
DET - Department of Electronics and Telecommunications

Implementation of a Convolutional Neural Network
Algorithm on FPGA Using High-Level Synthesis

Master’s degree in Electronic Engineering

Supervisors: Candidate:

Prof. Luciano Lavagno Rafael Campagnoli

Prof. Mihai Lazarescu

Academic Year 2020/2021

Acknowledgments

I would like to thank professors Luciano Lavagno and Mihai Lazarescu for the full

availability and support during all steps of the composition of this work. In difficult times

like this I couldn’t ask for more considerate and helpful advisors.

I would like to thank my parents, Noris and Fernando and my siblings, Pedro, Thais

and Leticia, for all the love and support during these years, specially this last one, so that

I could achieve the dream of getting my master’s degree at Politecnico di Torino.

I would like to thank Luigi for the partnership in most of the projects throughout the

course. Your friendship made me understand that two heads think better then two, and

working in group can be the best way to resolve a difficult problem.

I would like to thank my coinquilini in Via Juvarra for making me fell at home in a

foreign country.

These acknowledgments extends to everyone who was a part of this journey. I am very

grateful to all for believing in me.

I dedicate the merit of this work to the benefit of all beings.

i

Abstract

The advancement of silicon technology is revolutionizing the world in terms of process-

ing power. Algorithms and complex mathematical models that require much computing

have been made feasible with ease in the last decade. One of such booming algorithms

is the Convolutional Neural Network (CNN), which can make very complex predictions.

However, with high computing complexity comes the drawback of high power consumption

for processing, which is a significant concern for some applications.

This thesis analyzes the performance of a Field Programmable Gate Array (FPGA)

implementation of a CNN algorithm used to predict the location of people indoors using

infrared sensors data, an application that benefits from the high prediction power of

the CNN but requires a low power implementation. The CNN was trained before using

the Keras tool written in Python. In this work’s contribution, the Keras model was

translated into C++ code, then, the code was synthesized into Hardware Description

Language (HDL) using High-Level Synthesis (HLS) tools, Vitis HLS and Vivado, and was

finally implemented and simulated on several Xilinx FPGA chips. Furthermore, the HLS

tools were used to explore the design space to optimize the design for cost, power and

resources.

The design space exploration was performed in terms of processing parallelism, FPGA

technology, and data type. A solution for the most sequential circuit was synthesized in

parallelism exploration, with the minimum parallelism possible. The degree of parallelism

was progressively increased with different solutions up to the highest degree of parallelism

possible. The latency, power, and total energy solution of each solution were then evalu-

ated and compared. Furthermore, the solution with the lowest energy consumption found

was implemented in an FPGA chip of a more advanced technology that could run the

algorithm at a higher frequency, assuming that a faster circuit would require lower energy,

as the iteration time would be smaller. Lastly, this previous solution was implemented also

ii

with a fixed-point data type, which loses computation precision but reduces the circuit

complexity. It was observed that the usage of the fixed point implementation optimize

energy consumption of the design by reducing the area and latency for calculation.

The hardware design efficiency was also compared with the implementation of the

algorithm in software by running the algorithm and measuring the execution time on two

different STM32 microcontrollers, one with a Floating Point Unit (FPU) and one without.

The energy consumption of the software implementation was estimated by measuring the

execution time and the active mode current consumption of the microcontrollers. As a

result of this implementation, it was observed that modern microcontrollers with dedicated

numeric computing units such as STM32-L412 can perform very well, especially in terms

of cost.

The analysis concluded that indeed the FPGAs can provide low-power solutions for

the implementation of CNNs. Using higher degrees of parallelism for implementing the

algorithm in an FPGA can drastically reduce the computation latency, which reduces the

total energy consumption for calculation, but up to a certain point. A highly parallelized

circuit can require more FPGA resources that consume current but may not necessarily

speed up the processing. Higher parallelism require more resourceful FPGAs, increasing

the implementation cost.

iii

Contents

1 Introduction 1

1.1 Objectives . 1

1.2 Previous Work . 1

1.3 Thesis Contribution . 1

1.4 Thesis Structure . 2

2 Bibliographic Research 3

2.1 Indoor person localization . 3

2.2 State of the Art . 4

2.3 Hardware Design . 4

2.4 Machine Learning . 5

2.4.1 Neural Networks . 6

2.4.2 Convolutional Neural Networks . 7

2.5 Keras . 10

2.6 FPGA . 11

2.7 High-Level Synthesis . 11

2.7.1 Vitis HLS . 11

2.7.2 Vivado . 12

2.8 Optimization . 12

2.9 STM microcontrollers . 12

3 Implementation 14

3.1 Keras Model . 14

3.2 Architecture . 16

3.2.1 Defines . 16

iv

3.2.2 Main Function . 16

3.2.3 Convolutional Layer . 17

3.2.4 Pooling Layer . 17

3.2.5 Fully Connected . 18

3.2.6 Output Layer . 18

3.2.7 ReLU Function . 18

3.3 HLS pragmas . 19

3.3.1 INTERFACE . 19

3.3.2 UNROLL . 19

3.3.3 PIPELINE . 20

3.3.4 Array Partition . 20

4 High-Level Synthesis and Simulations 22

4.1 Hypotheses . 22

4.2 Parallelism . 23

4.3 FPGA Technologies . 24

4.4 Data Types . 24

4.5 FPGA vs Microcontrollers . 25

5 Results Analysis 29

5.1 Hardware implementations . 29

5.1.1 Parallelism . 29

5.1.2 FPGA Technologies . 32

5.1.3 Data Types . 33

5.2 Software Implementations . 35

6 Discussion and Conclusion 38

6.1 Conclusion . 38

6.2 Future Work . 39

References 41

A CNN code 42

B CNN modules 44

v

C CNN Testbench 47

vi

List of Figures

2.1 Different abstraction levels for electronic circuits design 4

2.2 Neuron Structure . 6

2.3 Neural Network Example . 7

2.4 Illustration of a generic 2D Convolutional Neural Network 8

2.5 Illustration of a generic 1D Convolutional Neural Network 8

2.6 Example of 3 subsequent layers of the 1D CNN 9

3.1 Keras model of the CNN . 15

3.2 Plot of the ReLU activation function . 18

3.3 Pipelipe Pragma Illustration [12] . 20

3.4 Array partitioning pragma illustration [14] 21

4.1 Simulation performed for measuring the microcontrollers execution time . . 26

4.2 Run modes for STM32L152xE (from datasheet) 27

4.3 Run modes for STM32L412xx (from datasheet) 27

5.1 Cost vs Energy . 37

vii

List of Tables

4.1 Power supply parameters for the STM32 microcontrollers 28

5.1 Results for small FPGA chips . 30

5.2 Results for medium FPGA chip . 31

5.3 Results for large FPGA chip . 32

5.4 Results for FPGA chips from different technologies 33

5.5 Fixed-point precision evaluation . 34

5.6 Results the different data types implementations 35

5.7 Results for microcontrollers compared to different FPGA solutions 36

viii

Acronyms

AI Artificial Intelligence.

API Application Programming Interface.

ASIC Application Specific Integrated Circuit.

CLBs Configurable Logic Blocks.

CNN Convolutional Neural Network.

CSV Comma-Separated Values.

DSP Digital Signal Processor.

FPGA Field Programmable Gate Array.

FPU Floating Point Unit.

GPU Graphical Processing Unit.

HDL Hardware Description Language.

HLS High-Level Synthesis.

II Initiation Interval.

NN Neural Network.

RAM Random Access Memory.

ReLU Rectified Linear Unit.

RTL Register Transfer Level.

ix

CHAPTER 1

Introduction

1.1 Objectives

The main goal of this project was to explore the design space of the FPGA imple-

mentation of a convolutional neural network algorithm. The Artificial Intelligence (AI)

processes data from infrared sensors to predict the indoor positioning of a person. A de-

sign space exploration should be performed to find a solution that best suits the problem

in terms of power consumption and cost.

1.2 Previous Work

In previous works, the sensor group and High-Level Synthesis group performed ex-

periments and research on capacitive sensor configuration, data acquiring systems, dif-

ferent Neural Network (NN) architectures, and also the neural networks quantization.

The sensor group is highly focused on the whole system exploration. In each stage, some

research and development can be performed.

1.3 Thesis Contribution

For this master’s thesis, the stage of processing sensor data through a selected AI

algorithm was chosen for exploration and optimization. The difficulty introduced by using

a neural network to process the noisy infrared sensor data sets a significant drawback in

a system that requires a low-power and low-maintenance design. However, the usage of

1

Chapter 1 – Introduction 2

a dedicated process unit that is also low-power and low-cost can mitigate this drawback,

leaving the final system with non-invasive sensors and a low-power controlling unit.

1.4 Thesis Structure

In Chapter 1 - Introduction, the main objectives and motivations of the thesis work

are described. It is shown the previous work performed on the field by the Sensor Team

Lab and the thesis contribution of the field.

In Chapter 2 - Bibliographic Research, the needed knowledge for understanding the

concepts in this research is explained in detail. The references of the research performed

during the work development are cited if the reader has a more profound interest in the

topics presented.

In Chapter 3 - Implementation, the implementation of the software is described in

detail. Firstly, it is explained the extraction of the parameters from a trained Convolu-

tional Neural Network in the Keras environment, which was performed using a specific

script. Then, the implementation in C++ of the convolutional neural network is ex-

plained, showing how the internal data flow and submodules of the software work.

In Chapter 4 - High-Level Synthesis and Simulations, the workflow of the HLS

and its simulations are explained. Firstly, the hardware synthesis hypothesis targeting

low power is described, and the proposed hardware synthesis directives are presented.

Other comparisons and simulations performed, such as the FPGA vs. Microcontrollers

comparison, are introduced.

In Chapter 5 - Results Analysis, the results of the previously described simulations

are shown, as well as the analysis of the results achieved

In Chapter 6 - Discussion and Conclusion, the conclusion of the thesis is presented.

Showing which previously made hypotheses made were achieved and what could be ana-

lyzed from the overall results.

In the Annexes section, the codes and scripts developed are shown in full.

CHAPTER 2

Bibliographic Research

2.1 Indoor person localization

Indoor people positioning can be beneficial for applications that require precise

location data. Some examples are an intelligent supermarket that directs the customer

precisely to where their desired groceries are at, smart homes, or an elderly care home

that surveys the state of the patient 24 hours a day. Some of these applications, however,

such as the older people monitoring, require the sensing of the person to be tag-less and

to ensure privacy [1].

To achieve these requirements, the technology must be private, precise, and require

little or no maintenance, which calls for a solution that involves non-invasive sensors, fast

computation, low cost, and low-power consumption [2].

Following the previous work on the realization of this technology in capacitive sen-

sors, this project intended to develop a technology that determines the indoor person

localization using infra-red sensors data processed through a Convolutional Neural Net-

work Algorithm that ensures the tag-less and privacy of the monitoring.

To achieve the low power and low-cost requirements, however, different solutions on

hardware or software implementations of the CNN algorithm should be explored, which

is the primary purpose of this work.

3

Chapter 2 – Bibliographic Research 4

2.2 State of the Art

Recently, lots of articles have been published on the implementation of CNNs in

FPGAs. Most of them show that the implementation of these algorithms is much more

power-efficient and faster on FPGAs when compared to GPUs. Research also shows that

the implementation of CNNs in FPGAs can deliver up to 2 times the energy efficiency

of a GPU [3]. FPGAs are an exciting field for exploration due to their parallel archi-

tecture [4]. These findings reveal a promising field for applications that require a high

processing complexity but require low energy consumption. The advancement of silicon

and transistor technology has been lowering the price of chips over the last decades, and

the tendency is to turn this technology more accessible, which makes the field of research

of FPGAs implementation very promising for the following years.

2.3 Hardware Design

Figure 2.1: Different abstraction levels for electronic circuits design

Chapter 2 – Bibliographic Research 5

There are multiple ways of approaching an electronic design problem. Electronic

design can also be divided into layers of abstraction, from the minor device scale possible,

the organization and placing of transistors, up to the system level, where a complete

system is already designed. It must only be programmed to the requiring application [5].

The approach of this work was to perform a hardware design at the abstraction level.

The electronic modules were organized in order to implement the specific application.

2.4 Machine Learning

Tom Mitchell defines Machine Learning with ”A computer program is said to learn

from experience E with respect to some class of tasks T and performance measure P, if its

performance at tasks in T, as measured by P, improves with experience E.” [6]. Machine

learning has been used widely for a different range of problems that are too complex for a

mathematical model to predict. The act of observing relevant data for inputs and outputs

to a system and then learning through statistical modeling the probability of output given

the input data set was decisive for the implementations of various applications in the last

20 years, and its demand is increasing. In general, machine learning algorithms can be

divided into two groups: unsupervised learning and supervised learning.

In supervised learning, the artificial intelligence is trained by examples of data. A

known set of input data paired with a known respective output data set is passed to the

AI. The AI ”learns” from that set of data, learning the input data patterns that generate

the specific outputs. The training is achieved by a process known as backpropagation. In

backpropagation, the error of the final output predicted by the artificial intelligence is sent

back, and the AI adjusts its internal weights to minimize the error in future predictions.

When this process is performed many times, the final prediction error tends to be reduced.

In unsupervised learning, data is presented to the AI without any labels so that

the Machine will have to learn by itself. Unsupervised learning can also be called by

the clustering algorithm, in which, inside a set of unlabeled data, the algorithm tries to

create similar clusters of that data. In this way, when new data arrives at the algorithm,

the artificial intelligence decides to which cluster of data this input belongs, based on the

previous unsupervised learning.

Chapter 2 – Bibliographic Research 6

2.4.1 Neural Networks

Neural networks are an ancient mathematical concept, but today are some of the

most famous supervised learning techniques. It is based on the brain, which is a complex

composition of neurons. Like that, the neural network algorithm is composed of a network

of small mathematical units, the neuron. Each neuron performs a prediction based on its

inputs following an activation function, which consists of the neuron’s output. The neural

network is a composition of layers of neurons. The first layer takes the data inputs and

connects them to each neuron of the first layer. The subsequent layers take the outputs

of the previous neurons and connect them to their neurons. This step is repeated until

the output layer, where the final output for the neural network is calculated.

The neuron, the building block of the neural network, can be described as a com-

puting block the follows (2.1)

y = f(
nX

i=0

(Wi ∗Xi) +B) (2.1)

Where y is the output vector, n is the number of inputs, f is the activation function,

Xi is the input vector Wi is the weights matrix, and B is the bias.

In Figure 2.2, the functional diagram of the neuron structure can be observed. In

Figure 2.3, an example of a neural network with the combined neurons can be observed.

x2 w2 Σ f

Activate

function

y

Output

x1 w1

x3 w3

Weights

Bias

b

Inputs

Figure 2.2: Neuron Structure

Chapter 2 – Bibliographic Research 7

Input

layer

Hidden

layer

Output

layer

Input 1

Input 2

Input 3

Input 4

Input 5

Ouput

Figure 2.3: Neural Network Example

2.4.2 Convolutional Neural Networks

In the last decade, Convolutional Neural Networks, or Deep Neural Networks, have

become the standard for various Computer Vision and Machine Learning operations [7].

solution of the neural networks problem Convolutional Neural Networks are a special

kind of neural network that implements the hidden layers with different algorithms. They

follow more complex algorithms and promise more complex predictions, also reducing the

overall prediction error.

Training a Convolutional Neural Network, however, is very computationally de-

manding. The number of parameters is high, and therefore the number of weights and

biases rise exponentially every time a layer is added to the architecture. The dataset size

needed for training is also massive. Therefore, the usage of 2D CNNs was only made pos-

sible by the advancement of Graphical Processing Unit (GPU) parallel processing in the

last years. Before that, only small-scale CNNs would be implemented. Nowadays, with

the possibility of cluster computing, more and more complex artificial intelligence is being

trained and implemented to perform complex tasks, such as autonomous driving. Besides

the performance levels achieved, CNNs introduce the feature extraction and classification

task into a single body [7].

Chapter 2 – Bibliographic Research 8

Figure 2.4: Illustration of a generic 2D Convolutional Neural Network

CNN’s are usually implemented to process and predict 2D signals, such as images

and video frames. The possibility to learn and predict from images has numerous appli-

cations, such as face recognition or the complete interpretation of a road (identification

of traffic lights and signs). For the processing of 1D signals, such as data streams of sin-

gle sensors, 1D CNNs were designed from the 2D CNN’s perspective but performing the

convolution between the filters and the input data in only one dimension. This algorithm

has a significantly lower computational complexity, as the operations are simple array

operations instead of matrix operations. 1D CNNs incorporate deep neural networks’

prediction power but maintain a simple implementation in terms of calculation. These

characteristics make 1D CNNs suited for real-time and low-power applications.

Figure 2.5: Illustration of a generic 1D Convolutional Neural Network

Chapter 2 – Bibliographic Research 9

Convolution Layer

The convolution layer performs the deep learning part of the algorithm. With the

feature of convoluting the input data into filters, instead of simply multiplying them by

weights, the patterns learned by the AI can be more accurate. The price to pay with

the addition of a convolution layer is the increasing processing complexity. The convo-

lution layer of the algorithm implemented in this work is the 1D convolution algorithm,

illustrated in Figure 2.6 and (2.2) [8].

Figure 2.6: Example of 3 subsequent layers of the 1D CNN

xlk = blk +

Nl−1X
i=1

conv1D(wl−1
ik , sl−1

i) (2.2)

In (2.2), it is described the calculation of the forward propagation from previous

layer,l − 1, to create the input of the kth neuron on the next layer, l. where xlk is the

input, blk is the bias of the kth neuron at layer l, and sl−1
i is the output if the ith neuron

in layer l − 1. wl−1
ik is the 1D kernel (also called filter) from the ith neuron in layer l − 1

to the kth neuron in layer l. The ouput of each neuron can be obtained passing the input

xlk through an activation function f(.) , such as 2.3

Chapter 2 – Bibliographic Research 10

ylk = f(xlk). (2.3)

In this kind of convolution, the resulting output size of the convolution is smaller

than the size of the input. In order to achieve an output of the same size, the same

padding configuration must be taken notice to the calculation. It simply means adding

a null input (line full of zeroes) to the previous layer on the first and last data set. In

this way, the kernel will be convoluted also on these null lines, generating at the end an

output with the same size as the original data.

In the CNN used in this work, the input signal had a shape of 5 signals with 16 data

inputs each, convoluted in one dimension through 32 different kernels. Once the objective

was to implement an already trained CNN, the training and backpropagation algorithms

will not be explored in this bibliographical research.

Pooling Layer

The pooling layer fundamentally performs an arithmetic operation on the previous

convolution layer output to reduce the data size. It takes the output of each convolution

kernel and reduces it by a defined algorithm, which can be to return the maximum value,

the average value, or others. In the CNN implemented in this work, the average pooling

was used.

2.5 Keras

Keras[9] is a deep learning Application Programming Interface (API) written in

Python, running on top of the machine learning platform TensorFlow[10] . It is an

interface optimized for the implementations of machine learning models. It provides

the essential building blocks and abstractions for reading data, configuring the machine

learning algorithm and its number of layers, neurons, filters, and other parameters. It is

handy as it is portable and scale-able.

The CNN of this work was trained and developed in a Keras environment. In order

to extract the trained CNN parameters, a simple python script can be applied.

Chapter 2 – Bibliographic Research 11

2.6 FPGA

Field Programmable Gate Arrays, FPGAs, are programmable integrated circuits.

They can bring speed and energy improvements both in high-end implementations and

energy- or processing-constrained embedded devices, all of that while preserving pro-

grammability [11]. They consist in a matrix of Configurable Logic Blocks (CLBs) con-

nected through programmable interconnects. This attribute differentiates FPGAs from

Application Specific Integrated Circuit (ASIC), which are designed and manufactured in

a permanent logic functionality.

Due to their programmability, FPGAs can be used in many different applications,

from ASIC prototyping to task-specific processing in an embedded system. Since neu-

ral networks are highly-parallel processing algorithms, they can benefit a lot from the

flexibility of FPGAs [11].

2.7 High-Level Synthesis

High-Level Synthesis, also referred to as C-Synthesis, is an automated algorithm to

synthesize digital circuits from a C-code input into Hardware Description Language. It

can be instrumental in combining the programmability of FPGA design with the facility

that a programming language has to implement complex algorithms. In this work, the

Vitis HLS tool was used to implement the convolutional neural network.

2.7.1 Vitis HLS

Vitis HLS is a high-level synthesis tool that converts C,C++ and OpenCL functions

into hardwired logic circuits. The logic circuits are implemented through the usage of

Random Access Memory (RAM)/Digital Signal Processor (DSP) blocks. The tool builds

accelerated RTL IP to be further used by the Vivado Design Suite tool. Vivado then

synthesizes and implements the RTL description into Xilinx FPGA chips. Vitis HLS also

supports customization and specific optimizations to achieve the desired design objectives

[12].

Chapter 2 – Bibliographic Research 12

2.7.2 Vivado

Xilinx Vivado is a software environment for the development and implementation of

HDL designs on FPGAs. It comes with an embedded simulator and IP integrator. It offers

the possibility of synthesizing an IP generated from the Vitis HLS tool and for further

implementation and routing of all the Xilinx FPGA chips. Vivado also enables power

and timing analysis of the design, either in the synthesis phase or in the implementation

phase.

2.8 Optimization

Vitis HLS allows the usage of different pragmas to indicate how the C++ code

execution should be scheduled and allocated before being converted to Register Trans-

fer Level (RTL). The usage of pragmas is highly recommended to achieve the desired

optimization. The used pragmas in this project were:

• Interface: Defines which interface of the top main function should be implemented

• Unroll: Unrolls loop with the defined unrolling factor

• Pipeline: Pipelines loop with the defined pipelining factor. It can also be used

with the -off directive to disable the HLS compiler optimizations on the loop

• Partition: Partitions array by a partition type and factor

2.9 STM microcontrollers

Microcontrollers are micro-processing devices that integrate memory and I/O func-

tionalities inside a single chip. In the last decades, they were responsible for the revolution

of embedded devices, and they still play an essential role today, especially with the ad-

vancements of the Internet of Things. For self-contained systems, with all the necessary

memory and peripherals to work, they can be used in various applications requiring a

simple control logic. Microcontrollers can be very cheap and still offer low-power and

low-latency solutions, depending on design requirements.

Chapter 2 – Bibliographic Research 13

In the development of this work, two different microcontrollers were used: the

STM32-L152RE and the STM32-L412. STM32-L152RE uses an ARM Cortex M3 while

STM32-L412 uses an ARM Cortex M4 and comes with a dedicated Floating Point Unit,

which can be very useful for an application that requires many floating-point calculations

such as the processing of a convolutional neural network.

CHAPTER 3

Implementation

In this chapter, the implementation steps of the CNN are described in detail. Start-

ing from the weights extraction from the Keras model, the chapter then explains the

main C++ function of the design, followed by the description of the functionality of its

subfunctions.

3.1 Keras Model

The convolutional neural network for processing infrared sensor data was previously

implemented as a Keras model, as illustrated in Figure 3.1. In this work’s contribution,

the CNN parameters and structure were extracted from the Keras model using a Python

script and implemented in a C++ code, that was later converted into a Hardware De-

scription Language model using High-Level Synthesis. Since the implementation was for

the inference stage, the Dropout Layer and the Flatten layer were not considered.

For the extraction of the weights from the Keras model, the following Python script

was used.

14

Chapter 3 – Implementation 15

Figure 3.1: Keras model of the CNN

1 # -*- coding: utf -8 -*-

2

3

4 import numpy as np

5 np.set_printoptions(threshold=np.inf)

6

7 from keras.models import load_model

8 model = load_model(’best_model.h5’)

9

10

Chapter 3 – Implementation 16

11 names = [weight.name for layer in model.layers for weight in layer.

weights]

12 names = [sub.replace(’/’, ’_’) for sub in names]

13 names = [sub.replace(’:0’, ’_’) for sub in names]

14

15 #get the weights and store it in an inside variable

16 weights = model.get_weights ()

17

18

19 #Print the weights into a .csv file

20 for name , weight in zip(names , weights):

21 content1 = str(name)

22 print(content1)

23 weight.tofile(content1+".csv",sep=’,’,format=’%10.5f’)

Listing 3.1: script for extracting the weights from the Keras model

The script imports the given Keras model and stores its parameters internally. The

script then converts the internal organization of the weight arrays to fit in the format of

a Comma-Separated Values (CSV) file. The content of each weight is then written in a

specific CSV file. In this way, the weights can be copied and pasted to the internal array

variables of the C++ code.

3.2 Architecture

In this section, the architecture of the implemented convolutional neural network

is described. It consists of the main function, which interconnects a window layer, a

convolutional layer, a pooling layer, and two fully connected layers, the last one being the

output layer.

3.2.1 Defines

3.2.2 Main Function

The main function of the code developed has two array inputs as interface:

• datain[DATA SIZE] : array of size 16 for the reading of input data

Chapter 3 – Implementation 17

• op out[OP NEURONS] : array of size 2 (x and y positions) for the output pre-

dicted by the CNN

Internally, the CNN is divided in 4 funcions that are sequentially interconnected:

• conv layer : the convolution layer in which the data processed trough the kernels

• pool layer : the layer that perform an average pooling from the data outputted by

conv layer

• fc layer : A fully connected layer that process the data outputted from the pooling

layer

• op layer : the output layer, that reads the data of the previous fully connected

layer into two neurons, predicting the final position data.

3.2.3 Convolutional Layer

Internally, the convolution layer is divided into two steps, the window buffer and

the convolution loop.

The window buffer is the initial buffer that stores the data from the past five mea-

surements. It consists of a shift register that shifts the received data every time data is

read from the input FIFO.

The convolution loop is the first processing layer of the network. It takes the data

from the window layer and performs a one-dimensional convolution with 32 filters, re-

sulting in a 16x5 matrix. The Kernel size of each filter is 3. The convolution follows

the padding ’same’, which means that the result of the convolution of one filter has the

same size as the input. In order to do that, each filter’s calculation is performed with two

additional rows with value 0 to the input data. In this way, each filter is convoluted with

the input data 5 times, generating an output of a 5x32 matrix.

3.2.4 Pooling Layer

The pooling layer performs a data compression from the previous layer. It takes the

32x5 matrix and, for each column, calculates the average value, resulting in a 1x32 row

vector.

Chapter 3 – Implementation 18

3.2.5 Fully Connected

The fully connected layer is a neural network that takes the previous values and

passes them through 64 neurons, each neuron with its own configured weight and bias

with a ReLU activation function. Each neuron multiplies its inputs with its respective

weights and then accumulates the result, adding a bias. This result is passed through a

relu activation function, which displays the final output for each neuron.

3.2.6 Output Layer

The Output layer follows the same structure as the fully connected layer but with

only two neurons. These neurons indicate each the final position coordinates, x and y,

predicted by the convolutional neural network.

3.2.7 ReLU Function

The Rectified Linear Unit (ReLU) function is the activation function used for the

entire CNN. It is defined as a function that outputs only the positive part of its argument.

f(x) = x+ = max(0, x) (3.1)

−6 −4 −2 0 2 4 6

0

1

2

3

4

5

x

f
(x

)

Figure 3.2: Plot of the ReLU activation function

Chapter 3 – Implementation 19

3.3 HLS pragmas

To synthesize the developed C++ code, the software Vitis HLS was used. The tool

compiles the code into RTL and provides pragmas used to optimize the hardware design.

These optimizations can reduce latency, improve the throughput performance, reduce the

area and the resource usage of the resulting RTL code. The pragmas may be inserted

directly on the code or in an external TCL script [13].

The number of pragmas accepted by the tool is extensive and can help resolving

many design optimization problems. The ones used in this design are described in detail

in the following subsections.

3.3.1 INTERFACE

In a C/C++ code, the input and output interfaces of functions are implemented

automatically through the linking stage of code compilation. In a physical circuit, the

data interface between main functions/modules must be implemented with a specific data

transfer protocol and a control logic. The functionality of the INTERFACE pragma is

to define which protocol must be synthesized from the described function arguments.

3.3.2 UNROLL

With the UNROLL pragma, it is possible to execute a loop in parallel instead of

a single collection of operations. Loops inside functions are usually kept rolled. The HLS

compiler executes the logic for one iteration of the loop and executes it the number of

times the loop induction variable configures the loop. Using the UNROLL pragma, the

logic synthesis implements the loop unrolled, which increases data access and throughput.

The pragma allows the unrolling to be fully or partially. Fully unrolling implements

a copy of the loop for every loop iteration so that the entire loop can be executed in

just one iteration. Partially unrolling implements the instances of the loop following a

configurable parameter N. A loop with a partial unrolling configured with a given N

parameter implements the loop N times.

Chapter 3 – Implementation 20

3.3.3 PIPELINE

The PIPELINE pragma is used to configure the HLS compiler directives for pipelin-

ing. Its goal is to reduce the Initiation Interval (II) for a function or loop by concurrently

executing the operations. The Initiation Interval is the number of clock cycles in which

a function or a loop can process new inputs. The default compiler goal for optimization

with the PIPELINE pragma is an Initiation Interval of one, as it can be observed in

Figure 3.3. The target Initiation Interval can also be configured

Figure 3.3: Pipelipe Pragma Illustration [12]

Another use of the pragma is the possibility to disable the compiler’s automatic

optimizations. This disabling is possible by passing the parameter ”off” as an input to

the pragma. This configuration is beneficial for a design that is focused on a smaller area

for implementation.

3.3.4 Array Partition

The array partition pragma partitions the data arrays into smaller or individual

elements. Its use results in using smaller registers or memory elements instead of a large

memory block. When used combined with pipeline or unroll, it can help to increase the

Chapter 3 – Implementation 21

data throughput, or parallelism, of the design.

The partition can be configured in three types, cyclic, block, or complete. The cyclic

partitioning creates smaller arrays interleaving elements from the original array. There-

fore, the array is partitioned, putting one element into each new array before returning

to the first array, repeating the cycle until the complete partitioning of the array. The

block partitioning splits the array into equal blocks following a given parameter N. The

complete partitioning, the default configuration, completely decomposes the array into

individual elements.

Figure 3.4: Array partitioning pragma illustration [14]

CHAPTER 4

High-Level Synthesis and Simulations

In this Chapter, the simulations performed are described in detail. Starting from

the Hypotheses elaborated through the design development, it then describes how these

hypotheses were tested and in which conditions the simulations were executed.

For the HLS implementation of the CNN, several different solutions were performed

to explore the design space well. The different design space explorations were in paral-

lelism, FPGA technology, data type, and performance comparison with microcontrollers.

4.1 Hypotheses

The first hypothesis for exploring the solutions was that a smaller, sequential imple-

mentation of the circuit would spend less static and dynamic power, which would result

in a cheap, low-power, low-area implementation of the algorithm. The high parallelism

implementation using more area would result in an expensive, large but faster circuit in

latency.

Further hypotheses for exploration were in terms of different FPGA technologies, in

which smaller technologies would consume less power, or different data-types (floating vs.

fixed point), in which a fixed-point implementation of the calculations would reduce the

device power with the cost of data precision.

The final hypothesis would be for the comparison between FPGAs and different

CPUs. The assumption was that the hardware implementation of the algorithm would

result in a faster and less energy spending circuit at the cost of more expensive technology.

All of the simulations performed and the further power analysis considered just

22

Chapter 4 – High-Level Synthesis and Simulations 23

the internal power for calculation, and therefore did not consider the power of the host

systems or the data transfer. These should also be taken into account in future work for

implementations. In this work, the cost/performance ratio was not optimized for either

microcontrollers or FPGAs.

4.2 Parallelism

In terms of the area-parallelism hypothesis, nine synthesis experiments followed by

their respective simulations were performed to verify the circuit’s behavior in terms of

power in a growing gradient of parallelism. The first solution would disable all pipelining

and parallelism optimizations to get the most sequential implementation possible. Other

solutions would increase the parallelism up until the compiler would reach the maximum

parallelism possible. The implementations were:

• None: All of the pipelining and array partitionings were disabled, resulting in a

highly sequential circuit

• Inner-Loops: All of the most inner loops of the CNN were set to be unrolled and

pipelined, leaving the other loops without compiled optimizations

• Balanced-Inner: The inner loops were set to be unrolled in a balanced way, mean-

ing that all of them would be executed with the same unroll factor of 16

• Half : All of the loops of the design were unrolled by half with a factor of two

• Inner-off : Optimization of all of the inner-loops are disabled

• Outer-Loops:Optimization of the most outer loops are unrolled, while the inner

loops are disabled

• Conv-Layer: Optimization of the whole convolutional-layer loops are unrolled and

pipelined, while the other modules are disabled for optimization

• OuterOff : all of the inside loops are set for unrolling optimization pragma, except

for the most outer one, which is turned off

• Full: All of the loops of the code are unrolled and optimized.

Chapter 4 – High-Level Synthesis and Simulations 24

After the generation of the RTL models, the netlists were synthesized in Vivado and

simulated for ten iterations of calculations. This step was performed in order to generate

the switching activity of each design. This step was crucial in order to perform a more

reliable power analysis.

After the synthesis and simulation, the power analysis was executed in Vivado for

each solution.

4.3 FPGA Technologies

After comparing different kinds of parallelism, the implementation of the design on

a smaller-transistor technology would be beneficial in terms of power, even if it would still

increase the cost of the chip. Intending to test this assumption, the optimal solution from

the previous step was implemented in an FPGA chip of the family Zynq Ultrascale+.

After that, a comparison between the two different technologies was performed.

4.4 Data Types

For the data type simulation, the optimal solution from the subsection 4.2 was

compared to a solution following the same directives of optimizations (complete unrolling

of all loops), with the only difference of the data type used. The data type used for

this simulation was a fixed-point implementation with the configuration of 4 bits for the

signed integer part and 20 bits for the decimal part of the number. This implementation

would allow the representation of data of integer numbers from -7 to +7 with a decimal

digits precision of 10−6, which is a little less than the precision of the floating-point

implementation. The FPGA technology family used for this implementation was the

Artix-7. A comparison between the precision of the final calculation from both floating

and fixed-point implementations was performed. This step was performed to evaluate in

practice the precision to be expected from the fixed-point design.

The fixed point configuration of this experiment was chosen arbitrarily as an imple-

mentation closer to the floating-point than the 16 bits implementation of the half-precision

floating-point. Future work could explore this scenario.

Chapter 4 – High-Level Synthesis and Simulations 25

4.5 FPGA vs Microcontrollers

As a final analysis, the previously analyzed implementations were compared to the

efficiency of microcontrollers. Two microcontrollers were selected. One with and one

without a floating-point unit. For the microcontroller energy consumption estimation

running the algorithm, the following steps were performed for both of the microcontrollers:

• Firstly, the code used for the HLS implementations was used as a C++ code and

implemented, via STM32 compiler, inside two STM32 microcontroller modules.

• In an infinite loop, before and after the CNN calculations, a command to toggle the

state of an I/O was set.

1 /* Infinite loop */

2 /* USER CODE BEGIN WHILE */

3 while (1)

4 {

5 /* USER CODE END WHILE */

6

7 /* USER CODE BEGIN 3 */

8 HAL_GPIO_TogglePin(GPIOA , D9_Pin);

9 conv_layer(conv1_out , datain , conv_layer_weights ,conv_layer_bias ,

CONV1_DATA_SIZE ,CONV1_CHANNELS , CONV1_KERNEL_SIZE ,

CONV1_FILTERS , CONV1_STRIDE);

10 pool_layer(pool1_out , conv1_out , P1_SIZE , P1_CHANNELS ,

P1_KERNEL_SIZE , P1_STRIDE , P1_OUT);

11 fc_layer(fc1_out , pool1_out ,fc1_layer_weights , fc1_layer_bias ,

FC1_NEURONS ,FC1_CHANNELS);

12 fc_layer(op_out ,fc1_out , op_layer_weights , op_layer_bias ,

OP_NEURONS ,OP_CHANNELS);

13

14

15 }

16 /* USER CODE END 3 */

Listing 4.1: infinite loop for toggling the state of the I/O before and after calculation

• The state of the I/O was monitored in an oscilloscope, and the time for the toggle

was measured, as it can be observed in Figure 4.1. By doing this, the time needed

Chapter 4 – High-Level Synthesis and Simulations 26

by the CPU to calculate one iteration could be found.

Figure 4.1: Simulation performed for measuring the microcontrollers execution time

• The time acquired in the last step was used to calculate the energy spent by the

CPU by multiplying it by the current draw value that could be found in the device’s

datasheet.

The selected microcontrollers for evaluation were the STM32L412, with an embed-

ded Floating Point Unit, from the Arm Cortex-M4 32-bit family, and STM32L152 from

the Arm Cortex-M3 32-bit family, which does not have a Floating Point Unit.

For better comparison, both of them executed the code wiht the same clock fre-

quency of 32 MHz, which required a supply voltage of 1.8V. In order to estimate the total

energy consumption, the datasheets [15] [16] were consulted and the run mode tables were

extracted.

Chapter 4 – High-Level Synthesis and Simulations 27

Figure 4.2: Run modes for STM32L152xE (from datasheet)

Figure 4.3: Run modes for STM32L412xx (from datasheet)

From Figures 4.2 and 4.3, the values of current consumption per MHz in run mode

were extracted and formed the Table 4.1 with the calculated parameters for the power

supply.

Chapter 4 – High-Level Synthesis and Simulations 28

STM32 POWER SUPPLY

Solution No-FPU FPU

Component STM32L152RE STM32L412

Technology Arm® Cortex®-M3 32-bit Arm® Cortex®-M4 32-bit

Cost (Euro) 7.1 3.13

Frequency (MHz) 32 32

Supply voltage(V) 1.8 1.8

Run Mode Current (µA/MHz) 195 91

Active Current (mA) 6.24 2.91

Table 4.1: Power supply parameters for the STM32 microcontrollers

CHAPTER 5

Results Analysis

The following sections represent the design-space exploration performed for the im-

plementation of the algorithm. The scenarios were divided between Hardware and Soft-

ware implementations. On the Hardware section, different configurations of the imple-

mentation in the FPGA were explored, while in the Software section, the performance of

the algorithm ran on different microcontrollers was analyzed.

5.1 Hardware implementations

5.1.1 Parallelism

The results of the parallelism hypothesis can be observed in Tables 5.1, 5.2 and 5.3.

From Table 5.1, it can be firstly observed that None implementation fits it a very

small and cheap FPGA component and with a total energy consumption slightly higher

then the Inner-Loops solution, even if the Inner-Loops reduces the total iteration

latency by a half when compared to None.

In the Balanced-Inner solution fewer resources are used, but the dynamic power

almost doubles in value indicating that it is not an interesting solution for exploration.

This may be due the necessity of multiplexing and data storage needed for implementing

this solution, as some of the loops are not unrolled completely, but just partially.

29

Chapter 5 – Results Analysis 30

SMALL FPGA CHIPS

Parallelism None Inner-Loops Balanced Inner

Component xc7a12tl xc7a50tl

Cost (Euro) 26.9 65.1

Iteration Latency (µs) 1153 568 561

Usage/Available

DSP 5/40 105/120 70/120

FF 2058/16000 31326/65200 28398/65200

LUT 4225/8000 25906/32600 26435/32600

BRAM 15/40 122/150 122/150

Frequency (MHz) 100 100 100

Slack (ns) 0.201 0.225 0.255

Supply voltage(V) 0.9 0.9 0.9

Dynamic Power (mW) 23 109 176

Static Power (mW) 59 69 69

Total Power (mW) 82 178 245

Energy (nJ) 89.9 101 137

Table 5.1: Results for small FPGA chips

From the implementations observed in Table 5.2, it can be firstly be observed that

this higher degree of parallelism and resource usage does not come with advantages in

terms of power and energy consumption.

The Half solution can be noticed by its usage of resources, which is quite less then

the resources generally used by Inner-Off. The usage of LUTs, however, is higher. In

the end, even sing less resources, and less dynamic power, the Inner-Off solution uses

less energy for the calculation due to its faster iteration latency.

Chapter 5 – Results Analysis 31

MEDIUM FPGA CHIP

Parallelism Half Inner-Off

Component xc7a75tl

Cost (Euro) 105

Iteration Latency (µs) 494 394

Usage/Available

DSP 24/180 162/180

FF 26310/94400 27643/94400

LUT 40576/47200 20660/47200

BRAM 35/210 92/210

Frequency (MHz) 100 100

Slack (ns) 0.281 0.171

Supply voltage(V) 0.9 0.9

Dynamic Power (mW) 147 164

Static Power (mW) 86 87

Total Power (mW) 233 251

Energy (nJ) 115 98.9

Table 5.2: Results for medium FPGA chip

As it can be seen from Table 5.3, the implementation with the least energy expen-

diture in all of the design space exploration is the OuterOff solution. It was supposed

that a slower and smaller circuit could spend less energy by having a lower static power,

however, as it seems, parallelization can really pay off the higher static power, but up until

a certain point. The Full solution has the highest degree of paralellization, it is faster,

however the total energy spent for an iteration is higher than the OuterOff solution.

The effect of parallelization can only be observed in the Full and OuterOff implemen-

tation because most of the loops are pipelined and optimized, which drastically reduces

the latency, by a factor of 100x when compared to the None implementation, even if the

dynamic power used is very high when compared to all of the implementations. Mainly,

what it can be concluded from this experiment is that the acceleration of the hardware

calculation can reduce the total energy expenditure, at the cost of area. However the

Chapter 5 – Results Analysis 32

loops must be pipelined and unrolled to exploit parallelism.

LARGE FPGA CHIP

Parallelism Outer-Loops Conv-layer OuterOff Full

Component xc7a200tl

Cost (Euro) 212

Iteration Latency (µs) 115 283 9.85 9.70

Usage/Available

DSP 5/140 481/740 484/740 481/740

FF 40090/269200 56942/269200 88934/269200 66622/269200

LUT 97577/134600 101927/134600 66029/134600 132533/134600

BRAM 102/730 6/730 80/730 0/730

Frequency (MHz) 100 100 100 100

Slack (ns) -0.322 -2 0.052 0.052

Supply voltage(V) 0.9 0.9 0.9 0.9

Dynamic Power (mW) 179 354 840 1073

Static Power (mW) 121 122 123 123

Total Power (mW) 300 476 963 1196

Energy (nJ) 34.5 135 9.49 11.6

Table 5.3: Results for large FPGA chip

5.1.2 FPGA Technologies

It can be seen from these experiments results in Table 5.4 that for the choice of

the smaller-transistor technology, the investment does not really achieve a considerable

improvement. Even if the dinamic power achieved is lower, the static power consumption

for the UltraScale+ chip makes this optimization unnoticed in the final power and energy

spenditure. On future work, some simulations could be performed with designs with a

lower degree of parallelism with smaller UltraScale+ chips as well in order to verify the

broad design space.

From the high slack of 7.87 ns observed in the implementation of the OuterOff solu-

tion on the UltraScale+ chip, it can be noticed that there is a high space for performance

optimization. A higher frequency of 469 MHz could be achieved with this circuit, which

would reduce the iteration latency and could reduce the total energy consumption, even

Chapter 5 – Results Analysis 33

if the dynamic power could potentially rise. Further work could be performed in this

implementation to observe the trade-offs in practice.

DIFFERENT FPGA TECHNOLOGY

Parallelism OuterOff Full OuterOffUltra

Component xc7a200tl xczu4ev UltraScale+

Cost (Euro) 212 880

Iteration Latency (µs) 9.85 9.70 5.52

Usage/Available

DSP 484/740 481/740 485/728

FF 88934/269200 66622/269200 90344/175680

LUT 66029/134600 132533/134600 69258/87840

BRAM 80/730 0/730 80/256

Frequency (MHz) 100 100 179

Slack (ns) 0.052 0.052 -0.299

Supply voltage(V) 0.9 0.9 0.85

Dinamic Power (mW) 840 1073 1128

Static Power (mW) 123 123 322

Total Power (mW) 963 1196 1450

Energy (nJ) 9.49 11.6 8

Table 5.4: Results for FPGA chips from different technologies

5.1.3 Data Types

Firstly, from the precision evaluation in Table 5.5, it can be seen that the highest

error found for the in the fixed point calculation is 0.002081, which represents 0.15%

of the respective prediction of X. This analysis indicates that the calculation performed

with can be a promising field for exploration, as the final relative error of this fixed point

implementation is small and mantains the prediction reliable.

Chapter 5 – Results Analysis 34

PRECISION EVALUATION

Float Fixed Error

Calculation X Y X Y X Y

1 1.306774 2.244772 1.305695 2.243301 0.001079 0.001471

2 1.311916 2.293143 1.310211 2.291672 0.001705 0.001471

3 1.337289 2.268058 1.335510 2.267120 0.001779 0.000938

4 1.380041 2.223119 1.377960 2.222168 0.002081 0.000951

5 1.443046 2.199926 1.442215 2.198318 0.000831 0.001608

6 1.487756 2.217685 1.486862 2.216080 0.000894 0.001605

7 1.561531 2.256933 1.560120 2.255615 0.001411 0.001318

8 1.662190 2.284451 1.661438 2.283279 0.000752 0.001172

9 1.712496 2.281284 1.712006 2.279846 0.000490 0.001438

10 1.74027 2.302691 1.739807 2.300934 0.000463 0.001757

Table 5.5: Fixed-point precision evaluation

From Table 5.6, it can be seen that the usage of the fixed point implementation

can continue the power optimization of the design by reducing the area and latency for

calculation. This implementation resulted in the total energy for iteration of 10 times less

than the floating point implementations.

From this analysis, it can be concluded that the fixed point implementation can

still produce a significant result for the prediction of the position, with a small relative

error. Depending on the application, this implementation maintains the reliability of the

prediction algorithm.

Chapter 5 – Results Analysis 35

DIFFERENT DATA TYPES

Parallelism OuterOff OuterOffUltra OuterOffFixed

Component xc7a200tl xczu4ev UltraScale+ xc7a200tl

Cost (Euro) 212 880 212

Iteration Latency (µs) 9.85 5.52 4.32

Usage/Available

DSP 484/740 485/728 309/740

FF 88934/269200 90344/175680 25882/269200

LUT 66029/134600 69258/87840 14006/134600

BRAM 80/730 80/256 27/730

Frequency (MHz) 100 179 77

Slack (ns) 0.052 -0.299 -0.859

Supply voltage(V) 0.9 0.85 0.9

Dynamic Power (mW) 840 1128 98

Static Power (mW) 123 322 121

Total Power (mW) 963 1450 219

Energy (nJ) 9.49 8 0.945

Table 5.6: Results the different data types implementations

5.2 Software Implementations

From Table 5.7, it can be seen that microcontrollers can be an interesting solution

for the processing of the algorithm in a low-power design. The STM32-L412, with a

special Floating Point Unit turned out to be a good implementation of the design with

a low cost of implementation, having an iteration energy slightly higher than the None

solution. Furthermore, it can be seen that, with a higher investment in implementation,

the iteration energy can be improved by a higher order, up until 1000 times lower in the

OuterOff-Fixed fixed-point implementation when compared to the STM32-L152RE

microcontroller. The higher investment in the technology may not pay off, however, as it

can be observed in OuterOff-Ultra solution, which is implemented in a more expensive

chip but delivers a final energy consumption that is very similar to the one in OuterOff.

Chapter 5 – Results Analysis 36

MICROCONTROLLERS VS FPGAs

Solution No-FPU FPU None OuterOff
OuterOff-

Ultra

OuterOff-

Fixed

Component
STM32-

L152RE

STM32-

L412
xc7a12tl xc7a200tl xczu4ev xc7a200tl

Cost (Euro) 7.1 3.13 26.86 211.82 800 211.82

Iteration

Latency (µs)
58600 20000 1153 9.85 5.52 4.32

Frequency

(MHz)
32 32 100 100 179 77

Supply

Voltage(V)
1.8 1.8 0.9 0.9 0.85 0.9

Total Power

(mW)
11.2 5.24 82 963 1450 219

Energy

(nJ)
658 105 94.5 9.49 8 0.945

Table 5.7: Results for microcontrollers compared to different FPGA solutions

The effect of the analysis can be better observed in Figure 5.1. The cost is displayed

as a function of the energy consumption so that the energy saving in each solution could

be observed. As it can be seen, the solutions show an inversely proportional pattern, the

lower the cost, the higher the energy. Also, at a certain point, the energy saving comes

with a much higher cost, in OuterOffUltra. Therefore, a solution for further reducing

the energy consumption must come with other design losses, such as the precision loss in

the OuterOffFixed solution.

Chapter 5 – Results Analysis 37

Figure 5.1: Cost vs Energy

CHAPTER 6

Discussion and Conclusion

6.1 Conclusion

As a preliminary conclusion, it can be said that High-Level Synthesis is a potent and

practical tool to use in hardware design. The agility of configuring the pragma directives

for HDL synthesis for several different solutions made this broad design space exploration

possible.

In the light of the results from the performed experiments, it can be concluded

that the main objective of the design space exploration was reached. The trade-offs

of cost, power, area, and technology have been searched, and different solutions for the

implementations were offered. Microcontrollers can offer a cheap and relatively low-power

solution. However, FPGAs offer a more extensive space for design exploration, with much

lower power implementations and the possibility for hardware capable of computing using

a specific data type, such as the fixed-point implementation used in this project. An

important drawback of FPGAs, however, is the higher unit cost.

In summary, Table 5.7 illustrates the whole cost/performance/energy/precision trade-

off curve. It shows that modern microcontrollers with dedicated numeric computing units

such as STM32-L412 can perform very well, especially in terms of cost. In applications

in which the energy consumption is a significant part of the total system cost, such as data

centers or embedded devices with very high battery replacement cost and no independent

power sources, the high price of FPGA technology could be compensated.

The main objective of the Thesis work of exploring the design space of the imple-

38

Chapter 6 – Discussion and Conclusion 39

mentation of the convolutional neural network was achieved. Different solutions for the

low power design were found, for low-cost and for high-end implementations.

6.2 Future Work

Some different scenarios arise from the evaluation performed in this thesis. Future

work could be performed to explore the trade-off between fixed-point low power implemen-

tation and the precision of calculation of the floating-point. The fastest implementation

of the algorithm in smaller FPGA technologies such as the UtraScale+ family for high-

end applications could also be explored. Faster implementation of the algorithm means

that the run-time is smaller, and therefore the total energy consumed for processing the

calculation could be lower than the implementation in more prominent families.

References

[1] T. Kivimäki, T. Vuorela, P. Peltola, and J. Vanhala, “A review on device-free passive

indoor positioning methods,” International Journal of Smart Home, vol. 8, pp. 71–94,

01 2014.

[2] O. B. Tariq, M. T. Lazarescu, and L. Lavagno, “Neural networks for indoor human

activity reconstructions,” IEEE Sensors Journal, vol. 20, no. 22, pp. 13571–13584,

2020.

[3] C. Zhang, D. Wu, J. Sun, G. Sun, G. Luo, and J. Cong, “Energy-efficient cnn imple-

mentation on a deeply pipelined fpga cluster,” in Proceedings of the 2016 Interna-

tional Symposium on Low Power Electronics and Design, ISLPED ’16, (New York,

NY, USA), p. 326–331, Association for Computing Machinery, 2016.

[4] F. U. D. Farrukh, T. Xie, C. Zhang, and Z. Wang, “Optimization for efficient hard-

ware implementation of cnn on fpga,” pp. 88–89, 2018.

[5] J. M. Rabaey, A. Chandrakasan, and B. Nikolic, Digital Integrated Circuits. USA:

Prentice Hall Press, 3rd ed., 2008.

[6] T. M. Mitchell, Machine Learning. New York: McGraw-Hill, 1997.

[7] S. Kiranyaz, O. Avci, O. Abdeljaber, T. Ince, M. Gabbouj, and D. J. Inman, “1d

convolutional neural networks and applications: A survey,” Mechanical Systems and

Signal Processing, vol. 151, p. 107398, 2021.

[8] S. Kiranyaz, A. Gastli, L. Ben-Brahim, N. Alemadi, and M. Gabbouj, “Real-time

fault detection and identification for mmc using 1-d convolutional neural networks,”

IEEE Transactions on Industrial Electronics, vol. PP, pp. 1–1, 05 2018.

[9] F. Chollet et al., “Keras.” https://keras.io, 2015.

40

Chapter – REFERENCES 41

[10] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,

A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Is-

ard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga,

S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever,

K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. War-

den, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale

machine learning on heterogeneous systems,” 2015. Software available from tensor-

flow.org.

[11] M. Roukhami, M. T. Lazarescu, F. Gregoretti, Y. Lahbib, and A. Mami, “Very low

power neural network fpga accelerators for tag-less remote person identification using

capacitive sensors,” IEEE Access, vol. 7, pp. 102217–102231, 2019.

[12] Xilinx, Vitis High-Level Synthesis User Guide.

[13] Xilinx, “Xilinx hls pragmas,” 2021.

[14] Xilinx, “Sdsoc environment profiling and optimization guide,” 2019.

[15] STMicroelectronics, Ultra-low-power 32-bit MCU Arm®-based Cortex®-M3 with

512KB Flash, 80KB SRAM, 16KB EEPROM, LCD, USB, ADC, DAC, 2021. Rev

10.

[16] STMicroelectronics, Ultra-low-power Arm® Cortex®-M4 32-bit MCU+FPU,

100DMIPS, up to 128KB Flash, 40KB SRAM, analog, ext. SMPS, 2021. Rev 8.

APPENDIX A

CNN code

1 #include "defines.h"

2 #include "weights.h"

3 #include "functions.h"

4 #include "Modules.h"

5

6 #include <hls_stream.h>

7

8

9

10

11

12 void CNN(volatile float op_out[OP_NEURONS],volatile float datain[

DATA_SIZE]){

13 #pragma HLS INTERFACE ap_fifo port=datain

14 #pragma HLS INTERFACE ap_fifo port=op_out

15

16

17

18 float pool1_out[P1_CHANNELS] = {0};

19

20 float fc1_out[FC1_NEURONS] = {0};

21

22 float conv1_out[CONV1_FILTERS][CONV1_CHANNELS] = {0};

23

24

25

26 conv_layer(conv1_out , datain);

42

Chapter A – CNN code 43

27 pool_layer(pool1_out , conv1_out);

28 fc_layer(fc1_out , pool1_out);

29 op_layer(op_out ,fc1_out);

30

31

32 }

Listing A.1: CNN main function breaklines

APPENDIX B

CNN modules

1 #include "functions.h"

2 #include "ap_fixed.h"

3 #include <hls_stream.h>

4

5 void conv_layer(float out[CONV1_FILTERS][CONV1_CHANNELS],volatile float

in[DATA_SIZE]) {

6

7

8 static float window [5* DATA_SIZE]{};

9 int filter , row_offset ,column_offset , channel_offset;

10 float sum;

11

12

13 //shift register for storing the 16 values of datain in a window mode

with the padding ’same ’: first and last rows are equal to 0

14 buffer: for(int m = 0; m < DATA_CHANNELS; m++){

15 buffer_label0:for (int n = 0; n < DATA_SIZE; n++){

16 if(m == DATA_CHANNELS -1){

17 window[m*DATA_SIZE + n] = in[n];

18

19 }

20 else

21 window [(m)*DATA_SIZE + n] = window [(m+1)*DATA_SIZE + n];

22

23 }

24

25 }

44

Chapter B – CNN modules 45

26

27 // convolution layer with padding ’same’

28 convolution: for (filter = 0; filter < CONV1_FILTERS; filter ++){

29 conv_layer_label2:for (channel_offset = 0; channel_offset <

CONV1_CHANNELS; channel_offset += CONV1_STRIDE){

30 sum = 0;

31 conv_layer_label1:for(row_offset = 0; row_offset <

CONV1_KERNEL_SIZE; row_offset ++){

32 conv_layer_label0:for(column_offset = 0; column_offset <

DATA_SIZE; column_offset ++){

33

34 if (!(((row_offset == 0) && (channel_offset ==0)) || ((

row_offset == CONV1_KERNEL_SIZE -1) && (channel_offset ==

CONV1_CHANNELS -1))))

35 sum += window [(channel_offset + row_offset - 1)*

DATA_SIZE + column_offset]* conv_layer_weights[row_offset][

column_offset][filter];

36

37 }

38 }

39 out[filter][channel_offset] = relu(sum + conv_layer_bias[

filter]);

40 }

41 }

42 }

43

44

45

46 void pool_layer(float out[CONV1_FILTERS],float in[CONV1_FILTERS][

CONV1_CHANNELS]) {

47

48

49 int i, j;

50 float average;

51

52

53 pooling: for(i = 0; i < CONV1_FILTERS ; i++){

54

55 average = 0;

Chapter B – CNN modules 46

56 pool_layer_label1:for (j = 0; j < CONV1_CHANNELS; j++){

57 average += in[i][j]/ CONV1_CHANNELS;

58 }

59 out[i] = average;

60 }

61

62 }

63

64

65

66 void fc_layer(float output[FC1_NEURONS], float input[FC1_CHANNELS]){

67

68 float rel;

69

70 NN: for (int i = 0; i < FC1_NEURONS; i++) {

71

72 rel = 0;

73 fc_layer_label2:for (int j = 0; j < FC1_CHANNELS; j++) {

74 rel += input[j]* fc1_layer_weights[j][i] ;

75 }

76 output[i] = relu(rel + fc1_layer_bias[i]);

77 }

78 }

79

80 void op_layer(volatile float out[OP_NEURONS], float input[OP_CHANNELS]){

81

82 float rel , buff;

83

84 output: for (int i = 0; i < OP_NEURONS; i++) {

85

86 rel = 0;

87 op_layer_label3:for (int j = 0; j < OP_CHANNELS; j++) {

88 rel += input[j]* op_layer_weights[j][i] ;

89 }

90 out[i]= relu(rel + op_layer_bias[i]);

91 }

92 }

Listing B.1: CNN Modules breaklines

APPENDIX C

CNN Testbench

1 #include <stdio.h>

2 #include <string.h>

3 #include "ap_fixed.h"

4 #include <iostream >

5 #include <fstream >

6 #include <string >

7 #include <sstream >

8 #include <stdlib.h>

9

10 void CNN(volatile float op_out [2], volatile float datain [16]);

11

12 int main(){

13 setvbuf(stdout ,NULL ,_IONBF ,0);

14

15 float datain [16]{};

16 float op_out [2]{};

17 float temp {};

18

19 //read values from preprocessed data file and store it in Datain

20 FILE *file = fopen("preprocessed.csv", "r");

21 if(file == NULL) exit (1);

22 char line [200];

23 char *token;

24

25 for(int i = 0; i < 10; i ++){ // perform the test 100 times

26 fgets(line , sizeof(line), file);

27 token = strtok(line , ",");

47

Chapter C – CNN Testbench 48

28 for (int col = 0; col < 16; ++col){

29 temp = strtod(token ,NULL);

30

31 datain[col] = temp; // cast temporary value to floating point

32

33 token = strtok(NULL ,",");

34

35 }

36

37 CNN(op_out ,datain);

38 printf("iteration: %i \n", i);

39 printf("out1: %f \t out2: %f \n", op_out [0], op_out [1]);

40 }

41

42

43

44

45 return 0;

46 }

Listing C.1: Testbench for simulation breaklines

