithm, thus
static buffers that store the input messages, output decoded messages, check node’s
data, bit node’s data, results of bit node operation to be passed to check node
buffer and results of check node operation to be passed to bit node buffer. Massive
data transferring among different buffers takes place within an indicative number
of iteration. Arithmetic and logic computations are done block by block. Results
of each computational block are stored in specific global buffers and passed to
corresponding buffers for computation of the next step by various buffer transferring
functions. Stop criteria can be either achieve the maximum iteration or pass the
parity check of check nodes. Two parity check functions take place soon after the
LLR updates at check nodes and bit nodes.

In the following, the list of all functions used by top-level function is shown:

1. llr2llrProcBuf

2. llr2CnProcBuf

3. cnProc

4. cnProcPc

5. cn2bnProcBuf

6. bn2cnProcBuf

7. bnProcPc

8. bnProc

9. llrRes2llrOut

10. llr2bitPacked

Functions are classified in Arithmetic and logic computation models or Buffer
transferring models. A summary of the LDPC decoder functions is reported in
Appendix A. In top-level function, the call sequence of these functions is shown in
the following chart:

Firstly, codewords are sent into the decoder after contaminated by noise; llrprofbuf
is the buffer that stores the input LLR. In order to start the first iteration, data is
copied into cnProcBuf. Then the function cnProc aims at calculating the new LLR
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Figure 3.1: Function flow of LDPC decoder

at check nodes, and this operation takes the input LLR as neighbouring believes
since that in the first iteration, there isn’t any previous belief transmitted back
from bit nodes. The results are stored in cnProfBufRes, namely the result of the
check node process. The same nomenclature is also adopted for bit node process
result buffer bnProcBufRes. Function cn2bnProcbuf copies the new believes from
buffer cnProcBufRes to buffer bnProBuf, where new LLRs are calculated from part
of bit nodes and stored in bnProBufRes. In parallel, a parity check of bit nodes
beliefs takes place. Even though in the code structure function bnProc anticipates
bnProcPc, there are no stop criteria for bit node parity check so they can be be
considered independent. In function bnProcPc, results are stored in buffer llrRes.
Later function bn2cnProcBuf transfers all beliefs on bit nodes back to check nodes.

After the first iteration, believes in check node buffers are recalculated again and
copied back to bit node buffer, repetitive operations valid for cnProc, cn2bnProcbuf,
bnProcPc, bnProc and bn2cnProcbuf, the following function cnProcPc evaluates
the result of check nodes’ believes and return the parity check result, in case
the parity check passed, it returns 0. It will jump out of loops, namely stop the
intermediate iterations and enter into the last iteration. Otherwise, the data is
passed back to cnProc buffer and repeat operations in function flow until the
maximum iteration reached or parity check passed.

The last iteration follows the same function flow, and the iteration counter is added
by one in the end if the parity check still didn’t pass. No more recursive LLR
computation is performed; from the return value of testbench, we can be informed
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that the current iteration number is less than the requirement. bnProcPc functions
store the LLR output of the current iteration once the stopping condition meets,
namely, the decoder has retrieved the original messages. Function llrRes2llrOut
transfers the currently decoded codewords to llrout buffer. Then they are converted
back to binary values using hard decisions.

To be noticed that the parameters of the decoder are packed in structure data type
using pointers. Before performing the first step shown in Figure 3.1, the decoder
is filled with proper parameters by the nrLDPC_init function, which initialize
and conform to the configuration of each function block, nrLDPC_init returns the
number of iteration which is passed to nrLDPC_decoder_core that carries out the
function flow. The snippet of topmost function is shown in the following:

Listing 3.1: The top-level function of the OAI LDPC Decoder
1 int32_t nrLDPC_decod(t_nrLDPC_dec_params∗ p_decParams , int8_t ∗ p_llr ,
2 int8_t ∗ p_out , t_nrLDPC_procBuf∗ p_procBuf ,
3 t_nrLDPC_time_stats∗ p _ p r o f i l e r )
4 {
5 uint32_t numLLR;
6 uint32_t numIter = 0 ;
7 t_nrLDPC_lut l u t ;
8 t_nrLDPC_lut∗ p_lut = &l u t ;
9 // I n i t i a l i z e decoder core ( s ) with c o r r e c t LUTs

10 numLLR = nrLDPC_init ( p_decParams , p_lut ) ;
11 // Launch LDPC decoder core f o r one segment
12 numIter = nrLDPC_decoder_core ( p_llr , p_out , p_procBuf , numLLR,
13 p_lut , p_decParams , p _ p r o f i l e r ) ;
14 re turn numIter ;
15 }

3.3 Arithmetic and logic computation models

In this chapter, each function block that belongs to the arithmetic and logic
computation class will be illustrated and explained in detail.

3.3.1 Check Node processing

Operation on check nodes is performed separately as illustrated in figure 2.7.
Current implementation maps CNs with the same BNs connected to it into groups,
namely, each CNs in one group is connected to only a small number of BNs. More
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details are reported in Appendix B, Table B.1. According to the min-sum algorithm,
the returned value from CN to neighbouring BNs is the overall sign value of all
received BN believes multiply by the minimum among absolute values of received
believes. Let qij be the value from BN j to CN i and Bi be the set of connected
BNs to the ith CN, and then the algorithm can be expressed:

rji =
Ù

jÍ∈Bi\j

sgn qijÍ min
jÍ∈Bi\j

|qijÍ | (3.2)

In the function cnProc, the CN process is performed group by group. In the snippet
below, the CN processing of BG1 for group 5 is reported.

Listing 3.2: BG1 processing for CNs with 5 connected BNs
1 // Process group with 5 BNs
2 const uint16_t lut_idxCnProcG5 [ 5 ] [ 4 ] =
3 {{108 ,216 ,324 ,432} , {0 ,216 ,324 ,432} ,
4 {0 ,108 ,324 ,432} , {0 ,108 ,216 ,432} ,
5 {0 ,108 ,216 ,324}} ;
6 i f ( lut_numCnInCnGroups [ 2 ] > 0)
7 {
8 // Number o f groups o f 32 CNs f o r p a r a l l e l p r o c e s s i ng
9 // Ce i l f o r va lue s not d i v i s i b l e by 32

10 M = ( lut_numCnInCnGroups [ 2 ] ∗ Z + 31)>>5;
11 bi tOf f se t InGroup = (lut_numCnInCnGroups_BG2_R15 [ 2 ]
12 ∗NR_LDPC_ZMAX)>>5;
13 // Set p o i n t e r s to s t a r t o f group 5
14 p_cnProcBuf = (__m256i∗) &cnProcBuf
15 [ lut_startAddrCnGroups [ 2 ] ] ;
16 p_cnProcBufRes = (__m256i∗) &cnProcBufRes
17 [ lut_startAddrCnGroups [ 2 ] ] ;
18 // Loop over every BN
19 f o r ( j =0; j <5; j++)
20 {
21 // Set o f r e s u l t s po in t e r to c o r r e c t BN address
22 p_cnProcBufResBit = p_cnProcBufRes + ( j ∗ bi tOf f se t InGroup )

;
23 // Loop over CNs
24 f o r ( i =0; i<M; i++)
25 {
26 // Abs and s i gn o f 32 CNs ( f i r s t BN)
27 ymm0 = p_cnProcBuf [ lut_idxCnProcG5 [ j ] [ 0 ] + i ] ;
28 sgn = _mm256_sign_epi8 (∗ p_ones , ymm0) ;
29 min = _mm256_abs_epi8 (ymm0) ;
30 // Loop over BNs
31 f o r ( k=1; k<4; k++)
32 {
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33 ymm0 = p_cnProcBuf [ lut_idxCnProcG5 [ j ] [ k ] + i ] ;
34 min = _mm256_min_epu8(min ,
35 _mm256_abs_epi8 (ymm0) ) ;
36 sgn = _mm256_sign_epi8 ( sgn , ymm0) ;
37 }
38 // Store r e s u l t
39 min = _mm256_min_epu8(min , ∗p_maxLLR) ;
40 // 128 in ep i8 i s −127
41 ∗p_cnProcBufResBit = _mm256_sign_epi8 (min , sgn ) ;
42 p_cnProcBufResBit++;
43 }
44 }
45 }

AVX2 instructions are fully exploited in the condition of casting pointers of process-
ing buffers from ∗int8_t to ∗__m256i and of setting the group to offset adequately,
to be mentioned that offset is based on the alignment of 32 bytes so that in each
innermost iteration 32 check nodes proceed in parallel.

Overall there are three loops in the code section, and the first loop looks over five
BNs connected to all CNs of group 5. Each BN address is given respectively, and
the pointer updates for the new iteration of the outermost loop. The second loop
looks over CNs bonded in 32 bytes; the total number of iterations in this loop can
be calculated by multiplying the number of CNs in the corresponding group by
the expansion factor Z, then add 31 ceil for value not divisible by 32. Innermost
loop iterates for calculating the minimum value of BNs’ LLR and their sign value.
The 32byte-aligned result is updated to the corresponding address outside the
innermost loop. After the completion of one set of CN, the variables ymm0 store
the value of the new CN set, in data type __mm256i, looks over again the rest
of BNs connected to it and performs updates until the extrinsic LLR has been
calculated. Results are stored in buffer cnProcBufRes.

3.3.2 Check Node parity check

Parity check is enabled in top-level function an by the define directive #define
NR_LDPC_ENABLE_PARITY_CHECK, Same as cnProc function, the 32-byte
alignment alone with computation parallelism is also exploited for parity check
since parity-check of CN happens only after BN process whose following function
transfers BN results to CN processing buffer, the p_cnProcBuf is the pointer to
where stores the latest LLR updated in BN process. A snippet of CN group 5 for
BG1 is shown in the following, M32 stands for the number of aligned CN, and
Mrem is the rest nodes that do not fit in alignment. ymm0 and ymm1 are LLRs
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after the BN process and CN process, respectively. The parity check operation is
straightforward. Firstly it iterates over all CN nodes and set the variable pcRes to
zero for each aligned CN vector, compute the parity check of neighbouring BNs and
concatenate their sign bits into data type int. Intermediate value pcRes updates for
each CN, outside the innermost loop, variable pcResSum computes the bit-wise OR
of each parity check result and keeps updating all CN that fit in 32byte-alignment.

For the rest CNs that are considered as reminders of modulo 32, an exceptional
loop is dedicated to performing parity check, but in the end, valid CN is kept, and
the redundancy is shifted out. pcResSum updates outside the loop as well. In line
1712 of the snippet, an if statement enables the parity check to quit once pcResSum
is higher than 0. This implementation saves the execution time significantly in
software emulation because early parity check is meant to fail, and it would cost
more time to finish a full check without the stopping criteria.

Listing 3.3: BG1 check node parity check for CNs of group 5
1 // Process group with 5 BNs
2 i f ( lut_numCnInCnGroups [ 2 ] > 0)
3 {
4 pcResSum = 0 ;
5 M = lut_numCnInCnGroups [ 2 ] ∗ Z ;
6 Mrem = M&31;
7 M32 = (M + 31)>>5;
8 // Set p o i n t e r s to s t a r t o f group 5
9 p_cnProcBuf = (__m256i∗) &cnProcBuf

10 [ lut_startAddrCnGroups [ 2 ] ] ;
11 p_cnProcBufRes = (__m256i∗) &cnProcBufRes
12 [ lut_startAddrCnGroups [ 2 ] ] ;
13 // Loop over CNs
14 f o r ( i =0; i <(M32−1) ; i++)
15 {
16 pcRes = 0 ;
17 // Loop over every BN
18 f o r ( j =0; j <5; j++)
19 {
20 ymm0 = p_cnProcBuf [ j ∗216 + i ] ;
21 ymm1 = p_cnProcBufRes [ j ∗216 + i ] ;
22 pcRes ^= _mm256_movemask_epi8
23 (_mm256_adds_epi8 (ymm0,ymm1) ) ;
24 }
25 // I f no e r r o r pcRes should be 0
26 pcResSum |= pcRes ;
27 }
28 pcRes = 0 ;
29 // Loop over every BN
30 f o r ( j =0; j <5; j++)
31 {
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32 ymm0 = p_cnProcBuf [ j ∗216 + i ] ;
33 ymm1 = p_cnProcBufRes [ j ∗216 + i ] ;
34 pcRes ^= _mm256_movemask_epi8(_mm256_adds_epi8 (ymm0,ymm1)

) ;
35 }
36 // I f no e r r o r pcRes should be 0
37 pcResSum |= ( pcRes&(0xFFFFFFFF>>(32−Mrem) ) ) ;
38 i f ( pcResSum > 0)
39 {
40 re turn pcResSum ;
41 }
42 }

3.3.3 Bit Node processing

BN processing is similar to CN processing in aspects of alignment and computation
parallelism. BNs are grouped in terms of the number of CNs connected to it. More
details are reported in Appendix B, table B.2.2. The operation in BN processing
can be written as (3.3). To be noticed that the BNs that are connected to a single
CN does not need to be considered in the BN processing since the qij = ∧j .

qij = ∧j +
Ø

iÍ∈Cj\i

rjiÍ (3.3)

In other words, each BN accumulates all neighbouring CNs’ LLR following by
addition, what stores in the result buffer to be copied back to CN process buffer
is the subtraction of summed value and the initial LLR came from the channel,
namely extrinsic value. The BN process is performed with less complexity than the
CN process. As shown in the snippet reported below. The first loop determines the
address offset of the BN result buffer and old entry where contains the addition
of LLRs outputted by the bnProcPc function. Looking over each BN, new entries
are calculated and updated to the result buffer of BN, repetitive operation is also
applied for other BN groups.

Listing 3.4: BN processing for BNs with 5 connected CNs
1 // Process group with 5 CNs
2 i f ( lut_numBnInBnGroups [ 4 ] > 0)
3 {
4 idxBnGroup++;
5 // Number o f groups o f 32 BNs f o r p a r a l l e l p r o c e s s i ng
6 M = ( lut_numBnInBnGroups [ 4 ] ∗ Z + 31)>>5;
7 cnOffsetInGroup = ( lut_numBnInBnGroups [ 4 ] ∗NR_LDPC_ZMAX)>>5;
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8 p_bnProcBuf = (__m256i∗) &bnProcBuf
9 [ lut_startAddrBnGroups [ idxBnGroup ] ] ;

10 p_bnProcBufRes = (__m256i∗)
11 &bnProcBufRes [ lut_startAddrBnGroups [ idxBnGroup ] ] ;
12 // Loop over CNs
13 f o r ( k=0; k<5; k++)
14 {
15 p_res = &p_bnProcBufRes [ k∗ cnOffsetInGroup ] ;
16 p_llrRes = (__m256i∗) &l l r R e s
17 [ lut_startAddrBnGroupsLlr [ idxBnGroup ] ] ;
18 // Loop over BNs
19 f o r ( i =0; i<M; i++)
20 {
21 ∗p_res = _mm256_subs_epi8 (∗ p_llrRes ,
22 p_bnProcBuf [ k∗ cnOffsetInGroup + i ] ) ;
23 p_res++;
24 p_llrRes++;
25 }
26 }
27 }

3.3.4 Bit Node parity check

Pointers of bnProcBuf is casting from ∗int8_t to ∗__m128i, instead of ∗__m256i,
namely only 16 bytes are packed and calculated while the rest 16 bytes are stored
in another intermediate variable. Both two parts are enlarged to 32bytes aligned
by adding additional 16 zeros at MSB. The reason for enlargement is to increase
the accuracy of total LLR. Saturation back to 8 bits takes place in the end for CN
processing, but a significant loss of sensitivity is not negligible. In the following
snippet, the BN process of group 5 is shown, in which there are two loops, the first
one iterates over all BN and stores separately the first 16 LLR and the second 16
LLR received from the CN process, then enlarge them to 32 bytes aligned. The
second loop looks over the other 4 CNs connected to the current BN, extracting and
enlarging the input LLR and adding them together group by group; ymmRes0 and
ymmRes1 recursively save the latest result and the intrinsic input LLR is added on
result buffer outside the second loop. Results are packed back to 8 bits long and
permuted in a specific way, eventually stored in buffer llrRes. bnProcPc function is
followed by bnProc, which is explained in the last sub-chapter. It is observed that
in the source code of current implementation the shown segment of code is repeated
30 times, with minor modifications on loop bounds that are increased depends on
the number of groups. From the perspective of all supported configurations, half
of the group numbers are not valid, although the functionality remains good. The
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counter idxBnGroup showed in line 4 self-increases only in case the if statement
in line 2 stands. In fact, there are 11 groups never been triggered. Group number
is increased to 15 if we enable BG1 only. Therefore, code cancellation has been
performed at both functions bnProc and bnProcPc, whilst the code functionality
is verified to be unchanged.

Listing 3.5: BN Parity Check for BNs with 5 connected CNs
1 // Process group with 5 CNs
2 i f ( lut_numBnInBnGroups [ 4 ] > 0)
3 {
4 idxBnGroup++;
5 M = ( lut_numBnInBnGroups [ 4 ] ∗ Z + 31)>>5;
6 cnOffsetInGroup = ( lut_numBnInBnGroups [ 4 ] ∗NR_LDPC_ZMAX)>>4;
7 p_bnProcBuf = (__m128i∗) &bnProcBuf [ lut_startAddrBnGroups
8 [ idxBnGroup ] ] ;
9 p_llrProcBuf = (__m128i∗) &l l rProcBu f

10 [ lut_startAddrBnGroupsLlr [ idxBnGroup ] ] ;
11 p_llrRes = (__m256i∗) &l l r R e s
12 [ lut_startAddrBnGroupsLlr [ idxBnGroup ] ] ;
13 // Loop over BNs
14 f o r ( i =0, j =0; i<M; i ++, j+=2)
15 {
16 ymmRes0 = _mm256_cvtepi8_epi16 ( p_bnProcBuf [ j ] ) ;
17 ymmRes1 = _mm256_cvtepi8_epi16 ( p_bnProcBuf [ j +1]) ;
18 // Loop over CNs
19 f o r ( k=1; k<5; k++)
20 {
21 ymm0 = _mm256_cvtepi8_epi16 ( p_bnProcBuf [
22 k∗ cnOffsetInGroup + j ] ) ;
23 ymmRes0 = _mm256_adds_epi16 (ymmRes0 , ymm0) ;
24 ymm1 = _mm256_cvtepi8_epi16 ( p_bnProcBuf [
25 k∗ cnOffsetInGroup +j +1]) ;
26 ymmRes1 = _mm256_adds_epi16 (ymmRes1 , ymm1) ;
27 }
28 ymm0 = _mm256_cvtepi8_epi16 ( p_llrProcBuf [ j ] ) ;
29 ymmRes0 = _mm256_adds_epi16 (ymmRes0 , ymm0) ;
30 ymm1 = _mm256_cvtepi8_epi16 ( p_llrProcBuf [ j +1]) ;
31 ymmRes1 = _mm256_adds_epi16 (ymmRes1 , ymm1) ;
32 ∗ p_llrRes = _mm256_permute4x64_epi64 (ymm0, 0xD8) ;
33 p_llrRes++;
34 }
35 }
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3.3.5 Hard-decision on output LLR

After data flows through decoding and transferring functions mentioned in Fig-
ure 3.1, one of the two stopping criteria meets. LLRs are considered reliable; namely,
the initial message bits are recovered. As explained in Chapter 2.3, the hard decision
takes place soon after the soft-out phase. There are three outmodes supported by
OAI LDPC decoder implementation:

1. nrLDPC_outMode_BIT: 32 bits per unit32_t output

2. nrLDPC_outMode_BITINT8: 1 bit per int8_t output

3. nrLDPC_outMode_LLRINT8: Single LLR value per int8_t output

Three outmodes are defined in enum data type and included by the structure of
parameters. On the top-level function, an if-else statement is used for selecting one
of these outmodes. The first outmode is selected by default which is shown in the
following snippet, the function takes the output LLR as input and the decoded
values as output. Operations are performed in __m256i whilst the data type of
decoded message is uint32_t. Constant vector constShuffle_256_epi8 adopts the
3GPP technical specification [18], every 32 bytes of output LLR is shuffled so as for
reordering. A sign bit of each 8 bits number of the intermediate variable inPerm is
extracted and packed together to form a 32 bits value for output. Since the module
uses BPSK modulation, for each 8 bits LLR, if it is positive, the decoded bit is
zero. Otherwise, the decoding result should be 1.

In the end, the remaining bits that do not fit in 32 bytes alignment will be decided
one by one.

Listing 3.6: Hard-decision function
1 s t a t i c i n l i n e void nrLDPC_llr2bitPacked ( int8_t ∗ out , int8_t ∗ l l rOut ,

uint16_t numLLR)
2 {
3 const uint8_t constShuf f l e_256_epi8 [ 3 2 ] __attribute__ ( ( a l i gned

(32) ) ) =
{7 ,6 , 5 , 4 , 3 , 2 , 1 , 0 , 15 , 14 , 13 , 12 , 11 , 10 , 9 , 8 , 7 , 6 , 5 , 4 , 3 , 2 , 1 , 0 , 15 , 14 , 13 , 12

4 , 1 1 , 10 , 9 , 8} ;
5 __m256i∗ p_llrOut = (__m256i∗) l l rOut ;
6 uint32_t ∗ p_bits = ( uint32_t ∗) out ;
7 __m256i inPerm ;
8 int8_t ∗ p_llrOut8 ;
9 uint32_t bitsTmp = 0 ;

10 uint32_t i ;
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11 uint32_t M = numLLR>>5;
12 uint32_t Mr = numLLR&31;
13 const __m256i∗ p_shuf f l e = (__m256i∗) constShuf f l e_256_epi8 ;
14 f o r ( i =0; i<M; i++)
15 {
16 inPerm = _mm256_shuffle_epi8 (∗ p_llrOut , ∗ p_shuf f l e ) ;
17 // Hard d e c i s i o n
18 ∗ p_bits++ = _mm256_movemask_epi8( inPerm ) ;
19 p_llrOut++;
20 }
21 i f (Mr > 0)
22 {
23 p_llrOut8 = ( int8_t ∗) p_llrOut ;
24 f o r ( i =0; i<Mr; i++)
25 {
26 i f ( p_llrOut8 [ i ] < 0)
27 {
28 bitsTmp |= (1<<((7− i ) + (16∗ ( i /8) ) ) ) ;
29 }
30 e l s e
31 {
32 bitsTmp |= (0<<((7− i ) + (16∗ ( i /8) ) ) ) ;
33 }
34 }
35 }
36 ∗ p_bits = bitsTmp ;
37 }

3.4 Buffer transferring models

In order to process with AVX2 instructions, the data needs to be aligned in a
particular manner. Starting address and offset for each processing is well organized.
In all cases of storing results into their corresponding result buffer, values cannot
be used by the following function whilst the condition of exploit AVX2 instructions
is satisfied. Considering the different grouping indices of BN and CN, buffer
transferring functions have to be introduced.

The speed-up in computation with AVX2 instructions is much more than the
exceptional wasted time on buffer transferring. However, this statement stands
only for software implementation. In hardware implementation, the drawback of a
sophisticated passing algorithm is mainly in the degeneration of latency. Graphical
representation of two types of memory copy is shown in Figure 3.2. The left one
is an inverted-circular copy, and the right one is a circular copy. Every edge in

29



Implementation of OAI LDPC Decoder

the BG is a circular shift of a Z × Z identity matrix. Therefore, depending on
the circular shift in the BG definition and value of expansion factor Z, the shift
parameters are defined diversely. All shift factors are stored in nrLDPC_lut.h in
array circShift_BGx_Zx_CNGx, where CNG is the CN group. A small segment
of LUT is reported in Appendix B.3.

Figure 3.2: Inverted-circular copy(left) vs. Circular copy(right)

Data transferring among buffers shares almost the same code structure since they
copy data in 8 bits. Moreover, the arrays are arranged depending only on the CN
group for convenience. In the first loop, bit offset and starting address for each
iteration are defined, function nrLDPC_circ_memcpy performs Z times single
copying in 8bits according to the shift factor. Loop bound of the innermost loop is
determined by the number of CN in one CN group. Every time one transferring
function is called, data in one buffer is copied in another one entirely without any
remaining bit.

Listing 3.7: Memory transferring function
1 // CN group with 5 BNs
2 bi tOf f se t InGroup = lut_numCnInCnGroups_BG1_R13 [ 2 ] ∗NR_LDPC_ZMAX;
3 f o r ( j =0; j <4; j++)
4 {
5 p_cnProcBuf = &cnProcBuf [ lut_startAddrCnGroups [ 2 ]
6 + j ∗ bi tOf f se t InGroup ] ;
7 f o r ( i =0; i<lut_numCnInCnGroups [ 2 ] ; i++)
8 {
9 idxBn = lut_startAddrBnProcBuf_CNG5 [ j ] [ i ] +

10 lut_bnPosBnProcBuf_CNG5 [ j ] [ i ] ∗Z ;
11 nrLDPC_circ_memcpy( p_cnProcBuf , &bnProcBufRes [ idxBn ] ,
12 Z , lut_circShift_CNG5 [ j ] [ i ] ) ;
13 p_cnProcBuf += Z ;
14 }
15 }
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Chapter 4

Stand-alone AVX2-based
synthesizable decoder model

In the last chapter, the code structure and main functions are illustrated and
explained in detail. OAI LDPC decoder aims at providing software solutions for
simulation. In the top-level function, several measurements are enabled through
conditional compilation. Macro #ifdef NR_LDPC_PROFILER_DETAIL enables
the function start_meas(), which obtains the current system time. It has been
inserted before and after each function in order to calculate the meantime of
execution. Moreover, macro #ifdef NR_LDPC_DEBUG_MODE occurs after
the call of each function, inside functions nrLDPC_debug_initBuffer2File and
nrLDPC_debug_writeBuffer2File are called in sequence to initialize the interme-
diate storage buffer and store the intermediate value into the buffer in favour of
validating the correctness of data output after each step of the decoding process.
The internal structure and implementation of these auxiliary functions will not be
discussed since it is out of the scope of this thesis. An example of how they are
called in top-level function is reported in Appendix B.4.

Vivado HLS 2018.2 was chosen to perform the high-level synthesis, namely, trans-
form the source code in C directly to HDL, however, the tool does not accept all
syntax of C-like code. The constraints are:

1. System calls are not supported

2. Dynamic memory usage is not supported

3. Recursive functions are not synthesizable
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4. Pointer casting, function pointers and arrays of pointers that point to additional
pointers are not supported

A stand-alone model of the decoder is extracted from the whole project, which also
contains the implementation of the encoder. Measurement functions are removed
accordingly since the code will be transformed in the format of HDL. Software-based
measurement is no longer required in the stand-alone model. Additionally, the
implementation of measurement functions is based on system calls, e.g. fprintf() for
writing the validation data into a buffer, sleep() for hanging up the current process
for a specified time. These functions are not synthesizable for the HLS tool, so they
are removed from the stand-alone model.

Figure 4.1 reports the errors relevant to the unsynthesizability of the stand-alone
decoder model. These errors can be divided into double or triple pointers, pointer
casting, array initialization, and memory copying.

Figure 4.1: Error report of stand-alone decoder model

4.1 Destruction of struct

Vivado HLS does not support an array of pointers or a structure of pointers
that point to another pointer. Namely, the synthesizer cannot interpret such code
structure in C-like languages to HDL language. In order to eliminate the constraint,
structures that contain pointers or double pointers must be broken up into single
pointers that are called and passed into functions separately. In the source code,
there are two structures of pointers defined in header file nrLDPC_types.h, and the
first structure includes all necessary pointers that point to global vectors that store
the corresponding address and offset depending on the LDPC decoder configuration.
This structure is firstly passed into function nrLDPC_init described in chapter
3.2 to specify the read-only vectors used by the configured decoder, and then it is
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passed into the decoder_core function, which contains the specific functionality of
decoding.

Listing 4.1: Pointer structure of LUT
1 typede f s t r u c t nrLDPC_lut {
2 const uint32_t ∗ startAddrCnGroups ;
3 /∗∗< Star t addre s s e s f o r CN groups in CN proc e s s i n g b u f f e r ∗/
4 const uint8_t ∗ numCnInCnGroups ;
5 /∗∗< Number o f CNs in every CN group ∗/
6 const uint8_t ∗ numBnInBnGroups ;
7 /∗∗< Number o f CNs in every BN group ∗/
8 const uint32_t ∗ startAddrBnGroups ;
9 /∗∗< Star t addre s s e s f o r BN groups in BN proc e s s i ng b u f f e r ∗/

10 const uint16_t ∗ startAddrBnGroupsLlr ;
11 /∗∗< Star t addre s s e s f o r BN groups in LLR proc e s s i n g b u f f e r ∗/
12 const uint16_t ∗∗ c i r c S h i f t [NR_LDPC_NUM_CN_GROUPS_BG1] ;
13 /∗∗< LUT f o r c i r c u l a r s h i f t va lue s f o r a l l CN groups and Zs ∗/
14 const uint32_t ∗∗ startAddrBnProcBuf [NR_LDPC_NUM_CN_GROUPS_BG1] ;
15 /∗∗< LUT of s t a r t addre s s e s o f CN groups in BN proc b u f f e r ∗/
16 const uint8_t ∗∗ bnPosBnProcBuf [NR_LDPC_NUM_CN_GROUPS_BG1] ;
17 /∗∗< LUT of BN p o s i t i o n s in BG f o r CN groups ∗/
18 const uint16_t ∗ l l r 2 l l rProcBu fAddr ;
19 /∗∗< LUT f o r t r a n s f e r r i n g input LLRs to LLR p roc e s s i ng b u f f e r ∗/
20 const uint8_t ∗ l l r 2 l l rProcBufBnPos ;
21 /∗∗< LUT BN p o s i t i o n in BG ∗/
22 const uint8_t ∗∗ posBnInCnProcBuf [NR_LDPC_NUM_CN_GROUPS_BG1] ;
23 /∗∗< LUT f o r l l r2cnProcBuf ∗/
24 } t_nrLDPC_lut ;

Pointers in the structure are global and independent one from another. Their
keyword ‘const’ reveals the invariability of the selected vectors for one execution of
the decoder so that they can be extracted from the structure by means of destruction
then redeclared both ‘const’ and ‘static’. Therefore vectors and parameters are
protected from access by other source files except for the decoder. Moreover, the
declaration and definition of both nrLDPC_init and decoder_core functions are
shifted to header files in favour of the authority of accessing static data. Pointers
are no longer passed into function bodies but called directly by sub-functions since
they are global from the perspective of the top-level decoder function. Reformed
pointers are reported in the following.

Listing 4.2: Destruction of pointers
1 s t a t i c const uint32_t ∗ startAddrCnGroups ;
2 s t a t i c const uint8_t ∗ numCnInCnGroups ;
3 s t a t i c const uint8_t ∗ numBnInBnGroups ;
4 s t a t i c const uint32_t ∗ startAddrBnGroups ;
5 s t a t i c const uint16_t ∗ startAddrBnGroupsLlr ;
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6 s t a t i c const uint16_t ∗ c i r c S h i f t [ 9 ] ;
7 s t a t i c const uint32_t ∗ startAddrBnProcBuf [ 9 ] ;
8 s t a t i c const uint8_t ∗ bnPosBnProcBuf [ 9 ] ;
9 s t a t i c const uint16_t ∗ l l r 2 l l rProcBu fAddr ;

10 s t a t i c const uint8_t ∗ l l r 2 l l rProcBufBnPos ;
11 s t a t i c const uint8_t ∗ posBnInCnProcBuf [ 9 ] ;

Additionally, pointers to processing buffers are contained by a structure that is
declared in the same file where pointers of LUT are defined. The main difference
between pointers to processing buffers and pointers to LUT is that buffers are
repeatedly read and written. Instead, configuration vectors are read-only and
addressed only once. LUTs are declared and initialized in a specific file so that
their corresponding pointer can address the needed vector and read the value. The
source code edited by the author does not initialize the buffers in the source code
of the decoder. Strangely they are initialized in the testbench file. Namely, the
pointers are wild pointers without calling the testbench. It would be understandable,
considering the original aim of the OAI implementation is to provide a reliable
test platform for the LDPC decoder. However, the C code design for HLS must
contain the entire functionality. Destruction of the following code leads to array
uninitialized error, which is further explained in chapter 4.3.

Listing 4.3: Pointer structure of processing buffers
1 typede f s t r u c t nrLDPC_procBuf {
2 int8_t ∗ cnProcBuf ; /∗∗< CN p roc e s s i ng b u f f e r ∗/
3 int8_t ∗ cnProcBufRes ; /∗∗< Buf f e r f o r CN pr oc e s s i ng r e s u l t s ∗/
4 int8_t ∗ bnProcBuf ; /∗∗< BN pr oc e s s i ng b u f f e r ∗/
5 int8_t ∗ bnProcBufRes ; /∗∗< Buf f e r f o r BN pro c e s s i ng r e s u l t s ∗/
6 int8_t ∗ l l r R e s ; /∗∗< Buf f e r f o r LLR r e s u l t s ∗/
7 int8_t ∗ l l rProcBu f ; /∗∗< LLR p roc e s s i ng b u f f e r ∗/
8 } t_nrLDPC_procBuf ;

The only solution is to initialize the buffers with a fixed size and destruct the
pointer structure, and then all buffer pointers are eliminated due to the pointer
constraints on HLS.

From the decoder’s point of view, processing buffers which store the processing and
result data are local. In other words, data stored in buffers are non-volatile during
the execution. All sub-functions access these local buffers for the aims of performing
partial operations of decoding. Temporary data is kept at the end of each step
and passed to the next step. Thus they can be considered as global buffers from
the top-level’s point of view. Therefore, buffers are initialized in top-level function
with keyword ‘static’ because we do not want other programs to control them.
Additionally, an FPGA possesses fix-sized local memories on board, namely BRAM
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or UltraRAM, where data of significant size is stored. In the current implementation
of the LDPC decoder, the size of buffer cnProcBuf, cnProcBufRes, bnProcBuf and
bnProcBufRes is 121344 bits, and the buffer llrRes and llrProcBuf are of size 27000
bits. Each of these buffers is distributed in static RAMs on board favouring other
HLS techniques on memory, which help achieve high throughput.

Listing 4.4: Initialization of processing buffers
1 s t a t i c int8_t buf_l l rProcBuf [ 2 7 0 0 0 ] ;
2 s t a t i c int8_t buf_cnProcBuf [ 1 2 1 3 4 4 ] ;
3 s t a t i c int8_t buf_cnProcBufRes [ 1 2 1 3 4 4 ] ;
4 s t a t i c int8_t buf_l l rRes [ 2 7 0 0 0 ] ;
5 s t a t i c int8_t buf_bnProcBuf [ 1 2 1 3 4 4 ] ;
6 s t a t i c int8_t buf_bnProcBufRes [ 1 2 1 3 4 4 ] ;

4.2 Pointer Casting

AVX2 solution is based on the parallelism of computation and data alignment
of 32 or 26 bytes. Two main difficulties of transforming the source code to the
synthesizable version: First, as an instruction set used for Intel processor, AVX2
is not supported by the HLS tool, so all AVX2 instructions must be rewritten in
nature C by keeping the same functionality. Second, pointer casting from/to int8_t
to/from __mm256i must be removed and replaced by passing arguments in the
same data type. This work is error-prone and time-consuming because addresses
and offsets of buffers need to be recalculated to satisfy data alignment.

4.2.1 AVX2 instructions in C language

Single Instruction Multiple Data(SIMD) mode is the characteristic of the AVX2
instruction set. Instead of performing an arithmetical or logical calculation in scalar,
it provides a parallel approach of performing multiple operations on aligned data.
Data type __mm256i consists of 256 bits, ‘i’ stands for the int data type. In order
to construct one data of __mm256i, there could have 4×long(64 bits), 8×int(32
bits), 16×short(16 bits) or 32×char(8 bits). AVX2 instruction can perform an
operation on one or more data of AVX2 data type with the same latency of the
corresponding scalar mode operation, namely accelerator of X depends on the
original data type listed above.

Synopsis and descriptions of instructions used in LDPC decoder source code are
listed in Appendix C.1.
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Figure 4.2: SIMD Mode vs. Scalar Mode

The conversion of instruction starts from the reconstruction of data type __mm256i,
which could be composed basing on various C nature data types. In this project,
the original message is of data type int8_t, which is supposed to be the base data
type for construct new __mm256i. The following code shows how the new data
type is defined.

Listing 4.5: New data type m256i for replacing __mm256i
1 typede f s t r u c t mm256i { int8_t data [ 3 2 ] __attribute__ ( ( a l i gned (32) ) )

; } m256i ;
2 typede f s t r u c t mm128i { int8_t data [ 1 6 ] __attribute__ ( ( a l i gned (16) ) )

; } m128i ;

By definition, m256i consists of one array composed of 32×int8_t with an alignment
of 32 bytes. One byte has the same size as int8_t. AVX2 instructions are rewritten in
functions adopting the new data type. In Appendix C.2 comparison between the new
synopsis of converted functions and their original version are reported. The method
of conversion is straightforward since each function performs a simple functionality.
As an example, the internal implementation of function mm256_min_epu8 is
given. Two data of m256i are passed by value into the function body, and the
function returns one m256i data. Inside the function body, temporary variable dest
is initialized by filling in all ‘0’. In the loop with 32 times iteration, each aligned 8
bits value is forced transformed to unsigned in order to perform the comparison,
the minimum value between a and b will be stored in the corresponding position of
dest. After the iteration of 32 times. All 256 bits packed in new data type m256i
are returned for further operations that receive the same data type. In summary,
for performing the conversion on the instruction group, the coherence of returned
value’s and input parameter’s data types has to be taken into account.

Listing 4.6: Example of new AVX2-like function
1 m256i mm256_min_epu8( m256i a , m256i b) {

36



Stand-alone AVX2-based synthesizable decoder model

2 m256i des t =
{{0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

3 0 ,0 , 0}} ;
4 i n t i ;
5 f o r ( i =0; i <32; i++){
6 i f ( ( uint8_t ) a . data [ i ] >(uint8_t )b . data [ i ] )
7 dest . data [ i ] = b . data [ i ] ;
8 e l s e
9 dest . data [ i ] = a . data [ i ] ;

10 }
11 re turn dest ;
12 }

By adopting the new functions and new data type passed through the chain of
executive functions, the remaining problem in CN and BN process is about packing
256 bits of aligned data into each iteration. The compiler is too stupid to interpret
pointer casting directives which aims at obtaining data of converted length by
directly manipulating the memory. Thus such operation needs to be performed
manually, namely create a new function to store the consecutive 32 bytes data into
an intermediate variable of data type m256i. Besides, in the case of the BN process,
data is fetched in the alignment of 16 bytes. Synopsis and description of functions
mentioned above are reported in Table 4.1.

Table 4.1: Additional functions in favour of synthesizability

The last function mm32_store_int8 replaces storing function which includes pointer
casting from ∗uint32_t to ∗int8_t. More details will be discussed in the next
chapter.

Listing 4.7: Pseudo-code of partial CN processing
1 f o r ( j =0; j <4; j++)
2 {
3 // Loop over CNs
4 f o r ( i =0; i<M; i++)
5 {
6 ymm0 = mm256_conv_int8(&buf_cnProcBuf [ o f f s e t_1 ] ) ;
7 sgn = mm256_sign_epi8 ( ones256_epi8 , ymm0) ;
8 min = mm256_abs_epi8 (ymm0) ;
9 // Loop over BNs

10 f o r ( k=1; k<3; k++)
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11 {
12 ymm0 = mm256_conv_int8(&buf_cnProcBuf [ o f f s e t_2 ] ) ;
13 min = mm256_min_epu8(min , mm256_abs_epi8 (ymm0) ) ;
14 sgn = mm256_sign_epi8 ( sgn , ymm0) ;
15 }
16 // Store r e s u l t
17 min = mm256_min_epu8(min , maxLLR256_epi8 ) ;
18 // 128 in ep i8 i s −127
19 tmp = mm256_sign_epi8_ori (min , sgn ) ;
20

21 }
22 }

Taking the above pseudo-code of one group of CN processing as a reference,
the main idea of enabling synthesizability is illustrated in Figure 4.3. Firstly,
32×int8_t data in CN processing buffer is extracted through new address and
offsets, mm256_conv_int8 packs the data into 32 bytes aligned vector. The rest of
nested loops 1-2 is performed without casting problem because all computations
are carried out in m256i. The result is passed to the first port of the starting
function of the second loop, the input value of the second port can be obtained by
adopting the same method. In conclusion, instead of performing pointer casting on
the processing buffer, data is fetched in an intermediate variable with the same
way of alignment.

Figure 4.3: Partial pseudo-flow of CN processing

4.2.2 Re-addressing in computation models

By analysing the repeated code segment in CN and BN processing, only one
fragment of data stored in the buffer is sent into the computational function for
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each iteration, 32 bytes vector in m256i in case of CN processing and two 16 bytes
vector in case of BN parity check processing because of sign extension in favour
of high data accuracy. The LDPC decoder is quasi-cyclic. Therefore LLRs of the
same CN or BN group are placed in order from the minimum group number to the
maximum number, i.e. starting address of CN group 3 is 0, starting address of CN
group 4 is 1152, and for CN group 5 the starting address is 8832. Take the listing 3.2
as an example. The variable M is the number of groups of 32 CNs, the intermediate
pointers p_cnProcBuf and p_cnProcBufRes are cast from int8_t to m256i, which
means the offset of new m256i pointers is 32 times the offset of original pointers.
In the previous chapter, we have discussed two types of additional functions whose
input is a pointer of int8_t and output is m256i. Hence intermediate pointers
can be dropped, and the packed data used by iterative computation is expressed
directly by the processing buffer itself with proper address. The following snippet
reports the synthesisable version of case group 5 in CN processing.

Initially, the constant two-dimensional vector lut_idxCnProG5 remains unchanged
even though these indices are served for pointer-cast buffers. Outside the first loop,
variable M and bitoffsetInGroup contain AVX2-based offset as well. These indices
are supposed to be weighted by 32 in order to fetch the correct data segment.

In the first loop, intermediate pointer p_cnProcBufResBit is eliminated, but the
offset is reserved for re-addressing the cnProcBufRes buffer in which the result is
stored.

In the second loop, ymm0 is obtained by adding the starting address of the CN
processing buffer and the offset with proper weight. To be noticed that the loop
bound is based on 256 bits aligned data. Thus the iteration counter i needs to be
weighted by a factor of 32. The same rule is valid also for lut_idxCnProG5. No
more modification is needed for the following functions in the current loop because
they all take m256i as inputs and returned values.

The third loop is similar to the second loop. Firstly the re-addressing of the CN
processing buffer is performed in order to extract the 32×8bits data to be stored
in ymm0. The rest of the functions remains the same. Outside the third loop, the
LLRs are calculated and stored in the result buffer. In the previous implementation,
the buffer cnProcBufRes is cast to 256 bits aligned and stores 256 bits in every
iteration. The carried out solution is storing the iterative result in one transitory
buffer of data type m256i, then the fourth loop is added in parallel with the third
loop, offsets are weighted by 32 except the starting address and the iterating counter
of the current fourth loop. Inside the loop, data is passed from the tmp buffer to
the CN result buffer one by one. HLS tool is able to flatten the loop and perform
the iterative operations in parallel. Additionally, Vivado HLS is capable of nesting
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the loops between which there is no directive in favour of pipelining.

Listing 4.8: Synthesizable CN processing function
1 // Process group with 5 BNs
2 const uint16_t lut_idxCnProcG5 [ 5 ] [ 4 ] =
3 {{216 ,432 ,648 ,864} ,{0 ,432 ,648 ,864} ,
4 {0 ,216 ,648 ,864} ,{0 ,216 ,432 ,864} ,
5 {0 ,216 ,432 ,648}} ;
6 i f ( lut_numCnInCnGroups [ 2 ] > 0)
7 {
8 M = ( lut_numCnInCnGroups [ 2 ] ∗ Z + 31)>>5;
9 bi tOf f se t InGroup = (lut_numCnInCnGroups_BG1_R13 [ 2 ]

10 ∗NR_LDPC_ZMAX)>>5;
11 f o r ( j =0; j <5; j++)
12 {
13 f o r ( i =0; i<M; i++)
14 {
15 ymm0 = mm256_conv_int8(&buf_cnProcBuf
16 [ lut_startAddrCnGroups_BG1 [ 2 ] +
17 lut_idxCnProcG5 [ j ] [ 0 ] ∗ 3 2 + i ∗32 ] ) ;
18 sgn = mm256_sign_epi8 ( ones256_epi8 , ymm0) ;
19 min = mm256_abs_epi8 (ymm0) ;
20 f o r ( k=1; k<4; k++)
21 {
22 ymm0 = mm256_conv_int8(&buf_cnProcBuf
23 [ lut_startAddrCnGroups_BG1 [ 2 ] +
24 lut_idxCnProcG5 [ j ] [ k ]∗32 + i ∗32 ] ) ;
25 min = mm256_min_epu8(min , mm256_abs_epi8 (ymm0) ) ;
26 sgn = mm256_sign_epi8 ( sgn , ymm0) ;
27 }
28 min = mm256_min_epu8(min , maxLLR256_epi8 ) ;
29 // 128 in ep i8 i s −127
30 tmp = mm256_sign_epi8_ori (min , sgn ) ;
31 f o r ( l =0; l <32; l++)
32 {
33 buf_cnProcBufRes [ lut_startAddrCnGroups_BG1 [ 2 ] +
34 ( j ∗ bi tOf f se t InGroup ∗32) + i ∗32+ l ] = tmp . data [ l ] ;
35 }
36 }
37 }
38 }

The same method is applied to the rest of CN processing, CN parity check, BN
processing, and BN parity check since they share the same basic implementation
principle. Another type of pointer casting appears in the hard decision function
nrLDPC_llr2bitPacked, where the 32 bits data is divided into 4×8bits and passed
sequentially into llrRes buffer. The original implementation is casting the result
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buffer of LLR to ∗uint32 then passing the result into it. The third function reported
in Table 4.1 takes the 32 bits value and the pointer which points to result buffer as
input, then perform bit shifting four times to obtain all independent 8 bits values
which are copied into destination in sequence. The function returns the updated
pointer for iterative operation.

4.3 Pointer constraints and memory copying

From experience gathered from previous solutions, passing by value is more reliable
than passing by reference due to massive constraints on pointers. Strange problems
may occur on pointers, and it is hard to find out why. Therefore, data buffers should
be expressed and passed in a straightforward way, avoiding as much as possible the
usage of pointers. Moreover, a pointer can ONLY point to one buffer. Synthesis
compiler is not able to determine which buffer it refers to in case the pointer
points to different buffers conditionally. On top-level function the pointer p_llrout
intended to either point to the output buffer if outmode is set to LLRINT8, or point
to llrProcBuf in order to use LLR processing buffer as a temporary output buffer.
The solution is to abandon the pointer and express the two cases by corresponding
buffers explicitly. The relevant code snippet is reported in Appendix C.4. The
next class of unsupported C type code is related to memory copying. The function
memcpy() in C library <string.h> is not supported by High Level Synthesis. One
straightforward solution is proposed:

Listing 4.9: New memory copy function
1 s t a t i c void memcpy_syn( int8_t s t r 1 [ ] , int8_t s t r 2 [ ] , uint16_t n)
2 {
3 uint16_t i ;
4 f o r ( i =0; i<n ; i++)
5 {
6 s t r 1 [ i ] = s t r 2 [ i ] ;
7 }
8 re turn ;
9 }

The new function replaces the unsupported version maintaining the same function-
ality. The code snippet reported in listing 3.7 is converted as follows:

Listing 4.10: New memory transferring function
1 bi tOf f se t InGroup = lut_numCnInCnGroups_BG1_R13 [ 4 ] ∗NR_LDPC_ZMAX;
2 f o r ( j =0; j <6; j++)
3 {
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4 f o r ( i =0; i<lut_numCnInCnGroups [ 4 ] ; i++)
5 {
6 idxBn = lut_startAddrBnProcBuf_CNG7 [ j ] [ i ] +
7 lut_bnPosBnProcBuf_CNG7 [ j ] [ i ] ∗Z ;
8 nrLDPC_circ_memcpy(&buf_cnProcBuf [
9 lut_startAddrCnGroups_BG1 [ 4 ] +

10 j ∗ bi tOf f se t InGroup + Z∗ i ] ,
11 &buf_bnProcBufRes [ idxBn ] , Z ,
12 lut_circShift_CNG7 [ j ] [ i ] ) ;
13 }
14 }

Since memory copying is performed only on int8_t, the reason for which interme-
diate pointer is eliminated is to keep the same code style as processing functions.
Updates of pointer for next iteration is replaced by the additional offset Z×i, which
keeps the functionality unchanged.

So far, all aspects of unsynthesizability have been discussed, starting from the
pointer structure, which is considered as double or triple pointers, to the pointing
casting issue which prevents the synthesis compiler from interpreting the C source
code. Moreover, pointers are removed as much as possible due to the massive
constraints and the conflict on a different object to which one pointer points. Source
code has been modified in order to support synthesizability, especially the new
address and offset of buffers without casting and the unsupported functions from
the C library. The code is completely synthesizable and is sent to Vivado HLS for
further acceleration from the perspective of hardware implementation.
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Chapter 5

Hardware acceleration via
High-Level Synthesis tool

HLS tool provides a powerful mechanism for automatically synthesizing software
implementation (C, C++ or SystemC) to FPGA hardware implementation. In order
to obtain an efficient implementation, namely a good trade-off between area and
throughput. Further optimization needs to be applied after the software design’s
synthesizability and functionality is verified. It has to be performed more code
modification according to a certain coding style, which guarantees high efficiency.
Moreover, the HLS tool provides a set of pragmas in favour of optimizing the design
without changing a lot in C source code.

The synthesis report provides an estimation of performance in terms of clock
frequency and latency of the whole design and each non-inline function block. The
hardware utilization from the perspective of different components of the whole
design is also reported in detail, i.e. Instance, memory, expressions etc. The available
hardware units are fixed on the specific FPGA board, which differs from the model
of the board. For a practical and efficient design, the selection of the board model
has to be taken into account because the different board contains different available
hardware basic units, which may bring limitation in the process of optimization.
For the current design, initially, no specific board is selected. The synthesis is
running on the default board of Vivado HLS 2018.2 because of the undetermined
loop bound, which prevents the synthesizer from generating the latency of the
loops. In this step, the priority is to specify statically a loop bound by inserting
the trip count directive or using the maximum loop bound alone with asserting
stopping criteria internally. More details will be introduced in the next chapter.
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Description of the reported basic units of a general Xilinx FPGA board is listed:

Table 5.1: Basic units on Xilinx FPGA

The first step of optimization is burst reading from off-chip memory and writing
to on-chip one since the input data read from the interface undergoes iterative
operations. On-chip memory(BRAM or URAM) can be partitioned in a way that
computation or copying can be performed in parallel. Thus the latency is reduced,
and performance is increased. Function memcpy is supported only when data is
copied from or to a top-level function argument specified with an AXI−4 interface.
In the top-level function of the current implementation, input LLRs of total size
26112 bits are read from off-chip memory through the m_axi port. The output
of the decoder has a totally of 8448 bits, and the local buffer is initialized for
temporarily keeping the output. Eventually, the decoder output is copied to the
output port on the interface. Input LLRs are not copied back because they will
not be used anymore after successful decoding.

Listing 5.1: Reading from Interface and writing on BRAM
1 int32_t nrLDPC_decoder ( t_nrLDPC_dec_params∗ p_decParams , int8_t p_l l r

[ ] , int8_t p_out [ ] ) // , t_nrLDPC_time_stats∗ p _ p r o f i l e r )
2 {
3 #pragma HLS INTERFACE s _ a x i l i t e port=return
4 #pragma HLS INLINE o f f
5 #pragma HLS INTERFACE m_axi depth=26112 port=p_l l r
6 #pragma HLS INTERFACE m_axi depth=8448 port=p_out
7 uint32_t numLLR;
8 uint32_t numIter = 0 ;
9 int8_t bu f f 0 [ 8 4 4 8 ] ;

10 int8_t bu f f 1 [ 2 6 1 1 2 ] ;
11 int8_t ∗p_buff0 = buf f0 ;
12 int8_t ∗p_buff1 = buf f1 ;
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13 memcpy( p_buff0 , p_out , 8448) ;
14 memcpy( p_buff1 , p_llr , 26112) ;
15 // I n i t i a l i z e decoder core ( s ) with c o r r e c t LUTs
16 numLLR = nrLDPC_init ( p_decParams ) ;
17 // Launch LDPC decoder core f o r one segment
18 numIter = nrLDPC_decoder_core ( buf f1 , buf f0 , numLLR, p_decParams ) ;
19 memcpy( p_out , p_buff0 , 8448) ;
20 re turn numIter ;
21 }

In the process of optimization, an unexpected issue that regards unsuccessful array
partitioning performed by Vivado HLS 2018.2. After discussion with the supervisor,
it was probably due to the unsupported feature of the HLS tool of the old version.
Hence the Vivado HLS 2018.2 was dropped, and instead, the newest version of the
HLS tool provided by Xilinx was adopted, namely Vitis 2020.2 on which the array
partitioning can be completed successfully.

As introduced in Chapter 3.4, in favour of performing grouped LLR calculation in
parallel, intermediate LLRs stored in buffers are mapped in a specific way. From the
perspective of memory transferring functions, since their scope is re-mapping data
in a certain aligned way which is predefined by the configuration of the decoder.
The loop bound is determined to be variable, and this feature is considered as a
disadvantage in adopting parallelism in execution. Besides, the long synthesis time
caused by a huge amount of LUT where stores corresponding parameters to be fed
into function blocks has to be considered into consideration. The first synthesis took
around 4 days to finish due to the huge amount of supported configurations. The
bottleneck in terms of time consumption in waiting for every synthesis has to be
broken through. In this respect, a set of experiments of discovering the relationship
between a number of supported parameters, whilst the other two parameters remains
fixed, and the corresponding synthesis elapsed time and hardware utilization. Table
5.2 reports the elapsed synthesis time for BG2, CodeRate = 1/3, different numbers of
supported expansion factor Z, neglecting the performance of various configurations.

Elapsed synthesis time and usage of FF and LUT are increased with the increasing
number of supported Z. The same feature is obtained from experiments of fixed Z,
fixed BG, various R and fixed Z, fixed R, various BG. In conclusion, for performing
effective experiments of hardware acceleration as many as possible within a certain
period of time, preferably the configuration is limited to a specific set of BG, R, Z
that helps reducing the synthesis time and determining the maximum latency. In
the following chapters, this approach is adopted and further discussed in favour of
the possible generalization of the LDPC decoder.
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Table 5.2: Synthesis time for different number of supported expansion factor Z

5.1 Optimization on memory transferring

5.1.1 Array partitioning

There are two kinds of RAM resources in FPGA, namely Block RAM (BRAM) and
Distributed RAM (DRAM). DRAM is synthesized by synthesis tools and realized
through multi-level cascade LUT that are far apart. Hence it is given the name
Distributed RAM. DRAM makes use of abundant and flexible LUT resources and
can be flexibly configured according to usage conditions. It is suitable for occasions
where RAM latency is not high. After all, it is not ’real’ RAM. In fact, it is also
real RAM physically, but not dedicatedly.

Then Block RAM is more ’professional’ compared to DRAM. BRAM is a dedicated
RAM block resource added to FPGA by manufacturers in addition to logic resources.
Compared with DRAM, the RAM block and logic resources have been specially
placed and routed so that BRAM has a high operating speed, a certain low latency
period, but a limited number of resources.

The limitation of BRAM is the number of ports. Generally speaking, there are two
types: single port and dual port. In a design that requires high throughput, the
limit on the number of ports may become a bottleneck because data can only be
read or write once or twice in one clock cycle. The solution is to divide the single
BRAM resource into multiple BRAM, which increases the total number of ports
effectively. Vivado HLS provides three types of array partitioning:

1. Block: The same number of consecutive elements of the original array are
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stored in a specified number of BRAM

2. Cyclic: The same number of interleaving elements of the original array are
stored in a specified number of BRAM

3. Complete: Elements of the original array is split individually, then stored in
registers

As shown in Figure 5.1, block array partitioning is suitable for operations on an
array that regularly read or write data with a specific interval in between. Cyclic
array partitioning is suitable for consecutive reading or writing from/to an array
since the interleaving structure allows accessing a serial of data stored in BRAMs in
parallel. Complete array partition breaks the BRAM storage and stores all elements
in the register. It suits arrays of small size due to the limited resources of FF on
FPGA.

Figure 5.1: Three types of array partitioning

For the current implementation, cyclic array partitioning with factor 32 is chosen
since the pseudo-AVX2 instruction performs byte by byte arithmetical and logical
computation on a total number of 32 bytes of data. The interleaving structure
allows access to each element within one clock cycle which theoretically increases
the performance by a factor of 32. As for memory transferring functions, without
array partitioning, only one LLR of 8 bits is copied from one buffer to another in one
clock cycle, which is less efficient due to the limitation on ports. In theory, 32 cyclic
partitioned arrays support 32×8 bits coping in one clock cycle. However, in actual
implementation, the performance is not as expected because of the constraints on
buffer alignment. More details will be discussed in chapter 5.1.3.
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It has been proved that Vivado HLS 2018.2 might encounter some unknown issues
that regard array partitioning. It could not successfully partition an array of large
sizes, so the project has been suspended for several weeks in order to find out a
solution. After discussed with supervisors, Vivado HLS 2018.2 was dropped and
the project was continued by using Vitis HLS 2020.2, which is the latest version of
the HLS tool also provided by Xilinx. The snippet reported in the following shows
the corresponding pragmas of cyclic array partitioning with a factor of 32.

Listing 5.2: Pragma of Array Partition
1 s t a t i c int8_t buf_l l rProcBuf [ 2 7 0 0 0 ] ;
2 #pragma HLS ARRAY_PARTITION v a r i a b l e=buf_l l rProcBuf
3 dim=1 f a c t o r=3 c y c l i c
4 s t a t i c int8_t buf_cnProcBuf [ 1 2 1 3 4 4 ] ;
5 #pragma HLS ARRAY_PARTITION v a r i a b l e=buf_cnProcBuf
6 dim=1 f a c t o r =32 c y c l i c
7 s t a t i c int8_t buf_cnProcBufRes [ 1 2 1 3 4 4 ] ;
8 #pragma HLS ARRAY_PARTITION v a r i a b l e=buf_cnProcBufRes
9 dim=1 f a c t o r =32 c y c l i c

10 s t a t i c int8_t buf_l l rRes [ 2 7 0 0 0 ] ;
11 #pragma HLS ARRAY_PARTITION v a r i a b l e=buf_l l rRes
12 dim=1 f a c t o r =32 c y c l i c
13 s t a t i c int8_t buf_bnProcBuf [ 1 2 1 3 4 4 ] ;
14 #pragma HLS ARRAY_PARTITION v a r i a b l e=buf_bnProcBuf
15 dim=1 f a c t o r =32 c y c l i c
16 s t a t i c int8_t buf_bnProcBufRes [ 1 2 1 3 4 4 ] ;
17 #pragma HLS ARRAY_PARTITION v a r i a b l e=buf_bnProcBufRes
18 dim=1 f a c t o r =32 c y c l i c

5.1.2 Fixing loop bounds

From the synthesis report, we can check the performance of each function and
the whole project. If the loop bound is variable, the synthesizer is not able to
determine how many clock cycles are required to finish. Thus, Vivado HLS reports
the latency as a question mark(?) instead of using exact values. The primary goal is
to determine the exact number of iteration by means of adding tripcount directives
or modifying the loop structure.

Firstly the tripcount directives are added. Taken the code section reported in Listing
4.10 as an example, for simplicity of reading, the function nrLDPC_circ_memcpy
is expressed explicitly in the code section where it is called. A minimum and
maximum loop bound is specified on the loop so that the synthesizer reports both
minimum and maximum latency bound depending on the specified loop bound
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Figure 5.2: Incomplete performance report due to variable loop bounds.

range. Moreover, tripcount has an impact only on reporting, without any effect on
the hardware implementation.

Listing 5.3: Tripcount directives for determine the bounds of loop
1 bi tOf f se t InGroup = lut_numCnInCnGroups_BG1_R13 [ 4 ] ∗NR_LDPC_ZMAX;
2 loop_bn2cnProcBuf_BG2_8 : f o r ( j =0; j <6; j++)
3 {
4 loop_bn2cnProcBuf_BG2_9 : f o r ( i =0; i<lut_numCnInCnGroups [ 4 ] ; i++)
5 {
6 #pragma HLS LOOP_TRIPCOUNT min=5 max=5
7 idxBn = lut_startAddrBnProcBuf_CNG7 [ j ] [ i ]+
8 lut_bnPosBnProcBuf_CNG7 [ j ] [ i ] ∗Z ;
9 loop_circ_memcpy_27 : f o r ( k=0; k<Z−circShift_BG1_Z384_CNG7 [ j ] [ i ] ; k++)

10 {
11 #pragma HLS LOOP_TRIPCOUNT min=1 max=384
12 buf_cnProcBuf [ lut_startAddrCnGroups_BG1 [4 ]+
13 j ∗ bi tOf f se t InGroup+Z∗ i+k ] =
14 buf_bnProcBufRes [ idxBn+k+
15 circShift_BG1_Z384_CNG7 [ j ] [ i ] ] ;
16 }
17 loop_circ_memcpy_28 : f o r ( k=0; k<circShift_BG1_Z384_CNG7 [ j ] [ i ] ; k++)
18 {
19 #pragma HLS LOOP_TRIPCOUNT min=0 max=383
20 buf_cnProcBuf [ lut_startAddrCnGroups_BG1 [4 ]+
21 j ∗ bi tOf f se t InGroup+Z∗ i+k+Z
22 −circShift_BG1_Z384_CNG7 ] =
23 buf_bnProcBufRes [ idxBn+k ] ;
24 }
25 }
26 }

Tripcount directives are specified on all loops of memory transferring functions.
Then the synthesis is run without neither array partitioning nor pipelining. The
performance report determines the minimum and maximum latency, but it has a
significant difference that is not supposed to exist. Through an analysis of the code
section reported in Listing 5.3, two loops are executed inside the nested outmost
loop, the loop bound of the first loop is Z - circShift_BG1_Z384_CNG7[j][i] whilst
the loop bound of the second loop is circShift_BG1_Z384_CNG7[j][i]. The total
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number of iteration is supposed to be Z no matter what the value of the circle
shift index is because these two loops are paralleled instead of nested. The loop
bounds determined by tripcount directive misleads the synthesizer from analyzing
the correlation between the paralleled loops. Besides, the reported latency of
functions nrLDPC_llrRes2llrOut and nrLDPC_llr2llrProcBuf are correct since
the method of memory copying is different from the other three functions where
nrLDPC_circ_memcpy and nrLDPC_inv_circ_memcpy are called. In conclusion,
tripcount directive is not well suitable for the determination of actual latency.

Table 5.3: Incorrect performance report of memory transferring functions

The remaining solution is to modify the loop structure in order that the loop bound
became fixed. The paralleled loops can be rewritten to be a single loop in which an
if-else statement controls conditional execution. The loop bound is explicitly set
to the maximum number of iteration, which is the fixed number of total iteration
depending on the expansion factor Z. Inside the if statement, one part of memory
copying is executed and inside the else statement, in order to keep unchanged the
functionality, the address offset is shifted back by circShift_BG1_Z384_CNG7[j][i]
since the iteration number is constantly increasing.

Listing 5.4: Modified function body that has fixed loop bound
1 f o r ( k=0;k<384;k++)
2 {
3 i f (k<circShift_BG1_Z384_CNG7 [ j ] [ i ] )
4 {
5 buf_cnProcBuf [ lut_startAddrCnGroups_BG1 [ 4 ]
6 +j ∗ bi tOf f se t InGroup+Z∗ i+k+
7 Z−circShift_BG1_Z384_CNG7 [ j ] [ i ] ]=
8 buf_bnProcBufRes [ idxBn+k ] ;
9 }

10 e l s e
11 {
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12 buf_cnProcBuf [ lut_startAddrCnGroups_BG1 [ 4 ]
13 +j ∗ bi tOf f se t InGroup+Z∗ i+k−
14 circShift_BG1_Z384_CNG7 [ j ] [ i ] ]=
15 buf_bnProcBufRes [ idxBn+k ] ;
16 }
17 }

Data of size 121344×8 bits are copied back and forth between CN buffers and BN
buffers, the same size data is written from LLR buffer to CN buffer, it could be
deduced that at least 242688 clock cycles are required for each function call in case
no optimization method was adopted.

5.1.3 Buffer alignments

By adopting the pipeline, the reading and writing operation can be overlappingly
performed from the second clock cycle so that an acceleration factor of 2 is achieved.
Array partitioning provides the possibility of copying 32 bytes of data in parallel. In
theory, it should have an additional acceleration factor of 32. However, in the actual
case, it is not able to perform the expected synthesis. Even though the array has 32
ports thanks to cyclic partitioning, it does 32 times read of 8 bits in parallel, and
one multiplexer is used to select one source data to be written to the destination
port instead of writing each read data in their corresponding destination. This issue
occurs due to the unsatisfied alignment in either the source buffer or destination
buffer. In order to perform reading/writing in parallel, it has to be assured that
the buffers have been aligned by the same factor of how memories are cyclically
partitioned. In some cases, the tool is not able to determine if the reading ports
or writing ports are aligned by the required factor. Thus a little trick of coding is
applied to clarify the demand to HLS.

To perform the alignment test, initially, the cycle memory copy and inverted cycle
memory copy functions are rewritten, as shown in listing 5.5.

Listing 5.5: Implementation of aligned memory copy functions
1 s t a t i c void nrLDPC_inv_circ_memcpy( int8_t a [ ] . int8_t b [ ] , uint16_t Z

, uint16_t s h i f t )
2 {
3 uint16_t k ;
4 int8_t a s s e r t ;
5 loop_func_1 : f o r ( k=0;k<384;k++)
6 {
7 a s s e r t =(k<s h i f t ) ? 1 : 0 ;
8 a [ k]=b [ Z∗ a s s e r t+k ] ;
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9 }
10 }
11 s t a t i c void nrLDPC_circ_memcpy( int8_t a [ ] . int8_t b [ ] , uint16_t Z ,

uint16_t s h i f t )
12 {
13 uint16_t k ;
14 int8_t a s s e r t ;
15 loop_func_2 : f o r ( k=0;k<384;k++)
16 {
17 a s s e r t =(k<s h i f t ) ? 1 : 0 ;
18 a [ Z∗ a s s e r t+k]=b [ k ] ;
19 }
20 }

If two arrays are both cyclically partitioned by a factor of 32, there are at least 32
BRAM in which several sets of 32 bytes data are stored separately. The constraint
of unrolling is the alignment of sequential data to be accessed, namely inside the
loop body of either nrLDPC_inv_circ_memcpy or nrLDPC_inv_circ_memcpy
reported in listing 5.5, the starting addresses of source buffer and destination
buffer are supposed to be aligned to 32, i.e. 0, 32, 64, etc. The expansion factor is
384, which is a multiple of 32. Therefore no matter what value is assigned to the
variable ‘assert’ port alignment is always satisfied. Another advantage of the coding
style is the fixed loop bound which enables the loop unrolling to be performed.
Considering the 256 bits alignment structure of AVX2 implementation, the loop
unrolling directive with factor 32 is applied on loop_func_1 and loop_func_2.

An additional address offset is passed to the memory copy functions in upper-layer
functions, which breaks the alignment on either destination buffer or source buffer.
According to the pseudo-code reported in listing 5.6, three cases are presented:

Listing 5.6: Generic case of how memcpy fuctions are called
1 f o r ( i =0; i <6; i++)
2 {
3 f o r ( j =0; j <8; j++)
4 {
5 Memcpy( buff_a [ idx0 ] , buff_b [ idx1 ] , parameter_0 , parameter_1 ) ;
6 }
7 }

1. Ideal case: Both idx0 (destination) and idx1 (source) are aligned by a factor
of 32

2. Real case: idx1 (source) is aligned by a factor of 32, whilst idx0 (destination)
is NOT aligned by a factor of 32
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3. Worst case: idx1(source) is NOT aligned by a factor of 32, whilst idx0 (desti-
nation) is aligned by a factor of 32

Unfortunately, the ideal case never meets in the current implementation since the
cycle shift factor sets a breakpoint at an arbitrary position in the memory section
of length Z×8 bits, the generic cyclic memory copy functions provides the universal
structure but offset passed to it gives a negative impact on the alignment and
naturally harms the performance.

Module nrLDPC_llr2CnProcBuf meets the “real case”, and it is called only once
during the execution of the LDPC decoder since it passes the input LLR into the CN
processing buffer without further operation. The module nrLDPC_bn2cnProcBuf
also meets the “real case”, but it is called for the times equal to the number of
iteration, namely at the end of each iteration, the LLR results computed in BN
processing are copied back in CN processing buffer for parity check. A modification
is necessary because of the inability to determine alignment from the perspective of
the synthesizer. Hence, the offset is shifted right for 5 bits and shifted back left for
5 bits. This trick guarantees the alignment in the mode that could be interpreted
by the HLS tool. The method introduced above is reported in the following:

Listing 5.7: Case of calling circle memory copy function
1 bi tOf f se t InGroup = lut_numCnInCnGroups_BG1_R13 [ 3 ] ∗NR_LDPC_ZMAX;
2 loop_cn2bnProcBuf_BG1_13 : f o r ( j =0; j <6; j++)
3 {
4 loop_cn2bnProcBuf_BG1_14 : f o r ( i =0; i<lut_numCnInCnGroups [ 3 ] ; i++)
5 {
6 #pragma HLS LOOP_TRIPCOUNT min=8 max=8
7 idxBn = startAddrBnProcBuf_CNG6 [ j ] [ i ] +
8 bnPosBnProcBuf_CNG6 [ j ] [ i ] ∗Z ;
9 s h i f t = lut_startAddrCnGroups_BG1 [ 3 ] +

10 j ∗ bi tOf f se t InGroup + Z∗ i −
11 circShift_BG1_Z384_CNG6 [ j ] [ i ] ;
12 nrLDPC_circ_memcpy(&buf_bnProcBuf [ s h i f t ] ,
13 &buf_cnProcBufRes [ idxBn ] , Z , lut_circShift_CNG6 [ j ] [ i ] ) ;
14 }
15 }

Circle shift index impacts the alignment of source buffer then the performance
meets the worst case, namely loop unrolling is not applied as expected. The worst
case fits the module nrLDPC_cn2bnProcBuf where the inverted circle memory
copy occurs. In this case, the source code is supposed to be modified, conforming
to the source buffer alignment requirement as much as possible. A sub-function for
storing transitory aligned data is proposed:
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Listing 5.8: Sub-function for buffer ports alignment
1 s t a t i c void mem_pass( int8_t a [ ] , int8_t b [ ] )
2 {
3 #pragma HLS INLINE
4 uint16_t k ;
5 trans_1 : f o r ( k=0;k<768;k++)
6 {
7 #pragma HLS PIPELINE I I=2
8 #pragma HLS UNROLL f a c t o r =32
9 a [ k ] = b [ k ] ;

10 }
11 }

The basic idea is passing the value to a transitory buffer whose starting address is 0,
then inverted cyclically copying data from the transitory buffer to the destination
buffer whose starting address is aligned. Finally, the ideal case meets at the second
phase. As for the first phase, redundant bits of size Z is passed to the transitory
buffer since the algorithm of the inverted circle memory passing function takes the
aligned starting address of the source buffer as input but copies the same size of
data with a certain shift index cshift as the actual starting address. In the example
shown in Figure 5.3, at the second phase of memory transferring, data of size
cshift×8 bits are copied consecutively from address Z of the transitory buffer to
the initial address of the destination buffer, then data of size (Z-cshift)×8 bits are
transferred sequentially from address cshift of transitory buffer to the same address
of the destination buffer, where is completely aligned.

In order to efficiently copy data from the source buffer to the transitory buffer,
constraints on HLS optimization have to be taken into consideration. The extra
copying is not able to be accelerated in case the starting address of the source buffer
is not aligned. Hence the copying operation is divided into two phases. During
the first one, non-aligned data are copied to the starting address of the transitory
buffer, and no optimization method could be applied except pipeline. The size of
the data is the subtraction of 32 and the remainder of starting address of the source
buffer divided by 32. Then the consecutive 2Z×8 bits data is aligned since the
starting address is already modified to the nearest 32-aligned value. For the second
phase, the proposed sub-function reported in listing 5.8 is called. In addition, the
HLS optimization directive is well applied because it perfectly meets the “real case”
where the source buffer’s address is aligned whilst the destination buffer’s address
does not. An unroll factor of 32 and pipeline is applied. The sub-function is also
inlined to achieve the best performance.

Listing 5.9: The case of calling inverted circle memory copy function
1 bi tOf f se t InGroup = lut_numCnInCnGroups_BG1_R13 [ 3 ] ∗NR_LDPC_ZMAX;
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Figure 5.3: Transitory buffer ensures port alignment

2 loop_cn2bnProcBuf_BG1_9 : f o r ( j =0; j <6; j++)
3 {
4 loop_cn2bnProcBuf_BG1_10 : f o r ( i =0; i<lut_numCnInCnGroups [ 3 ] ; i++)
5 {
6 #pragma HLS LOOP_TRIPCOUNT min=0 max=8
7 idxBn = startAddrBnProcBuf_CNG6 [ j ] [ i ] +
8 bnPosBnProcBuf_CNG6 [ j ] [ i ] ∗Z ;
9 s h i f t = lut_startAddrCnGroups_BG1 [ 3 ] +j ∗ bi tOf f se t InGroup+

10 Z∗ i − circShift_BG1_Z384_CNG6 [ j ] [ i ] ;
11 s h i f t _ r e s = 32 − s h i f t % 32 ;
12 shift_new = s h i f t >> 5 ;
13 shift_new = shift_new << 5 ;
14 shift_new = shift_new + 32 ;
15 idxBn = idxBn >> 5 ;
16 idxBn = idxBn << 5 ;
17 trans_3 f o r ( s =0; s <32; s++)
18 {
19 #pragma HLS PIPELINE
20 i f ( s < s h i f t _ r e s ) {
21 buff_tran [ s ] = buf_bnProcBufRes [ s h i f t + s ] ;
22 }
23 }
24 mem_pass(&buff_tran [ s h i f t _ r e s ] ,
25 &buf_bnProcBufRes [ shift_new ] ) ;
26 nrLDPC_inv_circ_memcpy(&buf_bnProcBuf [ idxBn ] ,
27 &buf_tran [ 0 ] , Z , lut_circShift_CNG6 [ j ] [ i ] ) ;
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28 }
29 }

5.1.4 Results from High-Level Synthesis report

In the last chapter, three cases of memory transferring function and their corre-
sponding code modification are reported. Even though the ideal case never meets
in stand-alone circle memory copy modules, in the proposed solution of worst
case, the ideal case is achieved alone with certain drops in performance due to the
complicated implementation. Taking group 6 of the CN group as an example, the
comparison among three cases is listed:

Table 5.4: Performance and hardware utilization reports of three cases(CN Group
6)

The latency of the real case is 16 times less than the original implementation, whilst
the utilization of FF is approximately increased by a factor of 10, and the utilization
of LUT is roughly increased by a factor of 20. As for the worst case, after performing
the modification of implementation, the performance increases by a rough factor of
5. However, the utilization of FF and LUT is increased approximately by a factor
of 10 and 28, respectively. The initiation latency(II) of the real case is optimally
dropped to 2 since the calculation of the new address takes one additional clock
cycle. The II value of the worst case is higher than expected under the condition
that the outermost loops cannot be pipelined. The final result can be considered
an unroll factor of 5 applied on the inverted circle memory copy module without
pipelining, which is the bottleneck of both performance and resource among all
memory transferring functions.
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Table 5.5: Original functions vs. Optimized functions

Table 5.5 reports the initial and optimized performance and resource utilization
of memory transferring functions. We can see that the performance is dramat-
ically optimized, with an acceleration factor of approximately 30× for module
llr2CnProcBuf and Bn2CnProcBuf, the acceleration factor of 18× for module
llr2llrProcBuf and llrRes2llrOut since their implementation is independent of the
other three modules. However, the module Cn2BnProcBuf remains the bottleneck
even after acceleration because of the unalignment on the source buffer. It eventually
obtains 7× better performance and a dramatic increase in resources.

5.2 Parallelism of Computation functions

The optimization of computation functions is straightforward since the buffers are
already cyclically partitioned with a factor of 32, which has the exact alignment
with pseudo AVX2 instructions. Keeping the current implementation of LLR
computation, an efficient hardware implementation can be obtained through loop
unrolling and pipelining.

The reason for which the current configuration(BG1, R = 1/3, Z = 384) is selected
is that the quantity of computation is the maximum among all supported configura-
tions, the upper bound of performance is obtained by adopting such configuration.
Then the LDPC decoder module can be generalized to support more configura-
tions without affecting the hardware implementation of the core computational
sub-module.
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5.2.1 Loop unrolling

The Loop unrolling technique is widely adopted in the memory transferring function,
where a fixed number Z or 2Z of loop bound is defined. The unrolling factor has to
be conformed with the number of available ports on the operated buffer. Otherwise,
the loop cannot be flattened for generating indicated number of copies. The same
partitioning factor 32 suits perfectly the optimization of computation functions
since their core computational unit performs parallel operations on aligned data of
256 bits. The maximum loop bound among all pseudo AVX2 functions is 32. Hence
the full unrolling on the loops inside these sub-functions can be performed. In the
following snippet of code, an example of unrolling directive’s usage is shown.

Listing 5.10: Loop unrolling applied on pseudo AVX2 functions
1 m256i mm256_min_epu8( m256i a , m256i b) {
2 #pragma HLS INLINE
3 m256i des t =

{{0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,
4 0 ,0 , 0}} ;
5 i n t i ;
6 loop_intrin_min : f o r ( i =0; i <32; i++)
7 {
8 #pragma HLS UNROLL
9 i f ( ( uint8_t ) a . data [ i ] >(uint8_t )b . data [ i ] )

10 dest . data [ i ] = b . data [ i ] ;
11 e l s e
12 dest . data [ i ] = a . data [ i ] ;
13 }
14 re turn dest ;
15 }

The structured array a, b and the intermediate variable dest are automatically
partitioned by the HLS tool. Their elements are respectively divided into 32
individual data stored in registers. Therefore there is no port limitation. The loop
can be completely unrolled, generating 32 copies and finishing the execution within
one clock cycle, whilst the same factor of unrolling expands the resources utilization.

5.2.2 Loop pipelining

The implementation of computation functions is through several nested loops
that iterate through either CN nodes or BN nodes and successively their neigh-
bourhood nodes. The HLS tool provides loop pipelining, which allows the next
iteration to be started before the previous iteration finished. In order to perform
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pipeline on the outermost loop, its’ inner loops are flattened automatically, namely
they have to be completely unrolled. Considering the code example of the cn-
Proc module shown in listing 5.10, in Chapter 3, the variable which stores the
offset of the result buffer is already substituted into the innermost loop. Therefore
loop_cnProcBG1_8 and loop_cnProcBG1_9 are perfectly nested. HLS tool takes
advantage of this code structure because the additional clock cycle to enter the
loop_cnProcBG1_9 is skipped so that the two outermost loops are bind together
in case loop_cnProcBG1_9 is pipelined, the loop bound of the new outermost
loop becomes 5×M. For an imperfect nested loop, which is loop_cnProcBG1_9
and loop_cnProcBG1_10 due to the existed three directives in between, when
pipelining the loop_cnProcBG1_10, additional cycles are taken to enter and exit
the loop, which increases the latency and decline the overall throughput. Since the
pseudo AVX2 instructions are completely unrolled, generating more copies of these
instructions increases the utilization of resources but improves the throughput
effectively. Pipelining is supposed to be applied on loop_cnProcBG1_9 for the
best performance because pipelines loop_cnProcBG1_10 results in an unsuccess-
ful pipeline of the outermost loop. There are generated four copies of function
mm256_conv_int8 and mm256_min_epu8, five copies of mm256_sign_epi8 in
the flattened loop loop_cnProcBG1_9. The dependence directive helps determine
the data dependencies among operations from different iterations and generate the
correct logic control unit in hardware to avoid dependency violation.

Additionally, the loop_cnProcBG1_11 is automatically unrolled even without the
HLS directive because the loop is parallel to loop_cnProcBG1_10, which is the
inner loop of the pipelined loop. According to the alignment rule, the memory
copying operation is considered an ideal case since the starting address of both
source buffer and destination buffer is aligned to 32.

Listing 5.11: Optimization example of cnProc module
1 loop_cnProcBG1_8 : f o r ( j =0; j <5; j++)
2 {
3 loop_cnProcBG1_9 : f o r ( i =0; i<M; i++)
4 {
5 #pragma HLS PIPELINE I I=4
6 #pragma HLS LOOP_TRIPCOUNT min=0 max=216
7 ymm0 = mm256_conv_int8(&buf_cnProcBuf
8 [ lut_startAddrCnGroups_BG1 [ 2 ] +
9 lut_idxCnProcG5 [ j ] [ 0 ] ∗ 3 2 + i ∗32 ] ) ;

10 sgn = mm256_sign_epi8 ( ones256_epi8 , ymm0) ;
11 min = mm256_abs_epi8 (ymm0) ;
12 loop_cnProcBG1_10 : f o r ( k=1; k<4; k++)
13 #pragma HLS DEPENDENCE true i n t e r
14 {
15 ymm0 = mm256_conv_int8(&buf_cnProcBuf
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16 [ lut_startAddrCnGroups_BG1 [ 2 ] +
17 lut_idxCnProcG5 [ j ] [ k ]∗32 + i ∗32 ] ) ;
18 min = mm256_min_epu8(min , mm256_abs_epi8 (ymm0) ) ;
19 sgn = mm256_sign_epi8 ( sgn , ymm0) ;
20 }
21 min = mm256_min_epu8(min , maxLLR256_epi8 ) ;
22 tmp = mm256_sign_epi8 (min , sgn ) ;
23 loop_cnProcBG1_11 : f o r ( l =0; l <32; l++)
24 #pragma HLS UNROLL
25 {
26 buf_cnProcBufRes [ lut_startAddrCnGroups_BG1 [ 2 ] +
27 ( j ∗ bi tOf f se t InGroup ∗32) + i ∗32+ l ] = tmp . data [ l ] ;
28 }
29 }
30 }
31 }

Functions can be inlined in favour of merge the logic with the logic of the surrounding
functions, generally inlining small functions may optimize the performance and the
area. Table 5.6 reports the improvement of performance while inlining the pseudo
AVX2 instructions.

Table 5.6: Impacts of inlining functions

In summary, computation functions share a similar code structure which is nested
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loops with pseudo AVX2 instructions inside. The critical work is to change the
outermost loop into a perfect loop. Modification on source code is relatively more
minor than on memory copying functions. Directives provided by HLS assures the
efficient optimization of hardware implementation without massive modification on
software-based code. While considering the generalized computational module, the
loop bound of the second outermost loop becomes variable since the M is determined
by the code rate and expansion factor of the decoder. The HLS performance report
provides the maximum latency among all available configurations. Accordingly, the
loop bound can be set to the maximum value and use the if statement to execute
the loop body for indicated times conditionally. This proposed solution results in
additional hardware resources for storing configuration parameters and performing
the selection. However, the performance of pipeline will not be affected.

5.3 Results summary

So far the optimization method has been presented, starting from the array partition-
ing and alignment of starting addresses which assure in maximum the parallelization
of memory copying to the loop unrolling and pipelining for computational mod-
ules. For the current implementation, the HLS tool cannot optimize more through
directives, and further optimization is possible to be obtained by modifying the
algorithm or generalizing the sub-functions. The result of final performance and
resources utilization is reported in the following table.

The optimized module obtains an acceleration factor of 24× in terms of latency,
precisely the most significant value of acceleration factor belongs to module cnProc
whose performance is increase by around 55 times, even though it remains to
be the critical module among all computation functions. To be noticed that the
initial report was not based on a module without any HLS optimization directives.
The Vitis HLS 2020.2 performs automatically specific optimizations by default, i.e.
pipelining or array partitioning for buffers with small sizes. As for the resource
usage, the BRAM doubles because of array partitioning; buffers with relatively
small sizes are partitioned by the same factor of 32 in order to achieve the best
performance. DSP is rarely used because most of the computation is performed on
integer, which is done through LUT instead of DSP that dedicates more to floating
point computation. Usage of LUT is almost quadruple the initial one due to the
loop unrolling. Copies of basic sub-functions occupy additional space on FPGA and
result in better performance. The most critical function is bn2cnProcBuf which
copies data from buffer bnProcBufRes to buffer cnProcBuf. The usage of FF and
LUT is increased roughly by a factor of 5 and 12, respectively, whilst the latency
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obtains an acceleration factor of 7× only. The current optimization method for
solving buffer transferring with an unaligned starting address of the source buffer
may not be optimum. Extra resources are wasted in plenty of redundant copies of
inlined sub-functions that can be allocated only one copy in the Register Transfer
Level (RTL) instance since the ports of arrays are limited, and the functions are
grouped by the number of BN connected to CN nodes.

Table 5.7: Comparison of performance and resources utilization between initial
module and optimized module

Table 5.8: Comparison of Execution time between proposed solutions

In addition, the comparison between the current solution and the previous solution,
which focused on another implementation of LDPC decoder written in CUDA code,
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the performance is 24× times better than the final solution of CUDA code.
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Chapter 6

Future work

Despite the fact that the current result is better than the previous ones, the
synthesis report of Vitis HLS is only an estimation of actual implementation on
FPGA. Due to the extremely long time of synthesis after all optimization directives
are applied on the source code, around one day of time is elapsed to finish the
synthesis. The further optimization is terminated because of the time-consuming
issue. However, the current result reveals that the AVX2 implementation of the OAI
LDPC decoder is a suitable starting module for FPGA. The next step will be looking
through the whole module and functionalize the repetitive operations of either
computational functions or memory transferring functions. The HLS optimization
pragma ALLOCATION restricts the number of RTL models of the called function,
containing the same structure for all CN/BN groups. These operations MUST be
performed in sequence since the port number is limited. A more prominent factor
of array partitioning will not be considered because resource utilization becomes
the bottleneck. A reasonable trade-off is obtained by unifying the function and
reducing the resources until it fits in one Super Logic Region(SLR) of the current
selected board ALVEO u280 on which three SLRs are available.

From the report shown above, the utilization of LUT exceeds the capacity on one
SLR, which means that the RTL model occupies only two available SLR while
wasting the third one. If the usage of LUT could be reduced to less than 434,568,
the board will be capable of executing three decoder modules in parallel, which
obviously will increase the throughput by a factor of 3. Moreover, the current
implementation has the code structure on the top-level function, as shown in
Figure 6.2.
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Figure 6.1: HLS report of the final implementation

Potential DATAFLOW could be applied to the top-level function. However, sev-
eral requirements should be satisfied in order to perform a successful dataflow
optimization.

1. Dataflow should be inside a loop body, and the loop condition is a positive
numerical constant or constant function argument

2. Latency of each sub-function should be approximate without a huge difference

3. Loops without neither multiple exit conditions nor feedback between tasks

The stopping criteria adopted by the current implementation prevents the dataflow
from performing since the parity check result is checked after each iteration for
deciding if the following iteration is necessary. The removal of stopping criteria
sets the fixed iteration bound for the decoder, but in the case of a channel with
high SNR, the throughput will be decreased since the needed iteration number is
less than the critical case. However, it is possible to perform further analysis of the
current algorithm to see the possibility of adopting dataflow optimization.

In recent years, an AVX-512 based software decoding for LDPC codes has been
proposed [19], which utilizes 512 bits aligned structure for iterative LLR computation
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Figure 6.2: Structure of top-level function

and data transferring between buffers. Considering the AVX2 performance on FPGA,
it can be deduced that AVX-512 is the potential to be a better solution since the
parallelization is further applied.
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Chapter 7

Conclusion

This work adopts the AVX2 solution of quasi-cyclic LDPC decoder for exploring
the adaptability on FPGA by utilizing the High-Level Synthesis tool provided
by Xilinx, and the main goal is solving the unsynthesizability issue of the source
code, which is based on AVX2 instructions for Intel processor, this module does
not fit in HLS tool because the dedicated instruction set is not supported. Thus
several modifications are applied to the source code to guarantee synthesizability.
Specifically speaking, AVX2-based instructions are explicitly rewritten in C while
keeping the same functionality. Accordingly, the pointer casting issue is resolved by
unifying the single data type of which all processing buffers perform computational
operations. Besides, the usage of pointers is effectively reduced since the pointer
may result in unknown errors while running synthesis. Source code of sub-functions
is massively modified while maintaining the top-level structure.

After the code becomes synthesizable, Vivado HLS 2018.2 is initially chosen to
perform high-level synthesis. Due to the inability of partitioning arrays, the applied
tool is shifted to Vitis HLS 2020.2 that provides a more powerful synthesis ability.
Optimization methods are applied in two groups, namely computation functions’
group and memory transferring functions’ group, starting from the array partition-
ing, which is fundamental for exploiting parallelism in either computation modules
or memory transferring modules. Then the optimization of the two groups is per-
formed separately. The most critical function in the memory transferring group is
the cn2bnProcBuf which utilizes the inverted circle memory copy whose starting
address of destination buffer is port-aligned whilst the starting address of source
buffer is not port-aligned. HLS tool cannot effectively unroll the loop and exploit
the parallelism. The proposed modification decreases the latency by a factor of 5,
but it also increases the resources utilization by a factor of approximately 15. Other
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Conclusion

memory transferring functions are effectively optimized in terms of performance.

The computation functions share a similar code structure. Therefore, the opti-
mization method applied to them is straightforward. Completely unroll the loops
in converted AVX2 instruction enables the second outermost loop in each com-
putational module to be pipelined, and in consequence, the best performance is
obtained based on the characteristic of AVX2 instructions that put constraints on
the maximum bits (256 bits) of parallelism.

The final performance and resources utilization are obtained from the HLS report.
The usage of BRAM is 2× more than the un-optimized module and the usage of
LUT is 4× more, while the DSP remains almost the same percentage of utilization
and the number of FF is only 1.5× more. The HLS performance report shows
an acceleration factor of 24× compared to the original model, and the same 24×
could be obtained while comparing to the previous work based on CUDA code.
However, due to the long synthesis execution time, the generated RTL model is not
exported and place on the real board. The analyzed data on the HLS report is just
an estimation of the final performance. In addition, Two references are taken for
comparison: the software emulation result of AVX2 solution running at 3.2GHz,
which is 0.257ms, and the GPU solution is 0.107ms. The AVX2 solution is still
8× better than the current FPGA implementation since the clock frequency is
higher, but in terms of an trade-off between energy consumption and throughput,
the FPGA implementation is more energy-efficient compared to the AVX2 solution.
This characteristic will be proved in the future work. In addition, the GPU model is
the best because of the massive repetitive simple computations on the LLR, which
is done better on GPU and relatively worse on CPU. However, the previous work
demonstrates that the GPU model does not fit well in the FPGA implementation.
In any case, the software implementation of the OAI LDPC decoder is considered
to be a good model for FPGA.
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Appendix A

Appendix A reports several configurations and software emulation results of NR
LDPC code.

A.1 Expansion factors in NR LDPC

According to technical specifications released by 3GPP, the expansion factor Zc

can be obtained by the equation (2.1), the detailed factors are listed in Table A.1

Zc = a× 2j (A.1)

Table A.1: Indices of expansion factor

A.2 Zc table of 3GPP standard

The full list of supported configurations of expansion factors are reported in
Table A.2, provided by 3GPP [20]

69



Table A.2: Lifting factor Zc table in 5G NR

A.3 BER vs SNR

The performance graph is obtained from the OAI LDPC technical report that
shows the performance of BG1 with the largest block size of B = 8448 and the
highest code rate R = 8/9. Since the current implementation transmits only one
block into testbench in each iteration, the Block Error Rate(BLER) is equal to
BER. It could be observed that the performance gap is only about 0.3 dB if 50
iterations are used compared to the reference performance provided by HUAWEI.
However, for 5 iterations, there is still a significant performance loss of about 2.3dB
at BLER 10−2.

Figure A.1: BLER vs. SNR, BG2, Rate = 1/5, max iteration = 50, B= 1280
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Appendix B

Appendix B reports the detailed implementation of the OAI AVX2-based LDPC
decoder and its corresponding synthesizable version.

B.1 Description of LDPC decoder functions

A summary of the LDPC decoder functions provided by the author of the source
code is reported in Table B.1

Table B.1: Summary of the LDPC decoder functions

B.2 Check node groups and bit node groups

Interconnection between BNs and CNs is determined by Base Graph. In NR LDPC,
two base graphs have fixed ways of nodes organization. Denote |Bi| the g=number
of connected BNs to CN i and let M|Bi| be the number of CNs that are connected
to the same number of BNs.
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Table B.2: Check node groups for BG1 and BG2

The same mapping method is applied on BN groups. The number of connected
CNs to BN j is |Cj|; besides, K|Cj| is the number of BNs that are connected to the
same number of CNs.

Table B.3: Bit node groups for BG1 and BG2 for base rates 1/3 and 1/5, respec-
tively

B.3 Shift factors for memory copy

According to current implementation, shift factor varies depending on BG, Z and
group number. A snippet of constant factors is shown:

Listing B.1: Example of shift factors
1 s t a t i c const uint16_t circShift_BG2_Z2_CNG6 [ 6 ] [ 3 ] = {{1 , 1 , 1} ,{1 , 0 ,

1} ,{0 , 1 , 0} ,{1 , 0 , 1} ,{1 , 0 , 0} ,{0 , 0 , 0}} ;
2 s t a t i c const uint16_t circShift_BG2_Z3_CNG6 [ 6 ] [ 3 ] = {{1 , 0 , 2} ,{2 , 2 ,

0} ,{1 , 1 , 1} ,{2 , 1 , 0} ,{0 , 1 , 2} ,{0 , 0 , 0}} ;
3 s t a t i c const uint16_t circShift_BG2_Z4_CNG6 [ 6 ] [ 3 ] = {{3 , 3 , 1} ,{1 , 0 ,

3} ,{2 , 1 , 0} ,{3 , 0 , 3} ,{3 , 2 , 0} ,{0 , 0 , 0}} ;
4 s t a t i c const uint16_t circShift_BG2_Z5_CNG6 [ 6 ] [ 3 ] = {{0 , 0 , 0} ,{1 , 4 ,

0} ,{2 , 4 , 3} ,{1 , 0 , 1} ,{4 , 3 , 3} ,{0 , 0 , 0}} ;
5 s t a t i c const uint16_t circShift_BG2_Z6_CNG6 [ 6 ] [ 3 ] = {{4 , 3 , 2} ,{2 , 2 ,

0} ,{1 , 4 , 4} ,{2 , 1 , 0} ,{0 , 4 , 5} ,{0 , 0 , 0}} ;
6 s t a t i c const uint16_t circShift_BG2_Z7_CNG6 [ 6 ] [ 3 ] = {{3 , 4 , 5} ,{5 , 6 ,

6} ,{2 , 3 , 0} ,{2 , 5 , 3} ,{4 , 6 , 6} ,{0 , 0 , 0}} ;
7 s t a t i c const uint16_t circShift_BG2_Z8_CNG6 [ 6 ] [ 3 ] = {{7 , 3 , 1} ,{1 , 4 ,

3} ,{2 , 5 , 4} ,{7 , 4 , 3} ,{7 , 6 , 4} ,{0 , 0 , 0}} ;
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8 s t a t i c const uint16_t circShift_BG2_Z9_CNG6 [ 6 ] [ 3 ] = {{4 , 1 , 7} ,{5 , 6 ,
0} ,{3 , 8 , 8} ,{2 , 7 , 0} ,{8 , 4 , 2} ,{0 , 0 , 0}} ;

9 s t a t i c const uint16_t circShift_BG2_Z10_CNG6 [ 6 ] [ 3 ] = {{0 , 0 , 0} ,{1 ,
4 , 5} ,{2 , 9 , 8} ,{1 , 5 , 6} ,{4 , 8 , 8} ,{0 , 0 , 0}} ;

10 s t a t i c const uint16_t circShift_BG2_Z11_CNG6 [ 6 ] [ 3 ] = {{2 , 3 , 4} ,{7 ,
0 , 4} ,{2 , 10 , 2} ,{4 , 1 , 3} ,{5 , 7 , 0} ,{0 , 0 , 0}} ;

11 s t a t i c const uint16_t circShift_BG2_Z12_CNG6 [ 6 ] [ 3 ] = {{10 , 9 , 8} ,{8 ,
8 , 6} ,{1 , 4 , 4} ,{8 , 1 , 6} ,{0 , 4 , 11} ,{0 , 0 , 0}} ;

12 s t a t i c const uint16_t circShift_BG2_Z13_CNG6 [ 6 ] [ 3 ] = {{6 , 7 , 7} ,{10 ,
8 , 0} ,{10 , 3 , 0} ,{2 , 12 , 3} ,{10 , 12 , 6} ,{0 , 0 , 0}} ;

13 s t a t i c const uint16_t circShift_BG2_Z14_CNG6 [ 6 ] [ 3 ] = {{3 , 11 , 5} ,{12 ,
13 , 13} ,{2 , 3 , 7} ,{9 , 12 , 10} ,{11 , 13 , 13} ,{0 , 0 , 0}} ;

14 s t a t i c const uint16_t circShift_BG2_Z15_CNG6 [ 6 ] [ 3 ] = {{1 , 2 , 11} ,{11 ,
12 , 6} ,{4 , 7 , 12} ,{13 , 4 , 7} ,{12 , 11 , 4} ,{0 , 0 , 0}} ;

15 s t a t i c const uint16_t circShift_BG2_Z16_CNG6 [ 6 ] [ 3 ] = {{7 , 11 , 1} ,{9 ,
4 , 3} ,{2 , 13 , 12} ,{15 , 12 , 3} ,{7 , 14 , 4} ,{0 , 0 , 0}} ;

16 s t a t i c const uint16_t circShift_BG2_Z18_CNG6 [ 6 ] [ 3 ] = {{4 , 1 , 7} ,{14 ,
15 , 9} ,{12 , 17 , 17} ,{11 , 7 , 0} ,{17 , 13 , 11} ,{0 , 0 , 0}} ;

17 s t a t i c const uint16_t circShift_BG2_Z20_CNG6 [ 6 ] [ 3 ] = {{0 , 0 , 0} ,{11 ,
4 , 5} ,{2 , 19 , 8} ,{1 , 5 , 16} ,{4 , 8 , 18} ,{0 , 0 , 0}} ;

18 s t a t i c const uint16_t circShift_BG2_Z22_CNG6 [ 6 ] [ 3 ] = {{13 , 3 , 4} ,{18 ,
0 , 15} ,{13 , 10 , 2} ,{15 , 1 , 3} ,{16 , 7 , 11} ,{0 , 0 , 0}} ;

19 s t a t i c const uint16_t circShift_BG2_Z24_CNG6 [ 6 ] [ 3 ] = {{10 , 9 , 8} ,{20 ,
20 , 18} ,{1 , 4 , 16} ,{8 , 1 , 6} ,{0 , 16 , 23} ,{0 , 0 , 0}} ;

20 s t a t i c const uint16_t circShift_BG2_Z26_CNG6 [ 6 ] [ 3 ] = {{6 , 7 , 7} ,{23 ,
8 , 0} ,{10 , 16 , 13} ,{2 , 12 , 3} ,{10 , 12 , 6} ,{0 , 0 , 0}} ;

21 s t a t i c const uint16_t circShift_BG2_Z28_CNG6 [ 6 ] [ 3 ] = {{17 , 11 ,
19} ,{26 , 27 , 13} ,{2 , 3 , 21} ,{23 , 26 , 10} ,{25 , 13 , 13} ,{0 , 0 , 0}} ;

22 s t a t i c const uint16_t circShift_BG2_Z30_CNG6 [ 6 ] [ 3 ] = {{1 , 17 ,
26} ,{11 , 12 , 6} ,{19 , 22 , 27} ,{28 , 4 , 22} ,{27 , 26 , 4} ,{0 , 0 , 0}} ;

23 s t a t i c const uint16_t circShift_BG2_Z32_CNG6 [ 6 ] [ 3 ] = {{7 , 27 , 1} ,{9 ,
4 , 19} ,{2 , 13 , 12} ,{31 , 28 , 3} ,{7 , 30 , 20} ,{0 , 0 , 0}} ;

24 s t a t i c const uint16_t circShift_BG2_Z36_CNG6 [ 6 ] [ 3 ] = {{4 , 1 , 25} ,{32 ,
15 , 27} ,{12 , 35 , 35} ,{29 , 25 , 0} ,{35 , 31 , 29} ,{0 , 0 , 0}} ;

25 s t a t i c const uint16_t circShift_BG2_Z40_CNG6 [ 6 ] [ 3 ] = {{0 , 0 , 0} ,{11 ,
4 , 5} ,{22 , 19 , 28} ,{21 , 5 , 16} ,{24 , 28 , 38} ,{0 , 0 , 0}} ;

B.4 Auxiliary functions

Enable macros for calling these auxiliary functions so that execution time is printed
and staged output is stored.

Listing B.2: Conditional compilation of measurement functions
1 // BN pr oc e s s i ng
2 #i f d e f NR_LDPC_PROFILER_DETAIL
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3 start_meas(&p_pro f i l e r −>bnProcPc ) ;
4 #e n d i f
5 nrLDPC_bnProcPc( p_lut , p_procBuf , Z) ;
6 #i f d e f NR_LDPC_PROFILER_DETAIL
7 stop_meas(& p_pro f i l e r −>bnProcPc ) ;
8 #e n d i f
9

10 #i f d e f NR_LDPC_DEBUG_MODE
11 nrLDPC_debug_initBuffer2File (nrLDPC_buffers_LLR_RES) ;
12 nrLDPC_debug_writeBuffer2File (nrLDPC_buffers_LLR_RES , p_procBuf ) ;
13 #e n d i f
14

15 #i f d e f NR_LDPC_PROFILER_DETAIL
16 start_meas(&p_pro f i l e r −>bnProc ) ;
17 #e n d i f
18 nrLDPC_bnProc( p_lut , p_procBuf , Z) ;
19 #i f d e f NR_LDPC_PROFILER_DETAIL
20 stop_meas(& p_pro f i l e r −>bnProc ) ;
21 #e n d i f
22

23 #i f d e f NR_LDPC_DEBUG_MODE
24 nrLDPC_debug_initBuffer2File (nrLDPC_buffers_BN_PROC_RES) ;
25 nrLDPC_debug_writeBuffer2File (nrLDPC_buffers_BN_PROC_RES,

p_procBuf ) ;
26 #e n d i f

74



Appendix C

Appendix C reports several source codes of synthesizable functions converted from
the software solution of LDPC decoder provided by OAI.

C.1 AVX2 instructions

Synopsis and description of original AVX2 instructions used by decoder are listed
below.

Table C.1: Description of AVX2 instructions
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C.2 Converted AVX2 functions

Function names are slightly modified for simplicity in recognizing. Several functions
are passing by reference instead of passing by value.

Table C.2: Synopsis of new AVX2 instructions and the original version

C.3 Intrinsic AVX2 functions

Listing C.1: Intrinsic AVX2 functions
1 m256i mm256_abs_epi8 ( int8_t ∗a ) {
2 m256i des t =

{{0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
3 , 0 , 0 , 0}} ;
4 i n t i ;
5 loop_intr in_abs : f o r ( i =0; i <32; i++){
6 i f (∗ a < 0)
7 dest . data [ i ] = (∗ a ^ 0xFF) +1;
8 e l s e
9 dest . data [ i ] = ∗a ;

10 a++;
11 }
12 re turn dest ;
13 }
14
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15 m256i mm256_adds_epi8 ( int8_t ∗a , int8_t ∗b) {
16 i n t i ;
17 m256i des t =

{{0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
18 , 0 , 0 , 0}} ;
19 int16_t adds ; // to handle over f l ow
20 loop_intrin_adds_epi8 : f o r ( i =0; i <32; i++){
21 adds = ∗a + ∗b ;
22 i f ( adds < −128)
23 dest . data [ i ] = −128;
24 e l s e i f ( adds > 127)
25 dest . data [ i ] = 127 ;
26 e l s e
27 dest . data [ i ] = ( int8_t ) adds ;
28 a++;
29 b++;
30 }
31 re turn dest ;
32 }
33

34 m256i mm256_and_si256 ( m256i a , m256i b) {
35 m256i des t

={{0 ,0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
36 , 0 , 0 , 0}} ;
37 i n t i ;
38 loop_intrin_and : f o r ( i =0; i <32; i++){
39 dest . data [ i ] = a . data [ i ] & b . data [ i ] ;
40 }
41 re turn dest ;
42 }
43

44 m256i mm256_cmpgt_epi8 ( m256i a , int8_t ∗b) {
45 m256i des t

={{0 ,0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
46 , 0 , 0 , 0}} ;
47 i n t i ;
48 loop_intrin_cmp : f o r ( i =0; i <32; i++){
49 dest . data [ i ] = ( a . data [ i ] > ∗b ) ? 0xFF : 0 ;
50 b++;
51 }
52 re turn dest ;
53 }
54

55 m256i mm256_min_epu8( m256i a , m256i b) {
56 m256i des t =

{{0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
57 , 0 , 0 , 0}} ;
58 i n t i ;
59 loop_intrin_min : f o r ( i =0; i <32; i++)
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60 {
61 i f ( ( uint8_t ) a . data [ i ] >(uint8_t )b . data [ i ] )
62 dest . data [ i ] = b . data [ i ] ;
63 e l s e
64 dest . data [ i ] = a . data [ i ] ;
65 }
66 re turn dest ;
67 }
68

69 i n t mm256_movemask_epi8( m256i a ) {
70 i n t i ;
71 i n t MSB;
72 i n t mask = 0 ;
73 loop_intrin_movemask : f o r ( i =0; i <32; i++){
74 // to expand 8 b i t s to 32 , 24 z e r o e s are padded @ msb s i d e
75 MSB = ( a . data [ i ] >> 7) & 0x00000001 ;
76 mask = mask | (MSB << ( i ) ) ;
77 }
78 re turn mask ;
79 }
80

81 m256i mm256_subs_epi8 ( int8_t ∗a , int8_t ∗b) {
82 m256i des t

={{0 ,0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
83 , 0 , 0 , 0}} ;
84 int16_t subs ; // to handle over f l ow
85 i n t i ;
86 loop_intr in_subs : f o r ( i =0; i <32; i++){
87 subs = ∗a − ∗b ;
88 i f ( subs < −128)
89 dest . data [ i ] = −128;
90 e l s e i f ( subs > 127)
91 dest . data [ i ] = 127 ;
92 e l s e
93 dest . data [ i ] = ( int8_t ) subs ;
94 a++;
95 b++;
96 }
97 re turn dest ;
98 }
99

100 m256i mm256_sign_epi8_ori ( m256i a , m256i b) {
101 m256i des t =

{{0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
102 , 0 , 0 , 0}} ;
103 i n t i ;
104 l oop_intr in_s ign : f o r ( i =0; i <32; i++){
105 i f (b . data [ i ] < 0)
106 dest . data [ i ] = a . data [ i ] ∗(−1) ;
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107 e l s e i f (b . data [ i ] == 0)
108 dest . data [ i ] = 0 ;
109 e l s e
110 dest . data [ i ] = a . data [ i ] ;
111 }
112 re turn dest ;
113 }
114

115 m256i mm256_sign_epi8 ( m256i a , int8_t ∗b) {
116 m256i des t =

{{0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
117 , 0 , 0 , 0}} ;
118 i n t i ;
119 loop_intrin_sign_new : f o r ( i =0; i <32; i++){
120 i f (∗b < 0)
121 dest . data [ i ] = a . data [ i ] ∗(−1) ;
122 e l s e i f (∗b == 0)
123 dest . data [ i ] = 0 ;
124 e l s e
125 dest . data [ i ] = a . data [ i ] ;
126 b ++;
127 }
128 re turn dest ;
129 }
130

131 m256i mm256_shuffle_epi8 ( int8_t ∗a , m256i b) {
132 m256i des t

={{0 ,0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
133 , 0 , 0 , 0}} ;
134 i n t i ;
135 // msb part
136 l oop_intr in_shuf f l e_1 : f o r ( i =0; i <16; i++){
137 i f (b . data [ i ] & 0x80 )
138 dest . data [ i ] = 0 ;
139 e l s e
140 dest . data [ i ] = a [ b . data [ i ] & 0x0F ] ;
141 }
142 // l s b part
143 l oop_intr in_shuf f l e_2 : f o r ( i =0; i <16; i++){
144 i f (b . data [ i +16] & 0x80 )
145 dest . data [ i +16] = 0 ;
146 e l s e
147 dest . data [ i +16] = a [16+(b . data [ i +16] & 0x0F) ] ;
148 }
149 re turn dest ;
150 }
151

152 // b r i e f exp lanat ion
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153 // b i s 8 b i t wide , accord ing to b the value o f the i −64 pack i s
dec ided

154 // the d e c i s i o n i s taken on two b i t s o f b . To eva luate them , a r i g h t
s h i f t i s done

155 // then a mask o f 00000011 i s ANDED to eva luate only those two b i t s
156 // f i r s t couple . no s h i f t
157 // second couple . s h i f t by 2 ( must t ra sh couple 1)
158 // th i rd couple . s h i f t by 4 ( must t ra sh coup l e s 1−2)
159 // four th couple . s h i f t by 6 ( must t ra sh coup l e s 1−2−3)
160 m256i mm256_permute4x64_epi64 ( m256i a , int8_t b) {
161 m256i des t

={{0 ,0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
162 , 0 , 0 , 0}} ;
163 i n t i ;
164 switch (b & 0x03 ) { // check ing b i t s 0−1
165 case 0 :
166 loop_intrin_permute_1 : f o r ( i =0; i <8; i++) {
167 dest . data [ i ] = a . data [ i ] ; }
168 break ;
169 case 1 :
170 loop_intrin_permute_2 : f o r ( i =0; i <8; i++) {
171 dest . data [ i ] = a . data [ i +8] ; }
172 break ;
173 case 2 :
174 loop_intrin_permute_3 : f o r ( i =0; i <8; i++) {
175 dest . data [ i ] = a . data [ i +16] ; }
176 break ;
177 case 3 :
178 loop_intrin_permute_4 : f o r ( i =0; i <8; i++) {
179 dest . data [ i ] = a . data [ i +24] ; }
180 break ;
181 d e f a u l t : ;
182 break ;
183 }
184 switch ( ( b>>2 & 0x03 ) ) { // check ing b i t s 2−3
185 case 0 :
186 loop_intrin_permute_5 : f o r ( i =0; i <8; i++) {
187 dest . data [ i +8] = a . data [ i ] ; }
188 break ;
189 case 1 :
190 loop_intrin_permute_6 : f o r ( i =0; i <8; i++) {
191 dest . data [ i +8] = a . data [ i +8] ; }
192 break ;
193 case 2 :
194 loop_intrin_permute_7 : f o r ( i =0; i <8; i++) {
195 dest . data [ i +8] = a . data [ i +16] ; }
196 break ;
197 case 3 :
198 loop_intrin_permute_8 : f o r ( i =0; i <8; i++) {
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199 dest . data [ i +8] = a . data [ i +24] ; }
200 break ;
201 d e f a u l t : break ;
202 }
203 switch ( ( b>>4 &0x03 ) ) { // check ing b i t s 4−5
204 case 0 :
205 loop_intrin_permute_9 : f o r ( i =0; i <8; i++) {
206 dest . data [ i +16] = a . data [ i ] ; }
207 break ;
208 case 1 :
209 loop_intrin_permute_10 : f o r ( i =0; i <8; i++) {
210 dest . data [ i +16] = a . data [ i +8] ; }
211 break ;
212 case 2 :
213 loop_intrin_permute_11 : f o r ( i =0; i <8; i++) {
214 dest . data [ i +16] = a . data [ i +16] ; }
215 break ;
216 case 3 :
217 loop_intrin_permute_12 : f o r ( i =0; i <8; i++) {
218 dest . data [ i +16] = a . data [ i +24] ; }
219 break ;
220 d e f a u l t : ;
221 break ;
222 }
223 switch ( ( b>>6 &0x03 ) ) { // check ing b i t s 6−7
224 case 0 :
225 loop_intrin_permute_13 : f o r ( i =0; i <8; i++) {
226 dest . data [ i +24] = a . data [ i ] ; }
227 break ;
228 case 1 :
229 loop_intrin_permute_14 : f o r ( i =0; i <8; i++) {
230 dest . data [ i +24] = a . data [ i +8] ; }
231 break ;
232 case 2 :
233 loop_intrin_permute_15 : f o r ( i =0; i <8; i++) {
234 dest . data [ i +24] = a . data [ i +16] ; }
235 break ;
236 case 3 :
237 loop_intrin_permute_16 : f o r ( i =0; i <8; i++) {
238 dest . data [ i +24] = a . data [ i +24] ; }
239 break ;
240 d e f a u l t : ;
241 break ;
242 }
243 re turn dest ;
244 }
245

246 m256i mm256_packs_epi16 ( m256i a , m256i b) {
247 int16_t p_a [ 1 6 ] , p_b [ 1 6 ] ;
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248 int16_t tmp_a1 , tmp_a2 , tmp_b1 , tmp_b2 , tmp_a , tmp_b ;
249 i n t j ;
250 loop_intrin_packs_1 : f o r ( j =0; j <16; j++) {
251 tmp_a1 = a . data [2∗ j +1] ; // a : 1 , 3 , 5 . .
252 tmp_a2 = a . data [2∗ j ] ; // a : 0 , 2 , 4 . .
253 tmp_b1 = b . data [2∗ j +1] ; // b : 1 , 3 , 5 . .
254 tmp_b2 = b . data [2∗ j ] ; // b : 0 , 2 , 4 . .
255 tmp_a1 = tmp_a1 << 8 ;
256 tmp_b1 = tmp_b1 << 8 ;
257 tmp_a2 = tmp_a2 & 0xFF ;
258 tmp_b2 = tmp_b2 & 0xFF ;
259 p_a [ j ] = tmp_a1 + tmp_a2 ;
260 p_b [ j ] = tmp_b1 + tmp_b2 ;
261 }
262 m256i des t

={{0 ,0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
263 , 0 , 0 , 0}} ;
264 i n t i ;
265 int16_t tmp ; // f o r s a t u ra t i o n
266 loop_intrin_packs_2 : f o r ( i =0; i <8; i++){
267 tmp = p_a [ i ] ;
268 i f ( tmp < −128)
269 dest . data [ i ] = −128;
270 e l s e i f ( tmp > 127)
271 dest . data [ i ] = 127 ;
272 e l s e des t . data [ i ] = tmp ; // p_a , des t updated ,
273 }
274 loop_intrin_packs_3 : f o r ( i =0; i <8; i++){
275 tmp = p_b [ i ] ;
276 i f ( tmp < −128)
277 dest . data [ i +8] = −128;
278 e l s e i f ( tmp > 127)
279 dest . data [ i +8] = 127 ;
280 e l s e des t . data [ i +8] = tmp ; // p_b , dest updated
281 }
282 loop_intrin_packs_4 : f o r ( i =0; i <8; i++){
283 tmp = p_a [ i +8] ;
284 i f ( tmp < −128)
285 dest . data [ i +16] = −128;
286 e l s e i f ( tmp > 127)
287 dest . data [ i +16] = 127 ;
288 e l s e des t . data [ i +16] = tmp ; // p_a , des t updated
289 }
290 loop_intrin_packs_5 : f o r ( i =0; i <8; i++){
291 tmp = p_b [ i +8] ;
292 i f ( tmp < −128)
293 dest . data [ i +24] = −128;
294 e l s e i f ( tmp > 127)
295 dest . data [ i +24] = 127 ;
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296 e l s e des t . data [ i +24] = tmp ;
297 }
298 re turn dest ;
299 }
300

301 // p o s i t i o n i o f a g iven data has the MSB part , i+1 has the LSB part
o f the r e s u l t

302 m256i mm256_adds_epi16 ( m256i a , m256i b) {
303 int16_t p_a [ 1 6 ] , p_b [ 1 6 ] ;
304 int16_t tmp_a1 , tmp_a2 , tmp_b1 , tmp_b2 , tmp_a , tmp_b ;
305 i n t j ;
306 loop_intrin_adds_epi16_1 : f o r ( j =0; j <16; j++) {
307 tmp_a1 = a . data [2∗ j +1] ; // a : 1 , 3 , 5 . .
308 tmp_a2 = a . data [2∗ j ] ; // a : 0 , 2 , 4 . .
309 tmp_b1 = b . data [2∗ j +1] ; // b : 1 , 3 , 5 . .
310 tmp_b2 = b . data [2∗ j ] ; // b : 0 , 2 , 4 . .
311 tmp_a1 = tmp_a1 << 8 ;
312 tmp_b1 = tmp_b1 << 8 ;
313 tmp_a2 = tmp_a2 & 0xFF ;
314 tmp_b2 = tmp_b2 & 0xFF ;
315 p_a [ j ] = tmp_a1 + tmp_a2 ;
316 p_b [ j ] = tmp_b1 + tmp_b2 ;
317 }
318 m256i des t

={{0 ,0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
319 , 0 , 0 , 0}} ;
320 i n t adds ;
321 i n t i ;
322 loop_intrin_adds_epi16_2 : f o r ( i =0; i <16; i++){
323 adds = p_a [ i ] + p_b [ i ] ;
324 i f ( adds < −32768) {
325 dest . data [2∗ i +1] = 0x80 ;
326 dest . data [2∗ i ] = 0 ; }
327 e l s e i f ( adds > 32767) {
328 dest . data [2∗ i +1] = 0xEF ;
329 dest . data [2∗ i ] = 0xFF ; }
330 e l s e {
331 dest . data [2∗ i +1] = ( int8_t ) ( ( adds & 0xFF00)>>8) ;// MSB
332 dest . data [2∗ i ] = ( int8_t ) ( adds & 0x00FF) ;// LSB
333 } }
334 re turn dest ;
335 }
336 m256i mm256_cvtepi8_epi16 ( int8_t ∗a ) {
337 m256i des t

={{0 ,0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
338 , 0 , 0 , 0}} ;
339 i n t i ;
340 loop_intr in_cvt : f o r ( i =0; i <16; i++){
341 dest . data [2∗ i ] = ∗a ;// LSB // the o r i g i n a l va lue
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342 i f (∗ a < 0) {
343 dest . data [2∗ i +1] = −1; }// MSB // i f >0, then 0 , i f <0, then

−1
344 e l s e {
345 dest . data [2∗ i +1] = 0 ; }
346 a++;
347 }
348 re turn dest ;
349 }
350 m256i mm256_conv_int8 ( int8_t ∗ a ) {
351 m256i des t =

{{0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
352 , 0 ,0 ,0}} ; //32 va lue s
353 int8_t ∗ p_a ;
354 p_a = a ;
355 i n t i ;
356 loop_intrin_conv256 : f o r ( i =0; i <32; i++) {
357 dest . data [ i ] = ∗p_a ;
358 p_a ++;
359 }
360 re turn dest ;
361 }
362 m128i mm128_conv_int8 ( int8_t ∗ a ) {
363 m128i des t = {{0 ,0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0}} ; // 16 va lue s
364 int8_t ∗ p_a ;
365 p_a = a ;
366 i n t i ;
367 f o r ( i =0; i <16; i++) {
368 dest . data [ i ] = ∗p_a ;
369 p_a ++;
370 }
371 re turn dest ;
372 }
373 // 8 b i t s o f a , from LSB, every 8 b i t copy to the po in t e r ( array ) b ,

in sequence .
374 int8_t ∗ mm32_store_int8 ( uint32_t a , int8_t ∗ b) {
375 int8_t ∗ p_b ;
376 p_b = b ;
377 int8_t tmp1 , tmp2 , tmp3 , tmp4 ;
378 tmp1 = ( int8_t ) ( a & 0x000000FF ) ;
379 tmp2 = ( int8_t ) ( ( a >> 8) & 0x000000FF ) ;
380 tmp3 = ( int8_t ) ( ( a >> 16) & 0x000000FF ) ;
381 tmp4 = ( int8_t ) ( ( a >> 24)& 0x000000FF ) ;
382 ∗p_b = tmp1 ;
383 ∗(p_b+1) = tmp2 ;
384 ∗(p_b+2) = tmp3 ;
385 ∗(p_b+3) = tmp4 ;
386 re turn b ;
387 }

84



C.4 Constraints on usage of pointers

In listing 4.2 and 4.3 the original unsynthesizable implementation is reported. In
listing 4.4 the synthesizable version is reported.

Listing C.2: Multiple destination of a pointer(1)
1 i f ( outMode == nrLDPC_outMode_LLRINT8)
2 {
3 p_llrOut = p_out ;
4 }
5 e l s e
6 {
7 // Use LLR proc e s s i ng b u f f e r as temporary output b u f f e r
8 p_llrOut = p_procBuf−>l l rProcBu f ;
9 // Clear l l rProcBu f

10 memset ( p_llrOut , 0 , NR_LDPC_MAX_NUM_LLR∗ s i z e o f ( int8_t ) ) ;
11 }

Listing C.3: Multiple destination of a pointer(2)
1 // Assign r e s u l t s from proc e s s i ng b u f f e r to output
2 #i f d e f NR_LDPC_PROFILER_DETAIL
3 start_meas(&p_pro f i l e r −>l l r R e s 2 l l r O u t ) ;
4 #e n d i f
5 nrLDPC_llrRes2llrOut ( p_lut , p_llrOut , p_procBuf , Z , BG) ;
6 #i f d e f NR_LDPC_PROFILER_DETAIL
7 stop_meas(& p_pro f i l e r −>l l r R e s 2 l l r O u t ) ;
8 #e n d i f
9

10 // Hard−d e c i s i o n
11 #i f d e f NR_LDPC_PROFILER_DETAIL
12 start_meas(&p_pro f i l e r −>l l r 2 b i t ) ;
13 #e n d i f
14 i f ( outMode == nrLDPC_outMode_BIT)
15 {
16 nrLDPC_llr2bitPacked ( p_out , p_llrOut , numLLR) ;
17 }
18 e l s e i f ( outMode == nrLDPC_outMode_BITINT8)
19 {
20 nrLDPC_llr2bit ( p_out , p_llrOut , numLLR) ;
21 }
22

23 #i f d e f NR_LDPC_PROFILER_DETAIL
24 stop_meas(& p_pro f i l e r −>l l r 2 b i t ) ;
25 #e n d i f
26

27 re turn i ;
28 }
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Listing C.4: Synthesizable version
1 // Assign r e s u l t s from proc e s s i ng b u f f e r to output
2 i f ( outMode == nrLDPC_outMode_LLRINT8)
3 {
4 nrLDPC_llrRes2llrOut ( p_out , buf_l lrRes , Z , BG) ;
5 }
6 e l s e
7 {
8 nrLDPC_llrRes2llrOut ( buf_l lrProcBuf , buf_l lrRes , Z , BG) ;
9 }

10

11 // Hard−d e c i s i o n
12 i f ( outMode == nrLDPC_outMode_BIT)
13 {
14 nrLDPC_llr2bitPacked ( p_out , buf_l lrProcBuf , numLLR) ;
15 }
16 e l s e i f ( outMode == nrLDPC_outMode_BITINT8)
17 {
18 nrLDPC_llr2bit ( p_out , buf_l lrProcBuf , numLLR) ;
19 }
20

21 re turn i ;
22 }
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